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. THERMAL BOUNDARY CONDITIONS FOR WATER
FLOW WITH MOVING BOUNDARIES

1/

By Edward R. Holley=', Champaign, Illinois

and Nobuhiro Yotsukura, Reston, Virginia

ABSTRACT

General thermél boundary conditions are derived for the free surface
and the bed for unsteady open-channel flow where both bouﬁdaries may be in
motion. Since any movement of the bottom boundary normally involves
sediment movement, it is assumed in the analysis that the water -is carrying
suspended sediment. The boundary conditions consider a variety of radiative,
advective, and diffusive fluxes of heat including the possiblity of some
solar radiation reaching the stream bed. Kinematical boundary conditions
for the water, the sediment, and the suspension have been presented since  °
they can be used to simplify the thermal boundary conditions. Application
of the boundary conditipps'for calculation of vertical distributions. of
temperature requires knowledge of the diffusive transports of heat immediately
belQW the free surface and immediately above the bed. There are some aspects
of these diffusive transports which are not well defined.

INTRODUCTION

Considerable attention has been given to various mechanisms of heat

.transfer at a free water surface (Anderson, 1954; Ryan and Harleman, 1973)

and to temperature distributions in water bodies under both natural conditions

(Edinger and Geyer, 1965; Morse, 1970) and conditions of thermal loading
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(Paiiy, Macagno and Kennedy, 1974). Situations have been considered both

with vertical uniformity of température (Harleman, 1972; Jobson and fotsukura,
. .

1973) and with vertical distributions of temperature (Schiller and Sayre,

1975; Prych and others, 1976). The referenées citea are just a few typical

examples and are not intended to provide an exhaustive list.

In some problems, it is beneficial to solve the differential thermal-

energy conservation‘equation to obtain information on the spatial and(or)
temporal temperature distributions. Regardless of whether the solution of
the differential equation is obtained amalytically or numericallj,
appropriate boundary conditions must be used. When solving for vertically
‘nonuniform distributions of water temperature, thermal boundary conditions
must be satisfied at both the free surface and the channel bottom. For
problems dealing with depth-averaged or cross-section-averaged temperatures,
energy fluxes associated ‘with thermal boundary conditions appear as source
and sink terms in the thermal-energy conservation equation.

The customary formulation of thermal boundary conditions for problems
with vertically non-uniform temperature distributions has been to assume that
the only flux normal to the boundary in the water is a diffusive flux which
is the‘product of the'temperéture gradient and the diffusion coefficient at
the boundary. Therefore, the thermal boundary condition has normally been
written by equating this diffusive flux to the net thermal energy flux across
the boundary. This approach, which is analogous to that for the conduction
of heat in solids, is straightforward for steady flows. However, it is not
immediately obvious that the same formulation applies when the flow is

unsteady and the boundaries are in motion, because then advective thermal

|
transport at the boundaries has to be considered. Chen (1971) presented a s
. C |

type of thermal boundary condition for moving boundaries, but he used the

customary formulation without reference to the advective transport, and his

presentation neglected heat transfer associated with radiation and latent
heat of vaporization, both of which are normally quite significant at the |

air-water interface.

The purpose of this paper is to present general thermal boundary con-

ditions for unsteady, free-surface water flow with moving boundaries. In

an effort to be general in the analysis, several terms have been included
which may be negligible in some situations. Since any movement of the
bottom boundary normally involves sediment movement, it is assumed in the
analysis that the water is carrying suspended sediment. Precipitation,
evaporation, and infiltration are included to account for water inflows and
outflows and the associated heat fluxes. The possibility of solar radiation
reaching the stream bed is alsp considered. It appearé that solar radiation
can provide an important heat input at the bed, espec¢ially for streams which
are relatively shallow and(or) in which the water is relatively clear.

First the kiﬁematical boundary ﬁonditions are derived for the water, for
the sediment, and for the water-sediment mixture. The general thermal
boundary conditions are then presented in their complete forms as well as in
reduced forms which can be obtained by use of the kinematical boundary con-’
ditions. These are the boundary conditions for solving differential thermal-
energy conservation equations to obtain spatial and temporal variations of

temperature in a water bddy.




DEFINITIONS

Consider an unsteady free surface flow as depicted in figure 1. Let
y = S(x,8,t) describe the unsteady free surface and y = B(x,2,t) describe
the unsteady bottom surface. Then h(x,z,2) = S-B is the depth of water.
Let P = precipitation rate, E = evaporation rate, and I = infiltration rate,
with each one being defined as an intensity or volume flux per unit area
and having the dimensions of length per time. The positive directions for
P, E, and I are indicated by arrows in figure 1. It is assumed that P is
a rate per unit of horizontal area while E is per unit of surface area and

I is per unit of bottom area.

Precipitation P

Evaporation E

Depth h = S—B

7T LIW
InfiltrationI

y = B(x,z,t)

———
v
> .

Datum

Figure 1l.--Longitudinal profile of a free surface flow.
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The water is assumed to be carrying suspended sediment. The combined
water and sediment will be called the suspension. Some considerations will
relate to the suspension, some to the sediment, and some just to the water
in the suspension. The following definitions will be used:

p = density of suspension (mass per unit volume)

cs = mass of sediment pér gnit volume of suépenSion

p8 = density of sediment particles (mass pér unit volumef
cs/ps = voiume of sediment per unit volume of suspénsion

e, = ﬁass of water per unit volume of suspension

P, = densit§ of water (mass per unit volume)

cw/pw = volume of water per unit volume of suspension
%,Y,3 = Cartesian coordinates with x and z being horizontal
‘-rfz . ) . ,

Z,JsK = unit vectors in x,y,2 directions

U,V,w = velocity components in X,y,3 directions

V= velocity vector, equation 1

ex,ey,ez = diffusion coefficients in x,y,zidirections
D = diffusive flux vector operator, equation 2
€ = porosity of bed material
_> -
7 = unit outward normal vector at boundary
0 = subscript referring to water surface
"B = subscript referring to bottom boundary .
8 = subscript referring to the sediment

w = subscript referring to the water
The velocity vector and the diffusive flux operator listed above are defined

as




V= 3u+go+ ke o B ¢ 5]
and

5o de L3, L % B -

D=-te, o=~ Je, oy - Zéz 7 : (2)

Note that the above definitions for velocity and diffusion terms, includiﬁg
equations 1 and 2, apply not only to the suspension but also to the sediment
and the water. The omission of subscripts, 8 and w, on these terms is to
avoid unnecessary duplications. In the following sections of the paper,
however, the absence of s or w as a subscript on a velocity or diffusion
terﬁ will indicate that the tefm'reférs to the suspgnsion.

The relation between the velocities of the sediment, water, and
suspensioh can be obtained by considefing the flux through an incremental
area Ao.. The fraction of the area cutting through sediment.particles on the
average is AaS/Au = cs/ps, and the fragtion cu;ting through water i§
Aaw/Aa = cw/pw, since, on the average, the croés—sectionalvarea ratio of
sediment particles to water is the same as the ratio of sediment volume to
water volume. The sqspeﬁsion velocity, ?, will be defined as the volume
average velocity through Ao, so that |

_T;SAOLS —L)’onc&} —T;scs Ve :
= .+ = + (3

B T R T ey ey

Some aspects of the following discussion are contingent on this definition
C I . S A .
of V. If n is the unit vector normal to Aa, then n*V Ao is the volumetric
flux of suspension through Aa.
From the definitions of the densities and concentrations, it can be

shown that

(] c
L=, )
s Py |

éince’the sum of the sediment volume and water volume must equal the total

" volume.

The analyses for developing the boundary conditions will relate to an
element, do, of free surface area which has a horizontal projected area of
dA = dxdz and to a similar.element, dB, of channel bottom area. The relations

between do and dA and between dB and dA are (Sokolnikoff and Redheffer, 1958)

-

2

2
do \/1 @&+ A a (5)

2 2
szﬁ—ﬁ) + &) m (6

dp

. : -
The unit outward normal vectors for the free surface, Ngs and for the bed,

- .
nB, can be W;itten as

(

> %035, = 35, dA

ny = (-7 =t Z——BZ) _dq (7
and

> _ + 3B = 9B, dA )

g = (2 - 97 x 82) g ®)

KINEMATICAL BOUNDARY COﬁDITION Af‘FREE SﬁRFACE
The kinematical boundary conditions fér'the water and for the sediment
can be obtained in a number of ways. The method used here was selected
because it has a rather straightforward physical interpretation. Consider
the situation shown in figure 2, where SJ is a segment of the free surface
at time ¢ and S, is the free surface at an increment of time d¢ later. Let

2

d\ be the incremental volume between SZ and 5,. Then

2
39X 38
3t 5z H- )




Continuity requires that the instantaneous time rate of change of mass in
the incremental volume element_dk, which is created by the moving water
surface, must equal the mass rate of inflow normal to do, which is an element

of the initial S,, plus other mass rates of inflow across the moving S. This

72
concept can be applied both to the sediment and to the water to obtain
boundary conditions for each one, and then the results can be added to obtain
the boundary condition for the suspension. Consideration of mass fluxes

across the vertical sides of dA gives rise only to second-order terms which

are negligible relative to the mass fluxes across do and S.

7.
VSurface S, at t+dt

4 5 *4/// Incgemenéal
= W/ volume dA
/;Surface S, att
%
* Incremental surface area do

W)y | (B'c)"rl

Va

Incremental horizontal
dz area dA = dxdz

dx

Figure 2.--Element of a moving free surface.

Sediment
The mass flux of sediment normal to do is a result of advection and
» . . ' 3 + + ’
diffusion and can be written as the advective flux, (n-Vécs)Odo, plus the
s

diffusive flux, (z'ﬁscs)cdc. The rate at which sediment is going into

storage in d\ is the surface concentration of sediment, ey times (35/3t)dA,

which is the rate at which volume is being created due to the movement of
S. Since there are no fluxes of sediment across S, the.foundary condition
can be written as

(nV e +nde)do=c.  22da (10).
It will be assumed that terms like the product (BCS/Bt)O(BS/Bé) aré
negligible second-order terms. In most of this paper, the fluxes will be
written in vector form, as in eqﬁatiqn 10. However, for this one equation,

the vectors will be expanded into a Cartesian coordinate system for

illustrative purposes., Using equations 1, 2, and 7, equation 10 can be

expanded to

oc de de
3s s, 85 _ g, 35
(u308x+vo_w3082)c+(x33x 0 ox (ysay)+(z33z)08z
39S
®so 3t 1)

Water

The mass flux of water across do and the rate of chahge of mass storage
of water in dk can be-written by analogy to the similar terms for the
sediment., However, in addition to the type of terms which We%e considered
for the sediment, there are fluxes of water across $ due to evaporation and

precipitation, as indicated in figure 1. Thus, the boundary condition for




the water can be written as

> > > > 9S8
pdeA-pwEd0+(n Vwc +n*De.)_ do

w wCw’c 99T %o 9F (12)

Suspension

Equations 10 and 12 give the boundary conditions for the sediment and
for the water. These equations can be -combined to give the boundary con-
ditions for the suspension. First, however, divide equation 10 by ps and
equation 12 by pw, This converts the equations from mass flux to volume
flux. Assume that both the sediment particles and the water are incompres—
sible so that p8 and pw are both constant. Adding the two equations and
using equations 3 and 4, the result can be written as

PdA - Edo + (n+V) do = % , (13)

where ?Iis the volume average velocify'expressed,by equation 3. Equation
13 gives the kinematical>boundary condition at the water surface for the

suspension.

Equation 13 does not contain any diffusive flux terms. This is based

~on the fact that the definition of v implies that the net diffusive flux of

>
suspension volume relative to ¥V must be zero, or

EC —50
8 8 + ww=0 (14)
pS pw : ‘

Equation 14 may be interpreted as saying that the diffusive flux of sediment

N .
volume in one direction relative to V must be compensated by the diffusive
flux of water volume in the opposite direction. A discussion of various

ways of defining average velocities and diffusive fluxes relative to those

velocities is given by Bird and others (1960).
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KINEMATICAL BOUNDARY CONDITION AT CHANNEL BOTTOM

Considerations for the-bogtom onpdé;y are.gimilar in many respects to
those for the free surface: Howéver, fox.the bottom boundary to move verti-
cally, there must be avmovement of sediment dﬁé:tofentrainment or deposition.
Any bedload movement relates primarily fo loﬁgitudinal movement of sediment
and not to vertical movement of the bed. In other words, the bedload move-
ment gives rise to transport through the vertical sides of the incremental
volume element and therefore giQes rise to negligiblé second-order terms,
as was mentioned in connection with the kinematical condition at the free
surface. ' J

A moving bottom boundary is illustrated in figure 3, where B, is the

1

position of the bottom boundary at time ¢ and B_ is at time ¢ + dt. It is

2

assumed that, at time ¢, the volume d\” between BZ and B2 is occupied by

a volume 6d\” of water and (I1-9)d\” of bed matefial, where 9 is the

porosity of the bed material. It is also assumed. that, at time ¢ + dt

when the bed is at B d\” is occuiped by a volume (ch/pw)dk"of water

2.’
and (css/ps)dA'Lof'suspended sediment. Although figure 3 and the preceding

discussion are presented in terms of bed erosion, the results given in

this section can also be shown to be applicable fof the case of depositionm.
By analogy to the free surface equations and utilizing figure 3 and the
associated discussion for writing the rates at-which sediment and water
are gbing into'storage in d\” , the boundary conditions fgr the channel

bottom can be expréssed in eqs. 15, 16, and 17 in the following discussion.

11
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c) :
B Incremental bed area df

\

Bed BY at t

NN

\

Incremental volume dA’

7
Bed Bz/ at t+dt

L7
Il

III.I' v
"4z Incremental horizontal

area dA = dxdz

Figure 3.--Element of a moving channel bed.

Sediment
(T e, + 7B e, )gdB 5[p3(z-9) - cSBjI%% da, as)
Water
_o 1d8 + (AT o+ WBe )od8 = (0,0 - 0) 32 dA, . (16)

where —prdB-is the flux across B due to infiltration as defined in figure
1. Accretion from ground water can be represented by a'negative value of

I.

Suspension

Dividing equation 15 by Pg and equation 16 by_pw, adding the resulting
equations, and using equations 3,‘4, and 14, the boundary condition for
fhe suspension is
~Id8 + (n°V)od8 = 0 (17)

Recall that ? in equation 17 is the volume average velocity expressed by

equation 3.

12

3
HEAT TRANSFER MECHANISMS AT FREE SURFACE

Various heat transfer mechanisms at the free surface have been con-
sidered in detail in a number of references (for example, Ryan and Harleman,
1973). The only considerations presented here are those needed for obtaining
the appropriate thermal boundary conditions. 1In general, let ¢ be fhe heat
flux per unit area. Specifically, the heat flux associated with the various
mechanisms will be identified as follows:

| Symbol Heat flux associated with
¢P = heat content of precipitation

¢E = heat content of evaporated water

¢3 = heatlcontent of sediment being advected and diffused
¢w = heat gontent.of water being advected and diffused ’
¢si = incident solar (short wave) radiation
¢sr = reflected solar radiation
¢ai = incident atmospheric (long wave) radiation
¢ar = reflected atmospheric radiation

~ ¢, = net radiation input at free surface = (¢si - g +f¢ai -
¢st = transmitted solar radiation
¢b = back radiation‘frém water surface
¢e = latent heat of vaporization.
¢c = heat conducted from the free surface to air
¢d = diffusion qf heat below the free surface
The time rate of change of heat stored in_dk of the suspension per unit area
will be labeled.¢x. The terms ¢y, ¢si’ ¢sr’ ¢ai’ ¢ar’ ¢r, ¢st’ and ¢, .are
defined per unit horizontal area, while the remainder of the ¢ termé are

defined per unit of surface area. Figure 4 depicts the various fluxes, with

13




the positive direction ‘indicated by the arrows. With these definitionms,

¢r_¢§t is the rate of radiation absorption at the free surface itself..

Figure 4.--Heat fluxes at free surface.

The terms q)P: q)E: ¢S" )

5 and ¢X relate to heat contained in water,

sediment, or suspension; for these, it is convenient to define the heat

confent relative to an arbitrary reference temperature, Tr’ and to assume
that temperature differences involved in the ¢'s are small enough tha; the
specific heat and the density are approximately constant. Then, the heat

content, Hé, per unit volume becomes

7 N ' , .
i,=[ pC,dT = pC, (T = T,), (18) |
T
r

where T = temperature and Cb specific heat. With appropriate subscripts,

equation 18 can be applied to the sediment, the water, or the suspension.

14

=

It will be assumed that the water and sediment in any elemental volume are

at the same temperature. If C__ is the specific heat for the sediment and

ps

pr is for the water, the specific heat of the suspension is
c 1]

C. =—=(C +—C 19

p P Dps o pw (19)

With these definitions and assumptions, together with TO = water surface

temperature and TP = temperature of precipitation, the above ¢ terms can be

expressed by following equations. .
0p = PoCo,(Tp = 1) - (20)
bp = B0,Cpy(Ty = Ty - (21)
by = (Ve + aebe)oc (1-1,) (22)
¢, = (ﬁ)-"ﬁwcw + %'b:ucw)c pr(-To -7,) (23)
oy = %gpcp(To - T) (24) .

Note that equations 20 through 24 éll express heat fluxes or storage per
unit ared per unit time.

For the'reméinder of the ¢ terms, namely, ¢si through ¢d, expressions
are available from the literature and will not be discussed here, except for
the last term, ¢d' The diffusive flux, ¢d’ is dependent gn the thermal dif-
fusivity and the temperature gradient immediately below the free surface and
is analogous to the molecular conduction of heat in solids. The expression

for ¢d can be written as

- >
¢d = (n'DTT)0 pC%, ~(25)

15
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where 5T is theuthermai equivalent of eqﬁation 2 and where it has been
assumed that spatial derivatives of pCp are negligible. The flux ¢d is
entirely separate from the heat fluxes, ¢S and ¢w, which are dependent on
the advective and diffusive fluxes of Cq andvgw, respectively.

THERMAL BOUNDARY CONDITIONS AT FREE SURFACE

General representation

The thermal boundary condition at the free surface can be written by
analogy to the kinematical boundary conditions. Considering the situation
shown in figures 2 and 4, the conservation of heat energy requires that the
sum of heat fluxes across_the original do and across the moving S from both
above and below ﬁust equal the time rate of change of storage of heat in
dA. Thus, the complete form of the boundary condition at the free surface
is given by

(¢r_¢st)dA + opdA - iAo + (b, /do=- (¢, +0_+0_)do + ¢ 40 = ¢,dA  (26)

Equation 26 can be reducea by use of the kinematical boundary conditions
derived earlier. First multiply eauation 10 by st(Td - TP) and equation 12
by pr(’l’0 - Tr)' Then add these two equations and suEstitute equations 19
throught 24, The result is

. p-T _ .
o5 ﬁ dA - ¢ do + (¢ + ¢ )do =p,dA (27)

Equation 27 shows the relation among ¢P’ ¢E° ¢, ¢w and¢x , which is

s
dictated by the mass continuity of water and sediment. The reduced form of

the thermal boundary condition at the free surface is obtained by subtracting

equaﬁion 27 from equation 26 and utilizing equation 20:

_ dA dA
0q = (0 = b5p) I = Pt T~ To? Gt O 0 T % (28)

Equations 26 and 28, though representing the same boundary condition,
often havé different appiicatiqns. The complete form given in equation 26
is nofﬁally the most convenient form of the surface boundary conditioﬁ when
the three-dimensional thermal energy equation is being integrated with -
respect to local depth to obtain the depth-averaged thermal energy equation
(Jobson and Yotsukura, 1973).> It can be shown that the ¢r’ ¢E”,¢E” ¢b, ¢ef
and ¢c terms reﬁain’as sources and sinks in a depth-averaged equation, while

-

the ¢8, ¢ ¢d’ ¢st’ and ¢A terms are eliminated in the depth-averaging

w
process. Note that, when the flow does not contain sediment (cs=0), not
only is ¢s = kaut also the diffusive term in ¢w is zero because Cb’is
constant according to equation 4.

When the thermal energy equation is solved for describing vertically
nonuniform distributions of temperature, the reduced form of the freé suéface

boundary condition as given in equation 28 is normally convenient to use.

Equation 28 does not contain the ¢E” ¢s,‘¢

7 and ¢Xterms. In other words,

these fluxes associated with the heat content of moving water and sediment
and the heat storage change due to 935/0t have no bearing on this form of the
surface boundary condition by virtue of equétion 27. Note also that
equation 28 is free of_the arbitrary reference temperature, TP.

The derivation of equation 28vestablisheé that the customary fdrmu—
lation of thermal boundary condition in terms of surface temperature gradient
is indeed correct even for unsteady flows with moving free surfaces. This
gradient is contained in ¢d in equation 28. See also equations 25 and 2.

The derivation, at the same time, indicates that a customary assumption of
neglecting ¢E is redundaﬁt. Equation 28 specifies a relation betwéeﬁ TO and

¢d’ as given by equation 25, and is, thus, classified as a boundary condition

17
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of the Cauchy type. ‘The dependence on TO comes primarily from the fact that
the heat fluxes associated with back radiation, ¢b,-latent heat of‘vaporization,
¢e, and conduction, ¢c’ are all functions of TG.‘ The net incoming radiationm,
¢r’ is independent of T(j and is normally the most important flux during day-
light hours. The transmitted solar rédiation, ¢st’ is considered to be
independent of TU, and the heat flux of precipitation, ¢P’ is often negiligible.
The gradient diffusion term,'¢d, in equation 28 involves the thermal
diffusion coefficient normal to the free surfaée by virture of 2.3T in
equation 25, and this coefficient is normally different from turbulent dif-
fusion coefficients in the main region of flow. Physical conditions sur-
rounding the heat transfer near the free surface require further consideration
as given in the next section.

Surface Film

There is a thin region, normally on the order of a millimeter in
thickness, immediately below the free surface where there is 4 steep
temperaturg gradient as illustrated in figure 5. Within the thickness, dh’
of the region, the temperatire varies from T to'Tf, where T, may be higher
or lower than Tf’ depending on whether the free surface is being heated or
cooled. Miller and others (1975)Hindicated'that the difference between TO

and T, is normally less than 2°C. This region with steep gradiént has been

f
called a film or skin (Ewing and McAlister, 1960; Holley, 1973). Actually
it is a thermal boundary layer and exists primarily because the effective -
thermal diffusion coefficient, ghf’ in the film normal to the free surface

is much less than the turbulent thermal coefficient which is typical below

the film.

18

Figure 5.--Temperature distribution
below free surface.

The existence of a surface film is well documénted. Miller and others
(1975) reviewed the literature related to five laboratory studies and seven
field studies on determination of the temperature differences across the
film. They also made radiometer.measurements in the laboratory in the absence
of incidént shortwave radiation to investigate effects of wind and waves on
the temperatufe difference across the film and on the heat transfer at tﬁe
free surface. In several of these studies, the ''surface' temperatures were
obtained with radiometers which had nominal measuremenf depths up to 0.14 mm,
and the "surface" temperatures were compared with the temperature at a depth .
of a few'centimeters in order to determine the.temperature differnce across
the film;

Holley (1973), using a 0.22-mm diameter thermistor probe, found linear
temperature distributions in the surface film in a mixing tank, where

agitation was produced by vertically oscillating grids. For his meaurements,




J

Gh ranged between 3 and 6 mm, and ehf’ which was constant for each test,
ranged from one to eight times the molecular thermal conductivity, depending
on the intensity of grid mixing. For natural mixing, it is frequently

assumed that Ehf equals the molecular thermal conductivity. Miller and

others (1975) pointed out that a linear gradient in the film is character-
istics of diffusive transport, while vertical convective transport would
produce a logarithmic temperature distribution.

Assuming diffusive transport in the film and a constant scaler thermal
diffusion coefficient, Ehf’ in tbe film normal to the surface, equation 28

may be written as

T, _ dA da
8hf'pcp (an)c B (¢r —¢st)dc * pwcpwP(Tp - Tc)dc -y - b, -9, (29)
where n is the outward normal coordinate to the free surface, as shown in

figure 5. Further assuming a linear temperature variation in the film, the

gradient in the left-hand side of equation 29 may be equated to the total

gradient through the film, so that

oT)

Ehfpcp (an G = ehprb 5 (30)

h

Also, because the heat flux must be continuous at the bottom of the film,
it follows that

T -T

o _f_ oT
ehfpcp 6h Ehtpcp (an)t’ (31)
where €14 is the turbulent thermal diffusion coefficient and (QT/Bn)t

indicates the temperature gradient, both immediately below the film. It is

possible to define

o
X =5_:i’ (32)

20

where Kéf i8”a heat transfer coefficient in the surface film and combines
ehf and,Gh into one parameter. The diffusive flux in the left-hand sides of
equatioas 29 and 31 could then be written in terms of th.

The use of equation 29 in conjunction with equatioﬂé 30 and 31 requires
knowledge of Ehf” Gh (or thg, and Eht' Note, however, Fhat one has a choice
of utilizing an equivalent boundary condition at the bottom of the film by
combining the right-h#nd sides of equations 29 and 31. This approach is
apparently a simplification in that it eliminates Ehf and Gh (or th)—from
the direct statement of the boundary condition. This simplification can be
deceptive, though, since it would still be necessary to determine bbth TO
for the right-hand side of equation 29 and Tf for the temperature distribution
below the film, and there is ;pparently no way to relate To and Tf except by
considering the t:anspoft through the film.

Miller and others (1975) summarized several empirical expressions which
have been developed for th or equivaleﬁt parameters. Most of these expres-
sions related th to wind-generated mixing and tberefore would apply to
large and(or) slowly flowing bodies of water where the primary mixing is.wind
generated. Nevertheless, there are significant differences between the
values of th which would be prdicted by the véfious expressions for a given
set of conditions. Furthermore, there is little information available on
th fo? situations where a significant part of the turbulence in the surface
region is generated by the flow itself. As Holley (1973) noted, the
mechanics of heat transfér in the film are closely related to the mass trans-
fer during reaeration. Therefore, a proper use of the analogy between ‘heat
and mass transfer in the film region may prove useful in gaining better

definition of the transfer coefficients for both processes.
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HEAT TRANSFER MECHANiSMS AT CHANNEL BOTTOM
Figure 6 depicts the various mechanisms of»heat transfer at the bottom
boundary or the bed. The arrows in the figure indicate the positi%e-
directions used in defining the various ¢~ terms. The prime on ¢ and d\ and
the subscript 8 on other terms are used to refer to values at the bed. Other
symbols were defined in the discussion of the kinematical boundary conditions
at the bed. The heat flux associated with the various mechanisms will be
identified as follows:
Symbol Heat flux associated with
,¢} = heat content of infiltrated water
¢~ = advection apd diffusion of sediment

8

¢~ = advection and diffusion of water

w
¢;i = incident solar radiation at the bed
¢;r = reflected solar radiation at the bed
o - net solar radiation input at the bed = (¢;i -9,/
¢; = con&uction in bed

¢é = diffusion of heat above bed
The time rate of change of heat stored in the incremental volume, d\A”, per
unit area will be labelled ¢;. The terms ¢ ., ¢~ , and ¢, are defined per
A p st’ Tsr A
unit horizontal area, while the remainder of the ¢~ terms are defined per
unit of bed area. The incident radiation at the bed, ¢;i’ is the part of

the transmitted radiation, ¢st"WhiCh is not absorbed by the suspension

between the free surface and the bed.
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Figure 6.—-Heat fluxes at channel bed.

Mathematically, the interface between the suspension and the bed is
defined as a smooth surface, B, as depicted in figure 1. Physically, how-
ever, the inferface region consists of both grains and pores. The parﬁﬂof
¢; which passes through the ﬁore space in the first "layerh of grains will
be absorbed in a lower '"layer", so that essentially all of ¢; will be
absorbed within a depth of approximately two grain diameters at the moving
interface. Thgs,.it will be assumed that ¢; is completely absorbed by the
bed material at the mathematically defined interface. Then ¢; effectively
represents the rate of heat input for a heat source term at the moving
interface and must be considered in writing the thermal boundary condition
there.

The terms ¢i, ¢;, ¢

-~
w,and ¢A represent the movement or storage of |

heat contained in water, sediment, or suspension, and can be expressed by

analogy to previous similar terms at the water surface:

o7 = Ipwcbw(iﬁ - T/ (33)

97 = (D e + n-_D’Sc )glps(Tg = T (34)
. . (—r.—T; > ' ,

¢ = (nVc +n chw)Bwa(TB - T,) (35)




0 = o= [pr%e £ Copy (1-0) = Cplg (Tg = T,)  (36)
It is assumed that the temperature distribution is continuous at the bed, so
that the suspension, the bed material; and the infiltration (eithef positive
or negative) all héve the same temperature, TB’ at the bed. This condition
is part of the statement of the thermal boundary conditions at the bed.
Under some circumstancgs TB may be significantly different from the
temperature of water away from the bed. The diffusive flux, ¢é will be
expressed as
05 = (D7) 06, | (37)
Note again that this'term, like equation 25, comes from a temperature gradient
at the bed and is not related to ¢; and ¢;, whiéh are related to Cq and e
THERMAL, BOUNDARY CONDITION AT CﬁANNEL BOTTOM

The thermal boundary condition at the channel bed can be derived by the
law of heat conservapion, considering all fluxes illustrated in figures 3
and 6. The complete form of ;he boundary condition at the bed is given by

¢;,d% —¢3d8 + (¢; + ¢;)d8 - ¢;d8 + ¢éd8 = ¢idA (38)

Equation 38 may be simplified by combining it with the kinematical boundary
conditions at the bed, namely, equations 15 and 16. First, transform
equations 15 and 16 to heat flux equations by multiplying equation 15 by
CpS(TB

equations and use the definition in equations 33 through 36 to show that

T ) and equation 16 by C (TB Tr)' Then combine the two resulting

~07dB + (9] + ¢7)dB = ¢3dA (39)
Subtracting equation 39 from equation 38, the reduced thermal boundary

condition at the bed is
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¢C;=-¢;§A—g+¢; | (40)

Equation 40 may bé interpféted as meaning that the radiation absorbed at
the bed must be balaﬁced by diffusion in the suspension and by conduction
in the bed material, even when the bed is moving vertically due to.entrain—b~
ment or deposition.

Equations 38 and 40 both represent the same boundary condition, but
equation 38 is normaliy the most convenient form when the three-dimensional
thermal energy equation is being depth-averaged. 1In the depth—averaging
process, ¢;,-¢',¢', ¢é5 and ¢i are eliminated, while ¢} and ¢; remain as
source and sink terms of the depth-averaged equatipn. When solving for
vertically nonuniform distributions of temperature, however, equation 40 is
normally éonvenient to use.

Use of.equations 38 and 40 is similar to that of equations 26 and 28,

as explained previously. As before, ¢ can be expressed in terms of a scalar
% d.

diffusion coefficient, EhB » normal to the bed, so that

thC ( B = ¢, dB -9 A (41)

Care should be ;aken to assure that any variation of eh near the bed is
correctly represented in evaluating ShB'

The above derivation included the incident solar radiation at the bed.
In some cases, this can apparently be a significant heat transfer mechanism.
Brown (1972) observed that a substantial amount of shortwave radiation was
absorved directly by the solid roék\bed in extremely shallow stréams. Bowles
and others (1976) and Comer and others (1975) camebto a similar conclusion.
Information on the attenuation of shortwave radiation Qith depth (for example,

Dake and Harleman, 1969) can be used to determine the vertical distribution
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of absorption of radiative energy in the water and to determine the potential
for significant amounts of radiation reaching fhe bed. If there is significant
incident radiatioﬁ at the bed, care must be taken to assure that the
eval;atioﬁ of the interface temperature, TB’ adequately reflects such a
condition.r In pa;ticular, it must be reéognized that, although ¢; may be a
continuous heat source at the bed, the heat is being absorbed by different
grains at different times during déposition or entrainment. Comer and

othefs (1975) presented aﬁ analysis and some measurements of the temperéture
distribution in a vertical soil column beneath a stationary stream bed iﬁ
conneétiﬁn withuanalyzing the temperature variations in the stream. They
gave an expression eduivalent to equation 40 as the boundary condition for
the nomnmovable bed case which they were studying and discussed the détermin—

ation of TB for that case.

[
SN

AEquation 41 can be used as the thermal boundary condition for analyzing
vertically honuniform temperature distributions without considerations of
the magnitude of infiitratidn (I>0) or accretion from ground water (I<0).
In contrast to the free‘surface situation, where mass fluxes due to
precipitation and evaporation are normally‘sﬁall, the magn;tude of mass
flux, I, at ;he bed could be substantial and could lead to substantial_
cooling or heating of river water.(Comer_andxofhers,.l§75; Jackman and
Yotsukura, 1977).

CONCﬁUSIONS . ‘ . .; .

General thermal boundary conditions have been derived for both- the free

surface and the channel bottom for unsteady_flow with moving boundaries.

Since any movement of the bottom boundary normally involves sediment move-
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ment, the\presence of suspended sediment was considered in the derivation of
boundary conditions. Kinematical boundary conditions for water, sediment, and
the suspension have also been presented, siﬁce they can be used to simplify
the thermal boundary conditions. )

Equations 26 and 38 are complete forms of the thermal boundary conditions
at the surface and the bed, respectively. These forms normally are used in
depth—averagiﬁg of the thermal-energy conservation equation and provide
source énd sink terms in the resulting equation.

In solving the three-dimensional thermal energy equation for vertically
nonuniform temperature distribution, however, reduced forms of thermal
boundary conditions, namely, equations 28 and 40, can be used as the
conditions to be satisfied at the free surface and at the channel bottom,:
respectively. Both equations are independent of water and sediment fluxes
across the boundaries except for a small part due to precipiﬁation.

Equation 28 for the free surface is of the Cauchy type in that it.gives a
relation between the temperature and the normal derivative of the temperature
at the surface. Use of equation 28 requires the knowledge of surface film
heat transfer characteristics,; such as the heat transfer coefficient for the
film. Equation 40 for the bed states that there must be a balance among the

diffusive thermal fluxes on the two sides of the boundary and ‘the net radiation

input at the bed.
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