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Abstract

In order to quantify the uncertainty of estimates of the geothermal
resource base in identified hydrothermal convection systems, a methodol-
ogy is presented for combining estimates with uncertainties for tempera-
ture, area,iand thickness.of,a geothermal reservoir into an estimate of
the stored energy with uncertainty. Probability density functions for
temperature, area, and thickness are assumed to be triangular in form.
In order to calculate the probability distribution function for the
stored energy in a single system or in'many systems, a computer program
for aggregating the input distribution functions using the Monte-Carlo
method has been developed.

To calculate the probability distribution of stored energy in a
singie system, an analytical expression is also obtained that is useful
for calibrating the Monte Carlo approximation. For the probability
distributions of stored energy in a single‘and in many systems, the

central limit approximation is shown to give results ranging from good

to poor.



Introduction

The purpose of this paper is to document a methodology for pro-
viding measures of the uncertainty in estimates of the accessible
geothermal resource base in identified hydrothermal convecfion systems.
One could simply make a judgmental statement concerning this quantity
(i.e. the geothermal resource base is x cal with a standard deviation of
: y cal). The basis for making such a statement is very weak, because
one has very little intuitive feel for the measurement of stored energy.
Just as the estimate of identified accessible geothermal resource base
is built up by estimating the temperature, area, and thickness of a
system, calculating the stored energy, and summing the values for the
various systems, one can make estimates of the uncertainty of each of
these primitive quantifies, and develop a methodology for aggregating
these estimates into values for deri&ed quantities. The uncertainties
of temperature, areal extent, and thickness are relatively easy to
estimate and vary considerably from system to system depending upon the
amount of available data. .

The starting point of the éalculation is to assume that the prob-
ability density functions for-temperatufe, area, and thickness for a
hydrothermal system are triangular. The parameters of each density have
been estimated using the available geologic, geochemical, and geophysical
- data. These parameters are then used to calculate means and standard
deviations for temperatﬁre, area, and thickness. Two types of derived
quantities are then calcﬁlated from the parameters of the density func-

tions. The first type is the mean and standard deviation of the stored



energy in a single system and‘the mean and standard_deviation of a sum
of the stored energy of many systems. Formulas for these quantities are
easily developed. The second type of derived quantity is the prob-
ability density and distribution functions for stored»enetgy in a single
system and for a sum of many systems. These distribution functions are
necessary to obtain confidence limits. The calculation for a single
system can be done analytically but the calculation for many systems is
analytically}intractable. Instead, the probability distribution for
stored energy in many systems is calculated using a Monte-Carlo simula-
tion. Similar calculations for petroleum resources have Beenldone by
Miller and others (1975) and White and others (1975).
The type of statistical analysis that is discussed is not the only
kind that is applicable to these data. La Mori (1976) analyzed the data .
in Circular 726 (Renner and others, 1975) for the relationship between
number of systems and grade (temﬁerature),in the usual mineral resource
context in otder to try and relate the sample of identified system to
the population of all systems. In unpublished work, he also looked at
number versus size relations fof the same data set. McNitt (1977) has
_also made a stﬁdy of number versus size but for producing fields and
fields defined by drilling in different areas of the world to check the
log-normal properties of the relationship between number of systeﬁs and
size. No 'such analysis will be attempted in this study.
It should be pointed out that a statistician willAfind nothing new
‘in the results of this study. They are all essentially textbook results

put together in a particular combination. The casual reader would do



better to read the summary in U. S, Geological Survey Circular 790
(Brook and others, 1979) for the highlights. The point of this paper is
to satisfy the réader who waﬁts to know how a particular calculation is
done; The basic notions of probability have been freely borrowed from
Papoulis (1965) and Feller (1950) and only particﬁlar results or state-

ments that are not easily found have been referenced.



Random variables; distribution functions; density functions; mean;
standard deviation

In developing these notions of the behavior of a single random
variable, the area of a system is used as an.example, TheAresultg apply
equally to temperature, thickness, stored energy, etc. The first point
is the definition of a random variable. 'A random variable functionally
rélates an outcome to a numeric value. For example, in dealing with
outcomes such as whether the result of a coin toss is heads or tails,
the random variaﬁle "number of heads' might be assigned the value one
when a head appeérs and zero when a tail appears. For the outcome of
measuring the area of a geothermal system, the random variable (denoted
AJ»is simply the value of the‘arear Random variables will be symbolized
by using capital letters. An event A = a is the set of values A such
that they are all less than or equal to a. The probability of the event
Ala is denoted by P(A §~a) and is a number between 0 (the. event héver
occurs) and 1 (it is certain to occur). The distribution function for
the random—variable A is FA(a) and gives the values of the probability
PA S a), i. e.
' P(A S a) = Fy(a). : (1)
The distribution function is usually defined for a Between plus and
minus infinity. All of our random variables take only positive values,
so we will restrict a to be nonnegative. We will usually be interested
in the event A 2 a, and the probability of this event P(A 2 a) is then

1 - FA(a). The density (function) is defined as



£, (a) =.dEA£a)v | @

da
and may be used to calculate the distribution function from
Fa@) = 72 £ (x) dx | ®
where x is a dummy variable for the definite integral. The density and
distribution are both useful in that the distribution gives actual prob-
abilities while the density is used for_mostAcalculations. The quantity
fA(a)da may be interpreted as the probability that A is between the
values a and a+da, i. e,
f,(a)da = Pla S A % a s da}. (4)
Figure 1 shows the triangular density and.its‘associated distribution
for the estimate of the area of the geothermal reservoir at Heber,
California (Renner, 1976).
A density may also be described b} certain of its moments. The two
most commonly used‘are mean (eipected4value) and standard deviation.
The mean is defined as
<A> = f: a f, (a)da | )
and the variance as
Var(d) = <(A - )% = 7 (@ - )’ (e, (6)
The standard deviation cA'is simply the square root of the variance.
Expénding the squared term on the right hand side of equation (6), we
obtain the useful relation

<(A --:1<A>]2> _

@ 2 2
fo‘[a - .2a<A> + <A> )fA(a)da

<A2> - 2<A><A> + <A>2

<A2> - <A>2, . (7



i. e., the variance can be calculated from the second moment and the
square of the mean. On figure 1 the mean and the mean plus or minus one
standard deviation are shown. The mean gives us a measure of where most
of the density function is concentrated while the standard deviation
gives a measure of the spread of the density. Other measures of Qhere
most of the density function is concentrated are also used. The median
a_ is the value of a such that P{A S am} = 1/2 and P{A > am} = 1/2. The
mode or most likely value a1 is the value of a such that fA(a) is at
its maiimum. For a symmetrical deﬁsity, the mean, median, ana mode are
all the same. The dénsity function shown in figure 1 is not symmetrical
so the three quantities all have different values.

Example: A triangular density

Since one of our primary densities is the triangular density, it is
worthwhile to go through and calculate the.various quantitieé-defined
above in terms of the parameters of the density function. Triangular
densities are a three parameter family. As shown on figure 1, the three
parameters that we will use are a,, a,, 25. The quantity a1 is fhe
ninimm value--the value for which the probability that A - a, is
unity. The quantity a, is the most likely value (mode)--the value for
which the probability:P(az N Al a, + da) is a maximum. The quantity a

3

is a maximum value; the value for which the probability that A z a,

is zero. Introducing the unit step function

& (ﬁ) =0 . x<0 ' , (8)

1 xfo



we may write out the expression for the triangular density as

(a.-.a;)e(a.-3,) ..(a-al)afa-a) . (a-a )a(@.e a.)
£,(a) = 2 1 1o, it L 3 3 @
(a5 - 21)(@; - 3;]  (8; - 35)(a; - 3;) (a5 - a,)(25 - 3y)).

The convenience of this form is that the'eipression is valid
for a between'zero and infinity. The associated distribution function
is obtained. by integiation
(a.-.a )za(a -a,) (a-a )Za(a -.a,) (a-a )za(a -.a,)
(a.-.a;)" -3y . - a,) a(a - a, 2 = 3,)" 3,

VFA(a] = + + : . (10)
(a; - 2;1(a8y - a3} (ap - a51(a; - 2;) (az - a;)(az - a,)

The modal value of fA(a) is given by equation (9) with a = a,, and we
obtain
2
fplay) = ——. (1)
az - a;
The mean and variance are obtained by appropriate integrals of equatioﬁ

(9). With some algebraic rearrangement, we may write these as

(a; + a2'+ az) / 3 (12a)
2

<A>

Var(A) <A2> - <A>

2

[(a2 - all + (as - az) + Cazv- al)(a3 - az)] / 18. (12p)
For easy reference, these results and results for the normal and log-
normal density functioﬁs are given in appendii 1.

Equation (12a) for the mean shows that the minimum and maximum

values carry equal weight with the most likely value in determining



the position of the mean. The mean may thus be quite different than the
most likely value. Figure 2 shows a highly skewed type of density as a
solid line. The minimm, most likely, and maximm values have been
taken from Renner (1976). The relationship between the strong peak and
the long tail was chosen so as to maximize the graphicai disparity be-
tween the two_approiimations to be discusse& and does not necessarily
reflect the true density function for the estimate of the area of the
hydrothermal system at Coso, Qalifornia.. If we try to model this with a
triangular density, thé choice df Qhétﬁer to use the density shown as a
broken line in figures 2a or 2b as the approiimation has a dramatic
effect on the mean. We are more interested in the mean than in the re-
gions with eitremely low values of probability density, and therefore we
| should ugeé the broken.line‘in figure 2b. Since the long positive tail of
the true density is rapidly lost in the aggregation of coﬁparable raﬁddm
variables, thi; is a satisfactory approiimation.. It is also important
to realize that not all of the density functions have a long positive
fail. If all had this tail, there would be a systematic bias in the use
of a triangular density and some other denéity-would have to be used.
Products and sums of random variables: mean and variance
There are three functions of random variables for which we will be
interested in finding the mean and variance. The first is the volume v
for a single system of area a and thickness 3:

v=asjg 7 (13)
The second is the stored energy q for a single system of area a, thick-

ness §, and temperature t:



q=pct-t)asl as)
where t is a reference mean annual surface temperature taken as 15°C -
and the product pé is the volumetric specific heat of the rock plus
water system (here taken 0.6 cél/cm3C1. The third function'is the sum
of fhe stored energy sq for n systgms:

el | as)

i=1 _

where a, §, t, v, and q in equations (13} and (14) should all.be sub-
scripted as being for i th system, but for clarity we will delete the
subscripts ekcept where necessary..

The mean of v is by definition

V> = [T vE (V1dv. | (16)
A fundamental theorem in statistics is that this may be calculated from
> = 07 ’asfv(a, §) da d& ~ an
wﬂere fv(a, §) is the joint density of random variables A and'A (Pa-
poulis, 1965, p. 206). The next paragraph gives the reasons for assum-
ing that T, A, and 4 are statistically independent random variables in
order to allow a significént simplification.of equation (17).

The process of estimating area, thickness, and temperature gener-
ally involves the use of,differeniiindicators for each quantity. Tem-
perature is estimated from geothermometry,.hof.spring temperatures and
mixing models, or it is known from well data. Areas are estimated from
hot spring occurrances, temperatufe gradients in shallow.wells, surface
geophysical measurements of gravity, resistivity patterns, magnetics,

. topography, etc. Thicknesses are constrained below by a maiimum of

three kilometers (normal drillable depth), above by temperature gradient

.10



data, and are estimated by geologic analogy. These processes of estim-
ating area, thitkness; and temperatﬁre for identified geothefmal,systems
are essentially independent. Some common denominators are temperature
gradient holes and resistivity soundings for estimates of thickness and
afea. They are used in fundamentally different ways for estimating the
two quantities, hOWever; For areal extent, one is interested in the
difference in gradient (or resistivity) from hole to hole (sounding to
sounding) to define the anomaly while for thickness one looks at a par-
ticular hole (sounding) to estimate at what depth the reservoir temper-
ature is likely to occur; One is thus led to the assumption that area,
thickness, and temperature are statistically independent random vari-
ables for which that the joint density in equation (17) may be written
as | .

£V(a, 8) = £,(alf,(8). ' 18)

and <V> may then be written as

V> = {/] a £, (a)daH/ 6F, (5)d6}

<A> <fl> (19)

Similarly, the second moment is

<V25

Ko azfA(a)da}{IZGZfA(§)d6}

= <a%> <52 (20)

and we may write the variance as

var(V) %> eyl

§A2> <A2> - <A>2

| <A>2_

'[Var(A)'+ <A>2]IVar(A) + <A>2] --<A>2 <A>2 (21)

Similar relations can be devgloped for stored thermal energy, and they

11



are given in Appendix 1.

A possible point of confusion concerning the assumption of statis-
tical independence is the relationship of estiméting the statistical
properties of a single system to the underlying population of geothermal_
systems with perfectly meaSured'properties. There is a frequency dis-
tribution |

n @, t;) | _ (22)
for the number of systems having a volume with the value,vi to v; + Avi
in the temperature range t; to ti + Ati. This frequency distribution is
most eésily conceptualized in terms of discrete random variables. A
sample estimate of this frequgncy distribution could be provided by
;aking the mean values of the volume Vi and temperature Ti for each
system in the 1978 data set (Brook and others, 1979), making a grid of
cells of size T; to T, +dT; and V; to Vi e dv, o, and
assigning each system to a cell. For this frequency d15tr1butlon, tem-
perature and size are not statistically independent random variables.
In one case we are dealing with uncertainties of a measuring process
while the other looks at the characteristics of perfectly measured;
quantities.

The mean and variance of SQ may be obtained similarly, i. e:

n
<sSQ> = <L Q >
' i=1
- o oo n
B vfo.' 0 gl qilfsqc_qucccgq.nl dql...dq'n

O 8

1—1

=/ . f CZ q; 1fQ1CQ11 angnldql...dqn
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n
=‘§ fo' 93 Q (gl .an(gnldql...dqn

n

i=1
r | (23)
= X <Q.>
iél_Q1 |
2 n
<(SQ - <8Q>)7> = & (xQ; % - <Q1> (24a)
. 1-
var(SQ) = & varCQil (24B)
i=1

where we have again assumed'that the Qi are statistically independent
random variables in going from line 2 to line 3 ahove and in obtaining
equations (24).

Products and sums of random variables: distributions and density
functions

In the previous section, relations for the mean and variance of
products and sums of random variables were obtained without finding the
density or di§tribution of the derived random variables. In this sec-
tion, we will present a formal solution for the resultant density func-
tions. ‘In special cases, the calculation can actually be done and we
will present results for the products of random variables, each having a
triangular densitf;

The random variahle ¥ = A A has a distribution function FVCYI =
P(V X v}. To determine Fy(vl, we must find the probability of the event

: < - . .. :
{V - v}. In the a § plane, the event {V 5»v} corresponds to ad v

13



which defines a region in the ad plane shown cross-hatched in figure 3.
We will call this region the domain D, then we have

| POV S v} = PLGA, A) € D} ‘ (25)
where the second grouping is read as the probability that A and 4 are
in the domain DV; Thi§ later probability is given by

F, ) = P{(A, 8) € D} = IJ)' !
v

£, (2, 81dads. (26)

For statistically independent. random variables, we have

) = If)vffAca)f&(a)dada )

and the density éan be obtained by differentiating the result. For our

particular case, the integral may be written over the domain DV as
e /8. s
Fv(v) = J'O IO fA(a)fACG)dada | (28)

where the diagram in figure 3 shows that we first integrate a strip of
width d§ from the axis a=o to the curve v/§ é.nd then integrate all of
these»strips from §=0 to §== (see Papoulis, 1965, p. 189, for a sim-
ilar manipulation). Differentiating the integral with respect to v and
using Leibnitz Rule, we obtain

£,0) = f:‘-ls-fA(‘é) £, (8)ds. ' @9)

By identical reasoning, the density for stored energy in a single system
is

) 1 |
£.(q) =/ £r(t) £, —3—— Yt. 30
Q 0 pclt-t I 7T V(&DCCt-to;)ﬂ ; (30)

14



| For the sum of random variables, it is easiest to solve for the
resultant density in steps. Defining a variable sq” = q; * qz,.similar
reasoning gives the result
£gq-(sa7) = 159 £q, (sq” - q,)£9,(q,)da,. » (31)
Defining a variable sq*” = q; + dy * 9z, We obtain by similar reasoning
£ = £ £297% £q(sa7"-a5-0,) o, (4, Fag (a5 dayda (32)
and ad infinitum as the number of variables increases to more than a
hundred. The form of equations (31) and (32) is what is known as a
convolufion integral, and for some simple density functions, the use of
transforms would permit the evaluation of the integral in closed form.
Equationé (29) and (30) are the formal solution for the density
function of stored energy in a single system and equations (31) and (32)
are the first two of a series of equations. that constitute the formal |
solution of obtaining the density function of stored energy in many sys-
tems from the density functions of stored energy in each of the single
systems. Assuming“triangular‘densities<forAtemperature, area, and thick-
ness,‘it is practical‘ to use these formal solutions only as far as cal-
culating the probability density and distribution of the volume and
stored energy in a single system. To obtain the density function of
volume, we neéd the density function_of'érea given in equation (9) and
one for thickness that‘h$s the same form with just the symbols changed.
-Substituting into equation (29), the first term is (there are eight'
more) |
i (5 - a6 - al)acgl - 8a(s - 61)'

fV(v)‘= fo3 — ds + ... (33)
(85-81) (8, - &;)(ag - a;)(2; - 2))

15



The two step functions restrict the effective domain of integration to
values of § that are between 61 and V/al. Consequently, the first term

may be written as

. a |
via, 4(% - a)(1 - £ )ds + ...
Vi Tt Bl 35,

fV(v) = a(v - a L

(65 - 8,308, - 8;)(85 - §;)(5;, - §))

' v
4[2(3,16I - V) + (alé1 + v)in Ezgz]a(v-alsl)

+ ... (34)

(85 - 813085 - 80085 - ap) (3, - 3y)

and the other eight terms can be written by a rotation of subscripts.
The complete result for volume and the result for stored thermal
energy are giﬁen in Appendix 1. A computer'program for evaluating
the density and distribution function for-stored'thermal energy in a
single system is given in Appendix 2.
Central 1imit theorem for products and sums of random variables

As a large number of random variables (satisfying certain technical
conditions) are summed to'form a resultant random variable, the form of
the individual distribution functions tends to become swamped by the
convolution process and the resultant distribution tends toward a normal
with a mean given by the sum of the means and a Qafiance given by the
sum of the variances. The random variables added to obfain the stored
energy of the various éystems are .likely to satisfy these conditions

(see Parzen, 1960, pp.4430-432 for a precise statement), though one must
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be caréful of the attribute that most of the variance is contributed by
a relatively small number of large systems. The central limit approxima-
tion is useful inleither: 1) providing an. approximate answer to con-
verting standard deviations to confidence intervals, or 2) providing a
semi-quantitative check of Monte Carlo results. The normal density has
the unfortunate prope;ty of being defined from minus infinity to plus
infinity. Thus it will yield a small but finite probability that the
aggregate of stored energy will be less than zero. In practice, this
turns out to not'really be a problem.. The probability that the stored
energy is greatér than zero is usually very close to one (examples given
in discussion section).

An easy extension of the central 1imit'théorem may be made for the
stored energy in a single system as related to the temperature, area,

and thickness by equation (14) by defining

y=1nq 4 : . (35a)
By =1n (t - t) (35b)
82 = In (a) ' (35¢)
B, = In (8) (35d)

so that we obtain the relation

Y =81+ By * Bz 4+ 1n (po). (36)
We have thus trahsformed_a product to a sum of random variables. Assum-
ing that the central limit theorem holds, the variable y should be dis-
“tributed normally. }This is exactly the definition of a log-normal dis-
tribution for the variable gq--that its logarithm is distributed normal-
ly. In practice, it turns out that the log-normal approximation is not.

very good. As will be shown below, a normal distribution frequently

17



represents the distribution of q for a single system more accurately
than a log-normal.
Monte-Carlo methods for aggregating random variables

For any but the simplest density function, the manipulations re-
quired to calculafe a density function from eqs. (31) and (32) are very
difficult and sometimes not analytically possible. One could write com-
puter programs to perform the integrations. However, a minor change in
the relatioﬁéhip between ranﬁom variables might require a whqle new
program. A technique that has been developed that solves the problem in
a fundamentally different mahner is the Monte Carlo method (see Mize and
Cox, 1968, for an introduction). The basic idea is to generate a random
outcome (e.g., toss a coin), use this random outcome as an input to a
model, and to reééfdvthe output from the model. This process is usually
repeated many times. In order to do a good simulation, the randomness
of the outcomes must be guaranteed (e. g., the coin must be a very fair
coin) or the results will be biased.

In order to describe the technique it is easiest to go through the
formal solution of an example. Let 9 and.q2 be the stored energy in
two systems with distributions Fl(ql) and.Fz(qz). We want to find the
resultant distribution F(q) where q = q; *+ 45- The first step is to
generate a set of random numbers iﬂ the interval 0 to 1, say 800 hum-
bers. We choose two random numbers u aﬁd.u2 and find the values of 9

1
and q, such that

q = F,ha) — | (37a)

[}

ay = Fp" () | | (37b)

where F'l'denotes'an.inverse, i. e., the value of stored heat qy that

18



has a probability uy that the random variable Q1 : 9 - We then sum 4
and q, to obtain a value q. We have now performed one trial. This
process is repeated four hundred times and yields a table of q values
that can be sorted into increasing order. Define F*(x)=(no. q values §
x)/(ﬂo; of trials). It is well known that F*(q) is a good estimate of
F(q) and that the accuracy of this estimate increases as the sample‘size
increases. F*(q) is known as the sample distribution function. Clearly,‘
the computations involved are quite simple. Different choices of dis-
tributions and relations among random variables are easy to incorporate
into fairly short computer programs. The choice of distributions that
can be inverted analytically results in signifiéant\computational effi-

ciencies. For the triangular distribution of equation (10), the inver-

sion is
3y *+ ((a5 - ;) (a, - ::11)1=A)1/2 0 S Fy < (3, - 2;)
2 - By ) gy
| ‘ (a, - a,) <
%5 = ({5 - 2y = 2l - P DY (ai - ai). TR h

‘Harold Javitz of SRI International has written such a program for
this study and a listing is given in Appendix 3. Figure 4 shows for 400
trials the degree to which the sample density function and sample dis-
tribution function reproduced by this program agree with the exact tri-
angular density and the resulting distribution function. Many more
trials are required to reproduce the density'function than the distribu-
tion function, and we will oﬁly use thg Monte-Carlo program for produc-
'ing sample distribution functions. The mean and standard deviation

calculated from the Monte-Carlo simulation are 2.003 and 0.408, and
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these are within 0.2% of the true values of 2 and 0.408. The analytical
solution for a product of three random variables will be used to make

further comparisons below.

Discussion and example using 1975 d;ta set

As part of the effort to estimate the resource base in hydrothermal
convection systems in Renner and others (1975); a file was set up and
estimates made (Remner, 1976) to perform a statistical analysis of the
stored energy. Minimum, maximum, and best estimates for temperature,
area, and thickness, and other quantities were derived. The lack of a
methodology and the press 6f time prevented this aspect of the study
from being ca;ried to completion. We can now use some of this data set
to provide examples for the methodology developed here.‘

There are twb inadgquacies in the 1975 data set caused by the lack
. of a methodology that are imﬁortant to remember in what follows. The
first inadequacy is that there was no real assumption as to the form of
the density function. Having now assumed a triangular density, the
problem mentioned above of dealing with long tails becomes important.
The data for Coso, CA in figure 2 éxemplify this. 'Thé maximum area was
estimated from the arcuate faults found by Duffield in preliminary map-
ping and it was quite speculative thaﬁ the system might be that large
(Duffield, 1978, pers. commun.). Thus the maximum should have been
lowered inlorder to deal‘With the limitations of a triangular density.
This.example is an easily documented case of a problem that probably

- occurs in other places in the data set. The second inadequacy is that
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the bést:Véiués reported in Renner (1976) are not necessarily the most
likely values (Renner, pers. commun., 1978). In some cases they are the
most likely, but in others they are actually fhe mean values. This
distinction will be ignored, and the best value will be treated as the
most likely. For these reasons, we cautioﬁ the reader that the values
givenlin‘this report are not to be regarded as a revision to Circular
726.
Figures 5,A6, and 7 show the density functions for ‘temperature,

~area, thickness, and stored enérgy for the three systems at Heber and
Long Valley, CA and Valles Caldera, N. M. These three-ekamples were
chosen because of their very different forms of the density function for
area. Heber is relatively symmetric, Long Valley has a longltail toward
-zero, and Valles Caldera has a long tail towards infinity. In all three
cases, the density function for stored energy is smooth and possesses a
distinct tail. Taking a product of random variables tends to produce an
asymmetric density with a longer tail towards infinity. Thus the rather
sharp break for the area of Long Valle?'becomesAless sharp in the stored
energy, but the long tail towards infinity in the area of Valles Caldera
is preserved. The ‘distribution for storedvenergy in each of the single
systems are also shdwn on figures 5, 6, and 7 along with Monte-Carlo
derived sample distribution functions. The Monte-Carlo simulations-are
generally very good representations of the analytical solutions, and
this good agreement gives confidence in using the Monte-Carlo aggrega-
tion for summing the individual systems to produce an aggregate distribu-

tion function.
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Figufes 8, 9, and 10 show the density gnd distribution‘functions
for stored energy for each system along with the approximations based on
using normal and log-normal densities and distribution functions. The
normal and log-normal densities have the same mean and standard devia-
tions as the true density. Other matching schemes are possible, but
this preserves the important'statistical measures that can be manipulated
without knowing the form of the density function. For Heber and Long
.Valley, the normal is a better approximation to the density than the
log-normal and is essentially indistinguishable from the true when
comparing distribution functions. For Valles Caldera, the log-normal is
a very good approximation to the true density. The normal is a reason-
able approximation to the distribution function, even though it asserts
a probability of 0.03 that the stored energy is less than zero.

Figuré 11 shows a comparisdn'between‘a-Mdnte-Carlo derived sample
distribution funétion of the total stored enmergy in the three systems
‘and distribution function approximations based on a normal and-log-
normal density using the true mean and standard deviation. Since the
process of summing random variables tends to result in a normal density,
one might expect a normal approximation to‘be a good one. That some of
the densities of stored energy for a single system are approximated well
by a hormalfdensity alsqitends to help the tendency towards normality
for the sum of random vafiables. Both the normal and' the log-normal
seem to be reasonable representations of the Monte-Carlo simulation.
Because of the large variability of the shape of the input distributiohs

as parameters are varied, it is not possible to make any strong a priori
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statement about how well either distribution will fit for the sum of a
large number of systems. However, the Monte-Carlo produced sample dis-
tribution function will converge to the true distribution function as

the number of trials increases.
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Application to U. S. Geological Survey
Circular 790 (Brook and others, 1979)

This report has discussed a number of aspects of the problem of
finding resultant statistics for prbducts and sums of random variables.
For the assessment of geothermal resources in hydrothermal convection
sYstems‘(Brook and others, 1979), only some of this material is impor-
tant. The path that is taken in that document is to estimate the mini-
mum,'most likely, and maXimum values for temperature, area, and thick--
ness. Assuming a triangﬁlar density functioﬁ, these values are then
used to obtain a mean and standard,deviation for each quantity. The
relations for products of random variables are then used to convert these
values into means and standard &eviations for reservoir volumeland ther-
mal energy for individual systems. The relations for sums of random
variables are then used ‘to obtain means. and standard deviations for var-
ious gfoupings of systems, e. g. all hot-water systems >150°C, hot-water
systeﬁs >150°C flus vapor-dominated systems, etc. In each casé, the
standard deviation is used to provide a rough measure of the uncertainty
in each quantity. The minimum, most likely, and maximum values of tem-
perature, area, and thickness are then used as input to Monte Carlo com-
puter progrﬁms to calculate sample distributions for stored energy in

various groupings of the systems.
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Appendik 1 Useful formulas

For a single system

V> = <A><A>
<Q> = pc(<T> - to)<A><A>
2 2 2,2
var(V) = [&arCA) + <A> ][var(A) + <A> ] - <A>T<pA> .
var(Q) = (pc) var(T) + (<xT> -t ) ][var(A) + <A> ][var(A) + <A>2}

-(pc) (<T> - T ) <A>2<A>2

For a sum of n systems
n
<SQ> = -F <Qi>
i=1 )

var(SQ) = Z var(Q )
: i=1

Properties of a triangulér density
a(k) =)0 x:O
1 - x-1

, (a - al)a(a.- al) . ta_— az)a(auv.azl +.(a.e,a31a(a.e as)

(ag - a;1(a; - 3;) (g, - ag)(a, - a,) (a5 -23;)(a; - a

£, (a)
2)

‘ (a - al)za(a - al) -(a - az)za(a -Aaz) (a - asfg(a - 33)

+ +

(a5 - a))(a; - a)) (3, - a5)(2, - 3)) (35 - a))(ag - 2,)

Fp(a)

<A> = (a; + a2 +a )/3

var(A) = [(a. - a,)" (a. - 32] + (a - a.l) (a - az)}/IS
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Properties of a normal density 2
‘ 1 s (x.- m)
£(x) = —173 exp{- ——=—1}
' (Zwoz)l 2 202 ‘
1 X -m
F(x) = 341 + erf{—z—7r—
2 _ 202)1/2
<X> =1m
var(X) = 02
Properties of a log-normal density
1 ..(In x.-.a)
f(x) = expd- ————g—
s 2 T 2P
_ 1 {; Inx - a
F(x) = 541 + erf ————7
2 , CZb2)1/2
<X> = expla +,12’—}

%> = exp(2a + 2b%}

ln{<X>2/(<x2>11/2}

b = In{<X®>/<X>%}

Density and distribution for volume and stored energy for a single
system
(a; —az)(a; - a,) j=1

del(a,, j) = (az - as)(a2 - al) j=2
(a‘3 = al) (as = az) j=3

: | v
4[?(aj6k -V) + (ajsk + v)lnajak]a(v - ajsk)

a7}
r
<
et
|
(3]
[ K

j=1 k=1

del(ai,J) del(Gi, k)

3 3 3(a.25 2 3+ v(4a.8 v ' :
E;(v) =2 I [ J ok ) V(‘aJ k"' 2v)1na.6—;la0, - ajdkl
k=1 ' Jk

'deICa.i, i) delCGi, k)

.
n
[
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)

= pcajdk(tm - to

3 3 3 8&q
f@=T ¢ I
™51 kel m=l (oc)?

a(q = q'km)

jkm

q.
jkm 1 2
Ja -z 9

. q .
-3 (1 + -%Eﬂalnﬂ ]

95 km del(a;, j)del(s,, k)del(t;, m)

50303 2f31 4% q
F.(qq =2 I ¢ 8[3.6 (t -t)] == ( - 1) - 4¢ - 1)
T jerkermer LIEMO 0] ) 8 g2 jkm
¢ q 'y q
+ 2 - Zq X (lnqq )2 = (%’ 3 + 2q ) In qq }
4953 jkm jkm % km jkm jkm

a(q - q]km)

X

'del(ai, i) del(é‘i, k) del(ti, m)
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Appendix 2 Computer program for calculating

the stored energy for a single hydrothermal convection system

The equations for the stored energy in a single system have been
used to write a program in PL/I for the Honeywell 68/80 cémputer. The
program is a straightforward calculation routiﬁe. The only obsqure as-
pect is that it is written for a time share mode, so that the program
is called from the user's working directory, the program then requests
the input data from the user, sends the output to various files that the
user may then inspect and have printed. For batch use, the put state-

ments would have to be reorganized accordingly.
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fgi: arocedure;

1

/.-----------OCCOOCC----‘---------‘-—o-—-------‘---------o‘-;-;--------

This program calculates the values gof the probability density and

distribution function for stored heat,

Values of the minumrum,

most likely, and maximum of temperature, area, and thickness for'triangular
densgity are requested from a terminal after the procaram has been called.
The values are printed in file "dataout"” for printing and in fileg "¢"

and "F" toer transmission to the 4051,

March,1978

P P T X —------—---------G--------------—-—---;------c--------—----‘-----' /

declare (sysin) file stream input’;
declare (dataout) file stream output’
declare (f) file stream output?
declare (F) file stream output?
declare (sysprint)file stream output?
open file (sysin) input stream’

open file (dataout) output stream print
open file (§) output stream;

open file (F) " output stream’

apen file (sysperint) output stream:

dif: orocedure(a,isdelt)’

pagesize(S58) Llinesize(100);

dectare (a(3),delt) float(30),i fixed bimary (30)’
if i=1 then delt=(a(1)=a(3))*(a(1)-a(2))?
it is2 then delt=(a(2)-a(1))*{a(2)-a(3)):
if i=23 then delt=(a(3)~-a(1))*(a(3)=-a(2)):

return ;
end,

mv: procedure{min,ml,max,meansvar)’
declare (min,ml,max,mean,var) float
meanz=(min+ml+max)/3el’

(302

vars((min-ml)*(min-ml)+{(max=ml)*(max=ml)+(mi-min)*(max=-ml))/18e0;

return;
end’

declare (t(3),a(3),d(3),qa(3)stmean,tvarsameansavar,dmean,dvar,amean,qvar,
rhoc,arsfarfFarac.densdel talt,deltal,del tal3) float (302,

(irjoksl) tixed binary (30),
' _name character (25) varying’
declare (sdsunit,del) float (30)7
rhoe=0.6e~32

put file (sysperint) edit

("You need values of the orobability density and distribution function”,
"for stored heat. Input the min,ml, and max of",

"temperature(C), area(km2*2), and thickness(km) and the calculation interval and ",

“the system name in double quotes,
(4(skiprad);

Hit return and leave the rest to. me.™)

get file (svsin) list (t,ardeunitrname)’

calt mv(e(1),t(2),t(3),stmean,tvar)’
call mv(a(l),a(2)sa(3)sameansavar):’
call mv(d(1),d(2),d(3)sdmeansdvar)’

qmeanarhoc*{(tmean-15e0)*ameansdmean’

’

avar=rhoc*rhoc*((tvar+tmeanrtmean=30eN*tmean+22Sel)*(avartamean+anmean)+(dvar+dmeanvdmean)
={(tmean=-15e0)*(tmean-15e0) rameanragmeanrdmeansdmean)’
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gasrhocv (t=15e0) vavd:
sd=sgrtavar);

put file (dataout) edit (name,"-stored heat™,"min”,"al","mnax","mnean”,"s.d."»

“temperature(C)”,totmean,sqrt{tvar).,
"arealkme*2)",a,ameans,sart(avar),
"deoth(km)"”,d,dmean,sqrt{dvar),

"heat(e18 cal)",qargmean,sqgrt{gvar))
(skiprasrasskipsex(20),5¢a(8)),skipral16),5¢£¢8,0)),
skine,a(16),5Cf(Br1))uoskipral16),5(f(8,1)), skinD,a(18),5C¢f (88,3333

put file (dataout) edit ("a","f(ga)","1-F(q)") (skip,x(4),3(Cal10)));

do i=1 to 4007
del=zi’

Q=

trunc(ga(1))+del*runit?

fqa0e0; Fq=0e0’

do j=1 to 3; . : : .
do k=1 to 3, - :

do L=1 to 3:

qcxq/(rhoc*a(jl~d(kI)*»(t(l)~15e0));
if gc >2 1e0 then do’

catl difCarjodettal)?

call ditldskrdeltald)’

call dif(t,l,dettal3):

denadeltalvdeltalrdeltal3’

fgsfq+((8el»q)/(rhocrrhoc))*»((1e0=-1eN/ac)*(be0+0.5e0+*log(gc)*log(qac))
-3eQ*(1eQ+1e0/qc)*loglac))/den:

FQeFq+2e0*(Ca(j)#d(kI)e(t()=15e0))**2)*(31eQ*(gcrac~1e0)/8e0=4e0*(qc~120)
+gc*(ac/4e0~-0.520) *Llog(ge)*log(ge)3{1.75e0*acrac+2e)*qc) *log(ac) ) /den;

end; . .

end; end’; end; ’ .
put fitle (dataout) edit (a,fg,1el=Fq) (skin,f(8,2),x(2),1(10,5),¢C10,4)):

Py
pu
if

t file (f) edit (Qr,"»"+fas",") (£(9,3)s3,fC10,4)03)’
t file (F) edit (qo","s1e0=Fq,",™) (£(9,3),a,f(10,4),2)?

lineno (dataout) >57 then

put file (dataout) edit

(name,"~stored heat”,"q","f(a)","1-F(Q)"™) (skipsrasarskip,x(4),3Ca(10)))?

if Fa>0.99995e0) then go to out’
end,
out:
put file (sysprint) edit ("x,f, and 1-F are in file dataout for printing™.,
"purposes. x and f are in file f and x and 1-¢f",
. "are in tile F for sending to 4051"™) (3(skiprad):
close file (sysin)?
close file (dataout):
close file ($)?
close file (F); )
close file (sysprint)?

end;
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Appendix 3 Computer program for performing
a Monte Carlo simulation to calculate the distribution

of stored energy in one or many systems

" Harold Javitz of SRI International wrote a Fortran program to
calculate the distribution function for stored energy with triangular
input density functions for temperature, area, and thickness.’ The basic
relations used are equation (38), the inversion formula for a diStribu;
tion function froﬁ a triangular density function, and equation (14), the
relation between temperature, area, and thickness, and stored energy.
The program uses the subroutine ggu4 written by International Mathemat-
ical and Statistical Librarieé, Inc. For use at the U. S. Geological
Survey, the program was rewritten in PL/I for the HoneyWell 68/80 with
the MULTICS interactive operating system. In order to.use the compiled
‘version of the program, the first step is to type in thé command

asT >iml>imsl -after working dir

to add the imsl library to the search rules, a file called ''pinc' must
then be creafed with input data. All datalitems need only be seéarated
by a space. The fifst three data items are the number of systems, the
number of Monte Carlo trials to be performed, and the seed for the ran-
dom number generator. A reasonable starting seed according to Mr. Javitz
i; 123457. Part of the output is the final value of the seed to be used
for the next Tun. The minimum, most likély, and maximum values for tem-
perature (°C), area (kmz), and thickness (km) then follbw for each sys-
tem. Degenerate density functions;with minimum=most likely=maximum may

be used for any quantity that is known precisely. The output gives the
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input seed, the input parameters for the density functions, the mean,

. o ' Carlo
variance, and standard deviation for the MonteAsimulation of the re-
sulting distribution and the value of the seed for the next run. The
Monte Carlo trials are sorted in ascending order and printed with the
numbér of occurrences in ali'the previous'trials as the last number in
each line. - The.estiﬁated probability that the stored energy is greater
than any value found in the table is one minus the number of trials up to
and including that value divided by the total number of trials. Using

400 trials means each entry increments the estimated probability by

0.0025.
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FPRUGRAM

is

20

77116 StIedear=le0

LOCATE TRACE COC 6/gy FTIN v3,0=355F OPT=0
PROGRAM LOCATE (INPUT,TAPEL=INPUTQUTPUT)
OIMcNSION S(3Gus3,6)
DIMENSION U(3+300)sTEMP(300)
. DIMENSION E(400¢) 4X1(3)
REAU(144) NLOC,ITEKyISEEU
PRINT 2034NLOC)ITEK ISEED

. 203 FORMAT (9]16,0NLOC = ®,16e® [ITEN = #efar®  ISEED 3 #1104//)

4 FORMAT(2I34110)
D0 100 r=1yNLOC

e . REAUL(148) ((S(IedsK)eKz103) 9u=ly) e s

6 FORMAT(3(3F6,1+5X))
8 FORMAT (9F 6.1}

100 PRINT 6y ((S(IedeK)sK=193)9J31e3)
DO <00 I=1,NLOC
DO 200 J=143
IF(ABS(s(r.J,a)-scx.J.l)).LE. .00001)G0 To 110
S(IoJo4)=(S(IvJ12)°S(IvJ'1))/(<(IoJo3)-S‘I!J91’)
GO TO 120

120 CONTINUE

S(IoJ,6)=(S(IoJ03)-S(Ivdol))°(S(I,J13)-S‘I J22))
200 CONTINUE
. loPi=y
DO 300 N=1.ITER
DO 310 K=1,3
_CALL GGU4{ISEED,NLOCHICPTTEMP)

00 426 L=1»NLOC
320 U(KsL)=TEMP(L)

..310 . IOPT=g

Etiag.g
00 400 I=1,NLOC
.00 2500 J=1+3

IF(UCJel) ol T, S(Ivdy“))X(J)=S(IvJ’l)'SQPT‘U‘J’[”S‘I’J'S))
IF{V(Jr]) 4GE, S(Isz“))X(J)-S(Ivdv3)-SGRT((l QOU(J'I))‘S(XQJOG))
S00 CONTINUE . .
400 E(N)=E(N)0(xt1)-15)¢X(2)°X(3)
300 CONTINUE
~ XITeR=ITER _
© SUME=Q,0
SUME2=0,0
00 ©00 N=l,ITER
SUME=SUME+E (N)
600 SUME2=SUMEZ2+E (N) 2e2
EMEAN=SUME/XITER

EVARZSUME2/XI TER-EMEANSHZ
EVARSEVAR®XITER/ IXITER=1,0)
. ESD=SQRT(EVAR) .
PRINT 7,EMEANIEVARIESDY ISEED )
7 FORMAT (9024 9EMEANZ #1E12.595Xs2EVAR= #+E12,505X
__ooESTDEV .= B4E12,595%+»ISEED = #,[10) .

TPRUGKAM

..201 PRINT 3

CALL BSORT(EsITER)
STOP

-

LOCATE  TRACE

'3 FORMAT (#09,#ILLEGAL ENO OF DATA®)
END

- - - \__..35“-...... frh e e ememimmn et T - s o e e e e

CIF(ROF (1) +NE.0)GO TO 201 . e e e

" ¢DC 6700 FTN V3,0=3S5¢ opT=q

78/0!

_S(['JaS)‘(S(I’Jv3\-5(lvd;1)).(S(IquZ)-S(I’J’ll) i

78705/
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n n n o &

TTTSUBRUUTINE BSORT T TRACE ' coc 6700

———— e et —

o e w1+

2s

———e = .85

———— e — e

3n

T 125

100

110
. _._.los

120
121

LOGICAL SWITCH_ _ .

_ . SUBROUTINE BSORT(EyITER)

DIMeNSION E(ITER)
UIMENSION A(10)

REAL ITEMP

SWIiCH=,FALSE.
ITEnl=ITER=)}

00 10 I=l,[TER1

IF(E(I) ,LELE(LI*»1))GO TC 10
SWITCH= ,TRUE.,
ITEMP=E(])
Etli=€(l+1)
E(I*1)=ITEMP
CONTINUE
IF(SWITCH)GO TO 1
NPRiINT=0 = e e . e
NREM=ITER=NPRINT i
IF{WREM,EQ.0)G0 TO 121}
NNOws1Q

IF (NREM LT. 10)NNOWSNREM
DO 100 Js1yNNOwW
ACJ)=SE(NPRINT#J) e e
IF(WNOW oLT. 10)GO TO 10S
NPRINTaNPRINT*10 ’

PRINT 11Ce (A(J) sJ=1910) 9NPRINT

FORMAT (#0®, l10EL12,5916) '

GO 10 125 .

PRINT 1200(A(J)sJ=LeNNOQW) .
FORMAT (#0#,10€E12,5) .

CONTINUE ‘

RETURN

END_

36

FTN V3,0=355F OPT=0




montcar: procedure’
/* Monte Carlo simulation for calculating probability distribution function
of stored energy in a single or in many systems., Some variables are defined as:
nloc = number of systems
iter = number of Monte Carlo cycles
s(isjok) = parameters for all systems
i = the i th system
j = the 3} th property
1 = temperature, deg C
2 area, kme*2
= thickness, km
e k th parameter
=z mimumum
3 most likely
2 maximum .
S = quantities derived from 1, 2, and 3

Written by Harold Javitzs SRI International and translated into PL/I by
- USGS. .
Mav, 1978 */
‘bsort: orocedure (e,iter)’
declare Citer,ssisnorint,nnovsnrem) fwxed binary (31)2
dectare (e(*),itemp,a(10)) float (16);
switch: s=1J
.do i21 to iter=12
if e(i)<ze(i+l) then go to again’:
s=0/;
itemp=e(i)? .
e(i)sa(i+?); .
a(i+l)=itemp’ .
again: end;
if s3C then go to switch/
nprint=0;
more: nrem=iter~nprint’
nnow=107;
if nrem<10 then nnou=nrem’
do j=1 to nnow’ a(jlzelnprint+j); end’
if nnow < 10 then go to last’
nprint=nprint+10;
put file (me) edit ((a(j) do j=1 to 10),nprint) (skip,10C(f(8,3)),¢(8));
go to maore;
Last: if nnow>Q then put file (mc) edit ((a(j) do js1 to nnow))
. (skipr,10C(£f(83,3)));
return’;
end’

declare (pinc) file stream input’?

declare (mc) tile stream output’

open file (pine) input stream’ )

open file (mc) output ‘stream print pagesize (58) linesize (1368):

declare (s(300,3,6),u(3,300),temp(300),x(3),xiter,
sume,sume,emeancsevarsesd) float (16);

declare e(iter) float (16) controlled’

declare ggué entry options (variable)’;

declare (nlocsriter,iseed,iontsisjerkoston) fized binary (31),
get file (pinc) Llist (nlocsiter,iseed)?
put file (me) edit ("seed in",iseed) (skipr,a(i0),f(13)):
allacate e;
do i=1 to nloc’. : .
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get file (pine) list (((s(irjrk) do k=1 to 3) do j=1 to 3))?
put file (me) edit (((s(isjok) do k=1 to 3) do j=1 to 3)) (sk1oo°<f(6,1))).
end’
do i=1 to nloc?
do j=1 to 3; .
it abs{(s(isjsr3)~- s(1');1))< 1e=5 then
$Cisjet)=2ted’ else
sCisjrbd)=(sCisjr2)~ S(f:)’1))/(3(10113)°5(111'1))c
$CinfaS)=lslisja3)=sCisjrl))n(sCinsjs2)=sCisja1))2
sCi,jrb)=(s(i,rj.3)~ s(x,)p1))*(s(1,);3) sCirjar2)):
end; end’
iopt=1’
do n=1 ta iter;
do k=1 to 37 )
caltl gqué(iseeds,nlocrioptstemp)?
do L=1 to nloc¢?
u(ksld=temp(l)’ end’ .
iopt=0: end’ -
e(n)=0e0’ : .
do i=1 to nloc’
de j=1 to 32
if uCjorid<slisrjrbd) then . .
x(j)aslirjrtd+sartlulj,id*slisjr,5))’ else
x(j)=s(isjsr3)t=sqrt((1eQ~-uljrid)*s(isjlrb))?
end’;
- eln)ze(n)+(x(1)~- 15e0)*x(2)tx(3).
end’
e(n)=0,6e~3*e(n);
end;
xiter=siter’
sume=0e0’ ' - .
sume2=Ne(’
do n=1 to-iter:
syme=2sume+e(n);
sumeZ=sumel+e(n) *eln)’
end,
- emean=syme/xiter;
. evar=sumel/xiter-emeanvemean;
. evarzevar+*xiter/{(xiter-1e0),
esd=sqrt(evar)’ .

out file (me) edit (“rean”,"var","s.d.","seed",emean,evar,esdsiseed)
(skipox(S)'l.(a(S))oskip;l(f(S,S))afHS));

call tsort(e,iter)’

close file (pinel)?

close file (me);

end;?
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Figure l.--Density and distribution for the area of the hydrothermal system
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Figure 3.--Region of integrétion for determining the probability P{V z v}.
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