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ABSTRACT 

Alternating diagonal ordering of node points for a two-dimensional 

finite-difference model of ground-water flow can be used to produce a 

direct solution algorithm that is computationally more efficient than 

iterative methods for moderately sized grids. Comparisons with the 

strongly implicit procedure, line-succesive overrelaxation, and the 

iterative alternating direction implicit procedure indicate that a direct 

method using alternating diagonal ordering can be competitive for as 

many as 3,000 equations. A FORTRAN computer code is included that 

is compatible with the two-dimensional ground-water flow model developed 

by the U.S. Geological Survey. The performance characteristics, computer 

storage requirements, and input data requirements for the direct solution 

algorithm are also included. 
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INTRODUCTION 

As the availability of large capacity, high speed computers increases, 

the utility of direct methods (Gaussian elimination), for solving 

the set of linear algebraic equations encountered in ground-water 

modeling also increases. Price and Coats (1974) analyzed the use of 

direct methods for solving matrix equations encountered in reservoir 

simulation problems. They argue that it is well known that the commonly 

used method for ordering equations (that is^ numbering a finite-difference 

grid in the smallest dimension) is certainly not the most efficient one. 

They go on to discuss the advantages of various alternative methods for 

ordering equations, in particular, a method which they refer to as D4 

or alternating diagonal ordering. Results indicate that for large grids, 

D4 ordering requires only one-fourth the computing time and one-third the 

storage of standard ordering for non-symmetric problems in two-dimensions. 
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D4 ORDERING 

The purpose of D4 ordering is to construct a coefficient matrix such 

that during the elimination process, sparsity will be conserved. Sparsity 

refers to the relative number of non-zero elements in the matrix. Certain 

multiplications and divisions can be avoided if zero elements are encountered 

during elimination and thus, if the sparsity is maximized, the work required 

to complete the elimination can be minimized. Consider a 5-by-5 grid shown 

in figure 1 with the grid points numbered in D4 fashion. The coefficient 

matrix [A], resulting from finite-difference approximations for a two-

dimensional ground-water flow model will have non-zero entries denoted 

by the X's in figure 2. 

Note that the upper half of [A] is already in upper triangular form 

(no non-zero elements to the left of the main diagonal). Eliminating 

unknowns associated with equations in the upper half from the equations 

in the lower half, produces non-zero entries in the lower half of [A] 

shown by the circles in figure 2. Note that, 1) calculations are not 

required for zero entries during this elimination, and 2) the bandwidth 

of non-zero entries created in the lower half is such that elimination 

through the lower half requires less work than standard ordering. Although 

item 2) may not be obvious from figure 2, Price and Coats (1974) 

demonstrate that these characteristics can reduce the work (number of 

multiplications and divisions) required for elimination to almost 

2 
N /4 for large square grids, where N is the number of equations. Standard 

2 
ordering requires N multiplications and divisions; thus D4 ordering 

may require only one-fourth as much work. 
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Figure 1.—D4 (alternating diagonal) ordering for a 5-by-5 grid. 
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X XX 
X X XX 
X XX XX 
X X X X 
X X X 
X XX XX 
X XX XX 
X XX XX 
X X X 
X XX X 
X XX XX 
X XX X 
X XX 

XXX x o o o o 
X XX ox ooo 
X XX o xo oo 
XX XX o o o x o ooo 

XX XX oo oxo ooo 
X XX o o x oo 

XX X oo xo o 
XX XX ooo o x o oo 

XX XX ooo o x o o o 
XX x oo ox o 

XX X ooo xo 
XXX o o o o x 

Figure 2.-- Structure of matrix [A] assuming D4 ordering. The X 
characters denote non-zero elements in the original 
matrix [A]. The 0 characters denote non-zero elements 
formed, by eliminating the X characters from the equations 
in the lower half of the matrix. 
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Also, symmetric matrices require only one-half as much work as 

non-symmetric matrices (operations are necessary only to the right of 

the main diagonal). Thus, the work required using D4 ordering may 

2 3 
fapproach N /8 or IJ /8 for large square grids, where I and J are the 

grid dimensions. 

ESTIMATING WORK RATIOS 

For direct solution methods, the bandwidth of the coefficient matrix 

is an important characteristic because the storage requirements are 

proportional to the bandwidth and work is proportional to the square of 

the bandwidth. The work required for elimination of a banded symmetric 

2 3 
matrix, using standard ordering, is approximately NJ l l or IJ l l where J, 

the smallest grid dimension, is assumed to approximate the bandwidth of the 

matrix. If the reduction in work produced by D4 ordering can be estimated, 

the work ratio between D4 ordering and iterative methods can also be 

estimated for various grid sizes. 

If J<I, the bandwidth for standard ordering is J+1 and the work for large 

3 
I and J is, as mentioned above, approximately IJ /2. Therefore: 

w ~f Hi 
^D4 .^4 2 (1) 

where f_, is the work ratio of D4 compared to standard ordering. Figure 

3 shows work ratios of D4 to standard ordering (fjN̂ ) achieved using an 

IBM 370/155 computer for various grid sizes and grid elongations (ratios of 

J to I). The Gauss-Doolittle method of decomposition (Forsythe and Moler, 

1967) was used for both D4 and standard ordering. Thus an estimate of work 

using D4 ordering can be obtained using figure 3 and equation 1. 
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Figure 3.—Work ratio (f„,) for various elongation ratios using D4 ordering. 
D4 



For iterative solution methods, the work for each iteration is 

directly proportional to the number of equations and the total work 

required for a solution can be written: 

W. - C.N.IJ (2) 
It 1 1 

where C. is the number of multiplications and divisons required per 

iteration, N, is the number of iterations required for a solution, and IJ 

is the product of the grid dimensions which presumably approximates 

the number of unknowns for a given problem. The coefficient C, is 

about 31 for SIP (strongly implicit procedure), 47 for lADI (iterative 

alternating direction implicit procedure) and 23 for LS0R (line-successive 

overrelaxation) as coded in the model for two-dimensional ground­

water flow developed by Trescott and others (1976). Note that the 

grid dimensions of the two-dimensional ground-water flow model are not 

exactly equal to I and J as discussed herein. To simplify computations, 

the model grid includes a border of inactive node points. Thus the 

model grid dimensions must be reduced by 2 to obtain the values of I 

and J used in this discussion. 

The relative work between the D4 method and the iterative methods 

can be estimated by combining equations 1 and 2 as: 

- ^ ^ r-tî i (3) 
W.^ C.N. ^ ^ 
It I X 
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In developing a computer code that would be compatible with the two-

dimensional ground-water flow model (Trescott and others, 1976), 

a small amount of overhead was required to calculate the coefficient 

matrix. To make a more accurate practical estimate of work ratios 

(W ,/W. ), this overhead (approximately 20IJ multiplications) Is 

included even though it becomes insignificant for large grids. The. 

work ratio between D4 ordering and iterative methods can thus be 

approximated by: 

W„. 0.5f_,J + 20 

W. C.N, . ^^' 
It 1 1 

Figure 4 depicts the quantity W^,N./W. for various grid sizes 

(assuming I=J) for the three iterative methods included in the two-

dimensional ground-water flow model. Equation 4 was used to construct the 

graph with values of f„, obtained from figure 3 for a 1:1 elongation ratio. 

The quantity W ,N./W.. is the number of iterations that yield the same 

amount of work required by direct solution with D4 ordering. Thus if 

an iterative method requires more than W_,N./W. iterations, the problem 

can be solved more efficiently using the D4 technique. 
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It is also of interest to note that for a problem containing 

missing grid blocks (transmissivity equal to zero) or other irregularities 

in boundary geometry, the D4 technique may be more effective than equation 

4 would predict. The reason is that missing grid blocks or irregular 

boundary geometry can result in a smaller bandwidth than that estimated 

from the grid dimensions. It is clear from equation 4 that if the 

bandwidth is reduced, the work required for the D4 technique may be 

significantly reduced because the work is directly .proportional to the 

square of the bandwidth. 

COMPUTER CODE 

A FORTRAN computer code was developed to perform direct solution 

assuming D4 ordering. The code was constructed to be interchangeable 

with the S0LVE2 subroutine (LS0R) in the two-dimensional ground-water 

flow model (Trescott and others, 1976) and is listed in the appendix. 

Although the definition of some input data variables has changed, the 

only modification required to accommodate this subroutine into the program 

is to change one card in the main program. This card is also listed in 

the appendix. Before describing the changes in input data, a discussion 

of non-linear terms and uniform time steps is appropriate. 
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Non-linear Terms 

For water-table aquifer systems; systems that include ground­

water evapotranspiration; or combined water-table artesian simulations; 

the resulting equations are non-linear or are only piecewise linear. The 

term piecewise linear is meant to imply that the system is linear over certain 

ranges of head but not uniformly linear over the entire range. To 

analyze these problems effectively in the environment of a direct-solution 

scheme, linearization techniques such as Newton-Raphson iteration (Blair and 

Weinaug, 1969), or perturbation (J.V. Tracy, oral coiran., 1977) can 

be used. Although these methods solve the problem in a mathematically 

pleasing fashion, a nonsymmetric coefficient matrix is produced, thus 

significantly reducing the utility of a direct-solution scheme. For 

most- ground-water problems, a simple technique called extrapolation can give 

satisfactory results with a minimum of computational effort. 

Extrapolation 

The purpose of using a technique such as perturbation is to avoid 

decomposing the coefficient matrix more than once per time step, as 

would be required if the non-linear terms were updated iteratively. 

A very simple, yet effective, method for obtaining an estimate of the 

non-linear terms is to extrapolate the head using values calculated 

from preceding time steps (Von Rosenberg, 1969). Generally, 

extrapolation is made to the mid-point of the next time step, thus providing 

estimates of the average non-linear coefficients during that step. If the 

point of extrapolation is variable, the scheme could be written as 

^* = \-l -̂  S(\-l - \-2> ^'^ 
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where h* is the estimated head to be used for calculating non-linear 

terms, h, and h,_„ are heads at the k-1 and k-2 time levels, 

respectively, and 6 is the extrapolation factor. If 0 is set to zero, 

the scheme becomes one of explicit evaluation of non-linear terms at 

time level k-1. Although the method is simple in concept, it appears 

to be quite effective for many non^linear ground-water flow problems 

and yields an estimate of the solution to the non-linear problem in a 

single decomposition of the coefficient matrix. 

Extrapolation may not eliminate all of the difficulties associated 

with non-linear terms, however, and so the computer code was structured 

to allow a sequence of "controlled" iterations during each time step. This 

takes the form of specifying a minimum number of iterations that must be 

completed during the step. Non-linear terms are evaluated using the head 

computed by the most recent iteration. A maximum number of iterations 

is also specified and the sequence is terminated if the maximum head 

change for an iteration is smaller than a specified tolerance. Termination 

of the sequence must be achieved within the maximum limit of iterations 

or the program will abort. However, by selecting an arbitrarily large 

closure tolerance, a minimum number of iterations can be guaranteed and 

the closure toleranî e will be satisfied; thus the program will not 

abort. The use of iteration, although somewhat inefficient computationally, 

should allow the solution of many problems that cannot be solved using 

only extrapolation. 
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Uniform Time Steps 

For linear problems (artesian simulations with no evapo­

transpiration) , a direct-solution technique can be very effective for 

simulations with uniform time steps. For these problems, the 

coefficient matrix does not change from one time step to the next and 

therefore only a single decomposition of the matrix is required. Heads 

at subsequent time steps are determined by reformulating the right hand 

sides of the difference equations and back substituting. The computational 

work required to reformulate and back substitute can be substantially 

less than that of decomposition, thus solving for several uniform 

time steps can be accomplished much more efficiently than an equivalent 

number of non-uniform steps. 

The computer code is designed to take advantage of this reduction 

in work automatically if the necessary conditions exist. The necessary 

conditions are: 1) artesian simulation, 2) no evapotranspiration, 3) 

no iteration specified (see variable LENGTH below), and 4) uniform time 

steps. 

Changes to Input Data 

Subsequent paragraphs describe changes in the definitions of some 

input data variables used in the two-dimensional ground-water flow model 

(Trescott and others, 1976). Complete descriptions of the input data 

cards can be found on pages 49-55 of that report. 
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In group II, card 2, columns 21-30, the variable ERR is used to 

define the error criterion for closure, on the Iteration sequence for 

non-linear problems. If the calculated head change for an iteration 

is smaller than this value at all nodes, iteration will stop. Reason­

able values of this parameter are probably about 0.1 or 0.2 and are. 

related to the amount of error in transmissivity, evapotranspiration 

coefficients, or leakage coefficients that is acceptable. A large value 

of ERR can be used to guarantee closure after a minimum number of iterations 

has been completed. 

In group II, card 2, columns 71-80, the variable LENGTH is defined 

as the minimum number of iterations desired. Thus if at least 2 iterations 

(in addition to the first decomposition) are desired, code 2 for LENGTH. 

The maximum number of iterations desired is controlled by the parameter 

ITMAX (group I, card 4, columns 31-40). Set ITMAX to the maximum number 

of iterations desired. For some problems in which non-linearity is 

caused by the constraints on evapotrasplration coefficients or leakage 

coefficients in combined water-table artesian simulations, it may be 

desirable to iterate one or two times. If these two parameters (LENGTH 

and ITMAX) are set equal, and ERR is sufficiently large, LENGTH iterations 

will result. The purpose of this type of iteration is to insure that the 

water-level has not exceeded the allowable range for correct coefficient 

calculation during the time step. For example, evapotranspiration rate 

is limited to a maximum value if the water level is above land surface. 
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If the water level moves above land surface during a time step, the 

rate will be incorrect unless iteration is performed. However, this 

not be necessary for most problems and may only be significant 

for steady-state calculations. To avoid iteration, set LENGTH to zero. 

In group II, card 3, columns 1-10, the variable UMAX is defined 

as a dampening factor similar to 3' used in the SIP algorithmn. It can 

be used to control oscillations for some highly non-linear water-table 

problems. (See Trescott and others, 1976, pp. 26-29). 

Recall that the computer code was constructed as a replacement, for 

subroutine S0LVE2 (LS0R) and thus LS0R must be selected in group I, 

card 3, columns 26-30 to designate direct solution. If direct solution 

is selected, an additional data card is required prior to the group IV data. 

The card inputs the variable THETA used for extrapolation in water-table 

simulations. The format is FIO.O (columns 1-10) and a blank card is 

required for simulations in which direct solution is selected and THETA is 

not used (non-water-table simulations). 

Additional arrays (AU, AL, IC, B, and IN) are required for direct solution 

and are dimensioned explicitly in the subroutine. (See Appendix).The required 

dimensions for AU, AL, IC, B, and IN are computed by the program and 

displayed on the program output. These variables and must be dimensioned 

at least as large as indicated on the output if the program is to run success­

fully. Array IN should always be dimensioned by at least DIML-2 by DIMW-2 

(DIML and DIMW are the model grid dimensions). Initially, the other arrays can 

be dimensioned as follows, assuming N - DIML x DIMW, AU and IC should 

be N/2 by 5, AL should be N/2 by DIML-1, and B should be N. If these 

-16-



estimates differ significantly from the computed values, it may be 

appropriate to recompile using the computed dimensions. 

Storage Requirements and Computation Time 

Although storage requirements and computation time will depend 

entirely upon the type of computer system available, experience on an 

IBM 370/155 — will be presented to provide some insight into expected 

values. 

The core storage in thousand- byte units (1 byte = 8 bits, 32 bit 

words) can be approximated by: 

C - 87 + 0.034 N-""'̂ -̂  (6) 

where N is the number of active nodes (unknowns). This assumes that all 

options have been selected and that the Y array (see Trescott and others, 

1976, p. 38) and the additional arrays required for D4 ordering are 

dimensioned exactly as required. Thus, for 1000 unknowns, 254K bytes of 

core storage are required. That part of this total required by the additional 

arrays in D4 is approximately; 

r ~ 2N + 0.5NB ,_, 
^D4 ~ 256 ^^^ 

where B is one less than the smallest grid dimension (DIML-1 or DIMW-1). 

On modern computers, core storage is commonly available in quantities 

that .allow serious consideration of problems involving as many as 

jL/ The use of brand name in this report is for identification purposes only 

and does not imply endorsement by the U.S. Geological Survey. 
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three thousand unknowns. As a practical matter, two-dimensional ground­

water models seldom have more than 3,000 unknowns and therefore the 

D4 ordering technique should be an effective solution method. 

An empirical relation for CPU (central processor) time in seconds, 

excluding data input, is: 

t = (4.82 X lO"^) N-*-̂ ^ (8) 

This is the time required to complete an iteration, or a non-uniform 

time step, if iteration is unnecessary. 

Roundoff Error 

Roundoff error may cause difficulties for some problems if the 

magnitude of the elements of the coefficient matrix are highly variable. 

The decomposition of the matrix as written in the computer code in the 

appendix is carried out in single precision arithmetic and computers 

such as the IBM 370/155 that have a standard word size of 32 bits (6 to 7 

decimal digits) can be prone to roundoff error. Computers that have larger 

standard word sizes (such as the CDC 7600 with 60 bit words) seldom have 

roundoff error problems. 

Errors in the mass balance computed by the ground-water model are 

indications of roundoff error. If the error is large (greater than about 

one percent), it may be necessary to 1) carry out the decomposition in 

-18-



double precision arithmetic, 2) iterate on the residual of the difference 

equations, 3) use some form of scaling the coefficient matrix, or 4) 

use a computer that has a larger standard word size. Iteration on the 

residual is accomplished merely by forcing iteration (LENGTH>0). 

Scaling the coefficient matrix requires modification of the computer 

code and was found to be somewhat ineffective on a test problem that 

exhibited roundoff error difficulties. 

Utility 

It is anticipated that the D4 method will be most useful in the 

solution of steady-state problems. For the iterative methods (SIP, 

ADI, and LS0R) solutions to steady-state problems generally require many 

iterations unless the Initial estimates of aquifer head are close to 

the solution. This is uncommon, however, and thus the D4 method should 

be very effective. 

For transient problems, the aquifer head at the old time level is 

normally very close to the values at the new (unknown) time level and 

iterative methods can be used to obtain a solution in a few iterations. 

Large time steps however, will probably result in a situation similar 

to steady-state problems in that many iterations may be required by 

iterative methods and the D4 method may be more effective. Also, as 

indicated previously, transient simulations of linear problems using many 

time steps of equal size may be accomplished very efficiently using the 

D4 method. 
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CONCLUSIONS 

The size and speed of modern computers have increased utility 

of direct- solution techniques as applied to ground-water modeling problems. 

The D4 ordering scheme with Gauss-Doolittle decomposition is competitive 

with iterative methods, such as SIP, lADI and LS0R, for many problems. 

The problem of selecting iteration parameters, restrictions on coefficient 

variation, and slowly converging or possibly non-converging sequences of 

estimates are virtually eliminated if direct solution is used. 

Work ratios between the D4 method and the iterative methods 

can be estimated and an evaluation of the utility of the D4 method can 

be made. On an IBM 370/155 computer, the two-dimensional ground-water model 

can be prograiraned to solve for 3,000 unknowns in the same amount of CPU 

time required for about 13 SIP iterations. Thus, direct solution 

assuming D4 ordering can be an effective solution algorithmn for a wide 

range of ground-water modeling problems. 
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Changes to program code to use D4 

1) Change card MAN1710 in the Main program to: 

43), Y(L(20)),Y,(L(22)),Y(L(21)),Y(L(18)) 

Note that this is a continuation card and thus the first 

character (4) is in column 6. 

2) Insert the subroutine listed on the following pages in 

place of S0LVE2. 
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04 
D4 
04 
04 
04 
D4 
04 
04 

CR,LED4 
IDTH,D4 
ACTY,D4 
ML»DID4 

04 
04 

.....D 4 
D4 
D4 
04 
D4 
04 
04 
04 
04 
D4 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 
04 
04 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 

1 
2 
3 

10 
20 
30 
40 
50 
6 0 
70 
fiO 
•SO 
TOO 
110 
120 
130 
140 
150 
160 
170 
leo 
ISO 
200 
210 
220 
23 0 
240 
260 
260 
270 
?eo 
2S0 
300 
310 
320 
33 0 
34 0 . 
350 
36 0 
37 0 
360 
3S0 
400 
410 
415 
4Z0 
430 
440 
450 
460 
470 
480 
49 0 
500 
510 
515 
520 
530 
540 
550 
560 

http://9l.BPni.TlNE


GO TO HO 

4 0 

MN0 = <99<?S 
MXO=0 
DC PO 1=1» IM 
DC PO J=1»JH 
I R = I N ( I . J ) 
IF ( I R . E Q . O . O P . I R . G E . I C R ) 
JL = 1 

C«« LFFT 
IF ( ( J - 1 ) . L T . l ) Gf TO 40 
IF ( I N ( I , J - 1 ) . E G . C ) fiC TO 
JUsJIJ + l 
T C ( I R , J U ) = I N ( I , J - 1 ) ^ 
M ^ = I N ( I . J - 1 ) - I R 
MXO = ^aXO (MM,w,>0) 
MhO = KTN0 (MM,MNO) 

C«« ARCVF 
40 IF ( ( I - l ) . L T . l ) GC TO 50 

IF ( I N ( I - 1 , J ^ . F O . C ) GO TO 50 
JL=JIJ+1 
IC ( I P , J U ) = I N ( I - I , i ^ ) 
MÎ  = I N ( I - 1 , J ) - I R 
h'NOsWINO (MMjWiNO) 
MXO = ̂ 'AX0 (MM,VX0) 

C»« BELOW 
5 0 IF ( ( 1 * 1 ) . G T . I M ) ,eO TC 60 

IF ( I N ( 1 * 1 , J ) . E O . C ) GC TO 6 0 
JL=JU+1 
TC ( I R . J U ) = I N ( I * ] , i ^ ) 
MI>' = I N ( I * l , ' J ) - I R 
••XO = HAX0 (MM,HXO) 
M K O S M T N O (M^'p»N'NG) 

C»« RIGHT 
6 0 IF ( ( J * l ) .GT.is,M) CO TC 70 

IF ( T N ( I , J * 1 ) . E G . C ) GC TO 70 
J L = J l l + l 
IC ( T R , J U ) = I N ( I . J * 1 ) 
MN = R i ( I » J * l ) - I R 
MXO = MAX0 (MM.h'XO) 
MNosMTNO(MM,MNO) 

70 I C ( I « , 1 ) = J U 
eO CCNTIMIE 

IP=MX0-MNC+2 
^EO = K 
I C w i = I C R - l 
I E l = I R - l 
L.F1=MF0-ICR1 
LH=NEQ-ICP 
WRITE ( P » 5 1 0 ) 
WRITE ( F » 5 2 0 ) 
RETURN 

C « « « « « « « « « « « « « « « » « « « 
FNTRY vEwITB 

KCUNTsQ 
ITYPE=0 
IF (CD LT. E Q . L . A N C . K T . G T . l . AND. LENGTH. EG. C, AND. EVAP.NE.CHK (fS) ) 

1PE = 1 
IF (WflTtR.NE.CHK(2)) GC TO 100 
ITYPE=2 
DC 9 0 1 = 1 •IM 
OC 9 0 J=1»JM 

HMAX .LENGTH,ITMAX*THETA 
ICRl •LHl,IBl,ICRl»NEq,ll',jw 

04 
04 
D4 
04 
04 

. 04 
04 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 

. 04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 

ITY04 
04 
04 
04 
04 
04 

570 
580 
590 
600 
610 
620 
630 
640 
65 0 
660 
670 
680 
690 
700 
710 
720 
73 0 
740 
750 
760 
770 
780 
790 
flCO 

eio 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 

loco 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
114 0 
1150 
116 0 
1170 



N=I*J«0IML+1 
IF (T(N).LE.0..0R,S(N).LT.O.) GO TO 9U 
DElTAH-(PHI(\)-PHF(N))«COLT«THETA 
DEI VAX = 0.1»{Pt-I (N)-BOTTCM(M) ) 
IF (A8S(nELTAH).GT.CELMAX) DELTAtt=DELTAH»CELMAX/ABS(DELTAH) 
PHI(N)=FHI(N)•OELTAH 

9 0 CCNTINUE 
CALL TRANS 

100 PIGI=0. 
C«« LOAC MATRIX A AND VECTOR R FOR D4 

IF (TTYFE.EO.l) GC TP 130 
DC 110 1=1.1CRl 

nc n o 0=1.5 
110 AL(I,J)=0, 

DC 120 I=1.LH1 
DC 120 vJ = l,IRl 

120 AL(T,0)=0. 
130 PC 140 1=1.NEC 
140 B(I)=0. 

DC 310 1 = 1. IM 
nc 310 J=1.JW 
IF (lN(I,vJ).Pfi.O) GO TC 310 
TR=IN(I.J) 
N=I*1+DIML»J 
NA=K-1 
Ne=N+] 
NL=N-niML 
Nfi=N*nT^'L 
DXRrDFLX (J*l) 
nYB=nELY(I+l) 
STRTN=STRT(N) 
KEEPN=KEEP(N) 
PHFN=PHI(N) 
IF (ITYPF.EO.l) PFEN=PHF(N) 

C 

c 
C COMPUTE CnEFFICIENTS 

IF (FVAP.Ne.CHK(6)) GO TO 160 
C • 

C COvpUTE EXPLICIT AND IMPLICIT PARTS CF ET PATE- — 
GFNDN=GRND(N) 
ETr)P = 0. 
ETQC=0.0 
IF (PHFN.LE.GRNDN-ETDIST) GO TO 16o 
IF (PHEN.GT.GRNON) GO TC 150 
ETf3B = OET/ET0IST 
FTOD=FTGH«(ETCIST-GRNUN) 
GC TO 160 

150 FTOD=OET 
r 
C COMPUTE STCRAGF TERM 

160 IF (CCNVHT.Efi.CHK(7)) GC TO 170 
RHO=S(N)/CELT 
IF (WATER.EQ.CHKf?)) fiHC=SY(N)/DtLT 
GC TO 240 

C 
C COMPUTE STCPAGF COEFFICIENT FuR CONVERSICN PHoaLEM-— 

170 SLRS=0.0 
TCPN=TOP(N) 
IF (KEEPN.6F.TORN,AND.PHEN.GE.TORN) GC TO 210 
IF (KEEFN.LT.TORN.AND.PHEN.LT.TORN) GC TO 200 

04 1 
04 ] 
04 J 
04 ] 
04 ] 
04 ] 
04 ] 
04 ] 
04 1 
D4 ] 
04 ] 
04 ] 
04 ] 
D4 ] 
04 ] 
04 ] 
04 ] 
04 ] 
D4 ] 
D4 ] 
04 ] 
04 1 
04 ] 
D4 ] 
04 
04 
D4 ] 
04 
04 
04 
04 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 ] 
04 1 
04 ] 
04 ] 
04 ] 
04 ] 
04 ] 
04 ] 
04 ] 
04 ] 
04 ] 
04 ] 
D4 J 
04 ] 
04 ] 
04 J 
04 : 

L i e o 
119 0 
200 
1210 
1220 
23 0 
L240 
25 0 
1260 
1270 
280 
1290 
1300 
L310 
1320 
133 0 
L340 
1350 
1360 
1370 
1380 
L390 
1400 
1410 
L420 
1430 
1440 
1450 
1460 
L470 
1480 
149 0 
1500 
1510 
152 0 
1530 
L540 
L550 
1560 
1570 
1575 
1580 
1590 
1600 
1610 
1620 
1630 
L640 
1650 
1660 
L670 
1680 
169 0 
L700 
L710 
720 
IT3 0 
1740 
1750 
1760 
1770 



180 

ISO 
2C0 

210 
220 

0.190,190 
DELT*(KEEPN-TOPN) 

IF (KF:EPN-PHEN) it 
SLBS=(SY(N)-S(N))/ 
GC TO 210 
9LPS=(S(N)-SY(N))/DELT«(KEEPN-TOPN) 
(«Hn = SY (N)/OELT 
RC TO 220 
RFO=S(N)/0ELT 
IF (LEAK,NE.CHK(9)) GC TO 240 

C 
C 

230 
240 

C 
IF ( 
HEDl 
U=l. 
H F D 2 

IF ( 
HFD2 
IJsO, 
SL (N 
OCNT 

OMPUTF NET LE« 
î ATE (N) .FG.O.. 
=AMAX1(STRTN,T 

= 0 . 
PHFN.GE.TCPN) 
= TOPM 

KAGE TERM FOR CONVtRSION S I M U L A T I O N - - -
OR.M ( N ) . E G . O . ) GO TC 240 
OPM) 

GC TC 230 

) = R A T E ( N ) / M ( N ) « ( W I V E R ( N ) - H F O T ) + T L ( N ) « ( H E D l - ^ ' k U ? - S T R T N ) 
INUE 

AFFAsD 
F=(RHO 

C«««#«i .CAr C 
CL=(TR 
CF=(TR 
CA=(TC 
Cfe={TC 
IF (TT 
IF ( I « 
JL = 1 
IF { ( J 
IF (TN 
J L s J i j * 
AL ( I P . 

250 IF ( d 
IF ( I N 
JL=JU+ 
AL ( I P . 

260 IF ( ( I 
IF ( I N 
JL=JU+ 
A L ( I R . 

270 IF ( ( J 
IF ( I N 
JL=vJU* 
A L ( I R . 

28 0 E=E*CA 
A L ( I R . 
B ( I R ) = 

1CA»PHI 
T F ( T ( N 
AIL ( I R . 
B ( I R ) = 
GC TO 

290 I P R = I f i 
E=E* rA 
AL ( IRR 
R ( I R ) = 

I C A ^ F H I 
IF (T (N 
AL( IRR 

XB«nYB 
• TL (N)<»L*ETC 
OFFFICIFNTc 
( N L ) ) » D Y 3 
(N) )»DYR 
(NA) )«DXH 
( N ) ) « D X F 
Y P F . e O . l ) GC 
. G E . I C R ) GC 

-D.LT.l) GC 
(I.J-1).EQ.C 
1 
JU)=-CL 
-D.LT.l) GC 
(I-l.J).EQ.C 

T 
JU)=-CA 
•1).GT.IM) e 
(1*1.J).EG.: 
1 
JU)=-CB 
• 1) .GT,iwM) .(• 
(I.J + 1) .E<5.C 
1 
JU)=-CH 
•CH*CL*CR 
1)=E 
(RHC»KEtPN+S 
(NA)+C8«PHI( 
).6T.O.) GC 
1)=1. 
0. 
310 
-ICRl 
•CB*CL*CR 
,1)=E 
(RHC*KEEPN+;« 

(NA)•CB«PHI( 
).GT.O.) GC 
.1)=1. 

H)»AREA 
INTO Aij AND AL 

TO 30 0 
TC 290 

TO 250 
) GO TO 25 0 

TO 260 
) GC TO 26 0 

0 TC 270 
) GC TO 270 

U TC 280 
) GO TO 28 0 

L(N)*GRE(N)•WELL(N)-ETQC*SUeS*TL(N)«STRTNi 
NB) •CL»PHI (NL) <-CR«PH.l {NR)-E<'PHI (N) 
TO 310 

L(N)•CRE(N)•WELL(N)-ETQC•sueS*TL(N)«STRTN^ 
NB)•CL«FHI (NL)•CR»PHI(NR)-E«PHI(N) 
TO 310 

04 
04 
D4 
04 
04 
D4 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
D4 
04 
U4 
04 
04 

«AREA^D4 
D4 
D4 
04 
D4 
04 
04 
04 
04 

»AREA+04 
04 
04 
04 

1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 
1860 
1870 
1880 
1890 
1900 
1910 
1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
2130 
2140 
2150 
2160 
2180 
219 0 
2200 
2210 
223 0 
2240 
225 0 
2260 
2270 
228 0 
2290 
2300 
2310 
2330 
2340 
235 0 
2360 
2370 
2380 
2380 
2390 
2400 
242 0 



3 0 0 
1 

3 1 0 

320 

330 
34 0 

35 0 

360 
370 

C»*M0D 
360 

390 
400 

C««MOO 

4 1 0 
42 0 

B ( I 
GC 
R ( I 
CA» 
IF ( 
H( I 
CCN 
IF 
E L I 
DC 
v J v . = 

C] = 
DC 
l,P = 
L = L 
C=A 
DC 
KL = 
AL ( 
nCN 
AL ( 
CCN 
CCN 
E L I 
DC 
IP = 
L = I 
Cl = 
DC 
L=L 
IF 
C=A 
KL = 
DC 
KL = 
IF 
CCN 
AL ( 
CCN 
CCN 
IFY 
DC 
Jv = 
DC 
LR = 
B ( L 
CCN 
H ( I 
IFY 
DC 
IR = 
LR = 
OC 
LP = 
IF 
CCN 
B ( I 
BAC 
R(N 
DC 
K = N 

R)=0 
TO 3 
R) = ( 
PH1( 
T (N) 
R) =0 
TINU 
(TTY 
v jNA 
3 4 0 
I C d 
l . / A 
330 
I C d 
P-TC 
L ( 1 , 
320 
T C d 
L .KL 
TTNU 
T . J ) 
TINtI 
TTNU 
• ' INA 
370 
I + IC 

10 
RHC»KEEPN+.SL (N) +GRE (N) •WELL (N)-FTOC •SUBS•TL (N 
N A ) • C n « P H I ( N B ) • C L * P H I ( N L ) + C R « P H T ( N R ) - ( E ^ C H ^ C L 
. G T . O . ) GC TO 310 

E 
RE 
TE 
1 = 
»1 
U( 
0 = 
. J 
R l 
J) 
K = 
.K 
) = 
E 
= C 
E 
E 
TE 
1 = 
Rl 

. E Q . l ) GC TO 
TO F I L L AL 

l . I C P l 
) 
I . l ) 
2 . J J 
) 

«C1 
J . Jv l 
) - L R + l 
A L ( L . K L ) 

380 

C«AU d . K ) 

AL 
l . L H 

l . / A L 
2(^0 J 
• I 
(AL ( I 
L d . o 
0 
350 K 
K L * 1 
(AL ( I 
TINl jE 
I . J i = 
TTNUE 
TINUE 

RHS. 
400 I 
I C d . 
390 J 
I C d . 
R ) = B ( 
TTNUE 
)=B ( I 

RHS, 
420 I 
I + ICR 
IR 
410 J 
LR*1 
(AL (I 
TINUE 
P)=B( 
K SOL 
EQ)=B 
440 I 
EQ-I 

d.l) 
=2.IH1 

.J) .FG\0.) GO TC 360 
)«C1 

=J.IH1 

.K) .NE.O.) AL(L.KL)=AL (L.KL)-C«AL d.K) 

C 

UPPER HALF 
=1.ICF1 
1) 
= 2.JJ 
J) 
LR)-AL (I.i^)«R(I) 

)/AU(I.l) 
LUWEP HALF 

= 1.LH 
1 

= 2.TBI 

.J) .NE.O.) B (LR)=B(LR)-AL(I,U)«edR) 

IR)/AL(I,1) 
VE~LCWER HALF 
(NEQ)/ALCNEG-ICRl.l) 
= 1.LH 

04 
D4 

)»STRTN,*AREA+D4 
•CA*CR)«PHI(N)D4 

04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 
04 
04 
04 
04 
D4 
D4 
04 
D4 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
D4 
D4 
04 
04 
04 
D4 
04 
04 
04 
04 
04 
04 
04 

2430 
2440 
2450 
2460 
2470 
2480 
2490 
2500 
2510 
2520 
2530 
2535 
2540 
2550 
2560 
2570 
2580 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2f,60 
2670 
2680 
2685 
2<̂ 90 
2700 
2710 
273 0 
2740 
2750 
2760 
2770 
2780 
279 0 
2800 
2810 
2820 
2830 
2840 
2850 
2860 
2870 
2RE0 
2890 
2900 
2910 
2920 
2930 
2940 
2950 
2960 
2970 
2980 
2990 
3000 
3010 
3020 



K L = K - I C R 1 
L = K 
DC 430 J = 2 . I B 1 
L=L+1 
IF (AL ( K L . J ) . N E . O . 

430 C C N T I N U E 
44 0 CCNTTNUt. 

C«««#«BACK SCL\/E —UPPER 
DC 460 I = 1 . I C P 1 
K = I C R - I 
J w = I C ( K . l ) 
DC 450 J = 2 » J J 
L=TC ( K . J ) 
B ( K ) = R ( K ) . A U ( K , J ) « 

450 C C N T T M I E 

460 CCNTINUE 
C « * « « « C C M P I I T E '̂ iEW PHI VA 

DC 4 70 I = 1 . I M 
DC 470 J = 1.J ' ' ' 
IF ( I N ( I , J ) . E G . O ) 
N = I + l + D l M L * J 
IF ( T T Y P E . N E . l ) Pr 
L=TN d . J ) 
TCHKrAPiS (P (L ) ) 
IF ( T C H K . G T . H I G I ) 
PHI (N) =PHI (N) •HMAJ* 

470 C C N T T N U E 

C<nn»««CI-FCK TERMINATION 
T F S T 3 ( K G U N T ^ ] ) = B M 
IF (LENGTH.GT.O.A'N 
IF (fc^'ATER.NE.CHK (£ 
IF (KOUM.GE.LENGI 
K'C!lNT = KOUNT+] 
IF (XOUM.LE.ITMAX 
WRITE (P.500) 
CALL TRANS 
CALL TERwi 
RETURN 

480 CALL TRANS 
GC TO 100 

490 IF (KCUNT.GE.LENGT 
KCLiNTsKCUM^l 

. IF (KCUNT.LE. ITMAX 
WRITE ( P . 5 0 0 ) 

) B(K)=B(K)-AL(KL.J)«B(L) 

HALF 

H(L) 

LUES 

GO TC 47 0 

E(N)=KEEP(N) 

RIfiI=TCHK 
«3(L) 

COKCITTCNS 
I 
0.WATER.NE.CHK(2)) GO TC 490 
)) RETURN 
H. AM.BIGI.LE.ERR) RETURN 

) GC TO 480 

H.AND.aiGI.LE.ERR) N F T U R N 

) GC TO 100 

CALL TFRMl 
RETURN 

C 

c 
500 FCRMAT (•OEXCEEDFC 

lOLUTION'/' ••63(»« 
510 FCRMAT (lH-,41X,t.S 

1G»,/.42X,50(]H_),/ 
2 =».I5./.58X. 'MAXl 

520 FCRMAT (lH-.25X,i« 
lEC BY THIS METHCC 
2 X . ' A L : ' . I S . ' E!Yt,l 
3/.64X. d N : • ,15. • ;E 

53 0 FCRMAT (8F10.4) 
END 

PERMITTED NUMREp OF ITERATIONS FOR NCN-LTNEAR 
•) ) 
OLUTICN 8Y LOU FACTORIZATION A 
/.61X.«BETA =• .F5.?.//,'»5X.'IT 
MUM =•,I5,/.60X.dRETA =•»F5.2 
»o»«WARNING««***»<INlMUM DIMENS 
ARE AS FOLLOWS!•,//.64X.»AU:•» 
5./.64X. d C : ».15. • BY 5 • . / » bbX . • B : t , 15 , 
Y».I5) 

SSUMING 04 ORDER 
F-RATIONS: f ^ I M M 
) 
IONS FOR ARKAYS 
15, BY ' : • . / i 

04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 

S04 
D4 

IN04 
UMD4 

D4 
USD4 
64D4 

04 
04 
04 
04 

3 O 3 0 

3040 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3130 
3140 
3150 
3160 
3170 
3180 
319 0 
3200 
3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
3450 
346 0 
3470 
3480 
3490 
3500 
3510 
3520 
3530 
3540 
3550 
3560 
3570 
3580 
3585 
3590 
3600 

/ / 


