U.S. GEOLOGICAL SURVEY

SAUDI ARABIAN PROJECT

MISCELLANEOUS DOCUMENT 23

(INTERAGENCY REPORT 357)

PROGRAM PDPOO4: CONTUR
by
M. M. Donzeau, L. D. North, M. E. Getting

The work on which this report is based was performed in accordance with a cooperative agreement between the U.S. Geological Survey and the Ministry of Petroleum and Mineral Resources, Kingdom of Saudi Arabia.

> OPEN-FILE REPORT 81-7C/
> This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Use of trade names is: for descriptive purposes only and does not constitute endorsement by the tusSis.

U.S. Geological Survey Jiddah, Saudi Arabia 1981

CONTENTS

Page
ABSTRACT 1
SOURCE DECK LOCATION AND UPDATE STATUS 3
DESCRIPTION OF COMPUTED QUANTITIES 5
DESCRIPTION OF THE PROGRAM 7
Main modifications 7
Overlays. 8
Modifications routine by routine 12
Files used in the program 17
Input cards 17
Size of the program 17
PROGRAM OPERATION. 21
Input files 21
Control data file 21
Input data file 31
Error messages 32
Errors in the plot 36
Directions for use of program 37
EXAMPLES 39
Example number one 39
Example number two 40
SOURCE PROGRAM LISTING 53
ACKNOWLEDGMENTS 55
REFERENCE 57
ILLUSTRATIONS
Figure 1. Structure of the control data file 22
2. Total intensity aeromagnetic map of Harrat al Kishb 46
3. Topographic map of Muzubiah area 52
TABLES
Table l. Calls needed by each routine 11
2. Files used in the program CONTUR 18
3. Opening and closing of the files of the program CONTUR. 19
4. Reading and decoding of control data cards 20

Program Documentation Manual

by

M. M. Donzeau, L. D. North, and M. E. Gettings

Abstract

The CONTUR program was modified from a program initially designed by CALCOMP to generate contour maps from any data set for any CALCOMP digital plotting systems.

A contour map can be drawn from data entered as an array of Z-values, corresponding to regularly spaced data in X and Y. Also a grid can be created from irregularly spaced data points, and then the contour map can be drawn.

The grid is calculated by using a least-square bivariate polynomial determined from a few neighbors for each grid mesh point, or determined as a trend surface from all the data points.

The program has been updated in several steps by the U.S. Geological Survey (USGS) and the Bureau de Recherche Geologique et Mineries (BRGM) programmers, so that the size of the program was greatly reduced, a few more input parameters were added, and a few errors occurring during the plot was suppressed.

It is advised to read the CALCOMP Manual (Calcomp, 1973) to fully understand how CONTUR works, and the documentation of the program CTRL2D which was designed by USGS prograumers to prepare the input files for CONTUR.

SOURCE DECK LOCATION AND UPDATE STATUS
The FORTRAN source program is scattered into eight overlays: CONT00.FTN, CONT10.FTN, CONT20.FTN, CONT30.FTN, CONT40.FTN, CONT50.FTN, CONT60.FTN, CONT70.FTN. These overlays and the task image CONTUR.TSK are on the system disk of the DGMR PDP-11/45 computer under the UIC of $[22,50]$.

This report recapitulates all the updates which have been made to the program.

$$
1-!
$$

DESCRIPTION OF COMPUTED QUANTITIES

The computed quantities are the same as in the original program designed by CALCOMP (1974).

DESCRIPTION OF THE PROGRAM

Main modifications
The following is a list of the main modifications from the CALCOMP version.

1) The size of the grid to be plotted is increased from 2000 to 2500 points.
2) If the size of the grid to be plotted is bigger than 2500, use the program CTRL2D before running CONTUR. It will divide the map in several parts and calculate the new parameters of the control cards. Thus, there is no limit to the size of the grid, except the time used for running CONTUR, considering that a crash may occur during a long run when using the DGMR PDP-11/45 computer.
3) The size of the grid to be calculated is increased from 2000 to about 32000×32000, with a number of input data points limited to about 32000. If the grid is bigger than 2500 , it will be calculated but not plotted. If a plot is desired, see section 2.
4) To calculate the grid, the search for neighbors can be made either in a square of variable size (CALCOMP version), or in a circle of constant radius.
5) The program does not plot areas with blank values.
6) For the plot, the program takes care of the multi-crosses in the same sub-cell of the same track, thus avoiding track looping.
7) The contour levels can be equidistant (CALCOMP version), or chosen level by level. In the latter case, the number of levels is limited to 200, and the labels written on the curves may be different from the values of the contour levels.
8) The number of overlays is reduced from 19 to 7.
9) The scratch files are opened and closed in the overlays where they are needed, thus reducing the number of files open at the same time. There is now a maximum of five (no gridding) or six (gridding) files open simultaneously, instead of eight (CALCOMP version).

Overlays

The overlay structure is as follows:

The following is a brief description of the routines.
CONTOO: Main program

CONTlO:	Initialization and termination routines
	INITA: initialize parameters and plot
	FINI: terminate CONTUR program activity

CONT20: Routines for reading and decoding control cards CONTL: read control cards
CRDSI: decode LEVI, POST, RDGD, TREN control cards, and read $Z-v a l u e s$ of pre-gridded data
CRDS2: decode MESH, NAOR, NDEC, PNCH, PRNT, REGN, TICK, TITL control cards
DRWCD: decode DRAW control card
CONT30: Routines for reading (X, Y, Z) input data points and sorting them into segments GRDCD: decode GRID control card GTPTS: read and print (X, Y, Z) input data values, find min/max of X, Y, Z values SEGSI: prepare scratch file to store ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) input data points into segments
SEGS2: separate (X, Y, Z) input data points into segments, sort, and store into scratch file
SRTPT: sort (X, Y, Z) values with increasing x-value

CONT40: Routines for calculating the grid GRID: main routine to calculate the grid EVAL: calculate least-square polynomial and z-value for one grid intersection
GRDST: calculate X, Y range of neighborhood GTSEG: locate segment of (X, Y, Z) input data points corresponding to point to calculate
INVRT: invert matrix of coefficients of least-square polynomial

```
NABOR: find neighbors surrounding point to calculate
NORMS: calculate coefficients of least-square polynomial
RANGE: find range of ( \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) ) values of neighbors
VALUE: calculate \(Z\)-value from least-square polynomial coefficients
WATES: calculate weight for each neighbor XTRMS: find min/max of ( \(X, Y, Z\) ) values of neighbors
```

CONT50: Routines for calculating the grid for a trend surface
TREND: main routine to calculate the grid
EVALT: calculate least-square polymonial and Z-value for all grid intersections
GRDS2: initialization for calculation of the trend surface
INVR2: invert matrix of coefficients of least-square polymonial
NORM2: calculate coefficients of least-square polynomial
RANG2: find range of ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) values of all input data points
VALU2: calculate z -value from least-square polynomial coefficients

CONT60: Routines for plotting Z-values, print and/or punch grid values
SETUP: plot map title and boundaries, read z-values of the grid
PNCHR: punch z-values of the grid
PRNTR: print z-values of the grid SET2: plot Z-values of (X, Y, Z) input data points, plot Z-values at each grid intersection
TICKS: plot a tick mark at each grid intersection

CONT70: Routines for plotting the contour lines DRAW: main routine to plot the contour lines AJOIN: find sub-cell next to origin of track, to prepare for second part of track
CLNUM: select label of the contour level and calculate the number of characters of label
CSUB: find if sub-cell has already been crossed by current contour level, and check for blank values in current grid cell
GRCR: determine if contour level crosses any
border of current grid cell
GTINT: find coordinates of the point where
track goes through sub-cell
LABEL: plot label on track
SLOPE: calculate angle parameters for labeling
MATGT: get 4×4 matrix of grid values.
surrounding current grid cell
FLAG3: calculate missing value for edge of map
CBLANK: check for blank values in first/last
row/column of 4×4 matrix, and replace
by the mean of surrounding Z-values.
SERCH: find cross-over of track on grid cell
borders
SUBGD: divide grid cell into sub-grid, and
calculate Z -values of sub-grid using
third order Lagrangian interpolation
technique
FLAGR: interpolate using Lagrangian floating
three point technique
TRAK: draw contour line through current
sub-cell, find next sub-cell
Table 1 indicates the relations between all the routines of the program CONTUR, by specifying the calls needed by each routine.

Table 1.-- Calls needed by each routine.

Overlay	Routine	Calls	Called by
Contoo	MAIN	CONIL, DRAW, FINI, GRDCD, GRID, INITA, SETUP, SET2, TREND	
CONT10	INITA	(XILIBF4P)	MAIN
	FINI	(XYLIBF4P)	MAIN
conr 20	COMTL	CRDS 1, CRDS2, DRWCD	MAIN
	CRDS 1	. .	CONTL
	Crds 2		CONTL
	DRFCD	(XILIBF 4P)	CONTL
CONT30	GRDCD	GTyTS, SEGS 1 , SEGS2	MAIN
	GTPTS		GRDCD
	SEGS 1		GRDCD, SEGS2
	SEGS 2	SEGS 1, SRTPT	GRDCD
	SRTPT		SEGS2
CONT40	GRID	EVAL, GRDST, GTSEG, NABOR, WATES, XTRMS	MAIN
	EVAL	INVERT, NABOR, NORMS, RANGE, VALUE, wates	GRID
	GRDST		GRID
	GTSEG		GRID
	INVRT		EVAL
	NABOR		GRID, EVAL
	NORMS		EVAL
	Range		EVAL
	value		EVAL
	WATES	- -	GRID, EVAL
	XTRMS		GRID
CONT 50	TREND	EVALT, GRDS2, RANG2	MAIN
	evalt	INVR2, NORM2, VALU2	TREND
	GRDS 2		TREND
	INVR2		evalt
	NORM2		EVALT
	RANG2		TREND
	VALU2		EVALT
CONT60	SETUP	PNCHR, PRNTR, (XYLIEF4P)	MAIN
	PNCHR		SETUP
	PRNTR		SETUP
	SET2	TICKS, (XYLIBF4P)	MAIN
	TICKS	(XYLIBF4P)	SET2
CONT 70	DRAN	AJOIN, CLNUM, CSUB, GRCX, GTINT, LABEL, MATGT, SERCH, SUBGD, TRAK, (XYLIBF4P)	MAIN
	AJOIN	CSUB	DRAW
	cinum		DRAW
	csub		DRAW, AJOIN, SERCH, TRAK
	GRCK	-	DRAW
\cdots.	GTINT		DRAW
	Label	SLOPE, (XYLIBF4P)	DRAW
	SLOPE		LABEL
	MATGT	CBLANK, FLAG3	DRAW
	CBLANK		matgt
	flag 3		matgt
	SERCH	csub	DRAW
	SUBGD	FLAGR	DRAW
	Flagr		SUBGD
	trak	CSUB, (XYLIBF4P)	DRAW

Modifications routine by routine
l) Main program (CONTOO)

The main program contains the calls of the main routines only.
2) INITÄ (CONT10)

Initialization of the constants is contained in DATA statements. The scratch files FOROOL.DAT and FORO02.DAT are opened to be created, then closed. The control data file CONTUR.CTR is opened to read the names of the input data file, the printer file, the output grid file, the plotter file, and the general title. The input data file is opened; the printer file is opened; the output grid file is opened to be created, then closed; and the plotter file is initialized. The general title is plotted.
3) FINI (CONT10)

The pen is moved outside the previous map and the plotter file is closed. The control data file and the input data file are closed. The scratch files FOROOL.DAT and FOROO2.DAT are opened, then closed and deleted. The output grid file is opened, then closed if there are data in it, or closed and deleted if there are no data. The printer file is closed.
4) CONTL (CONT20)

No change.
5) CRDSI (CONT20)

The scratch file FOROOl.DAT is opened to store Z values of pre-gridded data, then closed. The equidistant or non-equidistant levels are read in.
6) CRDS2 (CONT20)

No change.
7) DRWCD (CONT20)

The second DRAW card, containing the parameters ZBLANK, XORIG, YORIG, is read in. The pen is moved from the last origin to the new origin.
8) GRDCD (CONT30)

The scratch file FORO02.DAT is opened to store (X, Y, Z) input data points, then closed.
9) GTPTS (CONT30) No change.
10) SEGS (CONT30)

No change.
11) SEGS2 (CONT30)

If the number of points per segment is greater than 500, the number of segments is increased and the search is started again. The scratch file FOROO4.DAT is opened to store the points by segment, then closed. The points are sorted with increasing x before being stored on file. The structure of the scratch file is as follows:

- record number l: number of points in segment l, location of first point of segment 1
- record number 2: number of points in segment 2, location of first point of segment 2
-

\cdot
-

- record number NSEGS: number of points in segment NSEGS, location of first point of segment NSEGS
- record number NSEGS+l: (X, Y, Z) coordinates of first point of segment l
- record number NSEGS+2: (X, Y, Z) coordinates of second point of segment 1
and so forth.

12) SRTPT (CONT30)

This is a new routine from J.-P. Veyrier of BRGM.
13) GRID (CONT40)

The scratch file FOROOl.DAT is opened to store the calculated grid, then closed. The scratch file FOR004. DAT is opened to read the segments, then closed and deleted. This routine prints the number of calculated points, the mean of the number of input points necessary for interpolation, the number of calculated points equal to the input data points, and the number of undefined points.
14) EVAL (CONT40)

The arrays RVEC, WD, XD, YD, ZD are reduced from 687
to 500. This was possible with an EQUIVALENCE statement with array Z, which is not used in this overlay.
15) GRDST (CONT40)

There are a few minor changes due to the new parameter RADIUS, which is the radius of the circle of neighborhood.
16) GTSEG (CONT40)

In the CALCOMP version, this routine was reading all the points of the segment around the point to calculate XG, YG. Now it reads the number of points and the location in the scratch file of the first point of the segment around XG, YG.
17) INVERT (CONT40)

No change.
18) NABOR (CONT40)

There are a few changes due to the new parameter RADIUS. In the case of the search for neighbors in a circle, if the number of neighbors is insufficient, the z-value of the calculated point is set to the blank value of $-1 . E 35$. In the CALCOMP version, the search started from the first point of the segment; now the search starts from the first good point found by the previous search.
19) NORMS (CONT40)

No change.
20) RANGE (CONT40)

No change.
21) VALUE (CONT40)

No change.
22) WATES (CONT40) No change.
23) XTRMS (CONT40)

No change.
24) . TREND (CONT50)

The scratch file FOROOl.DAT is opened to store the calculated grid, then closed. The scratch file FOR002. DAT is opened to read (X, Y, Z) input data points, then closed.
25) EVALT (CONT50)

The parameter EPS used in INVR2 is changed from 0.00001 to 0.0001 .
26) GRDS2 (CONT50)

No change.
27) INVR2 (CONT50) No change.
28) NORM2 (CONT50)

No change.
29) RANG2 (CONT50) No change.
30) VALU2 (CONT50) No change.
31) SETUP (CONT60)

The title is plotted with letters big enough to fill the width of the map, with a maximum character height of 0.4 inches. This routine can either plot the boundaries of the map, or put a '+' at each corner of the map, and(or) put a '+' at each internal corner in the case of a multipart map. The scratch file FOROOl.DAT is opened to read Z-values, then closed. If the grid is too big it will not be plotted.
32) PNCHR (CONT60)

The output grid file is opened so that the Z-values are appended to the end, then the file is closed.
33) PRNTR (CONT60)

The 2 -values are printed on the printer file, except when the Z-value is equal to the blank value of -1.E35.
34) SET2 (CONT60)

If plotting of the Z-values of the input data points was requested, the scratch file FORO02.DAT is opened to read and plot these 2 -values, then closed. The new limits for multipart maps are calculated.
35) TICKS (CONT60) The tick marks are plotted, taking into account the new limits for multipart maps.
36) DRAW (CONT70)

This routine takes care of equidistant or nonequidistant contour levels. The percentage of cells crossed by each contour level is given. There is no plot in a cell where one or more of the four points has a blank value. This routine keeps reference of the sub-cells where multicrosses of the same contour level occur; there is a maximum of ten such sub-cells. If the current track is looping inside a sub-cell, an error message is produced and the plot continues with the next track. When the plot is complete, the pen goes back to the local origin (down-left corner of the map).
37) AJOIN (CONT70)

This routine checks if there is a blank value in the chosen grid cell, and if the chosen sub-cell has already been crossed.
38) CLNUM (CONT70)

The number of statements was reduced by a factor of five by introducing an ENCODE statement.
39) CSUB (CONT70)

This is a new routine which checks if a sub-cell has already been crossed. If this is the case, it checks in the table to determine if it is a multicross sub-cell. The second option is used to find if there is a blank value in one of the four points of the grid cell.
40.) GRCR (CONT70)

The grid cell is discarded if there is one blank value among the four points. The range of Z-value for the search of crossing of the track in the grid cell is reduced.
41) GTINT (CONT70) No change.
42) LABEL (CONT70)

No change.
43) SLOPE (CONT70)

No change.
44) MATGT (CONT 70)

There is a check for blank value in the 4×4 matrix surrounding the current grid cell.
45) FLAG3 (CONT70)

This routine takes account of the blank values to calculate the missing row/column at the edge of the map.
46) CBLANK (CONT70)

This is a new routine which checks for blank value in the 4×4 matrix surrounding the current grid cell. If a blank value is found, it is replaced by the mean of the Z-values of the two or three nearest points.
47) SERCH (CONT70)

This routine checks if the sub-cell has already been crossed.
48) SUBGD (CONT70)

No change.
49) FLAGR (CONT70)

No change.
50) TRAK (CONT70)

This routine checks for multicrosses in the same sub-cell and keeps references of them in a table. When the plot in the sub-cell is complete, the routine calculates the adjacent sub-cell, and for each case it checks if the new sub-cell is at cell edge or map edge. If it is at cell edge, it checks for blank value in the next grid cell.

Files used in the program
The nine files used in the program CONTUR are described in table 2. Table 3 indicates the opening and closing of files in each overlay.

Input cards
There are two kinds of input cards: control data cards, which are in the control data file, and input data cards (or records), which are in the input data file.

Table 4 indicates in which routines the control data cards are read in and decoded. The input data records are read in CRDSI for pre-gridded data, and in GTPTS for ungridded data.

Size of the program

The source program is scattered into eight overlays: CONTOO.FTN, CONT10.FTN, CONT20.FTN, CONT30.FTN, CONT40.FTN, CONT50.FTN, CONT60.FTN, and CONT70.FTN. It requires 247 blocks of disk space in the PDP-ll/45 computer, and the task image CONTUR.TSK requires 208 blocks.

Table 2.--Files used in the program CONTUR

	Logical unit number	Variable used as logical unit number	Name of file	Description
	1	IGDFL	DB1: FORO01. DAT	scratch file, containing Z-input or calculated grid
	2	IPTFL	DB1: FOR002. DAT	scratch file, containing X, Y, Z input data points
	3	JPTFL		plotter file
\vdash	4	KSEGS		scratch file, containing X, Y, Z mints he segments
	5	ICARD	DRO:CONTUR.CTR	control data file
	6	JPNTR		printer file
	7	JPNCH		output grid file
	8	IUNIT		input data file
	9	ITERM	TI:	terminal file

Table 3.--Opening and closing of the files of the program CONTUR

Logical unit number	CONTOO	CONT 10		CONT20	CONT30	CONT40	CONT50	CONT60	CONT 70
		INITA	FINI						
1		O-C	O-D	$\mathrm{O}-\mathrm{C}$		O-C	O-C	O-C	
2		O-C	O-D		O-C		O-C	O-C	
3		0	C	X	X	x	X	x	X
4					O-C	O-D			
5		0	c	x	X	X	x	X	x
6		0	c	x	x	x	x	x	x
7		O-C	O-E					O-C	
8		0	C	X	X	x	X	X	X
9				O-C			O-C		O-C
0 - open C - clos D - clos	nd dele	$\begin{aligned} & \mathrm{E}-\mathrm{clc} \\ & \mathrm{x}-\mathrm{op} \epsilon \end{aligned}$	and	te if				-	

Table 4.--Reading and decoding of control data cards

Card name		Read in routine
DRAW	CONTL, DRWCD	
FMT	CONTL (card, format)	DRWCD
GRID	CONTL	
LEVL	CONTL, CRDS1	GRDCD, GTPTS
MESH	CONTL	CRDS1
NAOR	CONTL	CRDS2
NDEC	CONTL	CRDS2
PNCH	CONTL	CRDS2
POST	CONTL	CRDS2
PRNT	CONTL	CRDS1
RDGD	CONTL	CRDS2
REGN	CONTL	CRDS1
STOP	CONTL	CRDS2
TICK	CONTL	
TITL	CONTL (card), CRDS2	(title)
TREN	CONTL	

Input files
Two input files are necessary to run the program: the control data file and the input data file.

Control data file
The control data file must be named CONTUR.CTR. It may have been created by the program CTRL2D, or by using the EDI utility program.

The structure of the control data file is shown in figure 1. The first five cards of the file are as follows:

1) input data filename (80 characters)
2) printer filename (80 characters)
3) output grid filename (80 characters)
4) plotter filename (80 characters)
5) general title: a 40-character title which will be plotted at 90° direction, before all other plots

Note that the last character of a filename must be a null character. It is automatically inserted when using the program CTRL2D. Note that only the first 32 characters of a filename are used by the computer.

The following are descriptions of the other control cards. Most of them are identical to those described in the CALCOMP's CONTOUR Applications Software Manual (1974).

DRAW Card

It is made up of two cards and initiates the drawing of a map.

First DRAW Card

Columns	Parameter	
$1-5$	TYPE	DRAW1
$6-10$	FMAPX	blank width of map to be drawn, in inches (default $=10$)
$21-20$	FMAPY	height of map to be drawn, in inches (default $=10)$

INPUT DATA FILENAME
PRINTER FILENAME
OUTPUT GRID FILENAME
PLOTTER FILENAME

* This card must be present in the first control card set.

Figure 1. Structure of the control data file. Use as many control card sets of either type as the number of desired maps, boxed cards are essential.

Columns	Parameter	
31-40	SN	number of divisions in the X direction that each grid cell is to be divided into (default $=4, \max =10)$
41-50	SM	```number of divisions, in the Y direction, that each grid cell is to be divided into (default = 4, max = l0)```
51-60	IBXOPT	boundary parameter $=0$, draw box boundary $=1$, put a '+' at each external corner, no boundary drawn $=2$, draw box boundary, and put a '+' at each internal corner $=3$, put a '+' at each internal and external corner, no boundary drawn (default $=0$)
Second DRAW Card		
1-5	TYPE	DRAW2
6-10		blank
11-20		2BLANK Z-value given to blank areas (where there will be no contours). If there is no blank area, ZBLANK should be a Z-value different from all those of the data set. ZBLANK should be equal to -l.E35 for ungridded data. (default $=0$)
21-30	XORIG	X-coordinate of down-left corner of boundary of map, in inches. (default $=0$)
31-40	YORIG	Y-coordinate of down-left corner of boundary of map, in inches. (default $=0$)
Note:	an external corner is one of the corners of the area defined by the parameters FMAPX, FMAPY. An internal corner is inside this area, at a distance of one row and column from the corresponding external corner. It is used in the case of multipart maps (see the documentation of program CTRL2D for this kind of map).	

FMT Card

It is made up of one card containing the TYPE parameter, and one card containing the format. It describes the format used to read the input data file. It remains in effect until changed by another FMT card.

First FMT Card

Columns Parameter
1-4 TYPE FMT

Second FMT Card

1-80 FRMT execution time format statement that describes data to be read in

- for pre-gridded data, the FMT card must be supplied, at least for the first map. The format should uniquely describe one row or column of the grid
- for ungridded data, the format should uniquely describe one data point by its alphanumeric field and its three coordinates.
default $=$ previous format, or (A4, 6X, 3F10.0)

GRID Card

This card initiates the creation of a grid and specifies if ungridded data points are to be read in or not. NX, NY remain in effect until changed. IXPOS, IYPOS, IZPOS remain in effect for only this GRID card.

1-4 TYPE GRID
5-10 blank
ll-20 NPT number of data points used for gridding

- if NPT is a positive number, the program tries to read that number of records on the input data file. The last record of the data set may be followed, if desired, by a record containing the word 'END' in the alphanumeric field with the format used to read the data. If less than NPT records i-e found, the number of data recordswill be kept as the NPI value

Columns	Parameter	
		- if NPT is a zero, the program will count the number of data records preceding the word 'END' in the alphanumeric field, or preceding the end of input data file - if NPT is a negative number, the program uses the NPT records of the previous data set. If there are no such records, the program prints an error message and stops. (default $=0$, max $=$ about 32000)
21-30	NX	number of grid divisions in the X-direction that the map is to be divided into. Note that the number of columns of the grid is NX+1. If $N X \leq 0$, the $N X$ value that was used for the previous grid is used. (default $=20$)
31-40	NY	number of grid divisions in the y-direction that the map is to be divided into. Note that the number of rows of the grid is NY+1. If $N Y \leq 0$, the $N Y$ value that was used for the previous grid is used. (default $=20$)
41-50	IXPOS	relative position of X-coordinate in the data records
51-60	IYPOS	relative position of Y-coordinate in the data records
61-70	IZ POS	relative position of Z-coordinate in the data records. (if IXPOS $<=0$, default values for IXPOS, IYPOS, IZPOS, are 1, 2, 3)

LEVL Card

This card defines the Z -values to be contoured. If the contour levels are defined one by one, there must be as many LEVL cards as the number of Z-values to be contoured. This card remains in effect for only one DRAW card. If this card is omitted for a data set, the program will attempt to calculate SLVL, DLVL, ELVL to give 10 satisfactory constant contour intervals (ll levels).

Columns	Parameter	
1-4	TYPE	LEVL
5-10		blank
11-20	SLVL	- lower z-value on which contouring is to begin, if contour interval is constant - Z-value to be contoured, if contour levels are defined one by one. (no default)
21-30	DLVL	- contour interval (>0), if contour interval is constant - ≤ 0 if contour levels are defined one by one. (default $=0$)
31-40	ELVL	- last (upper) contour level to be contoured, if contour interval is constant - label to be plotted on contour level defined by SLVL, if contour levels are defined one by one $(=0$, if same value as SLVL) Note: to plot the label "O" on a Contour level, ELVL must be a nonzero value such that it will be plotted as a zero value, taking into account the parameter NDEC of MESH or NDEC card (ELVL $=0.01$ will be plotted as "O." if NDEC $=0$, or as "0.0" if NDEC = 1) . (default $=0$)

MESH Card

The presence of this card instructs the program to make a tick mark at each grid intersection and to plot the 2 -value at that location. HEIGT remains in effect for only one DRAW card, but NDEC remains in effect until changed by another MESH card or by a NDEC card.

1-4	TYPE	MESH
5-10	blank	
$11-20$	HEIGT	height of numbers to be plotted showing the z-value at each grid intersection. (default $=0.07$ inches)

Columns
21-30 NDEC number of digits to follow decimal point for numbers to be plotted at each grid intersection, for annotating individual contour lines, and for posting the values of (X, Y, z) input data points.
(default = 0)

NAOR Card

This card indicates how to determine the least-square polynomial used to calculate the grid. It remains in effect until changed by another NAOR card.

1-4	TYPE	NAOR
5-10		blank
11-20	NABRS	minimum number of ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) input
		data points used in the determination
		of each individual grid mesh point.
		default $=$ the exact number of normal
		equations required for the order of
		the polynomial used to approximate
		the surface $=($ IORD** $2+3 *$ IORD +2) $/ 2$
		(recommended $=12$)
		If a trend surface is being generated, the program uses all the
		input data points in the
		determination of the equation describing the surface
21-30	IORD	order of bivariate polynomial used
		approximate the surface when
		determining a grid mesh point. If
		the matrix of normal equations is
		nearly singular when a trend surface
		is being generated, the program
		reduces the order by one and tries
		again. (default $=1, \max =4$)
31-40	RADIUS	radius of circle of neighborhood su
		rounding each individual grid mesh
		point. Each mesh point is determined
		by all (X, Y, Z) input data points
		which are inside the circle. If
		there are not enough data points
		inside the circle, the grid mesh

point will have the value $z=-1 . E 35$. If $=0$, the program uses the number of input data points defined by NABRS.
(default $=0$)

NDEC Card

This card is necessary if a MESH card is not present and it is desired to assign NDEC a nonzero value for contour line annotation, and, if a POST card is present, for posting the values of the (X, Y, Z) input data points. NDEC remains in effect until changed by another NDEC card or by a MESH card.

$1-4$	TYPE	NDEC
$5-10$		blank
$11-20$	NDEC	number of digits to follow decimal points for annotating individual
		contour 1 ines, and for posting the values of (X, Y, Z) input data points. (default $=0)$

PNCH Card

The presence of this card instructs the program to punch out, on the output grid file (disk or magnetic tape), the array that has been created by the grid routine. The grid is punched by rows from left to right, five values per record in format 5El4.6. Columns 71-74 of each record contain the row number, and columns $75-80$ a record sequence number. It remains in effect for only one DRAW card.
1-4
TYPE
PNCH

POST Card

The presence of this card instructs the program to plot the locations and values of the (X, Y, Z) input data points. It remains in effect for only one DRAW card.

1-4 TYPE POST
5-10 blank

Columns . Parameter

11-20	PSTHT	height of numbers to be plotted showing the Z-values of the (X, Y, Z) input data points, and height of the corresponding tick marks. (default $=0.07$ inches)
21-30	NVALU	indicates if Z-values of the (X, Y, Z) input data points are to be plotted. $=0$, plot tick marks only $=1$, plot tick marks and z-values (default $=0$)

PRNT Card

The presence of this card instructs the program to print the z-value array that is to be drawn, and optionally print the (X, Y, Z) input data points. It remains in effect for only one DRAW card.

1-4	TYPE	PRNT
5-10		blank
11-20	NPRNT	```indicates if (X, Y, Z) input data points are to be printed. =0, no print = l, print (default = 0)```

RDGD Card

This card instructs the program that a pre-gridded Z-value array is to be read in and gives the dimensions of the array. The z-values read in remain in effect until changed by another RDGD card.

l-4	TYPE	RDGD
$5-10$	blank	
$11-20$	NNX	number of columns in the data array to be read in. (no default)
$21-30$	number of rows in the data array to be read in. (no defaul $t)$	

31-40 MANNR flag to indicate how data is to be read in.
$=1$, read data in by columns, top to bottom.
$=2$, read data in by rows, left to right. (default $=2$)

Note: first row read in is along top of map, first column is at left edge.

REGN Card

This card describes the (X, Y) limits of the grid that is to be produced. If this card is omitted, the limits used are those found by examining the data points. It remains in effect for only one GRID card.

1-4	TYPE	REGN
5-10		blank
11-20	XMPMN	minimum X-value of the grid to be produced, in data units. (no default)
21-30	XMPMX	maximum X-value of the grid to be produced, in data units. (no default)
31-40	YMPMN	minimum Y-value of the grid to be produced, in data units. (no default)
41-50	YMPM X	maximum Y-value of the grid to be produced, in data units. (no default)

STOP Card

This card terminates CONTUR program activity.
1-4 TYPE STOP

TICK Card

The presence of this card instructs the program to make a tick mark at each grid irtersection, even though it does not plot the grid mesh values. It remains in effect for only one DRAW card.

$$
1-4 \quad \text { TYPE } \quad \text { TICK }
$$

TITL Card

This card is made up of one card containing the TYPE parameter and one card containing the title. The title is drawn just below the map in letters whose height is such that the title will fill the width of the map, without exceeding a height of 0.4 inches. It remains in effect until changed by another TITL card.

First TITL Card

1-4 TYPE TITL

Second TITL Card
1-80 TITL up to 80 characters of the desired title for the map.

TREN Card

The presence of this card tells the program that the grid to be produced should be a trend surface. It remains in effect for only one GRID card.
1-4 TYPE TREN

Input data file
This file contains two kinds of data records.

1) The first type of record contains the (X, Y, Z) input data points from which a grid will be created. The first field of the record is an alphanumeric field; the word 'END' in this field tells the program that the last input point for the current data set was reached. The location of the (X, Y, Z) and alphanumeric fields is specified by the FMT control card.: The order in which the ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) fields appear in the record is specified on the GRID control card.
2) The second type of record contains the z-values of a rectangular array of pre-gridded data. The FMT and RDGD control cards control the reading of this kind of data.

Error messages

The error messages appear on the printer file. Some of them appear on the terminal as well, so that the user can abort the program if desired.

1) *** BAD OR MISPLACED CARD ***

Routine: CONTL (CONT20)
Explanation: the card was read, but did not contain correct information in the first four columns, or the card was not located correctly
Program action:
User action: correct the control card
2) *** NO MORE CONTROL CARDS FOLLOWING A 'LEVL' CARD ***

Routine:
Explanation:

Program action: stop
User action:
3) *** NX OR NY BAD

Routine:
Explanation:

Program action:
User action:

CRDS 1 (CONT20)
in case of contour levels entered one by one, the program finds no control card following such a LEVL card add the next control cards in the control data file

CRDSI (CONT20)
parameter NX or NY of RDGD card is negative or null, or the grid is too big (over 2500) stop correct RDGD card, or run CTRL2D to divide map in several parts
4) *** BAD REGION CARD

Routine:
Explanation:

Program action: User action:

CRDS2 (CONT20)
the maximum and minimum X or Y values in a REGN card are in disorder
stop
reorder the parameters of REGN card
5) *** IORD OUT OF RANGE.REDUCED TO FIRST ORDER ***

Routine: CRDS2 (CONT20)
Explanation:
Program action: User action: Note:
parameter IORD of NAOR card is outside the range l-4 continue with IORD $=1$ none
this message appears on the terminal, as well as on the printer file
6) *** SHOULD BE THE SECOND 'DRAW' CARD ***

Routine: DRWCD (CONT20)
Explanation: there is only one DRAW card instead of two
Program action: stop
User action: add the second DRAW card
7) *** END OF CONTROL FILE INSTEAD OF SECOND 'DRAW' CARD ***

Routine: DRWCD (CONT20)
Explanation: there is only one DRAW card instead of two, and there is no STOP card
Program action: stop
User action:
add the second DRAW card and the STOP card

Routine:
Explanation:

Program action:
User action:
DRWCD (CONT20)
a DRAW card has been encountered before a grid has been made available to the program
9) *** PLOT WILL BE IMPOSSIBLE: NX OR NY TOO BIG ***

Routine: GRDCD (CONT30)
Explanation: the grid to be calculated is too big to be plotted
Program action: calculates the grid, eventually punches the grid, then prints error message number 15
User action:

```
10)
    Routine: GRDCD (CONT30)
    Explanation: l) the program was told to produce
    a grid from points that were
    already either in core or on the
    program's point scratch file, but
    there are no such points, or
    2) there are not enough points for
    the size of the neighborhood that
    has been requested or required by
    the order of the polynomial
    Program action:
User action:
11)
Routine:
Explanation:
12)
ARRAY TOO LARGE FOR SRTPT ***
Routine: SRTPT (CONT30)
Explanation:
Program action:
User action:
Note:
the number of points to sort in
one segment exceeds the limit
fixed in SRTPT (10,000 points)
stop
see programmer
this error should never occur, as
the number of points per segment
is fixed to 500 in routine SEGS2
(CONT30)
13) *** NORMAL EQUATIONS UNSTABLE AT ORDER XXXXX. REDUCED BY 1 ***
```

Routine:
Explanation:

TREND (CONT50)
the matrix of normal equations for a trend surface could not be inverted

Program action:	if the order of polynomial is between 2 and 4, the program reduces the order by 1 and tries again to calculate the trend surface. If not, it prints error message number 14
User action:	none
Note:	this message appears on the
	terminal, as well as on the
	printer file

14) *** ABNORMAL TERMINATION.IORD OUT OF.RANGE ***

Routine: TREND (CONT50)
Explanation:

Program action: stop
User action: none
15) *** IMPOSSIBLE TO PLOT: ARRAY IS TOO BIG

Routine:
Explanation:

Program action:
User action:
SETUP (CONT60)
the grid which was calculated is bigger than 2500 , the maximum size for the plot
read next control card if the plot is desired with posting of ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) input data points, run CTRL2D before running CONTUR. If the plot is desired without posting the input data points, run CTRL2D with the grid created by this current run of CONTUR; then run CONTUR with the new control and input data files
16) *** ERROR NO. XXXXX FOR CONTOUR LEVEL XXXXX, followed by the description of grid cell and sub-cell.

Routine: DRAW (CONT70)
Explanation:
Program action:
User action: Note:
the current track is stuck in a sub-cell
start the next track
see programmer
this message appears on the terminal, as well as on the printer file
17) *** MORE THAN XXXXX GRID CELLS USED FOR CONTOUR LEVEL XXXXX ***

Routine:
CSUB (CONT70)
Explanation:
Program action:
User action:

Note:
there are too many grid cells used for one contour level
start the next contour level run CTRL2D with a lower maximum size of z-value array; it will divide the map in several parts. Then run CONTUR with the new control and input data files this message appears on the terminal, as well as on the printer file
18) *** ARRAY FOR MULTI-CROSSING IS TOO SMALL

Routine:
TRAK (CONT70)
Explanation:

Program action:
User action:
there are too many grid cells which contain a multi-cross of the same contour level
stop
see programmer to increase the size of array IDOUBL in overlay CONT 70

After the program has stopped because of an error during the run, look at the printer file to find the error message, then delete the following files if they exist:

- DBl:FOROO1.DAT
- DBl:FORO02.DAT
- DBl:FOR004.DAT
- plotter file
- printer file
- Output grid file

If the program has been aborted during a run, the above files should be deleted, and the following files unlocked:

- CONTUR.CTR (control data file)
- input data file.

Errors in the plot

1). Unfinished contour levels. The program prints error meassage number 17 for this type of error. If the user action advised for such an error is not desired, the arrays IJX, KLIN, KLOUT in overlay CONT70 may be increased but in such a way that the overlay is not too big.
2) Loop on a track.

This is usually due to error number 18. It could also be due to error number 16 , but this kind of error has not occurred until now.
3) Very close contours at border of map. These occur near the blank areas and seem to be due to the manner of interpolating values in the 4×4 matrix surrounding one grid cell, when one or more of the values of the extreme row or column are blank values. The routine CBLANK in overlay CONT70 may be modified to avoid this problem.

Directions for use of program

To run the program, enter RUN CONTUR(\$) ${ }^{1}$. When the program is finished, a message is printed on the terminal. If an error occurs, see the section on error messages.

There are two files needed to run CONTUR: the input data file, and the control data file. To create the input data file, follow the directions given in the description of the FMT, GRID, RDGD control cards. The control data file is named "CONTUR.CTR".

There are two ways to create the control data file: running the program CTRL2D, or using the EDI utility program. It is advised to use the program CTRL2D and to read the documentation of that program. Note that the input data file must exist before running the program CTRL2D. That program will create a control data file and a new input data file ready to be used by the program CONTUR.

It is necessary to run CTRL2D prior to CONTUR for plotting a contour map of a large array, as CTRL2D will divide the map into several adjacent parts. But in some cases, it could be of interest to use CONTUR directly; for example, to calculate a large grid without plotting the contour map.

1
The symbol (\$) means ALTmode or ESC key.

EXAMPLES

Following are two examples of runs of the program CONTUR. In the first one the grid is calculated, and in the second one the grid is entered as input data.

Example number one

The map to be produced is a contour map of the total intensity of the aeromagnetic field. The X and Y values are in kilometers, the Z-values in gammas.

The input data file "DBl:TEST5A.DAT" was output from another program, and contains the (X, Y, Z) values of the data points, with one point per record. The control data file "TEST5A.CTR" was created with the EDI utility program, its contents are shown on page 43.

The NAOR card indicates that the fitting polynomial is of the first order, and the search for neighbors is performed in a circle of 3.2 km of radius around each grid-mesh point. The X and Y limits of the grid are given in km in the REGN card. The size of the grid is given in the GRID card. The number of input data points and the place of the ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}$) values in the data records have the default values.

The Z-values to be contoured are given level by level from 5200 to 7000 gammas in the LEVL cards. The POST card instructs the program that tick marks are to be plotted at each (X, Y, Z) input data point, with a height of 0.04 inches, but with no indication of the z-value.

The first DRAW card gives the size of the map in inches, instructs the program that there are 10 divisions for X and Y in each grid cell, and indicates to plot the box boundary. the second DRAW card gives $-1 . E 35$ as a z-value for blank areas; this is the value given to grid-mesh points with not enough neighbors around them.

To run the program CONTUR, the control data file "CONTUR.CTR" was created by duplicating the file "TEST5A.CTR".

The printer file "DBl:TEST5A. PNT" resulting from the run is shown on page 44, and the plot appears in figure 2. The general title and the label ".....END OF PLOTS" are outside the figure.

Here are the sizes of the files used for this example.

Filename

DB1:TEST5A.DAT
TEST5A.CTR
DB1:TEST5A.PNT
DBl:TEST5A.PLT

No. of blocks of disk space 130 5 14 259

The time to run the program CONTUR was 15 minutes, and the time to plot was 30 minutes.

Example number two
The map to be produced is a topographic map, with the elevations in meters.

The input data file"DBl:TESTCl.DAT" was created with the EDI utility program, and its contents are shown on page 47. The control data file "TESTCl.CTR" was created with the program CTRL2D, and its contents are shown on page 48.

The RDGD card gives the number of columns and rows of the grid, and indicates that the data are to be read in by row. The FMT card specifies the format to read the Z-values. The Z-values to be contoured are equidistant, with an interval of two meters.

The first DRAW card gives the size of the map in inches, and instructs the program that there are five divisions for X and ten divisions for Y in each grid cell. The box boundary is not plotted, there will only be a ' + ' at each corner of the map. The second DRAW card gives -1. as a 2 -value for blank areas.

After running the program CTRL2D, the new input data file "DBl:CONTUR.DAT" and the new control data file "CONTUR.CTR" were created; they are shown on page 49.

The printer file "DBI:TESTCl.PNT" resulting from the run of the program CONTUR is shown on page 50 , and the plot appears in figure 3. The general title and the label "....END OF PLOTS" are outside the figure.

Here are the sizes of the files used for this example.
Filename No. of blocks of disk space

DB1:TESTC1.DAT	3
TESTCl.CTR	3
DBI:CONTUR.DAT	5
CONTUR.CTR	2
DB1:TESTC1.PNT	15
DBl:TESTC1.PLT	177

The time to run the program CONTUR was 5 minutes, and the time to plot was 20 minutes.

FILE: TEST5A.CTM

```
DB1:TEST5A.DAT
DBIITEST5A,PNT
DB188ID.
DB1:TEST5A.PLT
TEST NO. 5A, 5 APG 8D, M.DONZEAU
PMT
(A1,3E13.7)
\begin{tabular}{|c|c|c|c|c|}
\hline NAOR & 0 & (1) \({ }^{1}\) & 3.208000 & \\
\hline REEN & 744.8433 & 847.6568 & 702.6823 & 813.529 \\
\hline
\end{tabular}
GEID 0 48 40
```



```
LEVL 
LEVL
LEVL
LEVL
LEVL
LEVL
LEVL
LEVL
LEVL
POST
Lll
5600.000
0.0000E+00
5700.800 0.0000E+00
5800.000 0.00080 +20
5900.800 0.0000E+00
6000.000 0.00,00E+00
6100.090 0.0000E+80
6200.300 : 0.0000E+00
6600.000 0.0000E+08
7008.000 0.000005+80
0.0400 0
TITL
AIRMAG N22.30-23.30/E41.42 SCALE 1:1000000
ORAW1 4.049338 4.366579 10. 10. 0
ORAW2 .1000E+36
STOR
```

END OF FILE : TESTSA.CTR

¢MT	3．7nctsent	＊＊カッスックロ＊	d．angezora	2.38320008	8.30000000	$0.84802 d 80$	QLOTTE中	06265	1
V \triangle OR		1．077xan¢	3.2702028	2．84032082	2． 2 ¢ $22 a 304$	0.0 .1000002	Pbotten	－4656	1
QEGN	744．843才？	347．59601	717.06229	813.52472	d．Judzizan	8.02000142	PGOTTER	86J6x	1
GR10	\cdots＊行入く入入入す？	4ヵ，入入ックス入	4 2.304370	a．j入刀aduad	3．30303300	0.38720200	PLOTTE？	at36x	i

TOTAL NG CF TNOUT BAFA OSTNTS： 1380

SEGMEN ${ }^{\text {S }}$	NO＊	1	－\rightarrow 成，vE9	1	1	NJ	05	InPut	POIvPs＊	132
SEGMEVT	N0＊	2	－199，V5？	2	1	No	OF	InPut	POINTS：	131
SEEMENT	N0：	3	$402, V E 2=$	3	1	NJ	OF	InPuT	poivise	124
SEGMEMT	vite	4	－¢R，VEマニ	4	1	NO	OF	InPut	POINTS	136
SEGMENT	M0＊	5	－ก2．VEP＝	3	1	NO	05	Inour	OOIvTA	144
SEGMENT	40＊	6	4＾2，VEQ	b	1	N0	$0{ }^{\circ}$	IvPu？	POIVT3＊	132
SFGMENT	m 0 O	7	－¢R，VEP＝	1	2	NO	OF	Ivout	POIvTSo	141
SEGMENT	NCE	8	－9⿵冂人，प59	2	2	NJ	OF	1：Put	PoInisa	96
SEGMENT	MO：	9	497．VEマ＝	3	2	NO	OF	！veyt	00Inis．	58
SEGMEVT	＊：00	10	doa，VEQ	4	$?$	NJ	CF	IvPut	－0Iniso	87
SEGMENT	vos	11	407，प5？	5	3	NJ	OF	INPUT	－otwiso	136
SEGMENT	40：	12	－ロ2．VE？	3	7	\cdots	OF	Ivaut	ooturs．	123
SEGMEN ${ }^{\text {P }}$	N以＊	13		1	3	NJ	OF	Iveut	－oIviss	124
SEgmewt	N0\％	14	－ ²，VE？$^{\text {P }}$	2	3	N 3	SF	tneur	Onlvisa	44
SEGMENT	＋0．	12	－ O2，VEPa $^{\text {a }}$	3	3	NJ	OF	Ivour	polvisa	0
geguevt	NO．	16	－07，VEP＝	0	3	N0	05	INDUT	90Inis．	81
SEEMENT	MOE	17	＋n4，vEv＝	5	3	NO	OF	InPut	－aInis．	142
SEGMENT	MOE	10	－0円，vEコ＝	5	3	NO	OF	INDUT	pointse	132
SEGMETT	NO＊	19	40q．VEPE	1	4	N	OF	INPUT	－OINTS．	97
SEGMENT	N0E	20	－n7，प57＊	2	${ }^{\text {d }}$	NO	OF	IyPut	OOIVTJ．	17
SEGMENT	${ }^{\text {a }} 0$	21	－ O2，VEq＊$^{\text {a }}$	3	4	N0	QF	IVP：JT	－OINTS．	2
SEGMENT	NO：	32	－ 0^{2} ，v「9＊	4	4	No	OF	I＊PUT		76
SEEMENT	N0：	23	＋のシ，vEワ＝	5	6	NJ	QF	INPUT		141
SEGMENT	vos	24	HRQ，VE？	5	4	No	OF	IvPut	－0IvTS．	138
SESMEAT	－15	25	4त，vEつ＝	1	E	N	3F	IvP交	gintse	63
SEEMENT	N00	20		2	5	NJ	OF	İPut	2uvps＝	9
SEFMEVT	Nu＊	27	＋A2，VEQ	3	4	NJ	$0 F$	InOUT	PJIVS．	29
SEGMENT	NO	？${ }^{3}$	＋nれ，vミフロ	4	5	－ 3	OF	InPuT	POINTS	106
SEGMEVT	c0．	39	－ 0^{2} ，VEF－	\dagger	5	NO	OF	finput	00才vTS：	134
8EGVENT	NOE	3.1	407，VEP：	5	9	No	$0 \cdot$	InPut	－OINTS＊	144
SEGMENT	＊\％	32	－19，VEF	1	6	no	OF	INDUT	－OINTS．	1d1
SEGMECT	N00	32	4तテ，リEマ＊	2	A	No	OF	INDUT	POINTS	90
SESMEVT	－ 0 \％	33	－ R2，VEP＊$^{\text {a }}$	3	A	NJ	05	input	POIVTS．	109
SEGMEvT	no	54	＋5a，vE？	4	6	No	OF	IvPuT	OINTSE	136
SEGMENT	voz	35		5	6	NJ	OF	IVPUT	DOINTSE	124
SEGMEVT	10：	36	－n？ 1 VE＝	5	A	N2	OF	IvPuT	POINTS	132

```
1881 GRID MESH POINTS ATE VALUED AS FOLLOAS :
    IA39 ARE IVTEAPOLATED MITM A MEAN OF A INPUT OATA POINTS
    OÜA ARE EGUAL TO INPUT DATA DOINTS
    |38 ARE IJVDEFINED GY RASIUS CHEEKING
```

TIME POF GPIODTNG A．13MINUTES

POSTING ON BLOEK 2
TIME EOZ POSTING，MESH／TICXS ．D． 36 MINUTES

CONTOUS	ON B	CK	3										
CONTOIR	LEVEL	1	52a入．ว入วดขa	no	0%	GRID	CELLS	1	0	POUREENTAGE	1	0.30	\％
CONTOIJ	LEVEL	1		vo	OF	GRIO	CELLS	1	13	POUREENTAGE	1	0.50	\％
CONTOIR	LEVEL	，	5773． 387800	vJ	OF	GRIO	CELLS	1	40	POURCENTAGE	1	2.86	1
CONTOIR	I－EVEL	1	5 580． 208000	vo	JF	GRID	CELLS	1	280	POURCENTAGE	1	15.47	x
COnTOIJ	LEVEL	1		vo	OF	GRID	CELLS	1	588	POURCENTAGE	1	30． 22	x
CONTOUR	LEVEL	1		vo	OF	GRID	CELLS	1	270	POUREENTAGE	1	16.86	\％
CONTO！n	LEVEL	1	61\％3．8080809	v	OF	6RID	CELLS	1	113	POURCENTAGE	1	6.72	x
CONTOUP	LEVEL	1	620入． 202000	vo	OF	GRID	CELLS	1	53	PDURCENTAGE	1	3.15	＊
CONTOUA	LEVEL	1		No	OF	GRID	CELLS	，	0	POURCENTAGE	1	0.80	x
CONTOIJR	LEVEL	！		No	OF	GRID	CELLS	：	8	POUREENTAGE	1	0.80	x

AIRMAG N22.30-23.30/E41-42
SCALE 1:1000000

Figure 2.-Total intensity aeromagnetic map of the area around Harrat al Kishb, Kingdom of Saudi Arabia (values in gammas, contour interval 100 gammas).

```
FILE DAIBTESTCI.DAT
***************************
```

	138.28999	139.78999	141．94372		141.16000		
		149 ＊ 181		152．60001	157.92999	161．59000	
151.34070	147.46031	139.17999	141.60081	145.21001	145．08000	148．22000	－00
148．55080	137.82080		142．550日星	150.11000	159.88000	174．59080	00
148．19020	144.28999	145.18900	141．99731	133.84000	139.49001	144．63000	141．80006
138.73080	136.53080	135.63700	139.23080	143.53080	153.33000	154．92999	165.23000
147.95000	143.20 2ã	141.91980	139.42999	138.23080	130.66000	132.83000	131.63000
132.23200	135.56020	134.58730	138.75999	145.36000	147.36000	150.56080	156.5600
133.53 तan	139．83070	135.53030	136.03999	133.64800	129.44000	134.84070	140.44808
149．14900	145．50980	148.88980	144．08808	151.00000	156．39999	187.37000	168.8999
133.81020	128．89309	127.51780	128.41888	128.61800	138.41800	134.71801	139.6100
146.50990	154．3107？	149．98080	152.11270	150.08999	148.41000	145.52999	144．0499
127.46880	125.56930	125.58080	131.25999	133.86000	130.56000	135.86000	139.0
140.71821	149.66080	153．8дa8の	155．03999	149.24001	147.12000	167.83000	148,33000
124.77020	126.47280	135．57821	138.53020	133.61000	131.78999	132.74001	135.94000
132.34020	146.53999	156．14a20	163．80999	154.89999	151.45000	147.67999	149.31006
130.92999	129.929 .99	137.330 .20	147.23880	142.89000	137.28000	142.82000	138.9600
35.84880	140.94980	145.14300	155.94280	161.66000	153．50680	149.30000	133.86000

END OF FTLE $:$ DBI:TESTEI.DAT

FILE : PESTCI.ETR

```
OB1:TESTCI.DAT
OB1:TESTCI.PNT
D&:BYD.
DEI:TESTCI.PLT
PEST NO. CI. 7 APR 8g. M.DONZEAU
FMT
(8F10.0/8F10.8)
MQNT 
MOGD 16 2
LEVL 110.8800 2.727000 180.8080
TITL
TOPOGRAFWY. 3CALE 1:2gag
ORAWI 5.005500 6.290111 5. 10.
ORAW2 - 1.0日zg00
STOD
```

```
file : dmlicontur.dat
```


3
1
1
2
3
$\frac{1}{2}$
3
2
3
$0.14470 \partial 2 E+930.138290 \partial E+\pi 30.13979 \partial 日 E+330.1419408 E+830.1408188 E+030.1411680 E+83$

	11	$1 ?$	13	14	15	15
1	140．21＊v1	159．95304	152．Actont	157.92999	161．597did	153.15426
2	147．78入入の	149．557ス＊	157．113才，	159．884．a	174．57200	169．83a4id
3	138.63730	190．2323x	143．53083	153.33 inc	154．92999	135．236at
4	134．567Иス	138．75930	14．5．30337	147．36847	150.56380	$156.553 n d$
5	147．78アA号	144．8）2x．	151．74入入	156．39999	157．32atd	181.87999
6	140．982ca	152．11730	159.30990	148．4106\％	145.56998	144．28999
7	158．89729	155．73979	149．24371	147．12ddt	147.93280	148.33020
8	150.14937	153．3入999	154．89999	151．45020	147.67999	149．31830
9	145．1478？	155．948入）	131．663）	153．50200	149．32380	153．85024

CONTOIRS	ON	nck	2									
EONTOUR	LEVEL	；	193．83720a	vo	05	6－10	CELLS	1	λ	POURCENTAGE	t	0.80
CONTOIR	LEVEL	1	112．0ndत2a	vo	0 O	GRID	CELLS	1	3	POUREENTAGE	1	0.80
CONTOUR	LEVEL	1	144．8入入aza	vo	OF	GFID	CELGS	1	λ	PJURCENTAGE	1	0.80
cantoln	LEVEL	1	196．）33a3a	vJ	$0 F$	GAID	CE6LS	：	3	ODURCEVTAGE	1	0.80
CONTOIR	LEVEL	1	118．32ana	vo	0	G月ID	CE663	1	2	POURCENTAGE	1	0.00
CONTMIP	LEVEL	：		vo	OF	GRIJ	CELLS	1	0	PJURCENTAGE	1	8.80
CONTOUS	I EVEL	1	122．237209	vo	OF	GRID	CELbS	1	0	POURCENTAGE	\％	0.04
CONTOLIA	LEVEL	1	134．Jコスada	40	OF	GRID	CELLS	1	0	POURCENTAGE	1	0.84
CONTOIR	LEVEL	：	126．dydasa	vo	OF	GRID	CELLS	1	8	POUREENTAGE	1	5.56
CONTOUR	LEVEL	：	128．8入力八刀口	vo	OF	GRID	CELLS	1	9	POURCENTAGE	1	6.25
CONTOUR	IEVEL	：	13A．व入a入on	vo	OF	GRID	CELLS	1	17	POURCENTAGE	1	11.81
CONTOUR	LEVEL	！	132．8ว刀aッด	$\checkmark 0$	OF	GRID	CEL6S	1	28	POURCENTAGE	1	19.44
CONTOUA	LEVEL	：	134.80 ？${ }^{3} 989$	vo	OF	GRID	CELLS	1	32	PJURCENTAGE	1	22．22
CONTOuA	LEVEL	t	136．332700	vo	05	GRID	CEbLS	1	43	PDURCEVTAGE	1	27.78
CONTOUR	LEVEL	：	138.832 A40	vo	Of	GRID	CEbLS	1	43	PJURCENTAGE	1	29.86
contour	LEVEL	－	1dx．${ }^{\text {dodanda }}$	vo	OF	GRID	CEbLS	1	41	PJURCENTAGE	1	28.47
COnTOUR	LEVEL	！	142．d．sə入วa	vo	05	GRIO	CEbLS	1	45	PDURCENTAGE	8	31.25
CONTOUR	LEVEL	\％	184．8入a入da	vo	OF	GRID	CEbLS	1	45	PDURCENTAGE	1	31.25
EONTOUR	LEVEL	1	146． 23 2a 20	$v 0$	OF	GAID	CEbLS	1	42	POURCENTAGE	t	29.17
Contoun	LEVEL	：	148．87agon	$\checkmark 1$	0%	GRID	CELLS	1	42	POURCENTAGE	1	29.17
CONTOIJ	LEVEL	：	15才．832＊マa	$v 9$	OF	6RID	CELLS	1	36	POURCENTAGE	1	25.04
CONTOIJR	LEVEL	t	132．2ォス天＊9	vi	OF	GRI？	CELLS	1	32	POURCENTAGE	1	22.22
CONTOYR	LEVEL	1	144．${ }^{1508730}$	$v 0$	OF	GRIO	EELLS	1	26	POUREENTAGE	1	18．36
CONTOUA	LEVEL	t	156．28？ 307	\checkmark	OF	GRID	CELLS	1	21	POURCENTAGE	1	14．58
CONTOUR	LEVEL	1		$v 0$	OF	GRID	CELLS	1	18	POURCENTAGE	1	12.59
CONTOUR	LEVEL	1		vo	QF	GRID	CELLS	1	14	POURCENTAGE	，	9.72
CONTOIIR	LEVEL	1	142． $10 \rightarrow$ asas	vo	OF	GRID	CEbbS	1	9	POUREENTAGE		6.25
CONTOIJR	LEVEL	\％	164．d才， 14080	NO	OF	GRID	CELLS	1	5	POUREENTAGE	1	3.47
contoing	LEVEL	！	148．ग习习习习号	vo	OF	GRID	CE663	1	4	POURCENTAGE	1	2.78
COnTOUR	LEVEL	1	158．033a＊a	No	Of	GRID	CEL6S	1	4	POURCENTAGE	1	2.78
CONTOUN	LEVEL	t	178.829830	$\checkmark 0$	OF	GRID	EEWLS	1	4	POUREENTAGE	1	2.78
CONTOUR	LEVEL	1	172．8ว入aวa	$v 0$	OF	GRID	CELLS	1	4	PDUREENTAGE	－	2.78
CONTOIJ	LEVEL	\％	174．83ayan	vo	OF	GRID	EELLS	1	4	POURCENTAGE	1	2.78
CONTOUR	LEVEL	！		$v 0$	OF	6月ID	CEb6S	1	0	PJUREENTAGE	1	8.80
contour	LEVEL	\％		vo	OF	GRID	CELLS	1	0	QOURCENTAGE	－	0.09
CONTOUR	LEVEL		1月3．23793a	vo	OF	GRID．	CELLS	1	8	POURCENTMGE	1	8.84

8100		Poondazaido		2.82082828	8.088000000	3.28204808	0.82088880	PLOTtEA BLOCX
STOP	TIME：		11758：51					

Figure 3.-Topographic map of Muzubiah area, Kingdom of Saudi Arabia (values in meters, contour interval 2 meters).

SOURCE PROGRAM LISTING

The source program listing is not reproduced here as it is quite big. It is stored in the Geophysics section of the U.S. Geological Survey office in Jiddah, and is at the disposal of the people interested in it.

ACKNOWLEDGEMENTS

All the modifications of the CALCOMP version of the program described in this report were made partly by J. Bobillier and J. -P. Veyrier from BRGM/Jiddah, and partly by B. Dixon, L. North, and M. Donzeau from USGS/Jiddah.

REFERENCES

California Computer Products, Inc., 1974, CONTOUR, a basic contouring program, by CALCOMP, Applications software, Anaheim, Calif.
, 1973, GPCP-a general purpose contouring program: User's manual, Anaheim, Calif.

SOURCE PROGRAM LISTING

The source program listing is not reproduced here as it is quite big. It is stored in the Geophysics section of the U.S. Geological Survey office in Jiddah, and is at the disposal of the people interested in it.

ACKNOWLEDGEMENTS

All the modifications of the CALCOMP version of the program described in this report were made partly by J. Bobillier and J. -P. Veyrier from BRGM/Jiddah, and partly by B. Dixon, L. North, and M. Donzeau from USGS/Jiddah.

REFERENCES

California Computer Products, Inc., 1974, CONTOUR, a basic contouring program, by CALCOMP, Applications software, Anaheim, Calif.
, 1973, GPCP-a general purpose contouring program: User's manual, Anaheim, Calif.

