GEOTHERMAL RESOURCES IN THE BANBURY HOT SPRINGS AREA, TWIN FALLS COUNTY, IDAHO By R. E. Lewis and H. W. Young

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations

Open-File Report 80-563

Prepared in cooperation with the

U.S. Department of Energy

-



GL00357 GL00421\_1

August 1980

、 、 . .

ſ,

• • • с .

• ی بر v \_\_\_\_\_ Ň

; > .

UNITED STATES DEPARTMENT OF THE INTERIOR

CECIL D. ANDRUS, Secretary

GEOLOGICAL SURVEY

H. William Menard, Director

Water-Resources Investigations/Open-File Report 80-563

For additional information write to:

District Chief U.S. Geological Survey, WRD Box 036, FBUSCH 550 West Fort Street Boise, ID 83724

Conversion factors------Abstract-----Introduction-----Purpose and approach-----Previous investigations------Acknowledgments-----Well- and spring-numbering syst Geology-----Hydrology of the geothermal system Occurrence and movement-----Depth of circulation------Fluctuations in discharge and Water chemistry Chemical character------Chemical geothermometers-----Isotopes------Tritium------Deuterium and oxygen-18---Thermal ground-water discharge and a tive heat flux------Areal extent of geothermal reservoir Summary-----Selected references------

### ILLUSTRATIONS

CONTENTS

PLATE 1. Generalized geology of the Banbury Hot Springs area----in pocket

2. Potentiometric-surface contours and well and spring locations, Banbury Hot Springs area-----in pocket

- FIGURE 1. Diagram showing well- and
  - system-----Hydrograph of discharge 2. 4CDB1-----
  - Hydrograph of water level 3. 14E-4BBD1------

# PAGE

|                    | iii |
|--------------------|-----|
|                    | 1   |
|                    | 1   |
|                    | 2   |
|                    | 3   |
|                    | 3   |
| tem                | 3   |
|                    | 5   |
|                    | 6   |
|                    | 10  |
| artesian head      | 10  |
|                    | 13  |
|                    | 13  |
|                    | 19  |
|                    | 19  |
|                    | 23  |
| associated convec- |     |
|                    | 29  |
| r                  | 30  |
|                    | 32  |
|                    | 34  |

| d spring-numbering | 4  |
|--------------------|----|
| from well 9S-14E-  | 11 |
| ls in well 9S-     | 12 |

# CONTENTS ILLUSTRATIONS (Continued)

FIGURES

PAGE

| Gra        | phs showing:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.         | Reservoir temperatures estimated                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | by the silica and sodium-potas-                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ~          | sium-calcium geothermometers                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5.         | Relation of tritium concentration                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | to residence time, assuming                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | piston-flow and well-mixed                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | ground-water systems in Yellow-                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ~          | stone National Park                                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.         | Relation between concentrations of                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7          | deuterium and oxygen-18                                     | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>/</b> • | Relation of chloride to deuterium                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ö.         | Relation of chloride to enthalpy                            | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9.<br>10   | Relation of chloride to oxygen-18                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LU.<br>Man | Relation of chloride to fluoride                            | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| map        | showing approximate proven and                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pc         | othermal areas of low-temperature                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ge         | Sounermal water                                             | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | Gra<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10.<br>Map<br>ge | <ul> <li>Graphs showing:</li> <li>4. Reservoir temperatures estimated<br/>by the silica and sodium-potas-<br/>sium-calcium geothermometers</li> <li>5. Relation of tritium concentration<br/>to residence time, assuming<br/>piston-flow and well-mixed<br/>ground-water systems in Yellow-<br/>stone National Park</li> <li>6. Relation between concentrations of<br/>deuterium and oxygen-18</li> <li>7. Relation of chloride to deuterium</li> <li>8. Relation of chloride to enthalpy</li> <li>9. Relation of chloride to fluoride</li> <li>10. Relation of chloride to fluoride</li> <li>Map showing approximate proven and<br/>potential areas of low-temperature<br/>geothermal water</li></ul> |

# TABLES

| TABLE | 1. | Records of wells                                                                    |    |
|-------|----|-------------------------------------------------------------------------------------|----|
|       | 2. | Chemical analyses of water from selected                                            | /  |
|       | ~  | wells and springs                                                                   | 14 |
|       | 3. | Estimated aquifer temperatures and free<br>energy of formation for selected thermal |    |
|       |    | wells and springs                                                                   | 16 |
|       | 4. | Concentrations of tritium in water sampled                                          | ΞŪ |
|       |    | from selected thermal wells and springs                                             | 22 |
|       | 5. | Stable-isotope analyses of water sampled                                            |    |
|       |    | from selected wells and springs                                                     | 26 |

# CONVERSION FACTORS

The following conversion table is included for the convenience of those who prefer to use SI (International System of Units) rather than the inch-pound system of units. Chemical data for concentrations are given only in mg/L (milligrams per liter) or  $\mu g/L$  (micrograms per liter), be-cause these values are, within the range of values pre-sented, numerically equal to parts per million or parts per billion, respectively. Water temperatures are reported to the nearest one-half degree. Thermal parameters are reported in "working" units.

| Multiply Inch-Pound Unit             | By                       |
|--------------------------------------|--------------------------|
| :                                    | Length                   |
| inch (in.)<br>foot (ft)<br>mile (mi) | 25.40<br>0.3048<br>1.609 |
|                                      | Area                     |
| acre<br>square mile (mi²)            | 4047<br>2.590            |
|                                      | Volume                   |
| acre-foot (acre-ft)                  | 1233                     |
| •                                    | Flow                     |
| gallon per minute (gal/min)          | 0.0630                   |
| Multiply Working Unit                | By                       |
|                                      | Heat Flux Der            |
| microcalorie per square              | 4.187 x 10 <sup>-</sup>  |

centimeter.second  $(cal/cm^2 s)$  heat flow

unit (HFU)

ii

' iii

## To Obtain SI Unit

millimeter meter kilometer

> square meter square kilometer

cubic meter

liter per second 29

# To Obtain SI Unit

# nsity

watt per square meter

# CONVERSION FACTORS (Continued)

| Multiply Working Unit      | By            | To Obtain SI Unit |
|----------------------------|---------------|-------------------|
| H                          | eat Discharge |                   |
| calorie per second (cal/s) | 4.187         | watt              |
|                            | Energy        |                   |
| calorie (cal)              | 4.187         | joule             |

Conversion of °C (degrees Celsius) to °F (degrees Fahrenheit) is by the equation:  $^{\circ}F = 9/5$  ( $^{\circ}C + 32$ ).

iv

## GEOTHERMAL RESOURCES IN THE BANBURY HOT SPRINGS AREA, TWIN FALLS COUNTY, IDAHO

By

R. E. Lewis and H. W. Young

# ABSTRACT

Thermal water 30.0 to 72.0 degrees Celsius is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for residence heating, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10.300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about  $1.1 \times 10^7$  calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect aquifer response to development of the resource.

The thermal waters sampled are sodium bicarbonate in character and slightly alkaline. Mixing of hot (72 degrees Celsius) water with local, cooler ground water can be shown from various relations among stable isotopes, chloride, and enthalpy. On the basis of concentration of tritium, age of most of the water sampled is at least 100 years and perhaps more than 1,000 years. Some water (33 degrees Celsius) may be as young as 29 years. On the basis of silica, sodiumpotassium-calcium, and sulfate-water geothermometers, the best estimate of the maximum reservoir temperature for the thermal water is between 70 and 100 degrees Celsius.

## INTRODUCTION

The Banbury Hot Springs area, as discussed in this report, is located immediately south of the Snake River between Salmon Falls Creek and Deep Creek in Twin Falls County, south-central Idaho (pl. 1). Thermal water issuing from springs and several shallow wells has been used for many years in swimming pools and therapeutic baths.

In the early 1970's, several wells that produce thermal water were drilled. Successful use of these wells led to increased development of the resource. At present, 26 wells that produce thermal water have been completed. Water from these wells flows at land surface and is used for residence heating, catfish and tropical fish production, and greenhouse operation.

Due to the increasing number of wells being completed, many residents are concerned that continued development may decrease the amount of geothermal water available to present users. If continued development reduces flow or causes heads to drop below land surface, the economic advantage of using the resource would be greatly impaired. Therefore, to aid in future decisions regarding development and use of the resource, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, undertook this study of the nature and occurrence of geothermal water in the Banbury Hot Springs area.

## Purpose and Approach

The overall purpose of this study was to define the nature and extent of the geothermal reservoir in the Banbury Hot Springs area. Specific objectives are to: (1) Inventory selected wells and springs in the area and determine the present (1979) quantity of thermal water being used; (2) define boundaries of the geothermal reservoir; (3) evaluate the existing resource as to its temperature and pressure at land surface and its chemical character; and (4) estimate reservoir temperatures by using chemical geothermometers.

The approach used in the study included: (1) Inventory of 50 thermal and nonthermal wells and 2 thermal springs in the Banbury Hot Springs area; (2) collection of water-level, or pressure, and discharge measurements where possible at the time of inventory; (3) collection of water samples from 21 thermal wells and 2 thermal springs for chemical analyses, including common ions, silica, and the minor elements of arsenic, boron, lithium, and mercury; and (4) collection of water samples from 9 wells and 2 springs for deuterium and oxgyen-18 analyses, 4 wells and 1 spring for tritium analyses, and 2 wells and 1 spring for sulfate-water isotope analyses.

Water-level measurements were used to compile a generalized potentiometric map. Discharge measurements and water temperatures at land surface were used to determine the present quantity of thermal water being utilized and the associated convective heat flux. Reservoir temperatures were estimated for all sampled thermal water in the Banbury Hot Springs area and for selected thermal water in the nearby areas, using the silica and Na-K-Ca (sodium-potassium-calcium) geothermometers. Reservoir temperatures for two wells and one spring were estimated by using the sulfate-water isotope geothermometer. Relations of selected chemical constituents to deuterium and oxygen-18 isotopes and concentrations of tritium were used to distinguish and define the approximate areal extent of the Banbury Hot Springs geothermal reservoir.

### Previous Investigations

The occurrence of thermal water in the Banbury Hot Springs area was first mentioned in the literature by Stearns, Stearns, and Waring (1937). Ross (1971) summarized existing data that included several chemical analyses for the area. On the basis of similar water chemistry, Schoen (1972) concluded that granitic rocks similar in composition to the Idaho batholith underlie the Banbury Hot Springs area. Young and Mitchell (1973) included water-quality analyses from one thermal well and one thermal spring in their assessment of Idaho's geothermal potential. Using chemical geothermometers, Young and Mitchell estimated reservoir temperatures in the study area to range from 85° to 135°C. Malde, Powers, and Marshall (1963) included the Banbury Hot Springs area in their reconnaissance geologic mapping of the west-central Snake River Plain. More detailed geologic mapping was done by Malde and Powers (1972) in their study of the Glenns Ferry-Hagerman area.

## Acknowledgments

Many landowners in the Banbury Hot Springs and nearby areas cooperated fully in this study by allowing access to their property, supplying information about their wells and springs, and permitting water-level and discharge measurements to be made. Special thanks are due to Messrs. Leo Ray and Dick Kaster, who permitted the installation of continuous-recording equipment on their wells. The following Geological Survey employees contributed significantly to this investigation: A. H. Truesdell and N. L. Nehring provided sulfate-water isotope analyses, R. H. Mariner aided in interpretation of geochemical data, and T. A. Wyerman provided tritium isotope analyses. To all the above, the authors are grateful.

### Well- and Spring-Numbering System

The well- and spring-numbering system (fig. 1) used by the U.S. Geological Survey in Idaho indicates the location of wells or springs within the official rectangular subdivision of the public lands, with reference to the Boise base line and meridian. The first two segments of the number designate the township and range. The third segment gives the section number, which is followed by three letters and a numeral to indicate the  $\frac{1}{4}$  section (160-acre tract), the  $\frac{1}{4}-\frac{1}{4}$  section (40-acre tract), the  $\frac{1}{4}-\frac{1}{4}-\frac{1}{4}$  section (10-acre tract), and the serial number of the well within the tract, respectively. Quarter sections are lettered A, B, C, and D in counterclockwise order from the northeast quarter of each section. Within quarter sections, 40-acre and 10-acre



tracts are lettered in the same manner. Well 9S-14E-4BBD1 is in the SE4NW4NW4 sec. 4, T. 9 S., R. 14 E., and was the first well inventoried in that tract. Springs are designated by the letter "S" following the last numeral; for example, 8S-14E-31ACB1S. Wells and springs in Nevada are located in the same manner with reference to the Mount Diablo base line and meridian.

### GEOLOGY

Rocks underlying the Banbury Hot Springs area are of volcanic and sedimentary origin and range in age from late Miocene to Holocene. For purposes of this report, they are divided into the following units: (1) Tertiary silicic volcanics, (2) Tertiary basalt, (3) Quaternary and Tertiary sedimentary rocks, and (4) Quaternary sedimentary rocks. Areal distribution and descriptions of these units are shown on plate 1.

Tertiary silicic volcanics consist chiefly of welded tuff of the Idavada Volcanics of late Miocene age and are exposed locally in the canyon of Salmon Falls Creek and in the uplands southwest of the Banbury Hot Springs area. Drillers' logs indicate that this unit is widespread in the subsurface. Total thickness of the Idavada Volcanics in the vicinity of Banbury Hot Springs exceeds 2,000 ft (Malde and Powers, 1972).

Tertiary basalt, consisting chiefly of olivine basalt flows of the Banbury Basalt of late Miocene age, is the predominant rock unit in the area. This unit, reported to be about 650 ft thick, is exposed throughout the area and, as reported by drillers' logs, underlies most of the surrounding region.

Quaternary and Tertiary sedimentary rocks, consisting chiefly of detrital basin-fill deposits of the Glenns Ferry Formation of late Pliocene and early Pleistocene age, are also exposed throughout the area.

Quaternary sedimentary rocks consist chiefly of surficial deposits of sand and gravel of fluvial origin. This unit includes the Melon and Tuana Gravels of late and early Pleistocene age, respectively.

Several northwest-trending normal faults have been mapped in the study area (pl. 1). Most faults have their downthrown side on the northeast. Some graben-and-horst structures occur southwest of the study area. Most of the faulting probably occurred in late Miocene time, although some faulting continued through Pleistocene time.

# HYDROLOGY OF THE GEOTHERMAL SYSTEM

# Occurrence and Movement

Temperatures of thermal ground water from flowing wells and springs in the Banbury Hot Springs area range from 30° to 72°C. The thermal water occurs under artesian conditions, chiefly in the Banbury Basalt and Idavada Volcanics of late Miocene age. The low concentration of magnesium in the thermal water seems to favor the Idavada Volcanics as the principal reservoir rock. Drillers' logs indicate that water also occurs in the interbedded sedimentary rocks. Locations of wells and springs in and near the study area are shown on plate 2. Well data are given in table 1.

Most wells in the study area were drilled near the Snake River northward from Deep Creek to the site of the Banbury Hot Springs Natatorium in the southwest guarter of section 33, T. 8 S., R. 14 E. (pl. 2). Pertinent sections on plate 2 can be recognized by the first part of the well numbers. Well depths range from 850 ft near Deep Creek to 110 ft at the natatorium. Ground-water temperatures increase northward and range from 31.5°C near Deep Creek to 59°C at the natatorium.

Thermal ground water also occurs along Salmon Falls Creek near its confluence with the Snake River (see pl. 2). Two springs and several wells discharge thermal water at temperatures ranging from 57° to 72°C. Well depths range from 420 to 700 ft in the vicinity of Salmon Falls Creek.

Temperatures of ground water in nearby areas southeast . and southwest of the Banbury Hot Springs area range from 24.5° to 30.0°C in wells 350 to 900 ft deep. This water, although probably classified as thermal by most definitions, is considered part of the regional ground-water system and is not discussed in detail in this report.

Artesian heads, calculated using well-head pressure, range from a few feet to as much as 360 ft above land surface. Lack of a uniform gradient in the calculated artesian heads is probably due, in part, to the method of obtaining the pressure measurement. Artesian-head determinations for some wells were obtained from pressure gages on the wells, and several readings were taken from wells that were partly shut in. Thermo-artesian effects were not considered due to the questionable accuracy of some pressure measurements. Calculated heads are generally lower, however, from Deep Creek northward to the natatorium, where the potentiometric surface declines from about 3,170 to 3,080 ft above NGVD (National Geodetic Vertical Datum of 1929). Artesian heads in wells near Salmon Falls Creek are fairly uniform and

Table 1. Records of wells

## Headnotes

| Altitude: From U.S. Geological Sur                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Well finish: X - Open hole                                                                                                                       |
| <u>Water level:</u> F - Flowing, partial<br>P - Pumping<br>R - Reported                                                                          |
| Discharge: P - Pumping<br>E - Estimated                                                                                                          |
| Temperature: R - Reported                                                                                                                        |
| Use of water: A - Air conditioning<br>H - Domestic<br>I - Irrigation<br>P - Public supply<br>R - Recreation<br>S - Stock (catfish)<br>U - Unused |
| Remarks: DL - Driller's log<br>WQ - Water-quality analys                                                                                         |

Notation: No data available

rvey topographic maps

# ly shut in

# sis available (table 2)

|                                                                     |                                                       |                                                              |                         | Table                                                 | 1. Reco               | rds of wells                                     |                                                      |                                                          |                                          |                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|-------------------------|-------------------------------------------------------|-----------------------|--------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------|-----------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | Altitude<br>of land<br>surface<br>(feet above         |                                                              | C                       | asing                                                 |                       | Water                                            | level                                                | Discharge                                                |                                          |                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Well No.                                                            | National<br>Geodetic<br>Vertical<br>datum<br>of 1929) | Reported<br>depth of<br>well (feet<br>below land<br>surface) | Diameter<br>(in:)       | Feet below<br>land surface<br>to first<br>perforation | Well<br>finish        | Feet above (+)<br>or below<br>land surface       | Date<br>measured                                     | (gal/min)<br>flowing<br>unless<br>otherwise<br>indicated | Temperature<br>of<br>water<br>(°C)       | Use<br>of<br>water    | Remarks                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 85-12E-24CCC1<br>85-13E-23CCD1<br>35ACD1<br>8S-14E-19DAD1<br>30ACD2 | 3,480<br>3,390<br>3,479<br>2,900<br>2,894             | 500<br>700<br>700<br>420                                     | 12<br>                  | 46<br><br>170<br>216<br>75                            | x<br>x<br>x<br>x<br>x | 240.08<br>69.28<br>182.43                        | 3- 6-79<br>2-22-79<br>3- 8-79<br>10-22-79<br>8-15-79 | <br><br>1<br>120                                         | <br>30.0<br>72.0                         | I<br>H<br>U<br>U<br>U | DL<br>DL<br>DL<br>DL WQ                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 30DAD1<br>30DBA1<br>30DBD1<br>32DAA1<br>32DDC1                      | 2,900<br>2,896<br>2,900<br>2,960<br>2,950             | 700<br>450<br>450<br>545<br>553                              | 6<br>8<br>. 8<br>6<br>8 | 501<br>90<br>147<br>449<br>230                        | X<br>X<br>X<br>X<br>X | 247+ F<br>262+<br>262+<br>180+<br>71+ F          | 3-26-79<br>8-16-79<br>8-16-79<br>8-15-79<br>4- 4-79  | 9<br>650<br>590<br>10<br>170                             | 62.0<br>71.5<br>67.0<br>45.5<br>42.5     | A<br>U<br>U<br>A<br>A | DL WQ<br>DL WQ<br>DL<br>DL WQ<br>DL WQ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| . 33BCA1<br>33BCD1<br>33CBA1<br>33CBA2<br>33CBA3                    | 2,910<br>2,895<br>2,902<br>2,902<br>2,902<br>2,902    | 653<br>270<br>110<br>342<br>243                              | 10<br>10<br>6<br>8<br>6 |                                                       |                       | 5+ R<br><br>47+ F<br>                            | 10-28-79<br>4- 4-79<br>2- 8-78<br>4- 5-79<br>        | 5<br>60 P<br>60                                          | 29.5 R<br>49.0 R<br>59.0<br>59.0<br>59.0 | U<br>R<br>R<br>R<br>R | DL<br>WQ<br>DL WQ                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 33CBD1<br>33CCA1<br>33CCC1<br>95-12E-35BCD1<br>95-13E-20CCD1        | 2,890<br>2,908<br>2,910<br>3,705<br>3,805             | 540<br>510<br>480<br>797<br>920                              | 6<br>6<br>16<br>20      | 52<br>210<br>420<br>462<br>165                        | X<br>X<br>X<br>X<br>X | 193+<br>82+ F<br>82+ F<br>343.14<br>448.88       | 3-15-79<br>3-15-79<br>3-26-79<br>2-21-79<br>3-27-79  | 4<br>80<br>12<br>                                        | 42.0<br>44.5<br>30.0<br>                 | A<br>A<br>I<br>I      | DL WQ<br>DL WQ<br>DL<br>DL<br>DL       | L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 22DDD1<br>25ADD1<br>31DDC1<br>95-14E-4BBD1<br>4BDC1                 | 3,700<br>3,680<br>3,819<br>2,938<br>2,940             | 575<br>400<br>840<br>700<br>375                              | 6<br>16<br>16<br>6<br>8 | 46<br>129.5<br>402<br>215<br>28                       | X<br>X<br>X<br>X<br>X | 417.43 P<br>175.80<br>458.89<br>155+ F<br>145+ F | 3- 6-79<br>3- 8-79<br>3- 6-79<br>4-25-79<br>3-27-79  | <br><br>30<br>92                                         | <br>39.5<br>42.5                         | H<br>I<br>U<br>A      | DL<br>DL<br>DL<br>DL WQ                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4CDB1<br>4CDC1<br>4CDD1<br>4DCC1<br>6CDA1                           | 3,026<br>3,022<br>3,010<br>2,920<br>.3,400            | 610<br>750<br>755<br>590                                     | 10<br>12<br>6<br>8<br>4 | 51<br>116<br>518<br>550                               | x<br>x<br>x<br>x      | <br>89+<br><br>166+ F<br>109.60                  | 3-15-79<br>8-20-79<br>8-16-79<br>12- 8-78<br>4- 6-79 | 3,000 E<br>1,540<br>1,130<br>100                         | 34.0<br>35.0<br>33.0<br>35.0             | S<br>S<br>A<br>H      | DL WQ<br>DL<br>DL<br>DL WQ             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9ADA1<br>9ADB1<br>9ADC1<br>9BAA1<br>10CBB1                          | 2,930<br>2,980<br>3,000<br>3,060<br>2,950             | 750<br>530<br>850<br>578<br>615                              | 6<br>6<br>12<br>6       | 332<br>495<br>380<br>45<br>488                        | X<br>X<br>X<br>X<br>X | 362+ F<br>102+ F<br>167+<br><br>93+ F            | 3-14-79<br>3-14-79<br>3-15-79<br>4- 5-79<br>3-14-79  | 164<br>200<br>65<br>477<br>70                            | 33.0<br>32.0<br>31.5<br>32.0<br>32.5     | A<br>A<br>S<br>A      | DLWQ<br>DLWQ<br>DLWQ<br>DL<br>DL       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13DDD1<br>14BDD1<br>17BAA1<br>21ADD1<br>23ABD1                      | 3,514<br>3,205<br>3,360<br>3,347<br>3,345             | 900<br><br>415<br>80<br>350                                  | 6<br>6<br>6<br>6        | 425<br>214.5<br><br>39                                | $\frac{x}{x}$         | 4+<br>56.09<br>153.68<br>61.45<br>29+            | 3-27-79<br>4- 6-79<br>2-22-79<br>4- 5-79<br>3-27-79  | 7<br><br>                                                | 26.0<br><br>25.0                         | I<br>H<br>H<br>H      | DLWQ<br>DL<br>DLWQ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 36DAC1<br>10S-12E- 2CBA1<br>12CDC1<br>10S-13E- 5CCA1<br>14DAC1      | 3,782<br>3,735<br>3,742<br>3,823<br>3,900             | 904<br>500<br>575                                            | 16<br>                  | 686<br><br>10<br>100                                  | x<br>x<br>x           | 96 R<br>365.70<br>366.48<br>448.88<br>258.94     | 2-21-79<br>2-21-79<br>3- 6-79<br>2-21-79             | 260<br><br><br>                                          | 29.0<br><br>24.5 R                       | P<br>I<br>I<br>I<br>I | WQ<br>DL<br>DL                         | de la companya |
| 25CDCl<br>10S-14E- 1CAA1<br>5CBB1<br>21DCCl                         | 3,860<br>3,840<br>3,665<br>3,850                      | 250<br>688<br>176                                            | 6<br>                   | <br><br>                                              |                       | 68.73<br>58.22<br>26.43<br>47.97                 | 3- 7-79<br>2-21-79<br>2-21-79<br>2-23-79             | <br><br>                                                 | <br><br>                                 | H<br>I<br>I           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

range from about 247 to 262 ft above land surface. The potentiometric surface is about 3,160 ft above NGVD.

Several wells southeast and southwest of the study area also yield thermal water. To the southeast, wells 9S-14E-13DDD1 and 9S-14E-23ABD1 (see pl. 2) yield water having temperatures at the surface of 26° and 25°C, respectively. Heads calculated from pressure measurements in these wells are 4 and 29 ft above land surface, respectively, and indicate a potentiometric surface about 3,520 and 3,370 ft above NGVD, respectively. Southwest of the study area, water temperatures range between 24.5° and 30.0°C. Water levels measured in seven wells are between 259 and 449 ft below land surface. The potentiometric surface in these wells is about 3,365 ft above NGVD and is relatively flat.

On the basis of measurements made in the spring of 1979, a potentiometric contour map was constructed for the area south and southwest of the Banbury Hot Springs area (pl. 2). The contours are generalized and, as drawn, show possible barrier effects and compartmentalization that could result from northwest-trending faults in the area. The inferred direction of ground-water movement is down the hydraulic gradient, approximately perpendicular to the potentiometric contours.

Several directions of movement and compartmented units are implied by the generalized potentiometric contours. In the southeastern part of the area depicted on plate 2, east of Salmon Falls Creek, nonthermal ground water moves in a general northwest direction. Near Salmon Falls Creek, however, where temperature and water-level data are lacking, two northwest-trending en echelon faults may act as barriers and divert the nonthermal water from the Banbury area. Some of the water probably moves northeastward across the faults and may represent local, cooler ground water which, it is proposed, mixes in varying proportions with the 72°C water to produce the Banbury thermal waters. Some recharge to these local, cooler ground waters may occur from seepage losses along the lower reach of Salmon Falls Creek. However, absence of significant tritium in the mixed Banbury thermal waters indicates that either the component of young (less than 100 years) water is extremely small or that the ground-water velocity in the aquifer in that area is low.

Southwest of the Banbury area and west of Salmon Falls Creek, the effect of structure on ground-water movement is unclear. Generally, the potentiometric surface is relatively flat, and direction of movement is probably northward.

9

8

## Depth of Circulation

Depths to which ground water circulates and becomes heated in the Banbury system cannot be determined precisely from available data. Assuming values for conductive heat flow and thermal conductivity of the rocks, however, an estimate for the depth of circulation can be obtained that is probably valid within the constraints applied.

Blackwell (unpublished data) indicated heat-flow values of 1.7 HFU (heat flow units; 1 HFU =  $10^{-6}$  cal/cm<sup>2</sup>.s near the south edge of the Snake River Plain. Average thermal conductivity values of 3.0, 4.0, and 4.5 x  $10^{-3}$  cal/cm s.°C for basalt, rhyolite, and sedimentary rocks, respectively, weighted for a typical drill hole in the Banbury area, result in a weighted average thermal conductivity of 3.85 x  $10^{-3}$  cal/cm s.°C. Substituting values for heat flow and thermal conductivity in the conductive heat-flow equation,

Q = K dt/dz

where,

Q = conductive heat flow, K = thermal conductivity, and

dt/dz = thermal gradient,

and assuming a mean annual surface temperature of 10°C, gives a thermal gradient of 1.35°C/100 ft. For this gradient, in order to attain a temperature of 70°C, water must circulate to a depth of about 4,400 ft. In the Banbury area, water temperatures near 70°C occur in wells 420 to 700 ft deep, which suggests there is considerable convective fluid transfer, probably upward along faults, to achieve 70°C temperatures at depths shallower than 4,400 ft.

# Fluctuations in Discharge and Artesian Head

As part of this study, two thermal wells were selected in which to continuously monitor fluctuations in discharge and artesian head. Well 9S-14E-4CDB1, which supplies water for catfish production, was equipped to monitor discharge, and well 9S-14E-4BBD1, which is unused, was equipped to monitor pressure fluctuations. Locations of these two wells are shown on plate 2. The discharge hydrograph for well 9S-14E-4CDB1 is shown in figure 2, and the water-level hydrograph for well 9S-14E-4BBD1 is shown in figure 3.

As shown by figures 2 and 3, the records are not long enough to complete one annual cycle of fluctuation; therefore, little interpretation of the records can be made. The flow rate for well 9S-14E-4CDB1 (fig. 2) declined from 3,110





12

gal/min in April 1979 to 1,550 gal/min in March 1980. The calculated head in well 9S-14E-4BBD1 (fig. 3) declined from 164 ft above land surface in July 1979 to 146 ft above land surface in March 1980. These declines may reflect seasonal fluctuations or may indicate a decrease in reservoir pressure due to development of the resource. Continued monitoring may provide more data for determining the cause of the decline.

### WATER CHEMISTRY

# Chemical Character

Samples of thermal water (water temperature greater than 20°C) were collected from 21 wells and 2 springs in and near the Banbury Hot Springs area. Temperatures of the water range from 25° to 72°C. Results of the chemical analyses, including common ions, silica, and the minor elements--arsenic, boron, lithium, and mercury--for the samples collected, are listed in table 2. Well and spring locations are shown on plate 2.

The thermal ground waters sampled are a sodium bicarbonate type and are slightly alkaline (pH ranges from 7.9 to 9.5). Concentrations of dissolved solids generally increase with water temperature and range from 231 mg/L in water at 31.5°C to 406 mg/L in water at 72.0°C. Concentrations of chloride, fluoride, and boron also increase from the lower temperature water to the higher temperature water.

# Chemical Geothermometers

Reservoir temperatures in the Banbury Hot Springs area were estimated by using the silica geothermometer (Fournier and Rowe, 1966) and the Na-K-Ca geothermometer (Fournier and Truesdell, 1973). Temperatures estimated by these chemical geothermometers are valid only for hot-water systems and only if the following basic assumptions are met (Fournier, White, and Truesdell, 1974): (1) The chemical reactions at depth are temperature dependent; (2) an adequate supply of chemical constituents used for the thermometry is present in the aquifer; (3) chemical equilibrium is established at depth between the hot water and the aquifer minerals; (4) there is negligible reequilibration of the chemical composition of the hot water as it rises to the surface; and (5) hot water rises rapidly to the surface with no dilution or mixing of hot and cold water.

| Ţ              |                                                                                                      | Wercury (Hg) (hg/L)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                                                                    |
|----------------|------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|--------------------------------------------------------------------|
| r)             |                                                                                                      | (J/Q4) (ij) muidžij                            | 60 5000 4444 46000 00<br>5000 5000 00<br>50000 00000 00<br>500000 000000 00<br>5000000 00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | ļ           |                                                                    |
| 1              |                                                                                                      | BOTON (B) (173/F)                              | 140<br>1470<br>1470<br>1470<br>140<br>140<br>1510<br>1210<br>1210<br>1210<br>1210<br>1210<br>1210<br>121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1110<br>1120<br>1120<br>1120<br>1120<br>1120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             | Dissolved silica (SiO <sub>2</sub> ) re                            |
|                |                                                                                                      | Arsenic (As) (Jug/L)                           | 15 271 0/10 280 880 87300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103 103 103 103 103 103 103 103 103 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | i           | is actually present as silicic                                     |
|                |                                                                                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             | exist as a distinct dissolved s                                    |
|                |                                                                                                      | Phosphorus, total as P                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · ·   · ·    |             | others, 1979). In alkaline wat with the silicic acid to reduce     |
|                |                                                                                                      | Nitrite plus nitrate as N                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             | acid to total dissolved silica                                     |
|                |                                                                                                      | Dissolved solids (calculated)                  | 404<br>406<br>406<br>406<br>4005<br>33733<br>3400<br>2005<br>2005<br>2005<br>2005<br>2005<br>2005<br>2005<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 246<br>231<br>231<br>240<br>264<br>363<br>363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | ·<br>·<br>· | reaction:                                                          |
|                | · .                                                                                                  | (2012) silis                                   | L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6632 11333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |             | Silicic<br>acid + Hydroxide =                                      |
|                |                                                                                                      | Fluoride (P)                                   | 227<br>227<br>226<br>26<br>12<br>13<br>3.7<br>3.6<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | живи 404<br>440 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |             |                                                                    |
|                |                                                                                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · .            |             |                                                                    |
|                |                                                                                                      | Chloride (Cl)                                  | 0499408 049966 04966 04966 04966 04966 04966 04966 04966 04966 04966 04966 04966 04966 04966 04966 04966 04966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HHHH HM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |             | Thermal waters in the stud<br>slightly alkaline (pH values ra      |
| 봐.             | ings<br>ings                                                                                         | Sulfate (50.)                                  | 22 327582 239782<br>23 327582 239792<br>23 327582 239792<br>23 327582 239792<br>23 327582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5200<br>217<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••             |             | 2). For water that has a pH gr                                     |
|                | e not                                                                                                | алкаліліст ва СаСО <sub>з</sub>                | 1138<br>1138<br>1138<br>1138<br>1138<br>1138<br>1138<br>1138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 130<br>118<br>110<br>123<br>123<br>130<br>130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |             | reduced by the concentration of                                    |
|                | 11s ar                                                                                               | darbonate (CO <sub>3</sub> ) <sup>1</sup>      | 1400400 0000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4000 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |             | pH of the water. Corrected val<br>used in the silica geothermomet  |
|                | e d<br>e k cepi                                                                                      | Bicarbonate (HCO <sub>3</sub> )'               | 140<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150<br>120<br>150<br>150<br>150<br>150<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |             | with both quartz and chalcedony                                    |
|                | select<br>iter,<br>le,                                                                               | (X) muissioq                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22.88<br>0.25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |             | No magnesium correction wa                                         |
|                | from (<br>per 1:<br>ailab                                                                            | (WOL OTATI HOTATIONS                           | 0 0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2396 0.010<br>0.4 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •              |             | K-Ca geothermometer. In most o concentration of magnesium was      |
|                | ater<br>rams<br>ata av<br>than.                                                                      | (442) ofter nottorobe-milton                   | 20000 20000 10000 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |             | correction would be minimal. A                                     |
|                | · of w<br>nillig<br>no di<br>less                                                                    | Percent sodium                                 | 600000 8000 80000 8000 800 800 800 800 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | νοαααααγγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>Da       |             | however, a reservoir temperatur                                    |
|                | alyse<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | (sN) muibol                                    | 140<br>1540<br>1540<br>100<br>100<br>1000<br>1000<br>1000<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 693<br>693<br>693<br>693<br>693<br>693<br>693<br>693<br>693<br>693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LI             |             | when using the Na-K-4/3 Ca geot<br>the limiting temperature of 70° |
|                | al an<br>tuent                                                                                       | Magnestum (Mg)                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             | Potter (1979), and no correction water from two other wells indi   |
|                | Chemic<br>consti                                                                                     | (91) .                                         | 1. 1. 11.14 8 919 1<br>2. 1. 1. 11.14 8 9.14 1<br>2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11-<br>88-0<br>86-4<br>86-4<br>86-4<br>86-6<br>86-6<br>86-6<br>86-6<br>86-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erter          |             | tions greater than 1 mg/L, but                                     |
|                | 2. (<br>ical (                                                                                       | Noncarbonate nardness                          | ,<br>, , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ig wat         |             | southeast of the other thermal were applied.                       |
| 4)<br>(fi      | Table<br>[Chem                                                                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1419 220132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ur<br>u<br>ss  |             | Estimated reservoir temper                                         |
|                |                                                                                                      | Hardness as CaCO <sub>3</sub>                  | - 00000 00000 00000 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t              |             | theoretical equilibrium (degree                                    |
|                |                                                                                                      | Water temperature (°C)                         | 945000 4400 4400 4400 4400 4400 4400 440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a<br>te        |             | calculated for the thermal wate                                    |
|                |                                                                                                      | БН                                             | 00000 00000 00000 00000 00000 00000 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | carboi         | } •         | puter program modified from the                                    |
| 44<br>14.      | • <i>•</i>                                                                                           | Specific conductance (µmhos)                   | 66001<br>5666<br>5666<br>5666<br>5666<br>5666<br>5666<br>5666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 305<br>311<br>316<br>326<br>321<br>499<br>499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d br           | (<br>(      | equilibrium for the four minera                                    |
| 4<br>14.<br>15 |                                                                                                      |                                                | 440<br>200<br>200<br>200<br>200<br>21<br>22<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100<br>164<br>65<br>70<br>70<br>260<br>260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | late           |             | ervoir temperature. Mariner (c                                     |
| ii<br>he       |                                                                                                      | Flow rate (gal/min)                            | r en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | carbo          |             | that chalcedony may control the                                    |
|                |                                                                                                      | Date of collection                             | 155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-799<br>155-79                                              | - 18-78<br>- 14-79<br>- 15-79<br>- 14-79<br>- 27-79<br>- 27-79<br>- 27-79<br>- 27-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 80<br>80<br>70 |             | This seems to be true for most                                     |
|                | 1                                                                                                    |                                                | ጞ፝ጞ፝ኯ፟ዹ፟ዹ<br>ጞጞ፝ኯ፟፟፟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ribute         |             | one spring in the vicinity of S                                    |
|                |                                                                                                      | Reported well depth<br>below land surface (ft) | 540<br>540<br>5450<br>5455<br>5455<br>5455<br>5455<br>5455<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29202<br>2920<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>2020<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>20202<br>2000<br>20202<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2 |                |             | urated with chalcedony, and qua silica solubility.                 |
|                |                                                                                                      |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | linity         |             |                                                                    |
|                |                                                                                                      | 73000011 TTOL TO BUT 740                       | -30ACI<br>30DAI<br>30DAI<br>30DAI<br>31ACI<br>32DA<br>32DA<br>32DA<br>32CBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI<br>33CCCBI | 40C<br>9AD<br>9AD<br>9AD<br>9AD<br>9AD<br>9AD<br>9AD<br>9AD<br>9AD<br>9AD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | alka           |             |                                                                    |
|                |                                                                                                      | rodmin Flau to privit                          | S-14E<br>)5-13E<br>95-14E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total          |             | 15                                                                 |
| 1              |                                                                                                      | 4                                              | α 6,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |             |                                                                    |

ported in chemical analyses acid (H<sub>4</sub>SiO<sub>4</sub>) and various ly H<sub>3</sub>SiO<sub>4</sub>); SiO<sub>2</sub> does not pecies in nature (Brook and er, hydroxide (OH<sup>-</sup>) reacts the proportion of silicic in the temperature-dependent

Dissociated silicic acid + Water H<sub>3</sub>SiO<sub>4</sub>  $H_2O$ 

ly and adjacent areas are inge from 7.9 to 9.5, table eater than about 8.3, re $ica (H_4SiO_4 + H_3SiO_4)$  were H<sub>3</sub>SiO<sub>4</sub> calculated for the ues for dissolved silica were ers that assume equilibrium ٠

as applied when using the Naof the thermal water sampled, less than 1 mg/L and any analysis of water from one centration of 3.9 mg/L; e of 74°C that was estimated thermometer is very close to 'C suggested by Fournier and on was made. Analyses of icated magnesium concentrathese wells are about 5 mi wells, and no corrections

Con a

1

atures and departure from of saturation or unsaturachalcedony, and quartz were ers (table 3), using a com-SOLMNEQ program of Kharaka parture from theoretical als is considered in selecting the best estimate of resoral commun., 1979) suggested e silica solubility in thermal ow about 75°C at the surface. of the cooler, unmixed therater from several wells and Salmon Falls Creek is unsatartz probably controls the



gal/min in April 1979 to 1,550 gal/min in March 1980. The calculated head in well 9S-14E-4BBD1 (fig. 3) declined from 164 ft above land surface in July 1979 to 146 ft above land surface in March 1980. These declines may reflect seasonal fluctuations or may indicate a decrease in reservoir pressure due to development of the resource. Continued monitoring may provide more data for determining the cause of

# WATER CHEMISTRY

# Chemical Character

Samples of thermal water (water temperature greater than 20°C) were collected from 21 wells and 2 springs in and near the Banbury Hot Springs area. Temperatures of the water range from 25° to 72°C. Results of the chemical analyses, including common ions, silica, and the minor elements--arsenic, boron, lithium, and mercury--for the samples collected, are listed in table 2. Well and spring

The thermal ground waters sampled are a sodium bicarbonate type and are slightly alkaline (pH ranges from 7.9 to 9.5). Concentrations of dissolved solids generally increase with water temperature and range from 231 mg/L in water at 31.5°C to 406 mg/L in water at 72.0°C. Concentrations of chloride, fluoride, and boron also increase from the lower temperature water to the higher temperature water.

# Chemical Geothermometers

Reservoir temperatures in the Banbury Hot Springs area were estimated by using the silica geothermometer (Fournier and Rowe, 1966) and the Na-K-Ca geothermometer (Fournier and

geothermometers are valid only for hot-water systems and only if the following basic assumptions are met (Fournier, White, and Truesdell, 1974): (1) The chemical reactions at depth are temperature dependent; (2) an adequate supply of chemical constituents used for the thermometry is present in the aquifer; (3) chemical equilibrium is established at depth between the hot water and the aquifer minerals; (4) there is negligible reequilibration of the chemical composition of the hot water as it rises to the surface; and (5) hot water rises rapidly to the surface with no dilution

|                  | Wercury (Hg) (ug/L)             |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                               |                                                                                                | · · ·                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|------------------|---------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                  | Γίελίωπ (Li) (μg/L)             | * <b>*</b> 0000<br>* <b>*</b> 0000                                 | 0 0 4 4 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | 2000<br>2000                                                                                   | 20<br>20<br>20<br>20<br>20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                  | <b>доко</b> и (g) (ла\г)        | 440<br>470<br>510<br>340                                           | 230<br>230<br>230<br>230<br>230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 230<br>210<br>510<br>120                                                        | 100<br>110<br>110<br>120                                                                       | 140<br>120<br>120          | Dissolved silica (SiO <sub>2</sub> ) repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ort                 |
|                  | Arsenic (As) (µg/L)             | 60<br>52<br>443<br>48<br>423<br>48<br>423<br>43<br>60              | 26<br>70<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>31<br>22                                                                  | 16<br>21<br>23<br>19                                                                           | 00 00 O                    | is actually present as silicic ac<br>dissociated species (particularly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | :id<br>/ म          |
|                  | A SUCCEST OF COLOR              | 10,000                                                             | 55555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10000                                                                           |                                                                                                | <.01<br>2.8<br><.01        | exist as a distinct dissolved spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ci                  |
|                  | (FON+2ON)                       | 85555                                                              | 600301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,<br>500010                                                                     | 33555                                                                                          | 34<br>51                   | others, 1979). In alkaline water<br>with the silicic acid to reduce t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :,<br>:he           |
|                  | Nitrite plus nitrate as N       | <b>o</b> v v                                                       | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · ·                                                                     |                                                                                                | . н<br>Н                   | acid to total dissolved silica in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ı t                 |
|                  | Dissolved solids (calculated)   | 404<br>406<br>400<br>375                                           | 343<br>335<br>335<br>335<br>330<br>330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 321<br>289<br>275<br>303<br>236                                                 | 237<br>246<br>237<br>231<br>231<br>231                                                         | 264<br>286<br>363          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                  | Silica (SiO <sub>2</sub> )      | 889<br>887<br>887                                                  | 86<br>67<br>88<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 864<br>864<br>56                                                                | ,<br>20000<br>2000<br>2000<br>2000                                                             | 82<br>87<br>66             | Silicic I<br>acid + Hydroxide = s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )is<br>sil          |
|                  | Fluoride (F)                    | 5555                                                               | 26<br>9.4<br>15<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12<br>13<br>1.8<br>1.8<br>3.7                                                   | 3.1.<br>2.9.<br>2.9.                                                                           | 4.8<br>2.4<br>1.9          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | т                   |
|                  |                                 |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |                                                                                                | 6.                         | $H_4SIO_4 + OH =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r:                  |
|                  | Chloride (Cl)                   | 925<br>941<br>941<br>941<br>941                                    | 2 2 2 1 1 3<br>7 2 2 1 3<br>7 4 0<br>7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                     | 137<br>137<br>137                                                               | 99999                                                                                          | 311.9                      | Thermal waters in the study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an                  |
| •                | Sulfate (SO.)                   |                                                                    | 29<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27<br>28<br>35<br>30                                                            | 22<br>24<br>26<br>25                                                                           | 21<br>22<br>61             | 2). For water that has a pH grea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ite                 |
|                  | Foops an Interter               | 588884                                                             | 32123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31<br>98<br>98<br>98                                                            | 110                                                                                            | L10<br>L30<br>L39          | ported values for dissolved silic<br>reduced by the concentration of H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ta<br>1.5           |
|                  | (c02) 93 more (C03)             |                                                                    | 4444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 8 0 8 <sup>0</sup> 0                                                          | 04020                                                                                          | 000                        | pH of the water. Corrected value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -3-<br>3 <b>S</b> . |
|                  | Bicarbonate (HCO <sub>2</sub> ) | 06996                                                              | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109050                                                                          | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                             | 40                         | used in the silica geothermometer<br>with both quartz and chalcedony.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :s                  |
|                  |                                 |                                                                    | 9 K 19 K 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6<br>896~6                                                                      | 00000                                                                                          | ر نەم<br>144               | No magnesium correction was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ər                  |
| lable            | (X) muissjof                    |                                                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | ****                                                                                           | 10.15                      | K-Ca geothermometer. In most of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | th                  |
| avai<br>an.      | (AA2) ofter nottorebe-muibo2    | 800<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 20<br>26<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>28<br>21.7<br>21.7                                                        | 000110                                                                                         | 0 m Q                      | concentration of magnesium was le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ≥ss<br>alv          |
| , data<br>iss th | Percent sodium                  | 666666                                                             | 98<br>98<br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 999<br>999<br>997<br>997<br>997<br>997<br>997                                   | 84<br>85<br>85<br>81                                                                           | 84<br>67<br>52             | well indicated a magnesium concer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | itr                 |
| 2 H<br>H H       |                                 | 00000                                                              | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.35.70                                                                        | 633<br>63<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 61<br>61                   | when using the Na-K-4/3 Ca geothe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | or<br>ern           |
| 1 *              | (aV) muibo2                     | 14111<br>14111                                                     | 26212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44.04.0                                                                         | <u>មកថមក</u>                                                                                   | 242                        | the limiting temperature of 70°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SU<br>Wa            |
|                  | (pM) muisenpeM                  | Ç V Y                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vvm                                                                             |                                                                                                | . 4 0                      | water from two other wells indica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate                 |
|                  | (s) muisle)                     | н. 2<br>1.5<br>1.5                                                 | 6.11.<br>6.11.<br>6.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.3<br>26.9<br>1.3<br>5.4                                                       | 7.8<br>11<br>8.0<br>8.0                                                                        | 7.4<br>17<br>36            | tions greater than 1 mg/L, but the southeast of the other thermal we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nes<br>ell          |
|                  | Noncarbonate hardness           | 00000                                                              | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000                                                                           | 00000                                                                                          | 000                        | were applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| • •              | HEIGRESS ER CACO3               | 4000 M                                                             | w 4 w w 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 7 8<br>7 7 8<br>8 7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7 8<br>7                 | 21<br>21<br>21<br>21<br>21<br>21<br>21<br>21                                                   | 19<br>47<br>110            | Estimated reservoir temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tur                 |
|                  |                                 | , noono                                                            | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00000                                                                           | 00000                                                                                          | 0.00                       | theoretical equilibrium (degree of the control of t | of<br>alc           |
|                  | Water temperature (°C)          | 70<br>72<br>71<br>57                                               | 44004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 400044                                                                          |                                                                                                | 8 6 6 6                    | calculated for the thermal waters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s l                 |
|                  | Нq                              | 99999                                                              | 999999<br>199999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000                                                                           |                                                                                                | 887                        | puter program modified from the S<br>and Barnes (1973). Relative depa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30I<br>art          |
|                  | (εοήπη) εοπάγοτάριος (μπήοα)    | 601<br>634<br>634<br>566<br>566                                    | 449<br>454<br>456<br>466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 444<br>426<br>326<br>3226<br>3226                                               | 305<br>311<br>316<br>316                                                                       | 321<br>330<br>499          | equilibrium for the four minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s i                 |
| •                |                                 | 40<br>20<br>20<br>20                                               | 4 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 200<br>200<br>92<br>000                                                         | 100<br>164<br>200<br>70                                                                        | 7<br>30<br>260             | ervoir temperature. Mariner (ora                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cne<br>al           |
|                  | Е́low гаtе (gal/min)            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 | ۰.                                                                                             | •                          | that chalcedony may control the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | si]                 |
|                  | Date of collection              | 8-78<br>15-79<br>26-79<br>25-79<br>5-79                            | 15-79<br>4-79<br>8-78<br>4-79<br>15-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15-79<br>26-79<br>26-79<br>26-79                                                | 8-78<br>14-79<br>14-79<br>15-79<br>15-79                                                       | -27-79<br>-27-79<br>-14-79 | This seems to be true for most of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f t                 |
|                  |                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , <u>"</u> ", ", ", ", ", ", ", ", ", ", ", ", ", "                             | 4.4.4.4                                                                                        |                            | mal water; however, 57°-72°C wate<br>one spring in the vicinity of Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er<br>lma           |
|                  | (11) below land surface (ft)    | 420                                                                | 545<br>535<br>342<br>342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 510<br>510<br>480<br>375<br>610                                                 | 590<br>530<br>850<br>615                                                                       | 900<br>350<br>904          | urated with chalcedony, and quart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tz                  |
|                  | Reported well depth             | ູ້                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 | <br>                                                                                           | ала                        | silica solubility.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|                  |                                 | 00ACD1<br>00ACD2<br>00BA1<br>00BA1                                 | S 2DAA1<br>S 2DDA1<br>S 2DDC1<br>S 2DDA1<br>S 2DDA1<br>S 2DDA1<br>S 2DDA1<br>S 2DDA1<br>S 2DDA1<br>S 2DDA1<br>S 2DDA1<br>S 2DDA1<br>S 2DDC1<br>S 2DDC | 33CCA1<br>33CCA1<br>33CCA1<br>33CBD1<br>33CBD1<br>34BDC1<br>4BDC1               | 4DCC<br>9ADA<br>9ADA<br>9ADC<br>9ADC                                                           | 13DDD<br>23ABD<br>36DAC    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                  | Spring or well number           | 14E-3<br>3333<br>3333                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -13E-                                                                           |                                                                                                |                            | T T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|                  | 1                               | s,                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 S                                                                             |                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

springs noted]

ls and where

well

rable 2. Chemical analyses of water [Chemical constituents in milligrams rted in chemical analyses id (H<sub>4</sub>SiO<sub>4</sub>) and various H<sub>3</sub>SiO<sub>4</sub>); SiO<sub>2</sub> does not cies in nature (Brook and , hydroxide (OH) reacts he proportion of silicic the temperature-dependent

issociated ilicic acid + Water H<sub>3</sub>SiO<sub>4</sub> + H<sub>2</sub>O

and adjacent areas are e from 7.9 to 9.5, table ter than about 8.3, rea  $(H_4SiO_4 + H_3SiO_4)$  were  $_3SiO_4$  calculated for the s for dissolved silica were s that assume equilibrium

applied when using the Nathe thermal water sampled, ss than 1 mg/L and any lysis of water from one tration of 3.9 mg/L; of 74°C that was estimated rmometer is very close to suggested by Fournier and was made. Analyses of ted magnesium concentraese wells are about 5 mi lls, and no corrections

6. ..

٠. .

ures and departure from f saturation or unsaturalcedony, and quartz were (table 3), using a com-OLMNEQ program of Kharaka rture from theoretical is considered in selecting he best estimate of resl commun., 1979) suggested ilica solubility in thermal about 75°C at the surface. the cooler, unmixed therer from several wells and mon Falls Creek is unsatz probably controls the 

 Table 3. Estimated aquifer temperatures and free energy of formation

 for selected thermal wells and springs

[-- = values not computed for pH 8.3 or less]

|                                                                                                                                                                                                                                  | Es                                                                                                                                                                                       | stimate<br>based                                                                                                                                              | d aqui<br>on ge                                                                                                      | fer te<br>otherm                                                                                                                 | emperat                                                                                                                               | ures                                                                                                                     | Fre                                                                                                                 | e energ                                                                                                                                            | y of  | format                                                                                              | ion <sup>1</sup>                                                                                                                              |                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Well or spring No.                                                                                                                                                                                                               | Water temperature at<br>the surface (°C)                                                                                                                                                 | Silica quartz-<br>conductive (°C)                                                                                                                             | Silica quartz-<br>conductive H <sub>3</sub> SiO <sub>4</sub> -<br>corrected (°C)                                     | Sodium-potassium-<br>calcium (°C)                                                                                                | Silica-chalcedony (°C)                                                                                                                | Silica-chalcedony<br>H <sub>3</sub> Si04 <sup>-</sup> corrected (°C)                                                     | Aragonite                                                                                                           | Calcite                                                                                                                                            | · · · | Chalcedony                                                                                          | Quartz                                                                                                                                        | teference no. (fig.4 )                                                                                                  |
| 8S-14E-30ACD1S<br>30ACD2<br>30DAD1<br>30DBA1<br>31ACB1S<br>32DAA1<br>32DDC1<br>33CBA1<br>33CBA1<br>33CBA1<br>33CCA1<br>33CCC1<br>9S-13E-33CBD1<br>9S-14E-4BDC1<br>4DCC1<br>9ADA1<br>9ADB1<br>9ADC1<br>10CBB1<br>13DDD1<br>25ABD1 | $\begin{array}{c} 70.5\\ 72.0\\ 62.0\\ 71.5\\ 57.0\\ 45.5\\ 42.5\\ 59.0\\ 59.0\\ 42.0\\ 44.5\\ 30.0\\ 30.0\\ 42.5\\ 34.0\\ 35.0\\ 35.0\\ 32.0\\ 31.5\\ 32.5\\ 26.0\\ 25.0\\ \end{array}$ | 131<br>129<br>128<br>126<br>129<br>129<br>116<br>137<br>130<br>134<br>130<br>134<br>130<br>114<br>129<br>122<br>107<br>105<br>104<br>103<br>103<br>126<br>130 | 96<br>90<br>93<br>68<br>99<br>105<br>86<br>111<br>89<br>106<br>96<br>91<br><br>96<br>100<br><br>101<br>101<br>97<br> | 92<br>93<br>98<br>98<br>103<br>116<br>100<br>108<br>84<br>82<br>112<br>74<br>101<br>82<br>75<br>75<br>72<br>73<br>74<br>97<br>86 | 103<br>101<br>100<br>99<br>101<br>101<br>87<br>110<br>103<br>107<br>103<br>85<br>101<br>94<br>78<br>75<br>75<br>73<br>73<br>97<br>102 | 66<br>81<br>48<br>36<br>52<br>75<br>55<br>81<br>58<br>77<br>66<br>61<br><br>66<br>70<br><br>71<br>67<br><br>71<br>67<br> | 0.2<br>.1<br>1<br>.5<br>.1<br>3<br>.0<br>1<br>.6<br>.6<br>3<br>.0<br>.0<br>.1<br>2<br>.2<br>1<br>.1<br>.0<br>3<br>1 | 0.3<br>.2<br>.0<br>.6<br>.1<br>2<br>.1<br>.0<br>.2<br>.7<br>.7<br>.7<br>.7<br>.7<br>.3<br>.0<br>.0<br>.1<br>.1<br>.3<br>.0<br>.2<br>.1<br>.3<br>.0 | · · · | $\begin{array}{c} -0.1 \\3 \\2 \\5 \\1 \\ .4 \\ .2 \\ .3 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5 \\ .5$ | 0.4<br>.2<br>.3<br>.1<br>.4<br>.9<br>.7<br>.8<br>.5<br>1.0<br>.8<br>1.0<br>1.5<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.5<br>1.5 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 |

<sup>1</sup>Values are departure from theoretical equilibrium in kilocalories; (+) values indicate supersaturation, (-) values indicate unsaturated. Calculations from computer program SOLMNEQ (Kharaka and Barnes, 1973). Fournier, Sorey, Mariner, and Truesdell (1979) showed that, on a plot of reservoir temperatures estimated by the silica geothermometer versus reservoir temperatures estimated by the Na-K-Ca geothermometer, most unmixed water in equilibrium plots on or near an equal-temperature line having a slope of 1. Water that plots significantly above the equal-temperature line probably has undergone evaporation or has dissolved amorphous silica from the aquifer material. Water that plots significantly below the equal-temperature line probably has mixed with another type of water and has not reequilibrated, precipitated silica during cooling, or precipitated calcite or aragonite due to loss of  $CO_2$  (Fournier, Sorey, Mariner, and Truesdell, 1979).

A comparison of reservoir temperatures estimated by the H<sub>3</sub>SiO<sub>4</sub> -corrected silica and Na-K-Ca geothermometers is shown in figure 4. With the exception of water from wells and springs in the vicinity of Salmon Falls Creek, chalcedony is assumed to control the silica solubility. Water that plots on or near the equal-temperature line is probably unmixed. This includes the 57°-72°C water from wells and springs in the vicinity of Salmon Falls Creek and 31.5°-33.0°C water from wells near Deep Creek. These waters are considered to comprise the unmixed components from which most of the other thermal waters in the study area are derived. Other waters, with temperatures between about 30°-60°C, plot below the equal-temperature line in figure 4 and, lacking any evidence to indicate precipitation of silica, calcite, or aragonite, are probably mixed waters that have not equilibrated. Some waters plot significantly above the equal-temperature line. These waters probably contain amorphous silica dissolved from the aquifer materials but were sampled from wells 3 to 8 mi southeast of the study area and are not included in a discussion of the Banbury thermal water.

Samples of thermal water were collected from two wells and one spring for sulfate-water isotope analyses. For water containing even small amounts of  $H_2S$ , analyses for <sup>18</sup>O(SO<sub>4</sub>) may be affected by the formation of additional sulfate due to oxidation of  $H_2S$  to  $H_2SO_4$  by sulfur-oxidizing bacteria. Possible effects due to oxidation were minimized by adding 5 mL of formaldehyde to each sample to kill any bacteria and preclude the formation of  $H_2SO_4$  by oxidation of  $H_2S$ . Samples were analyzed by N. L. Nehring and A. H. Truesdell of the U.S. Geological Survey, Menlo Park, Calif. Estimated reservoir temperatures, using the sulfate-water geothermometer and assuming conductive cooling for samples 3, 5, and 7 (table 3), were 90°, 93°, and 101°C, respectively. On the basis of significant differences in temperature and concentrations of chloride and dissolved solids,



18

thermal water represented by samples 5 and 7 is probably mixed water and the 90°C obtained for sample 3 is probably the best estimate of the thermal reservoir temperature obtained by using the sulfate-water geothermometer.

Based on the  $H_3SiO_4$ -corrected chalcedony and Na-K-Ca geothermometers, reservoir temperatures near Deep Creek are about 71°C +4°. Based on the  $H_3SiO_4$ -corrected quartz, Na-K-Ca, and sulfate-water geothermometers, reservoir temperatures in the vicinity of Salmon Falls Creek are about 94°C +4°.

# Isotopes

Samples of thermal water from selected wells and springs were collected for analysis of tritium, oxygen-18, and deuterium. Isotopic compositions of thermal fluids can be used to indicate age, origin, and mixing patterns in the geothermal system.

# Tritium

Tritium (<sup>3</sup>H), a radioactive isotope of hydrogen, is formed in the upper atmosphere during bombardment by subatomic particles from outer space. It decays with a halflife of about 12.4 years and is introduced into the water cycle in rain and snow. Although concentrations of tritium in precipitation vary both seasonally and geographically, prior to extensive thermonuclear testing between 1954 and 1963, tritium levels in precipitation were generally less than about 10 but were as high as about 20 TU (tritium units; one TU equals a  $^{3}H/H$  ratio of about 10, or about 3.2 picocuries per liter.) By 1963, worldwide tritium levels in precipitation had increased dramatically and were reported to be 7,000 TU in the vicinity of Yellowstone National Park (Pearson and Truesdell, 1978). Since the completion of atmospheric nuclear tests, tritium levels in precipitation have declined and in 1977 averaged about 50 TU.

Tritium in a ground-water system is a function of tritium concentration in the recharge water and the residence time and nature of flow in the system. Two basic types of flow models are discussed in detail by Nir (1964): (1) the piston-flow model, which has parallel flow lines of constant and equal velocity, so that a water sample taken at some point would include only water originating at the point of recharge; and (2) the completely mixed reservoir model, where it is assumed that the recharge water is continually and instantly mixing throughout the entire system. The tritium concentration in water of various residence times, assuming piston-flow and mixed-reservoir systems, in Yellowstone National Park was calculated by Pearson and Truesdell (1978) and is shown in figure 5. Curves similar to those in figure 5 probably would result for thermal ground-water systems in south-central Idaho.

Water samples for tritium analyses were obtained from four thermal wells in the study area and one thermal spring about 60 mi south but still within the Salmon Falls Creek drainage area. Samples were predistilled and enriched by electrolysis; enriched aliquots of 470-mL samples were counted by a gas proportional counter. Results of tritium analyses of thermal water samples are shown in table 4; errors are given for one standard deviation and include those incurred during radioactive counting, as well as volume errors. For the 470-mL enrichment method, the minimum error is 0.1 to 0.2 TU. All samples were corrected for tritium decay to the collection date, using a half-life of 12.350 years. Concentrations of tritium in the thermal water sampled ranged from 0 +0.1 to 4.1 +0.2 TU.

If the thermal water moves by piston flow, the tritium level (T) in a water sample taken at any point within the system will be related to the tritium concentration in the water during recharge (T<sub>O</sub>) and the transit time or age (t) of the sample by,

$$\Gamma = T_{O} e^{-\gamma t}$$

where the decay constant  $\gamma = \ln 2/\text{half}$  life of tritium. If the Banbury thermal waters are part of a piston flow system, assuming an upper limit of 20 TU, samples that overlap 0 TU could indicate a residence time near 100 years and virtually no mixing with younger water. If these waters are part of a well-mixed system, residence times could exceed 1,000 years.

Constraints applied by the hydrologic model developed for the Banbury geothermal system (discussed more fully in a later section) requires some local mixing of water of at least two slightly different compositions. Consequently, thermal water having a concentration of tritium <0.1 TU is interpreted as being at least 100 and perhaps more than 1,000 years old. This water mixes with varying amounts of younger water to give local differences in temperature and isotopic and chemical composition. In table 4, a sample from well 9S-14E-9ADA1, has a tritium concentration of 4.1 +0.2 TU, and is probably mixed water. A concentration of about 4 TU would result in a piston-flow system for water having a residence time of about 29 years and no mixing with post-1954 water, or could have resulted from a mixture of 90



Figure 5.--Relation of tritium concentration to residence time, assuming piston-flow and well-mixed ground-water systems in Yellowstone National Park (after Pearson and Truesdell, 1978).

| mable 4. Conc  | entrations of tritium |    |
|----------------|-----------------------|----|
| n water sample | d from selected therm | al |
| well           | s and springs         |    |

| Well or Temper<br>spring No. (°C | ature Tritium<br>) (TU) <sup>1</sup> |
|----------------------------------|--------------------------------------|
| 8S-14E-30DAD1 62.                | $0 	 0.1 \pm 0.1$                    |
| 8S-14E-32DDCl 42.                | $5  0.2 \pm 0.1$                     |
| 95-14E- 9ADA1 33.                | $4.1 \pm 0.2$                        |
| 9S-14E-36DACl 29.                | $0 	 0 	 \pm 0.1$                    |
| 46N-64E-23BBD1S 24               | $.0 	 0 	\pm 0.1$                    |

<sup>1</sup>Analyses by T. A. Wyerman, U.S. Geological Survey, Reston, Va.

percent older, zero tritium water and 10 percent young, local water. Further discussion of mixing is included in the next section.

Deuterium and Oxygen-18

Concentration of the stable isotopes, deuterium (D) and oxygen-18 (180), in water from different sources characterizes and indicates the origin and mixing pattern of individual water.

Principal stable molecular species in water are H<sub>2</sub><sup>16</sup>O,  $H_2^{17}O$ ,  $H_2^{18}O$ , and  $HD^{16}O$ . In seawater, the proportions of these species are 10<sup>6</sup>:2,000:420:316 (Craig, 1963); this composition is referred to as SMOW (standard mean ocean water). Precipitation, which is derived from ocean water, is depleted in the stable isotopes due to evaporation. Stable isotope concentrations are generally expressed in delta units ( $\delta$ ) and are reported in parts per mil (°/ $_{\circ\circ}$ ), or parts per thousand. These units represent relative deviations in the heavy isotope fraction in water and are defined as:

 $\delta = \left[ \frac{R_{sample} - R_{standard}}{R_{standard}} \right] \times 1,000$ 

where,

<sup>R</sup>sample = ratio or isotopic concentration ( $^{18}O/^{16}O$ , D/H) of the sample, and Rstandard = ratio of isotopic concentration of the standard SMOW.

A worldwide study of freshwater samples by Craig (1963) showed that the isotopic reactions in cold meteoric water could be expressed by the equation  $\delta D = 8\delta^{18}O + 10$ . A plot of this equation is a straight line, commonly referred to as the SMOW line, and is shown in figure 6. Surface water affected by extensive nonequilibrium evaporation, as in inland basins, lie off this line. However, at ordinary air temperatures, evaporated surface water is connected approximately to the original precipitation composition  $\delta^{18}Q_{a}$  $\delta D_{o}$ , by a line expressing the equation,  $\delta D = 5(\delta^{18}O - \delta^{18}O_{o})$ +  $\delta D_{o}$  (Ellis and Mahon, 1977).

During passage through the aquifer, thermal water and nonthermal water retain the deuterium composition characteristic of precipitation in the recharge area. The <sup>18</sup>0 content in thermal water, however, is usually enriched





24

(becomes less negative) to varying degrees during circulation within the system, due to reaction with the more enriched <sup>18</sup>O of the aquifer material. For a more complete discussion of stable isotope geochemistry, refer to Gat (1971) or Ellis and Mahon (1977).

Samples of thermal water were collected for analyses of <sup>18</sup>O and deuterium from nine wells and two springs in and near the study area. Due to the reconnaissance nature and limited extent of this investigation, no cold-water samples from potential recharge areas were collected. For discussion, results of stable isotope analyses for several nearby cold-water springs are included in table 5 and figure 6.

Figure 6 is a graph showing the stable isotope data in standard  $\delta$  values (°/ $_{\circ \circ}$ ) relative to SMOW. The wide range of deuterium in the samples between about -139 and -130 °/ $_{\circ \circ}$  indicates mixing of water from at least two sources. If only one source of recharge were involved, the deuterium values for all the thermal waters would be more nearly identical because there is no mechanism for deuterium exchange during deep circulation through the system (A. H. Truesdell, written commun., 1975).

Thermal waters having the hottest temperatures measured at the surface occur in wells in the vicinity of Salmon Falls Creek and are represented by point 1 in figure 6. These waters, having surface temperatures near 72°C, seem to be unmixed and are probably representative of the deep circulating hot water in the Banbury system. The recharge area for the unmixed hot water is unknown.

Cold meteoric water isotopically similar to 25 in figure 6 could, by long contact at temperatures near 100°C, become enriched in <sup>18</sup>O to yield water similar to 1. Although cold water represented by 25 presently occurs in the mountains 60 mi southeast of the Banbury area, isotopically similar water might occur as recharge in the higher altitudes nearby to the southeast. Additional stable isotope analysis of the cold water from that area are necessary to confirm this, however.

Cold water, represented by 24, 26, and 27 (fig. 6), was sampled from springs southwest of the study area in the Jarbidge Mountains. On the basis of tritium analyses, these cold waters are probably less than 20 years old. Samples 26 and 27 may have undergone some evaporation before percolating to the saturated zone, but in general, are probably representative of recent recharge water for areas to the southwest (Young and Lewis, 1980). Meteoric water that recharges the shallow ground-water system in the Banbury

| Well or<br>spring No.                | t°C  | <sup>6 D</sup> SMOW | δ <sup>180</sup> SMOW | ∆ <sup>18</sup> 0 | Reference<br>symbol<br>(fig. 6) |
|--------------------------------------|------|---------------------|-----------------------|-------------------|---------------------------------|
| 8S-14E-30ACD1S                       | 70.5 | -137                | -17.2                 | +1.17             | 1                               |
| 30DAD1                               | 62.0 | -137                | -18.0                 | +0.38             | 3                               |
| 31ACB1S                              | 57.0 | -139                | -17.6                 | +1.02             | 5                               |
| 32DDC1                               | 42.5 | -134                | -17.1                 | +0.90             | 7                               |
| 33CBA2                               | 59.0 | -137                | -17.6                 | +0.63             | 9                               |
| 33CBD1                               | 42.0 | -135                | -17.7                 | +0.42             | 10                              |
| 9S-13E-33CBD1                        | 30.0 | -131                | -16.2                 | +1.37             | 13                              |
| 9S-14E- 4BDC1                        | 42.5 | -135                | -17.7                 | +0.42             | . 14                            |
| 4CDB1                                | 34.0 | -131                | -16.8                 | +0.77             | 15                              |
| 9ADA1                                | 33.0 | -132                | -16.9                 | +0.85             | 17                              |
| 36DAC1                               | 29.0 | -130                | -16.8                 | +0.70             | 23                              |
| <sup>1</sup> 14S-14E-11CAB1S         | 12.0 | -126                | -17.1                 | -0.01             | 24                              |
| <sup>2</sup> 155-23E-14DDC1S         | 5.0  | -136                | -18.2                 | 0                 | 25                              |
| 146N-60E-13ACC1S (Nevaow)            | 4.0  | -127                | -16.7                 | +0.43             | 26                              |
| <sup>1</sup> 45N-55E-25DAALS(NEVADA) | 6.5  | -128                | -16.6                 | +0.65             | 27                              |

Table 5. Stable isotope analyses of water from selected wells and springs

<sup>1</sup>Young and Lewis (1980) <sup>2</sup>Unpublished data from A. H. Truesdell

area would be similar but somewhat more depleted isotopically relative to SMOW.

Although not as enriched in <sup>18</sup>0, thermal water represented by 3 and 9 (fig. 6) is similar in deuterium to the hottest water, 1, and probably originated as precipitation in about the same general vicinity. Lack of any significant enrichment in <sup>18</sup>O for water 3 may be due to shorter residence time or shallower depth of circulation of the water. Water similar to 10 and 14 could result from mixing of either 1, 3, or 9 with cooler, local ground water.

Water represented by 5 (fig. 6) is from a thermal spring in Salmon Falls Creek Canyon about 2 mi from the main Banbury area and about 1 mi from the wells that produce the hottest water. The depletion in deuterium relative to the hottest water indicates that this water was recharged in a different area.

Thermal water represented by 7, 15, 17, and 23 (fig. 6) could result from mixing of hot water, similar to 1, with cooler, local ground water, which more nearly resembles, isotopically, the cold water represented by 24, 26, and 27. Water represented by 23 is from a municipal well and may reflect some mixing with shallow ground water affected by local irrigation or urbanization. Water represented by 13 is from a well about 8 mi southwest from the Banbury Hot Springs area and is isolated, hydrologically, by numerous faults. Chemically and isotopically, this water is similar to some of the thermal water in southwestern Idaho described by Young and Lewis (1980) and to the thermal waters southeast of the Banbury area that were sampled during this study. The large oxygen shift evident for sample 13 may be due, in part, to evaporation, prior to being recharged to the regional thermal ground-water system.

Further indication of mixing of water of different compositions and temperatures to give the physical and chemical variations evident in Banbury thermal waters is shown by the comparisons in figures 7-10. Figure 7 shows the relation between chloride and deuterium for water in the Banbury area. Cold water similar to water represented by 25 in figure 7, and subject to constraints imposed by temperature and residence time, could result in thermal water having a chloride concentration that plots anywhere along an extension of line 1-9. Thermal water thus formed could mix with cold water similar in composition to 26 to produce any chemical variation of thermal water that would plot on a line radial to 26 between 26 and line 1-9. Similar relations of chloride with enthalpy, oxygen-18, and fluoride for thermal water of the Banbury area are apparent in figures 8-10.



In figures 7-10, water represented by point 23 is ignored due to probable influence on the water chemistry by recharge from runoff near Buhl. Also, the sample site is more than 5 mi from the study area, as is the site for sample 13, and little weight was given to either in the chemical interpretations.

## THERMAL GROUND-WATER DISCHARGE AND ASSOCIATED CONVECTIVE HEAT FLUX

Thermal ground-water discharge in the Banbury Hot Springs area was estimated for 26 wells and 2 springs. Water from these wells and springs is used for fish farming, swimming pools, therapeutic baths, space heating of private residences, and a greenhouse. Ultimate discharge of the water produced by the thermal wells and springs is, primarily, into the Snake River. For purposes of this study, all thermal water withdrawn from wells and springs is considered to be consumptively used.

Measurements or estimates of discharge for all wells and springs in the study area were made in early 1979 (well discharges are shown in tables 1 and 2; spring discharges are shown in table 2). Selected wells were measured again late in the summer of 1979 to determine seasonal changes in water withdrawals. No significant seasonal change was observed. Withdrawal for each well and spring was estimated by the measured or estimated discharge and the period of use. Thermal ground-water discharge in the Banbury Hot Springs area in 1979 was about 10,300 acre-ft.

Heat from the Banbury Hot Springs area geothermal system is discharged convectively in thermal water, which discharges naturally from springs or artificially from flowing wells and one pumped well. The convective heat flux from the system can be calculated as the product of the volume rate of discharge and the enthalpy (heat content) of the water in excess of the ambient (surrounding) air temperature, or:

$$H = M (h_r - h_r)$$

where,

Η

- М = mass discharge,
- = enthalpy of thermal water, and
- h hr = enthalpy of cold recharge water, at 10°C.

To estimate the total convective heat flux, the volume of thermal water discharge from each well or spring in 1979 was converted to an instantaneous flow rate, and the mass

Figure 9.--Relation of chloride to oxygen-18. Figure 10.--Relation of chloride to flouride.

28

h\_)

= heat loss, by convection, in calories per second,

discharge, M, was calculated. In the above equation, h is taken as the mean annual air temperature, which is about 10°C for the study area. Once withdrawn, subsequent percolation of thermal water is considered negligible, because after the water is used, it is discharged to the Snake River by means of ditches or pipes, and no heat is returned to the system. Total convective heat flux from the Banbury Hot Springs area in 1979 was  $1.1 \times 10^7$  cal/s.

### AREAL EXTENT OF THE GEOTHERMAL RESERVOIR

For this study, the areal extent of the geothermal reservoir in the Banbury Hot Springs area can only be approximated. Surface evidence of the reservoir includes several thermal springs and numerous thermal wells. On the basis of the surface evidence, approximate areas where proven and potential low-temperature geothermal resources occur were delineated (fig. 11). As additional wells are drilled and new data become available, the approximate boundaries will, undoubtedly, be altered.

Most of the thermal wells and use of the resource occur near a northwest-trending fault that has been mapped in the area. Thermal water probably moves upward along this fault from depths below 4,400 ft to mix in varying proportions with cooler, local ground water in a complex network of interconnected fractures. No thermal water occurs on the northeast side of the Snake River; and, for the purpose of this discussion, the general course of the river is considered an approximate boundary of the system. Thermal water occurs in wells to the northwest as far as the vicinity of Banbury Hot Springs Natatorium. Nearly 2 mi northwest of the natatorium, in the vicinity of Salmon Falls Creek, recently drilled wells produce water with temperatures as high as 72°C. The areal extent of the thermal water along Salmon Falls Creek is not well defined, due to lack of data. The northeastern boundary may be near well 8S-14E-19DAD1. This well was drilled to a depth of 700 ft, encountered water at a temperature of 30°C (markedly below other temperatures in the area), and had an artesian head slightly above land surface. Spring 8S-14E-31ACD1S, with a water temperature of 57°C at the surface, represents the southwestern surface expression of thermal water along Salmon Falls Creek. Chemical and isotopic data indicate that the 72°C water is probably representative of the deepcirculating component that mixes with cooler, local ground  $\sim$ water all along the Banbury system. Although some connection to allow mixing is implied by the water chemistry, no wells presently indicate that thermal water occurs in the area between Salmon Falls Creek and the Banbury Hot Springs Natatorium.



Figure 11.--Approximate proven and potential areas of low-temperature geothermal water.

### EXPLANATION



Approximate proven area of lowtemperature geothermal water



Approximate potential area of low-temperature geothermal water

Fault--dashed where approximately

) }



+ 42°30'

Deep Creek marks the southeastern extent of current development in the Banbury system. Chemical analyses of 25°-26°C water from two wells about 3 mi southeast of Deep Creek are similar to those of the Banbury thermal water. About 3 mi farther to the southeast, along an extension of one of the mapped faults, 29°C water is pumped from a well about 900 ft deep. The chemistry of the water from this well differs somewhat from that of the Banbury thermal water, but this may be due to mixing of recharge locally influenced by agricultural and urban development. Thermal water wells; however, additional data are necessary to extend the southeastern limits of the Banbury system continuously beyond Deep Creek.

Thermal water occurs in wells to the southwest only a short distance from the fault shown in the Banbury Hot Springs area (pl. 1), and the extent of the geothermal system to the southwest is unknown. Water temperatures in wells south of the Banbury area and east of Salmon Falls Creek range between 11° and 14°C. No data are available to indicate whether thermal water occurs below the cooler ground-water system.

West of Salmon Falls Creek, 9-12 mi southwest of the Banbury area, the temperature of water from three wells ranged from 24.5° to 30°C. Chemical analyses show a similarity of the water to thermal ground water in the regional system, and it is not likely that this water is associated with the thermal water in the Banbury Hot Springs area.

### SUMMARY

Rocks underlying the Banbury Hot Springs area are of volcanic and sedimentary origin and range in age from late Miocene to Holocene. Thermal water, temperatures of which range from 30° to 72°C, issues from two springs and flows from numerous shallow wells bottomed chiefly in silicic volcanics and basalt. Presently, thermal water is beneficially used by residents for home heating, swimming pools, therapeutic baths, catfish and tropical fish production, and greenhouse operation.

Most wells are located in a narrow belt near or along the extension of a northwest-trending fault. Other northwest-trending faults southwest of the study area act as barriers to ground-water movement from the southwest. Artesian heads in wells range from slightly above to 360 ft above land surface. The hottest water (temperature near 72°C) occurs in the vicinity of Salmon Falls Creek. On the basis of available heat-flow data, depth of circulation in the system required to attain water temperatures near 70°C is about 4,400 ft. Because these temperatures occur in water from wells 420 to 700 ft deep, some convective transport of heat, probably upward along faults, is indicated.

Recorders installed on two wells to monitor pressure and flow at the well head indicate a decline in the artesian head from 164 to 146 ft between July 1979 and March 1980, and a decline in discharge from 3,110 to 1,550 gal/min between April 1979 and March 1980. Declines may reflect seasonal fluctuation or may represent aquifer response to development of the resource. Continued monitoring is necessary to determine the nature of the decline.

Thermal waters sampled are sodium bicarbonate in character and are slightly alkaline (pH ranges from 7.9 to 9.5). A general increase in concentrations of chloride, fluoride, and boron occurs with increase in temperature. Relations of chloride with deuterium, oxygen-18, enthalpy, and fluoride and between stable isotopes of oxygen-18 and deuterium indicate a mixing of hot water from a single, deep source with shallow, cooler, local ground water to give the range of temperature and chemical makeup evident in the Banbury thermal waters. Concentrations of tritium in samples indicate that most thermal water contained little or no post-1954 water and is probably at least 100 years old and perhaps more than 1,000 years old. One sample of  $33^{\circ}$ C water contained 4.1  $\pm 0.2$  TU and may have had a residence time of only 29 years.

Probable maximum reservoir temperatures, estimated by using the silica and the Na-K-Ca geothermometers, are generally between about 70° and 100°C. The sulfate-water geothermometer indicates that maximum reservoir temperatures in the Banbury system are probably near 90°C.

Measurements or estimates of discharge for all wells and springs in early 1979 indicated a total thermal water discharge of 10,300 acre-ft annually. Heat, which is removed from the Banbury system in the thermal water discharge, amounted to  $1.1 \times 10^7$  cal/s in 1979.

Proven areas of low-temperature geothermal resources (where thermal water is being removed and used beneficially) are near or along an extension of a northwest-trending fault. Potential areas of low-temperature geothermal resources lie between the proven areas along or near the same fault.

### SELECTED REFERENCES

- Brook, C. A., and others, 1979, Hydrothermal convection systems with reservoir temperatures >90°C, in Muffler, L. J. R., ed., Assessment of geothermal resources of the United States: U.S. Geological Survey Circular 790, 163 p.
- Craig, Harmon, 1963, The isotopic geochemistry of water and carbon in geothermal areas, in Tongiori, E., ed., Spolette Conference on Nuclear Geology and Geothermal Areas, Spolette, 1963: Rome, Consiglio Nazionale delle Recerche, 17 p.
- Ellis, A. J., and Mahon, W. A. J., 1977, Chemistry and geothermal systems: New York, Academic Press, 392 p.
- Fournier, R. O., and Potter, R. W. II, 1979, Magnesium correction to the Na-K-Ca chemical geothermometer: Geochimica et Cosmochimica, Acta., v. 43, p. 1543-1550.
- Fournier, R. O., and Rowe, J. J., 1966, Estimates of underground temperature from silica content of water from hot springs and wet steam wells: American Journal of Science, v. 264, p. 685-695.
- Fournier, R. O., Sorey, M. L., Mariner, R. H., and Truesdell, A. H., 1979, Chemical and isotopic prediction of aquifer temperatures in the geothermal system at Long Valley, California: Journal of Volcanology and Geothermal Research, v. 5, p. 17-34.
- Fournier, R. O., and Truesdell, A. H., 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochimica et Cosmochimica, Acta, v. 36, p. 1255-1275.
- Fournier, R. O., White, E. D., and Truesdell, A. H., 1974, Geochemical indicators of subsurface temperature, Part I, basic assumptions: U.S. Geological Survey Journal of Research, v. 2, no. 3, p. 259-262.
- Gat, J. R., 1971, Comments on the stable isotope method in regional groundwater investigations: Water Resources Research, v. 7, no. 4, p. 980-993.
- Kharaka, Y. K., and Barnes, Ivan, 1973, SOLMNEQ--solutionmineral equilibrium computations: Menlo Park, Calif., U.S. Geological Survey Computer Contributions, 82 p.
- Malde, H. E., and Powers, H. A., 1972, Geologic map of the Glenns Ferry-Hagerman area, west-central Snake River Plain, Idaho: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-696, 2 sheets.

- Malde, H. E., Powers, H. A., and Marshall, C. H., 1963, Plain, Idaho: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-373, 1 sheet.
- McKenzie, W. F., and Truesdell, A. H., 1977, Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drill holes: Geothermics, v. 5, p. 51-61.
- Nehring, N. L., and others, 1979, Sulfate geothermometry of thermal springs in the western United States: U.S. Geological Survey Open-File Report 79-1135, 11 p.
- Nir, A., 1964, On the interpretation of tritium "age" measurements of groundwater: Journal of Geophysical Research, v. 69, no. 12, p. 2589-2595.
- Pearson, F. J., and Truesdell, A. H., 1978, Tritium in the waters of the Yellowstone National Park, in Zartman, R. F., ed., Short Papers of the Fourth International Conference, Geochronology, Cosmochronology, Isotope Géology, 1978, Colorado, August 20-25, 1978: U.S.
- Ross, S. H., 1971, Geothermal potential of Idaho: Moscow, Idaho, Idaho Bureau of Mines and Geology Pamphlet 150, 72 p.
- Schoen, Robert, 1972, Hydrochemical study of the National Reactor Testing Station, Idaho, in Hydrogeology, International Geology Congress, 24th, Montreal, Section 11: p. 306-314.
- Stearns, N. D., Stearns, H. T., and Waring, G. A., 1937, Thermal springs in the United States: U.S. Geological Survey Water-Supply Paper 679-B, 200 p.
- Young, H. W., and Lewis, R. E., 1980, Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada: U.S. Geological Survey Water-Resources Investigations/Open-File Report (in press).
- Young, H. W., and Mitchell, J. C., 1973, Geothermal investigations in Idaho, Part 1, Geochemistry and geologic setting of selected thermal waters: Idaho Department of Water Resources Water Information Bulletin No. 30, 43 p.

Reconnaissance geologic map of west-central Snake River

Geological Survey Open-File Report 78-701, p. 327-329.



# UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY WATER RESOURCES DIVISION Box 036 Federal Building, Room 365 550 West Fort Street Boise, Idaho 83724

November 17, 1980

TO: Users of Geothermal Data

Enclosed is Water-Resources Investigations/Open-File Report 80-563, "Geothermal Resources in the Banbury Hot Springs Area, Twin Falls County, Idaho," by R. E. Lewis and H. W. Young.

This report was prepared in cooperation with the U.S. Department of Energy and defines the nature and extent of the geothermal reservoir in the Banbury Hot Springs area. Specifically, the report describes the quantity of thermal water being used; the areal extent of the thermal reservoir; and the temperatures, pressures, and chemistry of the water at depth.

If you require additional information concerning this report, please contact this office.

Sincerely yours,

E.F. Hubbord

E. F. Hubbard District Chief

Enclosure