FC USGS OFR 80-768

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

University of Utah Research institute Earth Science Lab.

WATER-RESOURCES DATA FOR DEEP AQUIFERS OF EASTERN MONTANA

bу

William B. Hopkins

Prepared as part of the Department of the Interior's program for the development of the Missouri River basin.

June 1976

80-768

UNITED STATES DEPARTMENT OF THE INTERIOR

Thomas S. Kleppe, Secretary

GEOLOGICAL SURVEY

V. E. McKelvey, Director

Open-File Report

For additional information write to:

U.S. Geological Survey P.O. Box 1696 421 Federal Building Helena, Montana 59601

CONTENTS

	rage
	7 1
Abstract	
Introduction	1
Purpose	1
Scope	.2
Present water use	2
Well-numbering system	4
Geology	. 5
General geologic setting	5
Stratigraphy	- 6
Chemical quality of ground water	10
Classification water	11
Water from rocks of Cretaceous age	12
Water from rocks of Pennsylvanian age	15
Water from rocks of Mississippian age	15
Summary	15
Selected references	
Selected references	10
ILLUSTRATIONS	
	_
Figure 1. Index map showing areas of previous investigations	3
2. Sketch of well-numbering system	4.
 Tectonic map showing major structural features of 	٠_
eastern Montana	5
4-6 Maps showing Stiff diagrams of:	
4. Selected analyses of water from rocks of	
Cretaceous age	13
5. Selected analyses of water from rocks of	
Pennsylvanian age	17
6. Selected analyses of water from rocks of	
Mississippian age	19
mississippian age	
TABLES	
IABLES	
- 1. 1 . a . 1 . C	6.
Table 1. Geologic formations and their water-bearing properties.	O.
2. Source and significance of dissolved mineral con-	10
stituents and properties of water	10
3. Chemical analyses of water from rocks of post-	
Pennsylvanian age	26
4. Chemical analyses of water from rocks of	
Pennsylvanian age	30
5. Chemical analyses of water from rocks of	
Mississinnian age	34

CONVERSION FACTORS

For those readers who may prefer to use metric units rather than English units, conversion factors used in this report are listed below:

English unit	Multiply by	To obtain metric unit
ft (feet)	0.3048	m (metres)
mi (miles)	1.609	km (kilometres)
mi ² (square miles)	2.590	km² (square kilometres)
gal/min (gallons per minute) .06309	1/s (litres per second)

Factors for converting English units to metric units are shown to four significant figures. However, in the text the metric equivalents are shown only to the number of significant figures consistent with the values and usage of the English units.

WATER-RESOURCES DATA FOR DEEP AQUIFERS OF EASTERN MONTANA

Ъу

William B. Hopkins

ABSTRACT

Water from aquifers of Mesozoic and Paleozoic age in eastern Montana is little used. This report presents maps and tables to assist in the evaluation of the water in terms of possible utility. In the southern third of eastern Montana water from the Madison Group or from the Tensleep Sandstone contains less than 2,000 milligrams per litre dissolved solids and is available in amounts of as much as 3,700 gallons per minute (230 litres per second) from individual wells. Elsewhere, dissolved-solids concentrations of water from Mesozoic and Paleozoic aquifers commonly exceed 1,000 milligrams per litre, well yields range from 5 to about 1,500 gallons per minute (0.3 to 95 litres per second), and well depths generally are greater than 1,500 feet (460 metres).

INTRODUCTION

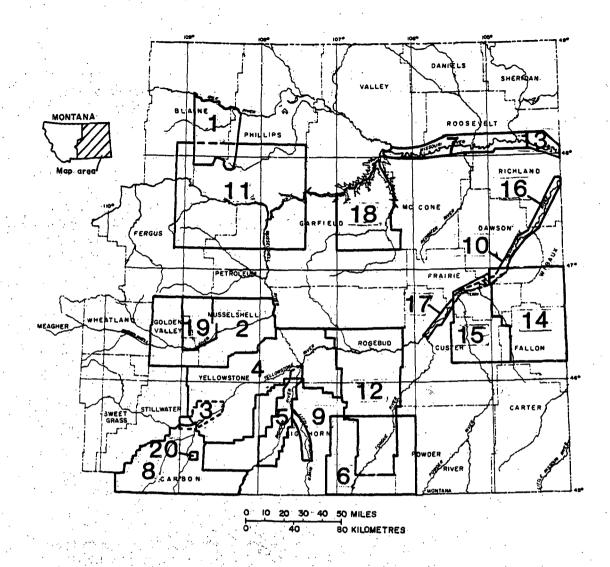
Purpose

Most ground water used for domestic, stock, municipal, irrigation, and industrial supplies in eastern Montana is from aquifers of Quaternary and Tertiary age. Older aquifers—herein called the deep aquifers—are of Mesozoic and late Paleozoic age at depths greater than 1,500 feet (460 m) below land surface; locally, however, they are at shallow depths in or near uplifted mountainous or domed areas.

Because few wells produce water from the deep aquifers, few data are available that describe the quality or quantity of water in the aquifer, and the available data are either unpublished or scattered throughout various publications. This report assembles hydrologic data from various sources and lists many of the reports describing the ground-water resources as a first step in evaluating the potential for development of this generally unused water resource.

Many reports of the U.S. Geological Survey and the Montana Bureau of Mines and Geology pertain to specific parts of eastern Montana, as shown on figure 1. Most of the reports include chemical analyses of ground water used in the respective areas. Much information in this report regarding the regional geology is from stratigraphic papers published by the Billings Geological Society (now the Montana Geological Society) in their annual guidebooks and symposia.

Chemical analyses in this report are of water from wells that were drilled primarily for water or from oil-test holes. Some analyses are of water from drill-stem tests, and some are of water produced in association with oil. The most comprehensive report on quality of oil-field water in Montana prior to this study is that done by Crawford (1942). A few analyses from Crawford's report are included herein. Other analyses were obtained from private chemical laboratories, an oil company, the Montana Oil and Gas Conservation Commission, the Montana Bureau of Mines and Geology, and the U.S. Geological Survey.


Present water use

Eastern Montana is principally an agricultural area, with dry-land farming and livestock production the major occupations. The upland areas are primarily used for pasture, hay, and wheat or other grains. Alfalfa, sugar beets, and truck crops are raised on irrigated valley bottoms and low terraces along the major streams. Commercial feedlots are an increasingly important business. Petroleum production is the principal nonagricultural source of income, but coal strip mines are becoming economically more significant.

Most ranchers and farmers depend on wells in the alluvium or in the bedrock aquifers of Tertiary or Cretaceous age for their domestic supplies and for most stock water. Domestic or stock wells exceed 1,200 feet (370 m) in depth in east-central Montana, but elsewhere wells more than 300 feet (90 m) deep are uncommon.

Ground water is used in a few places for irrigation, municipal, and feedlot supplies, for secondary recovery of petroleum; and for stripmining purposes. Surface water is used for most irrigation and municipal purposes and for much of the stock-water supplies.

Water injected into oil fields promotes secondary recovery of petroleum. More than 30 oil fields in eastern Montana were using waterflooding in 1970. The average injection rate in December 1970 in these fields was 214,204 barrels/day, or about 6,200 gal/min (390 l/s). Most of the water used for injection was from formations within the interval from the Fox Hills-basal Hell Creek aquifer to the Madison Group (Montana Oil and Gas Conservation Commission, 1971, p. 5.).

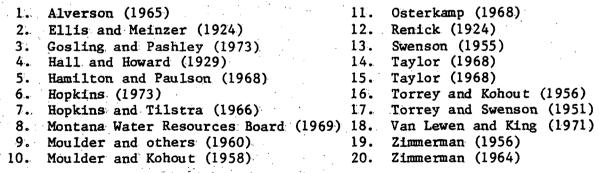


Figure 1. Index map showing areas of previous investigations.

Well-numbering system

Wells and test holes are numbered in this report according to their location within the land subdivisions of the U.S. Bureau of Land Management. The first numeral of the well number denotes the township, and the letter following denotes whether it is north or south of the base line. The second numeral denotes the range, and the letter "E" following indicates that the range is east of the Montana principal meridian. The third numeral is the section number, followed by letters which show the location of the well within the section; the first letter indicates the quarter section and the second and third indicate successive quarterings. The appended letters A, B, C, and D are assigned in a counterclockwise direction beginning with A in the northeast quadrant. Thus, well 8554E21ADA lies in the northeast quarter of the southeast quarter of the northeast quarter of section 21, Township 8 South, Range 54 East. (See fig. 2)

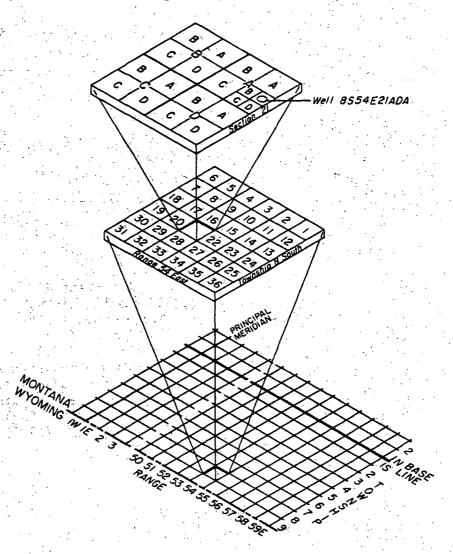


Figure 2.—Well-numbering system.

GEOLOGY

General geologic setting

Eastern Montana includes about 70,000 mi² (180,000 km²) on the western edge of the Great Plains physiographic province. It is bordered on the south and west by mountains that are outliers from and part of the northern Rocky Mountains. Many aquifers that are deeply buried in the eastern part of the State are at shallow depth, exposed, truncated, or removed along the edges of some of the mountains.

The major structural features within the study area include the Bull Mountains basin, the north end of the Powder River basin, Porcupine dome, Cedar Creek anticline, and the western part of the Williston basin. These and other structural features are shown on figure 3.

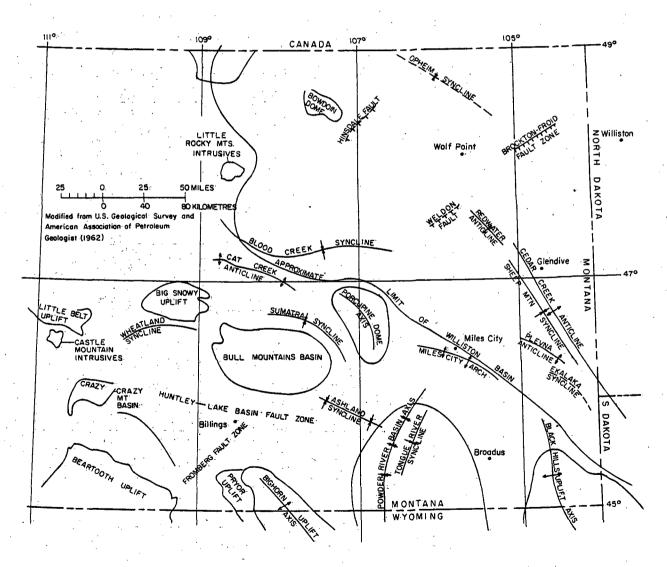


Figure 3.--Major structural features of eastern Montana.

Stratigraphy

No single stratigraphic column describes the formations throughout an area as large as eastern Montana; table 1 is designed to show the formations in various segments of the area. The columns are modified from the correlation chart prepared for the Montana Bureau of Mines and Geology (Balster, 1971). At specific sites some formations are absent, others not listed are present as members or lenses, and some are totally

Table 1.—Geologic formations and their water-bearing properties (Modified from Balster, 1971)

Brathem	System	Series	Group or Formation	Little Belt- Big Snowy uplifts	South-central Montana, Pryor uplift	Northern Powder River basin	Southeastern Montana-Black Hills uplift
Cenozoic	Quaternary	Holocene	,	Alluvium	Alluvium	Alluvium	Alluvium
		Pleistocene					
	, 			Terrace gravel	Terrace gravel	Terrace gravel	Pleistocene sediments
	Tertiary	Pliocene or Miocene					
		Paleocene-	Fort Union Formation	Tongue River Member, Lebo Shale Member, Tullock Member		Tongue River Member, Lebo Shale Member, Tullock Member	Tongue River Member, Labo Shale Member, Tullock Member
Mesozoic	Cretaceous,	Upper Cretaceous	Hell Creek Formation	Hell Creek Formation	Hell Creek Formation	Hell Creek Formation	Hell Creek Formation
			Montana Group	Lennep Sandstone	Lennep Sandstone	Fox Hills Sandstone	Fox Hills Sandstone
					,		
				Bearpaw Shale	Bearpaw Shale	Bearpaw Shale	
				Judith River Formation	Judith River Formation— Parkman Sandstone	Judith River Formation— Parkman Sandstone	
				Claggett Formation	Claggett Formation	Claggett Formation	Pierre Shale
				Eagle Sand- stone (includes Virgelle Sand- stone Member)	Eagle Sandstone (includes Virgelle Sand- stone Member)	Eagle Sandstone- Shannon Sandstone	
				Telegraph Creek For- mation	Telegraph Creek For- mation	Telegraph Creek For- mation	
			Colorado Group	Niobrara Formation	Niobrara Formation	Niobrara Formation	Niobrara Formation
				Carlile Shele	Carlile Shale	Carlile: Shale:	Carlile Shale
				Colorado Group (in part)	Greenhorn Formation	Greenhorn Formation	Greenhorn Formation
					Frontier Fourche Formation Shale	Graneros Shale	Belle Fourche Shale
		Lower Cretaceous		Mowry Shale	Mowry Shale		Mowry Shale

unlike their counterparts a hundred miles (160 km) away. For example, the Tensleep Sandstone of Pennsylvanian age is missing in the northwest part of the study area but is more than 100 feet (30 m) thick near Porcupine dome; in eastern Montana the Tensleep equivalent is identified as the Minnelusa Sandstone. Changes in lithology within a formation can be significant; the Eagle Sandstone is a reliable aquifer in central Montana, but in the eastern part it grades into a shaly sandstone and is correlative with part of the Pierre Shale.

 $\vec{x}_{M}, \not\succ_{i}$

Montana part of Williston basin	Lithology, thickness, and hydrologic characteristics
lluvium	Sand, gravel, clay, and silt; locally well sorted. May be as much as 150 feet thick. Yields as much as 1,600 gal/min to properly developed wells. Water quality ranges from good to poor and is generally a calcium bicarbonate type.
lacial drift	Ranges from boulders to clay; poorly sorted except where deposited as outwash. Generally less than 100 feet thick. Unsorted till is a poor aquifer; outwash gravel is capable of yielding as much as 1,500 gal/min to wells. Water generally is hard.
errace ravel	Sand, gravel, clay, and silt; locally well sorted. Thickness generally less than 50 feet. Tields water to wells from well-sorted gravel and sand, but locally yields do not exceed 5 gal/min. Water quality ranges from fair to poor for irrigation and domestic uses.
larville Gravel	Cobbles in sandy matrix. Thickness generally less than 70 feet. Locally yields as much as 1,200 gal/min to wells. Water is generally hard. Flaxville Gravel is limited to upland areas along interstream divides.
ongue River ember, Lebo hale Member, ullock Member	Sandstone, shale, and coal beds. Less than 2,350 feet thick. Sandstone and coal beds in the Tongue River and Tullock Members yield as much as 50 gal/min to wells. Shallow water is hard; deeper water is fresh to slightly saline and of the sodium bicarbonate type. Lebo Shale Member is a confining bed.
ell Creek ormation	Sandstone and shale containing thin lenticular coal beds locally. Average thickness is 650 feet. Water from the sandstone strate is a sodium bicarbonate type.
ox Hills andstone	Lennep Sandstone ranges from 250 to 400 feet thick, and the Fox Hills Sandstone is as much as 500 feet thick. Fox Hills and basal Hell Creek sandstones are a single aquifer in southeastern Montana. Both Lennep and Fox Hills are adequate for domestic and stock supplies. Water generally is a sodium bicarbonate type. Fox Hills-basel Hell Creek aquifer generally yields less than 50 gal/min but may yield 200 gal/min to wells; it is the principal source of domestic, stock, and industrial water in southeastern Montana except along exten- sion of Black Hills uplift and Cedar Creek anticline.
earpaw Shale	Bearpaw Shale is from 600 to 700 feet thick. In southeastern Montans, grades into Pierre Shale.
dith River presented	Interbedded shale and sandstone containing scattered thin coal beds. Thickness generally less than 400 feet. Dependable aquifer in western part of area; wells yield less than 10 gal/min of sodium bicarbonate type water. In eastern part of the area, yield is smaller as sandstone grades into Pierre Shale. Oil-field water from Judith River Formation is principally sodium chloride or sodium sulfate type.
laggett	Predominantly shale containing scattered sandstone lenses. Average thickness is 400 feet. Water in the sandstones is usually too highly mineralized for domestic or stock use, except in outcrop areas. In eastern part of area, Claggett grades into Pierre Shale.
agle Pierre and- Shale tone	Mostly sandstone; interbedded shale and lignitic beds in upper part. Total thickness less than 200 feet. In western part of srea, the Eagle, particularly the Virgelle Member, is a reliable source of fresh to slightly saline sodium bicarbonate water. Well yields are less than 10 gal/min. Yield is reduced as sandstone grades into Pierre Shale in eastern part of State.
alegraph reek ormation	Sandy shale and sandstone, about 300 feet thick. Water is too highly mineralized for domestic supplies.
pper part of olorado Group	Mari, shale, shaly limestone; 100 to 200 feet thick. Not an aquifer.
,	Silty and sandy bentonitic shale; as much as 650 feet thick. Not an aquifer.
reenhorn ormation	Frontier Formation is a series of sandstones and shales containing minor thicknesses of coal; from 50 to 900 feet thick. Sandstones yield small amounts of moderately saline water. Greenhorn Formation consists of calcareous shale, shaly mari, and limy sandstone. Thickness is as much as 300 feet. Not known to yield water to wells in the study area.
raneros Shale	Principally shale containing thin beds of sandstone. Thickness of Belle Fourche Shale ranges from 200 to 600 feet; Mowry Shale ranges from 125 to 250 feet in thickness. These formations are confining beds.

Table 1.—Geologic formations and their water-bearing properties—Continued

				and their water-	0681	- Propercies	- CONCERNICE		 	
Erathem	System	Series	Group or Formation	Little Belt- Big Snowy uplifts	South-central Montana, Pryor uplift		Northern Powder River basin	Southeastern Montana-Black Hills uplift		
Mesozoic	Cretaceous	Lower Cretaceous	Colorado Group	Colorado Group (in part)	Sha	rmopolis le (includes dy Sandstone	Newcastle Sandstone	Newcastle Sandstone		
2					Mem	ber)	Skull Creek Shale		ull Creek ale	
				First Cat Creek Sandstone of Kootenai Formation	g.	"Dakota"- Fall River Sandstone	"Dakota"-Fall River Sandstone	dno	Fall River Sandstone	
				Kootenai Formation	erly Group	Fuson Shale	Fuson Shale	Kara Group	Fuson Shale	
				Third Cat Creek Sandstone of Kootenai Formation	Clov	Lakota Sandstone	Lakota Sandstone	Inyan	Lakota Sandstone	
	Jurassic	Upper Jurassic	Morrison . Formation -	Morrison Formation		rison mation	Morrison Formation	Morrison Formation		
			Ellis Group	Ellis Group	E11	is Group	Sundance Formation	Sundance Formation		
		Middle Jurassic					Gypsum Spring Formation	Gypsum Spring Formation		
	Triassic	Lower Triassic				gwater mation	Chugwater Formation	Spearfish Formation		
						Dinwoody Spearfish Formation				
Paleozoic	Permian:			, Tue		sphoria mation	Minnekshta Limestone		nnekahta mestone	
					: .		Opeche Formation		eche rmation	
	Pennsylvanian			2 To 3 To		sleep dstone	Tensleep Sandstone			
			Amaden Group	Amsden Group	Ams	Amsden Group Amsden Group		Minnelusa Sandstone		
	Mississippian			Big Snowy Group			<u> </u>			
				Madison Group	Mad	ison Group	Madison Group		hasapa mestone	
						•			, :	

laterati entro

· · · · · · · · · · · · · · · · · · ·	
Montana part of Williston basin	Lithology, thickness, and hydrologic characteristics
Newcastle Sandstone Skull Creek Shale	In south-central part of study area, the Thermopolis Shale is from 500 to 800 feet thick and includes the Muddy Sandstone Member, which is from 50 to 125 feet thick. In southeastern part of study area, the Thermopolis grades into Newcastle Sandstone and Skull Creek Shale. Water is saline. Bell Creek and Ranch Creek oil fields yield small amount of sodium chloride type water from the Muddy Member.
"Dakota"-Fall River Sandstone	Sandstone containing minor amount of interbedded shale, 50 to 160 feet thick. May contain water in western part of study area.
Fuson Shale	Kootenai Formation is composed of sandstone beds and interbedded claystone, 300 to 600 feet thick. Kootenai limited generally to western part of study area, where it yields less than 35 gal/min water to wells. Fuson Shale not known to yield water to wells.
Lakota Sandstone	Third Cat Creek and Lakota Sandstones contain sodium bicarbonate and sodium chloride bicarbonate types of water in Cat Creek area, Petroleum County. Yield more than 1,000 gal/min to wells locally. Both formations are 10 to 200 feet thick.
Morrison Formation	Variable lithology; includes marl, limestone, sandstone. Thickness is as much as 300 feet. Sandstones may yield water in western part of area near outcrops. Potential yield unknown.
Ellis Group	Ellis Group is subdivided (descending) into Swift, Rierdon, and Piper Formations; maximum thickness is 750 feet. Formations principally shaly; locally limestone, sandstone, or gypsum present. Piper contains highly mineralized water; Swift yields good water west of study area. Sundance and Gypsum Spring Formations not known to yield water to wells in study area.
Spearfish Formation	Chugwater and Dinwoody Formations limited to southwestern part of area; generally non-water-bearing shales, sandstones, and anhydrite. Thicknesses variable. Spearfish Formation includes shale, siltstone, and sandstone; interbedded salt, gypsum, and limestone. Thickness is about 350 feet. Not known to yield water to wells.
Minnekehta Limestone Opeche Formation	Minnekahta consists of as much as 50 feet of thin-bedded limestone in southeastern Montana; contains saline water. Opeche Formation consists of shale, shaly sandstone, and sandstone; total thickness is less than 130 feet; not known to yield water to wells. Phosphoria Formation generally less than 100 feet thick; contains limestone, sandstone, and shale in southwestern part of study area; is a confining bed.
Minnelusa Sandstone	Tensleep includes as much as 300 feet of sandstone. Yields as much as 3,700 gal/min of water to wells near Bighorn and Pryor Mountains. Water is slightly saline to very saline, but is usable for irrigation. Ten- sleep grades laterally into Minnelusa Sandstone in eastern part of Montana.
Tyler Formation	Amsden Group is divided (descending) into Devils Pocket, Alaska Bench, and Tyler Formations in Rig Snowy Mountains and adjacent area. The group is a combination of sandstone, shale, and limestone that is collectively as thick as 600 feet but normally is much thinner. The Amsden contains calcium sulfate type water near the Bighorn Mountains. Yields as much as 1,450 gal/min to wells. Yields sodium chloride brine in northeastern part of State. Tyler Formation contains very saline water in Melstone area. Amsden Group is correlative with lower part of Minnelusa Sandstone in eastern part of area.
Big Snowy Group	Big Snowy Group is divided (descending) into Heath and Otter Formations and Kibbey Sandstone. Total thickness of the group is as much as 900 feet. Kibbey Sandstone is predominantly sandstone; contains sodium-rich water.
Madison Group	Madison Group is divided (descending) into Charles Formation, Mission Canyon Limestone, and Lodgepole Limestone. The group is predominantly limestone, but the Charles includes salt, anhydrite, dolomite, and shale beds. The Madison is as thick as 2,200 feet. In northeastern part of study area, water in the Charles and Mission Canyon is saline. In the southern part of the area, the Mission Canyon Limestone yields as much as 875 gal/min to wells. The Mission Canyon is potentially a major aquifer where solution openings have produced high permes- bility. Lodgepole Limestone yields 1,390 gal/min of moderately saline water to wells near Porcupine dome.
	

-

-

CHEMICAL QUALITY OF GROUND WATER

Ground water is a solution of water and varying amounts of ions that have been dissolved from the rocks through which the water has passed. Table 2 lists some of the constituents and properties of water and their significance in terms of use.

Table 2.—Source and significance of dissolved mineral constituents and properties of water

Substance or property	Source or cause	Significance
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum Found in large quantities in some brines.	Cause most hardness and scale-forming properties of water; soap consuming. Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, textile manufacture.
Sodium (Na) and potassium (K)	From practically all rocks and soils; also in brines and sewage.	Large amounts in combination with chloride give a salty taste. Sodium salts may cause foaming in steam boilers; high concentrations may limit use of water for irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	From action of carbon dioxide in water on carbonate rocks.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium form scale in steam boilers and cause carbonate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing sulfur compounds.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate with other ions (such as magnesium) gives bitter taste and laxative effect.
Chloride (C1)	Dissolved from rocks and soils. Found in large amounts in brines.	In large amounts with sodium, gives salty taste to water. In large quantities, increases corrosiveness of water.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils; includes some water of crystal- lization.	Waters containing more than 1,000 mg/1 dissolved solids are unsuitable for some uses.
Resistivity (ohm-metres at 20°C)	Mineral content of the water.	Indicates degree of mineralization. Varies inversely with the con- centration of the constituents.
Hydrogen-ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates and bicarbonates raise the pH.	A pH of 7.0 indicates neutrality of a solution; values higher than 7.0 indicate increasing alkalinity; values lower than 7.0 indicate increasing acidity.
Specific gravity	Relative mass	Specific gravity values increase above 1.000 with increased dissolved-solids concentrations.

Selected chemical analyses of water from deep aquifers in eastern Montana are presented in three appended tables. The analyses are subdivided on the basis of ages of the aquifers. Table 3 includes 67 analyses of water from rocks that range in age from Late Cretaceous (Fox Hills Sandstone) to Permian (Minnekahta Limestone). The majority (61) of the analyses in the table are of waters from rocks of Cretaceous age. Table 4 consists of 52 analyses from rocks of Pennsylvanian age, and table 5 consists of 93 analyses from rocks of Mississippian age. All analyses are rounded in accordance with U.S. Geological Survey standards in effect in 1972.

Classification of water

Ground water in eastern Montana ranges greatly in chemical quality because of its occurrence in a variety of geologic environments. In discussion of the water, the following classification adapted from Robinove and others (1958, p. 3) is used:

Classification	Dissolved solids (milligrams per litre)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	,10,000 to 35,000
Brine	More than 35,000

jār. Baru

Water is also identified as to type on the basis of predominant cations and anions, such as a calcium sulfate type, sodium bicarbonate type, and so on. Identification of the chemical type of water requires that the analytical results be expressed in comparable units. Concentrations in milligrams per litre are converted to milliequivalents per litre by miltiplying the milligram per litre value for each ion by its particular factor from the following table:

Cation:	Conversion fact
Sodium	0.04350
Potassium	.02557
Calcium	.04990
Magnesium	.08226
Anion:	
	<i>t</i>
Chloride	.02821
Sulfate	.02082
Bicarbonate	.01639
Carbonate	.03333

Representation of chemical-quality data by diagrams facilitates identification of similarities and differences in relative abundance of specific ions. The diagrams used in this report are modified from a system suggested by Stiff (1951). The modified Stiff diagrams express ionic concentrations in milliequivalents per litre. Cations of sodium (plus potassium), calcium, and magnesium are plotted to the left of the centerline; anions of chloride, sulfate, and bicarbonate are plotted to the right. Because of the wide range in concentration, three scales were used to plot the data. Fresh to moderately saline waters are shown by unpatterned diagrams; very saline waters and brines that contained less than 100,000 mg/l (milligrams per litre) of dissolved solids are shown by stippled diagrams; and brines that contained more than 100,000 mg/l of dissolved solids are shown by shaded diagrams. The scale of the stippled diagrams is 10 times that of the unpatterned diagrams, and the scale of the shaded diagrams is 100 times that of the unpatterned diagrams.

Stiff diagrams of selected chemical analyses are presented according to major groups of aquifers, which are rocks of Cretaceous, Pennsylvanian, and Mississippian age.

Water from rocks of Cretaceous age

Sodium is the predominant cation in water samples from rocks of Cretaceous age, as shown on figure 4. The principal anions in most samples are chloride or bicarbonate. Sulfate is somewhat high in samples from relatively shallow wells in the Kootenai and Lakota Formations in the area northeast of Roundup. Most water from rocks of Cretaceous age more than 1,500 feet (460 m) deep is marginal or unusable for stock water or irrigation.

The Fox Hills-basal Hell Creek aquifer is the principal source of domestic, stock, and industrial water in southeastern Montana except along the extension of the Black Hills uplift and the Cedar Creek anticline. Most of the water is a sodium bicarbonate type. Yields are generally less than 50 gal/min (3 1/s).

The Judith River Formation and the Eagle Sandstone yield small quantities of usable water in the western part of eastern Montana; in the eastern part of the State both formations grade into sandy shale or shaly sandstone and produce meager quantities of saline water.

Water samples from the Muddy Sandstone Member of the Thermopolis Shale from oil-test holes in the eastern part of the State represent a moderately saline to very saline water. The moderately saline water contains principally sodium, chloride, and bicarbonate; all three very saline samples contain predominantly sodium and chloride.

The formations of Early Cretaceous age are aquifers in the west-central part of the study area. The Kootenai Formation, and the Lakota Sandstone and its equivalents, provide water whose quality ranges from fresh to moderately saline.

Water from rocks of Pennsylvanian age

In the west-central part of the area, the Tensleep Sandstone and the Amsden Group contain a sodium bicarbonate type water that is fresh to very saline. In the southern part of the study area, the Tensleep and Amsden contain water that is slightly saline to very saline, However, some water is usable for irrigation as it contains more calcium than sodium (fig. 5). Yields from some wells exceed 3,000 gal/min (190 l/s). In the southern part of the area, many wells that yield water from the Tensleep Sandstone may in fact be yielding water that has migrated into the Tensleep from the underlying Madison Group.

The Amsden Group yields a very saline sodium sulfate water near the Musselshell River in Musselshell and Rosebud Counties, an area which includes several small oil fields. The two samples from eastern Roosevelt County are typical of highly concentrated sodium chloride brine. Salt beds in the underlying Charles Formation of the Madison Group in this part of the Williston basin may be the source of the salt.

Water from rocks of Mississippian age

Rocks in the Big Snowy and Madison Groups yield water that ranges from fresh to brine and from calcium sulfate to sodium chloride type. Calcium sulfate water is found mostly in the southern and western parts of the area, sodium chloride brine is found principally in the northeastern part, and mixed water—containing principally sodium, sulfate, and chloride or sodium, calcium, chloride, and sulfate—is found in the rest of the area (fig. 6). Yields from wells are as large as 1,390 gal/min (87 1/s).

Solution of salt beds is probably responsible for the occurrence of highly concentrated sodium chloride brine in the northeastern part of the area. The water is unusable for many purposes; however, it is used in secondary recovery operations in oil fields.

SUMMARY

Most of the ground water used in eastern Montana is produced from wells less than 1,500 feet (460 m) deep. A few deeper wells produce water for industrial purposes from formations within the interval from

the Fox Hills-basal Hell Creek aquifer to the Madison Group. Few ground-water data are available that describe the quality and quantity of water contained in this interval.

The Fox Hills-basal Hell Creek aquifer is the most widely used aquifer of Cretaceous age. Other aquifers of Cretaceous age contain water that is too saline for most uses except in the west-central part of the study area where the Kootenai Formation and Lakota Sandstone provide fresh to moderately saline water. Aquifers of Pennsylvanian age contain saline to very saline water in most of the study area, except in the west-central and southern parts where the quality is better. Aquifers of Mississippian age yield water that ranges from fresh to brine. Water quality is best in the southern part of the area and worst in the northeastern part.

SELECTED REFERENCES

- Alden, W. C., 1932, Physiography and glacial geology of eastern Montana and adjacent areas: U.S. Geol. Survey Prof. Paper 174, 133 p.
- Alverson, D. C., 1965, Geology and hydrology of the Fort Belknap Indian Reservation, Montana: U.S. Geol. Survey Water-Supply Paper 1576-F, 59 p.
- Andrichuk, J. M., 1955, Mississippian Madison Group stratigraphy and sedimentation in Wyoming and southern Montana: Am. Assoc. Petroleum Geologists Bull., v. 39, no. 11, p. 2170-2210.
- Balster, C. A., 1971, Stratigraphic correlations for Montana and adjacent areas: Montana Bur. Mines and Geology Spec. Pub. 55 (chart), 1 p.
- Barnes, T. R., 1952, The Williston basin—a new province for oil exploration in Billings Geol. Soc. Guidebook, 3d Ann. Field Conf., Black Hills-Williston basin, 1952: p. 96-117.
- Beikman, H. M., 1962, Geology of the Powder River basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes: U.S. Geol. Survey TEI-823, 85 p., issued by U.S. Atomic Energy Comm. Tech. Inf. Service, Oak Ridge, Tenn.
- Bredehoeft, J. D., 1965, The drill-stem test: the petroleum industry's deep-well pumping test: Ground Water, technical jour., Natl. Water Well Assoc., v. 3, no. 3, p. 31-36.
- Brown, R. W., 1949, Preliminary map showing Paleocene deposits of the Rocky Mountains and Plains: U.S. Geol. Survey prelim. map.
- Clapp, H. H., Bevan, Arthur, and Lambert, G. S., 1921, Geology and oil and gas prospects of central and eastern Montana: Montana Bur. Mines and Geology Bull. 4, 95 p.
- Crawford, J. G., 1942, Oil-field waters of Montana plains: Am Assoc. Petroleum Geologists Bull., v. 26, no. 8, p. 1317-1374.
- Dobbin, C. E., and Erdmann, C. E., 1955, Structure contour map of the Montana plains: U.S. Geol. Survey Oil and Gas Inv. Map OM-178-A.

- Ellis, A. J., and Meinzer, O. E., 1924, Ground water in Musselshell and Golden Valley Counties, Montana: U.S. Geol. Survey Water-Supply Paper 518, 92 p.
- Fish, A. R., and Kinard, J. C., 1959, Madison Group stratigraphy and nomenclature in the northern Williston Basin, in Billings Geol. Soc. Guidebook, 10th Ann. Field Conf., Sawtooth-Disturbed Belt area, 1959: p. 50-58.
- Gosling, A. W., and Pashley, E. F., Jr., 1973, The water resources of the Yellowstone River valley, Billings to Park City, Montana: U.S. Geol. Survey Hydrol. Inv. Atlas HA-454.
- Groff, S. L., 1958, A summary report of the ground-water situation in Montana, with a chapter on Montana and the law on ground water by Albert Stone: Montana Bur. Mines and Geology Inf. Circ. 26, 45 p. 1962, Reconnaissance ground-water studies, Wheatland, eastern Meagher, and northern Sweet Grass Counties, Montana: Montana Bur. Mines and Geology Spec. Pub. 24 (Ground-water rept. 1), 31 p.
- Hall, G. M., and Howard, C. S., 1929, Ground water in Yellowstone and Treasure Counties, Montana: U.S. Geol. Survey Water-Supply Paper 599, 118 p.
- Hamilton, L. J., and Paulson, Q. F., 1968, Geology and ground-water resources of the lower Bighorn Valley, Montana: U.S. Geol. Survey Water-Supply Paper 1876, 39 p.
- Hansen, Miller, 1969, Groundwater in Montana: Montana Water Resources Board, Inventory Series Report 16, 145 p.
- Hopkins, W. B., 1973, Water resources of the Northern Cheyenne Indian Reservation and adjacent area, southeastern Montana: U.S. Geol. Survey Hydrol. Inv. Atlas HA-468.
- Hopkins, W. B., and Tilstra, J. R., 1966, Availability of ground water from the alluvium along the Missouri River in north-eastern Montana: U. S. Geol. Survey Hydrol. Inv. Atlas HA-224.
- Knappen, R. S., and Moulton, G. F., 1931, Geology and mineral resources of parts of Carbon, Big Horn, Yellowstone, and Stillwater Counties, Montana: U.S. Geol. Survey Bull. 822-A, 70 p.
- Lohman, S. W., 1972, Ground-water hydraulics: U.S. Geol. Survey Prof. Paper 708, 70 p.
- Lohman, S, W., and others, 1972, Definitions of selected ground-water terms--revisions and conceptual refinements: U.S. Geol. Survey Water-Supply Paper 1988, 21 p.
- McGuinness, C. L., 1963, The role of ground water in the national water situation: U.S. Geol. Survey Water-Supply Paper 1800, 1121 p.
- Maughan, E. K., and Roberts, A. E., 1967, Big Snowy and Amsden Groups and the Mississippian-Pennsylvanian boundary in Montana: U.S. Geol. Survey Prof. Paper 554-B, 27 p.
- Miller, M. R., 1969, Water resources of eastern Montana, in Montana Geol. Soc. 20th Ann. Conf., eastern Montana symposium, 1969: p. 237-243.
- Montana Oil and Gas Conservation Commission, 1971, Annual review for the year 1970 relating to oil and gas: Montana Oil and Gas Conservation Comm., v. 14, 25 p.

- Montana Water Resources Board, 1969, Groundwater inventory, Carbon County, Montana: Montana Water Resources Board rept., 40 p.
- Moulder, E. A., Klug, M. F., Morris, D. A., and Swenson, F. A., 1960, Geology and ground-water resources of the lower Little Bighorn River valley, Big Horn County, Montana, with special reference to the drainage of waterlogged lands, with a section on Chemical quality of the water by R. A. Krieger: U.S. Geol. Survey Water-Supply Paper 1487, 223 p.
- Moulder, E. A., and Kohout, F. A., 1958, Ground-water factors affecting drainage in the First Division, Buffalo Rapids Irrigation Project, Prairie and Dawson Counties, Montana, with a section on Chemical quality of the water, by E. R. Jochens: U.S. Geol. Survey Water-Supply Paper 1424, 198 p.
- Nordquist, J. W., 1953, Mississippian stratigraphy of northern Montana, in Billings Geol. Soc. Guidebook, 4th Ann. Field Conf., Little Rocky Mountains--Montana /and/ southwestern Saskatchewan: p. 68-82.
- 1955, Pre-Rierdon Jurassic stratigraphy in northern Montana and Williston Basin, in Billings Geol. Soc. Guidebook, 6th Ann. Field Conf., Sweetgrass Arch-Disturbed belt: p. 96-106.
- Osterkamp, W. R., 1968, Occurrence of ground water in the Judith River Formation, north-central Montana: U.S. Geol. Survey Hydrol. Inv. Atlas HA-308.
- Perry, E. S., 1931, Ground water in eastern and central Montana: Montana Bur. Mines and Geology Mem. 2, 59 p.
- 1932a, Artesian wells as a source of water for the Winnett irrigation project, Montana: Montana Bur. Mines and Geology Misc. Contr. 1, 5 p.
- 1932b, Possibilities of ground-water supply for certain towns and cities of Montana: Montana Bur. Mines and Geology Misc. Contr. 2, 49 p.
- 1932c, Shallow wells near Terry, Montana, as a source of irrigation water: Montana Bur. Mines and Geology Misc. Contr. 3, 7 p.
- 1934, Geology and artesian water resources along Missouri and Milk Rivers in northeastern Montana: Montana Bur. Mines and Geology Mem. 11, 35 p.
- 1935, Geology and ground-water resources of southeastern
 Montana: Montana Bur. Mines and Geology Mem. 14, 67 p.
 - 1937, Natural gas in Montana: Montana Bur. Mines and Geology Mem. 3, 96 p.
- _____1960, Oil and gas in Montana: Montana Bur. Mines and Geology Bull. 15, 86 p.
- 1962, Montana in the geologic past: Montana Bur. Mines and Geology Bull. 26, 78 p.
- Renick, B. C., 1924, Base exchange in ground water by silicates as illustrated in Montana: U.S. Geol. Survey Water-Supply Paper 520-D, p. 53-72.

- 1929, Geology and ground-water resources of central and southern Rosebud County, Montana, with chemical analyses of the waters by H. G. Riffenburg: U.S. Geol. Survey Water-Supply Paper 600, 140 p.
- Richards, P. W., 1955, Geology of the Bighorn Canyon-Hardin area, Montana and Wyoming: U.S. Geol. Survey Bull. 1026, 93 p.
- Robinove, C. J., Langford, R. H., and Brookhart, J. W., 1958, Saline-water resources of North Dakota: U.S. Geol Survey Water-Supply Paper 1428, 72 p.
- Ross, C. P., Andrews, D. A., and Witkind, I. J., 1955, Geologic map of Montana: U.S. Geol. Survey map.
- Sandberg, C. A., 1963, Geology of the Williston basin, North Dakota, Montana, and South Dakota, with reference to subsurface disposal of radioactive wastes: U.S. Geol. Survey TEI-809, 148 p., issued by U.S. Atomic Energy Comm. Tech. Inf. Service, Oak Ridge, Tenn.
- Sloss, L. L., 1952, Introduction to the Mississippian of the Williston basin, in Billings Geol. Soc. Guidebook, 3d Ann. Field Conf., Black Hills-Williston basin: P. 65-69.
- Smith, H. R., 1955, Records of wells drilled for oil and gas in Montana, June 1, 1951, through December 21, 1953: U.S. Geol. Survey Circ. 355, 43 p.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Jour. of Petrol. Tech., v. 3, no. 10, p. 15-17.
- Swenson, F. A., 1955, Geology and ground-water resources of the Missouri River valley in northeastern Montana, with a section on The quality of the ground water by W. H. Durum: U.S. Geol. Survey Water-Supply Paper 1263, 128 p. /1956/.
- Taylor, O. J., 1965, Ground-water resources along Cedar Creek anticline in eastern Montana: Montana Bur. Mines and Geol. Mem. 40, 99 p. 1968, Ground-water resources of the northern Powder River
 - valley, southeastern Montana: Montana Bur. Mines and Geol. Bull. 66, 34 p.
- Thom, W. T., Jr. Hall, G. M., Wegemann, C. H., and Moulton, G. F., 1935, Geology of Big Horn County and the Crow Indian Reservation, Montana: U.S. Geol. Survey Bull. 856, 200 p.
- Thomas, H. E., 1965, Career anyone?: Ground Water, technical jour., Natl. Water Well Assoc., v. 3, no. 1, p. 2-4.
- Torrey, A. E., and Kohout, F. A., 1956, Geology and ground-water resources of the lower Yellowstone River valley between Glendive and Sidney, Montana, with a section on Chemical quality of the water, by H. A. Swenson: U.S. Geol. Survey Water-Supply Paper 1355, 92 p.
- Torrey, A. E., and Swenson, F. A., 1951, Ground-water resources of the lower Yellowstone River valley between Miles City and Glendive, Montana, with a section on The chemical quality of the water by H. A. Swenson: U.S. Geol. Survey Circ. 93, 72 p.
- U.S. Bureau of Reclamation, 1972, Report on resources of eastern Montana basins: U.S. Bureau of Reclamation, August 1972, 92 p., appendixes.

- U.S. Geological Survey and American Association of Petroleum Geologists, 1962, Tectonic map of the United States, exclusive of Alaska and Hawaii: Prepared by a committee, G. V. Cohee, chairman. Scale 1:2,500,000.
- Van Lewen, M. C., and King, N. J., 1971, Prospects for developing stock-water supplies from wells in northeastern Garfield County, Montana: U.S. Geol. Survey Water-Supply Paper 1999-F, 38 p.
- Walsh, M. H., 1957, A review of oil exploration in the Crazy Mountain area, in Billings Geol. Soc. Guidebook, 8th Ann. Field Conf., Crazy Mountian basin: p. 35-38.
- Zimmerman, E. A., 1956, Preliminary report on the geology and ground-water resources of parts of Musselshell and Golden Valley Counties, Montana: Montana Bur. Mines and Geol. Inf. Circ. 15, 13 p.

 1964, Geology and water resources of the Bluewater Springs area, Carbon County, Montana: U.S. Geol. Survey Water-Supply Paper 1779-J, p. J1-J24.

Table 3.—Chemical analyses of water from rocks of post-Pennsylvanian age

/Chemical constituents in milligrams per litre/

			٠		. ,	Method				Na -	K		Car-
	ар	:			Depth	of	Date	Cal-	Magne-		Potas-	Bicar-	bon-
num			Aqui-	Surface _{2/}	sampled	colleç-		cium	sium		sium	bonate	ate
(Fig	. 4)	Well number	ferl/	reference2/	(feet)	tion3/	Yr Mo Day	(Ca)	(Mg)	(Na)	(K)	(HCO ₃)	(CO ₃)
1	,	1N21E24CC	KIDA	·	3,858-3,869	Prod.	39- 5-18	·		2.	300	1,710	59
2		2N15E23BB	K5CL		4,158-4,163	Bailed		150	45		600	340	
-		2N15E23BB	K3FR		5,757-5,801		32-11 -			, -,	860	1,580	
. 3	•	2N20E04CA	K3 PA	KB 4,021	1,230-1,260		60-11-25	10	2	٠.	760	830	59
-		2N21E27DB	K3FR	KB 3,998	2,900	Prod.	67- 1-30	290	85	10,000	40	769	
				· ·									
-		2N21E27DB	K3FR	KB 3,998	2,854-2,859	_,	66-10-26	370	34	9,800	25	1,010	_
4 5	-	2N21E34DB	K3FR	KB 4,041	2,910-2,920	Prod.	58- 2- 5	31	12		630	1,050	
		2N51E36DC 3N23E18BD	K1DA K3DA	DF 3,016	5,196-5,219	DST	46- 9-16	43	13		460	760	
7		3N31E04CBB	K1DA	LS 3,006	4,435-4,467		40- 5-28 56-10-24	140	50		300 100	3,120	
•		,	WI DIE	20 3,000	4,455-4,407		30-10-24	140	30	υ,	,100	535	_
· -		3N31E04CBB	J3M0	LS 3,006	4,777-4,805		56-10	46	11	2.	400	930	118 -
8		4N19E13DB	K1K0	LS. 4, 225	3,372	Flow	46- 3-26				700	1,860	
· 9	٠	4N61E09CC	K1MU	KB 3,099	3,982-4,071	DST	68-11-12	30	12		600	1,170	
_		4N61E12AD	K3 EA		1,360-1,440	Prod.	42-10-15	120	69	5,	800	310	
10		4N62E19AC	K3/EA		1,230-1,660	Flow .	40-12-13	130-	Tr		000		
						•	•			•			
11		5N2OE19AA	K1 KO		2,465	Flow	46- 3-26				300	1,830	109
12		5N6OELODA	K3JR		750-904		42-10-14	. 79	22	3,	000	205	
13		6N14E20BA	K1LA	KB 5,101	3,147-3,188		56- 4-29	_8	7		480	740	84
14		6N15E02BDC		LS 4,808	321-349	DST	57- 7-8	Tr	Tr		410	200	217
. 15		6N16E31CC	K3 EA		3,830-3,871		60- 8	6	2:	•	570	1,200	59
16		6N22E28DDC	K3FR	LS 3,660	1,815-1,835	Prod.	32- 2- 9	43	17		700	775	Tr
17		7N08E23AA	KILA	KB 5,908	519		58- 9- 2	10	2	٠,	320.	598:	
_		7N08E23AA	J3MO	KB 5,908	750		58- 9- 2	11	ĩ		350	671	84
18		7N22E27CA	K1LA	LS 3,568	3,072-3,103	DST	60- 9- 8	11	2	2.	100	3,660	
-		8N20E14CC	J3M0	KB 3,912	1,896-1,921	DST	65- 3-17	9	3	790	10	1,930	Tř
· .		, je s	5 M.			• :							
19		8N24E02B	KI LA:	KB 3,640	4,357-4,364	Prod.	64- 8-31:	6.	12	2,	300	2,310	337
20		9N23E20AA	K3 EA	KB 3,695	323	Flow	68- 8-14-	2	10		630	514	
.21		9N23E21BB	KILA	KB 3,668	3,038-3,047		64- 1-31	9	2		500	2,800	185
. 22		10N25E09DD	K1K0		885-998	Bailed	33- 2-20			1,	200	1,220	
23		10N29E18BD	K1KO	KB 3,093	3,262-3,332	DST	68- 7-30	3.	2	1,	200	1,650	185
- 24	:	11N23R2QAAB	K1LA.		740-758	Flow:	337-1	15	Tr		280	600	
25		11N31E07CC	K1LA	 -	2,850-2,942	Flow	32-10-23				550	885	24
26		11N31E10	K3JR	· ·			60- 9-20	26	10.	1.	700	585	50
27	£	11N57E10CC	K3JR	:	830-896	Flow.	27- 8-18	120	30		200	220	
` -		11N57E15AA	F-SP		5,420-5,470	DST	56-10-3	1,800	260	80,	000	. 76	0
					·	٠						-	
28		12N56E02C	K3FH		80	Prod.	31- 8- 9				340	440.	
29		13N28E22D	K3EA	WB 2 702	489-499	Bailed	38- 9-16			_	770	1,000	109
30 31		14N52E17BC 15N29E09AC	K1MU K1KO	KB 2,722	5,106-5,150		69-10-29	12	12	3,	000 470	2,160	52
21		15N29E14AD	KILA		1,555-1,578 1,650-1,680	Flow Prod.	26- 1- 7 68-12- 4	2.	Tr 1	500	470 2	810 - 598	53 Tr
_		THEFT	A.L.	,	.,050-1,000	trod.	JG-14- 4	۷.		700,	4	270	TE
32		15N30E21CA	K1DA	·	814-1,020	Flow:	26- 1- 6				850	938	
33		16N27E26BB	KILA	LS 2,941		Flow	46- 3- 5		·		450	450	12
. 34		16N28E28CC	K1KO	LS 3,050	1,310	Flow	28- 4 —				350	415	
35		16N49E17DD	KLMU	KB 3,381	5,595-5,711		69-11-26	18	8	2,	400 -	1,980	0 ·
36	(y	17N48E01CC	KIMU	KB 2,895	5,101-5,275	DST	69-11- 2	12	. 17	. 2,	600	2,030	24
37		18N51E15CC	K1MU:	LS 3,009	5,185-5,235		69- 4-10	44.	7	3,200	34	1,760	96
38		22N48E25BD	K1DA	LS 2,550	5,010-5,061	DST	52- 2 - 1	6			900	1,980	50∙
39		27N47E15.	K3JR	PD: 0 461	1: 454 1 400	D :	67 11 15	18			900	980	 .
40		29N36E03CAA	K3FR	KB 2,461	1,454-1,492		57-11-15	39 760	18		600	660	74
-		30N45E24AD	J2PI	LS 2,745	5,092-5,127	DST .	56- 3- 2	760	150	. 13,	000	346	
41	:	31N34E02C	K3CR		760-815	Prod.	33- 9-26	59	64	2	300	310	
42		32N31E09AB	K1KO	LS 2,415	2,626-2,700		69- 6-20	12	1	980		2,110	84
		32N59E32CD	KIMU	LS 2,145	4,515-4,590	DST	68- 3-20	170	36	5,700	100	2,560	
4.3										- ,		-,	
43 44		36N47E19B	'K3JR	KB 2,562	1,570-1,710	DST.	70- 7-31	88	24	3,	000	195	

(SO ₄)	Chlo- ride (Cl)	Dis- solved solids4/	Resis- tivity5/	pН	Spe- cific grav- ity	Anal- ysis by <u>6</u> /	Remarks∐
23	2,400	5,650		_		US	Pump 2 BWPD (0.06 gal/min), rep.
22	5,800	9,920e				US	
16	87	1,530			1 000	us.	
13	630	1,880	3.41	8.7	1.002	Y	
Tr	16,000	26,400	. 270	7.9		С	
10	15,000	26,600	.27			C	Analysis includes 7 mg/l lithium
Tr		1,640	3.90	7.0		Y .	
390 ·	99 260	1,380 3,130		_		US, Cr	•
57	9,400	16,000	.41	7,8	1.012	Y Y	
		6 (00			1 007:	₩.	
1,100	2,300	6,420.	1.14	8.3	1.007	y US	Flow 125 BUDD (// col/-in) con
Tr 5	1,400 5,000	4,060 9,320	.72	7.6		C	Flow 125 BWPD (4 gal/min), est.
23	9,100	15,200		7.0		US	
	9,200	15,500				US	
~·	2 600	5 790				πe.	Flore 25 BURD (0.7 col/min) one
Tr .	2,400° 4,700	5,780 7,970				US	Flow 25 BWPD (0.7 gal/min), est.
260	53	1,260	7.7	8.3		Y	
240			7.3	9.4		¥.	Muddy water; filtrate clear
54	83	1,360	5.44			Y	
	7,000	12,200				US, Cr	
Tr	20	783	8.40	8.4		C	
76	20	874	8.20	8.6		C	•
15	1,200	5,100	1.45	7.9		C	
Tr	130	1, 890	4.10	8.3		С	Analysis includes trace of lithium
140	1,700	5,590		9.2		us ·	Initial flow 195 BWPD (5 gal/min), rep.
870	64	1,830	 ·	7.8		US	Flow when casing was pulled
.0	460		2.21	8.6	1.003	Y	
45 190	1,200 570	3,040 2,970	2.40	8.9	1.003	US, Cr Y	Temp. 137°F. Flow 72 BWPD (2 gal/min), rep.
			20.10				
140	11	739					Flow 42,750 BWPD (1,240 gal/min), rep.
340	51	1,400	1 00			US, Cr	
2,500	440: 7,000	11,500e	1.88	8.3.		Y US, Cr	÷
3,000	120,000		.06m	6.5	1.143	C. C.	····
•	-		•				-
320	24	902				US C-	Water well
410 18	180 3,400	1,960 8,480	.746	7.8	1.006	US, Cr	
240	28					US. Cr	Initial flow 350 BWPD (10 gal/min), rep.
300	24	1,120	7.00	8.2		C `	
13	750	2,590-				US, Cr	
480	59						Flow 1,000-1,500 BWPD (30-45 gal/min), est.
350	35	939					Flow 1,100 BWPD (32 gal/min), rep.
22	2,600		. 960		1.006		
32	2,800	7,200e	.874	8.2	1.005		
630	3,500	8,400	. 86	8.3		C	Muddy water, light brown filtrate
970	1,100	5,020	1.60	8.0		C	
	2,400	4,840				Cr	•
21	5,200	9,320	.68		1.008		
	18,000	36,100	. 22	6.6	1.032	C	·
4,300							
	5,100	8,680				US, Cr	
4,300 58	180	2,370	3.18		 -	C	Muddy water, clear filtrate
4,300			3.18 .47 .81	7.8		C C	Muddy water, clear filtrate

Table 3.—Chemical analyses of water from rocks of post-Pennsylvanian age--Continued

					Method				Na. +	- K		Car-
Map number (fig. 4)	Well number	Aqui- fer <u>l</u> /	Surface reference2/	Depth sampled (feet)	of collec- tion3/	Date Yr Mo Day	Cal- cium (Ca)	Magne- sium (Mg)		Potas- sium (K)	Bicar- bonate (HCO ₃)	bon- ate (CO ₃)
46	1 S52E31CC	KIMU'	KB-3,234	4,975-5,040	DST	65-11-17	18	3	2,	500	1,450	37
47	2S26E07DA	K1LA		1,181-1,192	Flow	41- 7-31			1,	100	2,200	120
48	3S31E21AC"	KILA	KB 3,247	1,190-1,290	Flow	69-12-31	0	Fr		570	1,240	
-	3S58E02DC	P-MI	KB 3,328	5,043-5,107	DST	64- 6-29	460	69	3,	000	329	0
49 %	4S23E02ABA	Klla	KB: 3,454	1,045-1,210	DST	60-11-23	21	6		890	2,000	133
·	4S23E08AA	K3FR	LS 3,577	1,500	Prod.	57- 3-25	Tr	Tr		750	1,620	109
50	5S55E19DC	K1MU	KB 3,382	3,902-4,000	DST	70-5-9	91	0	4,	000	1,110	
51.	6S53E17DC	KIMU	· ————	4,945-4,947	Prod.	68- 1-16	16	42	3,	700	4,230	
52	6S60E23BB	K1MU	LS 3,515	2,587-2,671	DST	68- 9- 5	330	120	10,	000	330	0
53	8S51E35CA	K1MU	KB 3,615	5,635-5,653	Prod.	69-10-15	.110	42	3,	300	1,450	
54	8S54E21	кзғн			Prod.					140	215	40 ·
55	8S54E35CB	K1MU	LS 3,750	4,302-4,319	Prod.	68- 2-12	19	8	2,100	560	1,640.	36

1/ List of aquifers and symbols	: K3FH, Fox Hills Sandstone	KlDA, Dakota Sandstone
	K3JR, Judith River Formation	K1KO, Kootenai Formation
•	K3EA, Eagle Sandstone	K1LA, Lakota Sandstone
	K5CL, Colorado Group	J3MO, Morrison Formation
	K3FR, Frontier Formation	J2PI, Piper Formation
	KIMU, Muddy Sandstone Member	F-SP, Spearfish Formation
	of Thermanalda Chala	Bull Minnakahta Timagtang

of Thermopolis Shale P-MI, Minnekanta Limestone

2/ Surface reference: DF, drillings rig floor; KB, kelly bushing; LS, land surface; figures are altitude in feet above mean sea level

above mean sea level

3/ Bailed, sample bailed from nonflowing oil-test hole; DST, drill-stem test; Prod., water extracted with oil or sample from water well; Flow, well flowed at land surface

Sul- fate (SO ₄)	Chlo- ride (Cl)	Dis- solved solids4/	Resis- tivity <u>5</u> /	рΗ.	Spe- cific grav- ity	Anal- ysis by <u>6</u> /	Remarks7/
0 49	3,000 260	6,330 2,610	1.08	8.2	1.005	Y US	Flow 50 BWPD (1.5 gal/min), rep.
94	80	1,360		8.2		US	Converted to water well. Analysis includes 1.1 mg/l boron
4,000	2,500	10,200					
30	79	2,140	3.44	8.6	1.001	¥	•
0	90	1,740	4.00	8.5	1.004	Y.	•
0 -	4.100	8.280	1.3	8.0	1.000		Bottom-hole temperature 107°F
22	3,400	11.700e		8.3		US	Pump 124 BWPD (4 gal/min) with oil
34	16,000	27,300	. 26	8.0	1.019	Y	•
2	4,600	9,650e		7.5		us	Analysis includes 10 mg/l boron
- 55	Tr	454		9.1			•
Tr	2,800	6,320		8.3			

4/ Calculated as the sum of the constituents; e, residue on evaporation at 180°C
5/ Resistivity calculated in ohm-metres at 68°F unless otherwise noted; m, measured
6/ Analysis by: C, Chemical and Geological Laboratories, Casper, Wyo.
Cr, Crawford (1942)
US, U.S. Geological Survey
Y, Yapuncich, Sanderson, and Brown Laboratories, Billings, Mont.
1/ Abbreviations used: BWPD, barrels of water per day; 1 BWPD equals 0.029 gal/min est., estimated gal/min, gallons per minute; 1 gal/min equals 34.3 BWPD rep., reported

Table 4.—Chemical analyses of water from rocks of Pennsylvanian age

Chemical constituents in milligrams per litre/

V				Dani!	Method.	•		Mag-	Na + K		Car-
Map.		A #	C	Depth	of	Date	Cal-	ne-		Bicar-	bon-
number		Aqui-	Surface	sampled	collec-		cium	sium		bonate	ate
fig. 5)	Well number	rer-/	reference2/	(feet)	tion3/	Yr Mo Day	(Ca)	(Mg)	(Na) (K)	(HCO ₃)	(CO3
1	2N28E31DB	N-TE		3,932-3,936	Prod.	45-11	53	20	890	230-	
2	3N21E05BC	N-TE		3,045	Flow.	46- 3-27	510	. 130	340	330	
3	3N31E04CBB	N-TE	LS 3,006	5,465-5,486		56-11- 5	370	77	620	315	
4	3N31E04CBB	N-AM		5,540-5,554		56-11- 8	400	90	310	340	
. 5	4N26E15DC	N-AM		5,630-5,702	DST	44- 9- 4	270	46.	500	325	
				-,		., , ,					
6	5N61E35CB	G-ME		5,850-5,935		64- 4-29	400	59	900	188	_
7	6N14E20BA	N-AM		3,708-3,724	DST	56- 4-29	12	40	300	645	_
8	6N15E02BDC	N-AM	LS 4,808	872-894	DST	57- 7- 8	240	130	520	465	
9.	7N08E23AA	N-AM	KB 5,908			58- 9- 2	630	100	82	183	0
10	8N21E28CB	N-AM	LS 4,063	2,130-2,184	Prod.	48- 6- 8	570	110	560	485	. —
11	8N21E29CA	N-AM	LS 4,026	2,270-2,293	DST	49- 4- 5	470	120	730	695	
12	8N36E33AA	N-AM		4,365-4,377	Plow.	57- 6-25	260	53	390	380	
13'	9N2OE31BD	N-AM		3,257-3,272		65 4 1	8	3		1,650	180
		•				-		,		•	
14	9N23E2OAA.	N-AM		3,591~3,606		64- 4- 8	42	8	1,300	2,680	
15	9N26E21CA	N-AM	AD 3,384	6,006-6,040	Prod.	64-10- 5	170	26	4,400	813	
16	10N22E09AC	N-AM		1,504		49	64	39.	1,900	4,850	121
. 17	10N28E03CC	N-TY		3,948-3,965	DST	70- 6- 3	89	15	2,100	710	143
18	10N28E17AA	N-TY		4,106-4,158	DST	60-10 -	400	60	6,100	805	
19	10N30E01AA	N-TY		4,724-4,769	Prod.	64- 4-27	29	31	3,800	738	95
20	10N31E11BB			4,765-4,780	Prod.	63- 9-30	16	76.	460	511	75
21	10N33E27DD	N-AM		4,825-4,845	DST	62-12- 6	120	35	4,200	891	Tr.
22	10N33E34BD	N-AM.	DF 3,106		Prod.	62-11-28	160	44	5,400	655.	51
23	10N39E09DBA			2,310-2,320	Flow	30- 8-26	430	62	700 ⁻	340	
24	10N39E26B	N-TE.	· . :	3,582-3,597	Flow	31-12- 1	550	140:	• 570	315	
25	11N23E29A	N-TE	· · · · · · · · · · · · · · · · · · ·	 .			280	79	1,000	305	
26	11N31E11BC	N-TY		5,293-5,330	Flow	71- 4- 7	57 [.]	20	6,000 44	1,740	Tr.
27	11N31E29DB	N-TY		4,397-4,408	Prod.	66- 5- 2	280	34	6,400 30	1,730	Tr.
28:	11N31E32DB	N-TY"		4,509	Prod.	68- 9-20	76	50	7,500 75	732	60
		N-TY		4,503	Prod.		290	27		854	
29	11N32E07DA	N-TY				69- 4-10			3,500 46		
29	11N32E07DA	W-II			Prod.	68-11-25	190	27	4,500 31	988	48
30	11N33E27BCD	N-AM	KB 3,166	4,595-4,619	DST	55- 3-16	.340	49	4,400	695	
31	11N33E36BD	N-AM.		4,298-4,620	Prod.	55-10-25	100	40	3,900	1,540	
32	12N25E05DC	N-TE:	LS 3.876				60	34	520	440	
33	13N26E04BD	N-AM*		2,120-2,135	DST	58-10- 6-	83	37	2,000	671	60
34	15N55E25AB			6,616-6,658		60- 7-19	2,600	570	120,000	122.	_
26	1600601040	17 mm.	7.0.00E		777	16 2 16		20		220	24
35:	16N26E18AD	N-TE:	LS 3,095	6 260-6 222	Flow	46- 3-16	- 44	28	320	230	24
36	22N48E25BD	N-AM		6,260-6,320	DST	52- 2-10	510	50	19,000	560	
37 38	30N57E35BB	N-AM		7,008-7,031	DST .	63- 3-23	1,600	290 340	90,000	195 610	
30.	30N58E27BC	N-AM	KB: 2,303	7,332–7,350	DOL	64- 3- 2	4,500	340	110,000 1,700	. 010	
39	IS33E13DD	N-TE		3,333-3,420	Flow.	36- 5-19	680	Tr.	360	230	
۸۵.	4S44E03DA	C-Mar	gn-3, 101	7,689-7,734	DST	56-10- 2	350	60	9,900	365	Tr.
40 41	5549E26BC			7,550-7,600	DST	62-11-13	310°	60 40	1,000	244.	0
42	6S24E04DD1		LS 4,200	787	Flow	60- 3-31	260:		2.5 .8		Ŏ
										252	
43	6S32E34ABB		•	1,749-1,755	Prod.	61- 8- 7	640-		37	253	
44.	6S36E17BC	N-TE.	KB 3,569	6,18 6- 6,209	DST	66- 9-24	370	120	2,100	255	0
45.	7S22E07BB	N-TE	LS 4.150	6.797-6.822	DST	51- 8- 8:	440	86-	110	256	
46	7S60E31DD	G-ME		3,360-3,397	DST	66- 9- 8	690			202	΄ ο.
47	8S46E11AA	G-ME		8,906-8,975	DST	64 6-16	230	140	8,800	1,200	
	いうさんわすていな						330	40			. 0
47 48:-	8S50E18CB	G-ME	KB 3,535	7.915-7.950	DST	64- 8-26			, 99 %	230	

Sul-	Chlo- ride	Dis- solved	Resis-		Spe- cific grav-	Anal- ysis	
(SO ₄)	(C1)	solida4/	tivity5/	pΗ·	ity	ьу <u>б</u> /	Remarks.7/
1,800	57	2,930				บร	
1,900	220	3,250				US.	Flow 150 EWPD (4 gal/min), est.
2,100	120	3,430	2.70	7 1	1.005	Y	riow 100 parb (4 Sgrimin), esc.
1,600	66.	2,630	3.72		1.003	Ÿ	
1,500	75	2,560	3.72	7.2	1.003	US	400 ft water-cut mud
1,500	,,	2,500				0.5	400 If Awres-Cos mad
1,600	1,000	4,000		7.7		US	Flow 5,000 BWPD (145 gal/min), est.
260	. 39	977	7.5	6.3		Y	- 20 - 3,000 - 3n2 - 70 - 10 - 8-2,
1,700	67	2,930	3.1	7.8		Y	
1,900	20	2,820	3.20	7.0		С	
2,200	300	3,980				US .	Initial yield est. 50,000 BWPD (1,450 gal/min), flow. Yield
•					*.		26 BWPD (0.75 gal/min), rep.
2,100	370	4,120	1.95	6.9		С	
1,200	94	2,230	3.15	6.9	1.006	Y	Flow 2,800 BWFD (80 gal/min), est.
500	270	2,930	2.60	8.8		С	Analysis includes 3 mg/l lithium. "Recovered 755 ft slightly
		•					mud cut sulfur water."
110	470	3,260	2.37	8.4	1.003	Y	
6,200	2,100	13,200		7.7		US	Pumping 50 BWPD (1 gal/min) with oil
				_		_	
	160	4,690		7.5		C	
2,800	780	6,270	1.25		1.006	Y	•
9,600	2,700	19,300	.49		1.016	Y	
2,800	3,400	10,500		8.5		US	
60	520	1,460		8.0		US	
5 000	7 600	12 500	71	0 2			Timed water for 10 admitted
5,900 7,600	7,600	12,500	.71	8.3		C US	Flowed water for 10 minutes
2,200	2,700 280	16,300 3,840		7.8		US. Cr	Flow 65 BWPD (2 gal/min), rep. Flow 10,000 BWPD (290 gal/min), est. No oil
2,200	440	4,040				US, Cr	
2,600	160	4,330	,	_		Cr	Flow 125,000 BWFD (3,600 gal/min), est.
2,000	100	4,550			•	OI.	
8,400	2,200	17,600	. 51	8. 2		С.	•
8,500	-	19,400	. 47	8.2		Ċ	Analysis includes 4 mg/l lithium
5,800		21,100	. 36			C	•
4,400	2,300	11,100	76	7.6		С	
5,600		13,400	.64	8.2		C .	Black iron sulfide water, clear filtrate
6,500	2,300	13,900	.60	7.5	1.005	Y .	
3,900	2,600	11,300				US	H ₂ S present
1,000	18	1,840				Cr	Flowed 15,000 BWFD (435 gal/min), rep.
3,700.	190	6,410			1.006	C.	"Flowed fresh water in 25 minutes."
2,400	190,000	313,000	. 045	4.4		С	"Recovered 100 ft drill mud. Thin mud."
con	en.	1 170		· ·		TI C	
580- 7 000	59 26,000	1,170° 52,800	.18	6.9		US C	"Sampled 1,000 ft above tester."
	140,000	235,000	.147				"Bottom of fluid column. Recovered 1,736 ft muddy salt water.
	170,000	288,000	. 043			C C	Analysis includes 20 mg/l lithium. "Thin mud, high water loss.
-,000	-, -, -,	200,000		,		•	Recovered 247 ft muddy water."
2,200	32	3,360				US.	Flow 20,000 BWPD (580 gal/min), rep.
		•					
10,000	8,200	29,000	.32	8.2		Y .	Bottom-hole temperature 2020F
2,700	84		2.00		1.004	Sh	
620	.5	1,160	· · ·	7.2		US	Specific conductance 1,350 micromhos. Flow 127,000 BWPD
				·			(3,700 gal/min)
1,700	16	2,550			1 006	US	Flow 75 BWPD (2 gal/min), est.
5,100	300	8,060	1.25	7.6	1.006	Y	
1 400	. E1	2:160-				11¢	
1,400	51 16	2,160		7.0		US	•
2,300	16	25 700	2 5	7.2		C	
9,000 870	6,900	25,700 1,530	.35	7.6	1 001	C Y	•
	82 49		5.97 3.40		1.001	Y	Weter to surface on DST
2,300	47	3,320	3.40	0.2		4	Water to surface on DST

Table 4.—Chemical analyses of water from rocks of Pennsylvanian age-Continued

					Method			Mag-	Na 1	-		Car-
Map number (fig. 5)	Well number	Aqui- ferl/	Surface reference ² /	Depth sampled (feet)	of collec- tion3/	Date Yr Mo Day	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Bicar- bonate (HCO3)	bon- ate (CO ₃)
49 50	9S45E11BA 9S58E29CD	G-ME G-ME		9,360-9,393 2,004-2,083	DST DST	61-12-29 64-11-24	380 500	81 Tr.	4,0 2,900	25	660 281	36

^{1/} List of aquifers and symbols: G-ME, Minnelusa Formation
N-TE, Tensleep Sandstone
N-AM, Amsden Group
N-TY, Tyler Formation
2/ Surface reference: KB, kelly bushing; LS, land surface; DF, drilling rig floor; figures are altitude, in feet above mean sea level

^{3/} DST, drill-stem test; Prod., water extracted with oil or sample from water well; Flow, well flowed at land surface

Sul- fate (SO ₄)	Chlo- ride (Cl)	Dis- solved solids4/	Resis- tivity <u>5</u> /	рH	Spe- cific grav- ity	Anal- ysis by <u>6</u> /	Remarka <u>7</u> /	
6,400 6,800	1,700 80	12,800 10,500	.70 .95	8.1 9.2		C C	Analysis includes 3 mg/l lithium. (104 gal/min) on DST	Fowed at rate of 3,600 BWPD

4/ Calculated as the sum of the constituents
5/ Resistivity calculated in ohm-metres at 68°F unless otherwise noted; m, measured
6/ Analysis by: C, Chemical and Geological Laboratores, Casper, Wyo.
Cr, Crawford (1942)
Sh, Shell 0il Co.
US, U.S. Geological Survey
Y, Yapuncich, Sanderson and Brown Laboratores, Billings, Mont.
1/ Abbreviations used: EWPD, barrels of water per day; 1 BWPD equals 0.029 gal/min est., estimated gal/min, gallons per minute; 1 gal/min equals 34.3 EWPD rep., reported

Table 5.—Chemical analyses of water from rocks of Mississippian age

/Chemical consitutents in milligrams per litre/

						Method				Na + K		,Car-
					Depth	of	Date	Cal-	Magne-	Potas-		bon-
Map numb (fig. (Well number	Aqui- ferl/	Surface reference2/	sampled (feet) ,	collec- tion3	Yr Mo Day	cium (Ca)	sium. (Mg)	Sodium sium (Na) (K)	bonate (HCO ₃)	ate (CO ₃)
		1200201240	355354		/ 010 / 002	D.CE	.53 0 01	200			2-2	
			M5MA	LS 3,574	4,010-4,293	DST	57- 3-21	380	99	380	370	0
-		IN28E01BAC	MIMC	LS 3,574	4,300-4,479	DST	57- 3-25	520	150	110	105	
1		2N20E29BB	M5MA	LS 4,100±	5,460-5,480		56-12	340	84	400	195	
2 3		2N41E34BA	MIMC	KB 3,236	8,103-8,113	Flow Der	71-9-7	220	35	170	148	.0
٦.		2N51E36DC	M5MA	DF 3,016	7,598-7,687	DST	46- 9 —	350	60	310	245	
. 4	•	3N19E07DA	MIMC	LS 4,394	5,227-5,275	DST	54-12-22	590	130	530	600	
5 :		3N19E17CD	M5MA.		4,325-4,330	Prod.	29-11	370	64	330	350	
6.		4N62E08	M5MA		6,740-6,786	DST	37- 4-15	370	70	620	270	
-		4N62E17BAD	M5MA	LS 2,990	6,747-6,798	DST	36- 5-27	1,400	57	1,300	310	
7		4N62E19D	M5MA	······································	6,826-6,837	DST	41- 7-19	420	. 70 :	700 ·	309	
8		6N32E02CC	мзсн.	LS 3,381	6,565-6,647	DST	44-10-27	270	41	. 590	275	. —
9		6N32EO2CC	M5MA	LS 3,381	6,930-6,973	DST	44-11- 4	580	68	1,400	355	
10		7N08E23AA	M5MA	KB 5,908	4,178		58- 9- 10	670	95	130	159	
11	•	7N22E27CA	мзсн	LS 3,568	3,856-3,879	DST	60- 9- 8	570	120	380	305	
12		7N59E01BB	WTWC	LS 2,958	7,020-7,260	Prod.	61- 7-21	330	52	830	254	_
. — ' '		7N59E01BBB-	M3CH	LS 2,968	6,734-6,773	DST	55- 8-23	2,800	730	19,000	250	. 0
		7N59E01BBB	MIMC.	LS 2,968	7,155-7,200	DST	55 8-27	1,500	290	12,000	320	. 0
		7N59E01BBB	MILO	LS 2,968	7,855-7,891	DST	55- 9- 4	480	120	820	350	. 0
		9N58E15BC	MIMC	LS 2,918	7,283-7,305	DST	61-7-19	350	60	1,200	260	0
13		10N30E03ABB	мзсн	LS 3,129	5,510-5,538		54- 5-26	2,800	640	32,000	278	
		10N58E21DA	MIMC	KB 2,743	7,518-7,552	DST	57- 6-19	450	91	2,700	248	
14		ION58E33CA	MIMC	KB 2,867	7,304-7,336	Prod.	57-10-15	570	. 80	1,400	227	
15:	١.	11N29E01CA	M3KI				48- 6- 1	290	54	2,000	280	109
16		11N30E08ABA	M3KI		4,433-4,577	Prod.	55-10-25	300	55	3,000	370	
17		11N31E11	M5MA		6,797-7,212	Prod.	68-,2- 2	320	40	1,500 95	366	
18.		11N32E07DA	M3HE	KB 2,993	4,355-4,380	DST	55- 4-18	280	46	4,800	760.	
19		11N32E15AB	MIMC:	KB 3,054	6,080-6,770	Flow .	69 - 9- 4	340	46	1,800	476	
20		11N43E21CD	MILO:	DF 3,023	8,183-8,230	DST	56- 6 	220	20	2,000	756	
21.		11N57E09AC.	MIMC.		7,517-7,540	DST	56- 4-13	1,300	100	14,000	313	_
22		12N39E09AA	MIMC	KB 2,982	5,040-5,103	DST	61- 8-23	500	75	890	415	_
23		14N55E27CD	MIMC	KB 2,236	7,436-7,600	Prod.	69-10-20	860	140	5,100	525	0
24		1:5N29E1 1DD.	MIMC	KB 2,823	4,177-4,194	Flow	68-10-14	620	210	2,100	380	0
25		16N36E28CA	M3CH	DF 3,120	5,946-5,995	DST	53 - 9-14.	480	90	1,600	523	
26		16N50E23CB	M3CH	DF 3,076	8,128-8,233	DST	52- 3-10	360	43	1,100	200	-59
27		17N24E17CC	MIMC		3,221-3,359	DST	63- 7-10	810	210	2,200 40	159~	
28		18N51E15CC	MIMC	LS 3,009	8,404-8,495	DST.	69- 3-20	4,700	580	46,000 1,800	512.	
29.		19N34E32BD	МЗСН	KB-3,110	5,787-5,818	DST	69- 4-25	500	120	1,600	560	0
30		19N34E32BD	MIMC	KB 3,110	6,062-6,076	DST	69- 4-29	390	69	1,300	450	. 0
31		21N45E12BB	M3KI	KB 2,606	5,938-6,010	DST	65- 9-10	360	47	4,400 70		
32		22N44E18BB	МЗСВ	KB 2,550	5,794-5,840	DST	66-11- 1	. 370	76	2,300	295	37
331		22N46E22AA	M3KI		5,800-5,900	Prod.	65 - 2-22	560	56	3,000	173	
34		22N46E32AB	M3CH	KB 2,592	6,382-6,444	DST	65- 9-10	500	64	4,500 180	354	
35		22N47E30BD		LS 2,676	6,385-6,435	DST	65- 2- 2	1,300	220	9,500 200	207	
36		23N41E04DC	M3CH		5,185-5,225	DST	71- 7-30	44	5.9		490	
37		23N50E19BCD		LS 2,573	7,363-7,468		52- 6-16	1,800	280	46,000	280	
- 38		24N47E18CB	мзсн	LS 2,290	6,074-6,125	DST	66-11-20	1,300	180	22,000	305	42
39		24N50E19CB	M3KI	DF 2,409	6,345-6,390		65- 7-23	1,700	140	46,000 540		0
40		24N58E29BCA			9,062-9,517	Prod.	63- 8 -	12,000		110,000	146	ō
41.		26N52E06CD	M5MA	KB 2,114	6,450-6,499		64- 7-28	1,100	130	15,000 260		
42		27N51E08DDD	мзсн	KB 1,958	5,784,5,825	DST	65-12-27	8.900-	1,400	68,000	37	0

Sul- fate (SO ₄)	Chlo- ride (C1)	Dis- solved solids4/	Resis- tivity5/	рН	Spe- cific grav- ity	Anal- ysis by <u>6</u> /	Remarks. []
1,800	44	2,780	3.6	7.4	1.007	Y	
1,800	52	2,740	3.7		1.005	¥	
1,700	110	2,910					i .
770	99	1,370	6.4	6.9		Y.	Flow 600 BWPD (17 gal/min), rep.
1,300	170	2,340				ŪS ·	TIOW GOOD DRID (17 SEL/MIN), Tep.
2 100	. 240	3,990	2.30m	7 5	1.004	C	
2,100	340		2.30m	7.5	1.004		m: 1670m ws 10 000 mms (400 - 1/ -)
1,300	220	2,810e				US, Cr	Temp. 157°F. Flow 10,000 BWPD (290 gal/min), est. Crawford
					• •		(1942) reported sample to be from Pennsylvanian Quadrant
1,400	620	3,210		_		บร	Flow 36 EWPD (1 gal/min), rep. Formation.
1,420	3,400	7,720				US	
1,900	460	3,700			-	US	Flows
1,600	140	2,800	<u> </u>	·		US	
3,900	280	6,450	2.70			US	Photo and the second of the se
2,100	18	3,100	3.70			C	"Not considered harmful for stock."
2,200	160	3,560	2.50			C.	
1,400	. 860	3,560		7.0		US	3,666 BWPD (106 gal/min) pumping, rep. 5-61
3,100	34,000	62,300	.14	6.7	1.042	, Y	
3,900		36,200	. 23		1.026	` ¥	
1,600	1,100	4,230	1.92		1.006	Ŷ	
	-		1.92				
1,600		4,070				US	
2,200	54,400	92,200	.095	5.4	1.066	Y	
1,500	4,100	8,940	. 82m	6.3	1.005	C	
1,300	2,300	5,800	1.27	6.7		C	
2,800	1,300	6,690		8.1		C	
5,400	2,500	12,400				US	
1,500	1,700	5,350	1.35	7.8		C	
10.000	260	15: 900	.67		1 014	¥ ·	21 120 purp (231/m/-)
10,000	260	15,800			1.014		Flow 720 BWPD (21 gal/min), rep.
1,600	2,100	6,120	1.18		1.005	Y	Flow 28,800 BWPD (835 gal/min); completed as water well
2,100	1,500	6,210			1.007	Č .	Flow 48,000 EWFD (1,390 gal/min); completed as water well
3,700		39,400	. 20m		1.025	C	
2,200	640	4,570	1.90	6.8		C.	Flowed fresh water in 15 minutes
940	8,800	16,400	. 43	6.1	1.012	Sh.	Converted to industrial water well
2,600	2,800	8,470	.92	6.9	1.006	¥	Flowed black sulfur water in 11 minutes
2,300	1,600	-6,300				US:	
1,600	1,100	4,310	1.90	8.3		C	
3,200	3,000	9,600	.810			Č.	Analysis includes 4 mg/l lithium. Flowed water in 13 minutes.
	00.000	100.000	. 071				
2,800	80,000	136,000	.071	6.7	1 005	C.	n
1,800	2,000	6,220	1.15		1.005	Y	Bottom-hole temperature 1550y
1,800	1,500	5,240	1.25		1.004	Y '	Bottom-hole temperature 1540F
5,000	3,600	13,700	.600	7.4		C	Analysis includes 8 mg/l lithium
3,700	1,500	8,110	1.10	8.8	1.007	Y :	
2,000	4,200	9,860		7.5		US.	Flows; represents 6 wells
4,400	4,800	14,700	.530			C	Analysis includes 6 mg/l lithium
2,600	16,000	29,700	.250			C	Analysis includes 15 mg/l lithium
2,900	560	5,890	1.35			M.	
4,200	72,000	125,000	.081	8.5		Ċ	
7 000	21 000	62 100	12	g. p	1 042	•	•
7,900	31,000	62,400	.13		1.044	Y	Analysis includes 20 mg/l lithium
3,100	73,000	125,000	.074			C	Analysis includes 20 mg/l lithium
260.		320,000	1.00			US	
2,600	24,000	42,900	.180	7.0	 -	C	Analysis includes 4 mg/l lithium. Cloudy, black water. Black precipitate.
670	120,000	203,000	.054	6.3	1.134	Y .	t
							· ·

Table 5.—Chemical analyses of water from rocks of Mississippian age—Continued

		,			Method				Na +		•	Car-
	•			Depth	of:	Date	Cal-	Magne-		Potas-	Bicar-	pon-
Map number		Aqui-	Surface	sampled.	collec-	T- V- D	cium	Sium	Sodium	sium	bonate	ate
(fig. 6)	Well number	I eLL/	reference2/	(feet)	tion3/	Yr Mo Day	(Ca)	(Mg)	(Na)	(K)	(HCO ₃)	(CO ₃)
43	28N39E2OCA	MIMC	KB 2,127	4,450		71- 7-30	380	99	1,100	100	146	0
44	28N50E02AD	мзсн	KB 2,181.	5,984-6,010	DST	65- 5- 9	2,900	780	120,0	00	260	
	28N51E02AC	мзсн	LS 2,111	5,668-5,814	Prod.	64- 9-14	970	120	73,000	500	207	
45	28N51E12CC	M5MA	KB 2,179	5,550-5,920	Prod.	54-12- 9-	1,000	140	77,0	00	239	_
_	28N51E25AC	M3KI	KB 2,178	5,349-5,378		67- 1- 9	820	85	22,000	650	439	. 0
- <u>- 1</u> 13 (a.t.)	28N51E25AC	мзсн	KB 2.178	5,635-5,676	DST	67- 1- 9	1,000	150	63,000	. 500 ⁻	378	. 0
— ,, 3. ∀\$	28N51E27AC	M3HE:		4,958-4,970		56- 1-24	1,400	230	22,0		475	
46	28N52E18AC	MIMC	KB 2,135	6,025-6,077	DST	52- 5-17	890	130	18,0		262	0.
47	29N31E24DC	M5MA	KB 2,411	3,495-3,500	Prod.	55- 1-20	520	150		60	156	
-	29N50E05CC	мзсн	KB 2,636	6,446-6,461	DST	54-10- 6	5,300	810	75,0		121	
	20015071577					56 1 04	. 260	110			205	
	29N50E15BB	M3CH	DF 2,383	6,172-6,180	Prod.	56- 1-24	260	110	6,8		205	Tr.
	29N51E08CC	мзсн	KB 2,111	5,784-5,792	Prod.	56- 1-24	1,200	300	20,0		145	_
48	30N44E07DDD	мзсн.	KB 2,805	5,564-5,600	DST	68- 7-26	690	170		00	370	0
49	30N45E24AD	мзсн	LS 2,745.	- 5,933	DST .	56- 3-16-	10,000	2,000	110,0		162.	
50	30N48E20DD	MIMC	LS: 2,603	6,705-6,721	DST	57- 1-30	880	130	21,0	00	551	85.
51	30N57E35BB-	M5MA	KB 2,295	8,664-8,668	DST	63- 4- 8	7,800	950	84,000	3,000	195	
52	31N45E23AA	MIMC.	KB 2,905	6,638-6,670	DST	57- 1- 1	480	. 190	9,2	00	259	64:
53	31N45E23AA	M1MC	KB 2,905	6,533-6,547	DST	57- 1-31	1,300	240	23,0		551	
54	31N47E33AC	MIMC	KB 2,721	6,586-6,640	DST:	64-11-10	2,000	300	110,000	600	146	
55	31N48E25BC	мзсн	KB 2,683	6,397-6,418	Prod.	66- 3-30	. 620	130	7,1		279	
• •	21 151 702 70	VO CTT	TTD 2 644		, DOM	ce c à.	2 200	24.0	110.000	1 400	146	
	31N51E03BC	мзсн	KB 2,644	7,160-7,173	DST	65- 6- 3	2,200	240	110,000	1,400	146	
57	31N51E04AA	мзсн	KB 2,658	7,121-7,145	Prod.	67- 8- 2	1,400	200	39,000	580	378	
58	32N49E13DA	мзсн	LS 2,423	6,537-6,545	Prod.	55-10-22	840	210	16,0		294	
	32N50E19BC	MIMC	KB 2,420	6,828-6,843	DST	55 8- 3:	540∻	95	8,4		231	
59	32N59E29A	M1MC		7,959-7,976	Prod.	60-10-26	12,000	1,600	110,000	4,200	110	. —
60:	33N43E16CA	MIMC	LS: 2,844	6,159-6,199	DST"	56- 8-24	430	79	8	40	465	i·
61	33N49E34CB	MIMC	LS 2,684	7,313-7,349		56- 5-16	1.600	280	29.0	00	259	
62	33N56E03CC	M5MA	KB 2,235	7,442-7,536	DST	64- 9-14	750	140	110,000	3.500	232	
63	33N56E05AB	MIMC	LS 2,229	7,730-7,805	DST	57- 8-30	1,400		62,0		356	
64-	37N58E05CA	M5MA	KB 2,201	6,439-6,478		66- 9-28	5,000	890	110,0		173	
	1.022.01.200°	M5MA	T C 2 . 000 .	2 560 2 570	DST	37-11-23	650	170		53	92	0
45	1S33E13DD		LS 3,000	3,560-3,570						10	170	U
65	2S29E17BC	M5MA		4,016-4,100	DST	44- 9-12	6004	150				
66	3S31E34BC	M5MA	LS 3,494	2,959	Prod.	55- 6-18:	630 ·			39	305	0
67	3S58E02DC	мзсн	KB 3,328	5,690-5,805	DST	64- 6-29		72		40	366	
68	4S23E08AA	M5MA.	LS 3,577	3,530-3,535	Prod.	57- 3-25	690 ⁻	230		46.	255	. 0
69	5857E31AB	MILO	LS 3,469	5,715-5,778	DST	50- 7-10	540	140		20	194	
70	6S18E04BD	M5MA	LS 5,130	4,160-4,165	Prod.	44-10- 2	560	150		77	45	
71	6S32E27CD	M5MA	LS 3,525	2,009-2,011	Flow-	67-10- 6	230	- 75		5	190 -	
	6S32E34ACC	M5MA	LS 3,435	1,860-1,872		61- 8- 8	170	64		11	190	
72	7\$59E03AB	MIMC	KB: 3,496	4,496-4,650	DST	61- 9-13	530	140		20	255	0.
73:	8S46E11AA;	M1MC	KB~3,909	9,580-9,650	DST	64 616	230	34-	. 1	10	232°	Tr.
74:	8S54E21ADA	M5MA		6,990-7,190		70-10-16	170.	47:		36 .	112	0,
	* 1		O Love Francis	产工性 经不分产	Marie 1					•	774	
75	9845E11BA	MIMC	KB 3,885	10,028-10,203	DST	62- 1-22	300	44	. 4	60	770	_

^{1/} List of aquifers and symbols: M3HE, Health Formation. M3KI, Kibbey Sandstone

MSMA, Madison Group
M3CH, Charles Formation
MIMC, Mission Canyon Limestone
MILO, Lodgepole Limestone

^{2/} Surface reference: KB, kelly bushing; LS, land surface; DF, drillings rig.floor; figures are altitude, in feet above mean séa level

^{3/} DST, drill-stem test; Prod., water extracted with oil or sample from water well; Flow, well flowed at land surface

Sul- fate (SO ₄)	Chlo- ride (C1)	Dis- solved solids4/	Resis- tivity <u>5</u> /	pН	Spe- cific grav- ity	Anal- ysis by6/	Remarka7/
2,400	840	5,010		7.8		M	Analysis includes SAR 12.6, conductance 5,800 micromhos
150 2,200	190,000	315,000 190,000	.04 .057	4.8 8.1	1.203	c	Analysis includes trace of lithium. "Clear water with pre-
		-					cipitated iron sulfide."
2,600	120,000	201,000				US	Initial flow 214 BWPD (6 gal/min)
1,800	35,000	60,800	.130	7.1		C	
1,500	98,000	164,000	.062	6.8		C:	
1,400	36,000	61,400	.14m	6.6	1.044	C	
2,400	28,000	50,000	.165	7.4	1.043		Disagreeable odor
1,900	100	2,890	3.20		1.005	Y	
2,100	130,000	210,000	.073m.	5.7		C	
3,000	9,000	19,300	.39m	8.5	1.015	C	
120	33,000	54,300	. 16m.	6.5	1.039	C	
3,700	14,000	27,800	. 27		1.020	¥	
510	190,000	310,000	.049m.	6.0	1.211	C	
4,400	31,000	58,200	.15m	8.9	1.050	C	
540	150,000	244,000	.046	6.5		. c	Analysis includes 4 mg/l lithium
2,300		26,000	.340m	8.0	1.012	C	
4,200	35,000	63,900	140m	6.7	1.045	· C	
	170,000	282,000	.044	7.0		C	Analysis includes 50 mg/l lithium
2,400	10,000	20,800		7.5		US	Pumps 66 BWPD (2 gal/min), with oil
3,000	170,000	285,000	.048	6.4		C	Analysis includes 10 mg/l lithium
2,500	61,000	104,000	. 86	7.7		č	morjoro sucregios so meja ascensia
2,900	24,000	43,500				ซร	Flows
3,800	11,000	24,200	.325m	6.4		C	Black, salty, sulfur water; H2S present
290	200,000	325,000		6.6		US	Flow 109 BWPD (3 gal/min)
1,500	900	3,980	2.40m	7.6	1.004	С	H ₂ S present
3,400	45,000	79,100	.185m		1.035	Ċ	nya present
840	180,000	296,000	.045	7.3		Č	Analysis includes 10 mg/l lithium
3,400	96,000	163,000	.062m		1.110	C	
	180,000	295,000		5,5	1.187	US	Represents several unitized wells
2,200	10	3,170				US.	
2,600	120	3,780				US	
1,800		2,790	3.58	7.1	1.005	Y	
2,200:	220	3,940	2.25	7.9		C '	Analysis includes 2 mg/l lithium
2,300		3,530	3.32	7.2	1.005	Y	
1,900	35	2,810	3.95	7.1		C.	
2,100	19	2,890				US	
700	12	1,110		7.6		US.	Flow 10,000 EWPD (290 gal/min), rep.
510	12	860		7.6		US:	
1,800	76	2,780	3.70		1.002.	Y	
650	40	1.180	6.75	8.2		C	
470	57	860e:-	 -	7.9		M.	Analysis includes conductance 1,160 micromhos. Temp. 130°F.
						,	Flow 30,000 BWPD (875 gal/min), rep.
1,100	100	2,400	3.55	7.9		C:	

rep., reported SAR, sodium-adsorption ratio

^{4/} Calculated as the sum of the constituents; e, residue on evaporation at 180°C
5/ Resistivity calculated in ohm-metres at 68°F unless otherwise noted; m, measured
6/ Analysis by: C, Chemical and Geological Laboratories, Casper, Wyo.

Cr. Crawford (1942)

Cr. Crawford (1942)

M, Montana Bureau of Mines and Geology

Sh, Shell Oil Co.

US, U.S. Geological Survey

Y, Yapuncich, Sanderson, and Brown Laboratories, Billings, Mont.

7/ Abbrevaitions used: BWPD, barrels of water per day; 1 BWPD equals 0.029 gal/min est., estimated gal/min, gallons per minute; 1 gal/min equals 34.3 BWPD rep., reported

ERRATA - Table 5

			CORRECT	ΓED
WELL	,	٠	DISSOLVED	SOLIDS

2N20E29BB	2,910e
9N58E15BC	4,670
14N55E27CD	16,100
23N41E04DC	5,640
2S29E17BC	3.980