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ABSTRACT

Alternating diagonal ordering of node points for a two-dimensional
finite-difference model of ground-water flow can be used to produce a
direct solution algorithm that is computationally more'efficient than.
iterative methods for moderately sized grids. <Comparisons with the
strongly implicit procedure, line-succesive overrelaxation, and the
iterative alternating direction implicit procedure indicate that a direct
methodbuéing alternating diagonal ordering can be competitive for as
many as 3,000 equations. A FORTRAN computer cbde is included that
is compatible with the.twq—dimensional ground-water -flow model developed
by the U.S. Geological Survey. The performance characteristics, computer
storage requirements, and input.dafa requirements for the direct solution

algorithm are also included.



INTRODUCTION

As the availability of large capacity, ﬁigh speed computers increases,
the utility of direct methods (Gaussian elimination). for solving
thé set of linear élgebraic equations encountered in ground-water
modeiing aiso increases. - 'Price and Coats (1974) aﬁal&zed the use of
direct_methodé_for solving.matrix equations encountered in reservoir
simulation problems. They argue that it is well known that the commonly
used method for ordering equatiéns (phat.is, numbering a finite-difference
grid in'the smallest dimension) is éertainly not the mést efficient one.
They go on to discuss the advantages of various alternative methods for
ordering equations, in particular, a mefhod which they refer to as D4 .
or alternating diagonal ordering. Rgsults indicate that for large grids,
D4 ordering requires only one-fourth the computing time and one-third the

storage of standard ordering for non-symmetric problems in two-dimensions.

«



D4 ORDERING

The pﬁrpose of D4 ordering is to construct a coefficient matrix such
that dﬁfing the elimination process, sparsity will be conserved. Sparsity
refers to the relative number of non-zero elements in the matrix. Certain
mﬁltiplications and divisions can be avoided if zero elements are encountered
during elimination and thus, if the sparsity is magimizgd, the work required
to complete the elimination can be minimized. Consider a 5-by-5 grid shown
in figure 1 with the grid points numbered in D4 fashion. The coefficient
‘matrix [A], resulting from finite—difference approximations for a two-
dimensional ground-water fldw model wi;l have non-zero entries denoted

by the X's in figure 2.

Note that the upper half of [A] is already in upper triangular form
(no non-zero elements to the left of the main,diagonal).> Eliminating
unknowns associated with equations in the upper half from the equations
in the lower half, produces non-zero entries in the lower ﬁalf of tA]
shown by the circles in figure 2. Note that, 1) célculations are not
required for.zero entries during this elimination, and 2) the bandwidth
of non-zero entries created in the lower half is such that elimination
through the lower half requires less work than standard ordering. Although
item 2) may not be obvious from figure 2, Price and Coats (1974)
demonstrate that these characteristics can reduce the work (number of
multiplications and divisions) required for elimination to almost
N2/4 for large square grids; where N is the number of equations. Standard
oraefing requires N2 multiplications and divisions; thus D4 ordering
may require only one-fourth as much work.

-3-
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Figure 1.--D4 (alt‘ern.aAting diagonal) ordering for a S—By—S grid.
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Figure 2.-- Structure of matrix [A] assuming D4 ordering. The X
characters denote non-zero elements in the original
matrix [A]. The O characters denote non-zero elements

formed by eliminating the X characters from the equations
-in the lower half of the matrix. -



Also, symmetric matrices require only one-half as much work as
non—symmetric matrices (operations are necessary only to the right of
the main diagonal). Thus, the work required using D4 ordering may

r approach N2/8 or IJ3/8 for large squafe grids, where I and J are_the

grid dimensions.

ESTIMATING WORK RATIOS
For direct solution methods, the bandwidth of the coefficient matrix
~ is an impottaﬁt characteristic because the storage requirements are

proport;onal to the bandwidth and work is proportional to the square of
the béndwidth. The work required for elimination of a banded symmetric
matrix, using standard ordering, is approximately NJ2/2 or IJ3/2 where J,
the smallest grid dimension, is assumed to approximate the bandwidth of the
matfix. If the reduction in work produced by D4 ordering'can be estimated,
the wofk ratio between D4 ordering and iterative methods can also be
estimated for various grid sizes.

If J<I, the bandwidth for standard ordering is j+1 and the wofkvfor 1a#ge

I and J is, as mentioned above, approximately IJ3/2. Therefore:

S |
D4 D4 2 1
where fD4 is the work ratio of D4 compared to standard ordering. Figure

3 shows work ratios of D4 to standard ordering_(th) achieved using an

IBM 370/155 computer for various grid sizes and grid elongations (ratios of
J to I). The Gauss-Doolittle method of decomposition (Forsythe and Moler,
1967) was used for both D4 and standard ordering. Thus an estimate of work

using D4 ordering'can be obtained using figure 3 and equation 1.
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Figure 3.--Work ratio (fm) for various elongation ratios using D4 ordering.
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For iterative solution methods, the work for each iteration is
directly proportional to the number of equations and the total work
required for a solution can be written:

Wi = CN;IT (2).
where Ci is the number of multiplications and divisons required per

iteration, N, is the number of iterations required for a solution, and 1J

i
is the product of the grid dimensions which presumably approximates

the number of unknowns for a given problem. Thg coefficient Ci is
about 31 for SIP (strongly implicit procedure), 47 for IADI (iterative
alternating direction implicit procedure) and 23 for LSPR (line-successive
overrelaxation) as coded in ‘the model for two-dimensional ground-

watef flow developed by Trescott and others (19?6). Note that the
'grid dimeﬁsions of the two-dimensional ground-water flow model are not
exacﬁly equal to I and J as discussed héfein. fo simplify computations,
the model grid‘incluAes a border of inactive node points. Thus the
model grid dimensions must be reduced by 2 to obtain the values of T -
and J used in this discussion.' |

The relative wofk between the D4 method and the iterative methods

can be estimated by éombining equafions 1 and 2 as:

2

Wy _ 0.5£,J
W, C.N,
it 1 1

(3)




In Aeveloping a oompuﬁer code that woold.be compatible with the two- -
dimensional ground-watervflow mbdél~(Treépott'an& others, 1976),

a small amount of overhead was requited to calculate_the coefficient
matrix. To make a more aocurate practical'estimate of work ratios
(wb4/wit)’ this overhead (approximately 201J multiplications) is
included even though it becomes insignificant for large grids. The.

work ratio between D4 ordering and iterative methods can thus be

approximated by:

S 2 |
Wp, 0.5£),3° + 20 | | “
w., ST oW -
-GNy

it -

Figure 4 depictsvthe‘qoantity WD4Ni/wit fof various grid sizes
(aésuming I=7J) for'the thrée iferative methods included in the two-
dimensional ground~water flow'model. Fquation 4 was used to construct the
graoh witﬁ values of fb4bobtained from figure 3 for‘a l:l elongation ratio.
The quantlty WD4Ni/wit is the number of iterations that yield the same
amount of wofk roquired byldiréct solution with D4 ordering. Thus if
an iterative method requires more than WD4Ni/Wit ite;atlons, the problem

can be solved more efficiently using the D4 technique. ~
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It is also of interest to note that for a problem containing
missing grid blocks (transmissivity equél to zero) or other irregularities
in boundary geometry, the D4 technique may be more effective than equation.
4Vwould predict. The reason is that missing grid blocks or irfegular
boundary geometry can result in a smaller bandwidth than that estimated
from the grid dimensions. It is clear from equation 4 that if the
bandwidth is reduced, the work required for the D4 technique may be
»signifigantly redu¢ed becauée the work is directly proportional to the

square of the bandwidth.
COMPUTER CODE

--A FORTRAN computg;'code”was develoﬁed to pefform direct solution
assgminng4 orderiﬁg{. The coée was éonstructed to be ipterchéngeablé
with the S¢LVE2 suﬁroutiné (LS¢R) in the two—dimeﬁsional_ground—watér‘

» flow quel (Tréscott.and otheré, 1976) aﬁd'is listed‘in fhe appendix.
Although the definitiqn‘of‘éome inpuf data variables has changed, thé

only modification-requifed to accommodate this subroutine into the program
is té'change oﬁe card in the main program. This card is also listed in
the appendix. Before describing the'changes in.iﬁput data, a discussion

of non-linear terms and uniform time steps is appropriate.
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Non~linear Terms

For wéter—table aquifer systems; systems thatAinclude groﬁnd-
water evapotranspiration; or combined water-table artesian simulations;
the resulting equations are non-linear or are only piecewise linear. The
term piecewise linear is meant to imply that the system is linear over certain
ranges of head but not uniformly linear éver the entire range. TQ
analyze these problems effectively in the environment of a direct-solution
scheme, linearization fechniques such as Newton-Raphson iferatioﬁ (Blair and
Weinaug, 1969), or perturbation (J.V. Tracy, oral comm., 1977) can
be used. Although these methods solve the ﬁroblem in a mathematically
jpleasing fashion, a nonsymmetric coefficient matrix is produced, thus
significantly reducing the utility of a direct-solution scﬁeme. For
most. ground-water problems, a simple technique called extrapolation can give

satisfactory results with a minimum of computational effort.

Extrapolation

The purpose of using a technique such as perturbation is to avoid
decomﬁosing the coefficient matrix more tﬁan'once per time step, as
would be required if the non-linear terms were updated iteratively.
A very simpie, yet effective, method for.obtaining an estimate of the
non-linear terms is to extrapolate the head using values.calculéted
from preceding time steps (Von Rosenberg, 1969). Generally,
extrapolation is made to the mid-point of the next time step, thus providing
estimates of the average non-linear coefficients during that step. If the

point of extrapolation is variable, the scheme could be written as

* .
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where h* is the estimated head to be used for calculating non-linear
terms, hk—l and hk—2 are heads at the k-1 and k-2 time levels,
respectively, and f is the extrapolation factor. 1If 6 is set to zero;‘
the scheme becomes one of explicit evaluation of non-linear terms at
time level k-1. Although the method is siméle in concept; it appears
to be quite effective for many nonrlinear'ground—water flow problems
and yields an estimate of the solution to the non-linear problem in a
single decomposition of the coefficient matrix.

Extrapolation may not eliminate all of the difficulties associated
with non—linearvterﬁs, however, and so the computér code was structured

"controlled" iterations during each time step. This

to allow a sequence of
takes the form of specifying a mipimum number of iterations that must be
completed during"fhe step. Non-linear terms are evaluated using the head
computed by the most recent itergtioﬁ5 A maximum number of iterations

is also specified and the sequence is terminated if the maximum head

change for an iteration is smaller than a specified tolerance. Termination
of the sequence must be.achiéved within the maximum limit of iterations

or the program will abort. However, by selecting an arbitrarily large
closure tolerance, a minimum number'pf iterations can be guaranteed and

the closure tolérante will be satisfied; thus the program will not

abort. The use of iteration, although somewhat inefficient computationally,'

should allow the solution of many problems that cannot be solved using

only extrapolation.

=13-



Uniform Time Steps

For linear problems (artesian siﬁulations with no evapo-
transpiration), a direct-solution technique can be'very effective for
simulations with uniferm time steps. For these problems, the
coefficient matrix does not change from one time step to the next and
therefore only a single decomposition of the matrix is required. Heade
~at subseqﬁent time steps are determined by reformulating the right hand -
sides of the difference equations and back substitufing. The computational -
work required to reformulate and back substitute can be substantially
less than that of decomposition, thus solving for several uniform
" time steps can be accomplished much more efficiently than an equivalent
number of non-uniform steps.

The computerleode is designed to take‘adﬁantage of this reduction
in work automatically if the necessary conditions exist. The necessa;y'
conditions are: 1) artesian simulation, 2) no evapotranspiration, 3)
no iteration.specified'(see variable LENGTH below), and 4) uniform time
steps.

Changes to Input Data..

Subsequent paragraphs describe changes in the definitions of some
input data variables used in the two-dimensional ground-water flow model
(Trescott and others, 1976). .Complete descriptions of the input data

cards can be found on pages 49-55 of that report.
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In group II, card 2, columns 21-30, the variable ERR is used to
define the error criterion for closure on the iteration sequence for
non-linear problems. If the calculated head change for an iteration
is smaller than this value at all nodes, iteration will stop. Reason-:
able values of this parameter are probably about 0.1 or 0.2 and are.
related to the amount of error in trénsmissivity, evapotranspiration
coefficients, or leakage coefficients that is acceptable. A large value
of ERR can be.used to guarantee closure after a minimum number of iterations
has been completed.

In group'II, card 2, columns 71-80, the variable LENGTH is defined
as the minimum number of iterations desired. Thus if at least 2 iterations
(in addition to the first decomposition) are desired, codg 2 for LENGTH.
The ﬁaximum number of iterations desired is controlled by the parameter
ITMAX (group I, card 4, columns 31-40). Set ITMAX to the maximum number
of iterations desired. TFor some.problems in which non—linearity is
caused by the constraints on evapgtraspiration'coefficients or leakage
coefficients in combined water-table artesian éimﬁlations, it may be
desirable té iferaté one or two times. If these two pérameters (LENGTH
and ITMAX) are set equai, and ERR is sufficiently large, LENGTH iterations
will resultf The purpose of this type of iteration is to insure that the
water-level has notvexéeeded the allowable range for correct coefficient
calculation during the time step. For example, evapotranspiration rate

is limited to a maximum value if the water level is above land surface.

-15-



If the water level moves above land surface during a time step, the
fate will be incorrect unless iteration isvperformed. However, this
not‘be necessary for most probléms and may only be significant
for steady-state calculations. To avoid iteration, set LENGTH to zero.
| In group II, card 3, columns 1-10, the variable HMAX is defined

as a dampening factor similar to B' used in the SIP algorithmn. It can
be used tqicontrol oscillations for somé'highly non-linear water-table
problems. - (See Trescott and qthers, 1976, pp. 26-29).

. .Recali that the computér code was constructed as a replacement_fof
subroutine S@PLVE2 (LS@PR) and thus LS@R must be selected in group I,
card 3, columns 26-30 to designate direct solution. If direct solution
is selected, an additional data card is required prior'to-the group IV data.
The card inputs the variable THETA used for extrapolation in water-table
~ simulations. The fnrmat is F10.0 (columns 1-10) and a blank card is '
required for simulations in which direct solution is selected and THETA is
not used (non;water—table simulations).

Additional arrays (AU, AL, IC, B,.and.IN) are required for direct solution
and are dimensioned explicitly in the subroutine. (See Appendix).The requirgd’
dimensions for AU, AL, IC, B, énd INAare computed by the program and |
displayed on the prqgram.nutput. These vafiableé and must be dimensioned
at least as large as indicated on the output if the program is to run success-
fully. Array IN should always be dimensioned by at least DIML-2 by DIMW-2
(DIML and DIMW are.the model érid dimensions). Initially, the other arrays”can
be dimensioned és follows, assuming N = DIML x DIMW, AU and IC should

be N/2 by 5; AL should be N/2 by DIML-1, and B should be N. 1If these

~16-



estimates differ significantly from the computed values, it may be
appropriate toirecompile using the computed dimensions.

Storage Requirements and Computation Time

Although storage requirements and computation time will depend
entirely upon the type of computer‘éystem available, expérience on an
IBM 370/155 ll-will be presented to provide some insight into‘expected
values.

The core stbrége in thousand- byte units (1 byte = 8 bits, 32 bit
words) can be approximated by:

23

C = 87 + 0.034 N (6)

where N is the number of active nodes (unknowns). This assumes that all
opfions have been selected and that tﬁe Y arrayv(see Trescott and others,
1976, p. 38) and the additional arrays required for D4 ordering are
dimensioned exactly as réquired. Thus, for 1000 unknowns, 254K bytes.of

core storage are required. That par£ of this tétal required by the additional

arrays in D4 is approximately;

. IN + 0.5NB

Cpg = T 256 7

where B is one less than the smallest grid dimension (DIML-1 or DIMW-1).
On modern computers, core storage is commonly available in quantities

that .allow serious consideration of problems involving as many as

1/ The use of brand name in this report is for identification purposes only

and does not imply endorsement by the U.S. Geological Survey.
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three thousand unknowns. As a practical matter, two-dimensionai ground-
water models seldom have more thanA3,000 unknowns and therefore ‘the
D4 ordering technique should be an effective solution method.

| An empiriéal relation for CPU (central processor) time in seconds,
excluding data input, is:

£ = (4.82 X 10°°) N-9?

(8)

This is the time required to complete an iteration, 'or a non-uniform

time step, if iteration is unnecessary.

Roundoff Error

Roundoff error may cause difficulties for some problems if the
magnitude of the elements of the coefficient matrix are highly variable.
The decomposition of the matrix as written in the computer code in the
appendix is carried out in single precision arithmetic and computefs
such as the IBM 370/155 that have a standard word size of 32 bits (6 to 7
deéimal digits) can be prone to roundoff error. Computers that have lérger
standard word sizes (such as the CDC 7600 with 60 bit words) seldom have
roundoff error problems.

Errors in the mass balance computed by the‘ground—water model are
indications of roundoff error. If the error is large (greater than about

one percent), it may be necessary to 1) carry out the decomposition in

~-18-



double precision arithmetic, 2) iterate on the residual of the difference
equations, 3) use some form of scaling the coefficient matrix, or 4)

use a computer that has a larger standard word size. Iteration on the
residual is accomplished merely by fofcing iteration (LENGTH>0).

Scaling the coefficient matrix requires modification ofvthe computer

code and was found to be somewhat ineffective on a test problem that

exhibited roundoff error difficulties.

Utility

It is anticipated that the D4 method will be most useful in the
solution of steady-state problems. For the iterative methods (SIP,

ADI, and LSPR) solutions to steady-state broblems generally require many
iterations unless the initial estimates of aquifer head are close to
the‘solution. This is uncommon, however, and thus the D4 method should
be very effective.

For transient problems, the aquifer;head at the old time level is
normally very close to the values at the_new (unknown) ﬁime level and
iterative methods can be used to obtain a solution in a few iterationms.
Large time steps however, will probably result in a situation similar
to steady-state problems in that many iterations may be required by
iterative methods and the D4 method may be more effective. Also, as
indicated previously, transient simulations of linear problems using many
time steps ofvequal size may.be accomplished very.efficiently using the

D4 method.

-19-



CONCLUSIONS

Ihe'size and spegd of modern computers have increased utility
of directé‘sélutioh~£echniqués as appiied'to ground-water modeling probléms.
The D4 ordering scheme with Gauss-Doolittle decomposition iéicompetitive '
with‘iterativé methods, such'astSIP; IADI and LS¢R, fof many problems.
The éroblem\of selectiﬁg iteration parameters, restficfions én coefficient
_variation, and siowly cqnveréing or possibly non—coﬁverging_sequepces'of
esﬁimates are virtually eliminated if direct solution.ié used.

.r'Wo;k ratios between theiD4 methda ;nd the iterative methods

can be estimated and an evaluation of - the utility of the D4 method can.
be made. FOﬁ an IﬁM‘370/155 éomputer, thg two-dimensional ground-water model
can be prbgrémmed'to solve for 3,000 unknowns in the same amount of CPU
time reduired for about"i3 SIP;itera;ioﬁs, Thus, direct solution
assuﬁing‘D4 ordéfing can Be an effecti?e SOIﬁtion algorithmn for a wide

- range of ground-water modeling problems.

-20-
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Changes to program code to use D4

1) Change card MAN1710 in the Main program to:
43), Y(L(20)),Y,(L(22)),Y(L(21)),Y(L(18))

Note that this is a continuation card and thus the first
character (4) is in column 6.

2) Insert the subroutine listed on the following pages in

place of S@LVE2.



D4 -

SLRROUTINE SOLVEZ2 (PHIsN1+4D2sD3sKEEPgPHE+STRT e ToeSsURESWELLTL » D4

1 SLaN149NSsDAIDT oL ELX9DBICELY D9 TESTI, TﬂoTCoCRhu,SYoTOQ,PATE;M;
2 RIVFRLEQTTOM) D4
Cc SFFCIFTCATIONS D4
REAL #BFHIF, FHO.CL,CRoCAyCB AREA.DXHoDYR D4
KEAL #4KFEPoMoKEEFN D4
TANTEGER ReFPyPLIDTNL Y nINh9CHK9WATFR-COAVRTvFVAFyCHCh PNCP.NU*.HEAD’D4
LCONTFR o FAKWRECHSTPACT . D4
o D4
NIMENSTICA PHIC(1), KEEP(1)e PHE(1)s STHT(1)s D4
IT(1)e S(1)e QRE(1)e WELL (1) TL(L1)y SL(1)s D4
A NELX(1) DELY (1) » TEST3(1)s TH{1)y TC(1)s D4
AGRNC(1)e SY(1)e TCP(1)e RATE(1)s M(1)9 RIVER(1)9s BOTTOM(}]) - D4
DIMENSICN AU(S0045)s AL (5004310 I1C(500+%)s IN(50950)s £(1000) D4
c L D4
CCMMON /SARRAY/ VF4({11)+CHKI(1%) D4
CCMMON /SPARAN/ wWATERGCCMVRT 4FVAPYCHCK yPACHONLMIHEADWCONTRyFRCRGLEDSG
1AK gRFCHISTIPaUISSeTToTNINGETLISTIVET 9t RReTMAX 9 COLToHMAX o YDIM . WIDTHWD4
2NLMS ¢ LSCRGADTsDELT 9 SUM e SUMP ¢ SURSsSTORE s TFSTIETOABETADFACTXFACTY D4
3T1ERR «KNUNT o IFINAL s NUMT oK T o KP o APERIKTHITTMAX g LENGTHoNWEL yNWo~IML 4DID4
GMR g UNCTIsTINOYL ok oPyFU s IXX 9 dXXeIDK12IDK?Z Ds
RETURN D&
c ....I...'.ll'..l....O..Q..‘.O.'.l.......l".l....‘...l............Da
c D4
Chaudsafignuahadatated D4
FANTRY ITER? D4
(2RI EEETELEEEE-21E ] D4
REAC 530, THFTA De
IN=LIML=2 D4
JV=DIMW=2 D&
CuaussCCMPUTE FOQUATION NUMBERS FOR D4 uhnEWING D4
NXP=TMsM=] D4
NC 10 I=14IM . D4
DC 10 J=1eJM D4
NzT+JoNIML+1 D4
PEF (N)=STRT(N) D4
10 IN(TeJ)=0 ' D4
k=0 ' D4
CH#e#RORNER=-=LFFT TC RTCHTy BCTTUM TO TOP N4
NC 20 7=1eNXPs2 : DY
LC 20 J=1ledM D4
IK=TmJel D4
IF (TK4LTe1) GO PC 20 D4
If (IK.CT,1M) GO 10 20 D4
NzTK+e RO TML+1 DI
IF(TIN) eLEoDaeORGE(N) (LT 0,) €O TC 20 D4
KzK+] . D4
IN(IKyJ) =K D4
20 CCNTTAUE D4
ICR=K+1] D4
DC 30 I=2sNXPs2 Da
DC 30 y=leJMm D4
IK=T=Je+1 . D4
IF (TK.LT4l) €O TC 30 D4
IF (IK.CT.IM) GG 10 30 D4
N=TK+J#DTVL+] ' , D&
IF(TUIN) ol.EeDeaORGS(N)L,LTL0,) GO TO 30 D4
K=K+l D4
IN(IKyJ) =K D4
20 CCNTINUE D4
CuaauaCCMPUTE RANDWIDTEH AND DETERMINE LONhtCTINC EQLATION WUMRERS YA

IcO
130
140
150
1€0
170
180
160

-200

210
220
230
240
?2€0
260
210
280
260
300
310
320
330
340
380
360
370
380
360
400
410
415
420
430
440
450
4610
470
480
460
500
510
515
520
530
540
580
5€0


http://9l.BPni.TlNE

MAN0=G99S
NXO=0 :
DC RO I=1y1IM
DC 80 J=1eJi
IR=IN{TsJ)

IF (IR.EQe0eNFRaIRLGELICR)

JL=1
Ces LEFT

IF ({(J=1).LT.1) @C.TO 40

TF (IN(Ted=1)eEG,C)

JU=ditel

TC(IHaJL)=IN(Ted=1)

MFV=TIN(Ted=1)~IR

MXQ=MAXO (MMeMXQ)

MAO=MINO (MMeMNQ)
cu##  ARCVF

50 TO 40

S

40 IF ((I=-1).LTel) €C TO %0

IF (IN(T=19J)eEG.C)
JL=dti+l
TC(IRSJUI=IN(I=14.)
MN=TIN(I=1eJ)=IR
MNO=MING (MMymNQ) .
MXO=MAXD (MMM XO)
c##  BELOW

E0 IF ((I¢l) GT,IM) .CO
TF (IN{I+14J)eEQ,C)
Jl=Jl+
TC(IReJUI=IN(I+]) i)
MM=IN(I+19J)=1]R
MXOSMAXO (MMeMXO)
MNO=MTINO (MyveMN()

Cas#t  RICHT

€0 IF ((Jel)oeGTduM) €O
IF (IN(TeJ+1)eEG,C)
Jl=Ju+1
TC(TROJLIZIN(T 9 de )
MN=IM(Ted+l)=1IR
MXO=MAX0 (MM MXD)
MAO=MINO (MMeMNG)

70 IC(IRs1)=JU

80 CCNTINUE
IF=MXC=MNC+2
NEQ=K
ICR1I=ICK=1
IE1=IR=]
LF1=NFQ=ICR]
LF=NEQ<ICF

GO TO S0

TC 10
GC Yo 70

GO 70 &0

WRITE (PsS10) HMAXWLFANGTHsITMAX9THETA
WRTITE (Fys520) ICR1sLHLsIRB1sTICRIINENGINM UM

RETURM
Croanunstisuaapiassand

ENTRY NEWITB
Caaaptpisusitotpdanad
KCUNT=0
ITYPE=0

IF (CDLT.EQ.I.‘ANE.KT.GTQJOAND.L

1PE=1]

1F (WATER.NELCHK(Zz))
1TYPE=2

NC G0 I=1yIM

NC 80 J=ledM

GC 10 100

ENGTHeEGWCoANCoEVAP JNE JCHK () )

D4
D4
D4
D4
N4

. D4
D4
D4
D4
KA
D&
Na
D4
D4
D4
D4
D4
D4
D4
. D&
D4
N4
D&
D4
D&
D&
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
N4
D4
D4
D4
D4
D4
D4
D&
D4
D4
D4
Da
D4
D4

ITYD4
D4
D4
D4
D4
D4

S70
580
550
600
610
620
620
640
650
6E0
670
680
650
700
710
720
730
740
750
TED
770
7€0
750
800
a1o0
820
830
840
8S0
REO
R70
B8O
890
500
910
SZ0
930
940
9t 0
960
S70
Sen
960
1600
ilo10
1020
10320
1040
1080
10€0
in70
1080
1060
1100
1110
1120
1130
1140
1150
11€0
1170



OO0

N Teds0ImL ¢l ’ : ’ ' D4

NEL TAH= (PRI (N) = PHF(h))“CDLT#THFTA s . D4
DELNMAX=0,1#(PFI{N)=ROTTCM(N)) - D4

IF (ARS(NELTAF) 4CGTLELMAX) DELTAH= DELTAH#LELMAX/ABS(D&LTAH) D4
BET(N)=FHI(N)*DELTAKF o D4

S0 CCNTIANUE ' ’ D4
CALL TRANS , - S 3 o D4

100 RIGT=0, ' D4
Cee LOAC MATRIX A AND VECTOR P FOR L4 : S _ N4
IF (TTYFELEQLL) GC TO 130 . D4

nC 110 I=1.1CH] I ' D4

DC 110 J=145 R o D4

110 AL (TeJ)=0e : D4
NC 1720 I=1,LH] : _ N4

NC 120 J=141R1 ' : ' D4

120 AL(T2y)=0, _ ‘ D&
120 NC 140 I=14NFEGC : ' - D&
140 B(I)=0. C ' ‘D4
NC 310 Isl,IM o _ D4

NC 310 J=z]lsdM . D4

IF (IN(I4d)eFG,o0) GO TC 310 : : : D4
TR=IN(I9J) , : ‘ . D4
N=T+1enTML®J . _ o D4
NAd=ha} ' . D4
NE=N+1 . . : . D4
NL=N=D ML o A D4
NRzNeDTML : _ , | D4
DXR=NELX (J+1) : o - ' D4
NYR=NFLY (I+1) S D4
STRTIN=STRT (N) . T ‘ - A D4
KEEPN=KEFF (N) : " _ : D4
PFEN=PHI (N) oo , S ’ D4

IF (ITYFF.tRe1) PFEN=PHE (N) B ) D4
.000...'0'..0....'...I..O.»O.i.'.l..."ol.'...OOCICn..'.0.0.0.'.'..04

: ' : ' ' : D4
~aeCOMPUTF COEFFICIENTSwm= - AT D4

IF (FVAPNELCFK(E)) 60 TO 160 R D4

C : ‘ ' D4
c ~=«COVMPLTE FKPLICIT AhP INPLICIT PARTS ‘CF ET pATt--- D4
GFNON=GRND (N) . o A ‘ D4
ETar=0, ‘ ' : - - ‘ D4
ETAC=0,0 ‘ o : D4

IF (PHFENJLELGRNDN=ETDIST) GO TO 160 ' D4

IF (PHENJCTLGRNDN) GO TC 150 ‘ : D4
FTAR=QET/ETNISY : ' _ D&
ETQC=FTQR# (ETC iST=-GRNDN) : : D4

GC TO 160 o D4

150 EToD=RET : - D4

: o : o D4

c -e=COANPUTE STCRAGF TERMe== _ : - D4
160 IF (CCNVRTLEG.CHK (7)) GC TO 170 S _ D4
RFO=S(N) /CELT ‘ L D4

IF (WATERLEG.CHK(Z)) RRC=SY(N)/DELY . D4

GC TO 240 o ] D4

C D4
c -==COVMPUTE STCPAGE COEFFICIENT FOR CONVEWRSICN PHOBLEM--- D4
170 SLRS=0,0 4 ‘ o : D4
TCPA=TOP (N) ' , ‘ ' D4

1F (KEEPN.GF.TCPN. Ahn.nrfn GE.TOPN) GC TO 210 D4

TF (KEEPNJLT.TUPNJANDLRFENCLT.TOPN) GC TO 200 _ D4

1180
1150
1200
1210
1220
1230
1240
1250
12€0
1270
1280
1260
1300
1310
1320
1330
1340
1350
13¢€0
1370
1380
1360
1400
1410
1420
1420
1440
1450
14€0
1470
la80 .
1450
1500
1510
1520
1530
1540
1550
15€0
1570
1575
1580
1550
1600
1610
1620
1630
1640
1650
1660
1470
1680
1650
1700
1710
1720
1730
1740
1750
17€0
1770



180

160
2C0

210
20

N
FoNN ]
[ IR ]

IF (KEEFNePHEN) 1£0+1504190
SLRS={(SY(N) =S (N))/DELT# (KEEPN~TOPN)
GC To 210

SLRS=(S(N)=SY(N))/DELT# (KEEPN=TOPN)
REO=SY(N) /DELT

GC Tn 220

RFO=S(N) /CELT

TF (LEAK,NELCHFK(Q)Y) GC TQ 240

-~=COMPUTF NET LEAKAGE TFRM FOR CONVERSION SINMULATION==«
IF (RATE(N) eFG o0, 0R M (N)EGC.0.) GO TC 240

HEN1=AMAX] (STRTN,TQFN)

Us1. '

FED2=N,

IF (PHENGCGEL.TCPN)Y GC TC 230

HFD2=TOFN

1120

QL(h)-RATF(N)/N(\)“(HIVFD(N)-HrD1)0TL(N)*(hEDl-hrD2 STRTN)
CCNTIMUE

ARFA=NIXBH#NIYR
FEz (RECSTL(N)#L+ETCR) #AREA

Coaunu.CAL COEFFICIENTS INTC A1) Ahﬂ AL

2c0

2€0

270

280

2560

ClL.=(TH(NL))#DYR
CR=(TR(N))#DYF
CAs(TC(NA))Y2DXA
CHE=(TC(NY)Y#DXE

IF (TTYFFL.EQ,1) GC TO 3a0

IF (TR,GF,ICR) GC TC 290
JL=1-

TP ((J=1)aLT,1) GC TN 250

IF (IN(Isi=1)eEQ,C) GO TO 259
JL=dti+l :

AL (IRsJL)==CL

TF (IN(I=1eJd)eEQLC) GO 1O 260
JlzJdu+y

AL (IPoJL) ==Ca

IF ((141).GT,IM) GO TC 270

IF (IN(I+1ed)eER,7) GC TO 270
JL=Ju+1l

AL (IRyJU) ==CR

IF ((J+1)oGTaM) UG TC 280

IF (IN(I4d+1)4ER,C) GO TO 280
Jl=Jylisl

AL (IReJU)Y==CRH

E=E+CA+CB+CL+CR

AL (TRe1) =E

D4
D4
D4
D4
D4
D4
D4
D4
D4
N4
N4
D4
D4
D4
D4
N4
D4
N4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4

B(TR)= (RHCH*KEEPN+SL(N)+CRE (N)+WELL (N)=ETQC+SUBS*TL(N)®#STRTN) #AREA+D4

1CA#PHI(NA) +CBYPHI (NB) +CL#PHT (NL) +CRePH] (Nk)=E4PHI(N)

TF(TIN)eGTW0,) GC TG 310
AL(IRel)=1.

R(IR)=0.

GC 10 310

IFRR=IR=ICK1
FzE+CA+CR+CL+CR

AL (IRRs 1) =E

D4

D4
D4
D4
D4
D4
D4
D&

H(IP)-(RHC*KFEP\*‘L(V)OFRE(h)*WELL(N)'ETQL#QUFS‘TL(N)“STRTN\*AREA*D“

1CA#FHI(NA) +CBEPHT (ANR) +CL#FHT (NL) +CR®PHRT (NK)=E#PHR] (N)
IF(T(NYeGT40.) GC TO 2310
AL (IRRs1)=1,

D4
D4
D4

170
1780
1800
1810
iRz o0
1820
1R40
1”80
1R€0
1870
lago
1”60
1900
i910

‘1820

1930
1940
1950
19¢€0
1970
1S€0
1650
2000
2010
2020
2030
2040
2080
2060
2070
2080
2060
2100
2110
2130
2140
2180 .
21€0
c1éeo0
2160
27200
2210
2230
2240
2250
2260
2270
2280
2260
£300
2310
€330
23410
2350
2360
2370
2360
23€en
2360
2400
2420



H{IR)Y=0e 4 D4 2430
s 6C Tn 310 ' ’ ; N4 2440
¢+ 300 P(IH)-(FHC*KEEPN+<L(N)*GRF(N)owELL(h)-FTﬁl+<UP<*TL(N)“SIR7N\#ARFA+D¢ 2450
ICA*PH](hA)#CH“PHI(NP)*CL*PHI(BL)*CR*PFI(NF)-(E*CHOCL*CA4CH)“PHI(N)Da 2460

IF(T(N)eGTa0,.) 6C TO 310 : D4 2470
F(TR)Y=0e _ D4 2480

310 CCNTINUE : ' D4 2460
IF (TTYFELEQ.Ll) of T0O 3Eon , , o D4 2500
Coeasdp IMINATE TO FILL AL D4 2510
PC 340 I=141ICF1 N4 2520
Joz=IC(Is]) : . D4 2530

- Cl=1./AL(T¢1) D4 2535
0C 330 u=Z2eJdd D4 2540
LR=IC(Isd) D4 2550

; LzLF=TCK1 ‘ ‘ D4 2560
' C=al(1,4)%C1 . D4 2570
NC 320 K=dedd : . _ N4 2580
KL=TC({IoK)=LR+] , , D4 2560

AL (L oKL} =AL (L oKL )y=CHAL (oK) , D4 2600

320 CCNTINUE D4 Z2A10
FL(TeJ)=C , ‘ D4 2620

330 COCNTINUE ' : NG 2630
340 CCNTINUF _ D4 2640
Cosneap| TMINATE AL . D4 26%0
NC 370 I=1eLK ‘ NG 2660
IF=I+ICK1 ‘ , D4 2670

=17 ‘ . . D4 2680
Cl=1./AL(141) o N4 2685

GC 360 Jz=2e1F) _ D4 2AS0

Lzl+1 o 04 2700

TF (AL (I9d) oFGW0,) GO TC 360 - Da 2710
C=AL(Teu)*C1 : D4 2730

KL=0 _ . D4 2740

NC 3%0 K=JdeIH] . ' D4 2750

KL =KL +1 . D4 2760

TF (AL (I9K)aNELO4) AL(LoKL)=AL(LoKL)=CH#AL(TvK) D4 2770

350 CCNTINE ' ' D4 2780 .
AL (TeJy=C \ ‘ D4 2750

360 CCNTIANUE o ' : D4 2R00
370 CCNTIANUE : S D4 2810
Co#NODIFY RKESs UPPEFR HALF _ D4 2820
360 DC 4n0 I=1,ICF1 ' ' D4 2830
“du=IC(Is 1) . . : D4 2840

PC 390 J=2+dJd D4 2RE0
LE=IC(Isd) D4 2R€0

_ H(LR)=R(LR)=AL (T4 )#R(I) _ D4 2870
360 CCNTTANUE : ’ ‘ D4 2RED

4 400 H(I)=R(I)/AU(Is]) o D4 28S0
C##NODIFY RKSse LUWER RALF _ ' D4 2900
NC 420 I=lyLH : , , L D4 2910
1R=I+ICR] ‘ ‘ _ , D4 2920

’ LR=IR : - : Da 2930
DC 410 J=2,181 o D4 2940
LFR=LR+1 o : _ D4 2950

TF (AL(IeJ)oNEWO,) B(LR)&B(LR)-AL(Igd)#E(IR) : . D4 2960

410 CCNTINUE : , . D4 2970
420 R{IR)=B(IR)/AL (T,1) . : ‘ D4 2980
CHuaeRURpCK SOLVE==LCWER HALF : D4 2960
" H(NFQ)=B(NEQ)Y/AL (NEQ=ICR141) : D4 3000

NC 440 I=1sLH - D4 3010

K=NEQ=T . ‘ ' _ : D4 3020



430
440

KL=K=-ICK1

L=k -

NC 430 J=2+1R1

L=L+] . '

TF (8L (KLeJ) oeNEeDe) B(K)=B(K)=AL (KL yJ)#B (L)
CCNTINUE -
CONTINUE

 CruddRpACK SOLVE==UFPER HOLF

420
4€0

NC 460 I= loICFl
K=ICR=1

Jo=IC(Kel)

DC 450 J=2+JJ

L=TC (Ked)
RiK)=R(X)=All(KeJ)®B (L)
CCNTTINE

CCNTINUE

CreusaCCMPITE NEW ORI VvALUES

470

CC 470 I=1e1IM

PC 470 J=led¥

IF (ThN{Ied)eEGaD) GC TC 470
N=T+lenIML#J '

IF (TTYFEGNELY) RrE(N)=KFEP(N)
L=IN(Tad)

TCHK=AAS (B (L))

TF (TCHK GCT.HIGI) RIGI=TCHK
PFI(N)-PHI(N)ﬁHMAﬂ“q(L)
CCNTINYE

CruasaChrc TERMINATION CONDITTICNS

/7

480

4S50

500

510

520

TESTI(KCUNT+1) =BT

IF (LENCTHWGT.0snnNDeWATERLNE, CHK(Z)) €0 TC 490

IF (WATERJNELCHK (2)) RETURN »

IF (KOUNT S GELLENGCTIHGANL HIGI LE FHR) RETHERN
KCIUNT=KOUNT «1

IF (KDUANTLLELITMAX) GC TO 44N

WRITFE (F+S00)

CALL TRANS

CALL TERM]

RETURA '

CALL TRANS

GC Tn 100

IF (KOUNTeGE oLENGTHANDJRIGILE«ERR) KFTURN
KCUNT=KCUNT+1

JIF (KCUNTLLELITMAX) GC TN 100

WEITFE (Ps500)
CALL TFRM]
RETURAN.

D4
D4
D4
Da4
D4
D4
D4
D4
D4
D4
D4

D4

D4
D4
D4
D4

- D4

N4
D4
N4
D4
D4
D4
D4
N4
D4
D4
D&
D4
D4
D&
D4
N4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4
D4

FCRVMAT (*O0EXCEEDEC FERMITTED NUMBER OF ITERATIONS FOR NCN-L TNEAR SD4

I0LUTION® /Y t,€3(rs0))

D4

FCRVAT (1H=941Xe0tSQLUTICN BY LOU FACTCRIZATION ASSUMING D4 NROERIND4

1G9/ 442XeS0(1F_) g/ /7061XeVBETA =VsFS5.79//¢45X ' ITERATIONS:
20159/ 1SBXe "MAXIMUM =0 ,15,/960Xs ' THETA 21 4F5,2)

»INTMUMD4

D4

FCRAMAT (lh=gPSXgrasdaawaRNINGReEHFAINIMUM DIMENSIONS FOR ARGAYS USD4

1EC RY ThIS METHCL ARE AS FOLLCWS:'4//+64X90AULY 915,
2XotAL 9IS et EYT4159/464Xe"IC:"9]15," BY Ste/965Xe'HIT 415,
3/9R4XIVINIVZIE 40 EYY,LIS)

530 FCRMAT (RF10.,4)

END

BY4/464D4

N4
D4
D4
D4

3030
3040
3nk0
3nén
3070
3p80
3060
3100
3110
310
3130
3140
31%0
31€0
3170
J1e0
3160
3200
3210
3220
3720
3240
3280
32¢0
3270
3280
3290
3300
3310
33z0
3330
3340
3350
3360
3370
3380
3390 .
3400
3410
3420
3430
3440
3480
3460
3470
34800
3460
3500
isin
3szn
3s530
3540
3580
35¢€0
3570
3580
KLY 1]
3560
3600~



