FC USGS OFR 81-96

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

Analytical Results for 30 Water Samples from Mineral Mountains, Utah

Ву

John B. McHugh, Walter H. Ficklin, and William R. Miller

University of Utah Research Institut Earth Science La

Open-File Report 81-96

CONTENTS

	Page
Abstract	. 1
Introduction	. 1
Sample collection technique	. 1
Analytical techniques	3
Results	. 3
References cited	. 8
ILLUSTRATIONS	
Figure 1 Index map of Mineral Mountains, Utah	2
TABLES	
Table 1Sample locality numbers and sample sources of 30 water	
samples, Mineral Mountains, Utah	4
Table 2Water analyses from Mineral Mountains, Utah	5
Table 3Summary of chemical analyses of 30 water samples,	
Mineral Mountains, Utah	7

G

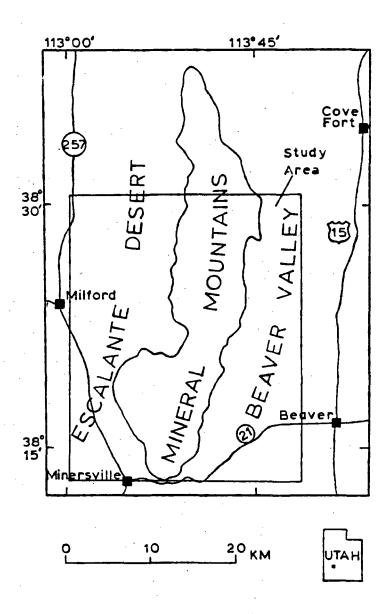
(.

ABSTRACT

Thirty water samples were collected from the Mineral Mountains, west-central Utah, during the summer of 1978, as a part of a hydrogeochemical study of the area. The water samples were analyzed for calcium, magnesium, sodium, potassium, lithium, silica, alkalinity, sulfate, chloride, fluoride, zinc, copper, molybdenum, arsenic, and uranium. Temperature, specific conductance, and pH were also measured. The results of the sample analyses are presented in this report.

C.

INTRODUCTION


Thirty water samples were collected from twenty-one springs, five wells, three surface streams, and one mine adit during June of 1978, in the Mineral Mountains, Utah. The Mineral Mountains are in west-central Utah. Figure 1 is an index map of the study area.

Temperatures were measured at the sample site. The pH was measured on the day of collection, but not at the sample site. The remaining analyses were completed at the U.S. Geological Survey laboratory in Denver, Colorado. The results of the analyses are given in this report.

The data in this report were used for interpretation in the preparation of an earlier report (Miller and others, 1979).

SAMPLE COLLECTION TECHNIQUE

Samples were collected using acid-rinsed polyethylene bottles. At each locality, a 60-mL sample was collected, filtered through a $0.45-\mu m$ membrane filter, and acidified with reagent-grade concentrated nitric acid to pH<2. An untreated 0.5-L sample was also taken.

C

Figure 1.-- Index map of Mineral Mountains, Utah

ANALYTICAL TECHNIQUES

Water temperature was measured at the sample site. The pH was measured on the day of collection, but not at the sample site. The remaining analyses were carried out in the laboratory of the U.S. Geological Survey in Denver, Colorado. Alaklinity, sulfate, chloride, fluoride, and specific conductance were determined using the untreated sample. Calcium, magnesium, sodium, potassium, lithium, silica, zinc, copper, molybdenum, arsenic, and uranium were determined using the 0.45-µm filtered and acidified sample.

Specific conductance and pH were measured using standard instrumental methods. Alkalinity was determined by Gran's plot potentiometric titration (Orion Research, 1978). Sulfate, chloride, and fluoride were analyzed by ion chromatography (Smee and Hall, 1978, p. 245). Calcium, magnesium, sodium, potassium, lithium, silica, and zinc were analyzed by flame atomic absorption spectrophotometry (Perkin-Elmer Corp., 1976). Copper, molybdenum, and arsenic were analyzed by flameless atomic spectrophotometry (Perkin-Elmer Corp., 1977). Uranium was analyzed by a fluorometric method (McHugh, 1979).

RESULTS

Sample locality numbers and sample sources are shown in table 1. Table 2 shows analytical data for each sample locality, as well as the locality's latitude and longitude in degrees, minutes, and seconds. Table 3 is a summary of the chemical analyses for the 30 Mineral Mountain water samples showing each variable with its minimum and maximum values, mean, geometric mean, standard deviation, and geometric deviation.

Table 1.--Sample locality numbers and sample sources of 30 water samples, Mineral Mountains, Utah

 Sample no.	Source of sample					
 72 263 509 547 548	Spring, near Shearing Corral Spring Salt Spring Spring, near Boulder Spring Porcupine Canyon Creek Solomons Hollow Creek					
569 570 587 590 875	Right fork of Cherry Creek Granite Spring Mud Spring Rock Corral Spring Spring					
1329 1331 1333 1334 1335	Flowing water from mine adit Guyo Spring Oak Spring North Spring Dripping Spring					
1337 1339 1342 1349 1354	Poleline Spring Griffith Spring Kirk Spring Willow Spring Spring, near Jackrabbit Spring					
 1356 1360 1361 1368 1369	Hawks Nest Spring Carlyle Spring Well Fourmile Spring Cowboy Spring					
1372 1381 1382 1383 1607	Well Well Well Well Spring					

Table 2. --- WATER ANALYSES FROM MINERAL MOUNTAINS, UTAH

sample	LATITUDE	LONGITUD	CA(mg/L)	MG(mg/L)	NA(mg/L)	K(mg/L)	LI(ug/L)	\$102(mg/L)	ALK(mg/L)	\$04(mg/L)	CL (mg/L)
72	38 16 49	112 55 38	78	32	10	3	20	30	200	70.0	130.0
263	38 30 27	112 51 8	120	25	1,623	257	21,000	46	298	7.8	3,636.0
509	38 24 16	112 48 12	23	3	8	1	4	16	53.	6.0	14.0
547	38 22 32	112 47 17	18	3	8	1	. 4	20	51	6.0	10.0
548	38 21 53	112 47 32	18	4	10	1	10	. 22	70	4.8	9.1
569		112 50 29	- 28	6	10	. 1	9	2.2	108	7.9	14.0
570	38 17 58	112 50 2	95	51	30	1	20	20	311	181.0	80.0
587		112 47 27	58	8	30	1	56	24	195	31.0	65.0
590	38 22 19	112 49 57	, 13	3	8	1	4	20	41	3.6	7.3
875	38 13 2	112 50 8	38	12	38	-5	14	36	191	40.0	43.0
1329		112 53 22	128	46	23	. 3	17	22	195	371.0	54.0.
1331		112 53 50	125	58	4.3	. 2	25	20	388	156.0	39.0
1333		112 54 53	68	27	18	3	12	. 50	245	61.0	50.0
1334		112 55 46	65	33	. 50	3	11	16	233	91.0	50.0
1335	38 16 34	112 52 5	123	43	30	1	18	10	312	184.0	54.0
1337		1.12 51 43	110	22	15	. 2	8	12	335	18.0	34.0
1339		112 53 21	75 [*]	19	50	2	5	16	263	13.0	21.0
1342		112 50 34	50	9	33	4	30	30	201	16.0	41.0
1349		112 45 13	58	10	33	4	30	30	231	15,0	38.0
1354	38 28 10	112 47 2	28	. 5	18	7	10	30	131	6.6	16.0
1356		112 42 13	25	4.	5	1	6	14	5.5	6.2	10.0
1360		112 44 58	50	9	38	8	50	44	231	8.5	53.0
1361		112 42 44	43	8	13	3	. 11	18	162	16.0	16.0
1368		112 40 1	40	6	10	5.	, 5	22	82	9.1	57.0
1369	38 29 1	112 41 47	93	19	. 33	. 1	. 25	14	391	50.0	65.0
1372	38 29 41	112 40 6	100	14	23	1	14	32	277	21.0	1.25.0
1381	38 21 13	112 59 43	120	45	4.8	4	31	30	140	161.0	282.0
1382	38 19 1	112 59 27	125	33	33	5	24	30	161	107.0	212.0
1383		112 59 28	83	14	28	5	15	30	245	60.0	62.0
1607	38 14 44	112 52 30	285	100	85	. 3	40	20	255	952.0	142.0

Table 2. --- WATER ANALYSES FROM MINERAL MOUNTAINS, UTAH --- continued

şample	f(mg/L)	ZN(ug/L)	CV(ug/L)	MO(ug/L)	AS(ug/L)	U(ug/L)	SP.COND.	рН	TEMP.(C)
72	.46	8.8	.7	8.6	4.9	8.6	715	8.25	12.0
263	2.50	24.0	13.0	3.0	740.0	<.2	10,000	6.05	24.0 -
509	.21	5.0	. 8	<1.0	.2	. 3	141	6.80	7.0
547	.51	2.9	1.0	<1.0	. 4	• 5	130	7.90	10.5
548	.43	1.5	2.0	<1.0	. 3	1.0	169	6.90	7.5
569	1.10	3.3	<1.0	3.9	.3	8.4	260	8.10	19.0
570	.64	3.3	1,.1	7.1	1.0	2.9	1,040	7.55	12.0
587	1.80	3.9	1.2	93.0	• 1.5	740.0	540	7.10	12.5
590	.11	2.6	1.0	1.2	. 4	<.2	120	7.65	9.5
875	1.00	1.4	1.0	3.5	4.5	7.6	455	7.85	11.5
1329	-50	43.0	3.0	4.5	4.1	6.1	980	7.95	12.5
1331	•06	4.6	1.6	1.7	. 2.5	6	1,120	7.55	14.0
1333	•21	35.0	<1.0	10.8	3.6	15.0	620	7.05	12.5
1334	.45	1.7	1.4	8.1	2.5	10.0	650	8.25	11.5
1335	.17	4.5	1.1	3.1	.9	• 9	950	7.45	12.0
1337	-10	2.3	.8	<1.0	5.0	• 5	730	7.45	11.5
1339	1.30	2.4	1.2	3.7	. 3	7.6	584	7.50	. 10.5
1342	.80	2.7	1.7	3.7	2.3	6.4	465	7.20	13.5
1349	.79	3.9	1.7	1.7	1.1	47.0	460	7.60	10.0
1354	-25	6.3	1.4	10	1.1	. 5	270	7.20	11.0
1356	.12	3.0	1.5	1.0	2.1	.2	125	7.20	15.0
²⁷ 1360	.49	3.1	1.1	<1.0	2.0	3.8	500	7.35	9.0
1361	.24	2.9	1.1	2.0	• 3	7.8	355	8.00	11.5
1368	10	4.4	1.5	<1.0	1.0	. 4	320	7.70	7.0
1369	.14	2.4	2.3	2.5	.9	11.2	680	7.95	11.5
1372	•50	4.4	1.6	<1.0	1.8	1.6	710	7.60	17.5
1381	.45	4.4	3.8	2.4	5.4	3.5	1,160	8.00	18.0
1382	.25	4.0	1.5	1.ž	3.6	4.2	1.080	8.25	14.5
1383	.30	24.0	3.0	1.1	3.0	12.0	630	7.80	13.0
1607	•55	2.0	3.8	4.4	1.4	2.6	2,150	7.30	12.0

/Table 3.--Summary of chemical analyses of 30 water samples, Mineral Mountains, Utah

Variable	Minimum	Maximum	Mean ·	Geometric mean	Standard deviation	Geometric deviation
Ca (mg/L)	13.	285.	76.1	60.0	54.6	2.08
Mg (mg/L)	3.0	100.	22.4	14.3	21.8	2.71
Na (mg/L)	2.3	1,623.	77.4	21.7	292.	3.06
K (mg/L)	1.0	257.	11,2	2.54	46.5	3.03
Li (µg/Ĺ)	4.0	21,000.	7,016.	18.2	3,834.	6.62
SiO ₂ (mg/L)	10.	46.	23.9	22.4	8.76	1.44
Alkalinity (mg/L)	41.	391.	202.	172.	99.2	1.90
SO ₄ (mg/L)	3.6	952.	88.4	28.5	182.	4.31
Cl (mg/L)	7.3	3,636.	181.	47.0	655.	3.49
F (mg/L)	.06	2.5	.530	.350	.549	2.51
Zn (μg/L)	1.4	43.	7.26	4.35	10.2	2.41
Cu (µg/L)	.7	13.	2.03	1.58	2.31	1.83
Mo (µg/L)	1.0	93.	7.53	3.32	18.8	2.75
As (μg/L)	.2	740.	26.6	1.66	135.	4.56
Specific conductance (µmhos/cm)	120.	10,000.	937.	542.	1,764.	2.51
pH	6.05	8.25	7.55		.491	
Temp. (C°)	7.0	24.	12.5	12.0	3.58	1.31

References cited

- McHugh, J. B., 1979, Portable field kid for determining uranium in water:
 U.S. Geological Survey Open-File Report 79-429, 14 p.
- Miller, W. R., McHugh, J. B., and Ficklin, W. H., 1979, Possible uranium mineralization, Mineral Mountains, Utah: U.S. Geological Survey Open-File Report 79-1354, 44 p.
- Orion Research, Inc., 1978, Analytical methods guide, 9th ed.: Cambridge, Massachusetts, 48 p.
- Perkin-Elmer Corporation, 1976, Analytical methods for atomic absorption spectrophotometry: Norwalk, Connecticut, Perkin-Elmer Corp., 586 p.
- , 1977, Analytical methods for atomic absorption spectrophotometry, using the HGA graphite furnace: Norwalk, Connecticut, Perkin-Elmer Corp., 208 p.
- Smee, B. W., and Hall, G. E. M., 1978, Analysis of fluoride, chloride, nitrate, and sulphate in natural waters using ion chromatography:

 Journal of Geochemical Exploration, v. 10, no. 3, p. 245-258.