6-100403

UNITED STATES DEPARTMENT OF THE INTERIOR

FC USGS 0FR 80-982

UNIVERSITY OF UTAH

RESEARCH INSTITUTE EARTH SCIENCE LAB. GEOLOGIC SURVEY

In-Situ bulk density estimates and interval vs. borehole gravity data in the Madison Group test well no. 2, Custer County, Montana

Ъу

Bruce A. Kososki and Stephen L. Robbins

This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey standards.

Open-File Report 80-982

In-situ bulk density estimates from borehole gravity data in the

Madison Group test well no. 2, Custer County, Montana

Ъу

Bruce A. Kososki and Stephen L. Robbins

Introduction

In 1975 the U.S. Geological Survey, in cooperation with the Old West Regional Commission, prepared a plan of study (U.S. Geological Survey, 1975) for evaluating the water-supply potential of limestone of the Madison Group and associated rocks. To obtain better subsurface hydrologic and geologic information it was recognized that Madison Group test wells would have to be drilled. This report tabulates the results of in-situ bulk-density determinations from borehole gravity data obtained in the Madison Group test well no. 2.

Location and Drilling History

Test well no. 2 is located in the SE 1/4 SE 1/4 sec. 18, T. 1 N., R. 54 E., Custer County, Montana (fig. 1). The drill site is approximately 6 mi (10 km) northeast of Powderville, Montana, and 55 mi (89 km) southeast of Miles City, Montana.

Test well no. 2 was spudded in the Skull Creek Formation of Late Cretaceous age on November 17, 1976, and bottomed 94 ft (29 m) below the top of Precambrian rocks 9,378 ft (2,858 m) below land surface on March 23, 1977 (Brown and others, 1977). A 13 3/8-in. (0.34 m) diameter casing was set in the well from the surface to 4,661 ft (1,421 m), and 9 5/8-in. (0.24 m) casing from 4,519 ft (1,377 m) to 6,487 ft (1,977 m). It is 8 1/2-in. (0.22 m) open hole from 6,487 ft (1,977 m) to 8,422 ft (2,567 m). The well is sealed off below 8,422 ft (2,567 m) by two cement plugs--one from 9,378 ft (2,858 m) to 9,084 ft (2,769 m) and the other from 8,884 ft (2,708 m) to 8,422 ft (2,567

Figure 1.--Location of drilling site for Madison Group test well no. 2 (Brown and others, 1977).

m) below land surface--to isolate the upper part from Cambrian sandstones that contain saline water and gas shows. Nineteen cores were taken from selected intervals totaling 754 ft (230 m), with core recovery totaling 722.4 ft (220.2 m) (Brown and others, 1977).

Stratigraphy

The rocks penetrated by the Madison Group test well no. 2 range in age from Late Cretaceous to Precambrian. The formation tops identified from well logs are shown in table 1. A complete lithologic description of cuttings and cores is given by Brown and others (1977, p. 35-53).

Borehole Gravity Data

Borehole gravity data were obtained by the U.S. Geological Survey in test well no. 2 in June 1979 using the U.S. Geological Survey-LaCoste and Romberg¹ borehole gravity meter (McCulloh and others, 1967a; McCulloh and others, 1967b). The primary objective of this work was to obtain data for the determination of in-situ formation densities utilizing an instrument not significantly affected by casing, borehole rugosity, or other near-borehole conditions. Unfortunately, due to caving problems, logging operations were not possible below a depth of 4,372 ft (1,333 m), a depth well above the Madison Group objective.

¹Use of brand names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey.

Table 1.--Log tops, Madison Group test well no. 2, Custer County, Montana (Brown and others, 1977).

Formation and age	Log	Depth ¹	<u> </u>
	ft	m	
CRETACEOUS	<u> </u>		
Bearpaw Shale	420	128	
Judith River	1168	356	
Clagget	1284	391	
Eagle	1672	510	
Shannon Sandstone Member	1840	561	
Telegraph Creek	1852	564	
Niobrara	2764	842	
Greenhorn	3406	. 1038	
Mowry	4081	1244	
Newcastle	4282	1305	
Skull Creek	4388	1337	
Colorado Silt	4556	1389	
Logger TD	4656	1419	
Driller TD	4682	1427	
Strap	4677	1426	
Dakota	4680	1426	
JURASSIC			
Morrison	4926	1501	
Swift	5095	1553	
Spearfish -	5692	1735	
Minnekahta	6024	1836	
Opeche	6034	1839	
Minnelusa	6094	1857	
MISSISSIPPIAN			
Madison	6484	1976	
Logger TD	6567	2002	
Driller TD	6559	1999	
M-12	6640	2024	
M-8.5	6742	2055	
Lodgepole	7182	2189	
M-3	7374	2248	
DEVONIAN			
Three Forks-Jefferson	7662	2335	
SILURIAN			
Interlake	7846	2391	
ORDOVICIAN		· · · · · ·	
Stony Mountain-Gunton Member	/9//	2431	
Penitentiary Shale Member	8050	2454	
Ked Kiver	8106	24/1	
Koughlock Sandstone	8558	2608	
ICEDOX SNALE	8023	2628	
Winnipeg Sandstone	8007	2642	
CAMBRIAN	0(7)	0411	
DeadWood Crea Ventra Chala	0/0	2044	
Gros ventre Snale Flathand Candatan	88/6	2705	
Flatnead Sandstone	9224	2811	
<u>rkeuandkian</u>	9300	2835	
Total Depth	9394	2863	

¹Depths are from kelly bushing (2,809 ft above sea level), 16 ft above land surface

The data associated with each subsurface gravity station in the Madison Group test well is recorded in table 2. The column headings are explained in the following list:

Station number:

Depth:

Time:

Uncorrected gravity:

Tide correction:

Terrain correction:

A numbering of borehole gravity stations in the order recorded.

Depth of stations in feet and meters. Greenwich mean time of each gravity reading. Observed gravity in milligals, referenced to an arbitrary base, uncorrected for tide, terrain, and drift effects.

Theoretical correction for earth tides in milligals.

Terrain correction in milligals calculated for a density of 2.67 mg/m^3 out to a distance of 71,996 ft (21,944 m), corresponding to zone M of Hammer's terrain correction chart (Hammer, 1939).

Drift correction:

No drift correction applied.

. 5

Corrected gravity:

Observed gravity in milligals, referenced to an arbitrary base, corrected for tide, terrain, and drift effects.

Table 2.--Borehole gravity data, Madison Group Test well no. 2, Custer County, Montana

Sta-	Dep	th	Time	Uncorrected	Tide	Terrain	Corrected
tion	ft	m	GMT	Gravity	correction	correction	Gravity
1	1062.0	323.7	0648	43.741	049	0•386	44.078
2	1092.0	332.8	0656	44.816	048	0.401	45.169
3	1152.0	351.1	0714	46.968	045	0.430	47.353
4	1268.0	386.5	0728	51.043	- •044	0.486	51.485
5	1284.0	391.4	0742	51.597	043	0.493	52.047
6	1656.0	504.7	0754	64.626	042	0.664	65.248
7	1672.0	509.6	0802	65.230	042 -	0.671	65.859
8	1824.0	556.0	0814	70.218	042	. 0•736	70.912
9	1836.0	559.6	0822	70.607	042	0.742	71.307
10	1852.0	564.5	0829	71.142	042	0.748	71.848
11	1953.0	595.3	0837	74.435	043	0.791	75.183
12	1983.0	604.4	0843	75.377	043	0.803	76.137
13	2748.0	837.6	0858	99.831	044	1.092	100.879
14	3390.0	1033.3	0916	120.268	047	1.301	121.522
15	3904-0	1189.9	0929	136.862	049	1.448	138.261
16	3944.0	1202.1	0935	138.159	050	1.459	139.568
17	4065.0	1239.0	0944	142.014	051	1.491	143.454
18	4094.0	1247.9	0949	142.962	052	1.498	144.408
19	4234.0	1290.5	0956	147.675	054	1.534	149.137
20	4266.0	1300.3	1002	148.658	055	1.547	150.150
21	4284.0	1305.8	1008	149.237	056	1.547	150.728
22	4314.0	1314.9	1014	150.150	057	1.554	151.647
23	4327.0	1318.9	1019	150.540	058	1.557	152.039
24	4339.0	1322.5	1025	150.926	060	1.560	152.426
25	4353.0	1326.8	1030	151.381	061	1.564	152.884
26	4372.0	1332.6	1038	152.046	062	1.568	153.552
27	4372.0	1332.6	1043	152.053	064	1.568	153.557
28	4284.0	1305.8	1051	149.224	065	1.547	150.706
29	3390.0	1033.3	1111	120.213	069	1.301	121.445
-30	1062.0	323.7	1149	43.692	076	0.386	44.002

[Logged June 26, 1979. Datum elevation 2793 (851 m).]

Density Estimates

A detailed discussion of the relationship between subsurface gravity measurements and mass distributions within the earth is given by McCulloh (1966). Other literature on borehole-gravity-logging fundamentals and data interpretation includes Smith (1950), Goodell and Fay (1964); Howell, Heintz, and Barry (1966); and Beyer (1971).

In the absence of complicating factors, the in situ bulk density (p), in megagrams per cubic meter, between two observation points in a borehole, is given by the equation:

$$\rho = \frac{1}{4\pi k} (F - \Delta g / \Delta z), \qquad (1)$$

where k is the gravitational constant; F, the free-air vertical gradient of gravity; and $\Delta g/\Delta z$, the measured vertical gradient of gravity between discrete pairs of gravity measurements in the well. Assuming a "normal" free-air gravity gradient of 0.09406 mgal/ft, equation (1) becomes:

$$\rho = 3.686 - 39.185 (\Delta g / \Delta z).$$
 (2)

According to Schmoker (1978), the indeterminate density error for intervals where Δg is measured twice and averaged is:

$$\delta(\rho) = \pm 0.377/\Delta z, \qquad (3)$$

where Δz is the vertical separation (ft) of the borehole gravity measurements. For intervals where Δg is measured once, the density error is:

$$\delta(\rho) = \pm 0.461/\Delta z. \tag{4}$$

An error in the assumed free-air gradient would bias all computed densities, but would not effect density changes from interval to interval.

Table 3 shows in-situ bulk-densities computed from equation (2) using the borehole gravity data of Table 2.

The bulk-density values shown in table 3 depend not only upon the accuracy of the borehole gravity data but also upon the accuracy of the assumed free-air gradient. In this report the so-called "normal" free-air gradient value of 0.09406 mgal/ft was used.

	BHGM Logge		Bulk Density	
	ft	m	۵g	g/cm ³
.				
	1062.0 - 1092.0	323.7 - 332.8	1.091	2.26
	1092.0 - 1152.0	332.8 - 351.1	2.184	2.26
	1152.0 - 1268.0	351.1 - 386.5	4.132	2.29
-	1268.0 - 1284.0	386.5 - 391.4	0.562	2.31
	1284.0 - 1656.0	391.4 - 504.7	13.201	2.30
	1656.0 - 1672.0	504.7 - 509.6	0.611	2.19
-	1672.0 - 1824.0	509.6 - 556.0	5.053 ·	2.38
	1824.0 - 1836.0	556.0 - 559.6	0.395	2.40
	1836.0 - 1852.0	559.6 - 564.5	0.541	2.36
	1852.0 - 1953.0	564.5 - 595.3	3.335	2.39
	1953.0 - 1983.0	595.3 - 604.4	0.954	2.44
	1983.0 - 2748.0	604.4 - 837.6	24.742	2.42
	2748.0 - 3390.0	837.6 - 1033.3	20.643	2.43
	3390.0 - 3904.0	1033.3 - 1189.9	16.739	2.41
	3904.0 - 3944.0	1189.9 - 1202.1	1.307	2.41
	3944.0 - 4065.0	1202.1 - 1239.0	3.886	2.43
	4065.0 - 4094.0	1239.0 - 1247.9	0.954	2.40
	4094.0 - 4234.0	1247.9 - 1290.5	4.729	2.36
	4234.0 - 4266.0	1290.5 - 1300.3	1.013	2.45
	4266.0 - 4284.0	1300.3 - 1305.8	0.578	2.43
· .	4284.0 - 4314.0	1305.8 - 1314.9	0.919	2.49
	4314.0 - 4327.0	1314.9 - 1318.9	0.392	2.50
	4327.0 - 4339.0	1318.9 - 1322.5	0.387	2.42
	4339.0 - 4353.0	1322.5 - 1326.8	0.458	2.40
	4353.0 - 4372.0	1326.8 - 1332.6	0.668	2.31

Table 3.--Average bulk density estimates from borehole gravity data, Madison Group test well no. 2, Custer County, Montana

References

- Beyer, L. A., 1971, The vertical gradient of gravity in vertical and nearvertical boreholes: Stanford University Ph.D. thesis, 217 p.
- Brown, D. L., Blankennagel, R. K., Busby, J. F., and Lee, R. W., 1977, Preliminary data for Madison Limestone test well no. 2, SE 1/4 SE 1/4 sec. 18, T. 1 N., R. 54 E., Custer County, Montana: U.S. Geological Survey Open-File Report 77-863, 135 p.
- Goodell, R. R., and Fay, C. H., 1964, Borehole gravity meter and its application: Geophysics, v. 29, no. 5, p. 774-782.
- Hammer, S., 1939, Terrain corrections for gravimeter stations: Geophysics, v. 4, no. 3, p. 184-193.
- Howell, L. G., Heintz, K. O., and Barry, A., 1966, The development and use of a high-precision downhole gravity meter: Geophysics, v. 31, no. 4, p. 764-772.
- McCulloh, T. H., 1966, The promise of precise borehole gravimetry in petroleum exploration and exploitation: U.S. Geological Survey Circular 531, 12 p.
 McCulloh, T. H., LaCoste, L. J. B., Schoellhamer, J. E., and Pampeyan, E. H., 1967a, The U.S. Geological Survey-LaCoste and Romberg precise borehole gravimeter system--Instrumentation and support equipment, *in* Geological Survey research 1967: U.S. Geological Survey Professional Paper 575-D, p. D92-D100.
- McCulloh, T. H., Schoellhamer, J. E., Pampeyan, E. H., and Parks, H. B., 1967b, The U.S. Geological Survey-LaCoste and Romberg precise borehole gravimeter system--Test results, in Geological Survey research 1967: U.S. Geological Survey Professional Paper 575-D, p. D101-D112.
- Schmoker, J. W., 1978, Accuracy of borehole gravity data: Geophysics, v. 43, no. 3, p. 538-542.

Smith, N. J., 1950, The case for gravity data from boreholes: Geophysics, v. 15, no. 4, p. 606-636.

U.S. Geological Survey, 1975, Plan of study of the hydrology of the Madison Limestone and associated rocks in parts of Montana, Nebraska, North Dakota, South Dakota, and Wyoming: U.S. Geological Survey Open-File Report 75-631, 35 p.