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Abstract 

In order to quantify the uncertainty of estimates of the geothermal 

resource base in identified hydrothermal convection systems, a methodol­

ogy is presented for combining estimates with uncertainties for tempera­

ture, area, and thickness of a geothermal reservoir into an estimate of 

the stored energy with uncertainty. Probability density functions for 

temperature, area, and thickness are assumed to be triangular in form. 

In order to calculate the probability distribution function for the 

stored energy in a single system or in many systems, a computer program 

for aggregating the input distribution functions using the Monte-Carlo 

method has been developed. 

To calculate the probability distribution of stored energy in a 

single system, an analytical expression is also obtained that is useful 

for calibrating the Monte Carlo approximation. For the probability 

distributions of stored energy in a single" and in many systems, the 

central limit approximation is shown to give results ranging from good 

to poor. 



Introduction 

The purpose of this paper is to document a methodology for pro­

viding measures of the uncertainty in estimates of the accessible 

geothermal resource base in identified hydrothermal convection systems. 

One could simply make a judgmental statement concerning this quantity 

(i.e. the geothermal resource base is x cal with a standard deviation of 

- y cal). The basis for making such a statement is very weak, because 

one has very little intuitive feel for the measurement of stored energy. 

Just as the estimate of identified accessible geothermal resource base 

is built up by estimating the temperature, area, and thickness of a 

system, calculating the stored energy, and summing the values for the 

various systems, one can make estimates of the uncertainty of each of 

these primitive quantities, and develop a methodology for aggregating 

these estimates into values for derived quantities. The uncertainties 

of temperature, areal extent, and thickness are relatively easy to 

estimate and vary considerably from system to system depending upon the 

amount of available data. 

The starting point of the calculation is to assume that the prob­

ability density functions for temperature, area, and thickness for a 

hydrothermal system are triangular. The parameters of each density have 

been estimated using the available geologic, geochemical, and geophysical 

data. These parameters are then used to calculate means and standard 

deviations for temperature, area, and thickness. Two types of derived 

quantities are then calculated from the parameters of the density func­

tions. The first type is the mean and standard deviation of the stored 



energy in a single system and the mean and standard deviation of a sum 

of the stored energy of many systems. Formulas for these quantities are 

easily developed. The second type of derived quantity is the prob­

ability density and distribution functions for stored energy in a single 

system and for a svun of many systems. These distribution functions are 

necessary to obtain confidence limits. The calculation for a single 

system can be done analytically but the calculation for many systems is 

analytically intractable. Instead, the probability distribution for 

stored energy in many systems is calculated using a Monte-Carlo simula­

tion. Similar calculations for petroleum resources have been done by 

Miller and others (1975) and White and others (1975). 

The type of statistical analysis that is discussed is not the only 

kind that is applicable to these data. La Mori (1976) analyzed the data 

in Circular 726 (Renner and others, 1975) for the relationship between 

number of systems and grade (temperature) in the usual mineral resource 

context in order to try and relate the sample of identified system to 

the population of all systems. In unpublished work, he also looked at 

number versus size relations for the same data set. McNitt (1977) has 

also made a study of number versus size but for producing fields and 

fields defined, by drilling in different areas of the world to check the 

log-normal properties of the relationship between number of systems and 

size. No such analysis will be attempted in this study. 

It should be pointed out. that a statistician will find nothing new 

in the results of this study. They are all essentially textbook results 

put together in a particular combination. The casual reader would do 



better to read the siumnary in U. S. Geological Survey Circular 790 

(Brook and others, 1979) for the highlights. The point of this paper is 

to satisfy the reader who wants to know how a particular calculation is 

done. The basic notions of probability have been freely borrowed from 

Papoulis (1965) and Feller (1950) and only particular results or state­

ments that are not easily found have been referenced. 



Random variables; distribution functions; density functions; mean; 
standard deviation 

In developing these notions of the behavior of a single random 

variable, the area of a system is used as an example. The results apply 

equally to temperature, thickness, stored energy, etc. The first point 

is the definition of a random variable. A random variable functionally 

relates an outcome to a nximeric value. For example, in dealing with 

outcomes such as whether the result of a coin toss is heads or tails, 

the random variable "number of heads" might be assigned the value one 

when a head appears and zero when a tail appears. For the outcome of 

measuring the area of a geothermal system, the random variable (denoteti 

A) is simply the value of the area. Random variables will be symbolized 

by using capital letters. An event A - a is the set of values A such 

that they are all less than or equal to a. The probability of the event 

A - a is denoted by P(A - a) and is a number between 0 Cthe event never 

occurs) and 1 (it is certain to occur). The distribution function for 

the random variable A is F^(a) and gives the values of the probability 

P(A - a), i. e. 

P(A - a).= F^Ca). , (1) 

The distribution function is usually defined for a between plus and 

minus infinity. All of our random variables take only positive values, 

so we will restrict a to be nonnegative. We will usually be interested 

in the event A - a, and the probability of this event P(A - a) is then 

1 - ^ x ^ ^ ) ' The density (function) is defined as 



f,Cal=^^AC-i 
C2) 

da 

and may be used to calculate the distribution function from 

F^(a) = r l f^(x) dx (3) 

where x is a dummy variable for the definite integral. The density and 

distribution are both useful in that the distribution gives actual prob­

abilities while the density is used for most calculations. The quantity 

f.(a)da may be interpreted as the probability that A is between the 

values a and a+da, i. e. 

f^(a)da = P{a - A - a + da}. C4) 

Figure 1 shows the triangular density and its associated distribution 

for the estimate of the area of the geothermal reservoir at Heber, 

California (Renner, 1976). 

A density may also be described by certain of its moments. The two 

most commonly used are mean Cexpected value) and standard deviation. 

The mean is defined as 

<A> = /Q a f^Ca)da (5) 

and the variance as 

VarCA) = <(A - <A>)^> = /^ Ca - <A>)^f^Ca)da. (6) 

The standard deviation a^ is simply the square root of the variance. 

Expanding the squared term on the right hand side of equation (6), we 

obtain the useful relation 

7 2 ^ _ , . . . . 2 , <CA - <A>)-> = /^ Câ  - 2a<A> + <A>^)f Ca)da 

2 •? 
= <A > - 2<A><A> + <A> 

= <A^> . <A>2, (7) 



i. e., the variance can be calculated from the second moment and the 

square of the mean. On figure 1 the mean and the mean plus or minus one 

standard deviation are shown. The mean gives us a measure of where most 

of the density function is concentrated while the standard deviation 

gives a measure of the spread of the density. Other measures of where 

most of the density function is concentrated are also used. The median 

a is the value of a such that P{A - a } = 1/2 and P{A - a„} = 1/2. The m m m 

mode or most likely value a - is the value of a such that f̂ Ca) is at 

its maximum. For a symmetrical density, the mean, median, and mode are 

all the same. The density function shown in figure 1 is not symmetrical 

so the three quantities all have different values. 

Example: A triangular density 

Since one of our primary densities is the triangular density, it is 

worthwhile to go through and calculate the various quantities defined 

above in terms of the parameters of the density function. Triangular 

densities are a three parameter family. As shown on figure 1, the three 

parameters that we will use are a^, a-, a_. The quantity a., is the 

minimum value—the value for which the probability that A - a, is 

unity. The qua.ntity â  is the most likely value Cmode)~the value for 

which the probability PCa2 - A - a2 -t- da) is a maximum. The quantity a_ 

is a maximum value; the value for which the probability that A - a-

is zero. Introducing the unit step function 

a Cx) r Q x<Q C8) 

1 x-Q 



we may write out the expression for the triangular density as 

r 
f̂ Ca] = 2-i 

Ca - a^ laCa^ a^l Ca - a2laCa - a2} Ca - a2)aCa - a^) 

^Caj - aj)Ca2 - a^l Ca2 - a3Ua2 - a^) Ca, a^)Ca3 - a2)j 
C9) 

The convenience of this form is that the expression is valid 

for a between zero and infinity. The associated distribution function 

is obtained by integration 

2 2 2 
Ca^ a^) aCa T a^) Ca - a-) aCa- a») Ca - a-) aCa - a-) 

F^Ca) = ^ + ^ + ' : ^. (10) 
(a^ - a^) (a2 - a^) Ca2 - a^) (aj - a^) (aj - a^) (aj - a2) 

The modal value of f.Ca) is given by equation C9) with a a a - , and we 

obtain 

«AC^2> • 
H - h 

The mean and variance are obtained by appropriate integrals of equation 

(9). With some algebraic rearrangement, we may write these as 

<A> = Ca, + a2 + a_) / 3 

VarCA) = <A^> - <A>^ 

= [Ca2 - a^l + Caj - a2)^ + Ca^ - a^)(aj - a2)] / 18. 

CU) 

(12a) 

C12b) 

For easy reference, these results and results for the normal and log-

normal density functions are given in appendix 1. 

Equation Cl2a) for the mean shows that the minimum and maximum 

values carry equal weight with the most likely value in determining 



the position of th.e mean. The mean may thus be quite different than the 

most likely value. Figure 2 shows a highly skewed type of density as a 

solid line. The miniimui, most likely, and maximum values have been 

taken from Renner C19-76). The relationship between the strong peak and 

the long tail was chosen so as tb maximize the graphical disparity be­

tween the two approximations to be discussed and does not necessarily 

reflect the true density function for the estimate of the area of the 

hydrothermal system at Coso, California. If we try to model this with a 

triangular density, the choice of whether to use the density shown as a 

broken line in figures 2a or 2b as the approximation has a dramatic 

effect on the mean. We are more interested in the mean than in the re­

gions with extremely low values of probability density, and therefore we 

should u se the broken line in figure 2b. Since the long positive tail of 

the true density is rapidly lost in the aggregation bf comparable random 

variables, this is a satisfactory approximation. It is also important 

to realize that not all of the density functions have a long positive 

tail. If all had this tail, there would be a systematic bias in the use 

of a triangular density and some other density would have to be used. 

Products and sums of random variables: mean and variance 

There are three functions of random variables for which we will be 

interested in finding the mean and variance. The first is the volume v 

for a single system of area a and thickness 5: 

V = a 5 (-13̂  

The second is the stored energy q for a single system of area a, thick­

ness 6, and temperature t: 



q = pcCt - t^l a 5 a4) 
0 

where t is a reference mean annual surface temperature taken as 15 C 
o 

and the product pc is the volumetric specific heat of the rock plus 

water system ( h e r e taken 0.6 cal/cm^Cl. The third function is the sum 

of the stored energy sq for n systems: 
n 

sq = S q. CIS) 

i=l ^ 

where a, 6, t, v, and q in equations 0-3). and 0-41 should all be sub­

scripted as being for i th system, but for clarity we will delete the 

subscripts except where necessary. 

The mean of v is by definition 

<V> = /̂  vfyCvldv. CIS) 

A fundamental theorem in statistics is that this may be calculated from 

<V> = /^ /^'aSf^Ca, 5) da dS (17^ 

where f̂ rCa, 5) is the joint density of random variables A and A CPa-

poulis, 1965, p. 206). The next paragraph gives the reasons for assum­

ing that T, A, and A are statistically independent random variables in 

order to allow a significant simplification of equation C171. 

The process of estimating area, thickness, and temperature gener­

ally involves the use of different indicators for each quantity. Tem­

perature is estimated from geothermometry, hot spring temperatures and 

mixing models, or it is known from well data. Areas are estimated from 

hot spring occurrances, temperature gradients in shallow wells, surface 

geophysical measurements of gravity, resistivity patterns, magnetics, 

topography, etc. Thicknesses are constrained below by a maximum of 

three kilometers Cnormal drillable depth), above by temperature gradient 

10 



data, and are estimated by geologic analogy. These processes of estim­

ating area, thickness, and temperature for identified geothermal systems 

are essentially independent. Some common denominators are temperature 

gradient holes and resistivity soundings for estimates of thickness and 

area. They are used in fundamentally different ways for estimating the 

two quantities, however. For areal extent, one is interested in the 

difference in gradient (OT resistivityl from hole to hole Csounding to 

sounding) to define the anomaly while for thickness one looks at a par­

ticular hole Csoundingl to estimate at what depth the reservoir temper­

ature is likely to occur. One is thus led to the assumption that area, 

thickness, and temperature are statistically independent random vari­

ables for which that the joint density in. equation 0-7) may be written 

as 

fyCa, 5} = f^Calf^CS). C18) 

and <V> may then be written as 

<V> = {/' a f^Ca)da}{:/^5f^C5)d6} 

= <A> <ffl> C19) 

Similarly, the second moment is 

<V^> = i f l a^f^Ca)da}{/^5^f^C5)d<S} 

2 2 
= <A > <(S > C20) 

and we may write the variance as 

varCY) = <V^> --<V>^ 

2 2 7 •? 
= <A > <A > - <A> <A> 

= [VarCA) + <A>^]{Vara) + <A>^] --<A>^ <A>^ C21) 

Similar relations can be developed for stored thermal energy, and they 

11 



are given in Appendix 1. 

A possible point of confusion concerning the assumption of statis­

tical independence is the relationship of estimating the statistical 

properties of a single system to the underlying population of geothermal 

systems with, perfectly measured properties. There is a frequency dis­

tribution 

n Gr^, t^l C22) 

for the number of systems having a volume with the value v. to v. + Av. 

in the temperature range t. to t. + At.. This frequency distribution is 

most easily conceptualized in terms of discrete random variables. A 

sample estimate of this frequency distribution could be provided by 

taking the mean values of the volume V. and temperature T. for each 

system in the 1978 data set (Brook and others, 1979), making a grid of 

cells of size T^ to T^ + dT. and V- to V. + dV. , and 

assigning each, system to a cell. For this frequency distribution, tem­

perature and size are not statistically independent random variables. 

In one case we are dealing with, uncertainties of a measuring process 

while the other looks at the characteristics of perfectly measured 

quantities. 

TEie mean and variance of SQ may be obtained similarly, i. e. 
n 

<SQ> = <I q. > 
i=l ^ 

«̂  n 

° U"-^o ^^ ^i}£^(^l*^">\y^<\.y^% 

n 
0̂- • '̂ o glV\<^^ll- • •̂ V̂'̂ l̂ "'^% 

12 



n 
.^/o- • -̂ o VQI<^^1^' • •\'^V^'^1- • -̂ Si 

" .« 
.^^o^i^q.^^i^^'li 
1=1 ^1 

= ? <0.> C23) 
i=l ^ 

<CSQ - <SQ>)^> = S C<(1^> - <Q^>h (̂ 24al 

n 
varCSQ) = Z varCQ-l C24b) 

i=l 

where we have again assumed that the Q. are statistically independent 

random variables in going from line 2 to line 3 above and in obtaining 

equations C24). 

Products and sums of random variables: distributions and density 
functions 

In the previous section, relations for the mean and variance of 

products and sums of random variables were obtained without finding the 

density or distribution of the derived random variables, m this sec­

tion, we will present a formal solution for the resultant density func­

tions » In special cases, the calculation can actually be done and we 

will present results for the products of random variables, each, having a 

triangular density. 

The random variable V = A A. has a distribution function F Cy) = 

P{V - v}. To determine FyCvl, we must find the probability of the event 

{V - v}. In the a 6 plane, the event {V - v> corresponds to a5 - v 

13 



which defines a region in the a<S plane shown cross-hatched in figure 3. 

We will call this region the domain D^, then we have 

P{V - v} = P{CA, Al £ Dy} C251 

where the second grouping is read as the probability that A and A are 

in the domain D„. This later probability is given by 

FyCv) = P{CA, A) e Dy} = / /f^Ca, 5)dad5. C26) 
'̂V 

For statistically independent random variables, we have 

F Cv) = / /f^Ca)f^C5)dad<S C27) 
Dy 

and the density can he obtained by differentiating the result. For our 

particular case, the integral may be written over the domain D^ as 

FyCv) = /" /y'^f^Ca)f^0S]ciad6 C28) 

where the diagram in figure 3 shows that we first integrate a strip of 

width d(S from the axis a=o to the curve v/(S and then integrate all of 

these strips from 5=0 to 5=«a Qsee Papoulis, 1965, p. 189, for a sim­

ilar manipulation). Differentiating the integral with respect to v and 

using Leibnitz Rule, we obtain 

V̂̂ ^̂  = ̂ ^oh^'^h^^^^^- C29) 

By identical reasoning, the density for stored energy in a single system 

is 

' ^ ^ ^ ' '̂o p - ^ fTtt)fv(-^^t. C30) 

14 



For the sum of random variables, it is easiest to solve for the 

resultant density in steps. Defining a variable sq' " ^i * ^ 2 ' ^^"^^^^ 

reasoning gives the result 

fgQ>(sq') = ^^'^'fqi(sq' - q2)fq2(q2)dq2. (31) 

Defining a variable sq'' = q. + q2 + qj, we obtain by similar reasoning 

fgQ_(sq") = l ^ "^ ' ' ^̂ "̂ ''"̂ Ŝ fqi(sq"-q3-q2)fq2(q2)fq3Cq3)<iq2dq3 (32) 

and ad infinitum as the number of variables increases to more than a 

hundred. The form of equations (31) and (32) is what is known as a 

convolution integral, and for some simple density functions, the use of 

transforms would permit the evaluation of the integral in closed form. 

Equations (29) and (30) are the formal solution for the density 

function of stored energy in a single system and equations (31) and (32) 

are the first two of a series of equations that constitute the formal 

solution of obtaining the density function of stored energy in many sys­

tems from the density functions of stored energy in each of the single 

systems. Asstiming triangular densities for temperature, area, and thick­

ness, it is practical'to use these formal solutions only as far as cal­

culating the probability density and distribution of the volume and 

stored energy in a single system.. To obtain the density function of 

volume, we need the density function of area given in equation (9) and 

one for thickness that has the same form with just the symbols changed. 

Substituting into equation (29), the first term is (there are eight 

more) 

(J - a^)(<S - S ^ ) a C l - "̂ "̂̂^ " h ^ 
V̂̂ ^̂  = Ct — <î  * ••• C33) 

C63-61) (62 - ^i) Ca3 - ap (a2 - a ^ 

15 



The two step functions restrict the effective domain of integration to 

values of 5 that are between 5, and v/a... Consequently, the first term 

may be written as 

- , . f J. > rV/a, 4(j - aT)(l - T )d6 + ... 
fy(v) = a(v - aĵ Sj)/̂  1 '6 1̂ ^ 6̂ ' 

(63 - 5^(52 - Vf^3 - Vf^2 - V 

H2ia.^&^ - V) + (â Ŝ  + v)ln JL-]a(v-ai5p 

^ ̂  + (34) 

(63 - 5 ^ (62 - 5i) (63 - ap (a2 - a ^ 

and the other eight terms can be written by a rotation of subscripts. 

The complete result for volume and the result for stored thermal 

energy are given in Appendix 1. A computer program for evaluating 

the density and distribution function for stored thermal energy in a 

single system is given in Appendix 2. 

Central limit theorem for products and sums of random variables 

As a large number of random variables (satisfying certain technical 

conditions) are summed to form a resultant random variable, the form of 

the individual distribution functions tends to become swamped by the 

convolution process and the resultant distribution tends toward a normal 

with a mean given by the sum of the means and a variance given by the 

sum of the variances. The random variables added to obtain the stored 

energy of the various systems are likely to satisfy these conditions 

(see Parzen, 1960, pp. 430-432 for a precise statement), though one must 

16 



be careful of the attribute that most of the variance is contributed by 

a relatively small number of large systems. The central limit approxima­

tion is useful in either: 1) providing an approximate answer to con­

verting standard deviations to confidence intervals, or 2) providing a 

semi-quantitative check of Monte Carlo results. The normal density has 

the unfortunate property of being defined from minus infinity to plus 

infinity. Thus it will yield a small but finite probability that the 

aggregate of stored energy will be less than zero. In practice, this 

turns out to not really be a problem. The probability that the stored 

energy is greater than zero is usually very close to one (examples given 

in discussion section). 

An easy extension of the central limit theorem may be made for the 

stored energy in a single system as related to the temperature, area, 

and thickness by equation (14) by defining 

Y = In q (35a) 

e^ = In (t - t^) (35b) 

$2 = In (a) (35c) 

63 = In (5) (35d) 

so that we obtain the relation 

Y = 8j + 02 + S3 + In (PC). (36) 

We have thus transformed a product to a stun of random variables. Assum­

ing that the central limit theorem holds, the variable y should be dis­

tributed normally. This is exactly the definition of a log-normal dis­

tribution for the variable q—that its logarithm is distributed normal­

ly. In practice, it turns out that the log-normal approximation is not 

very good. As will be shown below, a normal distribution frequently 

17 



represents the distribution of q for a single system more accurately 

than a log-normal. 

Monte-Carlo methods for aggregating random variables 

For any but the simplest density function, the manipulations re­

quired to calculate a density function from eqs. (31) and (32) are very 

difficult and sometimes not analytically possible. One could write com­

puter programs to perform the integrations. However, a minor change in 

the relationship between random variables might require a whole new 

program. A technique that has been developed that solves the problem in 

a fundamentally different manner is the Monte Carlo method (see Mize and 

Cox, 1968, for an introduction). The basic idea is to generate a random 

outcome (e.g., toss a coin), use this random outcome as an input to a 

model, and to record the output from the model. This process is usually 

repeated many times. In order to do a good simulation, the randomness 

of the outcomes must be guaranteed (e. g., the coin must be a very fair 

coin) or the results will be biased. 

In order to describe the technique it is easiest to go through the 

formal solution of an example. Let q. and q_ be the stored energy in 

two systems with distributions F-(q-) and ? y ( \ - ) . We want to find the 

resultant distribution F(q) where q = q^ + q2. The first step is to 

generate a set of random numbers in the interval 0 to 1, say 800 num­

bers. We choose two random ntimbers u, and u- and find the values of q, 

and q2 such that 

^1 " l̂"'̂ '̂ '̂ l̂  (̂ ^̂ 5 

q2 = F2"-̂ (U2) (37b) 

where F" denotes an inverse, i. e., the value of stored heat q. that 

18 



has a probability u, that the random variable Q, - q,. We then sum q, 

and q- to obtain a value q. We have now performed one trial. This 

process is repeated four hundred times and yields a table of q values 

that can be sorted into increasing order. Define F*(x)=(no. q values -

x)/(no. of trials). It is well known that F*(q) is a good estimate of 

F(q) and that the accuracy of this estimate increases as the sample size 

increases. F*(q) is known as the sample distribution function. Clearly, 

the computations involved are quite simple. Different choices of dis­

tributions and relations among random variables are easy to incorporate 

into fairly short computer programs. The choice of distributions that 

can be inverted analytically results in significant computational effi­

ciencies. For the triangular distribution of equation (10), the inver­

sion is 

a(F^) 
(h * ((a3-ap(a2-apF^)l/2 0 < F^ <- ̂ ^2 ' h ^ 

(a, - a.) 3 "1^ (38) 

^a3 . ((a3 - a,) (a3 - a2) [1 - Fj)^/^ {!l-l!ll < ̂ A " ̂ ^ 

Harold Javitz of SRI International has written such a program for 

this study and a listing is given in Appendix 3. Figure 4 shows for 400 

trials the degree to which the sample density function and sample dis­

tribution ftmction reproduced by this program agree with the exact tri­

angular density and the resulting distribution function. Many more 

trials are required to reproduce the density ftmction than the distribu­

tion function, and we will only use the Monte-Carlo program for produc­

ing sample distribution functions. The mean and standard deviation 

calculated from the Monte-Carlo simulation are 2.003 and 0.408, and 
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these are within 0.2% of the true values of 2 and 0.408. The analytical 

solution for a product of three random variables will be used to make 

further comparisons below. 

Discussion and example using 1975 data set 

As part of the effort to estimate the resource base in hydrothermal 

convection systems in Renner and others (1975), a file was set up and 

estimates made (Renner, 1976) to perform a statistical analysis of the 

stored energy. Minimum, maximum, and best estimates for temperature, 

area, and thickness, and other quantities were derived. The lack of a 

methodology and the press of time prevented this aspect of the study 

from being carried to completion. We can now use some of this data set 

to provide examples for the methodology developed here. 

There are two inadequacies in the 1975 data set caused by the lack 

of a methodology that are important to remember in what follows. The 

first inadequacy is that there was no real assumption as to the form of 

the density function. Having now assumed a triangular density, the 

problem mentioned above of dealing with long tails becomes important. 

The data for Coso, CA in figure 2 exemplify this. The maximum area was 

estimated from the arcuate faults fotmd by Duffield in preliminary map­

ping and it was quite speculative that the system might be that large 

(Duffield, 1978, pers. commun.). Thus the maximum should have been 

lowered in order to deal with the limitations of a triangular density. 

This example is an easily documented case of a problem that probably 

occurs in other places in the data set. The second inadeqiiacy is that 
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the best values reported in Renner C1976) are not necessarily the most 

likely values (Renner, pers. commun., 1978). In some cases they are the 

most likely, but in others they are actually the mean values. This 

distinction will be ignored, and the best value will be treated as the 

most likely. For these reasons, we caution the reader that the values 

given in this report are not to be regarded as a revision to Circular 

726. 

Figures 5, 6, and 7 show the density functions for temperature, 

area, thickness, and stored energy for the three systems at Heber and 

Long Valley, CA and Valles Caldera, N. M. These three examples were 

chosen because of their very different forms of the density function for 

area. Heber is relatively symmetric. Long Valley has a long tail toward 

zero, and Valles Caldera has a long tail towards infinity. In all three 

cases, the density function for stored energy is smooth and possesses a 

distinct tail. Taking a product of random variables tends to produce an 

asymmetric density with a longer tail towards infinity. Thus the rather 

sharp break for the area of Long Valley becomes less sharp in the stored 

energy, but the long tail towards infinity in the area of Valles Caldera 

is preserved. The distribution for stored energy in each of the single 

systems are also shown on figures 5, 6, and 7 along with Monte-Carlo 

derived sample distribution functions. The Monte-Carlo simulations are 

generally very good representations of the analytical solutions, and 

this good agreement gives confidence in using the Monte-Carlo aggrega­

tion for summing the individual systems to produce an aggregate distribu­

tion function. 
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Figures 8, 9, and 10 show the density and distribution functions 

for stored energy for each system along with the approximations based on 

using normal and log-normal densities and distribution functions. The 

normal and log-normal densities have the same mean and standard devia­

tions as the true density. Other matching schemes are possible, but 

this preserves the important statistical measures that can be manipulated 

without knowing the form of the density function. For Heber and Long 

Valley, the normal is a better approximation to the density than the 

log-normal and is essentially indistinguishable from the true when 

comparing distribution functions. For Valles Caldera, the log-normal is 

a very good approximation to the true density. The normal is a reason­

able approximation to the distribution function, even though it asserts 

a probability of 0.03 that the stored energy is less than zero. 

Figure 11 shows a comparison between a Monte-Carlo derived sample 

distribution ftmction of the total stored energy in the three systems 

and distribution ftmction approximations based on a normal and log-

normal density using the true mean and standard deviation. Since the 

process of summing random variables tends to result in a normal density, 

one might expect a normal approximation to be a good one. That some of 

the densities of stored energy for a single system are approximated well 

by a normal density also tends to help the tendency towards normality 

for the sum of random variables. Both the normal and the log-normal 

seem to be reasonable representations of the Monte-Carlo simulation. 

Because of the large variability of the shape of the input distributions 

as parameters are varied, it is not possible to make any strong a priori 
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statement about how well either distribution will fit for the sum of a 

large number of systems. However, the Monte-Carlo produced sample dis­

tribution function will converge to the true distribution function as 

the number of trials increases. 
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Application to U. S. Geological Survey 
Circular 790 (Brook and others, 1979) 

This report has discussed a number of aspects of the problem of 

finding resultant statistics for products and sums of random variables. 

For the assessment of geothermal resources in hydrothermal convection 

systems (Brook and others, 1979), only some of this material is impor­

tant. The path that is taken in that document is to estimate the mini­

mum, most likely, and maximum values for temperature, area, and thick­

ness. Assuming a triangular density function, these values are then 

used to obtain a mean and standard deviation for each quantity. The 

relations for products of random variables are then used to convert these 

values into means and standard deviations for reservoir volume and ther­

mal energy for individual systems. The relations for sums of random 

variables are then used to obtain means and standard deviations for var­

ious groupings of systems, e. g. all hot-water systems >150''C, hot-water 

systems >150''C plus vapor-dominated isystems, etc. In each case, the 

standard deviation is used to provide a rough measure of the uncertainty 

in each quantity. The minimum, most likely, and maximum values of tem­

perature, area, and thickness are then used as input to Monte Carlo com­

puter programs to calculate sample distributions for stored energy in 

various groupings of the systems. 
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Appendix 1 Useful formulas 

For a single system 

<V> = <A><A> 

<Q> =» pc(<T> - t )<A><A> 

var(V) = [varCA) + <A> J[varCA) + <A> J - <A> <A> 

var(Q) = (pc)^[varCT) + (<T> - t^)^][varCA) + <A>^][varCA) + <A> ] 

2 2 2 2 
- ( p c ) (<T> - T^) <A>^<A>^ 

For a sum of n systems 
n 

<SQ> = ' Z <Q.> 
i=l ^ ) 

n 
varCSQ) = I varCQ-) 

i=l ^ 

Properties of a triangular density 

. y fo x<0 
o(x) =4 > 

Ll x-1 

Ka - a J a C a - a p Ca - a_)aCa - a-1 Ca - a-laCa - a . ) 
f^(a) = 2^ i ^ + ± i - + ^ ^ 

[Ca3 - a p Ca2 - a p Ca2 - a3) (a2 - a p (a3 - a p Ca3 - a2) j 

2 2 2 
(a - a p aCa - a p Ca - a_) aCa - a , ) (a - a , ) a ( a - a,) 

F^(a) = i i - + f i - + i ± -
(^3 - h^^^2 - h ^ ^^2 - ^3^ ^^2 - h ^ ^^3 - ^^'^^3 " ^2^ 

<A> = (a, * ^2 * ^z^^^ 

var(A) = [(aj - a^)^ + â,̂  _ a2l^ + Ca2 - a p Ca3 - a2)] /18 
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Properties of a normal density -
1 Cx - m)^ 

f(x) = exp{-7;;7?72 — 20̂  
-} 

X - m 
F(x) = j"Sl + erf I 

C2a2)^/2 

<X> = m 

var(X) = a 

Proper t ies of a log-normal densi ty 
1 C Cln X - a) 

f (x) = 2 1/2 ®^"' 
xC2Trb ) 

F(x) 4 1 + erf 

2b 
In X - a ^ 

<X> = exp{a + •=—} 

<X^> = exp{2a + 2b^} 

a = ln{<X>^/C<X^>)^''^} 

b^ = ln{<X^>/<X>^} 

Density and distribution for volume and stored energy for a single 

system 

f(â  - a3)(aj^ - a2) j=l 

del(a^, j) 2-/(a2 - a3) (a2 - a^) j=2 

\i3L^ - aĵ )(a3 - a2) j=3 

f^(v) = E S ^ f ^ ^ j \ - ̂^ * Ca.5^ . v)ln^]aCv - a.S,) 
V j=l k=l ^-^-

delCa^,j) delCS^, k) 

3 3 [3Ca.̂  
^ j=i k=i \ L i 

delCa., j) delCS^, k) 
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q., = pca.6, ( t - t^) ^jkm '̂  J k^ m o 

3 3 3 8q 
f^(q) = Z E Z 
^ j= l k=l m=l (pc)^ 

(1 
^jkm. 
, - ) ( 6 . , l n ( ^ ) ) 

3ci.!i]2L)ina t!^!^_iM^ 
^ '̂ jkm d e l ( a . , j ) d e l ( 5 . , k ) d e l ( t . , m) 

F^(q) = E E E sfa .S, ( t - t ) r - ( ^ ( 3 -
Q - 1 1 1 1 J k m o-̂  I 8 ^q . , 2 
^ j= l k=l m=l •-•' J I ^jkm^ 

1) - 4( 
^jkm 

1) 

4q jkm 2": km 
^ ^ '̂ jkm ^ ^ ^ ^ ^ 

"̂ *1 - ^jkm^ 

•del(a^, j ) de l (5^ , k) d e l ( t . , m) 
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Appendix 2 Computer program for calculating 

the stored energy for a single hydrothermal convection system 

The equations for the stored energy in a single system have been 

used to write a program in PL/I for the Honeywell 68/80 computer. The 

program is a straightforward calculation routine. The only obscure as­

pect is that it is written for a time share mode, so that the program 

is called from the user's working directory, the program then requests 

the input data from the user, sends the output to various files that the 

user may then inspect and have printed. For batch use, the put state­

ments would have to be reorganized accordingly. 
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fai orocedure; 

This orogram ca(.eulat«s the values of the orobabilitv density and 
distribution function for stored heat. Values of the miriuwum* 
most likely* and maximum of temperature/ area* and thickness for triangular 
density a r e requested from a terminal after the orooram has been called. 
The values are printed in file "dataout" for printing and in files "f" 
and " f " f o r transmission to the 4051. 

Hareh*1978 

declare (svsin) fil* stream input* 
declare (dataout) file stream output; 
declare (f) file stream output; 
declare I f ) file stream output; 
declare Csysprint>file stream output; 
open file (sysin) input stream; 
open file (dataout) output stream print pagesi2e<S8) I inesize(100); 
open file (f) output stream; 
open file (F) output stream; 
open file (sysprint) output stream; 

•*/ 

dif: orocedure(a*i#del t ) ; 
d e c l a r e ( a ( 3 ) * d e l t ) f l o a t ( 3 Q ) / i f i x e d b i n a r y ( 3 0 ) ; 
if isi then delta(a(1)-a(3))*(a(1)-a(2)); 
if is2 then delt»<a(2)-a(1))*(a{2)-a(3)); 
if i33 then delt»(a{3)-a{1))*(a(3)-a(2)) ; 
return ; 
end; 

mv: procedure(min*ml/max*mean*var>; ' 
declare (min#ml*max*mean/var) float (30); 
means (mi n>nl'f-max }/3eO; 
var = ((min-ml)*(min-ii)l)*(max-ml)*(max-ml)>(ml-min)*(max-ml))/18eO; 
return; 
end; 

dec I are (t(3)/a(3)*d(3)*qa(3)*tmean/tvar«amean*avar>dmean«dvar*anean*<]var/ 
rhoc#o#fa/Fa/ac/den«delta1/delta2*delta3) 
(i/j#k*l) fixed binary (30)/ 
name character (25) varying; 

declare (sd#unit/de I ) float (30); 

float (30)/ 

rhoc=0.6e-3; 

put file (sysprint) edit 
("You need values of the orobabilit 

get 

I WW .•<;<r.̂  .<...»<:.> w. ...IC M< uwau • <. I (. 7- uensity and distribution function"/ 
"for stored heat. Input the min/nl/ and max o f / 
"temperature(C)/ area(km»*2)/ and thickness(km) and the calculation interval and "/ 
"the system name in double quotes. Hit return and leave the rest to me.**) 
(4(skip/a)); ' 

file (svsin) list (t/a/d/unit/name); 

call mv(t (1)/t (2)/t(3)/tii)ean/tvar); 
call mv(a(1)/a(2)/a(3)/amean/avar); 
call mv(d(1)/d(2)/d(3)/dmean/dvar}; 

qmeanarhoe*(tmean-15e0)*amean*dmean; 
qva r=rhoe*rhoc*((tvar + tfflean*tmean-30eO*t(!iean*225eO)*(avar + amean*amean)*(dvar + diitean*dmean) 

-(tmean-15eO)*(tmean-15eO)*amean»amean*dmean*dmean); 

31 



aa«rhoc*(t-1SeO)*a*d; 
sd=sqrt(ovar); 

•mean**/"s.d."/ put file (dataout) edit (name/^-stored hea t''/'*min"/"ml"/"max" 
"te»oerature(C)"/t/tmean/sqrt(tvar)/ 
"area(km**2)"/a/amean/sqrt(avar)/ 
"deoth{km)"/d/dmean/sqrt(rivar)/ 
"heat(el 8 cal)"/qa/qmean/sqrt(qvar)) 
(skip/a/a/skip/x(20)/5(a(P))/skip/a(16)/5(f(3/0))/ 
skip/a(16)/5<fC8/1))/skip/a(16)/5(f(8/1))/ skip/a<16)/S(f(8/3))); 

put file (dataout) edit ("q"/"f(q)"/"1-F(q)") (skip/x(4)/3(adO))); 

do isi to 400; 
del'i; 
q=trunc(qa(1))*del*unit; 
fq=»OeO; FqaOeO; 
do j3l to 3; -
do kal to 3; 
do lal to 3; 

qc*q/(rho 
if qc >« 

call d 
call d 
call d 
denade 
f qa f q * 

Fq=Fq+ 

end 
end; end; 
out file 
put file 
put file 
if Iineno 

out f i 
(name/ 

if Fq>0.9 
end; 

e*a(j)»d(k)*<t(l)-1Se0)); 
leO then do; 
if(a/j/delta1); 
if(d/k/delta2); 
if(t/l/delta3); 
Ita1*delta2*delta3; 
((8e0»q)/(rhoc*rhoc))*((leO-leO/qe)•(6eO*0.5eO*log(qc)*loq(qc)) 
-3eO*(1eO+1eO/qc)* log(ac))/den; 

SeO*((a(J)*d(k)*(t(l)-15e0))**2)*(31e0*(ac»qe-1e0)/8e0-4e0*(qc-1e0) 
•••qe*(qc/4e0-0i5e0) *loq(qc) *log(qc) i( 1. 75e0*qc,*ae+2eO*qc) *loq (qe) )/den; 

end; 
(dataout) edit (a/fq/1eO-Fq) (sVio/f(8/2)/x(2)/f(10/5)/f(10/4)); 
(f) edit (a/"/"/fa/"/") (f(9/3)/a/f(10/4)/a); 
(F) edit (q/"/"/1eO-Fq/"/") (f(9/3)/a/f(10/4)/a); 
(dataout) >57 then 

le (dataout) edit 
"-stored heat"/"q"/"f(a)"/"I-F(q)") (skio/a/a/skip/x(4)/3(a(10))); 
9995e0 then go to out; 

out: 
put file (sysprint) edi t 

close 
close 
close 
close 
close 
end; 

file 
file 
file 
file 
file 

( s y s i n ) ; 
( d a t a o u t ) : 
( f ) ; 
( F ) ; 
( s y s p r i n t ) ; 

( " x / f / an j j 
" p u r p o s e s . 
" a r e i n f i l e 

1-F a r e i n f i l e d a t a o u t f o r 
X and f a r e i n f i l e f and x 

f o r s e n d i n g t o 4 0 5 1 " ) 

o n n t 1 ng / 
and 1 - F " / 

( 3 ( s k i p / a ) ) ; 
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Appendix 3 Computer program for performing 

a Monte Carlo simulation to calculate the distribution 

of stored energy in one or many systems 

Harold Javitz of SRI International wrote a Fortran program to 

calculate the distribution function for stored energy with triangular 

input density functions for temperature, area, and thickness. The basic 

relations used are ecjuation (38), the inversion formula for a distribu­

tion function from a triangular density function, and equation (14), the 

relation between temperature, area, and thickness, and stored energy. 

The program uses the subroutine ggu4 written by International Mathemat­

ical and Statistical Libraries, Inc. For use at the U. S. Geological 

Survey, the program was rewritten in PL/I for the Honeywell 68/80 with 

the MULTICS interactive operating system. In order to use the compiiled 

version of the program, the first step is to type in the command 

asr >iml>imsl -after working_dir 

to add the imsl library to the search rules, a file called "pine" must 

then be created with input data. All data items need only be separated 

by a space. The first three data items are the nximber of systems, the 

number of Monte Carlo trials to be performed, and the seed for the ran­

dom number generator. A reasonable starting seed according to Mr. Javitz 

is 123457. Part of the output is the final value of the seed to be used 

for the next rtm. The minimum, most likely, and maximum values for tem-

perature ( C), area (km ), and thickness (km) then follow for each sys­

tem. Degenerate density functions^ with minimum=most likely=maximum may 

be used for any quantity that is known precisely. The output gives the 
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input seed, the input parameters for the density functions, the mean, 

variance, and standard deviation for the Monte^simulation of the re-

suiting distribution and the value of the seed for the next run. The 

Monte Carlo trials are sorted in ascending order and printed with the 

number of occurrences in all the previous trials as the last number in 

each line. The estimated probability that the stored energy is greater 

than any value found in the table is one minus the number of trials up to 

and including that value divided by the total number of trials. Using 

400 trials means each entry increments the estimated probability by 

0.0025. 
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PHOOrAM LOCATE TRACE CDC 6/OO FTW v3.0-3b5F OPT=0 78/01 

PROGRAM LOCATEdNPOT.TAHtislNPUT.OUTPUT) 
OIMcNSION S(30u.3i6) 
OIMtNSION U(3i300)»TEMPl300) 

., . . DIMENSION E(400)fX(3) 
K ReAu<l,4» NLOC.ITEH.lsEiO 

PRINT 203»NLOC,ITEH,IStELi 
203 FORHAT (•1»,»NL0C » " . U . * ITEW » •»!*»• ISEEO a •»no»//) 

4 FO««AT(2I3.IIO) 
00 iOO I»1.NL0C 

In REAu(l,a>((S(I.J.K).Kal.3).jal,3) _ 
6 F 0 H M A T ( 3 ( 3 F 6 . 1 , 5 X ) ) 
8 F0RHAT(9F6.1) 

IP< tOF( l ) ,NE,0 )GO TO 201 
100 PRINT 6 . l ( S ( I » J f K » . K = l . 3 ) » J a l i 3 ) 

15 DO cOO I=1.NL0C 
00 dOO J3 l»3 
I F « A 8 S ( S ( r f J » 3 ) - S ( I » J t l ) ) . L E . .QOOOUGO To 110 
S ( I » J » 4 ) = < S ( I » J t 2 ) - S ( l » J f l J l / ( £ ( I . J . 3 ) - S « I t J » l ) ) 
eo TO 120 _ .._ 

2rt i l O S ( I t J , 4 ) s l , Q 

120 coNriNue 
• _S(IiJ»5) = (S(IiJ«3>-SlI.J»l))»(S(I»J»2)-SlI.J»in 

S(I»J»6)=($(!»Jf3)-S(I.J»l))»(S(I.Jt3)-S<IfJt2)) 
200 CONHNUe 

2s _.. I0P]=1 
DO JOO Nsl(ITER 
00 310 K3li3 
CALL 6GU4(IS£E0»NL0C»I0PT,TEMP) 
DO .i2C LsItNLOC 

30 320 U<KiC)aTEMP(L) 
310 lOPT'O 

E(NJ«0.0 
00 400 I=IiNLOC 
DO 300 J=l«3 * - . 

35 rF(U(J,I).LT.S{I(J.4))X(J)aS(I»J.l)»SQRT(U<J.I)*StriJt5)) 
IF(UlJ.I).GE.S(I.J»^>)X(J)=S(I.J.3)-SURTU1.0-U(J.n)«S(I.J»6)) 

_ 1 _ 500 CONTINUE 
400 E<N)a£lN)»U(l>-lS)*X(2)»Xl3) 
300 CONTINUE 

4Q _ XITtRalTER . 
SUMC.3Q,o 
SUMt2a0.0 
00 000 Nal»ITER 
SUMtaSUMe*£(N) 

4S 600 SUMt2=SUM£2»E(N)»»2 
EMEANaSUMP/XlTER .. _ __ 
EVAKasUM£?/XITER-£MeAN««2 
EVAKaEVAR»XlTER/(XlTE»-1.0) 
ESQaSORTtEVARJ 

So "" PRINT 7iEMEAN»£VARiESD(ISEED 
7 FORMAT (•0*f»EMEANa a.EU.SfSX »»EVARs •tEl2iSt5Xf 
••ESTDEV a »iE12.5»5X.»ISEED a -tllo) 
CALL BSORT(EflTER) 
STOK 

55 201 PRINT 3 

PROGHAM ' "LOCATE T R A C E " "' COC 6^00 FT̂ N V3,0-355F OPT=0 78/05/ 

_ 3 FORMAT(•0»»*IULEGAL END OF DATA*) . 
ENO 



o 

O 

O 
_ suyRCiUTlNF aSORT " TRACE COC &700 FTN V3,0-355F OPTaO 7 

« 
_ SUShOUTINE asORT(E»ITER) 

OIMcNSION EdTcR) 
• i t OIMCNSION AdO) 

LOGACAL SWITCH.._ _ 
5 REAL ITEMP 

• 1 SWiTCHa,FALSE. 
_ ITEnl = ITER-l . 

00 iO lal.ITERl 
C IF(t{IJ.LE.£d*l))GO TO 10 

lo _ SWITCHa.TRUE. _ _ _ 
ITEhPaEd) 

C E(lJ=£d*n 
, . E(I»l)alTeMP ..; 
10 CONTINUE 

C 15 IF(SWITCH)QO TO 1 
_ NPRlNTaO . _ _ _ ~ .- -

125 NREMBITER-NPRINT 
r IF{NREM,EO.0)GO TO 121 

NNOimalo _ . _. . _. -
2fl IF(NHEM ,UT. lOJNNOWaNHEM 

00 100 JaliNNOw 
_100 A(J)ee(NPRINT»J) _ . , .. ._. 

IF<NN0W .LT. 10)GO TO lOS 
NPRiNTaNPRINT*10 

25 PRIIMT 110((A(J) fJal.lO) »NPRINT 
110 FORMAT(«0».10£12,5.I6) 

GO TO 125 
: _ _ 105 PRINT 120»(A(J) tJal.NNOW) _ _ _ _. .. 

120 FORMAT(»0»»IOE12.5) 
3o 121 CONTINUE * 
_ RETURN 

ENO 

C 

l c 

c 

! ^ 

c 

. c 

c 

c 

c 
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mpntcar: procedure; 
/• l*onte Carlo simulation for calculating probability distribution function 
of stored energy in a single or in many systems. Some variables a r e defined as; 

nloc a number of systems 
iter a number of ^onte Carlo cycles 
s(i/i/k) a parameters for all systems 

i a the i th system 
the j th property 
1 a temperature/ deg C 
2 a area/ km**2 
3 a thickness/ km 
the k th parameter 
1 a mimumum 
2 a most likely 
3 a maximum 
4/5 a quantities derived from 1, 2/ and 3 

Written by Harold Javitz/ SRI International and translated into PU/I by 
- USGS. 

Hay/ 1978 */ 
bsort: orocedure (e/iter)/ 
declare <iter/S/i/norint/nnow/nrem) fixed binary (31); 
declare (e(*) / i t e m p / a d O ) ) float (16); 
switch: sal; 

.do iai to iter-i; 
if e(i)<ae(i*1) then go to again; 
sac; 
itempae(i); 
e(i)ae(i*1); 
e(i + 1)ai temp; ^ 

again: end; 
if saC then go to switch/ 
nprintaO; 
mores n r e m a i t e r - n p r i n t ; 
nnowaiO; 
if nrem<10 then nnouanrem; 
do jal to nnow; a(j)ae(norint*j); end; 
if nnow < 10 then go to last/ 
nprintanprint^lO; 
put file (mc) edit ((a(j) do jal to 10)/nprint) (skiP/10(f(8/3))/f(6)); 
go to more; 
last: if nnow>0 then put file (mc) edit ((a(j) do jal to nnow)) 

(skip/10(f(8/3))); 
return; 

end; 

declare (pine) file stream input; 
declare (nc) file stream output; 
open file (pine) input stream; 
open file (mc) output stream print pagesize (S3) linesize (136); 

declare (s(300/3/6)/u(3/300)/temp(300)/x(3)/xiter/ 
sume>sune2/emean/evar/esd) float ( 1 6 ); 

declare e(iter) float (16) controlled/ 
declare ggu4 entry options (variable); 
declare (nloc/iter/iseed/ioot/i/j/V/l/n) fixed binary (31)? 
get file (pine) list (nloc/iter/iseed); 
put file (me) edit ("seed in"/iseed) (skip/a(10)/f(13 ) ) ; 
allocate e; 
do iai to nloc; . 
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list (((s(i/j/k) 
edit (((s(i/j/lc) 

do 
do 

kal 
ka1 

to 
to 

3) 
3) 

do 
do 

i'l 
j»1 

then 

get file (pine) 
put file (mc) 

end; 
do iai to nloc; 
do jal to 3; 
if abs{s(i/j/3)-s(i/j/1))<a1e-S 

s(i/j/4)aTeO;else 
s(i/j/4)a(s(i/j/2)-s(i/j/1))/(s(i/j/3)-s(i/j/1)); 

s(i/j/5)a(s(i/j/3)-s(i/j/1))*(s(i/j/2)-s(i/j/1)); 
s(i/j/6)a(s(i/j/3)-s(i/j/1))*(s(i/j/3)-s(i/j/2)); 

end; end; 
ioptai; 
do nal to iter; 
do kal to 3; 
call ggu4(iseed/nloc/iopt/temp); 
do lal to nloc; 
u(k/l)atemp(I); end; 

iopt=0; end; 
e(n)a0e0; 
do iai to nloe; 
do j=1 to 3; 
if u(j/i)<s(i/j/4) then 

x{j)as(i/j/1)*'sqrt(u(j/i)*s(i/j/5)); else 
x( j)as(i/j/3)-sqrt((1e0-u(j/i))•s(i/j/6)); 

end; 
• e(n)ae(n)*(x(1)-15eO)*x(2>*x(3); 
end; 
e(n)a0.6e-3*e(n); 

end; 
xiteraiter; 
sumeaOeO; « 
sume2aneO; 
do nal toi ter; 
sumeasume*e(n); 
sume?asume2+e(n)•e(n); 

end; 
emeanasume/xi ter; 
evar=sume2/xiter-emean*emean; 
evaraevar*xiter/(xiter-leO); 
esdasort(evar); 

t o 3 ) ) ; 
t o 3 ) ) (sk io /<»( f ( 6 / 1 ) ) ) ; 

o u t f i l e (mc) e d i t ( " i i > e a n " / " v a r " / " s . d . ' ' / ' ' s e e d " / e m e a n / e v a r / e s d / i s e e d ) 
( s k i p / x ( 3 ) / 4 ( a ( 8 ) ) / s k i o / 3 ( f ( 3 / 3 ) ) / f ( 1 S ) ) ; 

c a l l b s o r t ( e / i t e r ) ; 
c l o s e f i l e ( p i n e ) ; 
c l o s e f i l e ( m c ) ; 
e n d ; 
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Figure 3.—Region of integration for determining the probability P{V - v}. 



1.5 

«N 1.0 
I 

•< 0.5 . 

. 3 

1.0 

0.8 

0.6 -

0.4 

0.2 -

.. 

• 

-

MEAN 
SD 

EXACT 
2.000 
0.408 

1 

M-C 
2.003 
0.408 

.y 

1 

. 

/ 

/ 

_ 1 

^ - - ^ 

/ ^ 
. 

-

-

a, KM 

Figure 4.—^Monte-Carlo simulation of a triangular density function 
shown as a histogram (top) and the resulting sample distribution 
function shown as dots (bottom), compared to exact distribution 
function. 



0.03 

o" 0.02 

300 

QO 
H 
I 

0.15 

0.10 . 

0.05 . 

o* 
»H 

0 

I 

HEBER, CA 
1975 DATA 

10 20 18 
q, 10 CAL 

Figure 5.—Probability density functions of temperature, area, thickness, and stored energy and 
distribution function of stored energy for hydrothermal system at Heber, CA. Monte-Carlo 
sample distribution function for stored energy shown as dota. 

30 

0 . 8 

0 . 6 

0 .4 

Q.2 

0 

' X » ^ ^ 1 i 

>w EXACT 
\ MEAN 9.72 

\ SD 3 .33 

•\ 

\ 

M-C 
9.57 
3.32 

-

• 

• 

30 



o 
o 

0.04 

0.02 -

0 

0.015 

0.04 

I 
g 0.010 

"„. 0.005 

100 200 
a, KM 

300 

300 

^ 
0 0 

'o 
H 
«« 

9 i 

0.03 

0.02 

0.01 
O" 

0 
0 

o* "r 

0 

LONG VALLEY, CA 
1975 DATA 

20 

20 

40 60 

40 

80 

J . . U 

0.8 

0.6 

0.4 

0.2 

n 

• 

• 

• 

• 

"T*"'*" _ _ , , , 

^ N . EXACT 
>. MEAN 41.25 

X SD 12.07 

\ 

1 1 1 1 

— 1 1 

M-C 
40.89 
12.45 

-

-

. 

60 ,„ 80 
. 10 CAL 

Figure 6.— 
thermal 
as dots 

-Probability density functions of temperature, area, thickness, and stored energy for hydro-
system at Long Valley, CA. Monte-Carlo sample distribution function for stored energy shown 



0,015 

'o 0.010 . 

O 0.005 
H 

0 
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