GLOOBB

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

PRELIMINARY DATA FOR MADISON LIMESTONE TEST WELL 2,

SEZSEZ SEC. 18, T. 1 N., R. 54 E., CUSTER COUNTY, MONTANA

By D. L. Brown, R. K. Blankennagel, J. F. Busby, and R. W. Lee

Open-File Report 77-863

Study of Madison aquifer in cooperation with Montana Bureau of Mines and Geology Montana Department of Natural Resources and Conservation North Dakota State Water Commission South Dakota Division of Geological Survey Wyoming State Engineer

This report has not been edited or reviewed for conformity with Geological Survey stratigraphic nomenclature.

Denver, Colorado

December 1977

CONTENTS

Page

¥

Conversion factors	iii
Abstract	1
Introduction	2
Test-well history	- 11
Hole-history data	12
Core record	· 25
Bit record	26
Deviation surveys	27
Log index sheet	28
Mud summary	30
Geology of test well	33
Log tops (formation tops)	34
Lithology	35
Core-analysis results	54
Hydrologic testing	65
Drill-stem tests	71
Geochemistry	126
Preliminary results and future testing plans	
References	

ILLUSTRATIONS

(Plates are in pocket)

Geological well log. Plate 1.

- 2.
- Strip log with mud-gas analysis. Gamma-ray induction log 416 to 4,652 ft. 3.
- Composite dual induction-laterlog 4,678 to 9,390 ft. 4.

Figures 1-3. Maps showing:

T. D.	haps showing.	
· 1.	Location of study area, Fort Union coal region,	
• •	and test wells 1 and 2	3
2.	Location of Madison Limestone test well 2 in	
	southeastern Montana	6
3.		· _
	test well 2	7
	Diagrams showing:	_
	Construction of Madison Limestone test well 2	8
5.	Well-head equipment of Madison Limestone test	
	well 2	.9
6.	Well-head equipment of Madison Limestone test	•
	well 2, with lubricating barrel attached	10
7.	Inflatable straddle packer tool for	
	conventional drill-stem tests	68
8.	Dual seal inflatable straddle packer tool used	
	on tubing	69
9.		
	or casing	70

TABLES

Page

Page

Table	1.	Core intervals	33
	2.	Summary of drill-stem-test data	66
	3.	Water-quality analysisLakota Sandstone	127
	4.	Water-quality analysisMinnelusa	128
	5.	Water-quality analysisMission Canyon	129
	6.	Water-quality analysisDevonian and Silurian	130
	7.	Water-quality analysisRed River	131
	8.	Water-quality analysisRoughlock to Precambrian	132
	9.	Water-quality analysisComposite of waters from	
		Madison into Red River	133

CONVERSION FACTORS

In this report, figures for measures are given only in English units. Factors for converting English units to metric units are shown in the following table:

English	Multiply by	Metric
in (inches)	25.4	mm (millimeters)
ft (feet)	.305	m (meters)
ft ³ (cubic feet)	.02832	m ³ (cubic meters)
mi ² (square miles)	2.59	m ³ (cubic meters) km ² (square kilometers)
gal (gallons)	3.785	L (liters)
gal/min (gallons per minute)	.0631	L/s (liters per second)
(gal/min)/ft (gallons per minute per foot)	.207	<pre>(L/s)/m (liters per second per meter)</pre>
1b (pounds)	.4536	kg (kilograms)
<pre>lb/in² (pounds per square inch)</pre>	6.8948	kPa (kilopascals)
md (millidarcys)	.000987	μm^2 (square micrometers)

iii

PRELIMINARY DATA FOR MADISON LIMESTONE TEST WELL 2, SE4SE4 SEC. 18, T. 1 N., R. 54 E., CUSTER COUNTY, MONTANA

By

D. L. Brown, R. K. Blankennagel, J. F. Busby, and R. W. Lee

Abstract

This report provides the preliminary data for the Madison Limestone test well 2 including test-well history, geology of the test well, hydrologic testing, and geochemistry. It also discusses the preliminary results and future testing plans.

The test well was drilled as part of the study to determine the waterresource potential of the Madison Limestone and associated rocks to meet future water needs in a 188,000-square-mile region that includes the coal-rich area of the Northern Great Plains. Drilling and testing were designed to yield a maximum of stratigraphic, structural, geophysical, and hydrologic information.

The test well was drilled in the $SE_{4}SE_{4}$ sec. 18, T. 1 N., R. 54 E., Custer County, Montana, to a depth of 9,378 feet below land surface. The well is cased with 13-3/8-inch casing from land surface to 4,661 feet and 9-5/8-inch casing from 4,519 to 6,487 feet below land surface. It is an 8-1/2-inchdiameter open hole from 6,487 feet to 8,422 feet. The well is plugged below that depth by two cement plugs--one from 9,378 to 9,084 feet and the other from 8,884 to 8,422 feet. The well is so constructed that additional hydrologic tests and geophysical logs can be made at a later date.

Nineteen cores were taken from selected intervals totaling 754 feet; 722.4 feet of core was recovered. The cores were photographed, slabbed, and plugged, and selected parts were tested for density, porosity, and vertical and horizontal permeability. Gamma and density scans of the cores were made, and thin sections are being prepared for detailed examination.

Seventeen conventional drill-stem tests and packer-swabbing tests were attempted, 13 of which give clues to the pressure heads of water in the intervals tested. Water samples were obtained during 10 of the tests, 7 of which were flow tests.

Water from the open-hole part of the well had a shut-in pressure of 333 pounds per square inch and flowed about 44 gallons per minute. The temperature of the water, measured at the surface, was about 48 degrees Celsius.

With the possible exception of the Lakota Sandstone, no major potential sources of ground water were found in the test well. Also, no freshwater (less than 1,000 milligrams per liter dissolved solids) was found in any of the zones tested in the well. Water salinities ranged from about 2,000 to 46,500 milligrams per liter dissolved solids. Additional geophysical logs and tests will be made in the test well during the summer and fall of 1977. The logs may include televiewer, gamma spectrometer, trace ejector, and spinner-surveys. A vertical seismic profile will be made in the well in August.

Introduction

Development of coal in the Northern Great Plains will place a heavy demand on the available water resources of the region. Surface water in the region is poorly distributed in time and space. Its use for coal development in places would require storage reservoirs and distribution systems; in the rest of the region, surface water is fully appropriated and its use would deprive present users of their supply. The Paleozoic rocks which underlie most of the region contain water-bearing zones that might supply, at least on a temporary basis, a significant percentage of the total water required for coal development. One such source of water supply is the Madison aquifer, which includes the Madison Limestone and associated rocks.

In 1975 the U.S. Geological Survey, in cooperation with the Old West Regional Commission, prepared a plan of study (U.S. Geological Survey, 1975) for evaluating the water-supply potential of the Madison Limestone and associated rocks. That report not only presents a plan of study for the Madison, but also gives references relating to the regional geology and hydrology, cites the current geohydrologic studies being made by Federal and State agencies and by private companies, and summarizes the available data and the deficiencies of these data.

During the development of the study plan, a liaison committee was formed. The members were drawn from agencies of State governments that have an active interest in or responsibility for control or development of water from the Madison aquifer. These agencies include Montana Bureau of Mines and Geology, Montana Department of Natural Resources and Conservation, North Dakota State Water Commission, South Dakota Division of Geological Survey, and Wyoming State Engineer. The purpose of the committee is to maintain open communication between investigating hydrologists and State officials relative to all aspects of the U.S. Geological Survey's studies of the Madison aquifer.

During the 1976 fiscal year, the U.S. Geological Survey, in cooperation with the States of Montana, North Dakota, South Dakota, and Wyoming, began a study to determine the water-resource potential of the Madison Limestone and associated rocks to meet the future water needs in a 188,000-mi² region that includes the coal-rich area of the Northern Great Plains, and to evaluate these rocks (the Madison aquifer) as a source of water for industrial, agricultural, public, and domestic supplies. The study area includes eastern Montana, western North and South Dakota, a small part of Nebraska, and northeastern Wyoming (fig. 1). The area of greatest interest, however, is the Powder River Basin of Montana and Wyoming, and the area surrounding the Black Hills in Wyoming, Montana, the Dakotas, and Nebraska.

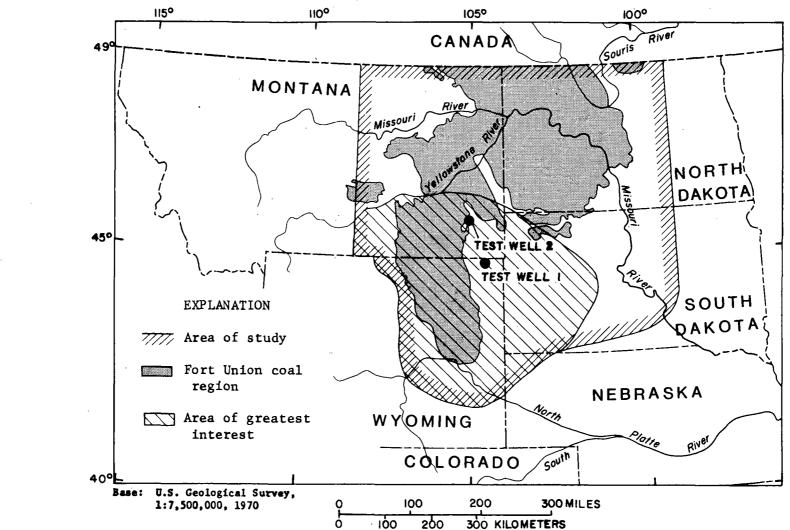


Figure 1.--Location of study area, Fort Union coal region, and test wells 1 and 2.

ω.

Within the scope of available funds and manpower, the objectives and approach are those outlined in the plan-of-study report. The objectives include:

- 1. The quantity of water that may be available from the Madison aquifer.
- 2. The chemical and physical properties of the water.
- 3. The effects of existing developments on the potentiometric head, storage, recharge and discharge, springs, streamflow, and the pattern of ground-water flow.
- 4. The probable hydrologic effects of proposed withdrawals of water for large-scale developments at selected rates and locations.
- 5. The locations of wells and the type of construction and development of deep wells that would obtain optimum yields.

Many oil tests have been drilled to the Madison aquifer in the study area. Most did not completely penetrate the aquifer, but were drilled to develop oil fields or were exploration tests on known geologic structures. Few data from these tests were collected for hydrologic purposes, but the information is useful in defining the geologic framework and some of the aquifer characteristics such as water quality, temperature, porosity, and potentiometric head.

To obtain better subsurface hydrologic and geologic information, it was recognized that test wells would have to be drilled. Drilling and testing were designed to yield a maximum of stratigraphic, structural, geophysical, and hydrologic information. Stratigraphic and structural information, obtained from drill cuttings, cores, and geophysical logs, is critical for reconstructing the paleogeologic history of the region as well as defining the present structural and sedimentary framework. Careful analysis of cuttings and cores, and correlation with geophysical log characteristics will have transfer value with data obtained from oil-well tests and surface geophysical surveys.

Hydraulic tests are designed to yield pressure data and subsurface water samples from discrete intervals. These data are used to determine the degree of isolation and (or) interconnection of aquifers, the water yield of isolated zones, the composite yield of the well, and the quality of water.

Madison Limestone test well 2 is the second in a series of proposed test wells that are designed to test a preliminary regional conceptual model relating porosity to lithology, and, in turn, transmissivity to structure and other rock properties.

Test well 1 (Blankennagel, Miller, Brown, and Cushing, 1977) was drilled in the NE°SE° sec. 15, T. 57 N., R. 65 W., Crook County, Wyo. (fig. 1). Preliminary geological facies maps showed this area along the eastern part of the Montana-Wyoming border to have a high percentage of dolomite in the Madison and associated rocks, thus indicating possible high primary porosity. Also, because this area was apparently structurally active, good potential for secondary fracture porosity was indicated. Other considerations in selecting the site were (1) depth to Precambrian rocks at about 5,000 ft below land surface, (2) adequate pressure to be reasonably certain that the well would flow at land surface, (3) location on State or Federal land, (4) good accessibility to the drilling site, (5) availability of water for drilling and an area for disposal of water from the well, and (6) nearness to source of electrical power. The

well, although not completely developed at this time (June 1977), will yield at least 700 gal/min. It penetrated formations having good porosity, permeability, and open fractures to a depth of at least 3,200 ft below land surface (Blankennagel, Miller, Brown, and Cushing, 1977).

The site for Madison test well 2 was chosen with considerations 2-6 (listed in previous paragraph) being the same. The main differences in this site selection were in the depth to Precambrian basement and lithology of the Madison and associated rocks. Preliminary geological facies maps showed the Madison and associated rocks, at the site for test 2, to be predominantly limestone and deeper than 6,000 ft below land surface.

The choice of a structurally active area for the test should permit the relation between lithology, structure, and secondary porosity to be more fully understood. Also specific questions need answers: (1) Are fractures open or healed below 6,000 ft? (2) Does limestone tend to fracture less than dolomite? (3) Does the porosity decrease in direct proportion to the percentage of limestone in the section?

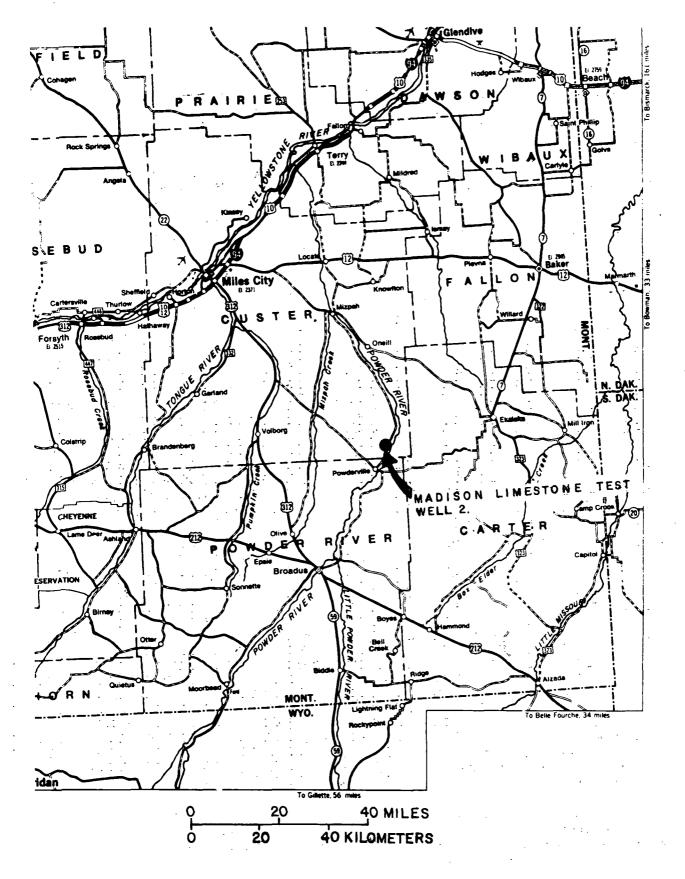
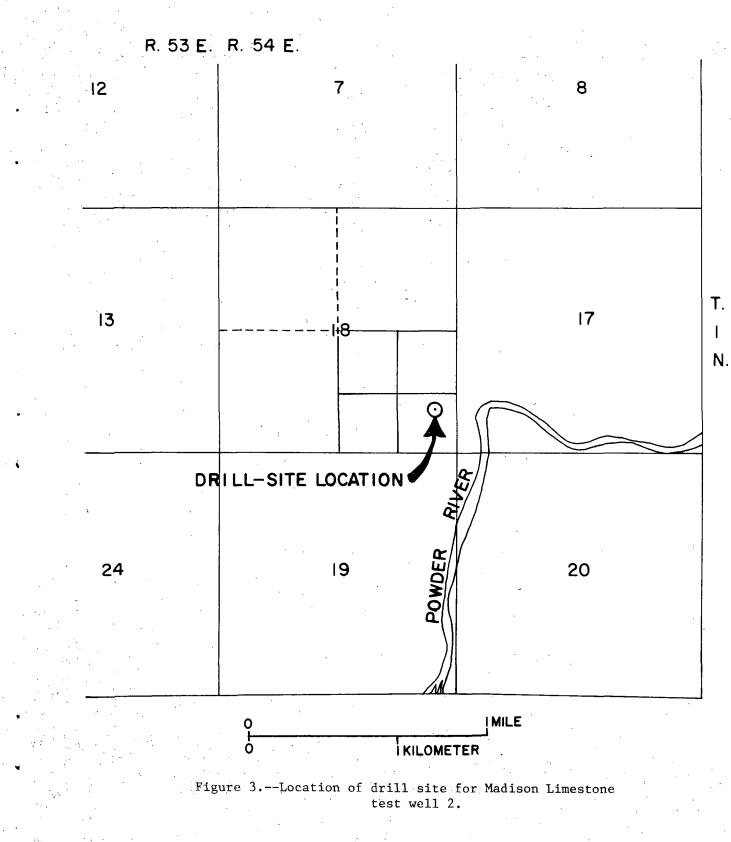
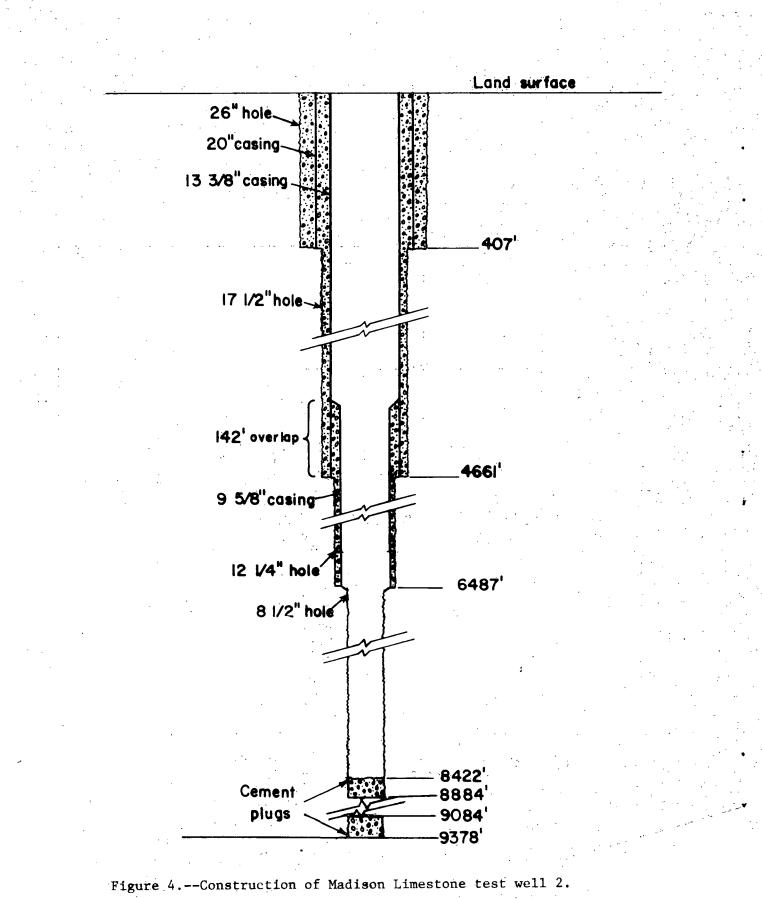
Madison test well 2 is in the $SE_{4}SE_{4}$ sec. 18, T. 1 N., R. 54 E., Custer County, Mont. (figs. 2 and 3). It is along an all-weather gravel-surfaced road, about a quarter of a mile west of the Powder River. The well is about 6 mi northeast of Powderville, Mont., and 55 mi southeast of Miles City, Mont.

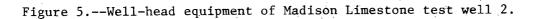
The well was spudded in the Hell Creek Formation of Late Cretaceous age on November 17, 1976, and bottomed 94 ft below the top of the Precambrian rocks at 9,378 ft below land surface on March 23, 1977. It is cased with 13-3/8-in diameter casing from land surface to 4,661 ft, and with 9-5/8-in diameter casing from 4,519 to 6,487 ft. It is 8-1/2-in diameter open hole from 6,487 to 8,422 ft. The well is sealed off below 8,422 ft by two cement plugs--one from 9,378 to 9,084 ft and the other from 8,884 to 8,422 ft below land surface--to isolate the upper part from the Cambrian sandstones that contained saline water and gas shows (fig. 4). The well is so constructed that additional hydrologic tests and geophysical logs can be run at a later date (figs. 5 and 6).

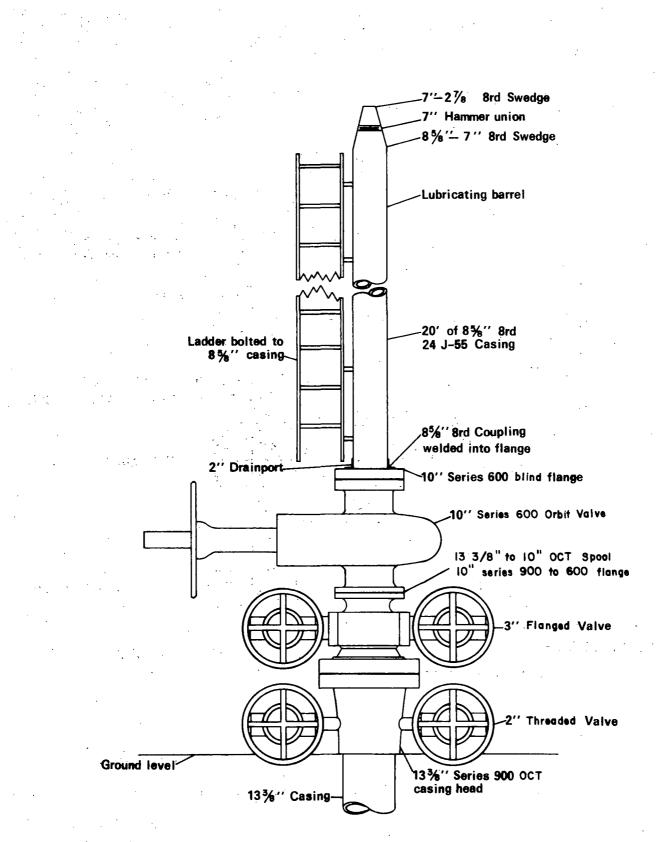
Seventeen drill-stem and packer-swabbing tests were attempted; 13 yielded head and quality-of-water information for the intervals tested. Based on the test data, all water-bearing units in the Paleozoic rocks had sufficient head to cause the water in them to flow at land surface. Water from the uncased part of the well, 6,487 to 8,422 ft, had a head of 333 lb/in² above land surface.

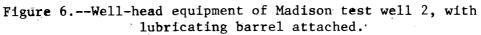
Nineteen cores were taken from selected intervals totaling 754 ft; 722.4 ft of core was recovered. The cores were photographed, slabbed, plugged, and selected parts were tested for density, porosity, and vertical and horizontal permeability. Gamma and density scans of the cores were made, and thin sections are being prepared for detailed examination.

This report provides the preliminary data for Madison Limestone test well 2 including test-well history, geology of the test well, hydrologic testing, and geochemistry, and it discusses the preliminary results and future plans.


Figure 2.--Location of Madison Limestone test well 2 in southeastern Montana.





8 ·

Many individuals from the U.S. Geological Survey, other Federal agencies, State agencies, and industry contributed to the successful completion of the Madison test well 2. No attempt will be made to list all the U.S. Geological Survey personnel involved in the operation; however, special recognition must be given to James A. Peterson, Thad W. Custis, James R. Marie, William J. Head, Gilbert Ortiz, Wilbur C. Ballance, Donald L. Coffin, Robert W. Maclay, Lewis W. Howells, William R. Miller, William B. Borchert, Steve A. Strausz, and Marvin A. Crist, for their contributions in the site selection, drilling, operations, and testing of the well.

Fenix and Scisson, Inc., of Tulsa, Okla., prime contractor for the Energy and Research Development Administration (ERDA) at Las Vegas, Nev., assisted with preparation of the drilling specifications and provided a drilling specialist, Ken Ward, at the drill site. Fenix and Scisson also prepared the well history included in this report.

J. R. Kerns and E. T. Hegna of Hegna, Kerns, and Traut, consulting geologists, Casper, Wyo., were employed by the drilling contractor during drilling operations. They assisted with selection of cored intervals and identified formation tops. Their descriptions of cuttings and cores are included in this report. Continental Laboratories were employed by the drilling contractor to supply a hydrocarbon well log (pl. 2). Geophysical logging was done by Birdwell Division, Seismograph Service Corp., and Schlumberger Well Services. Packer tests were run by Lynes, Inc., with interpretation by Roger L. Hoeger. Other companies, too numerous to mention, were involved in the drilling, coring, fishing, and cementing operations.

Core preparation, photographs, and gamma-ray-attenuated-porosity-evaluator (GRAPE) logs were provided by Marathon Oil Research Center, Denver, Colo. Analysis of core and hydrologic properties was by Core Laboratories, Inc., Denver, Colo.

Test-well history

The following historical data on the test well including time breakdown, hole history, core record, bit record, deviation surveys, and log index sheet were photo copied from the Fenix and Scisson report provided to the U.S. Geological Survey at the completion of the drilling, coring, and preliminary logging and testing of Madison Limestone test well 2. The mud report is from the Hegna, Kerns, and Traut report.

r												
FENIX & SCISSON, INC. HOLE HISTORY DATA												
DATE:_	. 6	-16-77				•		APPROVE	D:			
HOLENO	HOLE NO.1 Madison #2 W. D. NO.1									0.1		
USER		SGS		TYP	гносе: Ех р	lorator	у			· · ·		
LOCATIO	н Ma	ontana		COL	INTY: Cus	ter		AREA	· Powe	lerville		
SURFACE	COORDINA	TES: SE/4,	SE/4,	Sec.	18, TIN, R	54E						
GROUND	ELEVATION	2793'		PAD	ELEVATION:			тор с	ASING ELE	VATION		
RIG ON L	OCATION:	11-10-	76	SPU	DDED: 11-	17-76		COMP	LETED:~	4-28-7	7	
CIRCULA	TING MEDIA	. Mud							·			
MAIN RIG	& CONTRA	CTOR					NO	OF COMPR	ESSORS & C.	APACITY:		
вс	RE HOLE R	ECORD					CASING	RECORD			•	
FROM	TD	SIZE	I. D	•	WT./FŢ.	WALL	GRADE	CPL'G.	FROM	סד	ເມ	. FT. CMT.
. 01	71	Excav.*			(8' x	8' cel	lar)		· 0'	7'	Dir	`t
7'	54'	36"*	30''				CMP		. 71	54 '	?	
54'	407'	26"	19.1	24"	94#		H-40	Buttres	₅ <u>3'</u>	407'	100	1**
407'	4663'	175"	(Se	e Pag	e 4)		<u> </u>		0'	4662'	630	5***
4663'	6489'	[~] 12½"	8.83	5"	40#		S-80	ST&C	4519'	6487'	112	2
6489'	9378'	8½"					· .					•
TOTAL D	Е₽тн: 937	8' GL AVE	RAGE MAN	DREL	DEPTH:		FROM F	REFERENCE	ELEVATION	10		
JUNK & P	LUGS LEFT	IN HOLE: P	lugged	back	from 8422	' to 93	78'					
SURVEYS	PAGE: 1	4 CORING	PAGE:	12	<u> </u>		cu.	FT. CMT. TO	TAL IN PLU	JGS, ETC:	52	5
LOGGING	DATA: P	age 15							<u></u>			
BOTTOM	HOLE COOR	DINATES:	•					REFI	RENCE			
					RI	GS USED			Prep Rigs		·	
RIG NO.		NAME			TYPE		CLASS	DAYS OPERATING	SECURED W CREW	SECUR W/D CR	ED	ON LOC.
8	JRK Dr	illing Co.		Nat	ional 80B			162.08	0.45			162.53
	(Ander	son Drilli	ng									
	Co. Ri	.g)										
									·	. 		
	1									<u> </u>		
REMARKS		Prep Items								<u> </u>		
l		Approximate										
	***	Approximate	ely 728	ft ³	circulate	d to su	rface.					
	NOTE:, Depths shown are from ground level elevation 16' below kelly bushing											
elevation. T.D. 9378' (G.L.) = 9394' (KB)												
								<u></u>				
PDEDIDE	ED BY: WD	S:siw				- <u>-</u>	TINE B	REAKDOWN (N NEXT PA			
FREFARE							I IME D					

the property of the provide state of the product of the state of the

· .*

....

		Madiso TIME BR	on ∦2 EAKDOWI	4		
		SITE PRE	PARATIC)N		
DRILLING OPERATION TH	E (DOT)	OTHER SCHED	ULED TIM	E (057)	OPERATIONAL DELAY TI	ME (ODT)
DRILL		MOVE			RIG REPAIRS	
TRIPS	<u> </u>	RUN CASING			W. O. DRILLING SUPPLIES	
SURVEYS		CEMENT CASING			CLEAN OUT FILL	
					SECURED WITH CREWS	- <u></u>
				·		<u> </u>
SITE DOT	DAYS	SITE O	<u>sт</u>	DAYS	SITE ODT	
TOTAL SITE PREP TIME		DAYS	REMA	RKS	· · · · · · · · · · · · · · · · · · ·	
·	<u>.</u>	MAIN HOLE C	ONSTRUC	TION	· · · · · · · · · · · · · · · · · · ·	
DRILLING OPERATION TIM	E (DOT)	OTHER SCHED	ULED TIM	E (OST)	OPERATIONAL DELAY TIA	(E (ODT)
DRILL	29.19	MOBILIZATION & DEM	OBILIZATI	ON	RIG REPAIRS	1.92
TRIPS	10.67	CORE		16.19	W. O. EQUIPMENT & Suppli	es_2.25
DRESS DRILLING ASSEMBLY		LOG		6.00	FISH	10.17
SINGLE SHOT DEV. SURVEYS	0.80	CASED HOLE DIR. SU	RVEYS		CLEAN OUT FILL	0.99
OPEN HOLE DIRECTION SURVEY	rs	UNLOAD CASED HOL	E		UNLOAD WATER INFLOW	
Open Hole	34.10	RUN MANDREL .		<u></u>	REAM CROOKED HOLE	<u> </u>
	<u> </u>	HYDROLOGICAL TES	TS	29.86	PLUG BACK	
7/	76	Nipple Up		4.37	DRILL OUT PLUGS	
MAIN HOLE DOT 74.		Circulate Samp		1.37	SECURED WITH CREWS	0.45
CASING OPERATION TIM		Plug Back		1.00		
RUN 20" CASING	0.43	Lay Down Drill	Pipe	_0.92	Clean Out Plugged Bit	1.40
RUN 13-3/8" CASING	1.49	х •	•			
CEMENT <u>20"</u> CASING CEMENT 13-3/8" CASING	0.67				Repair Blow Out Preven Circulate & Mix Mud	
DRILL OUT SHOE	1.84				Thaw Out Rig	$\frac{1.18}{1.18}$
*	1.79					
MAIN HOLE COT 7.34		MAIN HOLE C	<u>59.</u>	71 DAYS	MAIN HOLE ODT 20.	72 DAYS
TOTAL MAIN HOLE CONST. TIME		62.53 DAYS	REMAR			
· · · · · · · · · · · · · · · · · · ·		TOTAL ELA	PSED TH	ME		
TOTAL SITE PREP TIME		DAYS	REMARK	Sr		
TOTAL MAIN HOLE CONST. TIME		162.53 DAYS _				
SEC. W/O CREW SITE PREP		DAYS	* Ru	<u>m 9-5/8"</u>	Liner 0.37 Days	5
SEC. W/O CREW MAIN HOLE CON	ST.	DAYS	Ce	ment 9-5	/8" Liner 1.42 Days	3
TOTAL SUSPENDED (NO RIG)		DAYS		·····		
•					····	
TOTAL ELAPSED TIM	E	162.53 DAYS		·····		

MADISON #2 HOLE HISTORY

- 11-7-76 Site prep work consisted of an 8' x 8' cellar set at 7' below ground level with 30" CMP set at 54' below ground level in a 36" hole and cemented with ready mix cement.
- 11-10-76 Anderson Drilling Company rig #8 was moved in and crews started rigging up.
- <u>NOTE</u>: All depths reported from kelly bushing elevation (KP) 16' above ground level (GL) unless otherwise noted.
- 11-17-76 Rigging up was completed at 0330 hours. Drilled 17¹/₂" hole from 70' to 330' using conventional circulation with mud.
- 11-18-76 Drilled 17¹/₂" hole from 330' to 430'. Pulled out of hole and made up 26" hole opener. Opened 17¹/₂" hole to 26" from 70' to 146'.
- 11-19-76 Opened 17'4" hole to 26" from 146' to 357'.
- 11-20-76 Opened 17¹/₂" hole to 26" from 357' to 423'. Rigged up to run casing.
- 11-21-76 Ran 10 joints (425.62') of 20" 0.D., H-40, 94# buttress thread casing and landed at 406.62' (GL). Casing had a Baker BX guide shoe on bottom and a Baker latch-in type float collar at 363.62' (GL). Centralizers were placed at 406', 367', 326', 283', 243', 201', 159' and 117'. All ground level measurements. Ran latch-in tool in the hole and latched into the float collar. Cemented annulus using Halliburton with 520 sacks (801 ft³) of "Light" cement, 3% calcium chloride and 1/4# per sack of Flocele followed by 200 sacks (230 ft³) of Class "G" cement, 2% calcium chloride and 1/4# per sack of Flocele. Cement in place at 1115 hours. Approximately 200 ft³ of "Light" cement circulated to surface. Waited on cement.
- 11-22-76 Cut off 20" O.D. casing and welded on a 20" National Series 600 casinghead. Started connecting up blow out equipment.
- 11-23-76 Completed connecting up blow out equipment consisting of a 20" Shaffer single ram preventer on top of the casinghead followed by a 20" Hydril MSP-2000 preventer with a Grant rotating head on top. Drilled out float collar with a 175" bit and pressured up on the Hydril preventer, top seals were out of the preventer. Removed connections and waited on repairs at 1915 hours.
- 11-24-76 Waited on Hydril serviceman to 0600 hours. Worked on preventer and found piston cemented in. Replaced with a new Hydril preventer.
- 11-25-76
- Connected up new preventer and tested to 1000 psi for 30 minutes. Drilled out cement and shoe with a $17\frac{1}{2}$ " bit. Made trip for $8\frac{1}{2}$ " bit.
- 11-26-76 Ran 8½" bit in the hole with a junk sub. Circulated hole clean and drilled 8½" hole from 430' to 778'. Circulated hole, ran out of water at 1900 hours.

- 11-27-76 Thawed out rig to 1230 hours, ice in diesel oil lines. Drilled 8½" hole from 778' to 950'. Shut down at 2130 hours to thaw out diesel lines.
- 11-28-76 Thawed out rig to 1245 hours. Drilled 8¹/₂" hole from 950' to 1078'. Pulled out of hole.
- 11-29-76 Made up Christensen core barrel with an $8\frac{1}{2}$ " x 4" diamond bit and cut core #1 from 1078' to 1108', recovered 28'.
- 11-30-76 Ran 8¹/₂" bit in the hole, washed and reamed 60' to bottom and drilled from 1108' to 1430'.
- 12-1-76 Drilled 8¹/₂" hole from 1430' to 1935'.
- 12-2-76 Drilled 8¹/₂" hole from 1935' to 1969' and pulled out of hole. Made up core barrel with 8¹/₂" core bit and cut core #2 from 1969' to 1999', recovered 25'. Ran 8¹/₂" bit in the hole, reamed 30' to bottom and drilled from 1999' to 2250'.
- 12-3-76 Drilled 8¹2" hole from 2250' to 3055'.
- 12-4-76 Drilled 8¹/₂" hole from 3055' to 3621'. Made trip for bit at 3442' and reamed 60' to bottom.
- 12-5-76 Drilled 8¹₂" hole from 3621' to 4154'.
- 12-6-76 Drilled 8½" hole from 4154' to 4343' and pulled out of hole. Made up core barrel with an 8½" core bit and ran in hole. Core barrel was plugged, pulled out of hole.
- 12-7-76 Cleaned out core barrel. Ran 8¹/₂" bit in the hole and washed 106' to bottom at 4343'. Pulled bit and ran core barrel back in hole. Cleaned out 25' of fill and cut core #3 from 4343' to 4369'.
- 12-8-76 Recovered 26' on core #3. Ran 8½" bit in the hole, reamed core hole and drilled from 4369' to 4640'.
- 12-9-76 Drilled 8¹/₂" hole from 4640' to 4682'. Measured out of hole and corrected depth to 4677'. Ran Birdwell logs.
- 12-10-76 Continued running logs.
- 12-11-76 Completed logging. Ran 8¹/₂" bit in the hole and washed 25' to bottom. Conditioned hole for testing and pulled bit.
- 12-12-76 Made up Lynes test tool and ran drill stem test #1 from 4300' to 4680'. Tool opened at 0512 hours and completed test at 0830 hours. Laid down tool. Made up 12½" hole opener and reamed hole from 406' to 430'. Opened 8½" hole to 12½" from 430' to 746'.

5	
12-13-76	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 746' to 1354'.
12-14-76	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 1354' to 1870'.
12-15-76	Opened 8½" hole to 12½" from 1870' to 2356'.
12-16-76	Opened $8\frac{1}{2}$ " hole to 12½" from 2356' to 2769'. Made trip for hole opener at 2538'.
12-17-76	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 2769' to 3340'.
12-18-76	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 3340' to 3698'. Pulled out of hole and left 3 cutters in the hole. Picked up junk sub and made up $12\frac{1}{2}$ " reamer.
12-19-76	Ran in hole and opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 3698' to 4130'.
12-20-76	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 4130' to 4324'. Made trip for hole opener at 4162'.
12-21-76	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{4}$ " from 4324' to 4668'.
12-22-76	Opened 8½" hole to 12½" from 4668' to 4677'. Pulled out of hole and left 1 cutter in the hole. Made up 17½" hole opener and ran in hole. Opened 12½" hole to 17½" from 430' to 828'.
12-23-76	Opened 12½" hole to 17½" from 828' to 1310'. Made trip at 1180', bit had balled up.
12-24-76	Opened $12\frac{1}{2}$ " hole to $17\frac{1}{2}$ " from 1310' to 1870'.
12-25-76	Opened 124" hole to 172" from 1870' to 2437'.
12-26-76	Opened 12'4" hole to 17'2" from 2437' to 2980'
12-27-76	Opened 12%" hole to 17%" from 2980' to 3430'. Made trip for hole opener at 3286'.
12-28-76	Opened 12½" hole to 17½" from 3430' to 3888'.
12-29-76	Opened $12\frac{1}{2}$ " hole to $17\frac{1}{2}$ " from 3888' to 4156'. Pulled out of hole, had a few tight places in hole.
12-30-76	Trip in hole with new reamer, cleaned out bridges, washed and reamed to bottom. Opened $12\frac{1}{2}$ " hole to $17\frac{1}{2}$ " from 4156' to 4216'.
12-31-76	Opened 12 ¹ / ₂ " hole to $17^{\frac{1}{2}}$ " from 4216' to 4410'.
1-1-77	Opened 12½" hole to $17\frac{1}{2}$ " from 4410' to 4626'.
1-2-77	Opened 124" hole to 172" from 4626' to 4677'. Conditioned mud.
1-3-77	Pulled out of hole and ran Birdwell logs. Made up 11-5/8" O.D. Globe basket and junk sub and ran in hole.

- 1-4-77 Pulled out of hole, no recovery. Made second trip with the basket, no recovery. Ran 10¹/₂" O.D. magnet in the hole, recovered approximately 1 quart of bearings and pieces of cones. Ran magnet back in hole.
- 1-5-77 Pulled magnet, no recovery. Made trip with 17¹/₂" hole opener and conditioned hole to run casing. Started running 13-3/8" O.D. casing.

1-6-77 Completed running 13-3/8" O.D., ST&C casing, set at 4677.70' (4661.70' GL) with a Baker guide shoe on bottom and a latch-in type float collar at 4631.13' (4615.13' GL). The casing was run as follows:

No. Joints	Weight Per Foot	Grade	Interval (GL)			
21	68.00#	S-80	4661.70' - 3733.48'			
37	61.00#	S-80	3733.48' - 2086.63'			
53	54.50#	K-55	2086.63' - 0'			

Centralizers were placed at 4649', 4625', 4558' and 4520', all ground level measurements. Then one centralizer on every other collar to 1136' and one on every fourth collar to 515' and then one at 250' from surface. Ran latch-in tool in the hole on $4\frac{1}{2}$ " drill pipe and latched into collar. Cemented annulus using Halliburton with 6017.5 ft³ (2065 sacks) of Class "G" cement, 16% gel, 3% salt, 0.2% CFR-2 and 1/4# per sack of Flocele followed by 287.5 ft³ (250 sacks) of Class "G" cement and 1/4# per sack of Flocele. Cement in place at 1610 hours. Circulated out 250 sacks (728 ft³) of cement. Waited on cement.

- 1-7-77 Waited on cement to 0900 hours. Cut off the 20" 0.D. casing below ground level and welded a flange on the 13-3/8" 0.D. casing.
- 1-8-77 Installed Cameron and Hydril blow out preventers on the flange and started nippling up.
- 1-9-77 Completed nippling up. Pressure tested blow out equipment to 1000 psi. Ran 12¹/₄" bit in the hole and drilled out float equipment.
- 1-10-77 Completed drilling out cement and shoe. Pressure tested blow out equipment to 1000 psi. Pulled out of hole and made up 8¹/₂" drilling assembly. Ran in hole and corrected total depth from 4677' to 4679' for hole made while fishing with a 11-3/4" Globe basket. Drilled 8¹/₂" hole from 4679' to 4831'.
- 1-11-77 Drilled 8¹/₂" hole from 4831' to 4870', measured out of the hole and corrected depth to 4877'. Made trip with a magnet, no recovery. Made up Christensen 6-3/4" core barrel with an 8¹/₂" diamond core bit and cut core #4 from 4877' to 4907'.
- 1-12-77 Pulled out of hole and recovered 25' on core #4. Made up 8½" drilling assembly and drilled from 4907' to 5108'.

	•							
1-13-77	Drilled 8 ¹ / ₂ " hole from 5108' to 5410'.							
1-14-77	Drilled $8\frac{1}{2}$ " hole from 5410' to 5654'.							
Í-15-77	Drilled 8 ¹ ₂ " hole from 5654' to 5850'.							
1-16-77	Drilled $8\frac{1}{2}$ " hole from 5850' to 6085'.							
1-17-77	Drilled $8\frac{1}{2}$ " hole from 6085' to 6140'.							
1-18-77	Drilled $8\frac{1}{2}$ " hole from 6140' to 6327'.							
1-19-77	Drilled $8\frac{1}{2}$ " hole from 6327' to 6470'. Circulated samples to surface.							
1-20-77	Pulled out of hole and made up core barrel with $8\frac{1}{2}$ " bit. Cut core $#5$ from 6470' to 6540'.							
1-21-77	Continued cutting core #5 from 6540' to 6556', recovered 88'. Ran Schlumberger logs.							
1-22-77	Completed running logs. Made trip with $8\frac{1}{2}$ " bit and conditioned mud.							
1-23-77	Made up Lynes straddle packers and ran in hole on 4½" drill pipe for drill stem test #2. Set packers from 6138' to 6248' and opened tool at 0715 hours, packer failed at 0930 hours. Pulled out of hole. Re- paired tool and ran back in hole for drill stem test #3. Set packers from 6134' to 6244', opened tool at 2310 hours.							
1-24-77	Completed test at 0700 hours. Worked packers loose and pulled out of hole. Made trip with $8\frac{1}{2}$ " bit and conditioned mud.							
1-25-77	Made up test tool and ran in hole, set packers from 4898' to 4916' for drill stem test #4. Opened tool at 0537 hours and completed test at 1007 hours. Made up $12\frac{1}{2}$ " hole opener and ran in hole.							
1-26-77	Opened hole from 4679' to 4976'. Made trip for hole opener at 4715', bit locked.							
1-27-77	Opened $8\frac{1}{2}$ hole to $12\frac{1}{2}$ from 4976' to 5337'.							
1-28-77	Opened S_2^{L} " hole to 12^{L} " from 5337' to 5588'. Made trip for hole opener at 5485'.							
1-29-77	Opened 8½" hole to $12\frac{1}{2}$ " from 5588' to 5625'. Made trip for hole opener at 5621'.							
1-30-77	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 5625' to 5789'. Pulled out of hole.							
1-31-77	Changed out hole opener and ran in hole. Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 5789' to 5900'.							

٢

2-1-77	Opened 8_{2}^{1} hole to 12_{2}^{1} from 5900' to 6056'. Pulled out of hole.
2-2-77	Changed out reamer and ran in hole. Opened $8\frac{1}{2}$ " hole to $12\frac{1}{4}$ " from 6056' to 6107'.
2-3-77	Opened 8¹/2" hole to $12^{1/2}$ " from 6107' to 6181'.
2-4-77	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 6181' to 6230'. Made trip for reamer at 6204'.
2-5-77	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 6230' to 6291'.
2-6-77	Opened $8\frac{1}{2}$ " hole to $12\frac{1}{2}$ " from 6291' to 6357'.
2-7-77	Opened 8½" hole to $12\frac{1}{2}$ " from 6357' to 6388'. Made trip for hole opener at 6367'.
2-8-77	Opened 8½" hole to 12½' from 6388' to 6429'. Made trip for hole opener at 6409'.
2-9-77	Opened 8½" hole to 12½" from 6429' to 6461'.
2-10-77	Opened 8½" hole to 12½" from 6461' to 6505'. Conditioned hole and pulled hole opener.
2-11-77	Ran Birdwell caliper log. Ran 45 joints of 9-5/8" O.D., 40#, S-80, Range 3, ST&C casing for a liner in the hole on 4½" drill pipe with a Brown Oil Tool float shoe on bottom and a Brown type 1 landing collar at 6455' (6439' GL). Overall length of liner assembly was 1968.20'. Tagged bottom at 6505' and landed liner at 6503' (6487' GL) with the top of the Brown CMC liner hanger at 4535' (4519' GL). Centralizers at 6493', 6466' and 6445' KB with centralizers on every other collar from joint #4 thru #35, joint #35 and #39.
2-12-77	Cemented annulus using Halliburton with 532 ft ³ (350 sacks) of "Light" cement, 10% salt and 0.75% CFR-2 followed by 590 ft ³ (500 sacks) of Class "G" cement, 10% salt and 0.75% CFR-2. Cement in place at 0500 hours. Displaced cement with 5 barrels of water followed by 191 barrels of mud, good returns to surface. Released liner running tool and pulled out of hole. Waited on cement to 2000 hours. Ran $12\frac{1}{2}$ " bit in the hole and tagged cement at 3908'.
2-13-77	Waited on cement until 0500 hours. Drilled cement from 3908' to 4520'. Made trip for 8½" bit and drilled cement from 4520' to 4579', had void to 6379'. Top of liner at 4535'.

2-14-77 Pressured up to 1000 psi for 30 minutes. Drilled out cement, landing collar and shoe from 6379' to 6503' and cleaned out fill to 6554'.

an an Araba Araba an Araba Araba an Araba

	. **
2-15-77	Cleaned out fill to 6559' and drilled 8½" hole to 6574'. Circulated hole clean and pulled out of hole. Made trip with a magnet and junk basket, recovered bearings and buttons. Ram back in hole.
2-16-77	Fished with magnet, recovered 1 quart of junk. Magnet had hit the top of the liner and the skirt was torn up. Made trip with the mag- net and recovered 1 quart of junk. Made trip with an 8½" bit to check liner top, liner not damaged. Made up 8½" diamond bit and core barrel. Reamed 30' to bottom and cut core #6 from 6574' to 6577'.
2-17-77	Completed core #6 from 6574' to 6664', recovered 89'. Made up $8\frac{1}{2}$ " bit and 3 point reamer. Trip in hole.
2-18-77	Reamed 23' to bottom and drilled $8\frac{1}{2}$ " hole from 6664' to 6715'. Cir- culated samples and pulled out of hole. Made up core barrel and ran in hole. Cut core #7 from 6715' to 6745'.
2-19-77	Recovered 27.2' on core #7. Cut core #8 from 6745' to 6775', recovered 30.7'. Ran 8'2" bit in the hole, measuring drill pipe.
2-20-77	Corrected depth from 6775' to 6784'. Drilled 8½" hole from 6784' to 6948' and twisted drill pipe off. Pulled out of hole and left drill- ing assembly, 7 drill collars in the hole.
2-21-77	Made up overshot and ran in hole; latched onto fish and recovered same. Ran $8\frac{1}{2}$ " bit in the hole and drilled from 6948" to 7034".
2-22 -77	Drilled 85" hole from 7034' to 7070'. Pulled out of hole and ran mag- netic particle inspection on the drill collars. Made up core barrel with an 85" core bit and ran in hole. Cut core #9 from 7070' to 7078'.
2-23-77	Completed core #9 from 7078' to 7128', recovered 54' Trip in with 8'2" bit.
2-24-77	Drilled 82" hole from 7128' to 7267'.
2-25-77	Drilled 84" hole from 7267' to 7370'.
2-26-77	Pulled out of hole and ran $8\frac{1}{2}$ " core bit. Cut core #10 from 7370' to 7401', hole making water.
2-27-77	Completed core #10 from 7401' to 7422', recovered 51'. Face of core bit damaged. Ran 8'z" bit and junk sub in the hole. Drilled 8'z" hole from 7422' to 7444'.
2-28-77	Drilled 85" hole from 7444' to 7600'. Circulated samples and pulled out of hole.
3-1-77	Made up 85" coring assembly and ran in hole. Cut core #11 from 7600' to 7623'.

Recovered 22.5'on core #11. Cut core #12 from 7623' to 7625', re-3-2-77 covered 2'. Ran 8¹2" bit in the hole and drilled from 7625' to 7640'. Circulated samples. Pulled out of hole. Ran $8\frac{1}{2}$ " core bit in the hole and cut core #13 3-3-77 from 7640' to 7693'. Completed core #13 from 7693' to 7700', recovered 59'. Cut core #14 3-4-77 from 7700' to 7760'. 3-5-77 Recovered 59' on core #14. Cut core #15 from 7760' to 7820', recovered 60'. Cut core #16 from 7820' to 7865', recovered 38'. Ran 85" bit in the 3-6-77 hole and drilled from 7865' to 7924'. Drilled 84" hole from 7924' to 8083'. Circulated samples at 7975'. 3-7-77 Drilled 84" hole from 8083' to 8215'. Circulated samples to surface. 3-8-77 Pulled out of hole. 3-9-77 Made up 8¹/₂" core bit and cut core #17 from 8215' to 8238', recovered 21'. Ran 8¹/₂" bit in the hole and drilled from 8238' to 8311'. Drilled 812" hole from 8311' to 8532'. 3-10-77 3-11-77 Drilled 8¹/₂" hole from 8532' to 8624'. Made trip for bit at 8621' and reamed 30' to bottom. Drilled 8'z" hole from 8624' to 8782'. Circulated samples at 8668'. 3-12-77 Drilled 81/2" hole from 8782' to 8934'. Bit plugged, pulled out of hole. 3-13-77 3-14-77 Ran 85" bit in the hole and hit top of liner at 4535'. Pulled out of hole and found bit split. Changed out bit and made trip. Drilled 8½" hole from 8934' to 9045'. Circulated out approximately 200 barrels of water after being shut down for rig service. Drilled 81/2" hole from 9045' to 9216'. 3-15-77 3-16-77 Drilled 85" hole from 9216' to 9291'. Pulled out of hole, had inflow of water. Changed out bit, reamed and washed 115' to bottom, had water inflow. Drilled 8'4" hole from 9291' to 9298'. Mixed mud to control water flow. Drilled 81/2" hole from 9298' to 9340' and hole started flowing water. 3-17-77 Pulled bit into casing and closed blow out preventer rams. Shut in pressure was 125 psi. Mixed mud building weight to approximately 10.5# per gallon. Ran in hole with bit and tagged 47' of fill in the hole, plugged bit. Pulled out 5 stands and cleared bit, pumped in approximately 750 barrels of mud. Pulled bit inside casing and mixed additional mud.

1. 11 Ran back in hole and displaced water with mud. Started washing and 3-18-77 reaming 175' off bottom. Drilled 81/2" hole from 9340' to 9375'. Circulated samples. · . en en el compositor en la compositor en Made trip for bit, washed and reamed out of gauge hole to 9375'. Made 3-19-77 trip with a magnet, no recovery. Ran 812" core bit in the hole, washed to bottom and rotary table locked 3-20-77 up. Pulled core barrel and replace rotary table. 1. The second . * • Completed repairs. Ran core barrel back in the hole and washed to 3-21-77 bottom. Cut core #18 from 9375' to 9388'. Recovered 11' on core #18. Cut core #19 from 9388' to 9394', re-3-22-77 covered 6'. Ran Schlumberger logs. entre a la la seconda de la contra de la seconda de la 3-23-77 Completed Schlumberger logs. Ran Birdwell logs. 3-24-77 Completed Birdwell logs. Made trip to condition hole for testing. 3-25-77. Ran Lynes dual packers in the hole on 2-7/8". O.D. tubing. Waited on a daylight to open tool. いってい いうかいもう 3-26-77 Set packers from 9300' to 9394'. Opened tool at 0805 hours for drill stem test #5, fluid started dropping in the annulus. Laid down packers, packer rubber had ruptured. ŧ., , . . . ---- J-= J . Changed out packers. Ran back in hole with packer spacing from 9228' 3-27-77 to 9262' and set at 1305 hours for drill stem test #6. Rigged up to swab and could not get below 50'. Replaced tubing subs and reset packers. 2. Week 推动 Examples American matter (1997年1月),来说明,我们不知道了,是没有知道。 12 . . . Waited until daylight to open tool. Ran drill stem test #6A from 0630 3-28-77 where he hours to 1600 hours. Opened tool to test: below and between packers in for drill stem test #7 at 1600 hours. The theorem and the second and the spectrum in the conjugation of the second *3+29-77 ... Continued testing. Filled tubing with water and could not release the states of packers, a Worked tubing attempting to free packers and the 1.1.1.1 3-30-77 Continued working stuck test tool. Continued working stuck test tool. Ran Otis bailer and sand pump and 3-31-77 wallaw and caught water samples. Ran McCullough free point indicator, tool not at -77 Continued working stuck test tool. McCullough free point indicator 4-1-77 showed 2-7/8" O.D. tubing free at 6900'. Perforated tubing with McCullough Chem.Shot, two:3/8" hole 1800 apart at 9119.5! ... Broke circulation and circulated hole while working tubing. Réadraisean air dathairt se abhairte ann a suite a' tha ann an 1975 a bhairtean an 1977 a bhairtean an una de 1927 de 193 per presentar deservar al una construction de 1975. an brance, and consult have no been a second with a prove prive tos trabas

3 6 3 B. F.

22

÷ ...

4-2-77 Continued working tubing and circulating mud. Waited on Otis tools until 1930 hours. Ran Otis sand pump inside the 2-7/8" O.D. tubing.

4-3-77 Ran sand pump to 9185' for several runs and tubing began to fill up to 9150'. Recovered heavy mud with some sand and shale. Ran McCullough free point indicator, tubing stuck at 6845'. Ran chemical shot and cut tubing at 6807'. Started pulling tubing.

- 4-4-77 Completed pulling tubing. Ran Rucker Acme overshot, jars and bumper sub in the hole. Worked over fish and jarred loose. Pulled out of hole.
- 4-5-77 Laid down 2-7/8" O.D. tubing and Lynes packers, recovered all of fish except top rubber off of the top dual packer. Made trip with 8½" bit and conditioned mud for testing.
- 4-6-77 Made up Lynes test tool for drill stem test #8. Made 4 trips with tool, could not get past liner top on 2 trips and could not set packers on 2 trips.
- 4-7-77 Made trip with straddle packers and also with a standard test tool, could not set packers. Made up Lynes straddle packers and started in hole on 2-7/8" O.D. tubing.
- 4-8-77 Set packers to test zone from 8115' to 8335' for drill stem test #8. Started test at 0805 hours.
- 4-9-77 Completed test at 0530 hours. Released packers and pulled out of hole. Dressed test tool and ran in hole to test zone from 8030' to 8250' for drill stem test #9. Could not set packers.
- 4-10-77 Pulled tool and found bottom packer had ruptured. Made trip with 8½" bit to 8700' and conditioned mud.
- 4-11-77 Ran Birdwell logs. Made up Lynes straddle packers and ran in hole on 2-7/8" O.D. tubing for drill stem test #10.
- 4-12-77 Set packers from 8115' to 8355'. Opened tool at 0854 hours and started test.
- 4-13-77 Continued testing to 1830 hours. Pulled up the hole and reset packers from 7775' to 8015' for drill stem test #11.
- 4-14-77 Started test at 0115 hours and continued to 2100 hours. Released packers and pulled out of hole.
- 4-15-77 Completed pulling out of hole. Changed out test tool and ran in hole. Set packers from 6449' to 6689' for drill stem test #12. Started test at 1930 hours.
- 4-16-77 Continued testing to 0245 hours. Reset packers from 6814' to 7054' for drill stem test #13. Started test at 0711 hours.

- 4-17-77 Continued testing to 0515 hours. Reset packers from 7074' to 7314' for drill stem test #14. Started test at 0932 hours and completed at 1515 hours. Reset packers from 7064' to 7304' for drill stem test #14A. Started test at 1700 hours.
- 4-18-77 Completed test at 1130 hours. Reset packers from 6449' to 6689' to check drill stem test #12. Released packers at 1630 hours and pulled out of hole. Started in hole with an $8\frac{1}{2}$ " bit.
- Completed trip to condition mud for further testing. Made up test 4-19-77 tool with dual packers and started in hole with 2-7/8" O.D. tubing. 1 .
- 4-20-77 Completed trip in hole and set packers from 7305' to 7545' for drill stem test #15. Started test at 0800 hours and completed at 1600 hours. Reset packers from 7525' to 7765' for drill stem test #16. Started test at 1730 hours.
- 4-21-77 Completed test at 1700 hours. Moved up hole 10' and set packers from 7515' to 7755' for bypass test. Opened tool at 1830 hours.
- Completed test at 0100 hours and pulled out of hole. Made up double 4-22-77 packer test tool and ran in hole on 2-7/8" O.D. tubing.
- 4-23-77 Set packers at 8520' to test zone from 8520' to total depth at 9394' for drill stem test #17. Started test at 0300 hours and continued to 1430 hours. Released packers and conditioned mud and build up volume.
- 4-24-77 Conditioned mud, worked tool loose and laid down tubing and test tool.
- 4-25-77 Laid down tubing and loaded out test holes.
- Laid down drill collars. Ran $4\frac{1}{2}$ " drill pipe in hole open ended and 4-26-77 pushed packer rubber to bottom at 9394'. Plugged back hole using Halliburton with 220.8 ft3 (120 sacks) of "Light" cement, 1# of mud kill per sack and 0.2% of HR-4. Top of cement at 9100'. Cement in place at 1905 hours. Pulled up the hole to 8900' and set plug #2 with 304.2 ft³ (180 sacks) of "Light" cement, 1# of mud kill per sack and 0.2% of HR-4. Top of cement at 8450'. Cement in place at 1930 hours. Pulled out of hole.
- 4-27-77 Removed blow out preventers and installed well head equipment. Ran drill pipe in the hole and tagged cement at 8438'. Displaced mud from the hole. Laid down drill pipe. Hole flowing muddy water.
- 4-28-77

Laid down drill pipe and connected 2" flow line from hole to pit. Rig released at 1600 hours. Drilling operations completed. • • · · · · · · · · · ·

CORE RECORD

			Weight	Circulating		
Core	Interval		On Bit	Pressure	Feet	Feet
No.	Ft.	RPM	1000#	psi	Cored	Recovered
			<u> </u>			
1	1078' - 1108'	60	15-18	850	30	28
2	1969' - 1999'	50.	16	850	30	25
3	4343' - 4369'	50	15-18	800	26	26
4	4877' - 4907'	40	20	900	30	25
5.	6470' - 6556'	42	20	800	86	88
6	6574' - 6664'	40	20	750	90	89
7	6715' - 6745'	40	20	800	30	27.2
8	6745' - 6775'	40	20	800-850	30	30.7
9	7070' - 7128'	43-40	20	900	58	54
10	7370' - 7422'	40-44	20-22	850-1000	52 ·	51
11	7600' - 7623'	45	20-25	1000	23	22.5
12	7623' - 7625'	42	25	1000	2	2
13	7640' - 7700'	40	20-25	1000	60	59
14	7700' - 7760'	40	25	- 1000	60	59
15	7760' - 7820'	40 .	25	1000	60	60
16	7820' - 7865'	40	25	1000	45	38
17 ^	8215' - 8238'	40	25	750	23	21
18	9375' - 9388'	44	25	1100	13	11
19	9388' - 9394'	36	25	1450	6	6
			•	TOTALS	754 🕻	722.4

BIT_RECORD

Bit <u>No.</u>	Make	Size	Type	Depth Out	Feet Drilled	Rotating Hours	
1	Hughes	17½''	OSC 3A	430'	360'	23 ¹ 2	Retip
2	Grant	26"	Hole Opener	423'	3531	31-3/4	•
3	Security	8 ¹ 2"	S35	1078'	648'	301/2	
4	Security	8 ¹ 2"	S35	1965'	887'	3912	
5	Security	8'2"	S3J	3442'	1443'	404	
6	Security	8 ¹ 2''	S4TGJ	4343'	901'	35-3/4	
7	Security	8 ¹ 2''	S4TGJ		<i>,</i> ,,,	55 57 1	Fill
8	Security	8'2''	M44N	4677'	313'	20-3/4	
9	Grant	12'z"	Hole Opener	2538'	2108'	84½	
10	Grant	12'z"	Hole Opener	3698'	1160'	48-3/4	
10	Grant	122 127	Hole Opener	4162' ···	464'	24	:
12		122"	Hole Opener	4102	515'	37-3/4	
13	Grant	175"	Hole Opener	3286'	2856'	1174	
13	Grant	173	-			` 52	
	Grant		Hole Opener	4156'	870'		,
15	Grant	175"	Hole Opener	4640'	484'	6512	· .
16	Crant	175"	Hole Opener	4677 '	. 37'	7 ¹ 2	•
17	Security	12'4"	S4TJ				Cement
18	Security	8 ¹ 2"	S4TGJ	4877'	198'	14-3/4	
19	Security	8 ¹ 5''	S86F	6133'	1226'	175	
20	Security	8 ¹ 5''	M89F	6470'	337'	46	
6 Rerun	Security	1 -1					Circulate
21	Grant	12'z"	Hole Opener	4715'	38'	3	
22	Grant	12'2"	Hole Opener	5485'	770'	45 ¹ 2	· ·
23	Grant	12'4"	Hole Opener	5621'	136'	241	
24	Grant	12'4''	Hole Opener	5789	168'	19	
25 ·	Grant	12'z"	Hole Opener	6056'	267'	43 ¹ 2	
26	Grant	122"	Hole Opener	6204'	148 '	51	
27	Security	12፟፟፟	Hole Opener	6367'	163'	62¥	
28	Grant	12፟፟ቷ"	Hole Opener	6409 '	42'	21	
29	Security	125"	Hole Opener	6505'	96'	50 ¹ 2	
17 Rerun							Cement
? Rerun		8½"		6574'	15'	4-3/4	& Cement
30	Security	8 ¹ 2"	M4NG	6715	51'	84	
31	Security	8½"	M44L	6948 '	164'	19'2	
32	Security	8½"	M4NJ	7070 '	122'	181	
33	Security	8½"	M89F	7370'	242'	44-3/4	
34	Security	8½''	M84F	7600'	178'	24-3/4	
33 Rerun				7640'	15'	2 ¹ 2	
35	Security	8½"	M84F	8215'	350'	41 ¹ 2	
36	Security	8 ¹ 2"	588F	8621'	383'	45 ¹ 2	
37	Security	8 ¹ 2''	M89TF	8934'	313'	375	
35 Rerun				9291'	357'	46 ¹ 2	
38	Security	8½"	M89F	9375'	. 84'	13-3/4	
39	Security	8 ¹ 2''	HIOOF	9375'	0'		

	Page 14					
			<u>CC</u>	DRE BITS		2
Bit <u>No.</u>	Make	<u>Size</u>	Туре	Depth Out	Feet Drilled	Rotating Hours
1,	Christensen	8 '2''	мс20	1108' 1999' 4369' 4907' 6559' 6664' 6745' 6775' 7128' 7422' 7625'	30' 30' 26' 30' 89' 90' 30' 30' 58' 52' 25'	11½ 5½ 2-3/4 3-3/4 15-3/4 17-3/4 6½ 12½ 21½ 21½ 26-3/4 17
, ,			TOTAL		490'	140-3/4
2	Christensen	8½"	MC23	7865' 8238' 9394'	225' 23' _19'	47 ¹ 2 3 <u>13¹2</u>
			TOTAL		267'	64

DEVIATION SURVEYS

Date	Depth-Ft.	Deviation-Degrees	Date	Depth-Ft.	Deviation-Degrees
11-17-76	128	1/4	12-3-76	2371	1/2
,	260	3/4		2901	3/4
	321	1/2	12-4-76	3149	3/4
11-18-76	397	3/4	· ·	3395	. 3/4
11-26-76	499	3/4	12-5-76	3645	3/4
11-27-76	826	3/4		3900	1
11-28-76	982	3/4	12-6-76	4141	3/4
11-30-76	1196	3/4	12-8-76	4500	1
	1259	1	1-13-77	5171	1
	1339	3/4	1-14-77	5560	1/4
12-1-76	1432	3/4	1-16-77	5968	1/4
	1558	3/4	1-19-77	6375	1/2
	1747	3/4	3-8-77	8215	1
12-2-76	2027	1/2	3-13-77	8934	3/4
	2374	1/2			

	-		<u>, 911, 61</u>					
Run Depth Depth Logged								
Type Log	Date	No.	<u>Driller</u>	Logger	From	<u>To</u>		
Birdwell Logs			• •	• •				
Electric	12-9-76	1	4677 '	4657.5'	416'	4655.5'		
Gamma Ray-Induction	12-9-76	1	4677 '	4657.5"	416'	4652'		
Guard	12-9-76	1	4677 '	4657.5	416'	4651.5'		
Caliper	12-10-76	1	4677 '	4658 '	280'	4654'		
3-D Velocity - 3'	12-10-76	1	4677 '	4658'	100 '	4654		
3-D Velocity - 6'	12-10-76	1	4677 '	4658'	60'	4655'		
Density Borehole Compensated	12-11-76	1	4677 '	4658'	416'	4655'		
Temperature	12-11-76	1	4677 '	4658'	300 '	4658'		
Velocity	12-11-76	1	4677'	4658'	430'	4658'		
Elastic Properties	12-20-76	1	4677'	4658 ^t	430 '	4658'		
Caliper	1-3-77	.1	4677 '	4659'	0'	4649 '		
Neutron Borehole Compensated	1-3-77	1	4677 '	4659'	0'	4654'		
Caliper	2-11-77	2	6505 '	6505 '	4610'	6504 '		
Caliper	3-22-77	3	9394 '	9384'	6400 '	9382'		
Temperature	3-23-77	3	9394	9384'	100'	9384'		
Gamma Ray - Caliper	4-10-77	- 3	9394"	NR	6490 '	8500'		
·								
Schlumberger Logs			. :					
Cement Bond	1-21-77	2	6559'	NR	0'	4678		
Electrical	1-21-77	2	6559'	6566'	4678'	6565		
Compensated Neutron - Formation Density	1-21-77	2	6559'	6566'	4678'	6565'		
Dual Laterolog	1-21-77	2	6559	6567 '	4678'	6553		
Dual Induction - Laterolog	1-21-77	2	6559'	6567 '	4678'	6561'		
Borehole Compensated Sonic	1-21-77	2	6559'	6566'	4678'	6555'		
Continuous Dipmeter	1-22-77	2	6559'	6566'	4677 '	6565"		
Temperature	1-22-77	2	6559'	6567 '	62'	6566'		
Dual Induction - Laterolog	3-22-77	3	9394 '	9396'	6515'	9390'		
Fracture Identification	3-22-77	3	9394 '	9396 '	6512'	9395'		

LOG INDEX SHEET

28

LOG INDEX SHEET

		Run	Depth	Depth	Log	geđ
Type Log	Date	<u>No.</u>	Driller	Logger	From	<u>To</u>
Schlumberger Logs (con	t'd)					•
Cement Quality	3-23-77	3	9394'	NR	4668 '	6527 '
Electrical	3-23-77	3	9394 '	9397 '	6518'	9396'
Dual Laterolog	3-23-77	3	9394 '	9395'	6515 '	9382'
Compensated Neutron - Formation Density	3-23-77	3	9394'	9397 '	6516'	9396'
Borehole Compensated Sonic	3-23-77	3	9394 '	9395	6515'	9384'
Temperature	3-23-77	3	9394'	9396'	0'	9396'

NOTE: Logs furnished by the USGS.

MUD SUMMARY (Wyoming Mud Co.)

Date	Depth	Wt.	Visc.	Yld.	Wtr.	- 11	\$ *
				<u>Pt.</u>	Loss	рH	Solids
11-28-76	1078	8.9	45	5	8.9	9.0	
12- 1-76 4 5 6 7 8 9	1536 3304 3879 4317 4343 4404 4682	9.1 9.2 9.5 9.2 9.4 9.2 9.2	38 35 36 35 36 44 52	10 5 5 5 5 10	10.0 9.8 10.2 10.0 10.4 10.4 9.8	9.0 9.5 10.5 10.5 10.5 10.0 9.5	1.75 2 2 2.1 2.3
Reaming to	124"		•				·· · ·
12-13-76 14 15 16 :7 18 20 21	1270 1543 2042 2493 3102 3465 4282 4477	-9.3 9.2 9.2 9.3 9.4 9.3 9.3	42 39 40 37 40 40 40 40	5 5 10 5 5 5 5 5 5	10.1 9.8 14.0 12.4 9.8 12.4 10.9 12.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0	1.75 1.5 2 1.5 2.2 2.1 2.2 2.3
Reaming to	17±"						
12-22-76 23 24 25 27 28 29 30 31	880 1033 1657 2049 3400 3563 3991 4156 4289	9.3 9.1 9.2 9.3 9.4 9.4 9.5 9.5	42 40 41 42 43 40 40 50	5 10 5 5 5 5 5 5 20	10.4 13.4 12.0 11.8 9.8 12.0 10.6 10.2 8.9	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.4 2.3 2.1 2.3 2.2 2.2 2.3 4 4
1 - 1-77 2 5 11 14 15 16 17 18 19	4579 4640 4677 4870 5543 5717 5884 6119 6267 6386	9.4 9.2 8.8 9.0 9.1 9.0 9.1 9.1 9.1	44 49 55 39 45 55 36 38 38 38 38	5 5 5 5 0 0 5 5 5 5 5 5 5 5 5	8.8 9.0 9.8 10.2 6.4 10.4 18.2 10.6 10.2 11.4	10.0 10.0 10.0 10.0 9.5 10.5 11.0 10.5 10.5	2.3 2.2 2.3 1.8 1.8 4.2 1.5 1.75 2.1 2.1

Mud Summary - 2

Date	<u>Depth</u>	<u>Wt.</u>	<u>Visc.</u>	Yld. Pt.	Wtr. Loss	<u>pH</u>	% Solids
1-20-77 24	6484 6559	9.1 9.2	50 45	10 10	10.6 10.8	10.5 10.0	2.8 3.2
Reaming to	12±"	· · ·					· · ·
1-28-77 29 30	5511 5615 5681	9.1 9.3 9.3	40. 39 38	5 5 5	14.0 10.2 10.0	9.0 10.0 10.5	2.6 2.9 3.0
2- 1-77 2 4 5 6 8 9 10	6011 6078 6199 6268 6311 6413 6439 6471	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	39 34 41 38 40 38 39 43	10 5 5 10 5 10	11.8 12.4 10.8 11.2 11.6 10.8 10.8 10.8	10.5 10.5 10.5 10.5 10.5 10.5 10.5	2.8 1.9 2.1 2.0 2.2 2.2 2.1 2.2
Drilling n	ew hole					r	
2-15-77 16 17 18 20 22 23 24 25 26 27 28	6566 6574 6624 6703 6835 7070 7123 7177 7292 7376 7417 7499	8.7 8.8 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	34 45 41 43 42 45 43 42 36 35 42	5 10 15 10 10 10 5 5 5	16.2 10.4 10.8 11.2 11.4 11.2 11.0 10.8 10.6 20.0 10.8 10.6	10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9
3- 1-77 2 3 4 5 7 8 11 12 13	7621 7623 7648 7703 7778 7985 8157 8583 8675	9.0 9.0 8.8 9.0 8.8 8.8 8.8 8.8 8.7	40 40 41 43 40 40 46 41	5 5 5 10 10 5 15 10	10.8 11.2 11.1 11.2 10.6 11.2 11.4 10.8 11.4	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9

Mud Summary - 3

Date	Depth	<u>Wt.</u>	<u>Visc.</u>	Yld. Pt.	Wtr. Loss	рH	% <u>Solids</u>
3-14-77 15	8476 9125	8.7 8.8	40 40	5 10	11.9 11.0	10.5 9.5	1.8 1.8
16 17 18	9341	9.9	48	5	16.0	9.0	5.0 Barite
19 21	9341 9376	9.9 10.0	48 44	5 10	16.0 14.2	9.0 9.0	5.0 " 5.0 "
•		,		•.	•	• •	
		· · · · · · · · · · · · · · · · · · ·	: - -				
	·						

Geology of test well

The following log tops (formation tops) and lithology were photocopied from the report from Hegna, Kerns, and Traut. The stratigraphic nomenclature from their report and that on table 1 have not been checked for conformance with the nomenclature presently used by the U.S. Geological Survey.

The core-analysis results are from the report furnished by the Core Laboratories, Inc., Denver, Colo.

Table 1.--Core intervals

[Depths are from kelly bushing (2,809 ft above sea level), which is 16 ft above land surface]

	Interval	Cored	Recovered	Townships
Core	(depth in ft)	(ft)	(ft)	Formation
1	1,078-1,108	30	28	Pierre Shale (Bearpaw Shale)
2	1,969-1,999	30	25	Telegraph Creek
3	4,343-4,369	26	- 26	Newcastle Sandstone
4	4,877-4,907	30	25	Lakota Sandstone
5	6,470-6,556	86	88	Minnelusa and Madison (Charles)
6	6,574-6,664	90	89	Madison (Charles and Mission Canyon)
7	6,715-6,745	30	27.2	Madison (Mission Canyon)
8	6,745-6,775	30	30.7	Madison (Mission Canyon)
9	7,070-7,128	58	54	Madison (Mission Canyon)
10	7,370-7,422	52	51	Madison (Lodgepole)
11	7,600-7,623	23	22.5	Madison (Lodgepole)
12	7,623-7,625	2	2	Madison (Lodgepole)
13	7,640-7,700	60	59	Madison and Devonian
14	7,700-7,760	60	59	Devonian (Three Forks-Jefferson)
15	7,760-7,820	60	60	Devonian (Three Forks-Jefferson)
16	7,820-7,865	45	38	Devonian and Silurian (Interlake)
17	8,215-8,238	23	21	Red River
18	9,375-9,388	13	11	Precambrian
19	9,388-9,394	6	6	Precambrian
•	Totals	754	722.4	

LOG TOPS

(Formation Tops)

;

۰. .

1.

ferre de la

.

÷,

٠,

i

·				e e ga e e	·
4. 1.1	Bearpaw Shale	•			420
r,	Judith River	· .			1168'
	Clagget				1284'
	Eagle			· · · ·	1672'
	Shannon Sandstone	Mambar		·	•
		nember		,	1840'
	Telegraph Creek				1852 *
	Niobrara				2764'
	Greenhorn				3406'
	Mowry				4081
1997 - 19	Newcastle	A. 84 1			4282
	Skull Creek				4388'
	Colorado Silt		•		4556.
	Logger TD				4656'
	Driller TD			1	4682
	Strap				4677'
	Dakota				4680'
	JURASSIC	• .	-		. 4000
					1
	Morrison				4926 '
	Swift				5095'
	Spearfish	•	÷.		5692 '
	Minnekahta			· · ·	60241
	Opeche				6034 '
	Minnelusa			. ···	. 60941
	MISSISSIPPIAN	•			•
	Madison				6484 *
	Logger TD			•	6567'
· · · ·	Driller TD	•			6559'
	M-12				6640'
. • · · • . •	M-8.5	•		· :	6742'
	-				7182
	Lodgepole		-		· · · · · ·
	M-3			· .	7374'
	DEVONIAN				
	Three Forks-Jeffer	rson			7662'
	SILURIAN				-0141
	Interlake		-		7846'
	ORDOVICIAN				
<u>,</u>	Stony Mountain-Gur		er		. 7977'
	Penitentiary Shale	e Member		* · · ·	8050
	Red River	**		÷ • .	8106'
	Roughlock Sandstor	ne			8558'
e i se si	Icebox Shale		• .	· · · ·	· 8623'
	Winnipeg Sandstone	2			8667'
	CAMBRIAN	-	:		
	Deadwood				8676'
		.*	÷		8876'
•	Gros Ventre Shale				
	Flathead Sandstone		•	- · · · · ·	9224'
	PRECAMBRIAN				9300
· . ·	Total Depth				93941

10

. .

34

....

• : .

11 . A

.

۶۰۰ ۰

LITHOLOGY

0- 190	Claystone, light gray, soft w/some carbonaceous interbeds, lo- cally sandy, light gray, bentonite common
190- 230	Sandstone, light gray, fine grained, subangular, calcareous,
	abundant clay matrix
230- 250	Siltstone, light gray, clay infilled
250- 270	Sandstone, light gray, fine/medium grained; subangular, friable,
	mostly unconsolidated
270- 290	Siltstone, light gray w/abundant clay matrix
290- 310	Claystone, light gray w/some dark gray carbonaceous material
310- 350	Sandstone, light gray, very fine grained/fine grained, clay
J.C	infilled, friable, subangular, calcareous, fair/good effective
	porosity
350- 360	Bentonite, light gray, silty
360- 400	Sandstone, light gray, fine grained, subangular, carbonaceous,
	calcareous, abundant clay matrix
400- 420	Claystone, light gray, very bentonitic, silty
420- 500	No samples
500- 700	Shale, medium/light gray, calcareous, silty, locally bentonitic
700- 900	Shale, medium/light gray, calcareous w/occasional shell frag-
	ment, locally very bentonitic, trace mica
900- 960 ·	Shale, medium/light gray, calcareous w/abundant light gray
	bentonite
960-1000	Shale, medium/dark gray w/shell fragments, bentonitic
1000-1078	Shale, medium gray, very bentonitic, slightly calcareous, some mica and shell material
1078-1108	Core #1 - recovered 28 ¹
1078-1108	Shale, medium/dark gray, very slight/noncalcareous, fissile
	("poker chip"), locally fossiliferous, some pyrite replace-
	ment of fossils, conchoidal fracture on break, no apparent
	vertical fracture
1110-1140	No samples
1140-1180	Shale, medium/dark gray, occasional shell fragment
1180-1210	Shale, brownish gray, soft w/some calcareous shell fragments
1210-1220	Siltstone, light brown, very argillaceous, soft, noncalcareous
1220-1230	Shale, medium/dark gray
1230-1250	Siltstone and shale, light brownish gray, soft
1250-1270	Shale, medium gray, bentonitic
1270-1350	Shale, light brownish gray/brown, trace siltstone
1350-1360	Shale, brown/tan w/trace siltstone
1360-1370	Shale, medium gray
1370-1380	Shale, brownish gray
1380-1400	Siltstone, light gray, very argillaceous, clay infilled matrix

1400-1480 1480-1500 1500-1540 1540-1560 1560-1570	Shale, gray and brownish gray, very bentonitic, soft Siltstone, medium gray, very argillaceous, very bentonitic Siltstone and shale, medium gray, soft, slightly calcareous Shale, gray, bentonitic Siltstone, medium/light gray, calcareous, very argillaceous
1570-1580	Shale, medium gray, soft, bentonitic
1580-1590	Shale, brown, bentonitit, carbonaceous
1590-1680	Shale, medium gray, soft; bentonitic w/few inoceramus prisms and shells
1680-1700	Shale and siltstone, medium/dark gray, soft, abundant clay infill
1700-1710	Shale, medium gray w/white bentonite
1710-1720	Shale, dark gray, limy
1720-1820	Shale, medium/dark gray, soft w/white bentonite, calcareous
1820-1830	Sandstone, gray, mushy, very argillaceous, very fine grained
1830-1850	Siltstone, dark gray, argillaceous w/abundant white bentonite
1850-1880	Siltstone and shale, dark gray w/white bentonite
1880-1965	Shale as above w/trace sandstone, light gray, very fine grained, glauconitic, soft, mushy, argillaceous, SLM correction down 4'
1969-1999	Core #2 - recovered 25'
	Shale, dark gray, soft, mushy, bentonitić, very low fissility, vertical fracture @ 1969-1970', locally silty, sandy @ 1973', 1988', 1992', and 1994', some shell debris @ 1991' w/pyrite in hairline fractures
2000-2190	Shale, dark gray, locally silty w/white bentonite, trace shell fragments, trace pyrite
2190-2370	Shale, medium gray, soft, bentonitic
2370-2410	Shale as above, very bentonitic
2410-2490	Shale, medium gray, soft, calcareous, silty, trace pyrite
2490-2630	Shale, medium gray, soft w/white bentonite, silty, calcareous
2630-2730	Shale, dark gray, soft, splintery, calcareous, occasional shell fragment
2730-2770	Shale, medium gray, soft, bentonitic
NIOBRARA	
2770-3000	Shale, medium/dark gray w/tan, calcareous specks, very soft
3000-3300	Shale, dark gray, bentonitic, soft
3300-3350	Siltstone, light gray w/shale, medium gray
3350-3400	Shale, medium gray, silty
000000	

GREENHORN

14

~ -)

3400-3490	Shale as above w/white chalky limestone, occasional tan lime- stone
3490-3530	Shale, medium/dark gray, soft, splintery
3530-3700	Shale as above, bentonitic
3700-3720	Sandstone, gray, fine grained, subangular, very calcareous, very argillaceous, friable, very low effective porosity
3720-3770	Siltstone, dark gray, calcareous, argillaceous w/shale, splintery, dark gray .
3770-3920	Shale, dark gray, soft, splintery, locally bentonitic, some siltstone interbeds
3920-3950	Sandstone, medium gray, very fine grained, very argillaceous, white clay infill, very low effective porosity, slightly calcareous, trace glauconite
3950-4070	Shale, and siltstone, medium gray, trace glauconite, some interbedded sandstone, light gray, very fine grained, low porosity
4070-4090	Shale, dark gray, soft w/light gray bentonite, few free coarse quartz grains
4090-4260	Shale, dark gray/brownish gray, chunky, siliceous, some silt- stone laminae, occasional interbedded light gray bentonite
4260-4280	Siltstone, gray, very argillaceous, slightly calcareous w/some white bentonite w/brown mica
4280-4320	Shale, dark gray, soft, bentonitic, silty

NEWCASTLE SANDSTONE

4343

4330 Circulating Sandstone, light gray, very fine grained, glauconitic, friable, low porosity

Circulating Sandstone, white/light tan, very fine grained/fine grained, hard, subangular, very siliceous, noncalcareous, trace white chert, trace pyrite, low porosity, no fluorescence, no cut

4343-4369 Core #3 - recovered 26'

4343 -4344¹ Sandstone, light gray, very fine grained, subangular, friable, noncalcareous, some white clay infill, alternating w/thin bedded dark gray shale, fair porosity

4344½-4349½ Sandstone, light gray, fine grained/very fine grained, subangular, trace mica, noncalcareous, bleeding water, good porosity, few isolated shale partings

43491-4351 Sandstone as above w/increasing shale, very thin bedded 4351-43551 As above, light gray, very fine grained w/shale partings, low/ good porosity, some white clay infill, moncalcareous, bleeding water

4355½ 4355½-4361	2 inch section of dark gray shale Sandstone, medium gray, very fine grained, argillaceous, mica common, very thin varved bedding, "poker chip" fracture, low
4361 -4364 1	porosity Sandstone, light gray, fine grained, subangular, noncalcareous,
4364 1 -4366 1	few isolated shale partings, good porosity, bleeding water Sandstone and shale, alternating in varved bedding, sandstone,
4366 1 -4367	light gray, noncalcareous, clay infill, mica common, low porosity Sandstone, light gray, very fine grained, argillaceous, fair/
4367 -4369	low porosity, bleeding water Sandstone and shale interbedded, bedding more distorted than above thin beds, fair/low porosity in sandstone
4369-4390	Sandstone, light gray, very fine grained, white clay infill w/
4390-4410	thin shale laminae, low porosity Sandstone, light gray/white, fine grained, subangular, friable,
4410-4560	abundant white clay infill, low porosity, mica common Shale, dark gray, soft, bentonitic, splintery, calcareous
COLORADO SILT	
4560-4600	Shale as above w/siltstone laminae, light gray, noncalcareous,
4600-4660 4660-4680	trace pyrite Shale, dark gray, splintery w/siltstone, gray, bentonitic Siltstone, dark gray, hard, very argillaceous, calcareous w/ shale as above
4682	Circulating Siltstone, medium gray, hard, calcareous, occasional grading to very fine grained sandstone, very low porosity, argilla- ceous
4677-4678	Core #3A (Junk Sub)
4677-4678	Shale, dark gray w/interbedded siltstone, light/medium gray, abundant sedimentary flow and slump structures, thin bedded
4678-4690	Shale, dark gray w/siltstone, light gray, mushy, bentonitic
INYAN KARA	
4690-4720	Sandstone, light gray, medium grained, white clay matrix w/ siltstone as above, trace orange chert, few free coarse quartz grains (sample mostly cement)
4720-4760	Siltstone/sandstone, light gray, very fine grained, argilla- ceous, mushy
4760-4820	Sandstone, clear/white, very fine grained/coarse, subangular, mostly unconsolidated, good porosity

16

ł

Lithology - 5	17
4820-4870	Sandstone, white/clear, very fine grained/medium grained, sili- ceous, subangular, friable, fair/good porosity
4870	Circulating Sandstone as above w/trace orange chert
4877-4907	Core #4 - recovered 25'
4877 -4886 1	Sandstone, medium gray, very fine grained, hard, brittle, sili- ceous, noncalcareous, subangular, trace mica, thin bed, low porosity w/sandstone laminae and interbeds, light gray, fine
4886±-4888	grained/medium grained, subangular Sandstone, white/light gray, fine grained/coarse, subangular, abundant white clay matrix, some low grade coal, low porosity, bleeding water
4888 -4890	Sandstone, medium gray, very fine grained, hard, low porosity, siliceous
4890 -4902	Sandstone, white/clear, coarse, subangular, clean, fair/good sort, friable/unconsolidated, soft, excellent porosity, bleed- ing water
4902-1920	No samples
4920-4930	Sandstone, light gray/white, coarse, subangular, mostly uncon- solidated, some frosted grains
MORRISON	
4930-5020	Shale, greenish gray, waxy, soft, trace maroon, brown and yel-
5020-5050	Sandstone, light gray/greenish gray/yellow gray, very fine grained/fine grained, subangular, fair/good porosity, few free
5050-5060 5060-5100	coarse quartz grains Shale, yellow, maroon, gray, green, purple, trace pyrite, soft Shale as above w/sandstone, white, very fine grained/fine grained, clay infill, fair/low porosity
SWIFT	
5100-5150 5150-5170	Shale, green/greenish gray, mottled, red, soft, subwaxy Sandstone, white, fine grained, subangular, slightly calcareous, fair/low porosity, trace glauconite
5170-5250	Shale, greenish gray, mottled, maroon/purple, trace pyrite, some brown/yellow shale
5250-5350	Shale, gray/greenish gray, mottled, maroon, waxy, locally inter- bedded w/siltstone and sandstone, very fine grained, light gray, glauconitic
5350-5400	Shale grav/light grav/greenish grav very splintery Subwaxy

*

۴.

5350-5400 Shale, gray/light gray/greenish gray, very splintery, subwaxy

39

.

5400-5510	Shale, greenish gray, mottled, maroon, subwaxy, soft, splintery w/some sandstone, very fine grained, white, low porosity, glau-
5510-5520	conitic, calcareous, trace limestone, gray, dense
5510-5530	Limestone, light gray/white, chalky, locally sandy
5530-5570	Shale, light greenish gray, subwaxy, soft w/some limestone, tan, light gray, argillaceous, chalky, low porosity
5570-5590	Shale, greenish gray, mottled, yellow, splintery, very calcare-
5590-56 20	Shale as above, mottled, maroon
5620-5690	Limestone, tan, earthy, low porosity w/gray shale as above
5690-5750	Shale/siltstone, red, very calcareous, trace white gypsum w/tan limestone, dense and gray green shale
5750-5790	Very poor sample, mostly green shale cavings, trace red/maroon
	shale
5790-5880	Shale, maroon, silty w/some white anhydrite, some white chalky limestone
5880-5930	Shale, maroon/brick red w/some gypsum interbedded
5930-5990	Shale, maroon/brick red, silty, some interbedded white anhydrite
	and light gray limestone
5990-6020	Shale/siltstone, brick red w/some interbedded white dolomitic anhydrite
6020-6030	Limestone, light gray/tan, chalky, argillaceous, pelletoidal
6030-6040	Limestone as above w/red shale
6040-6050	Dolomite, light gray/white, chalky/sucrosic, low porosity
6050-6080	Shale, siltstone, brick red w/white anhydrite, few free coarse quartz grains
6080-6090	Sandstone, brick red, very fine grained/coarse, calcareous, low porosity, trace dolomite, pink
6090-6110	Limestone, white/light gray, dolomitic, earthy, low porosity, trace white sandstone, very fine grained, subangular, anhydritic
MINNELUSA	
6110-6140	Dolomite, light gray, sandy/sucrosic, low porosity, hard
6140-6150	Sandstone, white, fine grained/very fine grained, subangular, abundant white clay infill, low porosity
6150-6170	Dolomite, light gray/pink, dense, low parasity
-6170-6190	Sandstone, white, fine grained, very dolomitic, some white
	anhydrite, low/fair porosity, some white clay infill, friable,
	trace white chert
6190-6210	Sandstone, white, fine grained w/white dolomite interbedded and abundant white chert
6210-6250	Dolomite, white/light gray, sandy, hard w/abundant white chert
6250-6300	Dolomite, light gray/white, finely crystalline, dense, low
	porosity
6300-6350	Dolomite, light gray/pink, low porosity w/some lavender shale, trace clear anhydrite
-	trace crear aniforree

6350-6390	Dolomite, pink/lavender, argillaceous, dense w/lavender/maroon shale
6390-6400	As above w/trace anhydrite, white/clear
6400-6420	Siltstone/shale, orange/bright red, dolomitic, mottled, yellow
	w/lavender shale and dolomite, pink/white, argillaceous
6420-6430	Shale, brick red and lavender w/dolomite, coarse crystalline,
	trace sandstone, white/orange, very fine grained, fair porosity
Chao Chro	trace sandstone, white/orange, very time grained, fair porosity
6430-6450	Dolomite, white, very sandy/coarse crystalline w/some brick
	red siltstone, low porosity
6450-6460	Sandstone, very fine grained and siltstone, brick red, dolo-
	mitic, argillaceous w/lavender dolomitic shale, mottled green
,	locally
6470	Circulating
	Shale, orange and lavender, dolomitic
	share, orange and ravender, dorontite
then tout	
6470-6556	Core #5 - recovered 88'
•	
	(correct to log depths 6479-6565')
	(
(1.70-61.75	Clausters trick and automassifiers and 11 laterias alread
6470-6475	Claystone, brick red, subwaxy w/few small dolomite clasts
MADISON	
6475-6481	Linespee light grow hand some basels because
••	Limestone, light gray, hard, some breccia texture
6481-6491	Limestone, dolomitic, breccia, red argillaceous matrix w/light
••	
6481-6491	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular
••	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings,
6481-6491	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts
6481-6491	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings,
6481-6491	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts
6481-6491 6491-6510	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix
6481-6491	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and
6481-6491 6491-6510 6510-6518	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling
6481-6491 6491-6510	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and
6481-6491 6491-6510 6510-6518	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling
6481-6491 6491-6510 6510-6518 6518-6524	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy
6481-6491 6491-6510 6510-6518	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale
6481-6491 6491-6510 6510-6518 6518-6524	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532'
6481-6491 6491-6510 6510-6518 6518-6524	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra-
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533 6533-6546	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and 6544'; stylolite @ 6538-6540', 6542-6543', and 6545-6546'
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533 6533-6546 6546-6552	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and 6544'; stylolite @ 6538-6540', 6542-6543', and 6545-6546' Limestone, light gray/reddish gray, argillaceous, some breccia
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533 6533-6546	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and 6544'; stylolite @ 6538-6540', 6542-6543', and 6545-6546' Limestone, light gray/reddish gray, argillaceous, some breccia
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533 6533-6546 6546-6552	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and 6544'; stylolite @ 6538-6540', 6542-6543', and 6545-6546' Limestone, light gray/reddish gray, argillaceous, some breccia Limestone, light gray/reddish gray, argillaceous, some breccia
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533 6533-6546 6546-6552	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and 6544'; stylolite @ 6538-6540', 6542-6543', and 6545-6546' Limestone, light gray/reddish gray, argillaceous, some breccia Limestone, light gray, argillaceous, hard, dense, mottled, maroon/green, pelletoidal grainstone w/clear spar cement w/
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533 6533-6546 6546-6552	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and 6544'; stylolite @ 6538-6540', 6542-6543', and 6545-6546' Limestone, light gray/reddish gray, argillaceous, some breccia Limestone, light gray, argillaceous, hard, dense, mottled, maroon/green, pelletoidal grainstone w/clear spar cement w/ some clear crystalline anhydrite, vertical fracture @
6481-6491 6491-6510 6510-6518 6518-6524 6524-6533 6533-6546 6546-6552	Limestone, dolomitic, breccia, red argillaceous matrix w/light gray clasts, very angular Limestone, light gray, hard, dense w/some red shale partings, stylolite @ 6491-6495, breccia w/very angular limestone clasts @ 6496-6497', 6499', and 6501-6510' w/maroon/lavender argilla- ceous matrix Claystone, lavender/red, dolomitic w/white anhydrite nodes and bore filling Limestone, breccia, gray green and maroon argillaceous matrix, subwaxy Limestone, light gray, micrite w/gray green mottled red shale partings, hard, dense, some breccia texture, very stylolitic @ 6524-6527', and 6530-6532' Limestone, light gray/reddish gray, hard, dense, some intra- clast and pellet grainstone in spar cement, some green shale partings, vertical fracture @ 6537-6539', 6540-6542', and 6544'; stylolite @ 6538-6540', 6542-6543', and 6545-6546' Limestone, light gray/reddish gray, argillaceous, some breccia Limestone, light gray, argillaceous, hard, dense, mottled, maroon/green, pelletoidal grainstone w/clear spar cement w/

6556-6558

slightly calcareous, medium hard drill samples 6559-6560 Limestone, white-buff-cream, microcrystalline, no visible porosity 6560-6570 Much cement, some limestone as above 6574 Circulating 90 min. - limestone as above, much cement, trace dolomite, offwhite, microcrystalline, no visible porosity, trace anhydrite, white 6574-6664 Core #6 - cut and recovered 89' 6574 -6575 Anhydrite, white w/intercalations limestone, light gray 6575 -65761 Dolomite, tan, microcrystalline, dense 65761-65771 Anhydrite, white, slightly dolomitic 6577¹-6580 3/4 Dolomite, brown-tan, microcrystalline, thin clay laminae up to ¿" thick, broken and fractured @ 6580½-6580½', slightly bleeding water, low-fair porosity 6580 3/4-65822 Dolomite, brown-tan, dense, some anhydrite laminae 65822-65832 Dolomitic limestone, tan w/anhydrite laminae, vertical fractures, broken Dolomitic limestone, tan w/thin laminae dark gray clay 65831-6584 6584 -6589 Dolomitic limestone, tan, few anhydrite lentils, low-fair porosity, few clay laminae, fracture @ 6585', wet 6589 -6590 Dolomite, gray-brown w/few blebs dolomite as above 6590 Stylolitic surface 6590 -6591 Dolomite, gray-brown Dolomite as above w/lavender laminae gray clay 6591. -6592 Dolomitic limestone, gray-brown, micritic, vertical fracture 6592 -6593Ł 65931-6593 3/4 Dolomitic limestone, gray-brown w/angular clasts, light brown Dolomitic limestone, buff-gray-brown, micritic, dense, high 6593 3/4-6595 angle fracture 6595 -6600 Limestone, gray-medium gray, cryptocrystalline to sublithographic, hard, vertical fracture 6600 -6608 Limestone, dolomitic, gray-brown, sucrosic-microcrystalline, few pitted, erosional ?, surfaces w/black shale laminae, bleeding water @ 6602-6619' 6608 -6612 Limestone as above, fracture Dolomitic limestone, tan-buff, microcrystalline-sucrosic, anhy-6612 -6615 drite bed 1" @ 6613 3/4' Dolomitic limestone as above, vertical fractures 6615 -6616 Dolomite, light brown, microcrystalline-sucrosic w/crystals and 6616 -66191 nodules, anhydritic, clear 66191 Stylolitic

Shale, maroon w/some gray and lavender, mottled, subwaxy, very

•	
6619 1 -6629	Limestone, brown, microcrystalline w/some coarser calcite crystals, dense, few fractures w/some polished fracture fill
6629 -6632	Limestone, brown, argillaceous w/laminae dark gray dolomitic shales, fossiliferous crinoid columnars and brachiopods
6632 -6639	Limestone, dark gray-brown, very argillaceous, fossiliferous brachiopods and crinoids
6639 -6646	Limestone, gray-brown, microcrystalline w/aragonite fossilif- erous casts
6646 -6654	Limestone as above, fractured, vertical to high angle, stylo- litic 0 6651' and 6652 $\frac{1}{2}$ '
6654 -6663	Limestone, gray-brown, microcrystalline, coral or sponge fossil @ 6662'
	l' missing due to broken zone loss
6660-6700	Limestone, buff-light brown, micritic to microcrystalline, dense, some pieces w/a few small pellets inbedded in micritic matrix, very low porosity
6700-6715	Limestone as above w/trace anhydrite, rose colored
6715-6745	Core #7 - cut 30' and recovered 27.2'
6715 -6718	Limestone, dolomitic, buff, micritic, crystals brown dolomite, few anhydrite nodules
6718 -6719	Shale, light gray-medium gray, dolomitic w/clasts and nodules of anhydrite, white
6719 -6720	Anhydrite, white, angular chunks w/shale matrix, medium gray, dolomitic
6720 -6723.5	Anhydrite, light gray-white, chicken wire pattern w/few inter- beds dolomitic shale, medium gray
6723.5-6725.3	Anhydrite, white w/erosional surfaces, interbedded w/shale, medium gray, dolomitic
6725.3-6725.4	Shale, dark gray, dolomitic
6725.4-6726	Dolomite, gray-brown, microcrystalline w/crystals brown, dolo- mitic
6726 -6729.5	Shale, dark gray, dolomitic, subfissile
6729.5-6731.5	Anhydrite, light gray-white, chicken wire
6731.5-6733.5	Limestone, dolomitic, light brown, microcrystalline-sucrosic,
	abundant anhydrite intercalations, contorted bedded, bleeding water slightly, low porosity
6733.5-6735	Dolomite, gray-brown, very argillaceous, fractured
6735 -6736	Shale, dark gray, calcareous
6736 -6736.5	Clay, gray, calcareous, soft, and shale, dolomitic
6736.5-6739	Anhydrite, white
6739 -6742.2	Anhydrite, white-gray, abundant shale intercalations

6745-6775	Core #8 -	recovered 30.7'
-----------	-----------	-----------------

6745 -6745.3	Anhydrite, white, pure w/few inclusions dolomite, buff, dense
6745.3-6756	Anhydrite, light gray, pure, hard
6756 - 6761	Anhydrite, light gray, chicken wire
6761 -6762	Anhydrite, white, fracture
6762 -6763.3	Anhydrite, gray w/shale mottling
6763.3-6766.4	Anhydrite, light gray
6766.4-6766.7	Dolomite, light brown, sucrosic, laminated finely w/thin black
	varves
6766.7-6768	Anhydrite, light gray w/angular to subround clasts of white
	anhydrite
6768 - 6770	Anhydrite, light gray-white w/few dolomite laminations, buff
6770 -6771. 4	Dolomite, light brown, sucrosic, anhydritic
6771.4-6772.2	Anhydrite, medium gray w/irregular inclusions of white anhydrite
6772.2-6775.7	Anhydrite, light gray, hard
	drill samples
	9' downhole correction
	SLM - 6784' = 6775'
2/700 (700	
6780-6790	Anhydrite, white-light gray w/limestone, cream, mostly sub-
• • • •	lithographic to microcrystalline, few pieces of clastic to
6790-6820	pelletal limestone, well cemented, very low porosity Limestone, light brown-cream, mostly microcrystalline, 20%
6/90-0020	is finely fragmental, a few chips pelletal limestone, well
	cemented, very low porosity, 10% anhydrite, light gray-white
6820-6830	Limestone as above w/dolomite, white-blue-gray, cryptocrystal-
0020-0050	line, dense
6830-6840	Limestone and dolomite as above, trace anhydrite, white, sucrosic
6840-6850	Dolomite, blue-gray-white, cryptocrystalline, limestone, cream-
0040-0090	brown, fragmental to microcrystalline, trace pellets and oolites,
	low-fair porosity
6850-6880	Limestone, cream-brown, dolomitic, finely crystalline-sucrosic,
	fair porosity, light yellow fluorescence, very weak cut w/dolo-
	mitic anhydrite, white-blue-gray
6880-6900	Limestone, cream-brown, slightly dolomitic, finely crystalline-
	sucrosic, poor-fair ? porosity w/dolomitic anhydrite, white-
	blue-gray, trace anhydrite, white
6900-6940	Limestone, light brown, buff, cream, micritic to sucrosic,
	trace porosity, dull mineral fluorescence, trace anhydrite,
	blue-gray
6940-6950	Limestone, light brown-buff, 50% micrite, 50% finely fragmental,
	trace indistinct fossil fragments, well cemented, poor porosity
6950-6960	Limestone as above, some sucrosic limestone, light brown w/
	calcite clusters, some fair porosity, dull mineral fluorescence
	• • • • • • • • • • • • • • • • • • • •

6960-6980	Limestone, light brown, micritic to fragmental, well cemented,
	poor porosity, dull fluorescence, no cut
6980-7000	Limestone as above, trace anhydrite, white
7000-7010	Limestone, light brown-tan, mostly micritic to finely crystal- line, trace vuggy porosity
7010-7030	Limestone as above w/5% black asphaltic staining in argillaceous zones, dull cut
7030-7050	Limestone, cream-buff, micritic to finely crystalline, very little porosity, trace anhydrite, white-rose
7050-7070	Limestone as above w/anhydrite, white-light gray, shaly
7070-7128	Core #9 - recovered 54'
7070 -7078	Anhydrite, white/light gray, chicken wire w/some tan dolomitic limestone chalky micrite interbedded matrix
7078 -7093 1	Limestone, light gray/light brown, hard, dense w/some anhydrite nodes, algal pisolites, pellets common in spar, stylolite @ 7079½', 7082', and 7090½', sealed vertical fracture @ 7081-7082'
7093 1 -7099	Dolomite, brown, fair intergranular porosity, bleeding water, stylolite @ 7099'
7099 -7105	Limestone, brownish gray, dense, oncolites, algal pellets, some secondary anhydrite infill, abundant secondary spar, low porosity, hard
7105 - 7109	Dolomite, brown, fair intergranular porosity, hard, bleeding water
7109 -7115	Limestone, light gray, pisolitic, hard, dense, secondary spar, sealed vertical fracture @ 7109-7110'
7115 -7121	Dolomite, brown, good intergranular porosity, few isolated white anhydrite nodes, bleeding water
7121 -7124	Limestone, gray, algal pisolites and pellets grainstone, hard, dense, very low porosity due to spar infill, stylolite @ 7121½', sealed vertical fracture @ 7122'
7128-7150	Limestone, tan, locally dolomitic w/pisolites and pellets, spar Infill, low/fair porosity
7150-7180	Limestone as above w/fair/good pinpoint vuggy porosity
LODGEPOLE	
7180-7200	Dolomite, dark gray, argillaceous, sucrosic, low porosity
7200-7260	Dolomite as above, fair intergranular porosity
7260-/290	Limestone, dark gray, dolomitic, argillaceous, low porosity, locally chalky
7290-7310	Limestone as above, becoming very chalky
7310-7340	Dolomite, gray/dark gray, sucrosic, low/fair porosity.
7340-7360	Limestone, gray, chalky, pellets, some interbedded dark gray sucrosic dolomite

7360-7370	Limestone, dark gray as above w/abundant pellets and pisolites, low porosity
7370-7422	Core #10 - recovered 51'
7370 -7374	Dolomite, dark gray, very argillaceous w/some white crystalline calcite nodes up to 2" x 2", low porosity, also some white anhydrite
7374 -7380	Limestone, dark gray, argillaceous, very fossiliferous (mostly shell casts and molds), hard, low porosity, sealed vertical fractures @ 7374 7376', and 7377-73781'
7380 -7381	Dolomite, dark gray, argillaceous, low porosity
7381 -7385 1	Limestone, dark gray, locally dolomitic, low porosity, fossil- iferous, sealed vertical fracture @ 7382-7384'
73851-7388	Dolomite, dark gray, medium/coarse crystalline, poor/fair intergranular porosity w/white anhydrite nodes @ 7386½'
7388 -7389 1	Limestone, dark gray, argillaceous, hard, dense, low porosity
73891-73911	Dolomite, dark gray, very argillaceous w/spar calcite inter- bedded, hard, low porosity, sealed vertical fracture @
	7389-7391'
7391 1 -7399 1	Limestone, dark gray, very argillaceous, very dolomitic w/ some dark gray shale interbeds, burrowed contorted bedding <code>@</code>
	7396-7398', carbonaceous material and stylolite @ base, sealed vertical fracture @ 7393-7395', low porosity
7399 1 -7400	Dolomite, dark gray, low porosity, very argillaceous w/white anhydrite, vertical fracture
7400 -7401	Limestone, dark gray, dolomitic, argillaceous
7401 -7405	Dolomite, brownish gray, sucrosic, stylolitic, poor/fair intergranular porosity, bleeding water
7405 -7421	Limestone, light gray/tan, algal pellets, some secondary cal-
/-10/ / 121	cite infill, shell casts and molds common, very stylolitic, hard, low porosity, algal pellet grainstone @ 7412-7415'
	w/fair porosity, sealed vertical fractures @ 7412-7414',
,	7416-7419', and 7420-7421', white anhydrite @ 7412'
7422-7480	Limestone, tan/light gray, pellets and pisolites in spar matrix, chalky, low porosity
7480-7490	No sample
7490-7500	Limestone, tan/gray, chalky, mostly micrite w/some pellets, low porosity
7500-7530	Dolomite, tan, sucrosic, fair porosity w/limestone, light gray/dark gray/tan, pellets and pisolites
7530-7560	Limestone, dark gray/tan w/pellets, chalky, fossil shell molds and casts, trace pink dolomite, low porosity
7560-7590	Limestone, tan/gray, subchalky, mostly micrite, low porosity

7590-7600	Limestone as above w/trace orange, red, yellow, dark gray and green calcareous shale, trace clear anhydrite, trace pink dolomite
7600-7623	Core #11 - recovered 221
7600-7604	Limestone, gray/brownish gray micrite, hard, dense w/some mottled light gray dolomite, secondary calcite rhomb crystals in mini-fractures and fossil replacement, bitumen in stylolite,
7604-7610	low porosity, crinoid stems Limestone, dark brownish gray, abundant crinoid debris, secondary clear calcite, some possible anhydrite nodes, vertical fractures @ 7604-7605', and 7607-7609'; few dark gray/ black argillaceous laminae, low porosity, some horizontal frac-
7610-7613 7613-7616	tures @ 7604', and 7608' Limestone, dark gray, very argillaceous, very fine bedded (varve), hard, low porosity, sealed vertical fracture Limestone, dark gray, dolomitic, crinoid stems, low porosity
7616-7622	Limestone, dark gray/brownish gray, hard w/some crinoid debris, fossil micrite, some secondary white and Fe stain, calcite, milky and tan chert common, horizontal fracture @ 7619', vertical fractures @ 7616-7618', and 7619-7622'
7623-7625	Core #12 - recovered 2'
7623-7625	Limestone, dark gray/dark brownish gray, slightly dolomitic, very argillaceous, abundant gray/milky chert
7625-7640	Limestone, gray, slightly dolomitic, trace glauconite, some red, green and purple shale, some white and pink calcite, gray chert common, trace bitumen, low porosi
7640-7700	Core #13 - recovered 59'
7640-7648	Dolomite, light tannish gray, dense, some fair vuggy porosity (low effective permeability) w/secondary white anhydrite, and white calcite rhombs infilling vugs, locally sucrosic, chert and stylolite @ 7647-7648', sealed vertical fracture @ 7646-7647'
7648-7659	Dolomite, light brownish gray, mottled w/light tan sucrosic dolomite w/anhydrite and calcite infill, low porosity, mottled, probably due to burrowing, stylolitic, low porosity
DEVONIAN	
7659-7673	Marlstone, red, mottled, gray and green, few floating chert grains, coarse, subangular/subround, trace glauconite

7673-7686 - 7686-7688 7688-7692	Dolomite, light reddish gray, mottled, red, hard, red shale, anhydrite and calcite infilling, sealed vertical fracture € 7673-768D', low porosity, thin bed, marly @ base Dolomite, red, mottled, gray and green, shaly, stylolitic Dolomite, brownish gray w/white anhydrite nodes, vertical fracture @ 7691-7693', low porosity
7 692-7699	Dolomite, marly, red, mottled, gray w/interbeds of sandstone, coarse, fair sort, well rounded in dolomite matrix, low porosity
7700-7760	Core #14 - recovered 59'
7700-7704	Dolomite, brownish gray, very argillaceous, some calcite in- fill, thin bed, stylolitic, vertical fracture @ 7701-7702', low porosity
7704-7709	Dolomite, light gray w/large white anhydrite nodes (probable burrow infill), stylolitic, low porosity
7709-7712	Dolomite, gray, very argillaceous, thin bed, vertical fracture,
7712-7716	Shale, dark gray, hard, locally dolomitic w/some interbedded white anhydrite
7 716-7726	Limestone, dolomitic, gray/dark gray, micrite, dense, low porosity, vertical fractures @ 7718-7720', and 7723-7724'
7726-7730	Dolomite, brownish gray w/white/gray anhydrite, low porosity
7730-7732	Shale, dark gray, hard, very calcareous w/interbedded white anhydrite
7732-7735	Limestone, gray, dense w/dark gray shale laminae and interbeds, low porosity
7735-7742	Dolomite, dark gray/brownish gray, very argillaceous, vertical fracture @ 7735-7737', fair intergranular porosity @ 7738- 7740'
77 42 -7 759	Shale and dolomite, gray/greenish gray w/interbedded white anhydrite, vertical fracture @ 7742-7743'
7760-7820	Core #15 - recovered 60'
776 0-7766	Shale, greenish gray, hard, dolomitic, vertical fracture @ 7762-7764', disconformity @ 7766' w/interclasts
7766-7778	Dolomite, gray, hard, argillaceous w/some interbedded anhy- drite
7778-7793	Dolomite, light gray w/dark gray shale laminae and interbeds, thin bed, bleeding water @ 7778-7779', and 7790-7791', low/ fair porosity
7793-7798	Dolomite, gray, argillaceous, bleeding water, fair inter- granular porosity
7798-7801	Dolomite, gray, argillaceous, low porosity
7801-7804	Dolomite, brownish gray, shattered interval, medium crystal- line, fair intergranular porosity, bleeding water

7804-7815	Dolomite, brownish gray, fair intergranular porosity, bleeding water, anhydrite nodes @ 78ì3'
7815-7817	Shale, gray/greenish gray, slightly dolomitic, hard
7817-7820	Dolomite, light gray, finely crystalline, slightly argillaceous, low porosity, bleeding water, some secondary white anhydrite
	infil)
7820-7865	Core #16 - recovered 38'
7820-7830	Dolomite, light gray/tan, argillaceous, large secondary white anhydrite node @ 7823', bleeding water @ 7823', stylolite @
7830-7834	7821', low porosity Shale, greenish gray, very dolomitic, hard w/some interbedded anhydrite
7834-7846	Dolomite, light gray, hard, argillaceous, low porosity w/some greenish gray shale interbeds, factures @ 7841-7842'
7846-7847	Shale, greenish gray, dolomitic, hard
SILURIAN INTER	LAKE
7847-7849	Dolomite, cream w/gray shale laminae, low porosity, trace
	anhydrite, trace pyrite, fractured, few dark gray angular dolomite clasts
7849-7858	Dolomite, cream, microcrystalline, chalky, few thin stylolites, low porosity, fractured @ 7855-7858'
7865-7880	Dolomite, white/cream, chalky, low porosity
7880-7910	No samples
7 910-7950 7950-7970	Dolomite, white, low porosity, chalky, cryptocrystalline Dolomite, white, low porosity w/trace light greenish gray subwaxy shale interbedded
STONY MOUNTAIN	- GUNTON MEMBER
7975	Circulating
	Dolomite, white w/green subwaxy shale, medium soft, splintery, dolomitic
7975-7990	Dolomite, white, cryptocrystalline w/trace green shale, low sporosity
7990-8020	Dolomite as above w/some gray, green and maroon dolomitic shale,
8020-8050	trace glauconite Dolomite, gray, very argillaceous, low porosity w/dark gray
	shale
STONY MOUNTAIN	SHALE

8050-8100	Shale and dolomite, light gray/greenish gray, trac- shale
RED RIVER	
8100-8110	Limestone, gray, argillaceous, low porosity
8110	Circulating Shale, gray/greenish gray, calcareous w/some brown/tan lime- stone, low porosity
8110-8120 8120-8150	Shale, very calcareous, light greenish gray, trace pyrite Limestone, brown/tan, shell casts, pellets, some hairline fractures filled w/clear calcite, low porosity
8150-8170	Dolomite, tan, sucrosic, finely crystalline, fair/good inter- granular porosity, some yellow fluorescence, no cut
8170-8210	Limestone, tan/brown, micrite w/few pellets, hard, low porosity, locally chalky w/trace pyrite
8210-8215	Dolomite, tan, excellent intercrystalline porosity w/some cal- cite infill
8215-8238	Core #17 - recovered 21*
8215 -82171	Dolomite, cream/light gray, cryptocrystalline w/few gray shale laminae, small disconnected vugs to ½"
8217 1 -8220	Dolomite, gray, sucrosic, fair intercrystalline porosity w/dark gray argillaceous laminae
8220 -8230	Dolomite as above, low porosity, micrite
8230 -8232	Dolomite, limy, gray, micrite w/gray shale laminae, low porosity, shattered interval, some fractures appear open
8232 -8236	Dolomite, gray, low porosity, vertical fractures
8238-8240	Very poor samples - nearly all cavings
8240-8270	Limestone, brown/tan, cryptocrystalline, dolomitic locally, low/fair porosity w/trace dark gray argillaceous limestone
8270-8320	Dolomite, tan, sucrosic, some dead oil stain, yellow fluores- cence, no cut, fair/good intercrystalline porosity, finely crystalline
8320-8370	Limestone, buff/brown, micrite w/gray argillaceous laminae, low porosity
8370-05430	Dolomite and limestone, brown/buff, finely crystalline, poor- fair porosity
8430-8450	Limestone, tan/brown w/some dolomite as above
8450-8460	No sample
8460-8560	Limestone, brown/gray/tan, pellets, calcite infill, low porosity

8560-8570 Limestone as above w/gray green subwaxy shale, pyritic

ROUGHLOCK SANDSTONE

8570-8620 Sandstone, white, very fine grained, subangular/well rounded, friable, fair/good porosity, siliceous, pyritic, some interbedded green shale

ICEBOX SHALE

8620-8668 Shale, green/gray green, splintery, subwaxy, noncalcareous

WINNIPEG SANDSTONE

8668

Circulating Shale as above w/sandstone, white, very fine grained, subangular/well rounded, pyritic, well sorted, hard, slightly calcareous, low porosity, very siliceous (secondary)

DEADWOOD

8670-8700	Limestone, tan/light gray, very chalky, fragmental w/inter- bedded gray green shale, splintery/blocky, subwaxy, low poros-
	ity
8700-8720	Sandstone, white/cream, very fine grained, very calcareous, subrounded, clay infill, glauconitic limestone in part
8720-8790	Limestone, white/cream, sandy, glauconitic, pyritic, fossil- iferous, locally chalky, locally translucent, low porosity
8790-880 0	Limestone, white/gray, sandy, glauconitic w/interbedded green gray shale, low porosity
8800-8840	Limestone as above w/few free well rounded, coarse quartz grains, some shale as above interbedded, low porosity
8840-8880	Limestone, white, chalky, argillaceous, glauconitic, low porosity
8880-8930	Limestone as above w/gray green shale interbedded, waxy, splintery, low porosity
8930-8990	Shale, green/gray green, splintery, waxy w/some light gray limestone, chalky, glauconitic
8990-9010	Shale, green, splintery, trace maroon shale w/some yellow limestone
9010-9100	Shale, green/gray green, mottled, brown, subwaxy w/few inter- beds limestone, white, sandy, glauconitic, chalky, low poros- ity
9100-9150	Shale, gray green, slightly calcareous, some subwaxy, some limestone as above, some sandstone, light gray, very fine grained, glauconitic ?, tite, no fluorescence or cut, mica- ceous

9150-9240	Shale, gray-green, slightly calcareous, subwaxy in part, trace
	limestone as above, some interbedded sandstone, silty, light gray, very fine grained, round, micaceous, glauconitic 7,
	very low porosity, no fluorescence

30

lag time incorrect

FLATHEAD

. . . .

9240-9250	As above, trace sandstone, white-clear, coarse to fine w/ large, free, round grains, poor sorting, subround, abundant secondary quartz cement, poor-fair porosity
9 250-9260	As above, increasing sandstone, clear-white, fine-coarse grained, poor sorting, subangular-subround, abundant secondary quartz cement, some large free quartz grains, poor porosity, no fluorescence
9260-9270	Some sandstone as above, some w/red-brown flattened hematite ?, pellets, and iron stained zones
9270-9280	trip for bit followed by water flow - samples lost
9280-9300	Abundant green shale cavings ?, some sandstone, white-clear, slightly calcareous, fine-medium grained, few coarse grains, subangular, some clear quartz pebbles, quartz cement, fair porosity, trace calcareous pyritic sandstone
PRECAMBRIAN	

9300-9320 Shale as above w/sandstone, white-clear-rusty, medium-coarse grained w/granite pebbles ?, subangular-angular, trace pink feldspar, abundant quartz cement, fair ? porosity

9320-9340 No recovery of samples

9340-9350 Sandstone, coarse, clear quartz and granite, clear quartz, feldspar, pink and biotite
 9350-9375 Quartz, clear-white, feldspars, salmon-pink, and biotite, Precambrian granite

9375-9388 Core #18 - cut 13' and recovered 11'

	Granite, pinkish-salmon, numerous horizontal fractures, core came out in 1-4" slabs
9380 -93821	Granite, coarse feldspar phenocrysts, fairly solid
93821-9386	Granite, vertical fractures

9388-9394 Core #19 - recovered 6'

9388-9394 Granite, biotite and hornblende abundant, horizontal fractures, poker chips 1"-3" thick

53

2.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Сотрал	, UNITED	STATES GI	EOLOGICA	L_SURV	EY_Formation_			Page1	of 10
Well		I NO. 2						File	RP-2-5292
Field	WILDCAT	•			Drilling Flu	ud	·	Date Report	2-4-77
County.		St	ate_MONT	ANA	•		•	Ao2lysts	RM
•					Remarks				
		•		C	ORE ANALYS				
SAMPLE NUMBER	DEPTH FEET		PERMEABILITY MILLIDARCYS		RESIDUAL SATURATION Grain		Grain		
		HORIZONTAL	VERTICAL	PERCENT	S VOLUME % PORE	TOTAL WATER	Density	REMARKS	
		(K	7)		<u>.</u>		· · · · · · · · · · · · · · · · · · ·		
1 2	1315.0 1347.0	47 32	6.5	22.4 21.2			2.65	NEWCASTLE SANDST	ONE
3	1319.0		2.0 M		ORE ANALYSIS			5. . .	
5 6 7	4356.0 1359.0 1361.0	53 0.28 129	3 0.14	21.1 9.1 22.3			2.65		
-8 9	4364.0	21	3.3	19.0 19.3					

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF REFULTS

NOTE: (*) REPER TO ATTACHED LETTER (*) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED. These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations of opinions expressed represent the best judgment of Core Laboratories. Inc., (a) errors and omitted was explicitly but Core Laboratories, inc., and its officers and employees, assume no responsibility and make no warranty or representations, as to use problements of core persuon, or profilableness of any oil, gas or other mineral well or and in connection with which such report is used or read upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

2

Compan	y UNITED	STATES G	EOLOGICA	L SURV	EY_Formation		Page2	_ of
Vell	MADISO	N NO. 2	<u></u>		Cores		File	RP-2-5292
Field	WILDCA	.T			Drilling Fluid		Date Report_	3-23-77
County_	•		ate_MONT	ANA	Elevation		Analysts	RM
Location					Remarks			
	· ·	***	•••		DRE ANALYSIS RE		· · · · · · · · · · · · · · · · · · ·	
SAMPLE	DEPTH	PERMEABILITY MILLIDARCYS		POROSITY RESIDUAL SATURATION		Grain		
NUMBER	FEET	HORIZONTAL	VERTICAL	PEACENT	OIL TOTAL WATER	Density	, REMARI	KB, .
^		(K	A)	*	· ·	*	<u></u>	
10	4881.0					2.67	DAKOTA SANDSTONE	(LAKOTA
21	1890.0	751	58	16.2		2.82	SANDSTONE)	
12	4893.0	3400	223	23.3		2.63	-	
13	4896.0	4600	2300	25.0		2003		•
ĩí	4899.0	1000	21.00	24.1		2.63		
	00-00.5				WHOLE CORE ANALYSI			
16	6471.1					2.76	MINNELUSA	
17	6474.4					2.81	•	
18	6475.0					2.78		
19	6476.8		<0.01			2.71		
20	6480.5	•				2.72		
21	6483.0					2.68		
22	6485.5			3.7		2.71	MADISON (CHARLES)	1
23	6490.4	0.06		4.0		2.67	• • • • • • •	
24	6491.0				•	2.70		
25	6494.5					2.82		
26	6498.9			1.2		2.72		•
27	6501.0					2.79		
28	6507.6			0.6		2.70		
29	6508.7			2.2	*	2.71		
30	6510.2					2.84		
31 32	6511.9				4 4	2.77		
32	6514.9		,	8.9		2.82		
33 34	6515.4	0.02		17.1		2.82		
34	6516.8	0.02		11.3		2.81		
35 36 37	6520.4					2.73		
36	6526.5	⊲0.01	<0.01	0.4		2.70		
37	6531.5					2.70		
38	6533.3			_` _		2.70		
39	6539.4			0_8		2.70		
40	6545.4					2.71		
ц Lo	6547.5	0.02		1.2		2.70	•	
42 43	6549.5			1.1		2.70		
43	6551.4	~ ~~				2.72		
44 1.5	6554.0	0.02		22.4		2.83		
15	6556.2			8.8		2.80		

NOTE

(*) REFER TO ATTACHED LETTER. (1) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED. (2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS.

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions expected); but Core Laboratories, Inc., and its officers and employees, assume no responsibility and make no warranty or representations, as to the productively, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

Compan	y UNITED S	TATES GE	DLOGICAL	SURVE:	YFormation		Pa	ge	of
Well	MADISON	NO. 2			Cores		Fi	le	RP-2-5292
Field	WILDCAT_	•	••		Drilling Fluid	·	D	ite Report	4-11-77
County.	<u> </u>	St	ateMON	TANA	Elevation			nalysts	RM
Location					Remarks	-	·	•••	
				00	RE ANALYSIS R	FSUTTS	,		
					es in perentbeses refer to fo		•		
BAMPLE	DEPTH	PERMEA	ARCYS	POROBITY	RESIDUAL SATURATION	Grain			
NUNDER	FEET	HORIZONTAL	VERTICAL	PERCENT	VOLUME % PORE 00 POR		•	REMARKI	•
l		(K)	1		i pensicy			
46	6574.7	· · · ·	L'	•	· · · ·		MOTCON	(CHARLES)	
40 47	6575 .3	0.01		7.4	,	2.89	MADISON	(CHARLES)	
48	6576.4	0.01		3.6		2.87			
49	6577.5		24 1	6.6		2.84			
50	6578.7	0.03		4.6			·		
ร์ว	6579.2	0.22	0.34	11.8		2,80			
52	6583.6	0.44	0.03	15.4		2.80			
53	6585.8		, -			2.77			:
54 55 56	6586-87	_	•		E CORE ANALYSIS				
55	6587.7	0.15		12.8		2.81			
56	6591.5					2.77			
57	6594.5	<0.01		2.6			· · ·		
58 59 -	6602.7	0.13		9.5		2.81			22
60 ·	6604.5 6607.6	0.53 0.60		13.3	, •	0.00			
61	6610.3	1.0	·· 0.63	15.8 18.8		2.80 2.79			. •
62	6614.5	5.0	5.9	24.0		2.80	•	:	
63	6616-17.	5	2.7		E CORE ANALYSIS	2.00	•		
64	6620.0			4.2		2.76	_		
65	6622.1			2.7	. <i>.</i>	2.73			•
66	6624.4	<0.01		2.4		2.71			:
67	6624.6	<0.01		5.5		2.63	•		
68	6626.5			2.6		2.71			
69 70	6629 . 3 6632 . 8			2.3	· .	2.70			
'n	6635.8			1.3		2.69 2.69			
72	6637.7			1.4		2.70	• •		
73	6640.5	<0.01		2.7	•	2.69	MADTSON	(MISSION	CANYON)
74 -	6644.5			2.2	,		MID LOON	(1.20020.1	
75	6644.8	<0.01	<0.01	4.3		2.69			
76	6646.5	<0.01	<0.01	4.4	A	2.68			• •
77	6649.5	0.01		2.3	a de la composición de				
78 70	6651.9	<0.01	<0.01	2.3	·	2.68		·	
· 79	665 3.9	0.01	<0.01	2.4		-		`	
80 81	6654 .2 6655 .6	0.02 ⊲0.01	0.01	2.8			.,		•
82	6657.7	0.32		3.0					
83	6657.9	0.01		9.4 4.7	· ·				
~	000107	0.01		444 (

~

۰.

...

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS.

÷ 241

...

.

NOTE: (2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULT: (3) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED. These analyses, opinions or interpretations are based on observations and materials supplied by the elient to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (a) errors and emissions exp-cepted); but Core Laboratories, inc., and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operation, or profilableness of any 00, gas of other mineral well or and in connection with which such report is used or relied upon.

.

CL-011-8

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS, TEXAS

٠.

an an is a

Company	UNITED S	TATES GE	OLOGICAL	SURVE	YFormation			Page4_	of
Well	MADISON	NO, 2		.	Cores			File	RP-2-5292
Field	WILDCAT				Drilling Flu	ud		Date Report	4-11-77
County_			ate MON	TANA	Elevation		·····	Analyste	RM
Location					Remarks				
					ORE ANALYS				
BAMPLE	DEPTH	PERMEA		POROSITY	RESIDUAL SATURATIO	N	Grain		
NUMBER	FEET	MORIZONTAL	VERTICAL	PERCENT	OIL SO VOLUME SO PORE	YOTAL WATER	Density	REMAR	
•		(K	^r)				· · · · · · · · · · · · · · · · · · ·		
84 85 86 87	6658.8 6659.6 6660.3 6662.0	√0.01 0.01 0.01 0.01	1.6*	4.1 4.2 3.7 3.5	,		2.68	MADISON (MISSION	CANYON)

***VERTICAL FRACTURE IN PERMEABILITY PLUG**

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS.

NOTE: (*) REFER TO ATTACHED LETTER. (1) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED. These analyses, opinions or interpretations are based on observations and materials supplied by the elient to whom, and for whome exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (all errors and omissions ex-cepted); but Core Laboratories, inc., and its officers and employees, assume no responsibility and make no warranty or representations, as in the productivity, proper operation, or profilableness of any oil, gas or other mineral well or sand in counsection with which sum report is used or relief them.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

· ·	· ·				DALLAS. JEAAB	·				
Compa	y_UTT	ED STATES GE	DIOGIO	AL SU	WEY Formation		P.		of	
Well_	MADIS	SON NO. 2	<u> </u>		Core		F	ile	RP-2-529	2
Field	WILDO	CAT			Drilling Fluid		D	ate Report_	5-25-77	
County		State	MON	TANA	Elevation		A		RG	·
Locatio					Remarks					
200100	· · ···	· · ·			DRE ANALYSIS RI		<u></u>			
		PERMEABI		(1)2-	res in perentbeses refer to foo	(note remerks)				
BAMPLE NUMBER	DEPTH -	MILLIDAR	CYB	POROSITY	RESIDUAL SATURATION OIL YOTAL WATER	Grain Density		REMAR	58 .,	•
J			TRATICAL		% VOLUME % PORE % PORE	Juensity	<u></u>			······································
	· .	(K ^A)	*** *	a 248		•••••••			• • • • • • •	
88	6715.0			1.6		2.70	MADISON	(MISSION	CANYON)	
89	6718.8	یں اور			· · · ·	2.83				
90	6720.8			0.4	•	2.95				
91	6723.8					2.96			·	
92	6725.7					2.89			· · · ·	2 S
93	6727.3	2.0				2.79				
94	6729.0	6.9	7.1	15.9		2.80		•		
95	6729.5					2.92				
96	6731.4					2.95				
97	6731.4-	33.9	WHU		RE ANALYSIS					
98 98	6734.1			2.9						
99	6735.5			0.7			•			
100. 101	6736.8 6738.0			0.6						
102	6745.1			0.3 0.8		2.67				
102	6747.0	0.01		0.3		2.01				
104	6748.7	0.01		0.4						
105	6752.4			0.7						
106	6756.0			•••		2.87				
107	6760.2			0.3		2.86				
103	6762.1	0.01		2.3						
109	6763.2	0.01		2.2		2.85				
110	6766.6	0.22		3.3						
111	6766.9			5.5						
112	6769.9					2.73				
113	6771.4			6.0						
111í 115	6772.0 6773.1			1.3		2.90				
116	7070.3			0.6		2.94				
117	7071.7			0.5			-			
118	7077.0			2.6						. *
119	7077.9			2.8						
120	7080.6	0.01		2.0						
121	7080.9	0.01	0.01							
122	7085.1	0.01		4.4						
123	7087.4	0.01		3.9						

NOTE

the second s

NOTE
(*) REFER TO ATTACHED LETTER
(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS.
(*) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED.
(*) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED.
(*) These analyses, opinions or interpretations are based on observations and materials supplied by the elient to whom, and for whow exclusive and end/(dental)
(*) the end of t 1 and a second . .

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

. •

Compan	y UNITED	STATES G	EDLOGIC.	AL SUR	VEY Formation		Page6	of
Well	MADISO	N NO. 2			Cores		File	RP-2-5292
Field	WILDCA	<u>T</u>			Drilling Fluid		Date Report	5-25-77
County_		Sta	te MON	TANA	Elevation		Analysts	RG
Location	· ·				Remarks		* ***	
		• •			ORE ANALYSIS res in parentheses refer to		· · ·	······································
BAMPLE	DEPTH	PERMEAL	BILITY	POROSITY	RESIDUAL SATURATION	Grain		
NUMBER	FEET	HORIZONTAL	VERTICAL	PERCENT	OIL TOT	tra llìon citul	REMARK	•
		(K _A)	•			<u></u>	
154	7087.7	0.01		4.4	,		MADISON (MISSION	CANYON)
125 126	7089.6 7092.7	0.02 0.01		4.0				·
127	7094.1	13	9.2	17.1				
128	7094.7	-		7.8				
129	7097.0			18.0			,	
130	7097.2	• • •		16.3				•
111 132	7098.5	0.19		17.4				
132	7101.5 7103.4			4.8 2.5				
134	7105.8	0.20		9.5				
135	7106.0	1.8	0.65	13.2				
136	7108.2	0.03	1.1	5.2		2.78		
137	7110.4	0.01		2.9				
138	7115.1	0.09		4.2				
139	7117.2	17	18	18.7		2.83		
140	7119-20		WE		RE ANALYSIS			
141	7120.2	13		14.7	,			
142 143	7120.8	3.2		п.3				
145	7370 . 7 7370 . 9	0,02		7.7 1.1			MADISON (LODGEPOLE	E)
145	7371.9			3.7				
146	7373.0	0.03		8.0		2.78		
147	7377.5			1.5				
148	7378.6	0.02		4.8				
149	7378.8	0.01		2.8				
150	7382.4			2.7			• •	
151	7382.7	0.01		1.7				• *
152 153	7384.6	¥	*	*		* *		
154	7386.4 7386.8	0.02		6.2		2.81		
155	7396.0	0.02		0.2		2.73		
156	7397.3	· ·		18.2		2013		
157	7399.9	0.09		8.6				

#UNSUITABLE FOR ANALYSIS

.

CL-811-8

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS.

ļ

NOTE: (*) REFER TO ATTACHED LETTER. (2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULT (1) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED. These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and condidential use, this report is made. The interpretations are pressed repressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions) ex-cepted); but Core Laboratories, inc., and its officers and employees, assume no responsibility and make no warranty or repressions, as to the productivity, proper operation, or profilableness of any oil, gas or other mineral well or sand in connection with which such report is used or rejied upon.

Compan	UNITED S	STATES GI	EDIOGIC	L_SUR	EY_Formation		Page7	of
Veli	MADISON	NO. 2	-		Cores		File	RP-2-5292
ield	WILDCAT				Drilling Fluid		Date Report	5-25-77
	-	¢.,	Ate MOI	ITANA			Analysts	RG
ounty.	• • •	30	ate					
ocation) <u> </u>		- <u> </u>		Remarks		· · · · · · · · · · · · · · · · · · ·	
					ORE ANALYSIS RI			
AMPLE	DEPTH	PERMEA	BILITY	POROSITY	RESIDUAL	Grain		_
UMPER	FFET . D	HORIZONTAL	VERTICAL	PERCENT	VOLUME % PORE % PORE	Density	REMARN	
		(K)	1	70 POR	<u></u>		
		ž	L ⁻					
158	7402.0			5.8			MADISON (LODGEPC	LE)
159	7402-03			WHOLE	CORE ANALYSIS			
160	7406.6					2.74		
161	7408.7	0.01	0.01	1.9				
162	7409.5	¥	¥	#		*		
163	761.2	0.01		3.6				
164	7413.7	0,13		7.0		•		
165	7111.8			4.3				
166	7601.7			2.4		2.70		. ·
167	7602.1			1.4				
168	7603.8	0.01		0.3		· • •		
169	7605.1			• •		2.71		
170	7610.0	0.03		0.3	,			
171	7611.6			1.4			·	
172	7615.8			0.6				
L73	7618.0			1.0				
174	7621.6			4.1				
175	7623.3	0.01		1.4			· .	•
176	7640.7	0.04		8.8		0 70		
177	7641.7			• •		2.79		
178 179	7642 .3 7643.0			2.2 1.3				
180	7643.2-44	7		·	CORE ANALYSIS			
181	7645.0	• 1		1.6	CTCTTNIK TIM			
182	7646.4	0.01		4.5	•			
183	7651.1	0.01		3.3			•	
84	7653.1	440L		6.0				
185	7654.9	0.08		5.5				
86	7658.0	0.01		1.5				
.87	7658.6			1.2				
188	7659.7	0.01		9.2				
.89	7660.8	0.01		5.5				
.90	7661.8	0.01		5.6				
91	7662.4	-		1.3			DEVONIAN (THREE	FORKS -
92	7665.5	0.01		5.2			JEFFERSON)	
93	7666.1					2.74		

***UNSUITABLE FOR ANALYSIS**

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS.

NOTE: (*) REFER TO ATTACHED LETTER. (1) INCOMPLETE CORE RECOVERY—INTERPRETATION RESERVED. These snalyse, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whom exclusive and confidential use, this report is made. The interpretations or opinions entresend represent the best juncment of Core Laboratories. Inc. (all errors and gailstors en-cepted); but Core Laboratories. Inc. and its officers and employee, ascume no reponsibility and make no warranty or representiations as in the produc "Lying, proper operation, or profilablements of any oil, gas or other mineral well or and in connection with which such report is used or relied view.

CORE LABORATORIES. INC. Petroleum Reservoir Engineering DALLAS. TEXAS

*

S. 2

. 197 L

Well Field	MADISON				Cores	File
seid	WILDCAT					
	MILLICAL		1001	TANTA -	Drilling Fluid	
County	- 	Sta	steNON	TANA	Elevation	Analysta RG
ocatio	n				Remarks	·
					DRE ANALYSIS RESULTS res in pairentbeses refer to footnote remarks)	· ·
SAMPLE	DEPTH	PERMEA	BILITY	POROSITY	RESIDUAL SATURATION Grain	
UMBER	FEET	NORIZONTAL	VERTICAL	PERCENT	% VOLUME % PORE % PORE DERSITY	REMARKS
		(K)			
			•			· <u>-</u>
194	7668.0			7.0	~	DEVONIAN (THREE FORKS -
195	7670.2	0.03		8.6		JEFFERSON)
196	7672.2	0.16		10.9		
197	7673.5			3.1		
198	7674.0				2.82	
199	7575.6				2.82	
200	7679.0	0.01		3.2	· · · ·	· · · · ·
201	7682.1			4.5		· · · · · · · · · · · · · · · · · · ·
202	7685.8	• 0.55		3.7		·
203	7688.4	0.01		3.2	,	
204	7689 .6			3.1		
205	7691.4			2.8		
206	7691.8			5.7	۳.	
207	7693.8	0.01	0.01	6.0	• •	
208	7696.0			-	2.72	
209	7697.7	0,02	-	6.8	· · · -	
210	7698.6			2.3		
211	7700.1			0.7		
21.2	7701.7			3.4		
213	7704.3	0.36		6.0		
214 –	7706.2	0.01		6.0		
215 -	7709.0	0.13	0.16	11.5	2,81	
<u>n6</u>	7709.3			11.2		
217	7709.5			8.4		·
<u>n8</u>	7710.4	0.02		5.0		•
29	7712.1	1.3		8.3	*	
220	7713.0	·		•	2.66	· · · · ·
21	7714.2				2.85	
222	7714.8			8.5		· ·
23	7717.6			0.9		
24	7717.9	0.01	0.01	1.6	•	·
25	7721.9			4.6		•
26	7722.7	0.01		1.3		
27	7726.9	0.02	0.02	10.6	2,80	
28	7727.5	1.9	6	5.2		
29	7728.7			2.4		
30	7730.0			2.7		

NOTE: 1°) REFER TO ATTACHED LETTER. (3) INCOMPLETE CORE RECOVERY—INTERPRETATION RESERVED.

These analysis, opinions or interpretations are based on observations and materials supplied by the elient in whom, and for whom exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (all errors and emissions expressed); but Core Laboratories, inc., and its officers and emissions expressed representations, and make no warranty or representations, as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

ъ.

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS

. .

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS. TEXAS

Compan	•	STATES GE	ULUGICAL	SUKVE	YFormation		Page9	of
7el1	MADISON	NO 2			Cores		File	RP-2-5292
ield	WILDCAT	·			Drilling Fluid		Date Report	5-25-77
oun ty -		St	ate MON	TANA	Elevation		Analysts	RG
.ocation	·				Remarks			
				CC (Figu	DRE ANALYSIS R	ESULTS (note remerks)		
AMPLE	DEPTH	PERMEA	BILITY	POROSITY	RESIDUAL SATURATION	Grain		
UNDER	FEET	HORIZONTAL	VERTICAL	PERCENT	OIL TOTAL WATER	Density	RENORN	-
· · · · ·	••••••	(K	,)			<u></u>		
231	7730.5					2.65	DEVONIAN (THREE	Forks -
232	7731.5			0.7			JEFFERSON)	
233 234	7737.4 7738.5	0.16		3.7 6.8				
235	7739.6	0.10		h-0				
236	7740.5	0,02		3.2				
237	7742.1			3.6		2.84		
238	7743.6	. 0.10		6.0				
239	7744.6			5.1				
240 271	7746.9 7747.9	* 0.01	¥	* 5.3		*		
242	7749.5	15%		5.2			•	
243	7751.9	L)#1		0.9				
244	7753.4	*	*	*		*		
245	7754.0	-		1.0				· .
246	7758.5					2.79		· .
247	7759.1	0.01		0.8				
248	7765.1			4.4				
249	7766.2	0,06		5.2				
250	7768.6			3.5				
251	7772.8			1.1		2,90		
252 253	7775 . 2 7777 . 8	0.01		9.2 6.6				• •
254 254	7778.3	0.36	0.34				1	
255	7780.9	0.01	50,54	8.1				
256	7782.0	0.01		0.6				•
257	7785.8	0.09	0.02	10.9				
258	7786.3	0.02	0.02			2.81		
259	7790.8	1.3	0.54			2.82		-
260	7791.5			6.0			,	
261 262	7795.0	33	16 26	21.3		2.79		
262 263	7796.6 7797.9	71 5.3	21 0.07	22.3		2.80 2.78		
	112(47	2+2	0.01			£+10		

#UNSUITABLE FOR ANALYSIS

M - SAMPLE MOUNTED IN SEALING WAX

NOTE

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF REGULTS.

(*) REFER TO ATTACHED LETTER. (1) INCOMPLETE CORE RECOVERY—INTERPRETATION RESERVED. These malyses, opinions or interpretations are bared on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations are bared on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions are explicit) but Core Laboratories, inc., and its officers and employees, essume no responsibility and make no warranty or representations, as to the productivity, proper operation, or profilableness of any oil, gas or other mineral well or and in connection with which mark report is used or relied used.

CORE LABORATORIES, INC. Petroleum Reservoir Eugineering DALLAS. TEXAS

Compar	ay	STATES C		nn onu	EI_Formation		Page10	_ of
Vell	MADISON	<u>NO. 2</u>			Cores		File	RP-2-5292
	WILDCAT	۱ 	·	· · · · ·	Drilling Fluid		Date Report_	6-24-77
ounty.		S	MON	TANA	Elevation	•	Analysta	RM
ocation					Remarks			•. ·
	<u> </u>	:		C	ORE ANALYSIS	PECITIT'S	· · · · · · · · · · · · · · · · · · ·	······································
	· • •	*	· · · ·		vies in parentheses refer to			
AMPLE	DEPTH	PERME	ABILITY	POROSITI	RESIDUAL	Grain	•	
UMBER	FEET	HORIZONTAL	VERTICAL	PERCENT	OIL	TEN Density	. REMAR	K 8
<u>_</u>		(K		<u> </u>	170	PORE		
			A.				•	
264 -	7800.9	0,10		6.4				
265	7807.3	_ <u>1</u> 1	22	10.4		2.80	,	
266 († 267 :	7808.6-09.		11.5	WHOLE	CORE ANALYSIS	2.82		
267	7810.0 7810.4	170 3.8	143 1.7	24.3 13.4	• • .	2.02		
269 ::.	7811.1	0.06		10.9		2+17		· · · · ·
270	7612.3	3.7	4.8	14.5	$ _{\mathcal{T}} = \sum_{i=1}^{n} _{\mathcal{T}}$	2.85		
271	7814.7	1.5	2.3	11.6				• •
272	7818.3	0.71	0.92	10.1		2.82		,
273	7822.0	0.01		7.1				
274	7824.2	0.07		8.4		2.71		i -
275	7827.5	4.1	2.3	24.0		•		
276	7829.4	0.03		8.בנ				
277	7835.8	.0.11	0.01	14.2				
278	7836.8	0.02		9.0				
279	7837.5	,		9.4				
280	7842.5	31	0.37	10.7				
281	7844.1	• •		1.7				
282	7847.5	8.6		16.6		a 04	SILURIAN (INTER	lake)
283 284	7819.8	0.04		7.4		2.85		
285	7851.9 7854.2	0.03 0.06		6.8 6.6		•		
286	8217.5	. 0.00		14.7				
287	8217.7	5.3	4.6	21.9			RED RIVER	
288	8219.0	1.8	40V	12.7				
289	8220.2	135	128	23.8	· .	2.81		
290	8222.7	33	n	21.7	•	2.81		
291	8224.2	n	33	22.3				
292	8227.7	134	<u>112</u>	28.1		2.81		
293	8234.0	167	89	28.7		2.82		

VF - VERTICAL FRACTURE

NOTE:

REPER TO ATTACHED LETTER
 INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED.

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF REBULTS.

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories. Inc. (all errors and omissions excepted); but Core Laboratories, inc., and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operation, or profitableness of any all, gas or other mineral well or aand in connection with which such report is used or resid upon.

CORE LABORATORIES, INC. Petroleum Reservoir Engincering DALLAS. TEXAS

Comp	any_UNITED S	STATES GEO	DIOGICAL	SURV	EY_Formation_				Page1	oí <u>1</u>
Well_	MADISON	NO. 2			Cores			<u></u>	File	RP-4-3946
Field_	WILDCAT			·	Drilling Flu	id	· ·	······································	Date Report	6-29-77
Count	·Y	Stat	<u>MONTAN</u>	A	Elevation			<u> </u>	Analysts	KB
	ion	<u>.</u>		- <u>-</u>	Remarks	WHO	DLE CORE	ANALYSIS	· · ·	•
	· .	• .	• •		ORE ANALYS					
SAMPLI		PERMEAB MILLIDAR		DROSITY	RESIDUAL SATURATIO	N .	VERT.	Crain		
NUMBE		MAX.		ERCENT	VOLUME % PORE	TOTAL WATER % PORC		Grain Density	REMARK	· •
	• • • • •					· .				
15 1 54 6 63 6 97 6 140 1 159 1 180 1	4351.5-53.5 4900.0-00.5 6586.0-87.0 6616.0-17.5 6731.4-33.9 7119.0-20.0 7402.0-03.0 7643.2-44.7 7808.6-09.7	1.6 54 0.16 38 1677 3.6 1.8 56 0.14	1.4 53 #0.08 37 13h1 3.1 1.8 55 0.08	24.8 26.4 15.0 24.5 24.0		52.3 * 29.3 63.5 39.9 68.2 * 12.9 *	0.06 9.8 0.01 22 291 0.31 0.14 12 <0.01	2.84 2.88 2.83 2.88 2.68 2.88 2.86 2.86 2.68 2.87	MINNELUS, MADISON (MADISON (MADISON (MADISON (MADISON (MADISON ((CHARLES) (CHARLES) (MISSION CANYON) (MISSION CANYON) (LODGEPOLE) (LODGEPOLE) (THREE FORKS-

*SAMPLE DRIED OUT

#HORIZONTAL FRACTURE

NOTE

(2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESULTS.

۰.

(*) REFER TO ATTACHED LETTER (2) OFF LOCATION ANALYSES-NO INTERPRETATION OF RESUL (1) INCOMPLETE CORE RECOVERY-INTERPRETATION RESERVED These analyses, opinions or introretations are based on observations and materials supplied by the elient to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best hudgment of Core Laboratories, Inc. (a) is officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, project operation, or prolubleness of any oil, gas or other mineral well or send in connection with which such report is used or read upon:

Hydrologic testing

Seventeen conventional drill-stem tests and packer-swabbing tests were made in the open hole (table 2). Thirteen of these tests give clues to pressure heads of water in the intervals tested, but in the other four tests pressure heads were not obtained because of tool malfunction, ruptured packers, or bypass around lower packers. Also, numerical values of pressure heads in 6 of the 13 tests are questionable because of tool malfunction, very low permeability, or bypass around lower packers. Flowing water was obtained during seven of the tests, but the rates of flow from two of them are not representative of the zone tested because of bypass around lower packers.

Intervals for testing with packers were selected after preliminary interpretation of geophysical logs and examination of cores. Primary considerations were the presence of interstitial and (or) fracture porosity, suitable hole diameter, and a representation of each of the major rock types and formations penetrated in the hole. The intervals tested (6,593-9,394 ft below Kelly bushing) covered approximately 60 percent of the Paleozoic section below the 9-5/8-in casing.

Three types of inflatable packer tools were used during the testing. The first four tests were made using conventional straddle drill-stem testing tools on 4-1/2-in drill pipe (fig. 7). Tests 5 and 17 were made using dual seal production-injection packers on 2-7/8-in EUE 8-round tubing (fig. 8), and the remaining tests were made using a modified version of a dual-seal straddle treating and testing tool on 2-7/8-in EUE 8-round tubing (fig. 9). The straddle treating and testing tool was used for most tests because drilling mud and muddy water entering the ports of the tool from the interval isolated by packers could be removed from the tubing by swabbing. Lowering the head on the interval by swabbing often induced water to flow to the surface. After collecting water samples from producing intervals, the packers were deflated and the tool reset to test other intervals, higher or lower in the hole, without making a trip out of the hole.

After completing all packer tests, and spotting cement plugs from 9,378-9,084 ft and 8,884-8,422 ft below land surface, a well head (fig. 5) was installed. Drilling mud was removed from the hole and the well began to flow. It flowed about 44 gal/min through a 2-in valve in the well head with about 3 lb/in² back pressure. Measured at the well head, the shut-in pressure was 333 lb/in². The temperature of water was about 48°C.

Table 2 summarizes the drill-stem and packer-swabbing tests made in Madison test well 2 and indicates the test data that are included in this report.

[Kelley bushing (KB) is 16 ft above land surface (LS) and 2,809 ft above sea level. A constant of 2.307 was used to convert shut-in pressure to feet of head. SIP1 Initial shut-in pressure. SIP2 Second shut-in pressure.]

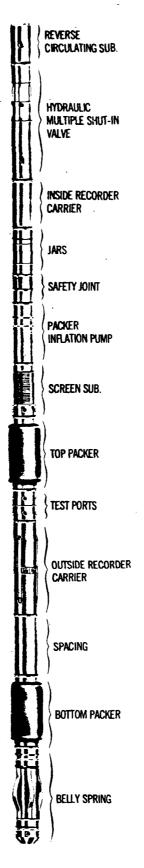
Test	Formation	Interval (ft below KB)	Shut-in pressure (lb/in ₂)	Depth to pressure recorder (ft below KB)	Discharge or flow (gal/min)	Remarks
1	Newcastle Sandstone	4,300-4,680	1,540	4,270		Bottom-hole temperature (BHT) 129° F (54°C). Water level (head) 701 ft below LS.
. 2	Minnelusa	6,138-6,248		6,143		BHT 152°F (67°C). Packer seat failed.
*3	do	6,134-6,244	2,956	6,139		BHT 165°F (74°C). Head 696 ft above LS.
4	Lakota Sandstone	4,898-4,916	1,820	4,903		EHT 127°F (53°C). Head 688 ft below LS.
5	Precembrian	9,300-9, 3 94		9,310		Packer failed.
ба	Flathead Sandstone (gas show)	9,238-9,262	4,149 (?)	9,255		Interval has very low permeability.
7	Flathead Sandstone and Precambrian	9,238-9,394		9,255		Interval has very low permeability.
8	Red River	8,115-8,335	3,899 (?)	8,135	10 to 0	Head calculation not valid because of bypass around lower packer after about 150 min of flow.
9	do	8,030-8,250		~~		Lower packer ruptured.
*10	do	8,115-8,355	SIP ₁ 3,849 SIP ₂ 3,848 SIP ₁ 315 SIP ₂ 325	8,125 8,125 2 ft above KB 2 ft above KB	18 to 13	Temperature of fluid at surface 114°F (46°C). Head based on down-hole pressure gauge, 768-771 ft above LS. Head based on surface pressure gauge, 745-770 ft above LS.
*11	Devomian (undiff- ferentiated) and Interlake	7,775-8,015	3,752 (?) SIP ₁ 312 SIP ₂ 317	7,785 2 ft above KB 2 ft above KB	10 to 8	Temperature of fluid at surface 103°F (39°C). Head based on down-hole pressure gauge, 887 ft above LS. Head based on surface pressure gauge, 738-749 ft above LS.
12	Madison (Charles)	6,449-6,689	3,292 (?)	6,450		Interval tested twice; no effective permeability.

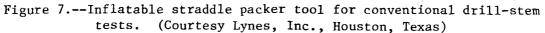
99

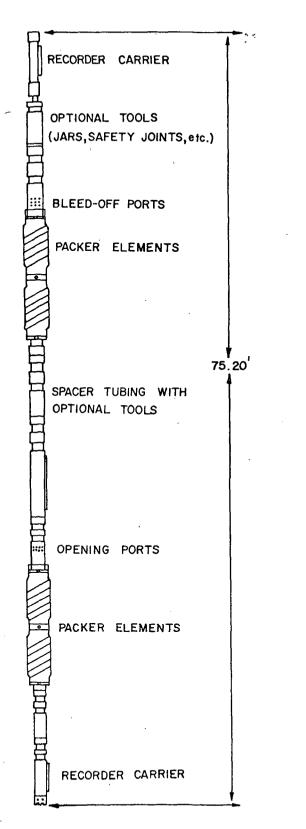
.

Test	Formation	Interval (ft below KB)	Shut-in pressure (1b/in ₂)	Depth to pressure recorder (ft below KB)	Discharge or flow (gal/min)	Remarks
*13	Madison (Mission Canyon)	6,814-7,054	3,303 340	6,824 2 ft above KB	5	Temperature of fluid at surface 93°F (34°C). Head based on down-hole pressure gauge, 812 ft above LS. Head based on surface pressure gauge, 802 ft above LS.
*14a	Madison (lower part of Mission Canyon and upper part of Lodgepole)	7,064-7,304	3,421 340	7,075 2 ft above KB	9	Temperature of fluid at surface 106°F (41°C). Head based on down-hole pressure gauge, 833 ft above LS. Head based on surface pressure gauge, 802 ft above LS.
15	Madison (Lodgepole)	7,305-7,545	3,568 (?)	7,325 (?)		Head based on down-hole pressure chart, 922 ft above LS.
16	Madison (basal part of Lodgepole) and upper part of Devonian	7,525-7,765	3,575 (?)	7,536	25 to 0	Bypass around lower packer. Reset packers 10 ft higher and tested; had bypass around lower packer again.
*17	Winnipeg Sandstone to Precambrian	8,520-9,394	4,038 317	8,535 2 ft above KB	50	Temperature of fluid at surface 153°F (67°C). Head based on down-hole pressure gauge, 797 ft above LS. Head based on surface pressure gauge 749 ft above LS.

÷

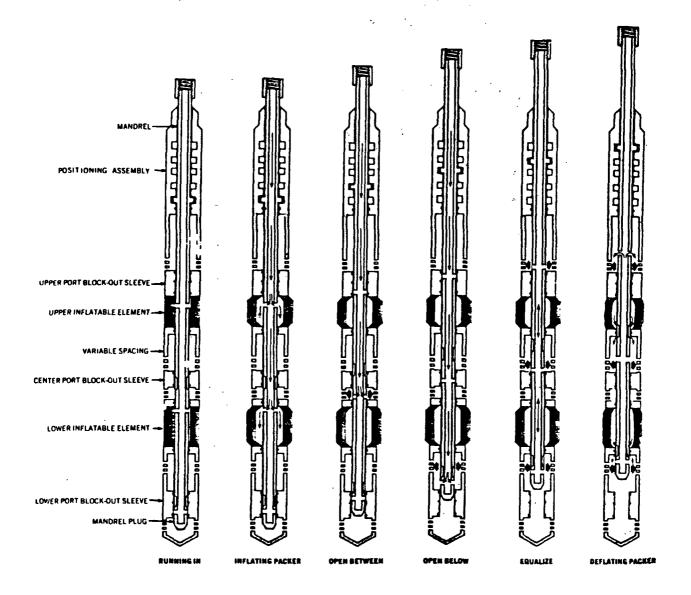

Table 2.--Summary of drill-stem-test data--Continued

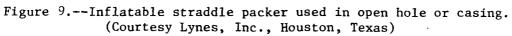

[Kelley bushing (KB) is 16 ft above land surface (LS) and 2,809 ft above sea level. A constant of 2.307 was used to convert shut-in pressure to feet of head. SIP1 Initial shut-in pressure. SIP2 Second shut-in pressure.]


* Original drill-stem-test data included in report.

(?) Numerical value is of questionable reliability.

.

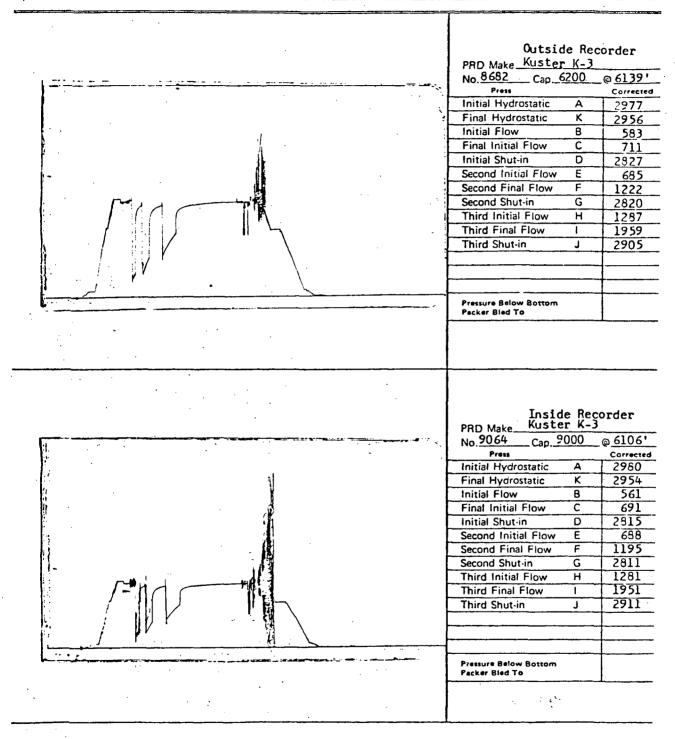

SPACER TUBING, etc., BETWEEN PACKER ELEMENTS


FOR MOST TESTS

TO 240 FEET

WAS EXTENDED

Figure 8.--Dual seal inflatable straddle packer tool used on tubing. (Courtesy Lynes, Inc., Houston, Texas)


DRILL-STEM TESTS

ontractor Anderso		Ter Chake	7 a	Flow No. 1	15	Min.	Address
^	<u>n mig. co.</u>		9/16"	Shut-in No		Min.	
		Bottom Choke	81/10	Flow No. 2			S
10		Size Hole Size Rat Hole		Shut-in No. 2		Min.	Sec
ec. <u>18</u> wp. <u>1</u> N		Size & Wt. D. P.	41 16.60	Flow No. 3		Min.	5
ing 54 E		Size & Wt. D. F. Size Wt. Pipe		Flow No. 3		Min.	S
ieldWildcat		1. D. of D. C	21"			wan.	E
ounty Custer	<u></u>	Length of D. C.	2 41 1				F
tate Montana		_ Total Depth	6567 '	Bottom Hole Temp	, 165 ⁰ F		Distribution
	"K.B."	Interval Tested	6134-6244'	Mud Weigh	··		12
ormation Minnelu		Type of Test	Inflate	Gravity		<u> </u>	1
			Straddle	Viscosity_			
				Tool opene	ed @ <u>11:10</u>	<u> </u>	
•					Outside	Recorder	
<i>.</i>				PRD Make		- 3	1
	<u>_</u>		<u></u>		Cap. 8000	@ 61 39 '	1
Therease			•		ress	Corrected	1
				Initial Hydr		2983	1
				Final Hydro	the second s	2960	1.
•				Initial Flow		568	13
				Final Initia	I Flow C	693	
				Initial Shut	-in D	-2820	Ticket No
~			\frown	Second Init	tial Flow E	689	1°
ଁ ର	O C	2	र क	Second Fin	al Flow F	1207	12
	mary. Jal	→	_	· Second Shu	ut-in G	2812	3219
		EL CO		Third Initia	I Flow H	1282	7
- م			•	Third Final	Flow I	1950] ·
/				Third Shut	-in J	2903]
/				1]
						1]
	· .			1			1
. • 	. <u> </u>	<u> </u>					D
				Our Tester:	Paul Rot	bins	Date 1
·				Witnessed E	By: Don Brow	<u>'n</u>	1-23
· · · · · · · ·	N			•		·, ·	3-77
id Well Flow - Gas. ECOVERY IN PIPE		<u></u>	bbl.				
				× ×			1
	lst Flow-	Tool opened with after 3 minutes	th fair blow,	increased to	strong bl	.0₩	1
	2nd Elow	Tool opened with	th fair flow	increased to	eriju.	0.11	1
	FUR LION-	after 3 minutes	s and remained	then flow -	scrong D1		z
		Tool opened wit				01	No. Final Copies
EMARKS:	JIU TION-	after 3 minutes	s and remained	l thru flow w	strong Di	.017	F
		gauged at 10 p			er.100. LT	.011	Ē
		yauyeu at IV ps	≥rà• ou \$ CUO	KC.			0
							10

Operator_U.S.G.S.

Lease & No. Madison#2

_ DST No. 3____

Madison #2 U.S.G.S. Lease & No. DST No. 3 Operator_ PRD Make Kuster K-3T No. 12355 Cap 35-249 @ 6139* Press Corrected Initial Hydrostatic A Final Hydrostatic ĸ Initial Flow 8 Final Initial Flow C Initial Shut-in D Second Initial Flow Е F Second Final Flow Second Shut-in G Third Initial Flow н Third Final Flow T Third Shut-in J 165°F <u>Maximum temperature =</u> Pressure Below Bottom Packer Bled To PRD Make_ No.____ _Cap. 0 Press Corrected Initial Hydrostatic A Final Hydrostatic к Initial Flow в Final Initial Flow С Initial Shut-in D Second Initial Flow Ē Second Final Flow F Second Shut-in G Third Initial Flow н Third Final Flow 1 Third Shut-in J Pressure Below Bottom Pecker Bled To

Fluid Sample Report

Dafe	1-23-77	Ti	cket No	3219	
Company	IJ.S.G.S.				••••••••••••••••••••••••••••••••••••••
Well Name & No. Mad	ison #2	D:	ST No	3	
County	Custer	Si	ate	Montana	
Sampler No.		Te	ost Interval	6134-6244'	·
Pressure in Sampler	35	PSIG	BHT	165	of
Total Valume of S	mpler: 3000 ample: 3000 Oil: None				cc.
· · ·	Mud: <u>3000</u> Gas: None				cc.
		Resistivit	Y		
]					
	@				
1	drained On Location				· · · · ·
Remarks: Tool wa mud.	s open momentarily u	,			
· · · · · · · · · · · · · · · · · · ·					

74

Form 5

BOX 712

DIVISION OF LYNES, INC.

UNITED SERVICES

STERLING, COLORADO 80751 PHONE 303-522-1206

Comments relative to the analysis of the pressure chart from DST #3 Interval: 6134-6244', in the U.S.G.S., Madison #2, SE SE Sec. 18, T1N-R54E, Custer County, Montana:

For purposes of this analysis, the following reservoir and fluid properties and test parameters have been used:

BHT = 165° F, μ = 1.0 cp., t = 105 minutes, h = 10 feet (estimated).

- 1. Extrapolation of the Initial Shut-in pressure build-up curve indicates a maximum reservoir pressure of 2943 psi at the recorder depth of 6139 feet. Extrapolation of the Second Shut-in pressure build-up curve indicates a maximum reservoir pressure of 2917.9 psi. Extrapolation of the Final Shut-in pressure build-up curve indicates a maximum reservoir pressure of 2955.8 psi. The difference between the three extrapolated pressures is considered insignificant and is indicated to be due to the use of insufficient time for the First and Second Shut-in periods. Numerical values for the various reservoir properties shown below and on the summary pages have been calculated independently in (1) analysis of the Second Shut-in pressure build-up curve and (2) analysis of the Final Shut-in pressure build-up curve. The results described below are based upon the analysis of the Final Shut-in pressure buildup curve and comparison of these results can be made by referring to the summary page which shows the calculated results which are based on the analysis of the Second Shut-in pressure build-up curve.
- 2. The calculated Average Production Rate which was used in this analysis, <u>771.8 BPD</u>, is based upon the total fluid recovery of 56.28 barrels and the total flowing time of 105 minutes.
- 3. The calculated Damage Ratio of 0.5 indicates that no significant well-bore damage was present at the time of this formation test.

U.S.G.S., Madison #2 Interval: 6134-6244', (DST #3)

Comments - Page 2

- 4. The calculated Effective Transmissibility of <u>339.2 md.-ft./cp.</u> indicates an Average Permeability to the produced fluid of <u>33.92</u> md. for the estimated 10 feet of effective porosity within the total 110 feet of interval tested.
- 5. The Radius of Investigation of this test is indicated by the relationship, $b \approx \sqrt{k t_0}$, to be about 60 feet.
- 6. The evaluation criteria used in the Drill-Stem-Test Analysis System indicate that the results obtained in this analysis should be reliable within reasonable limits relative to the assumptions which have been made.

Hoegei Consultant for Lynes, Inc.

Contator	1	t.	S	C	.Ş.
Operator.		<u>.</u>	3		• • •

· · · ·

c m 2

Lease & No. Madison #2

_DST No.____3

Recorder No. 6381 @ 6139'

IRST :	SHUT	IN	PRES.	SUR:
--------	------	----	-------	------

TIME(MI	N) (T"	PHID		PSIG
PHI	1	PHI		;-
0.0	ø.	0000		693
3.0	6.	0000		2430
6.0	3.	5000		2584
9.0	2.	6667		2654
12.0	2.	2500		2705
15.0	2.	0000 [.]		2738
18.0	- 1.	8333		2762
21.0	1.	7143		2782
24.0	. 1.	6250		2799
27.0	. 1.	5556		2812
30.0	· · · · · ·	5000		2820
EXTRAPLN (OF FIRST	SHUT	IN	: 2943 .0

Operator U.S.G.S.

Lesse & No. Madison #2_____DST No. 3_____

. .

and the second

Recorder No. 6381 @ 6139'

SECOND SHUT IN PRESSURE:

TIME(MIN)	(T"PHI)	PSIG
PHI	/ PHI	
Ø . Ø	0.0000	1207
6.0	8.5000	2513
12.3	4.7500	2621
18,0	3.5000	2678
24.0	2.8750	2715
30.0	2,5000	2745
36,53	2.2500	2762
42.0	2.0714	2779
38,9	1.9375	2792
54,0	1.8333	2805
62.0 .	1.7500	2812

EXTRAPLN OF SECOND SHUT IN : 2917.9

CALCULATIONS: SECOND SHUT IN

•	•
EXTRAP PRESS(PSIG)	2917.9
NO OF PTS ENTERD	11.0
NO OF PTC U PD	
NO OF PTS U ED	4.0
RHS DEVIATION(PSI)	0.003
TOTL FLO TIM(MIN)	45.0
	4310
ARD Shap Stranger	
AVE PROD RATE(BELS/DAY)	771.8
TRANSMISS(MD-FT/CP)	287.9
IN SITU CAP(MD-FT)	
	287.9
AVE EFFECT PERM(MD)	28.79
PROD INDX(BBLS/DAY-PSI)	0.451
DAMAGE RATIO	· • •
	0.7
PROD INDX-DAMAGE(BBLS/DAY-PSI)	0.324
RAD OF INVEST(FT)	36.0
DRANDOUNCEEDCONES	
DRAWDOWN (FERCENT)	0.1
POTENMETRG SURF (FT)	3403.9

S 44-04

1.1

Operator	<u> </u>	.s.	G:S	

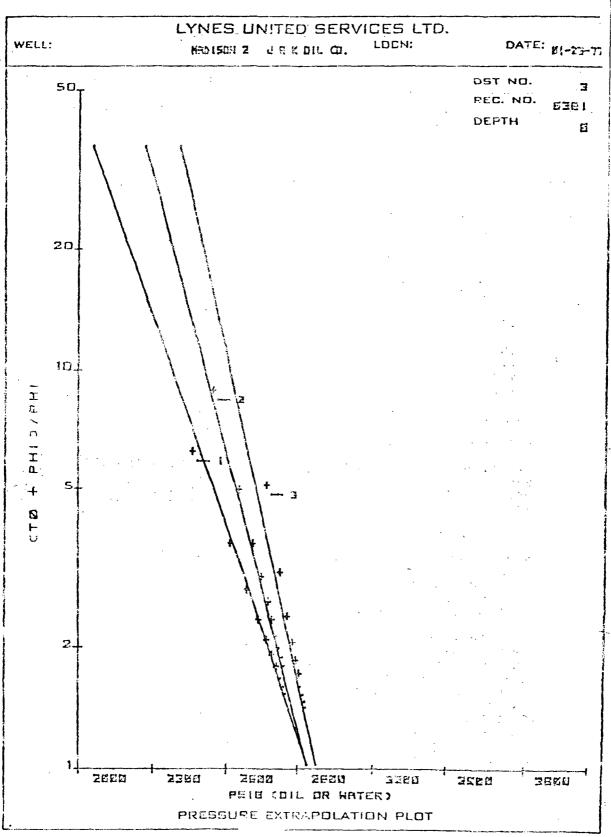
Eog

Lease & No. Madison #2

_DST No.____3

Recorder No. 6381 @ 6139'

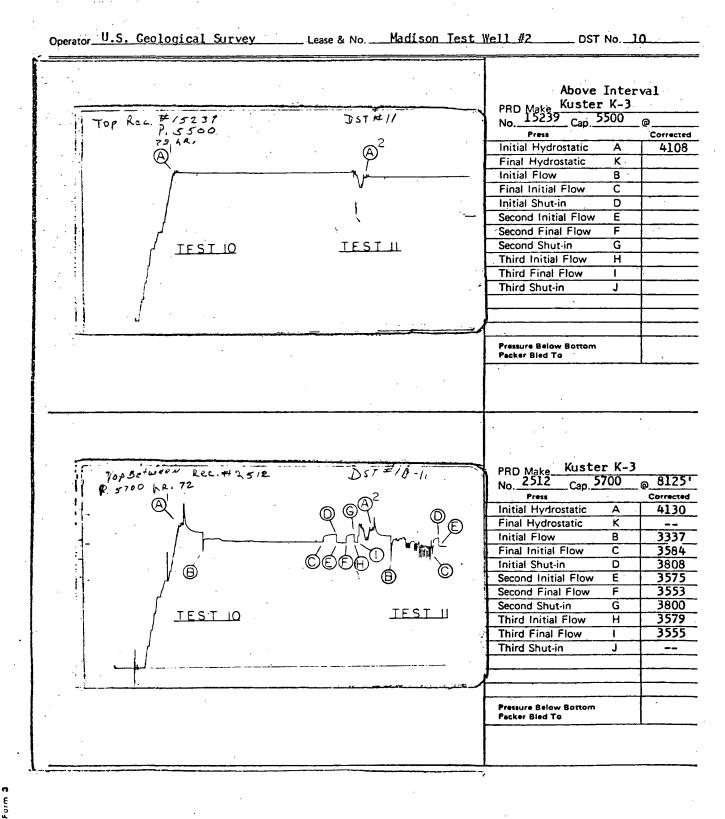
THIRI	D SHUT IN F	RESSURE	:		·
TIME:MIN) PHI	(T"PHI) PHI) :	PSIG		•
0.0	0.0000	5	1950		
27.0	4,8869		2738		
54.0	2.9444	2	2795		
81.0	2.2962		2826		
108.0	1.9722	2	2849		
135.0	1.7778	3	2862		
162.0	1.6481		2876		
189.0	1.5556	5	28 83		
216.0	1.4861	L	2893		
243.0	1.432	L	2899		
270.0	1.3889	?	2903		
Extrapln of	Third SI	nut in ;	2955.8	М:	369.9

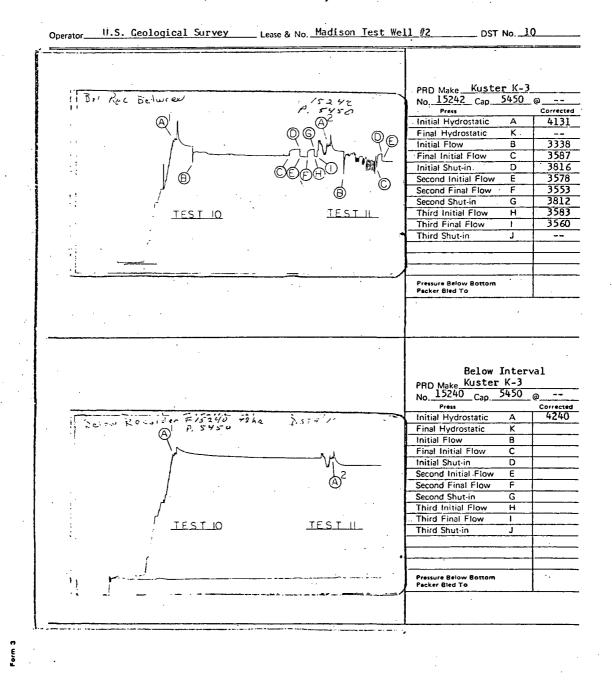

Choropen

RESERVOIR PARAMETERS:

COLLAR RECOV	361.000	PIPE RECOV	3839.000	INT FLO TIM	15.000
FINL FLO TIM	60.000	MUD EXPANS	1.000	BTM HOL TMP	164.222
API GRAVITY	10.000	SPEC GRAVTY	1.000	VISCOSITY	1.000
PAY THICKNES	10.000	SUBSEA DPTH	-3330.000	WATR GRADNT	ؕ433

CALCULATIONS: THIRD SHUT IN


EXTRAP PRESS(PSIG)	2955 8
NO OF PTS ENTERED	
NO OF PTS USED	4.0
RMS DEVIATION(PSI)	0.003
TOTL FLO TIM(MIN)	105.0
AVE PROD RATE(BBLS/DAY)	771.8
TRANSMISS(MD-FT/CP)	339.2
IN SITU CAP(MD-FT)	339+2
AVE EFFECT PERM(MD)	33.92
PROD INDX(BBLS/DAY-PSI)	
DAMAGE RATIO	0.5
PROD INDX-DAMAGE(BBLS/DAY-PSI)	0.382
RAD OF INVEST(FT)	59.7
DRAWDOWN (PERCENT)	0.0
POTENMETRC SURF(FT)	3496 • 3



FORM 236 11-76

Phone 522-1206 Area 30	3 LYNES, INC. Box 712 Sterling, Ca	
· <u> </u>		٦₽
Spot	Csq. Size & Grade <u>9 5/8"</u>	Address
Sec. 18	Tubing Size 2 7/8"	s Lakewood,
Twp. 1 N	Tool Depth 8115-8355'	<u>ן</u>
Rng. 54 E	On Location @ 4-12-77 4:30 AM.	Lakewood
Field Wildca		Ň
County Custer		a
State Montan	Well Owners Rep. Ellwood Bennett	
Tool Description	Straddle Treating & Testing Tool	Colorado
. ·	Top Packer: 7½" X 132" Bottom Packer: 7½" X 132"	a
		_ 8
		80225
	10	14
Test #	10 .	
Summary:		
4-12-77		
5:05 AM.	Moved tool to blank position and bled off pressure, then swabbed	
	down 2500' of fluid.	1
•		Type Tool
8:55 AM.	Moved tool to between position. Tool opened with a strong blow	l 🖁
	with fluid to surface in 8 minutes, let test flow over night.	18
6 13 7ª		
4-13-77 10:43 AM.	Shut-in on surface.	្រុដ
10:40 MJ.	JINU-IN UN SULTAUC.	á
1:30 PM.	Reopened tool.	StraddIe
3:35 PM.	Shut-in on surface.	- re
5:20 PM.	Pennerad taal	Treating
5:20 PM.	Reopened tool.	12
6:05 PM.	Moved tool to blank position and pressured tubing to 800 psig.	
6:25 PM.	Moved tool to inflate position, bled off pressure and released packers.	& Testing Tool
		p.
	· · · · · · · · · · · · · · · · · · ·	12
		Ĩ
		1
•		E
		cke
		Ticket No. 6658
		ļē
		8
		2

÷

ROGER L. HOEGER

Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (503) 759 - 4491

Drill-Stem-Test Pressure Analysis Report

LOCATION:	TIME OPEN: Initial: 1548 mins.	FILE HUNBER:
T1N-R54E, Section 18	Final: 125 mins.	Special
COUNTY AND STATE:	INITIAL SHUT-IN TIME	I. D. NUMBER:
MONTANA, CUSTER	167 minutes	L-6658
COMPANY:	FINAL SHUT-IN TIME:	DATE COMPUTED:
U.S. Geological Survey	105 minutes	6/8/77
LEASE AND WELL NUMBER	TEST NUMBER:	DATE TESTED:
Madison Test Well #2	10	4/12/77
FORMATION TESTED.	INTERVAL TESTED: Foot	ELEVATION: For
Red River	8115-8355	KB 2809

Fluid to surface in 8 minutes of First Flow; reported flow rate range: 13.8 gpm - 18.5 gpm.

L										
		нс	DLE, TO	OL AN	D RECOVE	ERY D	ΑΤΑ			
DRILL-PIPE CAPACITY (Berrels per feet)	Test tool	run	FEET OF MUD		I .		MUD PERCENTA	CE		
DRILL-COLLAR CAPACITY (Berrets per feet)	on 2-7/8"		FEET OF WATER				WATER PERCEN	TAGE		
DRILL-COLLAR FOOTAGE	tubing.		FEET OF OTH	R			OTHER PERCEN			
HOLE DIAMETER	9.625		FEET OF OIL				OIL PERCENTA	SE		
PIPE FOOTAGE EQUIVALEN	17		FEET OF CUSH	ION			FORMATION REP	OVERY		
INTERVAL THICKNESS	240.		TOTAL RECOV	ERY	Flowed w	vater	AVERAGE PROC	UCTION RATE	538.8	
MUD WEIGHT (Pounds par gallan)			CAPACITY OF	•)						
EFFECTIVE FLOWING TIME	1673.		GROSS RECOVE	RY VOLUME			RECOVERY LES	S THAN ANNULA	R VOLUME, (X)	\square
· · ·			G	AUGE	SUMMAR	· _				
A RECORDER NUMBER	DEP TH:	DATUM:		i				Record		
						RECOR	DER HUMBER	DEP TH:	DATUM	
2512	8125'	-	53161	ł			2' al	ove K. I	<u>3. +2811</u>	/
A KEY POINT	SUMMARY	в.								
First Flow	JOMMANI							SUMMARY TRANSMISSIBILIT	OF RESULTS	H per cp
INITIAL FLOWING PRESSURI	é.	psig		•			2305.			
1								J AVERAGE PERM	FABILITY. 1/4:	nd/cp
3337.		paig							t. 10'effect	<u>_</u>)
}			A			в	PRODUCTIVI		Berrals per day	
3584. Second Flow						- The second	- 1	83		
INITIAL FLOWING PRESSUR	Ét.				D FROM MEASURED D		DAMAGE RA			
3575.	·		10.2		10.27		1.	61	-	
FINAL FLOWING PRESSURE	······	paig			R INITIAL CURVE-FI	Ti		ESSURE COMPAR	i soni	x
3553.		•	5.		8.					
			SLOPE OF INITI	AL BUILD-UP	CURVEI	put/cycl	•		<u></u>	
INITIAL SHUT-IN PRESSURE	ы. Б	PAig	INITIAL EXTRA	CLATED PRE	ESSURE:	Prig	INITIAL POT	ENTIONETRIC S	IRFACE	1
3808.	287.		3849.		315.		*3537.		*3536.	
			FINAL (+++)/0	CALCULATE	FROM MEASURED D	ATA	Ft. o	f Head a	bove K.B.	
	•		16.9	3_	17.40		728.		727.	
	•		NUMBER OF PO	NTS USED FO	R FINAL CURVE-FITE	4 n (· · · ·		······································	
			6.		l 9.					
			SLOPE OF FINA	L BUILD-UP C	URVE	psi/eyci	7			
			38.		31.					
FINAL SHUT-IN PRESSURE		pite	FINAL EXTRAP	ATED PRES	SURE,	p +ig	1 .	TIOMETRIC SUR	FACE	last
3800.	286.5		3848.		326.		*3534.		I ≭ 3561.	
INITIAL HYDROSTATIC MUC	PRESSURE	prig					Ft. o	f Head a	hove K.B.	
4130.			• • • • • •		Constant of	-	725.		<u> 752.</u>	
FINAL HYDROSTATIC MUD	PRESSURE	psig .		•	i used to c	alcu~				
	l		late	P.S. J	Elevation		1		I .	

2.43

ROGER L. HOEGER Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (S03) 759 - 4491

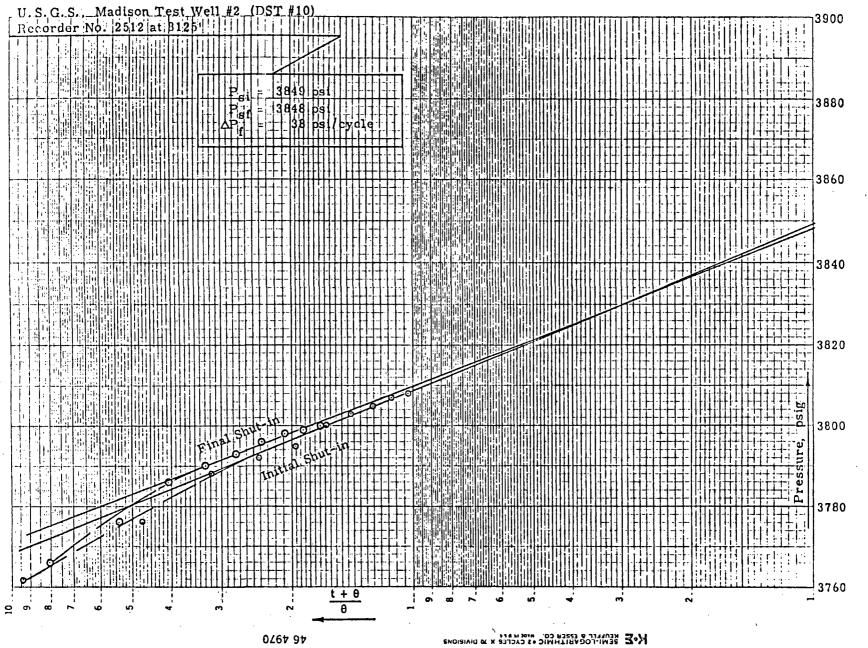
Comments relative to the analysis of the pressure chart from DST #10, Interval: 8115-8355', in the U.S. Geological Survey, Madison Test Well #2, Section 18, T1N-R54E, Custer County, Montana:

Extrapolation of the Initial Shut-in pressure build-up curve indicates a maximum reservoir pressure of <u>3849</u> psi at the recorder depth of 8125 feet. Extrapolation of the Final Shut-in pressure build-up curve indicates a maximum reservoir pressure of <u>3848</u> psi. These extrapolated pressures are equivalent to potentiometric surface elevations of +3537 feet and +3534 feet, respectively, based on the conversion constant of 2.30 ft./psi. These potentiometric surface elevations indicate a head of water above the elevation of the Kelly Bushing (+2809') of 728 feet and 725 feet, respectively.

Extrapolation plots, using the Horner method, have been made of the shut-in pressure build-up data which were obtained by the surface pressure recorder located 2' above the K.B. The results of these extrapolations are shown on the summary page and, when converted to potentiometric surface elevations, compare very closely with those determined by the analysis of the pressure build-up data recorded by the down-hole pressure instrument.

- 2. The calculated Average Production Rate which was used in this analysis, <u>538.8</u> <u>BPD</u>, is based upon the reported flow rates which were gauged throughout the flowing periods used in this test. This average production rate has been used in the basic Horner equation, along with the measured slope of the extrapolation plot for the Final Shut-in pressure build-up curve, 38 psi/log cycle, as a means of calculating numerical values for the various reservoir properties shown below and on the summary page.
- 3. The calculated Damage Ratio of <u>1.61</u> indicates that slight well-bore damage was present at the time of this formation test; however, in view of the volumerate of production which occurred, this indicated well-bore damage may be due to the choke effect of the test tool rather than formation damage.
- 4. The calculated Effective Transmissibility of 2305.5 md.-ft./cp. indicates an Average Permeability of 230.6 md./cp. for the estimated 10 feet of effective porosity within the total 240 feet of interval tested.
- 5. The evaluation criteria used in the Drill-Stem-Test Analysis System indicate that the results obtained in this analysis should be reliable within reasonable limits relative to the assumptions which have been made.

PRESSURE BUILD-UP CURVE INCREMENTAL-READING DATA


Company U.S. Geological Survey
Well Name & No. Madison Test Well #2
Location Sec. 18, T1N-R54E, Custer County, Montana
DST No. 10 Test Interval: 8115-8355' Formation Tested: Red River

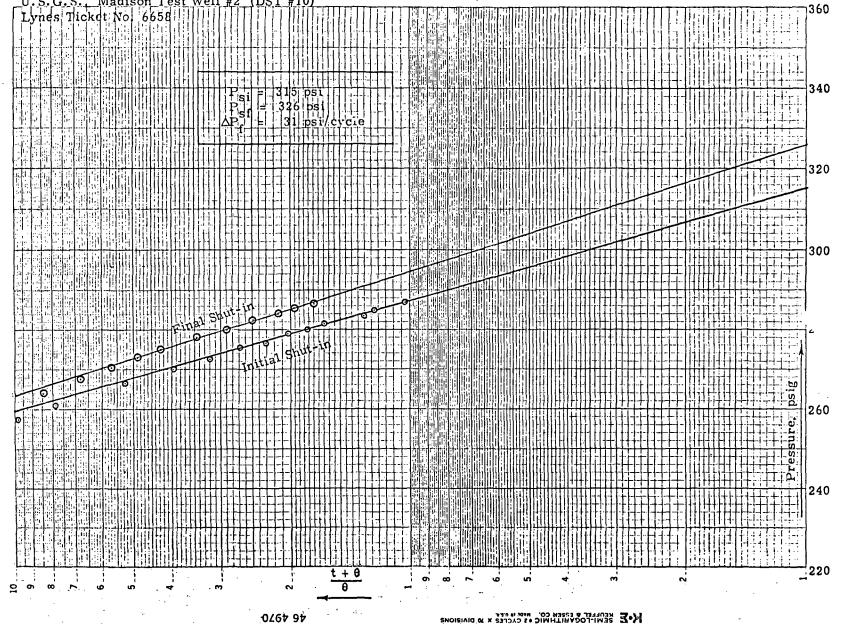
Recorder No. 2512 Recorder Depth 8125 feet.

INITIAL SHUT-IN

FINAL SHUT-IN

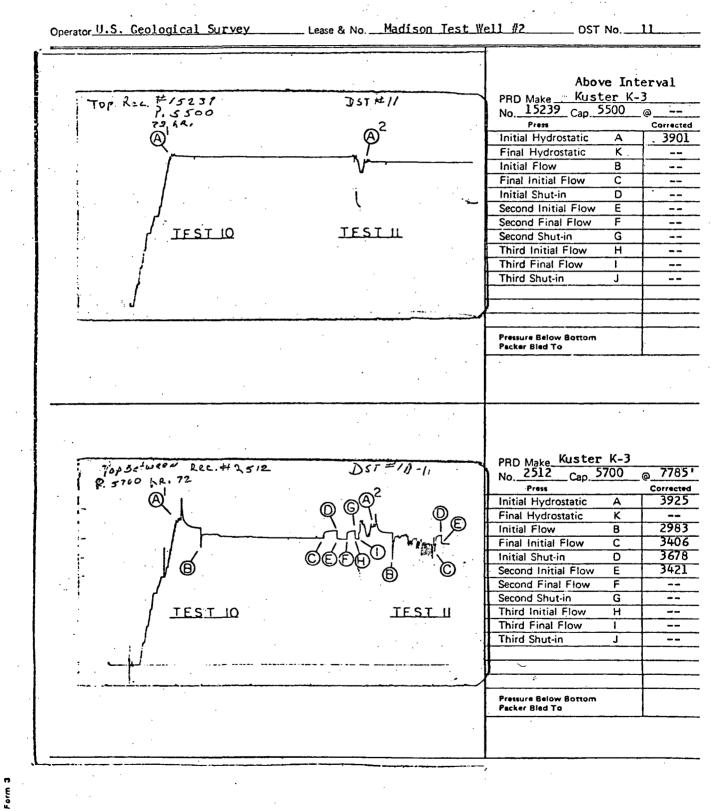
Initial Flow Time, t = 1548				Total Flow Time, t = 1673			
θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)	θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)
16.7	1564.7	93.69	3762	10.5	1683,5	160.33	3750
33.4	1581.4	47.35	3776	21.0	1694.0	80.67	3766
50.1	1598.1	31.90	3788	31.5	1704.5	54.11	3776
66.8	1614.8	24.17	3792	42,0	1715.0	40.83	3786
83.5	1631.5	19.54	_3795	52.5	1725.5	32.87	3790
100.2	1648.2	_16,45	3800	63.0	1736.0	27.56	3793
116.9	1664.9	14.24		73.5	1746.5	23.76	3796
133.6	1681.6	12.59	3805	84.0	1757.0	20.92	3798
150.3	1698.3	11.30		94.5	1767.5	18.70	3799
167_0	1715.0	10.27		105.0	1778.0	16.93	3800
<u> </u>							·
· · · · · ·							
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
		· · ·		· ·			

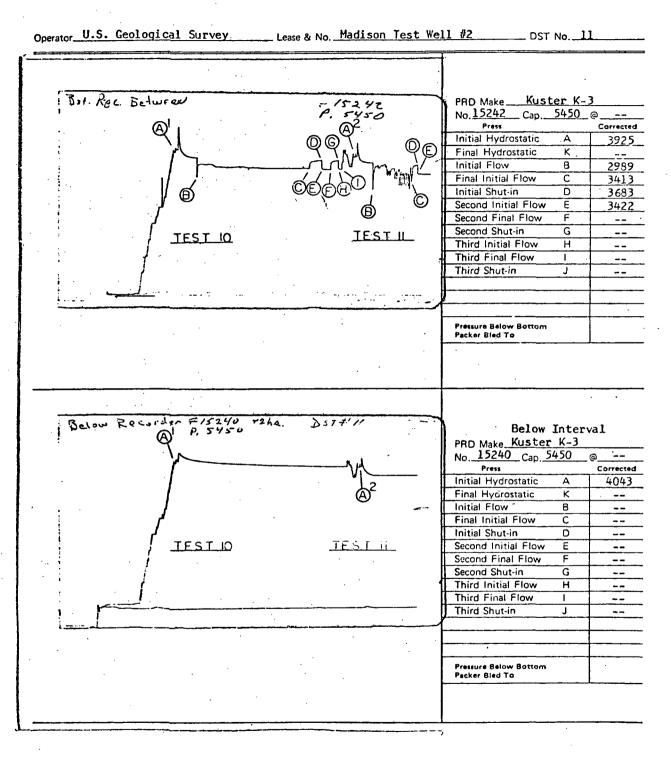
PRESSURE BUILD-UP CURVE INCREMENTAL-READING DATA


Company U.S.G.S.
Well Name & No. <u>Madison Test Well #2</u>
Location Sec. 18, T1N-R54E, Custer County, Montana
DST No. 10 Test Interval: 8115-83551 Formation Tested: Red River

Recorder No. _____ Recorder Depth _____ feet.

INITIAL SHUT-IN


FINAL SHUT-IN


	Initial Flow	w Time, t =	1548	Total Flow Time, t = 1673			
θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)	θ	t+Ə	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)
5	1553	310.60	239.0	5	1678	335.60	238.0
10	1558	155.80	250.0	10	1683	168.30	251.5
16	1564	97.75	257.5	14	1687	120.50	258.0
20	1568	78.40	261.0	20	1693	84.65	264.0
	1578	52,60	266.5	25	1698	67.92	267.5
40	1588	39.70	270.0	30	1703	56.77	270.5
50	1598	31.96	272.5	35	1708	48.80	273.0
60	1608	_26.80	275.5	40	1713	42.83	275.0
70	1618	23.11	_276.5	50	1723	34.46	278.0
80	1628	20.35	279.0	60	1733	28.88	280.0
90	1638		280.0	70	1743	24.90	282.5
100	1648	16.48		82	1755	21.40	284.0
120	1668	13.07	283.5	90	1763	<u> 19, 59</u>	285.5
137	1685	12.30	285.0	102	1775	17.40	286.5
167	1715	10.27		 			
				l			
			·		-+		
· · · · · · · · · · · · · · · · · · ·	-{			∦			· ·
	-[[

U.S.G.S. Madison Test Well #2 (DST #10)

Phone 522-1206 Area 303	LYNES, INC.	Box 712 Sterling, Colo.
Spot Sec18 Twp1 N Rng54 E FieldWildcat County _Custer StateMontana	Csg. Size & Grade 9 5/8" Tubing Size 2 7/8" Tool Depth 7775-8015' On Location @ 4-12-77 4:30 AM. Off Location @ 4-15-77 7:35 AM. Lynes Rep. Paul Robbins Well Owners Rep. Ellwood Bennett	Address Lakewood,
Tool Description_	Straddle Treating & Testing Tool	Colorado
	Top Packer: 7½" X 132" Bottom Packer: 7½" X 132"	rado
Test ∦] Summary:	1	80225
	Pressured tool to 2500 psig. and moved to blank position. pressure then swabbed down 1000' of fluid.	
:	Moved tool to between position. Tool opened with weak blo increased to strong blow after 1 minute. Fluid to surface minutes.	in 22
10:11 AM.	Shut-in at surface.	Straddle
	Opened tool and let test flow until samples cleared up. Cl out at 12:44 PM.	UCK FAR I
5:37 PM.	Shut-in at surface.	Treating
8:37 PM.	Opened tool.	2.
10:05 PM.	Moved tool to equalize position and let set 45 minutes.	,000 psig.
:	Moved tool to come out position. Had weight increase of 10 indicating equalization was incomplete. Worked tubing to f started out of hole.	,000 psig. 7 ree, and 7
4-15-77 2:35 AM. (Out of hole.	
· ·		Ticket No.
		t No.
		6658
		8

92 ·

Form

ROGER L. HOEGER Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (\$0\$) 759 - 4491

in (397

Drill-Stem-Test Pressure Analysis Report

LOCATION:	TIME OPEN: Initial: 544 Mins.	FILE NUMBER:
T1N-R54E. Section 18	Final: 376 Mins.	Special
COUNTY AND STATE:	INITIAL SHUT-IN TIME:	I. D. HUNGER:
MONTANA, CUSTER	70 Minutes	L-6658
COMPANY:	FINAL SHUT-IN TIME:	DATE COMPUTED:
U.S. Geological Survey	180 Minutes	6/6/77
LEASE AND WELL NUMBER	TEST NUMBER:	DATE TESTED:
Madison Test Well #2	11	4/13/77
FORMATION TESTED:	INTERVAL TESTED: Foot	ELEVATION: Foot
Devonian & Silurian	7775-8015	KB 2809

RECOVERY Fluid to surface in 22 minutes of First Flow Period. Flowed at rate of 8 to 10 gallons per minute. • :•

.

HOLE, TOOL AND RECOVERY DATA

	•••=	,			
DRILL-PIPE CAPACITY (Berrals per feet)	Test tool run	FEET OF MUD		MUD PERCENTAGE	
DRILL-COLLAR CAPACITY (Berrals per feet)	on 2-7/8"	FEET OF WATER		WATER PERCENTAGE	
DRILL-COLLAR FOOTAGE	tubing.	FEET OF OTHER		OTHER PERCENTAGE	
HOLE DIAMETER (Inches)	9.625	FEET OF OIL		DIL PERCENTAGE	
PIPE FOOTAGE EQUIVALENT TO ANNULUS (Foot)		FEET OF CUSHION		FORMATION RECOVERY PERCENTAGE %	
INTERVAL THICKHESS . (Faat)	240.	TOTAL RECOVERY (Feet)	Flowed water	AVERAGE PRODUCTION RAT: 301.5	
MUD WEIGHT (Pounds per gellan)		CAPACITY OF ANNULUS (Berrels)		•	
EFFECTIVE FLOWING TIME (Minutes)	920.	GROSS RECOVERY VOLUME		RECOVERY LESS THAN ANNULAR VOLUME, (X)	

A			G	AUGE	SUMMAR	Y B- 9	Surface	Recorde	r	
RECORDER NUMBER	DEPTH	DATUM:					ER HUMBER	DEPTH:	DATUM:	<u> </u>
2512	י7785	4	9761			L <u>.</u>	2'a	ove K. B	+2811	
A KEY POIN	TSUMMARY	в				*	A [SUMMARY C	FRESULTS	B
First Flow					· · ·		EFFECTIVE	TRANSMISSIBILIT		
INITIAL FLOWING PRESSUR	TE:	paig					624	.4		
2983.							NDICATE	AVERAGE PERME	ABILITY, 4(a: md/	•
FINAL FLOWING PRESSUR	Es 1	psig					62	.4 (for 1)' effect.)	
3406.			Α .			В	PRODUCTIV	ITY INDEX	Barreis per sey pe	e psi
Second Flow	•		EXT	RAPOLAT	ION SUMMAR	Y	1 o	. 87		
INITIAL FLOWING PRESSU	RE	ptig	INITIAL (+++)/	CALCULATE	O FROM MEASURED	DATA	DAMAGE RA	TIO: 1		
3421.			8.7	7	8.77		0	.8		
FINAL FLOWING PRESSUR	е. ₁	paig	NUMBER OF PO	INTS USED FO	R INITIAL CURVE-F	IT:	FLOWING PI	RESSURE COMPARI	SON: X	
			4.		i 9.		- 1			
			LOPE OF INIT	AL BUILD-UP	CURVE:	pai/eyela	1			
			78.5		42.					
INITIAL SHUT IN PRESSUR	IE:	psig	INITIAL EXTRA	POLATED PR	ESSURE:	paig	INITIAL PO	TENTIONETRIC SU	RFACE: fe	-
3678. · · · · ·	270.5		3752.		1 311.		*3654		\$3526.	
			FINAL (++9)/9	CALCULATE	PROM MEASURED	LATA	Ft. c	of Head al	bove K.B.	
·-			·	-	6.11		845	-	717.	
	•		NUMBER OF PO	INTS USED FO	R FINAL CURVE-FI	1. 1 .	7		· · · · · · · · · · · · · · · · · · ·	
					8.					1
			SLOPE OF FINA	L BUILD-UP C	URVEI	osi/cyclo	1		•••	- 1
** Chart tim	ne expired.	· ·		•	24.					
FINAL SHUT-IN PRESSURE	· ·	psig	FINAL EXTRAP	OLATED PRE	SURE	paig	FINAL POT	INTIONETRIC SURF	ACE: In	-
** None	300.	i			319.				*3545.	
INITIAL HYDROSTATIC MU	D PRESSURE:	prig	* Conv	ersion	Constant	of	Ft. c	of Head a	bove K.B.	
3925.					i used to c		-		736.	
FINAL HYDROSTATIC MUD	PRESSURE	berd.		-	levation.				 1	
		•	Adle 1	J. E	revation.		1			1

ROGER L. HOEGER Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (303) 759 - 4491

Comments relative to the analysis of the pressure chart from DST #11, Interval: 7775-8015', in the U.S. Geological Survey, Madison Test Well #2, Section 18, T1N-R54E, Custer County, Montana:

Extrapolation of the Initial Shut-in pressure build-up curve indicates a maximum reservoir pressure of 3752 psi at the recorder depth of 7785 feet. The chart time expired shortly after opening the tool for the Second Flow period. Consequently, a Final Shut-in pressure build-up curve was not recorded during this test. The indicated maximum reservoir pressure is equivalent to a potentiometric surface elevation of 3654' above sea level, based upon the conversion constant of 2.30 ft./psi. This potentiometric surface elevation in turn indicates a head of water above the K.B. (+2809') of 845 feet.

Extrapolation plots, using the Horner method, for the shut-in pressure buildup data that were recorded by the surface recorder during this test indicate the following: extrapolated Initial Shut-in pressure, 311 psi and extrapolated Final Shut-in pressure, 319 psi. These extrapolated surface pressures convert to potentiometric surface elevations of +3526' and +3545' on the basis of the conversion constant of 2.30 ft./psi. These potentiometric surface elevations indicate the following head elevations above K.B.: 717' for the Initial Shut-in and 736' for the Final Shut-in.

There is considerable difference between the calculated results which were obtained by analysis of the subsurface pressure recorder data and the surface pressure recorder data. The cause of this difference has not been discernible by the writer.

 The calculated Average Production Rate which was used in this analysis, <u>301.5</u> <u>BPD</u> is based upon the reported flow rates which were measured during the flowing periods used in this test. This average production rate and the measured slope of the extrapolation plot for the Initial Shut-in pressure build-up curve, 78.5 psi/log cycle, have been used in the basic Horner equation to calculate numerical values for the various reservoir properties shown below and on the summary page.

- 3. The calculated Damage Ratio of <u>0.8</u> indicates that no significant well-bore damage was present at the time of this formation test.
- 4. The calculated Effective Transmissibility of <u>624.4 md.-ft./cp</u>. indicates an Average Permeability of <u>62.4 md./cp</u>. for the estimated 10 feet of effective porosity within the total 240 feet of interval tested.
- 5. The evaluation criteria used in the DST Analysis System indicate that the results obtained in this analysis should be reliable within reasonable limits relative to the assumptions which have been made.

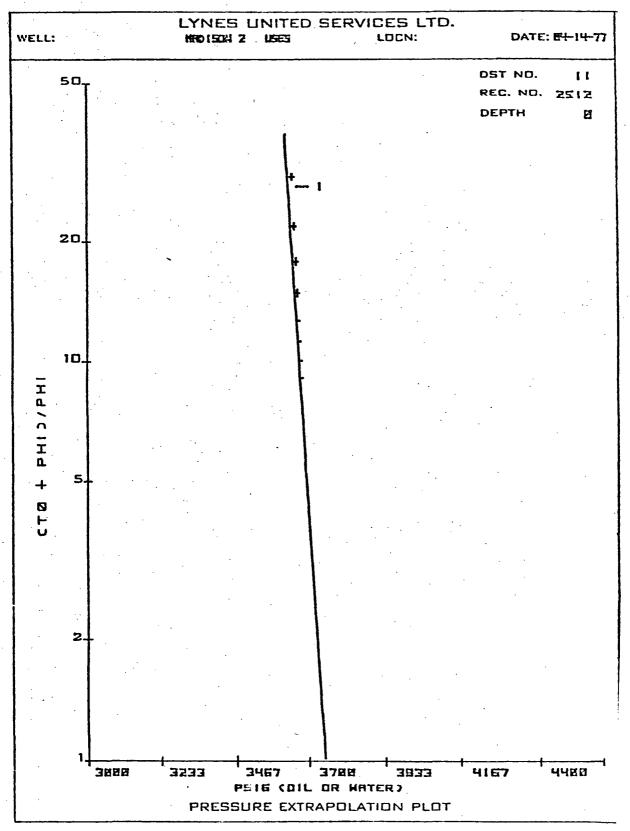
**_ + 1

a ng ng s

с.

Operator_____U.S.G.S._____Lease & No,_____Madison_Test_Well #2___DST No___11____

Recorder #2512 @ 7785'


FIRST SHUT IN PRESSURE:

TIME(MIN)	(T"PHI)	PSIG
PHI	/PHI	-
0.0	0.0000	3406
7,0	78.7143	3615
14.0	39-8571	3635
21.0	26.9048	3647
28.0	20,4286	3654
35.0	16.5429	3659
42.0	13.9524	3663
49.0	12.1020	3667
56.0	10.7143	3671
63.0	9.6349	3675
70.0	8.7714	3678

EXTRAPLN OF F

FIRST SHUT IN : 3752.0

M : 78.5

FORM 256 12-76

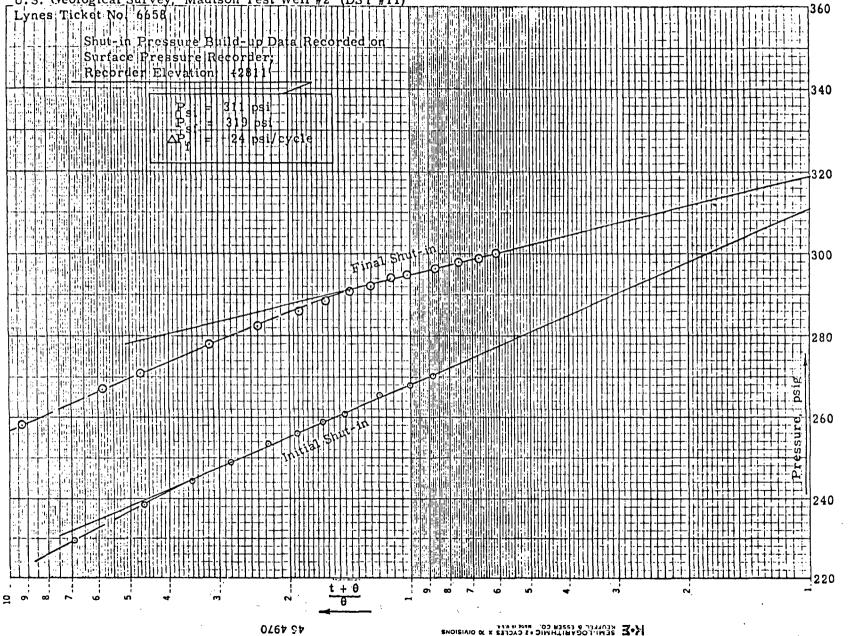
PRESSURE BUILD-UP CURVE INCREMENTAL-READING DATA

Company U.S. Geological Survey

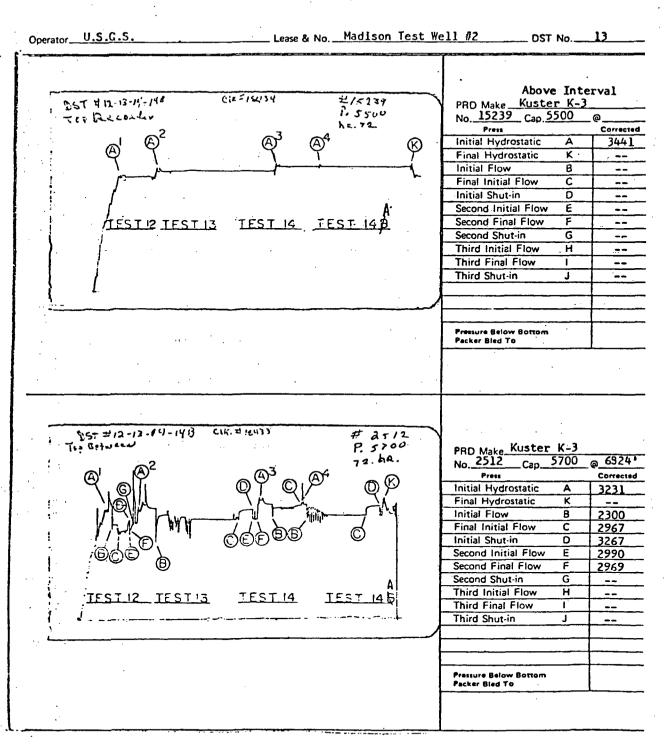
Well Name & No. _____Madison Test Well #2_____

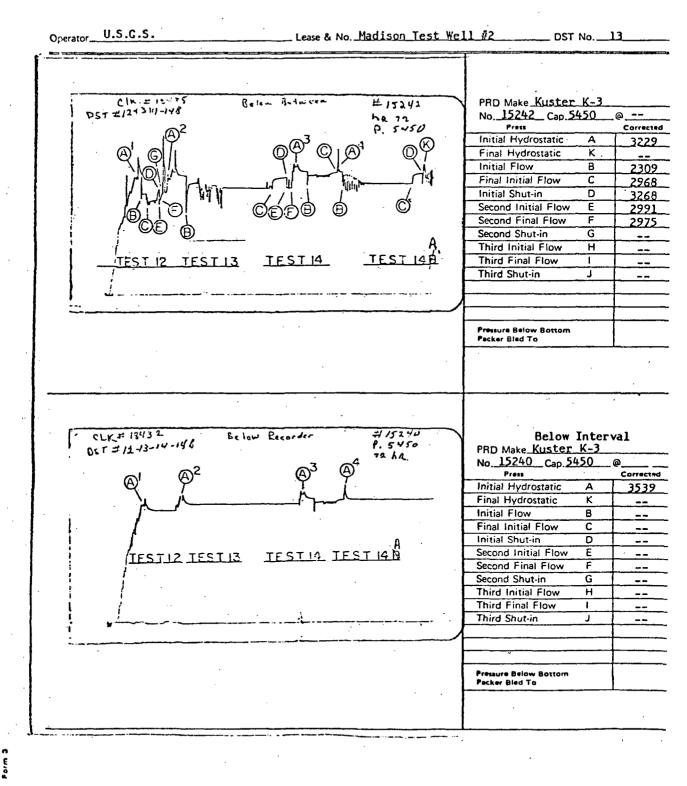
Location Section 18, T1N-R54E, Custer County, Montana

DST No. <u>11</u> Test Interval: <u>7775-8015</u> Formation Tested: <u>Devonian &</u> Silurian


Surface

Recorder No. ----- Recorder Depth 2'above K.B.


INITIAL SHUT-IN


FINAL SHUT-IN

	Initial Flow	Total Flow Time, t = 920					
θ	t + θ	$\frac{\mathbf{t} + \mathbf{\theta}}{\mathbf{\theta}}$	Pressure (p.s.i.)	θ	t+θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)
2	546	278.00	191.0	5	925	185.00	242.5
4	548	137.00	212.5	10	930	93.00	258.0
8	552	69.00	229.5	16	936	58.50	267.0
12	556	46.33	238.5	20	940	47.00	271.0
16	560	35.00	244.5	30	950	31.67	278.0
20	564	28,20	249.0	40	960	24.00	282.5
25	569	22.76	253.5	50	970	19.40	286.0
	574	19.13	256.0	60	980	16.33	288.5
35	579	16.54	259.0	70	990	14.14	291.0
40	584	14,60	261.0	80	1000	12.50	292.0
50	594		2655	90	1010	11.22	294.0
60	604	10.07		100	1020	10.20	295.0
70	614	8.77	270.5	120	1040	8.67	296.5
				140	1060	7.57	298.0
				160	1080	6.75	299.0
				180	1100	6.11	300.0
				l			
	<u> </u>		L	1	<u> </u>		

· · · · ·							
				i.			
·		······································	<u>ار دو او او</u>	11 - C - C - C			
	Phone 522-1206 Area 303	1. A.	LVNES	S, INC.	· -	Box 7 Sterling,	
·			· · ·				_>
•				0 5 /011			Address
	Spot Sec18		sg. Size & Grade ubing Size	<u>9 5/8"</u> 2 7/8"	· · · · · · · · · · · · · · · · · · ·		S S
	Twp. 1 N	<u> </u>	ool Depth	6914-7054			6
-	Rng. 54 E Field Wildcat		n Location @				Box 25046 Lakewood,
	County Custer	Ly	ynes Rep	Paul Robbins		·····	5046
	State Montana	W	ell Owners Rep	Ellwood Bennett	t	<u> </u>	1- 01
	Tool Description	Straddle Tre	ating & Testing	<u>Tool</u>			, Denver F Colorado
• •		Top Packer	7 3/8" X 136" B	ottom Packer	74" X 136"		rad
	······································				<u> </u>		orado 8
							edera 80225
	• • • • · · · · · · · · · · · · · · · ·	• • • • •					
·	Test #13				·		l Center
•	Summary:				· · · · ·		l fe
	4-16-77	T. P. 1					-
	5:05 AM.	inflated p	ackers, moved t	ooi to biank po	osition and su	wadded	(S
			surface.				
	7:15 AM.	1000' from Moved tool	to between pos				Stop 4 Type
-	7:15 AM.	1000' from Moved tool blow, flui	to between pos d to surface in				:op 412 Type To
- · · · · · · · · · · · · · · · · · · ·		1000' from Moved tool	to between pos d to surface in				cop 412 Type Tool
	4-17-77	1000' from Moved tool blow, flui well for 1	to between pos d to surface in 9 hours.	35 minutes. F			412 pe Tool
		1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Strad
•	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for 1 Shut-in at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Strad
•	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treat
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treat
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating &
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating &
•	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing T
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing T
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing T
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool Ticket No.
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool Ticket No.
	4-17-77 2:03 Am.	1000' from Moved tool blow, flui well for l Shut-in at Opened at	to between pos d to surface in 9 hours. surface for 18 surface and wel	35 minutes. F 2 minutes.	lowed and sea	abbed	412 pe Tool Straddle Treating & Testing Tool Ticket No.

ROGER L. HOEGER

Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (303) 759 - 4491

Drill-Stem-Test Pressure Analysis Report

LOCATION	TIME OPEN:	FILE NUMBER:		
T1N-R54E, Section 18 SE SE	1128 minutes	Special		
COUNTY AND STATE:	INITIAL SHUT-IN TIME:	I. D. NUMBER:		
MONTANA, CUSTER	182 minutes	L-6660		
COMPANY:	FINAL SHUT-IN TIME:	DATE COMPUTED:		
U.S. Geological Survey		4/16/77		
LEASE AND WELL NUMBER:	TEST NUMBER:	DATE TESTED:		
Madison Test Well #2	13	6/7/77		
FORMATION TESTED:	INTERVAL TESTED: Foot	ELEVATION: Feat		
Mission Canyon	6814-7054	KB 2809		

RECOVERY: Fluid to surface in 35 minutes. Flowed at average rate of 5 gallons per minute. . .

HOLE, TOOL AND RECOVERY DATA

		· · · · · · · · · · · · · · · · · · ·			
DRILL-PIPE CAPACITY (Berrals per feet)	Test tool run	FEET OF MUD		MUD PERCENTAGE	
DRILL-COLLAR CAPACITY (Berrels per feet)	on 2-7/8"	FEET OF WATER		WATER PERCENTAGE	
DRILL-COLLAR FOOTAGE	tubing.	FEET OF OTHER		OTHER PERCENTAGE	
HOLE DIAMETER	9.625	FEET OF OIL		OIL PERCENTAGE	
PIPE FOOTAGE EQUIVALENT TO ANNULUS (Foot)	~~~	FEET OF CUSHION		FORMATION RECOVERY PERCENTAGE \$	
INTERVAL THICKNESS (Foot)	240.	TOTAL RECOVERY (F++)	Flowed water	AVERAGE PRODUCTION RAT	171.4
MUD WEIGHT (Pounds per gollen)		(Berreis)		•	
EFFECTIVE FLOWING TIME	1128.	GROSS RECOVERY VOLUME		RECOVERY LESS THAN ANNULAR	R VOLUME, (X)

A			GAUGE	SUMMARY	B- S	Surface Record	er .
RECORDER NUMBER	DEP TH:	DATUM:	J			R NUMBER DEPTH:	DATUM:
2512	6824'		015'	Ĺ	•	2' above K.	B. +2811'
A KEY POIN	TSUMMARY	в					OF RESULTS]. B
First Flow				•		EFFECTIVE TRANSMISSIBILIT	Y, hh/a: md fl per cp
INITIAL FLOWING PRESSUR	REI .	, prig				662.0	(·
2300.			•			INDICATED AVERAGE PERM	EABILITY, to: md/cp
FINAL FLOWING PRESSUR	Es 1	psig				66.2	
2967.			Α		в	PRODUCTIVITY INDEX	Eprraia per day par par
Second Flow			EXTRAPOLATI	ION SUMMARY		0.51	
INITIAL FLOWING PRESSU	RE	para	INITIAL (+++)/9 CALCULATE	D FROM MEASURED D	ATA	DAMAGE RATIO	
2990.			7.26	7.20		1.5	
FINAL FLOWING PRESSUR	Ei j	paig	NUMBER OF POINTS USED FO	R INITIAL CURVE-FIT	:	FLOWING PRESSURE COMPAR	ISON: *
2969.			4.	10.			
		,	SLOPE OF INITIAL BUILD-UP	CURVE:	pai/cycle		······································
· ·			42.1				
INITIAL SHUT IN PRESSUR	¹⁶ 1	, psig	INITIAL EXTRAPOLATED PRI	1	p=:0	INITIAL POTENTIONETRIC S	URFACEI foot
3267.	299.5		3303.	336.	-	* 3582.	*3584.
	,		FINAL (+++)/9 CALCULATE	FROM MEASURED DA	TA	Ft. of Head a	above K.B.
	•		··	·		771.	775.
			NUMBER OF POINTS USED FO	R FINAL CURVE-FIT:	· • .		
			SLOPE OF FINAL BUILD-UP C	URVE	pai/cycla		
FINAL SHUT-IN PRESSURE	·····	palg	FINAL EXTRAPOLATED PRE	SSURE	paig	FINAL POTENTIONETRIC SUR	IFACEI Inat
None							
INITIAL HYDROSTATIC MU	D PRESSURE:	psig	*Conversion	Constant o	f		
3231.			2.30 ft./psi	• • • • • • • •	-		
FINAL HYDROSTATIC MUD	PRESSURE	prig	late P.S. E				1
	1		late P.S. E				<u> </u>

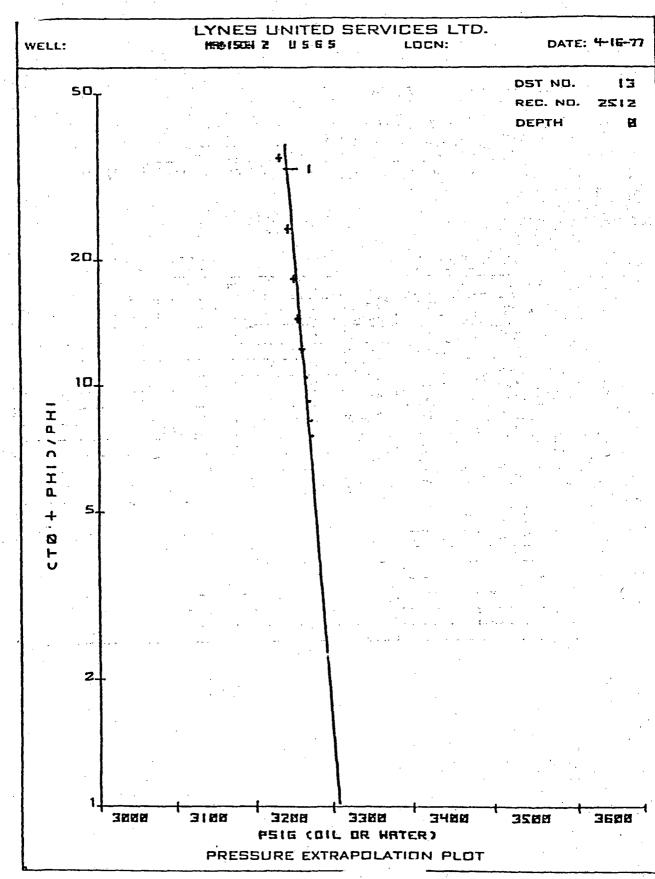
ROGER L. HOEGER Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (303) 759 - 4491

Comments relative to the analysis of the pressure chart from DST #13, Interval: 6814-7054', in the U.S. Geological Survey, Madison Test Well #2, SE SE Sec. 18, T1N-R54E, Custer County, Montana:

 Extrapolation of the Shut-in pressure build-up curve indicates a maximum reservoir pressure of <u>3303 psi</u> at the recorder depth of 6815 feet. This indicated maximum reservoir pressure is equivalent to a potentiometric surface elevation of 3591' above sea level, based upon the conversion constant of 2.30 ft./psi. This potentiometric surface elevation, in turn, indicates a head of water above the K.B. (2809') of 782'.

For comparison purposes, an extrapolation plot, using the Horner method, has been made for the pressure build-up data which were recorded by the surface pressure recorder during the shut-in period. This extrapolation plot indicates a maximum pressure of 336 psi at the elevation of the surface recorder. This extrapolated pressure is equivalent to a potentiometric surface elevation of +3584', based on the conversion constant of 2.30 ft./psi. This potentiometric surface elevation is equivalent to a head of water above the K.B. of 775'.

- 2. The calculated Average Production Rate which was used in this analysis, <u>171.4 BPD</u>, is based upon the reported average flow rate of 5 gallons per minute. This average production rate and the measured slope of the extrapolation plot for the shut-in pressure build-up curve that was produced by the down-hole pressure recorder have been used in the basic Horner equation to calculate numerical values for the various reservoir properties shown below and on the summary page.
- 3. The calculated Damage Ratio of 1.5 indicates that slight well-bore damage was present at the time of this formation test. The damage ratio implies that the production rate should have been 1.5 times greater than that which occurred is well-bore damage had not been present; however, it should be noted, in view of the fact that the well flowed throughout the flow period used in this test that the indicated well-bore damage may be due to the choke effect of the test tool rather than formation damage.
- 4. The calculated Effective Transmissibility of <u>662.0 md.-ft./cp.</u> indicates an Average Permeability of <u>66.2 md./cp.</u> for the estimated 10 feet of effective porosity within the total 240 feet of interval tested.
- 5. The evaluation criteria used in the DST Analysis System indicate that the results obtained in this analysis should be reliable within reasonable limits relative to the assumptions which have been made.


Operator U.S.G.S.

Lease & No. Makison Test Well #2 DST No. 13

Recorder No. 2512 @ 6824'

FIRST	SHUT IN PRESSURE	51
TIME(MIN)	(T"PHI)	PSIG
PHI	/PHI	
0.0	0.0000	2967
18.2	63.6374	3216
36.4	32.3187	3228
54.6	21.8791	3238
72.8	16.6593	3245
91.0	13.5275	3250
109.2	11-4396	3255
127.4	9.9482	3260
145.6	8.8297	3264
163.8	7.9597	3266
182.0	7.2637	3267
EXTRAPLN OF	FIRST SHUT IN	: 3303.3 M : 42.1

Form 2

FORM 256 12-76

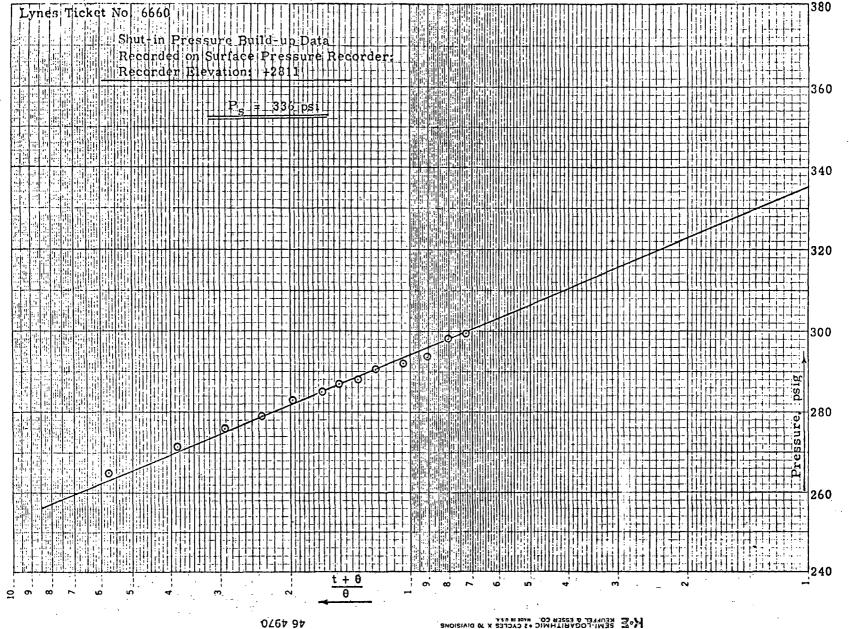
PRESSURE BUILD-UP CURVE INCREMENTAL-READING DATA

Company U.S. Geological Survey
Well Name & No. <u>Madison Test Well #2</u>
Location SE SE Sec. 18. T1N-R54E. Custer Co., Montana
DST No. 13 Test Interval: <u>6814-7054</u> Formation Tested: <u>Mission Canyon</u>

Surface Recorder No.

--- Recorder Depth <u>2'above K.B.</u>

INITIAL SHUT-IN

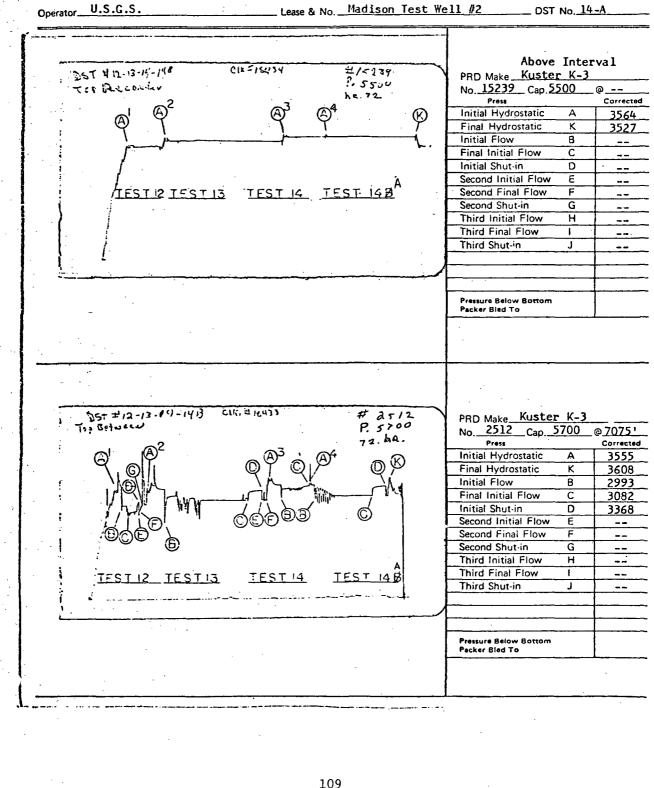

FINAL SHUT-IN

1.11

	Initial Flor	w Time, t =	= 1128	Total Flow Time, t =			
θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)	θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)
10	1138	113.80	251.5	-			
20	1148	57.40	265.0			:	
30	1158	38.60	271.5			1	
40	1168	29.20	276.0				· ·
50	1178_	23.56	279.0				
60	1188	19.80	283.0				
72	1200	16.67	285.0		NONE		
80	1208	15.10	287.0				
90	1218	13.53	288.0			· ·	
100	1228	12.28	290.5				
120	1248	10.40	292.0				
140	1268	9.06	293, 5				
160	1288	8.05	298.0				
180	1308	7.27	299.5				
		_					
				ll			
			+	╫	-+	· · · · · · · · · · · · · · · · · · ·	
				₩			
			+			•	
		1	<u>l'</u>				

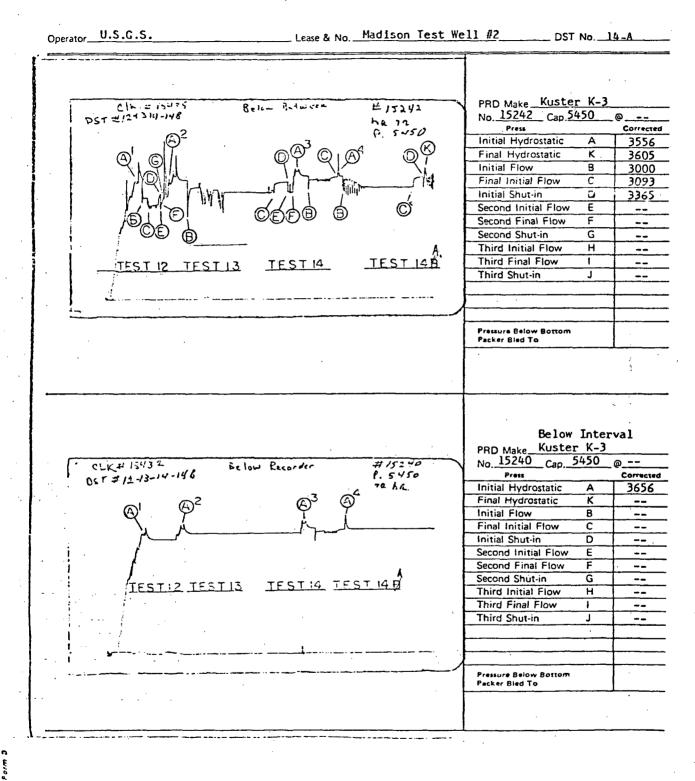
106

.



;

5


2

		Address
Spot	Csg. Size & Grade 2 5/8"	Address
Sec18 Twp1 N	Tubing Size 2 7/8" Tool Depth 7064-7304'	
Rng54 E	On Location @	Doited Sta Box 25046, Lakewood,
Field <u>Wildcat</u> County <u>Custer</u>	Off Location @ Lynes Rep. Paul Robbins	1000
State <u>Montana</u>	Well Owners RepEllwood Bennett	
Tool Description	raddle Treating & Testing Tool	Col
	p Packer 7 3/8" X 136" Bottom Packer 7 1/2" X 136"	Colorado
10		
<u></u>		Colorado 80225
_		25
Test #14-A Summary:	N Contraction of the second seco	Cer
Summary-		Center,
4-17-77		
4:15 PM.		lo to
4:25 PM.	Moved tool to between position. Tool opened with no blow. Began to swab and well started flowing.	VPe VPe
4-18-77		Wen Name Stop 412 Type Tool
8:15 AM.		S
11:40 AM.	Moved tool to blank position and tripped out of hole.	tra
		add1
		straddle T
		addle Test
		addle Testing
		addle Testing &
		addle Testing & Tre
· ·		addle Testing & Treati
		pn
		ng To
		ison (est Well WZ Treating Tool
		⊤, s'# ng Tool
		ブッ ng Tool
		T: یہ کچہ راجم ng Tool
		T: یہ کچہ راجم ng Tool
		T: یہ کچہ راجم ng Tool
		Trod /47
		T: یہ کچہ راجم ng Tool
		7.51# 14A ng Tool
		Tist# 14A ng Tool
		Trol 14A

109

• Fora

ROGER L. HOEGER Consulting Geologus 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (503) 759 - 4491

Drill-Stem-Test Pressure Analysis Report

LOCATION:	TIME OPEN:	FILE MUMBER:
T1N-R54E, SE SE Section 18	950 minutes	Special
COUNTY AND STATE:	INITIAL SHUT-IN TIME:	I. D. NUNBER:
MONTANA, CUSTER	180 minutes	L-6660
COMPANY:	FINAL SHUT-IN TIME:	DATE COMPUTED:
U.S. Geological Survey		6/7/77
LEASE AND WELL NUMBER:	TEST NUMBER:	DATE TESTEDI
Madison Test Well #2	14-A	4/17/77
FORMATION TESTED:	INTERVAL TESTED: Foot	ELEVATION: Foot
L. Mission Canyon & U. Lodgepole	7064-7304'	KB 2809

Fluid to surface after swabbing. Flowed water at average rate of 9.3 gallons per minute.

	HC	DLE, TOOL AND		DATA .		
DRILL-PIPE CAPACITY (Berrals per feet)	Test tool run	FEET OF MUD		MUD PERCENTAGE	[
DRILL-COLLAR CAPACITY (Berrels per feet)	on 2-7/8'	FEET OF WATER		WATER PERCENTAGE		
DRILL-COLLAR FOOTAGE	tubing.	FEET OF OTHER		OTHER PERCENTAGE		
HOLE DIAMETER	9.625	FEET OF OIL		OIL PERCENTAGE		
PIPE FOOTAGE EQUIVALENT		FEET OF CUSHION		FORMATION RECOVERY PERCENTAGE %		
INTERVAL THICKNESS	240.	TOTAL RECOVERY	Flowed water	AVERAGE PRODUCTION RATE (Series per day)	338.4	
KUD WEIGHT (Pounds per gollon)		CAPACITY OF ANNULUS (Berrets)				
EFFECTIVE FLOWING TIME 950. GROSS RECOVERY VOLUME				RECOVERY LESS THAN ANNULAR VOLUME. (X)		

	<u>A</u>			AUGE SUMMAR	в	Surface	Recorder	· •
ł	RECORDER NUMBER	DEPTH	DATUM:	· · ·	RECO	ROER NUMBER	DEP THI	DATUH
l	2512	7075'	-4266'			212	bove K.B.	+2811'

Α	KEY POINT	SUMMARY	В					OF RESULTS]. B
First							EFFECTIVE TRANSMISSIBILIT	Y, khýz: má fi par cp
INITIAL FL	OWING PRESSURE		paig			•	822.7	
2993	3 .	·					INDICATED AVERAGE PERM	ABILITY, tous makes
FINAL FLO	WING PRESSUREL		paig				82.3 (for 1	0'effect.φ)
3082	2.		1	A		в	PRODUCTIVITY INDEX	Barrola per dey per psi
Second	Flow			EXTRAPOLATI	ON SUMMARY		1.0	
INITIAL FI	OWING PRESSURE		ptig	INITIAL (1+9)/9 CALCULATE	D FROM MEASURED DATA		DAMAGE RATIO	
-				6.28	6.28		0.9	
FINAL FLO	WING PRESSURE:	1	paig,	NUMBER OF POINTS USED FO	R INITIAL CURVE-FIT		FLOWING PRESSURE COMPARI	SON: X
- 1				5.	12.			
				SLOPE OF INITIAL BUILD-UP	CURVE:	ı/cycle		
	•			66.9	37.			
INITIAL S	NT-IN PRESSURE:	 }	paig	INITIAL EXTRAPOLATED PRI	SSURE: P.	•	INITIAL POTENTIONETRIC SU	RFACE: foot
3368	3.	310.		3421.	340.		*3602.	*3593.
				FINAL (++0)/9 CALCULATED	FROM MEASURED DATA		Ft. of Head a	bove K.B.
1				· <u>-</u>			793.	784.
1				NUMBER OF POINTS USED FO	R FINAL CURVE-FITIE 1			
1								
				SLOPE OF FINAL BUILD-UP C	URVE:	i/cycle		
FINAL SHU	T-IN PRESSURE:		paig	FINAL EXTRAPOLATED PRES	SURE: P	ig:	FINAL POTENTIONETRIC SUR	ACE: feet
Non	e ' '							[•]
INITIAL HI	PROSTATIC MUD F	RESSURE	psig	* Conversion	Constant of			
3955	5.							1
FINAL HY	ROSTATIC MUD PE	ESSURE	gaig'	2.30 ft./psi				1
3608				late P.S. Ele	vation.		· ·	

ROGER L. HOEGER Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (503) 759 - 4491

Comments relative to the analysis of the pressure chart from DST #14-A, Interval: 7064-7304', in the U.S. Geological Survey, Madison Test Well #2, SE SE Section 18, T1N-R54E, Custer County, Montana:

 Extrapolation of the Shut-in pressure build-up curve indicates a maximum reservoir pressure of <u>3421 psi</u> at the recorder depth of 7075 feet. This indicated maximum reservoir pressure is equivalent to a potentiometric surface elevation of 3602 feet above sea level, based upon the conversion constant of 2.30 ft./psi. This potentiometric surface elevation, in turn, indicates a head of water above the K.B. of 793 feet.

For comparison pruposes, an extrapolation plot, using the Horner method, has been made for the pressure build-up data which were recorded by the surface pressure recorder during the shut-in period. This extrapolation plot indicates a maximum pressure of 340 psi at the elevation of the surface recorder. This extrapolated pressure is equivalent to a potentiometric surface elevation of +3593', based on the conversion constant of 2.30 ft./psi. This potentiometric surface elevation is equivalent to a head of water above the K.B. of 784'. It should be noted that there is very close agreement between the potentiometric surface elevations which have been calculated on the basis of the two extrapolated pressures, that recorded by the down-hole pressure instrument and that recorded by the surface pressure recorder.

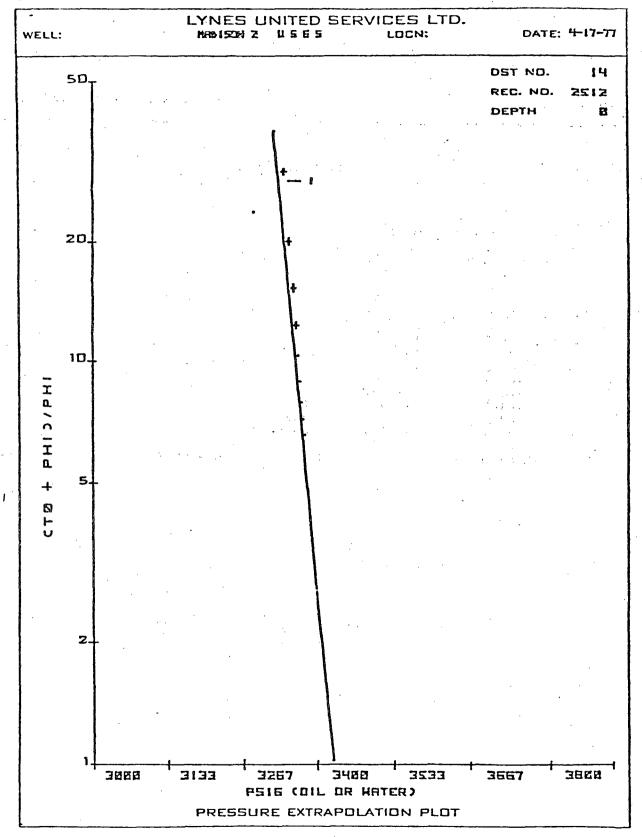
- 2. The calculated Average Production Rate which was used in this analysis, <u>338.4</u> <u>BPD</u>, is based upon the reported average flow rate which was measured at the surface, about 9.3 gallons per minute. This average production rate and the measured slope of the extrapolation plot for the shut-in pressure build-up curve that was produced by the down-hole pressure recorder have been used in the basic Horner equation to calculate numerical values for the various reservoir properties shown below and on the summary page.
- 3. The calculated Damage Ratio of 0.9 indicates that no significant well-bore damage was present at the time of this formation test.
- 4. The calculated Effective Transmissibility of <u>822.7 md.-ft./cp</u>. indicates an Average Permeability of <u>82.3 md./cp</u>. for the estimated 10 feet of effective porosity within the total 240 feet of interval tested.
- 5. The evaluation criteria used in the DST Analysis System indicate that the results obtained in this analysis should be reliable within reasonable limits relative to the assumptions which have been made.

n in the second s

Operator____U.S.G.S.

Lease & No. Madison Test Well #2 ____DST No___14-A

Recorder #2512 @ 7075'


FIRST SHUT IN PRESSURE:

TIME(MIN)	(T"PHI)	PSIG
PHI	/PHI	-
0.0	0.0000	3082
18.0	53.7778	3313
36.0	27.3889	3332
54.0	18.5926	3341
72.0	14.1944	3349
90.0	11.5556	3353
108.0	9.7963	3356
126.0	8.5397	3359
144.0	7.5972	3362
162.0	6.8642	3365
180.0	6.2778	3368

FIRST

EXTRAPLN OF

SHUT IN : 3421.4 M : 66.9

FORM 286 12-76

PRESSURE BUILD-UP CURVE INCREMENTAL-READING DATA

 Company
 U.S. Geological Survey

 Well Name & No.
 Madison Test Well #2

 Location SE SE Sec. 18.
 T1N-R54E, Custer Co., Montana

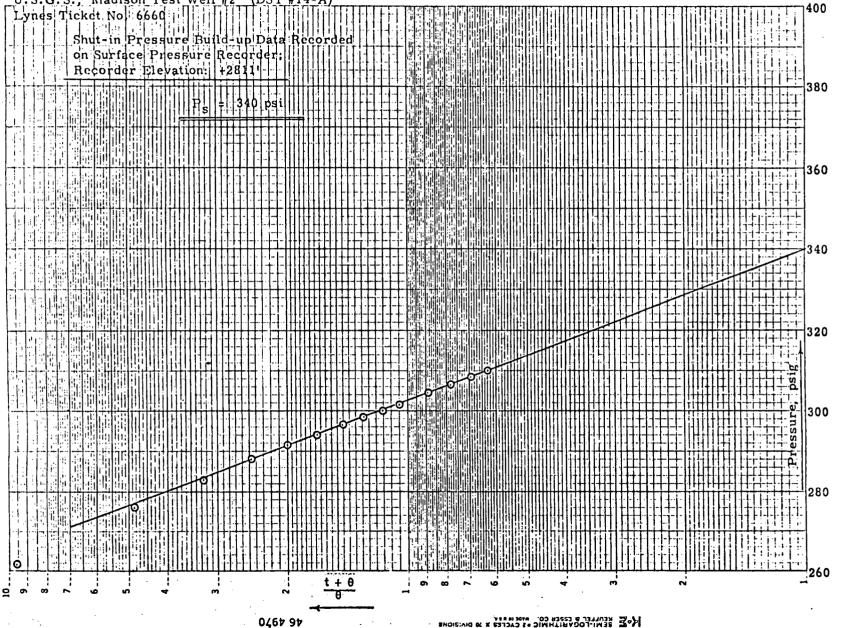
 DST No.
 14-A

 Test Interval:
 7064-7304'

 Formation Tested:
 L.MissionCanyon

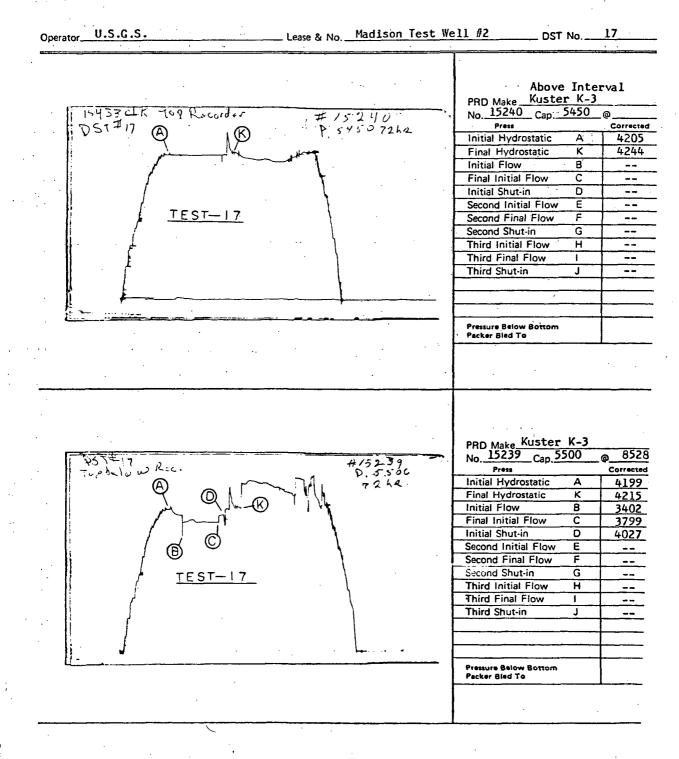
 and U.Lodgepole

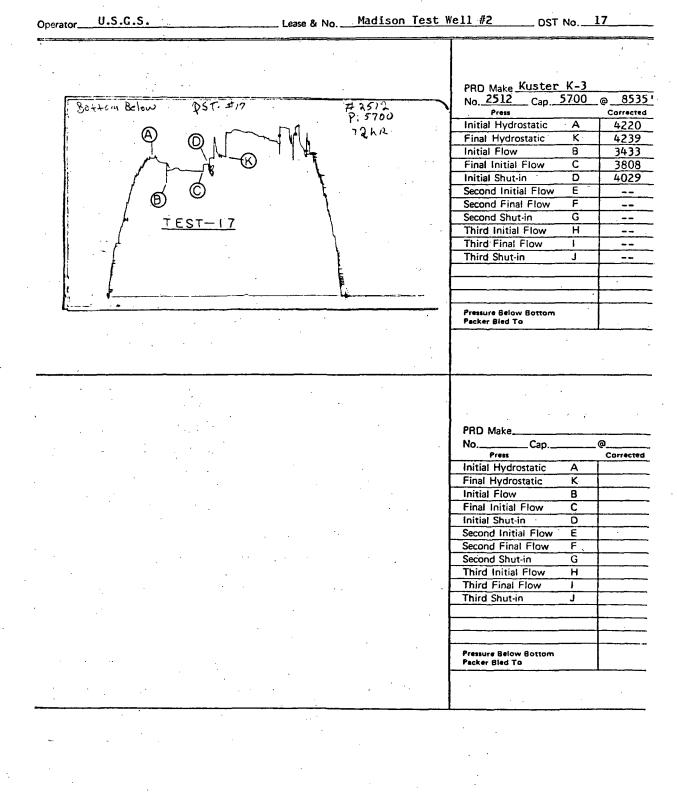
 Surface


 Recorder No.
 --

 Recorder Depth
 2'above K.B.

INITIAL SHUT-IN


FINAL SHUT-IN


· · · ·								
	Initial Floy	v Time, t =	950	Total Flow Time, t =				
θ	t+0	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)	θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)	
10	960	96.00	261.5					
20	970	48.50	276.0					
30	980	32.67	283.0					
40	990	24.75	288.0					
50	1000	-20.00	291.5				·· .	
60	1010	16.83	294.0		NONE			
70	1020	14.57	296.5					
80	1030	12.88	298.5					
90	1040	11.56	300.0					
100	1050	10.50	301.5		<u></u>	•		
120	1070	8.92	304.5					
140	1090	7.79	306.5	·				
160	1110	6.94	308.5					
180	1130	6.28	310.0					
· · ·		· · · · · · · · · · · · · · · · · · ·	·				. "	
		`		ļ		· · · · · · · · · · · · · · · · · · ·	·	
					· · ·		· · · · · · · · · · · · · · · · · · ·	
ļ ·				 			· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·						
[

U.S.G.S., Madison Test Well #2 (DST #14-A)

	. ·		
··		1 2 A \$	
			· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	······································	
			0. 740
	Phone 522-1206 Area 303	LYNES, INC.	Box 712 Sterling, Colo.
		·····	
			Address
•	Spot	Csg. Size & Grade 9 5/8"	
	Sec. <u>18</u>	Tubing Size 2 7/8"	
•	Twp. <u>1 N</u> Bog 54 E	Tool Depth 8520-9394 '	B
	Rng. <u> </u>	On Location @	Box 25046
	County Custer	Lynes Rep Paul Robbins	
	State Montana	Well Owners RepEllwood Bennett	
•	T I D I I I I I I I I I I I I I I I I I	ngle Set Production Injection Packer	Col
			Colorado
• • • • • • • • •	To	p Packer 71 .X 136"	prade
		· · · ·	
	a and a second sec		Denver Federal olorado 80225
	··· · · · · · · · · · · · · · · · · ·		25 13
. ,	Test ∦ 17	· .	
:	Summary:		Center,
· ·	· · · ·		èr
•	4-23-77 2:30 AM. I	nflated packer with 2300 psig. at surface.	
		ith tool in blank position, dropped bar to	open sleeve.
	a	nd swabbed down 2000'.	
		pened tool below with strong blow. Fluid	to surface in 9
· · · ·		inutes, flowing approximately 50 gallons p	per minute.
	4-24-77		o open sleeve, to surface in 9 ber minute.
_	1:26 AM. S	hut-in at surface for 1 hour.	gle
	2:26 AM. R	eleased packer.	
			et
			t Produ
			Set Produ
* <u>*</u> z = v	ام شرم د. مورو ا		lot
			ction
		· · · ·	
• • •			Inje
			öt
•		• • • •	Injection Packer
• •		· · · ·	g.
	, , <u>, , , , , , , , , , , , , , , , , </u>		
			ier,
· ·	· · · ·		
2. C			
•			Ticket No.
	n an ann an An	· · · · · · ·	
•			
			6662
			Ň
• •			l
· ,			. [
			i
	· ·	117	
	ч. •		
	•		· · · ·
			· ·

119

Form

ROGER L. HOEGER Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 50222 (503) 759 - 4491

Drill-Stem-Test Pressure Analysis Report

LOCATION	TIME OPEN:		FILE HUMBER:	
TIN-R54E SE SE Section 18	504 minutes		Special	
COUNTY AND STATE:	INITIAL SHUT-IN TIME:		I. D. NUMBER:	
MONTANA, CUSTER	60 minutes		L-6662	
COMPANY:	FINAL SHUT-IN TIME:		DATE COMPUTED	
U.S. Geological Survey	None		6/8/77	
EASE AND PELL NUMBER:	TEST NUMBER:		DATE TESTED:	
Madison Test Well #2	17		4/23/77	
FORMATION TESTED.	INTERVAL TESTED:	Feel	ELEVATION:	Faar
Winnipeg	8520-9394		KB 2809	

RECOVERY:

Fluid to surface in 9 minutes; flowed at approximate average rate of 50 gallons per minute.

HOLE, TOOL AND RECOVERY DATA

DRILL-PIPE CAPACITY (Burels per feet)	Test tool run	FEET OF MUD		MUD PERCENTAGE	1	····
DRILL-COLLAR CAPACITY (Servel a par foat)	on 2-7/8"	FEET OF WATER		WATER PERCENTAGE		
DRILL-COLLAR FOOTAGE	tubing.	FEET OF OTHER		OTHER PERCENTAGE	:	
HOLE DIAMETER	9,625	FEET OF OIL		OIL PERCENTAGE	1	
PIPE FOOTAGE EQUIVALENT TO ANNULUS (F++1)	·	FEET OF CUSHION		FORMATION RECOVERY PERCENTAGE \$		
INTERVA THICKNESS (Foot)	874.	TOTAL RECOVERY (Feel)	Flowed water	AVERAGE PRODUCTION RATE (Berreis per day)	1714.3	
MUD WEIGHT (Pound's par gallon)		CAPACITY OF ANNULUS (Berreis)	*			
EFFECTIVE FLOWING TIME	504.	GROSS RECOVERY VOLUME		RECOVERY LESS THAN ANNULAR VOLUME. (X)		

A			GAUGE	E SUMMARY	BS	urface	Recorde	er.
RECORDER NUMBER	DEPTH	DATUM:		Г		RNUMBER	DEP TH:	DATUA:
2512	8535'		5726'	L		2' a	bove K.	B. +2811'
A KEY POIN	T SUMMARY	в					SUMMARY C	
First Flow						EFFECTIVE	TRANSMISSIBILIT	Y, kh/j: md ft par cp
INITIAL FLOWING PRESSUP		erig				29972.	.6	
3433.	1						AVERAGE PERM	ABILITY, 1/a: md/cp
FINAL FLOWING PRESSUR	6	paig				2997	3 (for e	st.10'effect.6)
3808.			A		в	PRODUCTIVI		Barrais par day par psi
Second Flow				TION SUMMARY		1 7	.45 I	
INITIAL FLOWING PRESSU	RE	. puig.	INITIAL (1+9)/9 CALCULA	TED FROM MEASURED DA	TAI	DAMAGE RA		
None		· .	9.4	9.4		4.	.5	
FINAL FLOWING PRESSUR	Ei g	Paig	NUMBER OF POINTS USED	FOR INITIAL CURVE-FIT	,	FLOWING PR	ESSURE COMPARI	SON: 7.
None	`		6.					
			SLOPE OF INITIAL BUILD-U	P CURVE:	pai/cycle	1		
		·	9.3					
INITIAL SHUT-IN PRESSUR		psig	INITIAL EXTRAPOLATED P	RESSURE	paig	INITIAL POT	ENTIONETRIC SU	RFACE: loat
4029.	309.		4038.	317.(?)		*3561.		*3540 (?)
···· •			FINAL (1+0)/9 CALCULAT	ED FROM MEASURED DA	TAI	Ft. o	of Head a	bove K.B.
×	se un siste			1 -	•	752.	•	731.
	- 40 - 4		NUMBER OF POINTS USED	OR FINAL CURVE-FITE	1 .			
			,	1				
			SLOPE OF FINAL BUILD-UP	CURVE:	pai/cycle	i .		
		•						
FINAL SHUT-IN PRESSURE		palg	FINAL EXTRAPOLATED PR	ESSURE,	psig	FINAL POTE	NTIONETRIC SUR	FACE: feet
None								
INITIAL MYDROSTATIC MU	D PRESSURE:	puig	*Conversion	Constant of	۶ · ·	INITIAL MUD	PRESSURE COMP	ARISON: %
4220.	· •						: ··	
FINAL HYDROSTATIC HUD	PRESSURE	beid.	•	i used to ca	u~	FINAL MUD I	PRESSURE COMPA	RI SON1 %
4239.	1		culate P.S	. Elevation				

ROGER L. HOEGER Consulting Geologist 1780 So. Bellaire Street, Suite 301 Denver, Colorado 80222 (303) 759 - 4491

Comments relative to the analysis of the pressure chart from DST #17, Interval: 8520-9394', in the U.S.Geological Survey, Madison Test Well #2, SE SE Sec. 18, T1N-R54E, Custer County, Montana:

1. Extrapolation of the Shut-in pressure build-up curve indicates a maximum reservoir pressure of 4038 psi at the recorder depth of 8535 feet. This indicated maximum reservoir pressure is equivalent to a potentiometric surface elevation of 3561 feet above sea level, based upon the conversion constant of 2.30 ft./psi. This potentiometric surface elevation, in turn, indicates a head of water above the K.B. of 752 feet.

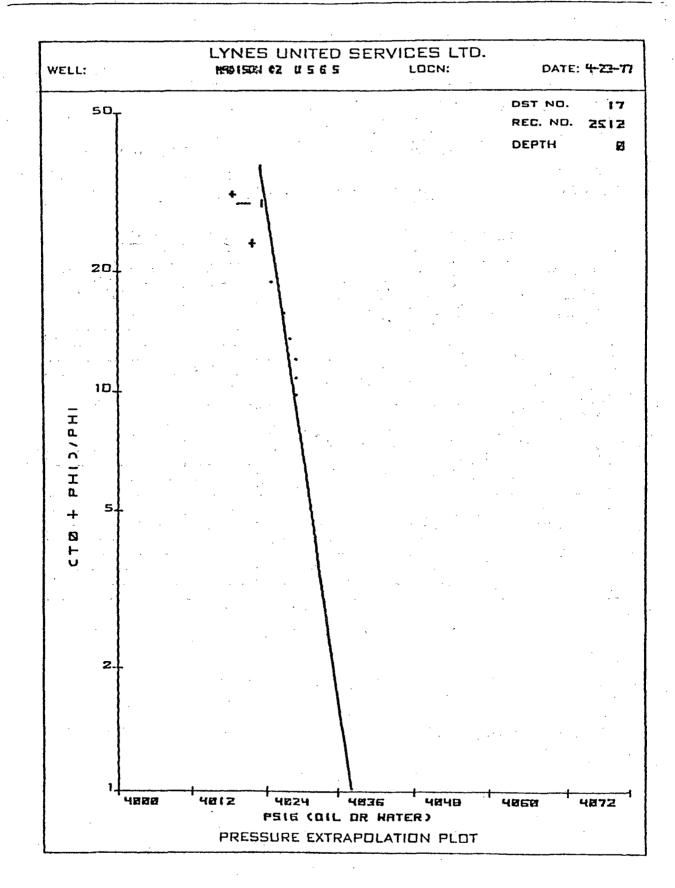
For comparison purposes, an extrapolation plot, using the Horner method, has been made for the pressure build-up data which were recorded by the surface pressure recorder during the shut-in period. This extrapolation plot indicates a maximum pressure of 317 psi at the elevation of the surface recorder. This extrapolated pressure is equivalent to a potentiometric surface elevation of +3540', based on the conversion constant of 2.30 ft./psi. This potentiometric surface elevation is equivalent to a head of water above the K.B. of 731 feet.

- 2. The calculated Average Production Rate which was used in this analysis, <u>1714.3 BPD</u>, is based upon the reported average flow rate of 50 gallons per minute which was recorded at the surface throughout the 504-minute flow period. This average production rate and the measured slope of the extrapolation plot for the shut-in pressure build-up curve that was produced by the down-hole pressure recorder have been used in the basic Horner equation to calculate numerical values for the various reservoir properties shown below and on the summary page.
- 3. The calculated Damage Ratio of 4.5 indicates that significant well-bore damage was present at the time of this formation test; however, it should be noted, in view of the volume-rate of production which occurred, this indicated well-bore damage is most probably due to the choke effect of the test tool rather than formation damage.
- 4. The calculated Effective Transmissibility of 29972.6 md.-ft./cp. indicates an Average Permeability of 2997.3 md./cp. for the estimated 10 feet of effective porosity within the total 874 feet of interval tested.
- 5. The evaluation criteria used in the DST Analysis System indicate that the results obtained in this analysis should be reliable within reasonable limits relative to the assumptions which have been made.

Operator____

U.S.G.S.

Lease & No. Madison Test Well #2


DST No. 17

÷.,

Recorder #2512 @ 8535'

	· · · ·				
	FIRST	SHUT IN PRES	SURE:		
	TIME(MIN)	(T"PHI)	PSIG		
	PHI	/PHI	•	· · · ·	
•	0.0	0.0000	3808		
	6.0	85.0000	4010		
	12.0	43.0000	4016		
	18.0	29.0000	4019		4
	24.0	22.0000	4022		~ •.
	30.0	17.8000	4025		
	36.0	15.0000	4027		
	42.0	13.0000	4028		
•	48.0	11.5000	4029		
	54.0	10.3333	4029	1 ar 9	
	60.0	9.4000	4029	· · ·	
1	EXTRAPLN OF	FIRST SHUT	IN : 4038.1	M : 9-3	
1	EXTRAPLN OF	FIRST SHUT	IN : 4038.1	M : 9.3	

Form 2

PRESSURE BUILD-UP CURVE INCREMENTAL-READING DATA

Company U.S. Geological Survey	
Well Name & No. <u>Madison Test Well #2</u>	
Location <u>SE SE Sec. 18. T1N-R54E</u> , Custer County, Montana	
DST No. 17 Test Interval: 8520-9394 Formation Tested:	Winnipeg

Surface

Recorder No. --- Recorder Depth 2' above K.B.

INITIAL SHUT-IN

FINAL SHUT-IN

	Initial Flor	w Time, t =	504	Total Flow Time, t =			
θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)	θ	t + θ	$\frac{t+\theta}{\theta}$	Pressure (p.s.i.)
2	506	253.00	313.5				
4	508	127.00	316.0				
6	510	85.00	317.0				
8	512	64.00	317.0				
10	514	51.40	317.0		NONE		
15	519	34.60	316.5				
20	524	26.20	315.5				
25	529	21:16	314.5				
	534	17.80	313.0				
40	544	13.60	313.0				
50	554	11.08	310.0				
60	564	9.40	309.0	<u> </u>	· · · · · · · · · · · · · · · · · · ·		:
			·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
ļ				,			
· · · · · · · · · · · · · · · · · · ·		•		<u> </u>			
				 			
				<u> </u>			
L							
L		· · · · · · · · · · · · · · · · · · ·					
I	<u> </u>		l	II			

U.S.G.S., Madison Test Well #2 (DST #17)

0267 97

Kenfer & Esser Co. Mixel N. K. Kenfer & Semi-Logarithmic . S cactes X & Diaisions

Geochemistry

Water samples were collected from drill-stem test zones that were selected to represent major rock types, formations of various ages, and types of porosity. The water chemistry from the selected intervals in Madison test wells 1 and 2 and subsequent tests will be used as control points for interpreting regional geologic, geophysical, isotopic, and chemical data.

If the interval flowed when the inflatable packers were set above and below the zone to be sampled, measurements were made of the pH and conductivity of the fluid until stabilization of these values and clearing of the water were obtained, indicating formation water was being monitored. If the interval did not flow, swabbing was begun to remove sufficient heavy drilling mud from the water column and formation to develop the zone. If possible, water samples were collected for analysis only after pH and conductivity measurements indicated that the water represented the formation fluid in the interval tested. Characteristics subject to variation with time such as pH, temperature, alkalinity, and conductance were measured in the field at the time of collection. Alkalinity was determined by pH titration using a standard sulfuric acid solution and preparing a titration curve. The field data are included with the laboratory data in the analyses tables.

The analyses of water samples from the Lakota Sandstone, Minnelusa, Mission Canyon, Devonian and Silurian, Red River, Roughlock to Precambrian, and a composite of waters from the Madison into the Red River are shown in tables 3-9.

Table 3.--Water-quality analysis--Lakota Sandstone

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CENTRAL LABORATORY. DENVER. COLORADO

WATER QUALITY ANALYSIS LAB ID # 43902 RECORD # 57099

SAMPLE LOCATION: 01N54E180DAC STATION ID: 455001105024304 LAT.LONG.SEQ.: 455001 1050243 04 DATE OF COLLECTION: BEGIN--770125 END-- TIME--1200 STATE CODE: 30 COUNTY CODE: 075 PROJECT IDENTIFICATION: 463004900 DATA TYPE: 2 SOURCE: GROUND WATER GEOLOGIC UNIT: 217LKOT COMMENTS: LAKOTA SANDSTONE

BICARBONATE	MG/L	1130	MERCURY DISSOLVED	UG/L	0.0
BROMIDE	MG/L	1.0	NO2+NOJ AS N DISS	DETR	• DELETED
CALCIUM DISS	MG/L	6.0	PH FIELD		8.3
CARBONATE	MG/L	69	PH LAB		8.5
CHLORIDE DISS	MG/L	. 300	POTASSIUM DISS	MG/L	3.8
FLUORIDE DISS	MG/L	3.8	SAR		72
HARDNESS NUNCARB	MG/L	0	SELENIUM DISSOLVED	UG/L	0
HARDNESS TOTAL	MG/L	18	SODIUM DISS	MG/L	700
IODIDE	MG/L	0.22	SODIUM PERCENT		99
IRON DISSOLVED	UG/L	1300	SP. CONDUCTANCE FLD		2790
IRON TOTAL	UG/L	16000	SP. CONDUCTANCE LAB		2950
LITHIUM DISSOLVED	UG/L	120	STRONTIUM DISSOLVED	UG/L	130
MAGNESIUM DISS	MG/L	0.7	SULFATE DISS	MGZL	130
MANGANESE DISSOLVED	UG/L	70	ZINC DISSOLVED	UG/L	30

	CATIONS			ANIONS	
CALCIUM DISS MAGNESIUM DISS POTASSIUM DISS SODIUM DISS	(MG/L) 6.0 0.7 3.8 700	0.058	BICARBONATE CARBONATE CHLORIDE DISS FLUORIDE DISS SULFATE DISS	(MG/L) 1130 69 300 3.8 130	(MEQ/L) 18.521 2.300 8.463 0.201 2.707
	TOTAL	30.904		TOTAL	32.190

PERCENT DIFFERENCE = -2.04

,127

Table 4.--Water-quality analysis--Minnelusa

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CENTRAL LABURATORY. DENVER. CULORADO

> WATER DUALITY ANALYSIS LAB ID # 43901 RECORD # 57097

SAMPLE LOCATION: 01N54E180DAC STATION 1D: 455001105024303 LAT.LONG.SED.: 455001 1050243 03 DATE OF COLLECTION: BEGIN--770123 END-- TIME--1200 STATE CUDE: 30 COUNTY CODE: 075 PROJECT IDENTIFICATION: 463004900 DATA TYPE: 2 SOURCE: GROUND WATER GEOLOGIC UNIT: 310 MNLS COMMENTS: MINNELUSA

BICARBONATE	MG/L	443	MERCURY DISSOLVED	UG/L	0.0
BROMIDE	HG/L	0.5	NO2+NO3.AS N DISS	DET	R. DELETED
CALCIUM DISS	MG/L	420	PH FIELD		7.0
CARBONATE	MG/L ·	0	PH LAB		7.5
CHLORIDE DISS	MG/L	15000	POTASSIUM DISS	MG/L	420
FLUORIDE DISS	DETF	DELETED	SAR		82
HARDNES'S NONCARB	MG/L	5200	SELENIUM DISSOLVED	UG/L	1 - 1 - 1 - ¹ - ¹
HARDNESS TOTAL	MG/L	5600	SODIUM DISS	MG/L	14000
IODIDE	MG/L	0.03	SODIUM PERCENT		83
IRDN DISSOLVED	UG/L	1800	- SP. CONDUCTANCE FLD	•	43200
IRON TOTAL	UG/L	40000	SP. CONDUCTANCE LAB		50000
LITHIUM DISSOLVED	UG/L	15000	STRONTIUM DISSOLVED	UG/L	2400
MAGNESIUM DISS	MG/L	1100	SULFATE DISS	MG/L	13000
MANGANESE DISSOLVED	UG/L	710	ZINC DISSOLVED	UG/L	830

CATIONS

ANIONS

1.1

	(MG/L)	(MEQ/L)		(MG/L)	(MED/L)
CALCIUM DISS	420		20.958	BICARBONATE	440	7.212
MAGNESIUM DISS	1100		90.486	CARBONATE	0	0.000
POTASSIUM DISS	420		10.740	CHLORIDE DISS	15000	423.150
SODIUM DISS	14000		609.000	SULFATE DISS	13000	270.660
	l. N	TOTAL	731.183		. 1	TOTAL 701.021

PERCENT DIFFERENCE = 2.11

Table 5.--Water-Quality analysis--Mission Canyon

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CENTRAL LABORATURY, DENVER, COLORADO

WATER QUALITY ANALYSIS LAB ID # 111011 RECORD # 65895

SAMPLE LOCATION: 01N54E18DDAC LAT.LUNG.SED.: 455001 1050243 13 STATION ID: 455001105024313 DATE OF COLLECTION: BEGIN--770417 END--TIME--0100 STATE CODE: 30 COUNTY CUDE: 017 PROJECT IDENTIFICATION: 463004900 GEOLOGIC UNIT: 331MSNC DATA TYPE: 2 SOURCE: GROUND WATER MISSION CANYON COMMENTS:

SULFUROUS ODOR--BLACK SUSPENDED MATERIAL.CLOUDY. MAY BE COMPOSITED AS SP COND WAS NOT STABLES FIELD VALUE USED FOR BICARDS RAD-CHEM SPLIT OFF1 DEPTH(FT) 16796-7036

ALK.TOT (AS CACO3)	MG/L	330	MERCURY DISSOLVED	UG/L	. 0 . 0
ALUMINUM DISSOLVED	UG/L	0.	MOLYBDENUM DISSOLVED	UG/L	0
ARSENIC DISSULVED	UG/L	5	NITROGEN TUTKJD AS N	MGZL	0.10
BARIUM DISSOLVED	UG/L	100	PH FIELD		7.2
BICARBONATE	MG/L	407	PH LAB		7.2
BORON DISSOLVED	UG/L	1400	PHOSPHORUS DIS AS P	MG/L	0.10
BROMIDE	MGZL	3.0	POTASSIUM DISS	MGZL	62
CADMIUM DISSOLVED	UG/L	1	RESIDUE DIS CALC SUM	MG/L	3210
CALCIUM DISS	MGZL	350	RESIDUE DIS TON/AFT	-	4.54
CARBONATE	MGZL	0	RESIDUE DIS 1AOC	MGZL	3340
CHLORIDE DISS	MG/L	580	SAR	_	7.2
CHROMIUM DISSOLVED	UG/L	70	SELENIUM DISSOLVED	UG/L	· 0 -
COPPER DISSOLVED	UG/L	0	SILICA DISSOLVED	MG/L	59
FLUORIDE DISS	MG/L	4.3	SODIUM DISS	MG/L	560
HARDNESS NONCARR	MGZL	820	SODIUM PERCENT	_	50
HARDNESS TOTAL	MG/L	1200	SP. CONDUCTANCE FLD		3600
IODIDE	MG/L	0.08	SP. CONDUCTANCE LAB		4330
IRON DISSOLVED	UG/L	11000	STRONTIUM DISSOLVED	UG/L	12000
LEAD DISSOLVED	UG/L	11	SULFATE DISS	MG/L	1300
LITHIUM DISSOLVED	UG/L	600	SULFIDE TOTAL	MG/L	3.4
MAGNESIUM DISS	MG/L	65	VANADIUM DISSOLVED	UG/L	20
MANGANESE DISSOLVED	UG/L	1800	WATER TEMP (DEG C)		33.8
			ZINC DISSOLVED	UG/L	320

CATIONS

ANIONS

CALCIUM DISS MAGNESIUM DISS POTASSIUM DISS SODIUM DISS	(MG/L) 350 65 62 560	5.347 1.586	BICARBONATE CARBONATE CHLORIDE DISS FLUORIDE DISS	(MG/L) 407 0 580 4.3	(MEQ/L) 6.671 0.000 16.362 0.227
30010 0130			SULFATE DISS	1300	27.066
	TOTAL	48.757		TOTAL	50.325

PERCENT DIFFERENCE =

-1.58

Table 6.--Water-quality analysis--Devonian and Silurian

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLUGICAL SURVEY CENTRAL LABORATURY. DENVER. COLORADO

WATER QUALITY ANALYSIS LAB ID # 111008 RECORD # 65887

SAMPLE LOCATION: 01N54E18DDAC STATION ID: 455001105024311 LAT.LUNG.SEQ.: 455001 1050243 11 DATE OF COLLECTION: BEGIN--770414 END--TIME--1700 STATE CODE: 30 COUNTY CODE: 017 PROJECT IDENTIFICATION: 463004900 DATA TYPE: 2 SOURCE: GROUND WATER GEOLOGIC UNIT: COMMENTSI DEVONIAN AND SILURIAN MUDDY--LT BROWN COLOR AFTER SETTLED! FIELD VALUE USED FOR BICARBI DEPTH(FT): 7766-8006

ALK.TOT (AS CACO3)	MG/L	380	MERCURY DISSOLVED	UG/L	0.0
ALUMINUM DISSOLVED	UG/L	50	MOLYBDENUM DISSOLVED	UG/L	13
ARSENIC DISSULVED	UG/L	2	NITROGEN TOTKJD AS N	MG/L	9.9
BARIUM DISSOLVED	UG/L	100	PH FIELD		7.0
BICARBONATE	MG/L	464	PH LAB	· .	6.9
BORON DISSOLVED	UG/L	19000	PHOSPHORUS DIS AS P	MG/L	0.02
BROMIDE	MG/L	7.4	POTASSIUM DISS	MG/L	190
CADMIUN DISSOLVED	UG/L	1	RESIDUE DIS CALC SUM	MG/L	7420
CALCIUM DISS	MG/L	270	RESIDUE DIS TON/AFT		10.5
CARBONATE	MG/L	0	RESIDUE DIS 180C	MGZL	7700
CHLORIDE DISS	MG/L	1700	SAR		32
CHROMIUM DISSOLVED	UG/L	140	SELENIUM DISSOLVED	UG/L	0
COPPER DISSOLVED	UG/L	4	SILICA DISSOLVED	MGZL	40
FLUORIDE DISS	MĠZL	5.9	SODIUM DISS	MG/L .	2100
HARDNESS NONCARB	MG/L	460	SODIUM PERCENT		. 81
HARDNESS TOTAL	MG/L	840	SP. CONDUCTANCE FLD		8200
IODIDE	MG/L	0.15	SP. CONDUCTANCE LAB		10600
IRDN DISSOLVED	UG/L	5400	STRONTIUM DISSOLVED	UGZL	3400
LEAD DISSOLVED	UG/L	2	SULFATE DISS	MG/L	2800
LITHIUM DISSOLVED	UG/L	4800	VANADIUM DISSOLVED	UG/L	61
MAGNESIUM DISS	MG/L	40	WATER TEMP (DEG C)		39.2
MANGANESE DISSOLVED	UG/L	1500	ZINC DISSOLVED	UG/L	140
· · · ·					

CATIONS

ANIONS

	(MG/L)	(MEQ/L)		(MG/L)	(MED/L)
CALCIUM DISS	270	13.473	BICARBONATE	464	7.605
MAGNESIUM DISS	· 40	3.291	CARBONATE	0	0.000
POTASSIUM DISS	190	4.859	CHLORIDE DISS	1700	47.957
SODIUM DISS	2100	91.350	FLUORIDE DISS	5.9	0.311
			SULFATE DISS	2800	58.296
· · · ·	TOTAL	112.972		TOTA	L 114.168

PERCENT DIFFERENCE = -0.53 TOTAL 114.168

Table 7.--Water-quality analysis--Red River

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLUGICAL SURVEY CENTRAL LABORATORY. DENVER. COLORADO

WATER QUALITY ANALYSIS LAB ID # 111009 RECORD # 65890

SAMPLE LOCATION: 01N54E18DDAC STATION ID: 455001105024310 LAT.LONG.SE0.: 455001 105024310 DATE OF COLLECTION: BEGIN--770413 END-- TIME--0800 STATE CODE: 30 COUNTY CODE: 017 PROJECT IDENTIFICATION: 463004900 DATA TYPE: 2 SOURCE: GROUND WATER GEOLOGIC UNIT: 361RDRV COMMENTS: RED RIVER

V: SLIGHT CLOUD--DILY SLICK: FIELD VALUE USED FOR BICARB: RAD-CHEM SPLIT OFF: DEPTH(FT): 8115-8355

ALK.TOT (AS CACO3)	MG/L	290	MERCURY DISSOLVED	UG/L	0.0
ALUMINUM DISSOLVED	UG/L	0	MOLYBDENUM DISSOLVED	UGZL	4
ARSENIC DISSOLVED	UG/L	1	NITROGEN TOTKJD AS N		3.2
BARIUM DISSOLVED	UG/L	100	PH FIELD		6.8
BICARBONATE	MGZL	351	PH LAB		6.6
BORON DISSULVED	UG/L	9500	PHOSPHORUS DIS AS P	MG/L	0.02
BROMIDE	MG/L	3.9	POTASSIUM DISS	MG/L	140
CADMIUM DISSOLVED	UG/L	0	RESIDUE DIS CALC SUM	-	4570
CALCIUM DISS	MG/L	270	RESIDUE DIS TON/AFT		6.38
CARBON TOT ORGANIC	MG/L	17.	RESIDUE DIS 180C	MGZL	4690
CARBONATE	MG/L	0	SAR		16
CHLORIDE DISS	MG/L	85u	SELENIUM DISSOLVED	UG/L	Ō
CHROMIUM DISSOLVED	UG/L	30	SILICA DISSOLVED	MG/L	43
COPPER DISSOLVED	UG/L	. 0	SODIUM DISS	MGZL	1100
FLUORIDE DISS	MG/L	6.0	SODIUM PERCENT		70
HARDNESS NONCARP	MG/L	590	SP. CONDUCTANCE FLD		5200
HARDNESS TOTAL	MG/L	880	SP. CONDUCTANCE LAB		6400
IODIDE	MG/L	0.09	STRONTIUM DISSOLVED	UG/L	9000
IRON DISSOLVED	UG/L	18000	SULFATE DISS	MGZL	1900
LEAD DISSOLVED	UG/L	4	SULFIDE TOTAL	MG/L	1.0
LITHIUM DISSOLVED	UG/L	2000	VANADIUM DISSOLVED	UG/L	18
MAGNESIUM DISS	MG/L	47	WATER TEMP (DEG C)		45.9
MANGANESE DISSOLVED	UG/L	480	ZINC DISSOLVED	UG/L	770

CATIONS

٠Ġ

ANIONS

TOTAL

69.605

 CALCIUM DISS MAGNESIUM DISS POTASSIUM DISS	(MG/L) 270 47 140	3.867 3.580	BICARBONATE CARBONATE CHLORIDE DISS	(MG/L) 351 0 850	(MEQ/L) 5.753 0.000 23.979
SODIUM DISS	1100	47.850	FLUORIDE DISS Sulfate diss	6.0 1900	0.316 39.55A

TOTAL 68.769

PERCENT DIFFE

-0.60

Table 8.--Water-quality analysis--Roughlock to Precambrian

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLUGICAL SURVEY CENTRAL LABORATORY, DENVER, COLORADO

WATER QUALITY ANALYSIS LAB ID # 118901 RECORD # 67194

SAMPLE LOCATION: 01N54E18DDAC STATION ID: 455001105024301 LAT.LUNG.SE0.: 455001 1050243 01 DATE OF COLLECTION: BEGIN--770423 END-- TIME--1300 STATE CODE: 30 COUNTY CODE: 017 PROJECT IDENTIFICATION: 463004900 DATA TYPE: 2 SOURCE: GROUND WATER GEOLOGIC UNIT: COMMENTS: ROUGHLOCK TO PRECAMBRIAN CLOUDY-- VERY GASSY SAMPLE: FIELD VALUE USED FOK BICARB

					÷
ALK+TOT (AS CACO3)	MG/L	350	MOLYBDENUM DISSOLVED	UG/L	3
ALUMINUM DISSOLVED	UG/L	0	NITROGEN TOTKJD AS N	DETR	. DELETED
ARSENIC DISSULVED	UG/L	17	PH FIELD	;	6.5
BARIUM DISSOLVED	UG/L	800	PH LAB		6.5
BICARBONATE	MG/L	427	PHOSPHORUS DIS AS P	MG/L	
BORON DISSOLVED	UG/L	9700	POTASSIUM DISS		350
BROMIDE	MG/L	9.4	RESIDUE DIS CALC SUM		
CADMIUM DISSULVED	UG/L	0	RESIDUE DIS TONZAFT		36.4
CALCIUM DISS	MG/L	1000	RESIDUE DIS TON/DAY		3620
CARBONATE	MG/L	0	RESIDUE DIS 180C	MGZL	26800
CHLORIDE DISS	MGZL	15000	SAR		63
CHROMIUM DISSOLVED	UG/L	40	SELENIUM DISSOLVED	UGZL	E 140
		0			
COPPER DISSOLVED	UG/L	•	SILICA DISSOLVED	MG/L	46
DEPTH(FT.FR.SURFACE)		8520	SODIUM DISS	MGZLS	8400
FLUORIDE DISS	MGZL	2.9	SODIUM PERCENT	· · ·	. 83
HARDNESS NONCARB	MG/L	3000	SP. CONDUCTANCE FLD		38500
HARDNESS TOTAL	MG/L	3400	SP. CONDUCTANCE LAB	· ·	39800
IODIDE	MGZL	- 1.1	STREAMFLOW (CFS) -INST	•	50
IRON DISSOLVED	UG/L	39000	STRONTIUM DISSOLVED	UGZL	40000
LEAD DISSOLVED	UG/L	2	SULFATE DISS	MG/L	790
LITHIUM DISSOLVED	UG/L	12000	SULFIDE TOTAL	MGZL	1.4
MAGNESIUM DISS	MG/L	200	VANADIUM DISSOLVED	UGIL	500
MANGANESE DISSOLVED	UG/L	1700	WATER TEMP (DEG C)		67.0
MERCURY DISSOLVED	UGZL	0.0	ZINC DISSOLVED	UGZL	90
HEREBULL DECORTED		~~~			70

CATIONS

ANIONS

	(MG/L)	(MEQ/L)		(MG/L)	(MEO/L)
CALCIUM DISS	1000	49.900	BICARBONATE	427	6.999
MAGNESIUM DISS	200	16,452	CARBONATE	0	0.000
POTASSIUM DISS	350	8.950	CHLORIDE DISS	15000	423,150
SODIUM DISS	8400	365.400	FLUORIDE DISS	2.9	0.153
· •		•	SULFATE DISS	790	16.448
and	τοτα	440.701	. ·	TOT	AL 446.749

PERCENT DIFFERENCE = -0.68

Table 9.--Water quality analysis--Composite of waters from Madison into Red River

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY CENTRAL LABORATORY, DENVER, COLORADO

WATER QUALITY ANALYSIS LAB ID # 123058 RECORD # 223

SAMPLE LOCATION: 01N54E18DDAC STATION ID: 455001105024303 LAT.LONG.SEQ.: 455001 1050243 03 DATE OF COLLECTION: BEGIN--770429 END-- TIME--1000 STATE CODE: 30 COUNTY CODE: 017 PROJECT IDENTIFICATION: 463004900 DATA TYPE: 2 SOURCE: GROUND WATER GEOLOGIC UNIT: COMMENTS: MADISON INTO RED RIVER CLOUDY WITH BLACK SPECKS--EFFERVESCENT WITH SULPHUROUS ODOR; FIELD

VALUE USED FOR BICARBE RAD CHEM SPLIT

ALK.TOT (AS CACO3)	MGŻL	270	MANGANESE DISSOLVED	UG/L	560
ALUMINUM DISSOLVED	UG/L	30	MERCURY DISSOLVED	UG/L	0.0
ARSENIC DISSOLVED	UG/L	· 1	MOLYBDENUM DISSOLVED	UG/L	0
BARIUM DISSOLVED	UG/L	0	NITROGEN TOTKJD AS N	MG/L	5.3
BICARBUNATE	MG/L	329	PH FIELD		5.8
BORON DISSOLVED	UG/L	9000	PH LAB		7.0
BROMIDE	MG/L	3.3	PHOSPHORUS DIS AS P	MG/L	0.08
CADMIUM DISSOLVED	UG/L	1	POTASSIUM DISS	MG/L	130
CALCIUM DISS	MG/L	320	RESIDUE DIS TON/AFT	_	5.97
CARBONATE	MG/L	0	RESIDUE DIS 180C	MG/L	4390
CHLORIDE DISS	MG/L	770	SELENIUM DISSOLVED	UG/L	0
CHROMIUM DISSOLVED	UG/L	20	SILICA DISSOLVED	MG/L	56
COPPER DISSOLVED	UG/L	0	SODIUM DISS	MG/L	940
DEPTH(FT.FR.SURFACE)		8000	SP. CONDUCTANCE FLD		5900
FLUORIDE DISS	MG/L	5.5	SP. CONDUCTANCE LAR		5800
IODIDE	MG/L	0.06	STRONTIUM DISSOLVED	UG/L	8600
IRON DISSOLVED	UG/L	920	SULFATE DISS	MG/L	1800
LEAD DISSOLVED	UG/L	1	SULFIDE TOTAL	MG/L	5.2
LITHIUM DISSOLVED	UG/L	2100	VANADIUM DISSOLVED	UG/L	0.0
MAGNESIUM DISS	MG/L	53	WATER TEMP (DEG C)		49.2
			ZINC DISSOLVED	UG/I	20

CATIONS -

ANIONS

	(MG/L)	(MEQ/L)			
				(MG/L)	(MEQ/L)
CALCIUM DISS	320	15.968	BICARBONATE	329	5.393
MAGNESIUM DISS	53	4.360	CARBONATE.	0	0.000
POTASSIUM DISS	130	3.325	CHLORIDE DISS	770	21.722
SUDIUM DISS	940	40.890	FLUORIDE DISS	5.5	0.290
			SULFATE DISS	1800	37.476
	TOTAL	64.542		TOTAL	64.880

PERCENT DIFFERENCE = -0.26

Preliminary results and future testing plans

Preliminary analysis of some of the infomation obtained during the drilling, coring, and testing of Madison Limestone test hole 2 follows:

Based on the drill-stem and packer-swabbing tests, all significant waterbearing units below the Lakota Sandstone have sufficient head to cause the water in them to flow at the land surface, 2,793 ft above sea level.

The chemical-quality tests indicate that, in the zones tested, there is no freshwater (less than 1,000 mg/L dissolved solids). Dissolved solids range from a low of about 2,000 mg/L in the Lakota Sandstone and the Madison Limestone to about 46,500 mg/L in the Minnelusa. In the Paleozoic section, the water freshens relative to the Minnelusa and, with the exception of the Red River, becomes saltier with depth.

None of the units tested yielded significant quantities of water. Flow rates ranged from about 5 to 50 gal/min. Pressure heads in the Paleozoic units were in general in excess of 750 ft above land surface. (See table 2 for complete flow data.)

Two cement plugs were placed in the bottom of the well--one from 9,378 to 9,084 ft and the other from 8,884 to 8,422 ft below land surface. The plugs were placed to block upward leakage of highly saline water (about 26,000 mg/L dissolved solids) that included a gas show in the basal Cambrian section.

Drill-stem tests 6A and 7 included the interval of the gas show in the Cambrian sand. Apparently the porosity and permeability of this sand are very low as the sand did not yield gas or fluid during the testing periods.

Water from the open-hole part of the well, which begins about 19 ft below the top of the Madison Limestone and ends about 120 ft above the base of the Red River, has a head at the surface of 333 $1b/in^2$ or about 768 ft above land surface. Because of the well-head equipment, the water cannot flow freely from the 13-3/8-in casing at the land surface. However, one of the 2-in valves in the well head was opened and the well flowed about 44 gal/min with about 3 $1b/in^2$ back pressure. Using these values, the specific capacity is about 0.06 (gal/min)/ft of drawdown. This specific capacity is about two orders of magnitude less than that of a similar interval in the Madison Limestone test well 1. The water from the open-hole part of the well has a dissolved-solids concentration of about 4,390 mg/L.

It is planned to run additional geophysical logs and tests in the test well this fall. The logs will include televiewer, gamma spectrometer, and possibly trace ejector and spinner surveys. A vertical seismic profile will be run in August.

The well construction and well-head equipment are such that the well can be used for several years as an observation point, a test laboratory, and for geophysical-tool calibration.

References

- Blankennagel, R. K., Miller, W. R., Brown, D. L., and Cushing, E. M., 1977, Report on preliminary data for Madison Limestone test well 1, NE¹/₄SE¹/₄ sec. 15, T. 57 N., R. 65 W., Crook County, Wyoming: U.S. Geol. Survey Open-File Rept. 77-164, 97 p.
- U.S. Geological Survey, 1975, Plan of study of the hydrology of the Madison Limestone and associated rocks in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming: Open-File Rept. 75-631, 35 p.