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Introduction

In May of 1979 a mineral survey by the U.S. Geological Survey was begun
in the proposed RARE II additions to the Pecos Wildermess, and was continued
during May and early ‘June 1980.  This work, dome in compliance with the
Wildernmess Act, was an extension of a previous mineral survey of the existing
Wilderness and some adjacent areas. The previous work was done mainly in
1977, and the results are now available (U.S. Geological Survey, U.S. Bureau
of Mines, and New Mexico Bureau of Mines and Mineral Resources, 1980). By far
the largest of the RARE II additioms is in the area shown on figure 1, which
centers about 12 km east of Santa Fe and is called the Glorieta Baldy area in
this report. This report describes the occurrence of tungsten in relation to
several other elements that were detected spectrographically in panned
concentrates of heavy minerals obtained from stream sediments. We believe
that our study illustrates the great power of the gold pan as an exploration
tool, particularly when used in close conjunction with careful geologic
mapping in a complex metamorphic terrane. This work has revealed the presence
of highly anomalous amounts of tungsten in the study area, in a setting that
strongly suggests a stratabound setting in the Precambrian rocks, in a
peripheral relatiomship to likely hosts for volcanogenic massive-sulfide
depositse. '

Geologic setting

As shown previously (Miller and others, 1963; Moench and Robertson, 1980)
the Precambrian of the Sangre de Cristo Range from the Truchas Peaks area
south to the northern border of the area of figure 1 divides into (1) an
eastern terrane of folded metasedimentary ‘and metavolcanic rocks, variably
metamorphosed from low to high ranks and intruded by pink granite, and (2) a
western batholithic terrane of medium-grained granite to tomalite with
extensive screens and roof pendants of sillimanite-zone schist, gneiss, and
migmatite. These two terranes are separated by the Pecos-Picuris fault, now
known to extend south at least to the vicinity of Glorieta, New Mexico. The
eagtern terrane subdivides into a package of quartzite and aluminous schist on
the north, and, on the south, a complex younger assemblage of intertonguing
and intergrading metavolcanic and richly volcaniclastic metasedimentary rocks,
together with an inferred subvolcanic complex of metadiabase, quartz diorite,
tonalite, and trondhjemite. Robertson and Moench (1979) call this younger
agssemblage the Pecos greenstone belt. Metavolcanic rocks of the belt are host
to the massive-sulfide deposit at the Pecos mine, recently interpreted as a
stratabound volcanogenic deposit (Riesmeyer, 1978; Giles, 1976). On figure 1
. of a report by the U.S. Geological Survey, U.S. Bureau of Mines, and New
Mexico Bureau of Mines and Mineral Resources (1980), a high potential for
deposits of this type is shown in a large area immediately east of the Pecos-
Picuris fault that includes the Pecos mine and the Macho Canyon area of figure
! of this report. No potential was suspected anywhere west of the fault,
because that area was thought. to be underlain by rocks of the batholithic
terrane in a tract extending nearly from the town of Truchas south to U.S.
Interstate Highway 25 south of Santa Fe (see Robertson and Moench, 1979,
fig. 1). -
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EXPLANATION

UPPER PALEQZOIC SEDIMENTARY ROCKS-~Sangre de Cristo, Madera, Sandia,
and Espiritu Santq Formations

PRECAMBRIAN PLUTONIC ROCKS -

Younger granite (probably about 1.65 b.y. old)--Pink massive to
foliated two-mica granite; near concact north of Thompson Peak,
coarse-grained granite of main body grades to aphanite and quartz
porphyry

Older granitic rocks of inferred subvolcanic complex (probably 1.7
to 1.75 b.y. old)=-White to pale-brownish comspicuously foliated
quartz diorite, tonalite, trondhjemite, and granodiorite

Mafic rocks of inferred subvolcanic complex--Dark massive to foliated
intrusive amphibolite and gabbro; commonly mixed with silicic
rocks of the inferred complex

Ultramafic amphibolg-—chlorite schist at the western border of the
mapped area

Undivided felgic gneiss and stratified rocks--Medium~ to fine-
grained light-colored granitic rocks; has polydeformed foliatiom
and is possibly related to unit go; subordinate amphibolite,
aphanitic-bedded felsic metatuff, and pelitic schist

PRECAMBRIAN STRATIFIED ROCKS\(probably 1.7 to 1.75 b.y. old)

Felsic metatuff--Includes thinly bedded to massive, aphanitic
pale-~orange quartz-feldspar granofels, locally epidotic, and
spectacularly crossbedded, coarser grained light-colored
mugcovite~quartz~feldspar schist interbedded with gsubordinace
quartzite

Metashale and metagraywacke--Metaghale is two-mica schist, commonly
rusty weathering; locally contains garnet, staurolite, or
sillimanite, in accord with metamorphic rank. Metagraywacke is
dark aphanitic biotite-quartz-plagioclast granofels. Probable
pyroclastic mudflow deposits (sgp), having clasts of felsite
as large as 5 cm across scattered through a matrix of pelitic
schist

Mixed felsic and mafic metavolcanic rocks and associated volcano=-
clastic mecasedimentary rocks, hydrothermally altered rocks, and
local iron-formation; pyroclastic metarhyolite abundant in the
Daltomvolcanic center, some containing clasts of boulder size

Metabasalt and felsic metatuff-~Interstrarified in variable
proportions. The metabasalt is dark amphibolite or greenstone,
locally displaying amygdales, pyroclastic features, and pillows.

The felsic metatuff is thinly bedded pale~orange aphanitic
quartz-feldspar granofels, some epidotic :

Mainly metabasalc

Interbedded felsic metatuff and quartzice

Interbedded metashale and quartzite--The metashale is aluminous
two-mica schist. The quartzite occurs as thin beds, some
graded or cross-laminated or thinly parallel laminated

Quartzite and local quarcz mecacouglomﬁﬁgte--Iuterhedded with
minor pelitic two-mica schist; thinly thickly bedded, commonly
crossbedded, locally graded

MAP SYMBOLS
CONTACT--Dashed where approximacely located or conjecsural
FAULT--Dashed where approxima:ély located or conjectural;
horizontally mullioned mylonite exposed along the Pecos=-
Picurils fault, which truncates cthe Wild Jorse anticline
OVERTURNED SYNCLINE
OVERTURNED ANTICLINE

TUNGSTEN LOCALITY--Float of coarsely crystallized scheelize-bearing
epidote~amphibole rock associated wich metabasalt

SITE OF GEOCHEMICAL SAMPLE

[T



The assumption of an exclusively granitic terrane west of the Pecos~
Picuris fault proved erromeous in 1979 when it was discovered that much of . the
Glorieta Baldy area is underlain by folded metasedimentary and metavolcanic
rock of low to high metamorphic rank, intruded, as are similar rocks exposed
east of the fault, by pink granite. Further mapping revealed a succession of
rocks impressgsively similar in character and stratigraphic order to the
gtratified rocks of the quartzite-schist package and the metavolcanic
assemblage exposed east of the Pecos-Picuris fault. The results of the new
mapping are showo on figure 1. General character of the rock units is
indicated in the map explanatiom. :

As shown, compositionally mature quartzite and aluminous schist are
stratigraphically lowest in the succession (units q and sq); they define the
axial belt of the Wild Horse anticline--a tight, north-overturned, complexly
redeformed fold that is truncated on the east by the Pecos-Picuris fault. The
anticline 1s named for its expression in Wild Horse Canyon. On the limbs of
the anticline the quartzite-rich sequence is overlain by an extensive sequence
of interstratified metabasalt and pale-orange fine-grained bedded felsic
metatuff (unit bft). At most places the contact between the two sequences
appears to be conformable and abrupt, but on part of the north limb of the
anticline it is gradational through a unit (ftq) of interbedded quartzite and
felsic metatuff. Locally, areas composed almost entirely of metabasalt
(unit b) can be separated from unit bft. Exposed in two areas of the Glorieta
Baldy area are complexly mixed volcanic assemblages (unit mv) that contain
abundant metarhyolite, probably erupted from nearby volcanic centers. Of the
two inferred volcanic centers named on figure 1, the Dalton center contains
the most abundant and most coarsely pyroclastic metarhyolite. At the highest
exposed stratigraphic level in the volcanic succession is a thick and
extensive layer of felsic metatuff (unit ft), some displaying spectacular
crossbedding. These rocks are exposed along the axial belts of the Glorieta
Baldy syncline, and the unnamed syncline to the south. ‘

Exposed immediately east of the Pecos-Picuris fault, and beneath the
upturned and faulted upper Paleozoic sedimentary beds, are abundant
metadiabase and gabbro (unit d), associated light-colored granitic rocks
(unit go), and younger pink granite (unit gy). Units "d" and "go" are part of
the inferred subvolcanic complex of Moench and Robertson (1980) and Robertson
and Moench (1979). The complex extends north to the Macho Canyon area where
it appears to lie below mixed metavolcanics of the same mass that 1is host to
the Pecos massive-sulfide deposit.

Although mapping has not been completed west of the Garcia Ranch fault,
small areas underlain by felsic metatuff (ft) and interstratified felsic
metatuff and metabasalt (bft), indicate that rocks of the Glorieta Baldy fault
block extend west of the Garcia Ranch fault. The undivided felsic gneiss and
stratified rocks (unit gnfs) undoubtedly contains abundant metavolcanics,
probably mainly of units "ft" and "bft." It is composed mainly of
conspicuously foliated granitic rocks, however, some of which are certainly
plutonic and probably related to the subvolcanic complex. In outcrops the
plutonic rocks and the stratified felsic metatuffs commonly are interlayered,
difficult to distinguish, and not easy to map separately.

Metamorphic grade in the Glorieta Baldy area increases westward from the
biotite and garnmet zones near the Dalton volcanic center and from the staurolite



zone near the eastern part of the Ruiz volcanic center. Although rocks having
appropriate compositions to yield aluminum silicate minerals are not abundant,
rocks of the mountainous central axis of the area seem to be sillimanite-zone
schist and gneiss, locally migmatitic and abundantly intruded by pegmatite.
The high rank character of the stratified rocks continues west across the
Garcia Ranch fault to the western border of the mapped area. The stratified
rocks of the Glorieta Baldy area were deformed at least twice. The early
deformation produced the major east~-trending folds and axial surface
schistosity, most conspicuous in the pelitic schist and in the coarse

. muscovitic crossbedded felsic tuff. The later deformation(s) warped the
east-trending folds about north-trending axial surfaces that are roughly
parallel to the Pecos=-Picuris and Garcia Ranch faults.

Geochemical investigation

In the course of geologic mapping by foot traverses in 1979, 46
concentrates of heavy minerals were collected by panning sediments from stream
tributaries that drain the part of the Glorieta Baldy area proposed for
inclusion in the Pecos Wilderness. Four additional samples were obtained
during the main effort in 1977, and three more samples were collected in 1980
(fig. 1A). Each sample was prepared as follows for spectrographic analysis:
After drying, the light minerals (mainly quartz and feldspar) were removed by
flotation in bromoform and discarded. Magnetite was removed from the heavy
fraction using a hand magnet. The nonmagnetic fraction was them run through a

Franz isodynamic magnetic separatonl/ at 0.2 amperes (side tilt 15°, forward

i/The use of trade names is for descriptive purposes only and does not
constitute endorsement by the U.S. Geological Survey. .

tilt 25°) to remove all the remaining magnetite, ilmenite, and pyrrhotite.
The nonmagnetic fraction was then rerun at 0.5 amperes, and the magnetic
fraction was stored for possible further analysis. The nonmagnetic fraction
was rerun at ] ampere, and divided into nonmagnetic and magnetic fractioms.
Except for the 0.5 amp magnetic fractions of samples collected in 1980, all
three fractions were analyzed by Erickson for 31 elements by semiquantitative
spectrographic analysis. This work provided the mainstay of the geochemical
survey.

In addition to this work, samples of bulk sediment were collected from
43 of the same sites. After drying and sieving, the -80-mesh fractions were
analyzed spectrographically by Erickson, and determinations were made by
John G. Viets (USGS) of cold acid-extractable copper and citrate-soluble total
heavy metals.

- The important results of this work are shown on figures 2 through 10. On
all these figures the geology is generalized from figure 1, as shown on figure
1A. These and other data are being incorporated into a report on the entire
area of the Pecos Wilderness, RARE II additioms, and adjacent areas.
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Figure 2.--Geochemical map showing tungsten in heavy-mineral concentrates
from stream sediments; nonmagnetic fractions at 1 amp. Data in parts
per million; minimum detection limit is 100 ppm W.
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Geochemical associations

Figures 2 and 4 through 10 show that the abundances of elements in the
heavy-mineral concentrates divide into two broad associations. The greatest
abundances of tungsten, base and precious metals, bismuth, boron, and
molybdenum are associated with the stratified rocks of the Glorieta Baldy
Block, between the Garcia Ranch and Pecos~Picuris faults (figs. 2, 4, 5, and
6). In contrast, the greatest abundances of tin, beryllium, thorium, niobium,
and yttrium are found in concentrates from streams that drain areas underlain
largely (at some sites entirely) by two-mica granite (figs. 7, 8, and 9).
These latter elements are thus clearly of granitic associatiomn. Although the
tin-rich sample from a tributary to Macho Canyon in the northeast was
previously suspected to have a volcanogenic association (Moench and others,
1980), a granitic association now seems most likely. The Macho Canyon
tin-rich sample drainage area is underlain by granite and by mixed
metavolcanic rocks (fig. 7). Elsewhere the greatest abundances of tin are
outside the metavolcanic terrane.

The summary geochemical map (fig. 10) excludes the elements of clearly
granitic association, in order to emphasize the metavolcanic association of
the other elements. The greatest abundances of the elements shown on
figure 10 either are within the areas of mixed metavolcanic rocks, or they are
peripheral to those areas. The association with the Dalton volcanic center is
particularly impressive. the Dalton area has the rock associations--proximal
silicic volcanics, both coarse pyroclastics and flows or domes, and apparently
hydrothermally altered rocks (now metamorphosed)--that are the hallmark of the
now-classic setting of 60 percent or so of productive massive-gulfide deposits
in Precambrian and Paleozoic greenstone belts elsewhere in the world. The
Glorieta Baldy area clearly contains a major extension of the Pecos greenstone

_belt of Robertson and Moench (1979). '

Spectrographic analyses of the heavy-mineral concentrates show clear
evidence that base and precious metals are greatly concentrated in the area of
the Dalton center (fig. 4). This association is confirmed by the data on cold
acid-extractable copper and citrates-soluble total heavy metals obtained from
the bulk samples of stream sediments (fig. 3). It is noteworthy that if we
had relied entirely upon bulk samples, evidence of important base- and
precious-metals sulfide mineralization in the Dalton center would have been
detected, but the tungsten would have been missed because its concentration in
the bulk sediments is too low for detection by spectrographic analysis. This
is true also for tin and some other elements.

Evidence of base-~ and precious-metals sulfide mineralization is most
impressive in the Dalton center, but is not restricted to that area. The data
‘for samples of bulk sediments indicate that the tributaries to Wild Horse
Canyon are of second importance in this respect, followed by three tributaries
to the Santa Fe River east of McClure Reservoir, then by the headwaters of
Grasshopper Creek (fig. 3). The tributaries to the Santa Fe River drain the
north slope of Thompson Mountain, and may cross sulfide-=bearing metavolcanic
rocks, either as inclusions in the younger granite or as country rock in the
area south of the contact of the granite (fig. 3). Grasshopper Creek drains
the western fringe of the Ruiz volcanic center. As shown on figure 4, copper,
lead, and silver were detected in moderately high amounts in a few heavy-
mineral concentrates outside the Dalton volcanic center. One concentrate was
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obtained from Dalton Creek upstream and west of the granite-metavolcanics
contact, to determine if the evidence of mineralization farther downstream is
restricted to the metavolcanics. Spectrographic analysis of the nonmagnetic
.fraction revealed a surprising 70 ppm silver, but only background amounts of
copper, lead, and tungsten, and no zinc. Except for the silver, these data
stand in contrast with the large amounts of copper and zinc that were detected
in the heavy-mineral concentrate that was obtained only 0.5 km downsteam,
within the area of the metavolcanics. Several small adits and prospect pits
were found along that short segment of Dalton Creek, none exposing important
amounts of sulfide minrals, but indicating the presence of commercial interest
in the area. The silver could express a vein deposit in the gramite, or
sulfides in an inclusion of metavolcanic rock in the granite (Dalton Creek was
traversed only 100 m or so upstream from the sample site, and again 2 km or so
farther upstream), or it could express secondary leakage of silver through the
granite from metavolcanic rocks that might be present at shallow depth.

Boron and bismuth in the heavy-mineral concentrates also are closely tied
to the metavolcanic assemblage (fig. 5). The association of bismuth with the
metavolcanics is in approximate accord with the previous findings in the Pecos
Wilderness and adjacent areas (Moench and others, 1980, pl. 3A). Boroa,
probably all in tourmaline, was detected in greatest abundance in areas that
appear to be peripheral to the most conspicuous volcanic centers. The Macho
Canyon area, for example, may be considered to be peripheral to the center
that is host to the Pecos deposit, and Wild Horse Canyon and its tributaries
~certainly drain areas underlain by rather distal metavolcanics relative to the
Dalton center. In the course of mapping, the felsic tuffs exposed near the
headwaters of Wild Horse Canyon and its tributaries were seen to contain
abundant tourmaline. Tourmaline-bearing quartz veins also are exposed in the
area. Although the boron might have been introduced during metamorphism or
~ crystallization of the younger granite, the possibility that it is
volcanogenic in origin should be kept in mind. John F. Slack (1980) has noted
a convincing relationship between brown tourmaline (dravite) and stratabound
massive~sulfide deposits of coastal Maine, whereas tourmaline of granitic
origin of that area is black, iron-rich schorl. The possibility that a
similar relationship exists in the Glorieta Baldy area deserves investigation.

Occurrence of tungsten

As shown by spectrographic analyses of the nonmagnetic fractionm of heavy-
mineral concentrates, tungsten is widely distributed in the Glorieta Baldy
area (fig. 2) and in the previously studied Pecos Wildermess and adjacent
areas (Moench and others, 1980; pl. 3B). 1In the previously studied area the
greatest amounts that were detected are on the order of 500 to 1,500 ppm W--
more than an order of magnitude smaller than the greatest amounts detected in
the Glorieta Baldy area (fig. 2). Although the largest amounts of tungsten in
the existing Wilderness were found in coancentrates from streams that drain
metavolcanics along at least parts of their lengths, a pegmatitic source for
the tungsten was favored, and a stratabound distribution and volcanic origin
were not considered. In the Glorieta Baldy area, abundances of 7,000 ppm to
more than 20,000 ppm (2 percent) tungsten are found in heavy-mineral
concentrates from the area of the Dalton volcanic center, in Wild Horse Canyon
and its tributaries, and in two streams that drain the lower southern slope of
Glorieta Baldy west of the Ruiz Canyon volcanic center (fig. 2). Because most
of these same streams also drain areas that are underlain by granite or by

17



quartzite and schist, the apparent association with the metavolcanics could be
coincidental.

The sites of samples that yielded the greatest abundances of tungsten
were resampled in 1980 and examined for scheelite, using an ultraviolet
light. All were found to have at least a few grains of scheelite. Some of
the samples from the sites showing 2 percent or more tungsten, show many
. grains, some of which are sharply angular particles the size of coarse sand.

No sources of tungsten were located in outcrop, but several fragments of
scheelite-bearing float were found about 1/2 km west of Dalton Creek, where
indicated on all the figures. The site is no more than about 50 m wide across
strike (about east-west). It is at an elevation of about 8,960 feet on the
gently sloping crest of the ridge between two small east-flowing tributaries
to Dalton Creek. The float fragments could not have moved more than a few
meters from their bedrock sources. Most of the bedrock and float in the
immediate area of the scheelite-bearing fragments is fine-grained basaltic
amphibolite, some weakly to strongly epidotic.

The scheelite is in coarsely crystallized unfoliated quartz-epidote-
hornblende rocks. Five thin sections of the scheelite-bearing rock were
cut. All show the same mineral assmblage. 1In all, rather ragged anhedral
pale-green hornblende is intergrown with clean, well crystallized epidote,
which in places 1s euhedral against quartz; the quartz forms irregular
concentrations throughout the rock. The scheelite (optically positive, very
high relief, low to moderate birefringence) is present in amounts that range
from a trace to several percent. Individual grains are 1 mm to 5 mm across,
anhedral but well crystallized; some are rather foggy and do not yield a good
optic figure. The grains are disseminated throughout the rock, which also
contains small amounts of sphene.

As shown on the geologic map (fig. 1) the site of the scheelite-bearing
float is approximately 1/2 km east of the contact between metavolcanic rocks
of the Dalton center and younger. pink granite. As shown in section A=A’ of
figure 1, the site is in the lower part of the metavolcanic succession, in an
area where predominant metabasalt is interbedded with crossbedded and graded
bedded felsic metatuff or tuffaceous metasandstone. As seen in outcrops in
the side canyon to the south, some of the metabasalt appears to be pillowed,
although tops were not determined. Tops were determined in the tuffaceous
metasandstones, however; the beds face both north and south, indicating that
the rocks are isoclinally folded. The beds that are closest to the rhyolite-
bearing assemblage of unit mv, however, face north, inm accord with the
interpretation that the abundantly basaltic rocks and the site of the
scheelite are stratigraphically below the richly rhyolitic rocks of unit mv.
Sedimentary features of the tuffaceous metasandstones of the predominantly
basaltic package suggest that these sediments are not locally derived. The
basaltic flows, in contrast, may have come from nearby, for coarse basaltic
agglomerate is exposed at least at ome locality to the east in Dalton Canyon.

Interpretation
The distribution of the greatest abundances of tungsten and of base and
precious metals in concentrates of heavy minerals, together with the geologic

occurrence and character of the scheelite-bearing fragments of float
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(fig. 10), strongly suggest that scheelite in the Glorieta Baldy area is
stratabound and volcanogenic in origin. This type of association has not been
widely recognized on this continent. Some of the Precambrian scheelite
occurrences in Colorado described by Tweto (1960) are in metamorphic rocks
that have been recognized subsequently to be of volcanogenic origin, and
Sheridan and Raymond (1977) reported scheelite in stratabound sulfide deposits
in metamorphosed volcanogenic rocks in southern Colorado. In southern Europe
the association of tungsten with thick successions of metavolcanic rocks has
been known for many years. There, however, the association between tungsten,
antimony, and mercury is emphasized (Maucher, 1976; Holl, 1977), bound to’
metasedimentary-metavolcanic rock assemblages, and probably in a facies
relationship in which mercury and antimony, or antimony aad tungsten, but not
tungsten and mercury may occur together. Maucher (1976, p. 499-501) concludes
that these elements are genetically related to basaltic volcanism and its
silicic differentiates in the early Paleozolc Southern European province. Of
the three important minerals of these elements--cinnabar, stibnite, and
scheelite~-scheelite is the most stable during metamorphism and moves the
least.

To our knowledge the close association of scheelite with volcanogenic
massive-sulfide deposits 1is not widely known. If the association is borme out
by future studies in the Glorieta Baldy area, a large part of the Pecos
greenstone belt and perhaps other Precambrian and Paleozoic volcanic belts
that are well known for their massive-sulfide deposits should be re-examined
in the same light for their tungsten potential.

The geochemical data on figure 10 show that the greatest measured
abundance of molybdenum in heavy-mineral concentrates occur at two sites that
also yielded 2 percent and 1.5 percent tungsten. Inasmuch as molybdenum
proxies easily for tungsten in scheelite, the possibility exists that the
molybdenum and tungsten are cogenetic. - Further study is needed on the
concentrates to find out if the molybdenum is in fact in the scheelite.
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