

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Magnetotelluric soundings in the Darrough Hot Springs Area, Nevada

Nyeco.

GL00257

By

J.E. O'Donnell

U.S. Geological Survey

Open-file Report No. 76-288 1976

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards and nomenclature.

UNIVERSITY OF UTAH RESEARCH INSTITUTE EARTH SCIENCE LAB. Magnetotelluric Soundings in the Darrough Hot Springs Area, Nevada

By J.E. O'Donnell

Two magnetotelluric soundings (MTS) were made in the Darrough Hot Springs area, one at the hot springs (38° 49' 29" latitude, 117° 10' 55" longitude) and the other four miles east (38° 49' 20" latitude, 117⁰ 06'30" longitude) of the hot springs. The Cagniard resistivities are tabulated in table one along with the audio-magnetotelluric data for the hot springs and the one-dimensional model apparent resistivities derived from the data. The MTS data (.01-.3 Hz) is strongly anisotropic with the northsouth (\mathcal{C} x) resistivities being approximately a factor of ten greater than the east-west $(\mathcal{P} y)$ resistivities for the lower frequencies. Further more the data was found to be too three-dimensional for two-dimensional tensor analysis. An average apparent resistivity was made (table 1) for the Darrough Hot Springs site and then used for inversion data to produce the model given in table 2.

1

	S	SITE: DAI	ROUGH I	HOT_SPRING	S	COMPUT MODEL FROM	DATA			F C D/	UR MIL ARROUGH	ES EAST OF HOT SPRINGS	
	f	er e	Cy	ē		(A					Сх	Су	
	0.01	12	3.0	4.0		5.0				•	20.0	0.6	
	0.04	80	10.0			6.4					70.0	4.0	
	0.08	4	0.6	1.5		4.6					7.0	0.7	
	0.12	3	0.4	1.1		3.5					2.0	0.7	
	0.16	3	0.8	1.5		2.8					1.2	0.9	
•	0.20	3	1.0	1.7		2.4	•		•	••••	1.5	0.9	
	0.24	6	1.0	2.4	. •	2.2	: .			•••••	1.5	0.8	
	0.28	10	3.0	5.5	•	2.0		•		•	1.0	2.0	
	7.5	5.7	5.0	5.3	,	2.9		•					
2	10.0	6.3	2.6	4.0	, , , ,	3.2				. •			N
10	14.0	5.3	3.0	4.0		3.7	*		· .	•			1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	27.0	5.9	. 3.9	4.8	. ·	4.9	•	· .			· . ·	•	
	76.0	6.6	6.3	6.4	: .	8.5					· .		
	285.0	9.2	10.6	9.9		21.5							
	6700.0	786.0	108.0	290.0	·	330.0	•	·		· ·	· .		
•	10200.0	826.0	309.0	500.0		475.0				• -			
······		** •	· · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								

TABLE 1CAGNIARD RESISTIVITIES AND FREQUENCIES FOR TWO SITES AND MODEL RESISTIVITIES
COMPUTED FOR DARROUGH HOT SPRINGS.

LAYER				ESISTIVITY OHM-METRES	THICKNESS (METRES)		
	<u></u>	· ·			<u> </u>		
	1			800.0		80	
•	2			1.6		340	
	3			4.0		230	. • :
	4	N T	• • • •	0.6		160	
• •	5		· ·	60.0		6400	· . ·
	6			0.5			•
						•	

TABLE 2THEORETICAL MODEL USED TO DERIVE APPARENT RESISTIVITIESGIVEN IN TABLE 1.