UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

USGS

Analytical data on the Schwartzwalder

uranium deposit, Jefferson County,

Colorado

By

Edward J. Young

1979

UNIVERSITY OF UTAH RESEARCH INSTITUTE EARTH SCHENCE LAB.

Open-File Report 79-968

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature

Contents

·i

	Page
Introduction	1
List of tables	2
List of figures	
Tables	
References cited	

Introduction

This set of 18 tables summarizes analytical data collected by the author during a study of the Schwartzwalder uranium deposit. In tables 5, 11, and 13 the following symbols for rock units, all of which are from the Idaho Springs Formation (Precambrian X), are used: Xp, pegmatite; Xs, mica schist; Xgs, garnetiferous mica schist; Xq, quartzite; Xh, hornblende gneiss; Xgg, granite gneiss; Xm, magnetite and quartz layer. These data will be most useful in conjunction with, and will help to amplify, earlier reports by Young (1977, 1979).

Tables

Table 1. Chemical analyses (in percent), felsic-mafic indices,
and specific gravity of the Ralston dike and
associated sill5
2. Localities of samples shown in table 1
3. Spectrographic analyses and delayed neutron determinations
for U and Th (in ppm) of the Ralston dike
4. Analytical data (in ppm) on 12 samples taken across a
high-grade pitchblende ore sample
5. Analytical data on ore samples of pitchblende from the
Schwartzwalder mine11
6. Localities of samples shown in table 5
7. Spectrochemical analyses of 13 typical ore pulps from
the Schwartzwalder mine18
8. Localities of samples shown in table 7
9. Relative abundance of elements in Schwartzwalder
pitchblende ore22
10. Relative abundance of elements in Schwartzwalder ore
pulps23
11. Analytical data showing minimum, average, and maximum
elemental composition of underground host rocks of the
Schwartzwalder deposit24
12. Localities of samples shown in table 11
13. Analytical data showing minimum, average, and maximum
elemental composition of surface country rocks in
the Schwartzwalder area

2

<u>Page</u>

Tables--continued

1

able 14.	Localities of samples shown in table 13
15.	Relative abundance of elements in underground host rocks
	of the Schwartzwalder deposit
16.	Relative abundance of elements in surface country rocks
	near the Schwartzwalder deposit
17.	Relative abundance of elements in surface fault breccias
	and underground fault breccias
18.	Geochemical summary of elements found in ore, rocks, and
	fault breccias listed in tables 4, 5, 7, 9, 10, 11, 13,
	15, 16, and 17

3

Page

Figures

Figure	1.	Photograph of high-grade pitchblende ore sample
		showing 12 sample sites discussed in table 49
	2.	Autoradiograph of high-grade pitchblende ore
		sample10

4

Page

Table 1.--<u>Chemical analyses (in percent)</u>, felsic-mafic indices¹ and specific gravity² of the Ralston dike and associated sill

[G22, G7, and 149011 were analyzed by P. L. D. Elmore, K. E. White, and S. D. Botts using methods similar to those described by Shapiro and Brannock (1956). RD-1 and RD-2 were analyzed by Z. A. Hamlin using the "single solution" method of Shapiro (1967). Sample localities shown in table 2]

Sample No. Lab. No.	^{G22} 3 ₁₄₉₀₁₀	67 3 ₁₄₉₀₁₂	4 ₁₄₉₀₁₁	RD-1 D-186318W	RD-2 D-186319W
SiO2	54.0	52.4	51.4	54.7	54.9
A1203	17.0	15.2	16.2	16.7	14.9
Fe ₂ 0 ₃	4.1	4.4	6.2	4.0	4.1
Fe0	4.2	4.5	2.9	4.8	5.0
MgO	3.2	6.8	3.6	3.7	6.4
CaO	6.2	7.0	6.4	6.5	7.3
Na ₂ 0	3.5	2.7	3.3	3.3	2.8
K ₂ 0	4.7	3.3	4.5	4.3	3.0
Ti0 ₂	0.82	0.82	0.90	0.90	0.82
P205	0.56	0.45	0.58	0.60	0.44
MnO	0.16	0.15	0.18	0.16	0.15
H ₂ 0 ⁺				0.43	0.73
H ₂ 0-	1.3	2.2	3.6	0.30	0.62
co ₂	0.05	0.08	0.36	0.01	0.01
Sum	100.0	100.0	100.12	101.0	101.0
Felsic-mafic index ¹	3.51	2.57	3.09	3.28	2.66
Rock name according to felsic-mafic index	Monzonite	Diorite	Monzonite	Monzonite	Diorite
Specific gravity				2.911	2.933
¹ The felsic-mafi	c index is				/*************************************

 $\frac{\text{SiO}_2 + \text{Na}_2\text{O} + \text{K}_2\text{O}}{\text{FeO} + \text{Fe}_2\text{O}_3 + \text{MgO} + \text{CaO}}$

from Segerstrom and Young (1972), p. 35. Powder specific gravity; determined by air pycnometer method. From Van Horn (1976), p. 47. From Sheridan and others (1967), p. 51.

Sample number	l	_ocality
	T. 3	S., R. 70 W.
G22	NW1/4SE1/4	sec. 9, south of Ralston dike.
G7	NE1/4NE1/4	sec. 5, Ralston dike.
149011	NE1/4NW1/4	sec. 32, from a sill.
RD-1	NE1/4SE1/4	sec. 5, Ralston dike.
RD-2	SE1/4NE1/4	sec. 5, Ralston dike.

Table 2.--Localities of samples shown in table 1

Table 3.--<u>Spectrographic analyses and delayed neutron determinations</u> for U and Th (in ppm) of the Ralston dike

[Emission spectrographic analyses by L. Mei. U and Th determinations by H. T. Millard, Jr., A. J. Bartel, P. J. Knight, C. L. Shields, C. M. Ellis, R. L. Nelms, C. A. Ramsey. Numbers in parentheses are coefficients of variation which are equal to one standard deviation, based on counting statistics, expressed as percentage of concentration. The following elements (with detection limits in ppm in parentheses) were looked for and not found: Ag (0.1), As (150), Au (10), Bi (22), Cd (32), Dy (32), Er (10), Ge (4.6), Hf (100), Ho (6.8), In (6.8), Ir (15), Li (68), Lu (22), Nd (46), Os (10), Pd (1.5), Pr (68), Pt (6.8), Re (10), Rh (1), Ru (3.2), Sb (100), Sm (46), Sn (6.8), Ta (320), Tb (32), Th (22), Tl (10), Tm (4.6), U (320), W (10)]

Sample No.	RD-1	RD-2
Lab. No.	D-186318W	D-186319W
Th	14.53(8)	6.00(18)
U	4.83(3)	4.54(3)
Th/U	3.01	1.32
B	33.	12.
Ba	770.	530.
Be	3.1	1.6
Ce	100.	73.
Co	22.	24.
Cr	49.	280.
Cu	81.	85.
Eu	2.1	<1.5
Ga	26.	21.
Gd	<10.	<6.8
La	44.	33.
Mn	1700.	1400.
Mo	3.6	<2.2
Nb	19.	10.
Ni	18.	95.
Pb	23.	18.
Sc	25.	23.
Sr	770.	610.
V	160.	150.
Y	19.	19.
Yb	3.2	2.8
Zn	120.	91.
Zr	220.	130.

Table 4.--Analytical data (in ppm) on 12 samples taken across a highgrade pitchblende ore sample

[Photograph and autoradiograph of specimen are shown in figs. 1 and 2. Cu, Pb, and Zn determined by atomic absorption by R. L. Rahill. U determined volumetrically by Wayne Mountjoy. Other elements determined spectrographically by Ray Havens and Leon A. Bradley. The following elements (with their detection limits in parentheses) were looked for and not found: Cd (500), La (500), Nb (100), Sc(50), Sn (100), Ce (2000), Th (2000). Number following < is detection limit]</p>

Sample No.	Sch-7-1	Sch-7-2	Sch-7-3	Sch-7-4	Sch-7-5	Sch-7-6
Lab No.	D163983	D163984	D163985	D163986	D163987	D163988
Cu	88	58	94	92	190	190
Pb	14,600	14,600	14,400	13,500	17,900	9,250
Zn	188	192	114	146	114	76
U	485,000	599,000	576,000	604,000	466,000	318,000
Ag	7	2	5	5	10	10
Bi	<300	<300	<300	<300	<200	<150
Co	<300	<300	<300	<300	<300	<300
Cr	70	70	30	30	30	30
Mo	5,000	2,000	3,000	3,000	7,000	3,000
Ni	150	150	150	150	150	150
Sb	3,000	2,000	2,000	2,000	2,000	1,000
T1	<500	<500	<500	<500	2,000	<500
V	700	300	300	300	300	300
W	7,000	7,000	7,000	7,000	5,000	2,000
Zr	3,000	3,000	3,000	3,000	3,000	2,000
Sample No.	Sch-7-7	Sch-7-8	Sch-7-9	Sch-7-10	Sch-7-11	Sch-7-12
Lab No.	D163989	D163990	D163991	D163992	D163993	D163994
Cu	180	132	110	72	108	127
Pb	10,000	9,500	7,880	5,190	460	114
Zn	44	62	86	106	90	141
U	422,000	278,000	269,000	128,000	3,000	2,000
Ag	10	7	5	3	3	1
Bi	<200	<150	<150	<100	<100	<100
Co	<300	<300	<100	<100	<50	<50
Cr	30	20	30	30	30	30
Mo	3,000	3,000	3,000	2,000	1,000	500
Ni	150	150	150	100	150	70
Sb	1,500	1,000	<2,000	<2,000	<2,000	<2,000
Tl	<500	<500	<500	<500	<500	<500
V	300	300	300	300	300	100
W	5,000	2,000	2,000	1,000	<1,000	<1,000
Zr	3,000	2,000	1,500	1,500	150	100

Figure 1.--High-grade pitchblende ore sample from RB stope on seventh level of Schwartzwalder mine. Left edge of specimen tilted 10⁰ towards camera to give specular effect. Light-gray portion at bottom results from greater reflectivity of richer pitchblende (60 percent U). Very light grains are pyrite. Note brecciated texture. The twelve rectangular areas are actual sites of samples described in table 4. Each sample was approximately 6 mm x 4.5 mm x 10 mm (thickness). Magnified 1 1/2 times.

Figure 2.--Autoradiograph of high-grade pitchblende ore sample (see fig. 1); two days exposure; actual size. Lightest areas are most uraniferous.

Table 5.--<u>Analytical data on ore samples of pitchblende from the</u> Schwartzwalder mine

[Spectrographic analyses by Leon A. Bradley, except for samples Sch-Y, 11A05(A), Sch-Z, Sch-Z', and Sch-ZZ, which were analyzed by Merlyn W.Solt. Leaders (--) indicate no analysis. The following elements (with detection limits in ppm in parentheses) were looked for and not found: Bi (10), Cd (50), Ce (200), Ge (10), Hf (100), In (10), Li (100), Nd (70), Pd (2), Pt (50), Re (50), Sn (10), Ta (500), Te (2000), Th (200). Number following < is detection limit; number following > is upper spectrographic limit above which values are unreliable]

Sample No. Lab No.	Sch-1 D158718	Sch-2 D158719	Sch-3 0158720	Sch-6 D158721	Sch-7 D158722			
	In percent (%)							
U Fe Mg Ca	2.0 0.7 0.1 1.0	10.0 1.5 0.7 3.0	>10.0 0.7 0.7 7.0	>10.0 1.5 0.2 1.5	>10.0 1.0 0.3 3.0			
Ti Al Na K	0.02 7.0 <7.0	0.5 2.0 <7.0	0.2 2.0 <7.0	0.5 3.0 <7.0	0.2 1.5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
<u>.</u>		In parts	per million	n (ppm)	·····			
Ag As B Ba Be	7 <10,000 <200 70 70	300 <10,000 <200 200 20	20 <10,000 <200 70 30	15 <10,000 <200 300 <15	20 <10,000 <200 150 30			
Co Cr Cu Ga Mn	<10 300 <50 300	20 7,000 700	20 700 1,000	30 300 300	20 150 700			
Mo Nb Ni Pb Sb	3,000 <100 <50 2,000 <2,000	15,000 150 500 30,000 <2,000	10,000 300 150 15,000 <2,000	10,000 150 300 30,000 <2,000	3,000 500 10,000 <2,000			
Sc Sr T1 V W	<50 300 <500 <70 <1,000	<50 300 11,300	<50 300 11,200	<50 200 300 1,700	<50 300 14,500			
Y Zn Zr	<100 <3,000 300	<100 <3,000 1,500	<100 <3,000 2,000	<100 10,000 1,500	<100 <3,000 3,000			

 $^{1}\mbox{Tungsten}$ analyses by Philip J. Aruscavage using a spectrophotometric isotope dilution technique.

Sample No.	Sch-14	Sch-15	Sch-16	Sch-18	Sch-22				
Lab No.	D158723	D158724	D158725	D158726	D158727				
	In percent (%)								
U	3.0	>10.0	1.5	2.0	3.0				
Fe	7.0	1.5	>10.0	10.0	5.0				
Mg	1.5	1.0	2.0	1.0	1.0				
Ca	7.0	5.0	1.0	3.0	5.0				
Ti Al Na K	0.15 3.0 <7.0	0.1 3.0 <7.0	0.1 3.0 <7.0	0.1 3.0 7.0	0.3 7.0 10.0				
	······································	In parts per	million (pp	m.)					
Ag	<5	7	7	30	30				
As	<10,000	<10,000	<10,000	<10,000	<10,000				
B	<200	<200	<200	<200	<200				
Ba	150	150	50	150	200				
Be	<15	15	<15	<15	15				
Co Cr Cu Ga Mn	30 200 <50 1,500	10 100 1,000	20 100 15,000	20 700 5,000	70 500 700				
Mo	3,000	10,000	150	7,000	3,000				
Nb	<100	200	<100	<200	200				
Ni	70	<50	200	150	70				
Pb	2,000	5,000	5,000	15,000	2,000				
Sb	<2,000	<2,000	<2,000	<2,000	<2,000				
Sc	<50	<50	<50	<50	<50				
Sr	150	150	<50	150	300				
T1	<500		<500	500					
V	300	150	70	300	300				
W	<1,000	<1,000	<1,000	<1,000	<1,000				
Y	<100	<100	<100	<100	<100				
Zn	<3,000	3,000	70,000	7,000	<3,000				
Zr	500	1,500	<100	300	500				

Table 5.--<u>Analytical data on ore samples of pitchblende from the</u> Schwartzwalder mine--Continued

Sample No.	Sch-23	Sch-49	Sch-53	Sch-67	Sch-82				
Lab No.	D158728	D158729	D158730	D158731	D158732				
- <u></u>	In percent (%)								
U	>10.0	10.0	7.0	3.0	3.0				
Fe	0.5	2.0	2.0	5.0	7.0				
Mg	0.05	2.0	1.0	3.0	2.0				
Ca	5.0	7.0	5.0	7.0	7.0				
Ti Al Na K	0.15 5.0 <7.0	0.15 1.5 <7.0	0.5 7.0 <7.0	0.3 3.0 <7.0	0.1 3.0 <7.0				
·		In parts per	• million (pp	m)					
Ag	15	150	50	<5	<5				
As	<10,000	<10,000	<10,000	<10,000	<10,000				
B	<200	<200	<200	<200	<200				
Ba	150	150	200	70	70				
Be	30	<15	15	20	<15				
Co Cr Cu Ga Mn	20 200 700	15 5,000 1,500	15 1,000 1,000	70 70 1,500	20 300 3,000				
Mo	7,000	7,000	3,000	1,000	3,000				
Nb	200	150	200	300	<200				
Ni	100	300	<50	<50	<50				
Pb	10,000	10,000	3,000	700	2,000				
Sb	<2,000	<2,000	<2,000	<2,000	<2,000				
Sc Sr T1 V W	<50 200 300 <1,000	<50 150 150 <1,000	<50 200 300 <1,000	<50 300 700 <1,000	<50 200 300 <1,000				
Y	<100	<100	<100	<100	<100				
Zn	<3,000	<3,000	<3,000	<3,000	<3,000				
Zr	1,500	1,000	1,000	300	500				

Table 5.--<u>Analytical data on ore samples of pitchblende from the</u> Schwartzwalder mine--Continued

Sample No.	Sch-97	Sch-104	Sch-105	Sch-106	Sch-113				
Lab No.	D158733	D158735	D158736	D158737	D158738				
In percent (%)									
U	7.0	7.0	>10.0	>10.0	7.0				
Fe	7.0	10.0	2.0	0.7	2.0				
Mg	0.5	2.0	0.5	0.5	1.0				
Ca	1.0	5.0	3.0	3.0	7.0				
Ti A1 Na K	0.1 3.0 <7.0	0.07 3.0 <7.0	0.2 5.0 <7.0	0.15 3.0 <7.0	0.1 3.0 <7.0				
	· · · ·	In parts per	• million (pp	m)					
Ag	20	150	7	10	<5				
As	<10,000	<10,000	<10,000	<10,000	<10,000				
B	<200	<200	<200	<200	<200				
Ba	150	70	300	700	300				
Be	<15	<15	15	15	15				
Co Cr Cu Ga Mn	70 2,000 500	10 3,000 5,000	30 100 500	30 200 700	30 70 1,000				
Mo	2,000	7,000	7,000	7,000	2,000				
Nb	<200	<100	100	100	100				
Ni	150	200	150	150	<50				
Pb	15,000	15,000	10,000	5,000	3,000				
Sb	<2,000	<2,000	<2,000	<2,000	<2,000				
Sc Sr T1 V W	<50 70 	<50 200 100 <1,000	<50 150 300 <1,000	<50 150 300 <1,000	<50 150 300 <1,000				
Y	<100	<100	<100	<100	<100				
Zn	7,000	<3,000	<3,000	<3,000	<3,000				
Zr	150	700	1,500	1,500	700				

Table 5.--Analytical data on ore samples of pitchblende from the <u>Schwartzwalder mine--Continued</u>

Sample No. Lab No.	Sch-124 D158740	Sch-125 D158741	Sch-173 D164639	Sch-Y D168291	11AO5(A) D168292				
<u> </u>	······································	In per	cent (%)		······				
U Fe Mg Ca	7.0 >10 1.5 7.0	10.0 7.0 0.5 5.0	7.0 5.0 1.5 5.0	² 0.55 eU0.49 3.0 1.5 7.0	² 0.62 eU0.61 10.0 1.5 2.0				
Ti Al Na K	0.15 1.5 <7.0	0.15 3.0 <7.0	0.2 3.0 7.0	0.015 0.5 <7.0	0.2 5.0 7.0				
	· · · · · · · · · · · · · · · · · · ·	In parts per	million (pp	m)	· · · · · · · · · · · · · · · · · · ·				
Ag As B Ba Be	70 <10,000 <200 150 15	7 <10,000 <200 500 15	<200 200 7	2 <1,000 <20 50 2	70 <1,000 30 150 10				
Co Cr Cu Ga Mn	30 1,000 10,000	20 300 1,000	30 300 1,500	10 7 100 <5 1,000	100 50 2,000 15 1,500				
Mo Nb Ni Pb Sb	15,000 <100 150 15,000 <2,000	5,000 100 <50 3,000 <2,000	10,000 150 70 15,000	200 <10 15 700 <200	7,000 <10 150 20,000 700				
Sc Sr T1 V W Y Zn Zr	<50 150 300 <1,000 <100 <3,000 1,000	<50 150 300 <1,000 <100 <3,000 1,000	10 150 500 <200 100 2,000 1,000	<5 200 <50 200 <100 10 <300 70	10 150 200 <100 20 2,000 150				

Table 5.--<u>Analytical data on ore samples of pitchblende from the</u> <u>Schwartzwalder mine--Continued</u>

²Uranium determined fluorimetrically by E. J. Fennelly. Corresponding equivalent uranium determined with Beta-gamma scaler by E. J. Fennelly and Lorraine Lee.

Sample No.	Sch-Z	Sch-Z'	Sch-ZZ	Sch-174	Sch-175	
Lab No.	D168293	D168294	D168295	D171359	D171360	
· · · · · · · · · · · · · · · · · · ·		In per	cent (%)		······	
U Fe Mg Ca	2 _{19.0} eU19.0 5.0 2.0 5.0	² 0.13 eU0.12 10.0 1.5 2.0	20.95 eU0.93 5.0 1.5 5.0	² 6.3 eU5.3 1.5 0.5 2.0	² 60.0 eU64.0 1.5 0.5 3.0	
Ti 0.2		0.1	0.2	0.07	0.3	
Al 1.5		2.0	5.0	1.5	0.3	
Na <0.05		0.15	0.2	<0.1	<0.1	
K <2.0		5.0	7.0	1.5	<1.5	
		In parts per	million (pp	m)		
Ag As B Ba Be	7 1,500 <20 1,000 15	7 <1,000 <20 20 10	30 <1,000 20 300 3	70 <1,000 100 5	30 <1,000 200 30	
Co Cr Cu Ga Mn	30 500 20 2,000	15 30 150 15 5,000	30 50 200 15 700	150 10 3,000 700	<50 20 1,500 1,000	
Mo	5,000	1,000	10,000	5,000	20,000	
Nb	300	<10	20	50	<200	
Ni	50	50	100	150	150	
Pb	10,000	5,000	5,000	5,000	15,000	
Sb	700	<200	300	300	3000	
Sc	<10	<5	15	<10	<10	
Sr	300	150	200	70	300	
T1		<50	200	<50	1,500	
V	300	150	500	150	150	
W	1,000	<100	<100	200	2,000	
Y	100	10	20	70	300	
Zn	<300	1,500	<300	<300	<700	
Zr	1,500	50	150	700	5,000	

Table 5.--<u>Analytical data on ore samples of pitchblende from the</u> Schwartzwalder mine--Continued

²Uranium determined fluorimetrically by E. J. Fennelly. Corresponding equivalent uranium determined with Beta-gamma scaler by E. J. Fennelly and Lorraine Lee.

Table 6.--Localities of samples shown in table 5

[The following elements (with detection limits in ppm in parentheses) were looked for and not found: Bi (10), Cd (50), Ce (200), Ge (10), Hf (100), In (10), Li (100), Nd (70), Pd (2), Pt (50), Re (50), Sn (10), Ta (500), Te (2000), Th (200). Number following < is detection limit; number following > is upper spectrographic limit above which values are unreliable]

Sample number	Level	Host rock
Sch-1	6	Xp
Sch-2	7	Xs
Sch-3	7 (RB stope)	Xs
Sch-6	7 Do.	Xs
Sch-14 Sch-15 Sch-16 Sch-18 Sch-22	7 Do. 7 Do. 6 Steve + 46 ft (14.1m) Minnesota 5 - 20 ft (6.1m)	Xs Xp Xgs Xgs Xgs Xp
Sch-23	6 + 30 ft (9.2m)	Xp
Sch-49	7	Xq
Sch-53	7	Xs
Sch-67	Montana	Xh
Sch-82	5	Xq
Sch-97 Sch-104 Sch-105 Sch-106 Sch-113	4 4 4 3	Xs Xq Xs Xs Xs
Sch-124	3	Xgs
Sch-125	3	Xs
Sch-173	9	Xs
Sch-Y	8 + 20 ft (6.1m)	Xq
11A05(A)	Below 11 (core)	Xgs
Sch-Z	8 + 20 ft (6.1m)	Xq
Sch-Z'	8 (same vein as Z)	Xq
Sch-ZZ	9	Xs
Sch-174	Between 9 and 10	Xq
Sch-175	9 - 30 ft (9.2m)	Xs

Table	7Spectrochemical	analyses c	of 13 typica	l ore pulps	from the
	Schwartzwalder mi	ne (courtes	y of Cotter	Corporation	<u>}</u>

[Spectrographic analyses by Nancy M. Conklin. The following elements (with their detection limits in ppm in parentheses) were looked for and not found: Bi (10), Cd (200), Sn (10), Th (300). Number following < is detection limit]

Sample No.	1-17-75	(1)- 17-75(2)	-17-75(2) 1-17-75(3)		1-17-75(5)
Lab No.	MAM474	MAM475	MAM475 MAM476		MAM478 ¹
		In perc	cent (%)		· · · · · · · · · · · · · · · · · · ·
U Fe Mg Ca Ti S ³	20.24 0.28 15.0 1.5 3.0 0.3 2.48	$\begin{array}{c cccc} 2_{0.06} & 2_{1.21} \\ \hline 0.062 & 1.87 \\ 7.0 & 7.0 \\ 3.0 & 1.5 \\ 7.0 & 2.0 \\ 0.5 & 0.15 \\ 0.42 & 1.67 \end{array}$		2 _{0.26} 0.32 7.0 1.5 3.0 0.15 1.88	$ \begin{array}{r} 2_{1.43} \\ \hline 2.17 \\ 7.0 \\ 1.5 \\ 3.0 \\ 0.15 \\ 3.02 \\ \end{array} $
·		In parts per	million (ppn	1)	
Ag	7	1	2	2	15
As	<1,000	<1,000	<1,000	<1,000	<1,000
B	70	<20	70	70	700
Ba	300	150	200	150	200
Be	7	<1.5	5	5	3
Co	50	50	<70	30	<70
Cr	150	150	150	150	150
Cu	700	200	300	300	500
La	70	<50	50	<50	30
Mn	7,000	1,500	700	1,000	1,000
Mo	1,500	200	2,000	1,500	2,000
Nb	<10	<10	15	10	10
Ni	150	100	150	150	150
Pb	1,000	150	1,000	700	1,500
Sb	<200	<200	<200	<200	<200
Sc	15	30	15	15	15
Sr	70	150	150	150	150
V	200	300	200	200	200
W	<500	<500	<500	<500	<500
Y	30	20	30	15	70
Zn	1,000	<300	700	700	1,000
Zr	70	70	150	150	200
F ⁴	1,400	700	1,600	1,300	1,100
Se ⁸	2	0.4	0.8	2.5	5

Sample No.	2-28-75(1)	2-28-75(2)	2-28-75(3)	2-28-75(4)	⁵ 2-28-75(5
Lab No.	MAM479	MAM480	MAM481	MAM482	MAM483
· ·		In perc	ent (%)		
-	² 0.14	² 0.08	2 _{N11}	² 0.07	² 0.37
U Fe	0.30	0.15	0.02	0.08	0.62
Mg	1.5	3.0	3.0	3.0	3.0
Ca	3.0	7.0	7.0	7.0	3.0
11 S3	0.15 1.82	0.3 0.52	1.5	0.3	0.3 2.65
		In parts per	million (ppm	1)	
	· · · · · · · · · · · · · · · · · · ·	P=0.00 P=0		· ,	
Ag	7	1.5	<1	3	7
AS S	50	<1,000	<1,000	<1,000	30
Ba	300	150	150	150	300
Be	3	2	1.5	1	7
Со	50	50	70	50	70
Cr	150	150	150	200	150
La	20	<50	<50	<50	30
Mn	3,000	1,500	1,500	2,000	5,000
Мо	700	300	100	500	3,000
Nb	10	<10	<10	<10	10
рл РЬ	500	200	150 70	200	200
Sb	<200	<200	<200	<200	<200
Sc	15	30	30	30	15
Sr	70	150	150	150	150
V W	<500	300 <500	500 <500	300 <500	<500
Ŷ	20	30	15	15	30
Zn	700	<300	<300	<300	700
Zĩ	150	100	100	70	150
۲ 5_8	1,300	/00	/UU 0_2	1,000	1,300
	t <u>a</u> 8 fa	L • V	V+L	₩ •(

Table 7.--<u>Spectrochemical analyses of 13 typical ore pulps from the</u> <u>Schwartzwalder mine--Continued</u>

Sample No.	2-28-75(6)	⁶ 2-28-75(7)	7 ₂₋₂₈₋₇₅₍₈₎	
Lab No.	MAM484	MAM485	MAM486	
		In percent (%)		
U Fe Mg Ca Ti S ³	20.43 0.57 7.0 1.5 3.0 0.3 2.58	20.37 0.40 7.0 3.0 7.0 0.15 0.68	25.67 3.50 7.0 1.5 3.0 0.15 2.33	
	In par	ts per million (ppm)		
Ag	7	7	50	
As	<1,000	<1,000	1,000	
B	70	30	70	
Ba	300	150	300	
Be	7	3	10	
Co	50	30	<200	
Cr	100	150	100	
Cu	700	300	5,000	
La	20	<50	<50	
Mn	3,000	1,000	1,000	
Mo	1,000	1,500	5,000	
Nb	<10	15	50	
Ni	150	100	150	
Pb	1,000	500	5,000	
Sb	<200	<200	<200	
Sc	15	10	10	
Sr	100	200	150	
V	200	300	150	
W	<500	<500	<500	
Y	30	15	100	
Zn	700	300	<1,000	
Zr	150	70	500	
F	1,200	700	1,000	
Se ⁸	2.3	1.5	1.5	

 Schwartzwalder mine--Continued

¹Instrumental analysis for Hg by C. A. Curtis gave 2.5 ppm.

²Numerator is equivalent uranium furnished by Cotter Corporation. Denominator is equivalent uranium determined by J. C. Negri using a Beta-gamma scaler. 3Titrametric analyses for S by J. C. Negri. 4Ion electrode analyses for F by D. M. Hopkins. 5Instrumental analysis for Hg by C. A. Curtis gave 3.0 ppm. 630 ppm Bi reported by N. M. Conklin. 7Th not detected at 1000 ppm. 8Fluorometer analysis for Se by G. L. Crenshaw.

Sample nur	nber	Locality
1-17-75	(1)	Shaft No.1
1-17-75	(2)	Shaft No. 2, Waste
1-17-75	(3)	Level 10
1-17-75	(4)	Level 11
1-17-75	(5)	Level 11
2-28-75	(1)	Unspecified
2-28-75	(2)	Unspecified
2-28-75	(3)	Shaft No. 2, Waste
2-28-75	(4)	Shaft No. 2, Waste
2-28-75	(5)	Level 10
2-28-75	(6)	Level 10
2-28-75	(7)	Unspecified
2-28-75	(8)	Level 11

Table 8.--Localities of samples shown in table 7

Element	No. of samples	Average percent	Crustal abundance ¹ in percent	Concentration factor = average percent ÷ crustal abundance		
U Mo Sb W Pb	42 42 41 42 42 42	17.67 0.53 0.11 0.15 0.96	0.00025 0.00011 0.00005 0.00013 0.0016	70,700 4,800 2,200 1,150 600		
Ag	41	0.0029	0.000007	410		
T1	21	0.04	0.0001	400		
Zn	42	0.26	0.0083	30		
Cu	42	0.077	0.0047	16		
Zr	42	0.135	0.0170	8		
Nb	42	0.009	0.0020	5		
Be	30	0.0015	0.00038	4		
Co	5	0.006	0.0018	3		
Y	8	0.0079	0.0029	3		
V	42	0.028	0.0090	3		
Mn	30	0.22	0.1	2		
Ni	41	0.012	0.0058	2		
Ca	30	4.32	2.96	1.5		
Fe	30	4.84	4.65	1		
Sr	30	0.0200	0.0340	0.6		
Mg	30	1.12	1.87	0.6		
Ti	30	0.2	0.45	0.4		
Al	30	3.1	8.05	0.4		
Cr	42	0.0030	0.0083	0.4		
Ba	30	0.0210	0.0650	0.3		

Table 9.--<u>Relative abundance of elements in Schwartzwalder pitchblende ore</u> (data compiled from tables 4 and 5)

¹Vinogradov (1962).

Table 10.--Relative abundance of elements in Schwartzwalder ore pulps (data compiled from table 7)

[Averages based on 9 samples, except for Hg (based on 2). Crustal abundances same as in table 9, but also including, in ppm: F, 660; S, 470; La, 29; Th, 13; B, 12; Sc, 10; Hg, 0.08; Bi, 0.009; Se, 0.05. The following elements were not detected at the limits shown in ppm in parentheses: Sb (200), W (500), Bi (10), Th (300). Hence their concentration factors in the pulps are: Sb, <400; W, <380; Bi, <1000; Th, <23.</p>

Element	Average percent	Concentration factor = average percent ÷ crustal abundance
U ¹	1.12	4480
Mo	0.20	1800
Ag	0.0012	170
Pb	0.14	90
S	2.12	45
Se	0.000223	45
Hg	0.00028	35
Cu	0.0980	21
B	0.0130	11
Zn	0.070	8
Co	0.0050	2.8
Ni	0.0150	2.6
Mn	0.25	2.5
V	0.021	2.3
Fe	10.	2.2
F	0.12	1.8
Cr	0.014	1.7
Be	0.00055	1.4
Y	0.0038	1.3
La	0.0034	1.2
Zr	0.0180	1
Mg	1.8	1
Ca	3.0	1
Sc	0.0011	1
Nb	0.0014	0.7
Ti	0.20	0.4
Ba	0.024	0.4
Sr	0.013	0.4

¹Equivalent uranium.

Table 11.--Analytical data showing minimum, average, and maximum elemental composition of underground host rocks of the Schwartzwalder deposit

[Spectrographic analyses by E. F. Cooley. Sulfur analyses (titrametric) by Z. C. Stephenson. Equivalent uranium (eU) analyses by Z. C. Stephenson using a Beta-gamma scaler. Ion electrode analyses for F by D. M. Hopkins. Instrumental analyses for Hg by C. A. Curtis. Fluorometer analyses for Se by G. L. Crenshaw. The following elements (with their detection limits in ppm in parentheses) were looked for and not found: As(200), Au (10), Cd (20), Nb (20), Sb (100), Sn (10), W (50). Number following < is detection limit]

Rock ty No. of	ype samples Min.	Xs 10 Aver.	Max.	Min.	Xgs 5 Aver	. Max	Min.	Xh 6 Aver.	Max.	Min.	Xq 4 Aver.	Max.
• ••					· •	In percent	t (%)					
Fe	3.	9.	20.	10.	12.	15.	5.	9.	10.	3.	10.	20.
Mg	1.	1.7	2.	1.5	1.7	2.	1.5	1.8	2.	0.1	0.9	2.
Ca	0.3	1.1	5.	0.2	0.6	.1.	2.	3.7	5.	0.07	1.4	5.
11 S	0.2	0.3	0.7	0.2	0.26	0.5	0.2	0.4	0.7	0.02	0.12	0.30
			,		In nari	ts ner mi	llion (pr		· ·			
	· · · · · · · · · · · · · · · · · · ·											
eU	<30.	80.	530.	<30.	30.	40.	<30.	∿30	60.	<30.	∿50	150.
Ag	<0.5	0.6	2	<0.5	0.3	1.	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
B	20.	60.	100.	20.	42.	100.	15.	20.	20.	10.	500.	>2000.
Ba	150.	360.	1000.	70.	510.	1000.	50.	180.	500.	20.	43.	70.
Be	<1.	3.	5.	1.	1.6	2.	<1.	1.	2.	1.5	1.9	2.
Bi-	<10.	<10.	10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.
Co	10.	30.	70.	10.	26.	50.	20.	45.	50.	<5.	~15	50.
Cr	<10.	70.	150.	10.	26.	50.	30.	83.	100.	<10.	~20	50.
Cu	<5.	130.	500.	20.	52.	100.	5.	70.	300.	20.	75.	200.
F	-600.	1830.	3500.	475.	1500.	2250.	525.	820.	1600.	220.	630.	1200.
Hg	0.04	0.15	0.65	0.04	0.09	. 0.14	0.04	0.06	0.08	0.08	0.19	0.40
La	20.	43.	50.	30.	50.	70.	20.	23.	30.	20.	30.	50.
Mn	500.	2220.	5000.	300.	~5000	>5000.	500.	920.	1000.	100.	580.	1000.
Mo	<5.	<5.	10.	<5.	<5.	7.	<5.	(5.	<5.	<5.	¹ /8	10.
N1	10.	70.	100.	30.	54.	/0.	50.	/0.	100.	10.	30.	70.
Pb	10.	42.	100.	15.	97.	300.	<10.	28.	100.	<10.	23.	50.
Sc	15.	22.	30.	15.	. 19.	30.	15.	26.	30.	<5.	∿10	30.
Sr	<100.	145.	500.	<100.	~80	200.	100.	300.	1000.	<100.	<100.	100.
V	50.	160.	200.	100.	170.	200.	100.	130.	200.	20.	160.	300.
Y	20.	26.	30.	20.	28.	30.	10.	24.	30.	<10.	પ2	20.
Zn	<200.	350.	1000.	500.	800.	1500.	<200.	130.	200.	<200.	∿220	300.
Zr	100.	150.	200.	150.	220 . ·	. 300.	70.	130.	200.	20.	73.	150.
Se	0.2	1.5	6.	0.7	1.0	1.5	0.2	1.9	5.0	0.2	0.6	0.8

Rock ty No. of	/pe (1	Xh+Xs interlaye	red)	(Xs+Xq interlaye	red)		Fault gouge and breccia		
Sampres	Min.	Aver.	Max.	Min.	Aver.	Max.	Min.	Aver.	Max.	
				In per	cent (%)					
Fe	5.	6.5	10.	7.	11.	15.	7.	11.	15.	
Mg	2.	2.	2.	1.	1.	1.	1.5	1.8	2.	
Ca	2.	4.	5.	0.05	0.2	0.3	1.	3.	5.	
Ti	0.2	0.4	0.5	0.2	0.2	0.2	0.2	0.2	0.2	
S	0.01	0.02	0.05	3.3	4.0	4.8	0.19	2.5	4.8	
	-		Inp	oarts per	- million	(ppm)				
eU	<30.	<30.	<30.	<30.	^30	40.	500.	750.	1000.	
Ag	<0.5	<0.5	<0.5	1.	1.	1.	<0.5	^0.8	1.5	
B	15.	40.	100.	70.	85.	100.	10.	30.	50.	
Ba	300.	530.	700.	500.	500.	500.	100.	200.	300.	
Be	<1.	<1.	1.	2.	2.	2.	2.	3.5	5.	
Bi	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.	
Co	20.	37.	70.	20.	25.	30.	10.	20.	30.	
Cr	70.	96.	100.	50.	50.	50.	20.	25.	30.	
Cu	10.	62.	200.	100.	125.	150.	10.	80.	150.	
F	450.	960.	1400.	1500.	1880.	2250.	450.	780.	1100.	
Hg	0.06	0.08	0.10	0.08	0.16	0.24	0.4	0.7	1.0	
La	<20.	28.	50.	30.	40.	50.	20.	25.	30.	
Mn	700.	980.	1500.	200.	1100.	2000.	3000.	3000.	3000.	
Mo	<5.	<5.	<5.	5.	7.5	10.	50.	175.	300.	
Ni	50.	68.	100.	70.	70.	70.	20.	45.	70.	
Pb	<10.	~13	30.	70.	85.	100.	70.	135.	200.	
Sc	20.	28.	30.	15.	18.	20.	10.	13.	15.	
Sr	100.	120.	200.	<100.	<100.	100.	100.	200.	300.	
V	100.	160.	200.	150.	150.	150.	200.	200.	200.	
Y	20.	28.	30.	50.	60.	70.	20.	25.	30.	
Zn	<200.	<200.	200.	500.	500.	500.	200.	850.	1500.	
Zr	70.	150.	200.	150.	150.	150.	150.	150.	150.	
Se	0.3	1.6	5.0	4.5	5.8	5.0	0.4	2.7	5.0	

Table 11.--<u>Analytical data showing minimum, average, and maximum elemental</u> <u>composition of underground host rocks of the Schwartzwalder deposit--</u> <u>Continued</u>

Sample number	Level	Host rock
Sch- 5 Sch-13A Sch-13B Sch-19 Sch-20	Steve + 50 ft (15.3m) 3 3 Minnesota 7	Xgs Xs Xq Xs Xh + Xs
Sch-24 Sch-25 Sch-27 Sch-28 Sch-29	Steve Above Steve 7 7 7	Xs + Xq Xs Xs Xh + Xs Xh + Xs Xh + Xs
Sch-32 Sch-34 Sch-36 Sch-37 breccia Sch-40	7 7 7 7 7	Xh Xgs Xgs Fault gouge and Xq
Sch-41 Sch-45 breccia Sch-52 Sch-54 Sch-56	7 7 7 6	Xh Fault gouge and Xq Xs Xh + Xs
Sch-57 Sch-58 Sch-59 Sch-63 Sch-66	6 6 5 Montana	Xs Xs Xs Xs Xh
Sch-68 Sch-69 Sch-77 Sch , 78 Sch-88	Do. Do. 5 5 5	Xq Xh Xs + Xq Xs Xh + Xs
Sch-90 Sch-92 Sch-110 Sch-119 Sch-172	4 4 3 3 9	Xgs Xh Xh + Xs Xgs Xh

Table 12.--Localities of samples shown in table 11

Table 13.--Analytical data showing minimum, average, and maximum elemental composition of surface country rocks in the Schwartzwalder area

[Spectrographic analyses by E. F. Cooley. Sulfur analyses (titrametric) by Z. C. Stephenson. Equivalent uranium (eU) analyses by Z. C. Stephenson using a Beta-gamma scaler. Ion electrode analyses for F by J. Sharkey. Instrumental analyses for Hg by C. A. Curtis. The following elements (with their detection limits in parentheses) were looked for and not found: As (200), Au (10), Cd (20), Nb (20)¹, Sb (100), Sn (10), W (50). Number following < is detection limit. Number following > is upper spectrographic limit above which values are unreliable]

Rock t No. of	ype samples Min.	Xs 14 Aver.	Max.	Min	Xgg 7. Aver.	Max.	Mir	Xq 5 1. Aver.	Max.	Mi	Xgs 3 n. Aver.	Max.
· · · ·					1	n percen	t (%)		<u> </u>			
Fe	3.	5.	7.	2.	2.5	3.	2.	5.	10.	10.	10.	10.
My Co	20.05	0.0	1.	0.02	0.5	1.5	0.02	0.5	1.	1.	1.2	1.5
- UA - Ti	10.05	0.26	0.5	0.1	0.9	р. О 3	0.2	5 0.4	0.7	0.3	0.9	0.7
S	<0.005	0.007	0.02	<0.005	0.12	0.77	0.00	5 0.007	0.01	<0.00	5 0.05	0.15
·	· · ·	· · ·			In part	s per mi	llion (p	pm)	•	· .		
	(20		70	(20	20		/20	(20	<u> </u>	/30	/30	/20
- eυ Δα	20.5	20.5	/0.	20.5	20.5	00. 20 5	20.5	×302 ·	<0.5	<0.5	<pre><30.</pre>	×30.
R	10.	200	2000	(10	10	20.	10.	12.	20.	20.	30.	50
Ba	200	490.	700.	200.	560.	1000.	50.	200.	500.	300.	500.	700
Be	1.	3.	20.	1.	1.7	2.	<1.	1.	2.	2.	2.	2.
Bi	<10.	<10.	10.	<10 .	<10.	<10.	<10.	<10.	<10.	<10.	<10.	<10.
Co	5.	20.	30.	<5.	6.	10.	< <5.	13.	20.	5.	12.	20.
Čr	<10.	90.	150.	<10.	20.	100.	<10.	80.	200.	50.	70.	100.
Cu	<5.	18.	50.	<5.	7.	20.	<5.	13.	70.	5.	30.	50.
F	1000.	2260.	7000.	1000.	1500.	2250.	600.	1700.	2250.	1900.	1970.	2000.
Hg	0.04	0.04	0.04	0.06	0.10	0.14	0.6	0.06	0.06			
La	50.	60.	100.	20.	46.	50.	30.	50.	70.	50.	50.	50.
Mn.	100.	740.	5000.	70.	260.	500.	100.	440.	1000.	1000.	2700.	500.
Мо	<5.	<5.	<5.	<5.	<5.	10	<5.	<5.	10.	<5.	<5.	<5.
NI	<5.	55.	100.	<5.	7.	20.	5.	30.	50.	50.	50.	50.
Pb	<10.	30.	50.	10.	37.	70.	<10.	20.	50.	30.	40.	50.
Sc	10.	16.	20.	<5.	8.	15.	<15.	9.	15.	15.	18.	20.
Sr	<100.	100.	200.	100.	160.	200.	<100.	190.	500.	100.	230.	500.
. V	<10.	100.	150.	<10.	50.	200.	30.	40.	100.	150.	150.	150.
· Y	20.	30.	70.	<10.	30.	70.	<10.	20.	30.	20.	30.	50.
Zn	<200.	<200	200.	<200.	<200.	200.	<200.	<200.	<200.	<200.	270.	500.
Zr	100.	200.	300.	50.	150.	200.	<10.	150.	300.	150.	180.	200.

									······	
Rock T No. of	ype Samples	Xh 3	· ·		Xm 2		Fa	ult bre 9	ccia	
	Min	. Aver.	Max.	· Mil	n. Aver.	Max.	Min.	Aver.	Max.	
	In percent (%)									
Fe Mg Ca Ti S	5. 1.5 1. 0.2 0.005	7. 1.7 3.7 0.3 0.008	10. 2. 5. 0.5 0.01	20. 0.05 0.1 0.05 0.00	>20. 0.08 0.15 0.05 5 0.005	>20. 0.1 0.2 0.05 0.005	5. <0.02 <0.05 0.015 <0.005	10. 1.2 4.6 0.24 0.24	20. 3. 10. 0.5 2.	
		. •	In	parts pe	r million	(ppm)				
eU Ag Ba Ba	<30. <0.5 <10. 70. <1.	<30. <0.5 13. 290. <1.	<30. <0.5 20. 500. 1.	<30. <0.5 10. 100. <1.	<30. <0.5 10. 200. <1.	<30. <0.5 10. 300. <1.	<30. <0.5 <10. 20. 1.	<30. 1. 20. 670. 2.	60. 10. 50. 5000. 3.	
Bi Co Cr Cu F	<10. 50. 20. 20. 800.	<10. 63. 73. 57. 1300.	<10. 70. 100. 100. 1900.	<10. <10. <10. <5. 600.	<10. <10. <10. <5. 700.	<10. 10. 10. 5. 800.	<10. <5. <10. 5. 500.	<10. 32. 60. 230. 2430.	<10. 50. 100. 1500. 6000.	
Hg La Mn Mo Ni	0.04 <20. 500. <5. 30.	0.04 37. 730. <5. 77.	0.04 50. 1000. <5. 100.	<20. >5000. <5. 10.	<20. >5000. <5. 13.	<20. >5000. <5. 15.	0.10 <20. 70. > <5. <5.	0.10 30. 1100. 5. 45.	0.10 100. >5000. 20. 70.	
Pb Sc Sr V Y	10. 20. 100. 150. 20.	33. 23. 230. 180. 27.	70. 30. 500. 200. 30.	<10. <5. <100. 100. 20.	<10. <5. <100. 100. 25.	<10. 5. <100. 100. 30.	10. <5. <100. 50. <10.	27. 15. 200. 200. 25.	50. 20. 700. 300. 30.	
Zn Zr	<200. 100.	<200. 120.	<200. 150.	<200. 50.	<200. 100.	<200. 150.	<200. 20.	<200. 90.	200. 200.	

Table 13.--Analytical data showing minimum, average, and maximum elemental composition of surface country rocks in the Schwartzwalder area--Continued

 1 One fault breccia sample (RC-460) contained 20 ppm Nb.

• :

Sample number	Localities		Hos	st rock
· · · · · · · · · · · · · · · · · · ·	1	. 2 S.	, R.	. 71 W.
Sch-60	NE1/4SE1/4 sec. 2	5		Xgg
RC-26	NW1/4SE1/4 sec. 2	5		Xh
rc-27	NW1/4SE1/4 sec. 2	5		Xgg (fine-grained lens in Xh)
RC-126	SW1/4NE1/4NW1/4 s	ec. 25		Xgg
RC-129	SW1/4NE1/4NW1/4 s	ec. 25		Xgg
RC-134	SW1/4SW1/4SW1/4 s	ec. 24		Xgg
RC-136	NW1/4NW1/4 sec. 2	5		Xgg
RC-138	SE1/4NW1/4NW1/4 s	ec. 25		Xgg
RC-139	SE1/4NW1/4NW1/4 s	ec. 25		Xs
RC-142	SW1/4NW1/4NW1/4 s	ec. 25		Xh
RC-314	SE1/4SW1/4 sec. 2	5		Xm
RC-315	SE1/4SW1/4 sec. 2	5		Xs
RC-315A	SE1/4SW1/4 sec. 2	5		Xm
RC-338	SE1/4NE1/4 sec. 3	5		Xq.
RC-409	SW1/4SE1/4 sec. 2	5		Xgs
RC-454	NW1/4SW1/4 sec. 2	5		Fault breccia
RC-460	NE1/4NE1/4NW1/4 s	ec. 36		Do.
RC-464	SW1/4SW1/4NW1/4 s	ec. 25		Do.
RC-468	NE1/4NE1/4SE1/4 s	ec. 26		Do.
RC-469	NE1/4NE1/4SE1/4 s	ec. 26	•	Do.
RC-471	NE1/4NW1/4 sec. 3	6		Do.
RC-478	NW1/4NE1/4NE1/4 s	ec. 35		Xh
RC-481	SE1/4SE1/4 sec. 2	5		Fault breccia
RC-493	SW1/4SE1/4NE1/4 s	ec. 26		Do.
RC-504	NW1/4SE1/4NE1/4 s	ec. 26		Do.
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	r. 3 s.	, R.	. 70 W.
RC-3	NW1/4NE1/4 sec. 6			Xs
RC-71	NW1/4NE1/4 sec. 6	i		Xs
RC-87	NE1/4NW1/4 sec. 6			Xs
RC-119	SW1/4NW1/4 sec. 6			Xq
RC-181	NW1/4SE1/4 sec. 6			Xs
RC-183	NW1/4SE1/4 sec. 6			Xs
RC-201A	NW1/4SE1/4 sec. 6			Xs
RC-201B	NW1/4SE1/4 sec. 6	i. ··		Xs
RC-220	NW1/4SE1/4 sec. 6			Xs
RC-114	SE1/4NW1/4 sec. 6	· · · · · · · · · · · · · · · · · · ·		Xa
	······	T. 2 S.	, R.	. 70 W.
RC-14	NW1/4NW1/4NW1/4 s	ec. 31		Xgs
RC-42	SW1/4NW1/4NW1/4 s	ec. 31		Χq
RC-52	NW1/4SW1/4NW1/4 s	ec. 31		Xgs
RC-66	SE1/4NW1/4NW1/4 s	ec. 31		Xq
RC-75	SE1/45W1/4 sec. 3	1		Xs
RC-80	NW1/4SW1/4 sec. 3	1		Xs
RC-108	SW1/4NW1/4 sec. 3	1		Xs
	······································	T. 3 S.	, R.	R. 71 W.
				¥-
K6-200	NEI/4NEI/4 SeC. 1			A5

Table 14.--Localities of samples shown in table 13

Table	15 <u>Re</u>	lative	abunda	ince	of e	eleme	ents	<u>in</u>	under	rground
	host	rocks	of the	Sch	wart	zwal	der	dep	osit.	
		(Data	compil	ed 1	from	Tab	le 1	$1)_{-}$		

[Averagesbasedon35samples.Crustalabundancessameas in Table 10]

Element	Average percent	Concentration factor = average percent ÷ crustal abundance
Se	0.000138	27.6
S	1.19	25.
Mo	0.0012	11.
B	0.0097	8.
U ¹	0.0086	5.5
Ag	0.000035	5.
Zn	0.034	4.
Pb	0.0048	3.
Sc	0.0021	2.1
Mn	0.198	2.
Fe	9.3	2.
F	0.127	1.9
Cu	0.0088	1.9
V	0.0158	1.8
Co	0.0031	1.7
Hg	0.000012	1.5
La	0.0035	1.2
Ni	0.0061	1.1
Y	0.0027	1.
Zr	0.0150	0.9
Mg	1.64	0.88
Ti	0.0031	0.7
Cr	0.0061	0.7
Ca	1.72	0.6
Ba	0.0340	0.5
Be	0.00019	0.5
Sr	0.0150	0.4

 $^{1}\mbox{Equivalent}$ uranium. Crustal abundance is based on 13 ppm Th and 2.5 ppm U.

		· · · ·
Element	Average percent	Concentration factor = average percent ÷ crustal abundance
B	0.0090	7.5
F	0.1820	2.8
Pb	0.0030	2.
La	0.0053	1.8
Fe	6.3	1.4
Mn	0.117	1.2
V	0.0092	1.
Co	0.0018	1.
Y	0.0028	1.
Zr	0.0168	1.
U ¹	<0.003	1. ?
Mo	<0.0005	1. ?
Cr	0.0066	0.8
Hg ²	0.000006	0.8
Ni	0.004	0.7
S	0.034	0.7
Ba	0.043	0.7
Ti	0.22	0.5
Be	0.0002	0.5
Mg	0.8	0.4
Sr	0.015	0.4
Cu	0.0016	0.3
Ca	0.7	0.2

Table 16.--Relative abundance of elements in surface country rocks near the Schwartzwalder deposit (data compiled from table 13)

[Averages based on 34 samples. Crustal abundances same as in table 10]

 $^{1}\mbox{Equivalent}$ uranium. Crustal abundance is based on 13 ppm Th and 2.5 ppm U.

 2 The average percent for Hg is based on 29 samples.

	Surfac	e fault beccias	Undergr	ound fault breccias
Element	Average percent	Concentration factor = average percent ÷ crustal abundance	Average percent	Concentration factor = average percent ÷ crustal abundance
Ul	<0.003	~1	0.075	300.
Mo Se S Ag	0.0005 0.24 0.0001	4.5 5.1 14.	0.0175 0.00027 2.5 0.00008	160. 54. 53. 11.
Zn	<0.02	<2.4	0.085	10.2
Hg	0.00001	1.3	0.00007	8.8
Pb	0.0027	1.7	0.0135	8.
Mn	>0.1	>1.	0.3	3.
B	0.002	1.7	0.0030	2.5
Fe	10.	2.2	11.	2.4
V	0.02	2.2	0.02	2.2
Cu	0.023	4.9	0.008	1.7
Sc	0.0015	1.5	0.013	1.3
F	0.243	3.7	0.078	1.2
Co	0.0032	1.8	0.002	1.1
Mg	1.2	0.6	1.8	1.
Ca	4.6	1.6	3.	1.
La	0.003	1.	0.0025	0.9
Be	0.0002	0.5	0.00035	0.9
Zr	0.009	0.5	0.015	0.9
Y	0.0025	0.9	0.0025	0.9
Ni	0.0045	0.8	0.0045	0.8
Sr	0.02	0.6	0.02	0.6
Ti	0.24	0.5	0.2	0.4
Cr	0.006	0.7	0.0025	0.3
Ba	0.067	1.	0.02	0.3

Table 17.--Relative abundance of elements in surface fault breccias (of table 13) and underground fault breccias of Table 11

[Crustal abundances same as in table 10]

 $^{1}\text{Equivalent}$ uranium. For surface fault breccias crustal abundance is based on 13 ppm Th and 2.5 ppm U. For underground fault breccias most eU is caused by U, hence crustal abundance is based on 2.5 ppm U.

Concentration factor = average percent ÷ crustal abundance	High-grade pitchblende ore	Ore pulps	Fault breccias (underground)	Host rocks (underground)	Fault breccias (surface)	Country rocks (surface)
>10,000	U					
1,000-10,000	Mo, Sb, W	U, Mo				
100-1,000	Pb, Ag, Tl	Sb, W, Ag	U, Mo			
10-100	Zn, Cu, (Se), (S) ¹ , (Hg)	Pb, S, Se, Cu, B, Hg	S, Ag, Zn, Se	S, Se		
3-10	Zr, Nb, Be, Co, Y, V	Zn, Co, Mn, Ni	Pb, Mn, B, Hg (Sb; (W)	U, Ag, B, Mo, Pb, Zn	Ag, Mo, Cu, F, S (Sb) (W)	8, F
0.5-2	Ni, Mn, Sr, Fe, Mg, Ca	Zr, Nb, F, Be, Cr, La, Fe, Mg, Ca, Sc, V Y	Cu, Zr, Nb, F, Be, Co, La, Fe, Mg, Ca, Sc, Sr, V, Y, Ni	Fe, Mg, Ca, Ti, Ba, Be, Co, Cr, Cu, F, Hg, La, Mn, Ni, Sc, V, Y, Zr	U, Pb, Zn?, Zr, Nb?, Be, Co, Cr, La, Mn?, Fe, Mg, Ca, T1, B, Sr, V, Y, Ni	U, Mo, Cr, Mn, Pb, Sb?, V, Fe, W?, Ag?, Ti, S, Zr, Zn?, Hg, Ba, Be, La, Y
<0.5	Cr, Ti, Al, Ba	Ti, Ba, Sr	Cr, Ti, Ba	Sr		Cu, Ca, Sr, Mg

Table 18.--<u>Geochemical summary of elements found in ore, rocks, and fault breccias listed in</u> tables 4, 5, 7, 9, 10, 11, 13, 15, 16, and 17

 $^1{\sf E}{\sf lements}$ in broken parentheses, e.g. (S), are estimates. Elements with queries are not certain for postion.

References

Segerstrom, Kenneth, and Young, E. J., 1972, General geology of the Hahns Peak and Farwell Mountain quadrangles, Routt County, Colorado, <u>with a chapter</u> <u>on</u> Triassic and Jurassic rocks by G. N. Pipiringos U.S. Geological Survey Bulletin 1349, 63 p.

Shapiro, Leonard, 1967, Rapid analysis of rocks and minerals by a singlesolution method: U.S. Geological Survey Professional Paper 575-B, p. 187-191.

Shapiro, Leonard, and Brannock, W. W., 1956, Rapid analysis of silicate rocks: U.S. Geological Survey Bulletin 1036-C, p. 19-56.

- Sheridan, D. M., Maxwell, C. H., and Albee, A. L., 1967, Geology and uranium deposits of the Ralston Buttes district, Jefferson County, Colorado, with <u>sections on</u> Paleozoic and younger sedimentary rocks, by Richard Van Horn: U.S. Geological Survey Professional Paper 520, 121 p.
- Van Horn, Richard, 1976, Geology of the Golden quadrangle, Colorado: U.S. Geological Survey Professional Paper 872, 116 p.
- Vinogradov, A. P., 1962, Average contents of chemical elements in the principal types of igneous rocks of the earth's crust: Geokhimiya 1962, no. 7, p. 555-571 (in Russian); translation in Geochemistry, 1962, no. 7, p. 641-664.
- Young, E. J., 1977, Geologic, radiometric, and mineralogic maps and underground workings of the Schwartzwalder uranium mine and area, Jefferson County, Colorado: U.S. Geological Survey Open-File Report 77-125, 38 p.
- Young, E. J., 1979, Genesis of the Schwartzwalder uranium deposit, Jefferson County, Colorado: Wyoming University Contributions to Geology, v. 17, no. 1; in press.