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INTRODUCTION 

The May 18, 1980 eruption of Mount St. Helens, Washington, filled 
the upper North Fork of the Toutle River with debris as much as 150 m 
thick. Deposits from (1) an avalanche consisting of hot and cold rock 
debris and ice blocks, (2) a hot "lateral blast", (3) pyroclastic flows, 
and (4) mudflows cover more than 500 km^ of devastated area to the 
northwest, north, and northeast of the volcano. Interactions between 
the hot deposits and shallow ground water produced ephemeral phreatic 
eruptions and thermal ponds and streams. In early June we collected 
water and sediment samples from about 20 sites in the devastated zone 
to study the initial alteration of the new deposits, and the effects of 
the eruption on water chemistry. We were also interested in the levels 
of certain trace elements in thermal waters, and whether these mineral
ized waters were reaching the North Fork Toutle River in appreciable 
quantities. 

In the following sections we discuss collection and analysis pro
cedures, the mineralogy of the new deposits, and the chemistry of the 
thermal waters. Finally, we compare the chemistry of water from dif
ferent deposits, and discuss alteration reactions suggested by the water 
chemistry and the mineralogy of the deposits. A detailed discussion of 
alteration reactions, based on data presented in this report as well as 
that collected since June, 1980, will appear elsewhere (Dethier, Pevear, 
and Frank, in preparation). 

METHOD 

We collected water, suspended-sediment, and dry sediment samples 
from 18 sites to the north and west of Mount St. Helens (Figure 1) on 
June 7 and 8, 20 days after the catastrophic eruption of May 18. In 
addition, we collected sediment samples from four other locations, 
including several steam vents, and T. Casadevall (U.S. Geological Survey) 
provided us with four water samples collected on June 5. To aid in 
comparative studies, we also analyzed the mineralogy and texture of some 
70 air-fall tephra samples collected from the slopes of the volcano to 
as far as North Platte, Nebraska from late March through early August. 
Appendix 1 gives a detailed description of water and sediment-sample 
locations, and Appendix 2 shows the location of the air-fall tephra 
collection sites. 

Sediment samples were air-dried and the <2-ym fraction was sepa
rated by centrifugation. Oriented <2-ym samples and bulk, randomly 
oriented samples were treated by standard methods (Jackson, 1974), and 
analyzed by x-ray diffraction techniques on a General Electric XRD-5 
diffractometer, and by scanning electron microscope (SEM) methods using 



an AMR-1200 equipped with an energy-dispersive beam analyzer (EDAX). 
Selected samples were treated with DMSO to check for kaolinite (Abdel-
Kader, Jackson, and Lee, 1978). Grain mounts and thin sections were 
examined by standard petrographic techniques. 

Water temperature, pH, and specific conductance were measured in 
the field, and on return to the laboratory, where about one liter of 
each sample was filtered through a 0.45-ym cellulose filter. Filtered 
and unfiltered samples were submitted to the Central Laboratory by the 
Tacoma District Office of the U.S. Geological Survey and were analyzed 
by standard methods (Skougstad et al, 1978) for about 75 constituents. 

DATA 

Mineralogy Table 1 lists the major, minor, and trace minerals present 
in selected deposits at Mount St. Helens, and in air-fall tephra collected 
at some distance from the mountain. Mineralogy of the <2-ym fraction of 
samples collected June 7 and 8 is listed in Appendix 3. Plagioclase 
(andesine), glass, and ferromagnesian minerals dominate the >2-um fraction 
of most of the samples, while trioctahedral smectite accompanies these 
minerals in the <2-pm fraction of all samples. Hypersthene and horn
blende are the principal ferromagnesian minerals, while minor clinopy
roxene has been reported by some authors (see Fruchter et al, 1980; 
Korosec, Rigby, and Stoffel, 1980) and minor amounts of mica, probably 
biotite, are present in some samples. Titaniferous magnetite, often 
intergrown with apatite, is the major opaque mineral described in all 
samples we collected,, and constitutes at least 5 percent, by weight, of 
some air-fall tephra (Korosec, Rigby, and Stoffel, 1980). Cristobalite 
and tridymite occur in most samples but account for less than 5 percent 
of the <2-um fraction. Oxidized iron minerals, hematite and possibly 
goethite, occur in large altered blocks in the debris-avalanche deposit, 
and are probably present as trace constituents in other deposits. Zeo
lites (phillipsite and chabazite) have also been identified in both the 
coarse and fine fraction of the avalanche deposit, and are probably 
derived from older portions of the cone which were incorporated by the 
avalanche. Finally, chlorite and smectite/chlorite intergrade occur in 
trace to minor amounts in many samples. 

Gypsum and sulfur were noted coating rocks at the mouth of a fuma-
role (SHW-CW) which exceeded 150°C on June 7. Gypsum was identified as 
a surface coating at several places in the pyroclastic flows, and at 
steam vents in the pyroclastic flows and the debris avalanche deposit. 
None of these minerals were present as suspended sediment in any of the 
thermal waters we sampled. 

Water chemistry Appendix 4 lists complete chemical analyses for 18 
water samples collected in early June from Spirit Lake thermal ponds, 
and streams in the devastated area northwest of Mount St. Helens, two 



samples collected from the Spirit Lake outlet and the North Fork Toutle 
River before May 18, and includes partial analyses of four samples 
collected at lakes in the blast area on June 5. The range in concentra
tion of the major and minor constituents in these samples is listed in 
Tables 2 and 3, respectively. Sodium and calcium were the dominant 
dissolved cations in all samples, while the anions sulfate and chloride 
predominated in most samples, and bicarbonate, as calculated from alka
linity, was the major anion in 2 samples. Specific conductance was 
highly correlated { r ^>0 .9 ) with the concentration of each of the major 
ions, with the smallest scatter present in plots of specific conductance 
and chloride (see Figure 2). 

The pH of most samples was near neutral, and while field pH measured 
at Spirit Lake (Samples SHW 8-13) averaged about 6.0, laboratory values 
were almost one-half pH unit higher. The reasons for this discrepancy 
are not known, but field and laboratory values for near-neutral waters 
were generally within 0,2 pH units of each other. Concentrations of 
dissolved silica displayed the smallest range of any measured constituents. 

Analyses were performed for about 25 substances which are usually 
considered to be "trace" or "minor" constituents in water. Only 10 of 
these were found at detectable levels in most samples in either dissolved 
or suspended form. Manganese, iron, boron, and strontium were present 
at concentrations exceeding 500 pg/L in many samples, and manganese was 
the major dissolved "trace" metal in all samples. Manganese concentra
tion exceeded the 50 pg/L drinking water standard recommended by the 
Environmental Protection Agency (1976) in 20 out of 24 samples, while 
iron exceeded standards in 7 samples. "High" levels of dissolved lead 
were reported for SHW 11 and 13, but these samples reported lower "total" 
lead levels, so the dissolved values may be incorrect. Arsenic, boron, 
and lithium were detected in most samples, but at much lower levels than 
those reported for thermal waters at Mount Hood (Wollenberg et al, 1979), 
Mount Baker (Frank, in press), the Long Valley Caldera (Sorey et al, 
1978), and at Yellowstone National Park (Stauffer, Jenne, and Ball, 1980). 
However, with the exception of two springs at Mount Hood, dissolved 
manganese levels measured in the thermal waters at Mount St. Helens are 
much higher than those reported in these other studies. 

DISCUSSION 

Mineralogy Eruptive products from Mount St. Helens consist of a 
magmatic component (glass, plagioclase, hypersthene, hornblende, and 
magnetite) and a lithic component which includes, in addition to the 
minerals just noted, smectite, chlorite, interlayered chlorite/smectite, 
mica, cristobalite, tridymite, and quartz. The minerals unique to the 
lithic component are present in the early (March 27-May 17) phreatic 
tephra and in the old, altered rock of the debris avalanche, but are 



absent from the new pumice flows and, with the exception of cristobalite, 
from the dome that formed in the crater in June. The lithic fragments 
were probably abraded from the vent by escaping volatiles during eruptive 
events. Because of high-velocity grain impacts, appreciable abrasion 
must occur during eruptions, as minerals such as plagioclase are present 
even in the <0.2-pm size fraction. 

Smectite is the dominant mineral in the <2-pm size fraction of all 
1980 deposits. The smectite appears to be trioctahedral on the basis of 
the 060 reflection at 1.54 A and the absence of a peak near 5 A on the 
heat-treated (collapsed) samples. Cavities in altered old rocks from 
the debris avalanche are filled with zeolites and smectite which appear 
to have crystallized from interstitial solutions. The dissolved compo
nents of these solutions may have been derived from ferromagnesian 
minerals, glass, and plagioclase. The smectite in the 1980 deposits is 
probably derived from this type of material, although some fraction may 
have formed by hydrothermal alteration during the present eruptive cycle. 
However, it is unlikely that the smectite survived heating to near-
magmatic temperatures, since it is unstable at temperatures greater than 
about 450°C. 

Chlorite is rarely present in the air-fall tephra and pyroclastic 
flows, and is only slightly more common in the rock of the debris ava
lanche and blast deposit. It could have formed by hydrothermal alteration 
of biotite or by alteration of the trioctehedral smectite. The presence 
of interlayered chlorite/smectite (smectite with hydroxy interlayers) in 
most samples and its relative abundance in some tephra heated by fumarolic 
activity suggests that the transformation series trioctahedral smectite ^ 
mixed-layer chlorite/smectite -> chlorite is present at Mount St. Helens. 

Silica polymorphs are abundant in the altered rock of the debris 
avalanche, and in the lithic tephra. They are absent from the new pumice, 
but a fragment of the June dome contained abundant cristobalite, but 
little or no glass. Cristobalite in rocks of the dome probably formed 
by high-temperature devitrification of the matrix glass. Silica poly
morphs in the altered rock of the debris avalanche may have an origin 
similar to that of the dome or may have formed at lower temperature by 
hydrothermal processes. However, silica vein-fillings are apparently 
absent, and the predominance of smectite, suggest that low-temperature 
conditions at slightly basic pH were most common in the cone of Mount St. 
Helens before the May 18 eruption. Minerals characteristic of hydro-
thermal acid-sulfate alteration (Frank, in press), like vein- or vesicle-
filling kaolinite, cristobalite, or opal, are conspicuously absent. 

Water chemistry The data listed in Appendices 3 and 4 provide a 
basis for comparison of water chemistry before and after the eruption at 
the same site, and the comparison of water composition from Spirit Lake 
to waters in the pyroclastic flows and in the debris-avalanche deposit. 



In Figure 3 we compare the chemistry of a water sample collected on 
March 28 at the outlet of Spirit Lake to SHW-10, collected from Spirit 
Lake on June 8. Dissolved aluminum and silica were enriched by about 
500 percent over late March levels, the major cations and bicarbonate 
were enriched by 10 to 50X, and concentrations of SOi+, Cl, As, B, Fe, 
Li, Mn, and other trace metals (not plotted) were more than 50 times the 
pre-eruption values. Arsenic, boron, chloride, lithium, and sulfate are 
thought to have become enriched on particle surfaces during the eruption 
(see, for instance, Fruchter et al, 1980), and were easily leached when 
the deposits came in contact with water. High levels of major cations 
suggest accelerated weathering processes, probably due to the attack of 
slightly acidic waters on the glass, plagioclase, and pyroxene abundant 
in the new deposits; reaction rates were probably aided by the high sur
face area of material in contact with the warm weathering solutions. 
Low concentrations of silica and aluminum suggest that they are relatively 
immobile in the weathering reactions. The enrichment of manganese and 
iron may be related to mobilization and complexation of these metals by 
organic compounds, rapid oxidation and weathering of magnetite and the 
ferromagnesian minerals, or other factors. 

Many of the patterns shown in Figure 3 are also apparent in a com
parison of Spirit Lake and pyroclastic-flow waters to a thermal pond in 
the debris avalanche, and to a sample from the North Fork Toutle River 
(see Figures 4 and 5). Concentrations of major ions in Spirit Lake ex
ceeded those measured in waters draining pyroclastic flows, and concen
trations in the North Fork Toutle River were generally lower than those 
measured upstream. In early June, apparently only small amounts of the 
mineralized upstream waters were reaching the North Fork Toutle River; 
the water in the North Fork at that time was derived mainly from the 
blast zone south of the North Fork valley. In all cases the major ions 
were sodium, calcium, sulfate, and chloride, but major amounts of bicar
bonate were present in some samples. Trace metals were highly enriched 
in Spirit Lake water and, for most elements, in the thermal ponds in the 
debris-avalanche deposit. Very high levels of iron and manganese were 
determined in Spirit Lake water, but in the debris avalanche, manganese 
levels were high and iron levels low, suggesting the precipitation of an 
iron-rich phase. T. Casadevall (written communication, 1980) observed 
that while iron and manganese concentrations in Spirit Lake were similar 
in late May, by mid-July iron levels had decreased by about 30X, while 
Mn levels remained nearly constant. Precipitation mechanisms may be 
similar in both cases, but additional studies are required to establish 
specific reactions. Relatively high manganese levels were present in 
each of the water types, but with the exception of dissolved iron, trace-
metal levels in the North Fork Toutle River were lower than those closer 
to Mount St. Helens. 
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TABLE 1 

Mineralogic composition of deposits erupted from Mount St. Helens in 1980 

V i t r i c pyroclast ic flows^ and i ,-a.u,-^ ,,-^ ^r^n +.' „ u ^ . Debris-avalanche 
v i t r i c a i r - f a l l tephra l i t h i c a i r - f a l l tephra ^^^ ^^^^^ deposits^ 

glass 

plagioclase 

>2-pM hypersthene 

hornblende 

magnetite 

<2-pM 

minor glass 

plagioclase 

hypersthene 

hornblende 

magnetite 

smectite 

mixed layer chl./smect. 

tridymite 

cristobalite'* 

quartz 

plagioclase 

mica 

minor glass 

plagioclase 

hypersthene 

hornblende 

magnetite 

gypsum^ 

sulfur^ 

thenardite^ 

smectite 

chlorite 

mixed layer 
chl./smect. 

cristobalite 

tridymite 

quartz 

chabazite 

phillipsite 

hematite 

unidentified, poorly 
crystallized, 
iron-rich phase 

\ J Unless individual pumiceous shards are carefully sampled and cleaned, 
"lithic" contaminants like smectite and cristobalite are present in all 
1980 deposits. 

TJ Contains abundant, charred organic matter at many locations. 

y Present as a condensate or encrusting precipitate. 

4/ Present in the June dome as well. 



Table 2 

Concentration range for dissolved major ions 

in surface water at Mount St. Helens in early June, 1980 

Ion Range (N=22) 
MG/L 

Ca 1.6-229 

Mg 0.4-51 

Na 1.3-270 

K 0.3-31 

SOit 2.2-730 

Cl 2.0-340 

"C°3^ 0-171 

F 0.0-0.7 

Si02 6.7-46 

pH 6.1-7.5 

1/ calculated from alkalinity 



Table 3 

Concentration range for dissolved trace elements 

in surface water at Mount St. Helens in early June, 1980 

Constituent 

Al 

As 

Ba 

B 

Fe 

Pb 

Li 

Mn 

Ni 

Sr 

Sb, Be, Cd, 
Co, Cu, Hg, 
Se, Ag, V, 

Cr, 
, Mo, 
Zn 

Range (N=22) 
pG/L 

0-250 

1-12 

4-100 

0-870 

40-3600 

0-110(?) 

4-160 

17-5400 

0-10 

10-1000 

Detected in 
<5 samples, 

at concentrations 
from 1-15 pg/L 

Drinking Water 
Standard^ 
pG/L 

50 

1000 

300 (7) 

50 

50 (20) 

y U.S. Environmental Protection Agency (1976); the number of samples 

exceeding the drinking water standard is shown in parentheses. 



Figure 1.—Deposits erupted from Mount St. Helens on 18 May 1980(modified from 
Rosenfeld, 1980) and June sample s i tes . 
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Figure 2.--Plot of chloride vs specific conductance for 20 samples of 
surface water from Mount St. Helens, Washington. 
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Location of air-fall tephra collection sites 
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APPENDIX 3 
Mineralogy of samples collected in early June, 1980 near Mount St. Helens 
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ST. HELENS SAMPLES (<2ym) 
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ST. HELENS SA,MPLES—Random Bulk Samples 
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M=major; m=minor; t = t r a c e 
W=wet sample collected from thermal pond or stream 
D=dry sample collected near thermal pond or stream 
F=suspended sediment sample collected on 0.45 pi filter paper 
Plag.=plagioclase, Amph.=amphibole, Pyrox.=pyroxene, Mica=mica, Crist.=cristobalite, 
Trid.=tridymite, Qtz.=quart2, Smect.=trioctahedral smectite, 
ML Ch/Sm.=mixed layer chlorite/smectite, Chlor.=chlorite, HEM.=hematite, GYP.=gypsum 
SUL.=sulfur 

21 



APPENDIX 4 
Chemical analyses for water samples collected at Mount St. Helens in early June, 1980 
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