GL00204 73-370

PRELIMINARY INTERPRETATION OF ELECTRICAL SOUNDING CURVES OBTAINED ACROSS THE SNAKE RIVER PLAIN FROM BLACKFOOT TO ARCO, IDAHO

By Adel A. R. Zohdy and William D. Stanley

UNIVERSITY OF UTAH RESEARCH INSTITUTE EARTH SCIENCE LAB.

Prepared in cooperation with the Idaho Department of Water Administration, Atomic Energy Commission, and Bureau of Reclamation.

Open-file report

1973

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards.

Illustrations

[Figures 1 and 18 in pocket; figures 2-17 follow text] Figure 1. Index map. VES curves: 2-17. 2. VES 1, 2, 3, and 4. VES 5 and 6. 3. 4. VES 7 and 8. VES 9 and 10. 5. 6. VES 11 and 12. VES 13 and 14. 7. VES 15. 8. 9. VES 16 and 17. VES 18, 19, and 20. 10. VES 21 and 22. 11. 12. VES 23 and 24. 13. VES 25, 26, and 27. 14. VES 28, 29, and 30. VES 31, 32, and 33. 15. VES 34, 35, and 36. 16. 17. VES 37 and 38. 18. Cross section.

Lucial V

farmer of

ł

RIVER PLAIN FROM BLACKFOOT TO ARCO, TDAHO

By Adel A. R. Zohdy and William D. Stanley

During August 1971, the U.S. Geological Survey made 38 d-c resistivity soundings along a profile from Blackfoot to Arco, Idaho. The purpose of the survey was threefold: 1) determine the thickness of the basalt flows of the Snake River Group, which form the main aquifer in the Snake River Plain, 2) determine the nature of the materials underlying the basalt, and 3) estimate the depth to the high-resistivity basement rocks beneath the Snake River Plain. The locations of the VES (vertical electrical sounding) stations are shown on figure 1. All the soundings were made with the Schlumberger AMNB array with electrode spacings (AB/2) often expanded to 12,000 feet. VES 8, VES 12, VES 24, VES 29, and VES 38 were expanded to larger electrode spacings (up to 58,000 feet) using bilaterial equatorial arrays, and VES 19 was expanded to 68,600 feet using a unilateral equatorial array. VES 15 was expanded to 68,600 feet using a bilaterial polar array; and VES 21 was expanded to 68,600 feet using a bilateral polar array. The observed VES curves are shown in figures 2 through 17. The apparent resistivity is plotted on the ordinate axis and the Schlumberger electrode spacing (AB/2 = half distance between current electrodes), the equatorial spacing (\overline{R} = distance from one current electrode to center of potential dipole), and the polar dipole spacing (r = distance between centers of current and potential

dipoles) are plotted on the abscissa axis.

Figure 18 shows the geoelectric section obtained from the preliminary interpretation of the VES curves using curve matching procedures (Kalenov, 1957; Orellana and Mooney, 1966). On this section there are five geoelectrical units. The 1,000-3,000 ohm-mater layer is interpreted as dry basalt. The 300-600 ohm-meter layer is interpreted as basalt saturated with fresh water. The 100-200 ohm-meter layer is interpreted as basalt flows intercalated with clayey sedimentary rocks. The 20-40 ohm-meter layer is interpreted as sedimentary rocks and/or rhyolitic ash-flow tuff. The geoelectric basement at the bottom of the section has a high resistivity, about 500 ohm-meters or more, and it may represent Paleozoic rocks.

The deep structural trough on the southeastern part of the profile is filled with materials having a resistivity of about 40 ohm-meters. The depth to the electric basement in that structure is estimated to be at least 20,000 feet. Whether this structural trough represents a caldera or a graben cannot be determined from the available VES data.

References

Kalenov, E.N., 1957, Interpretation of vertical electrical sounding curves [in Russian]: Moscow, Gostoptelkhizdat, 471 p.
Orellana, Ernesto, and Mooney, H. M., 1966, Master tables and curves for vertical electrical sounding over layered structures: Madrid, Interciencia.

