6600564

Appendix R

Geothermex / First Flow Test Report

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

.

SALTON SEA SCIENTIFIC DRILLING PROGRAM

FLOW TEST OF WELL STATE 2-14,

28-30 DECEMBER 1985

.

BECHTEL NATIONAL, INC. SAN FRANCISCO, CALIFORNIA

by

GeothermEx, Inc.

June 1986

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

CONTENTS

CONCLUSIONS	v
RECOMMENDATIONS	i
1. INTRODUCTION	
2. DESCRIPTION OF THE FLOW TEST	1
3. ANALYSIS OF THE DATA	1
3.1Estimation of Fluid Enthalpy and Pre-Flash TDS3-23.2Flow Rate Calculations3-23.3Temperature and Pressure Data3-43.4Reservoir Deliverability3-5	2 4
4. REFERENCES	l

FIGURES

APPENDIX A: Data Collected During Flow Test

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

FIGURES

1.	Schematic of the flow-test facility
2.	Summary of discharge history
3.	Data from wellhead area, well State 2-14 flow test
4.	Data from sample spools, well State 2-14 flow test
5.	Data from muffler area, well State 2-14 flow test
6.	Temperature and pressure surveys, well State 2-14
7.	Boiling-point curve, well State 2-14
8.	Boiling-point curve, well State 2-14
9.	Pressure-buildup test (semi-log plot), well State 2-14
10.	Pressure-buildup test (log-log plot), well State 2-14

GeothermEx, Inc. S221 CEN RICHMON

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

CONCLUSIONS

The following conclusions are based on direct observations and analysis of data collected during the flow test of well State 2-14 conducted from 28 to 30 December 1985:

- The well encountered a permeable zone at 6,100 to 6,227 feet in depth, with a resource temperature of 581°F measured downhole. This corresponds to lost circulation and lithologic evidence of a production zone between 6,110 and 6,130 feet in depth.
- 2. The produced fluid had a calculated pre-flash total dissolved solids (TDS) content of approximately 27 weight-% and an estimated enthalpy of 400 BTU/lb. At atmospheric pressure, this resulted in a steam fraction of 26.5 weight-% and a 37 weight-% TDS content in the separated brine.
- 3. Pre-flash TDS content calculated by GeothermEx (27.2 weight-%) and by D. Michels (24.5 weight-%), are in reasonable agreement. Michels also estimated the pre-flash gas content to be 0.17 weight-%, consisting of about 99.6% carbon dioxide. Chemical analyses based on samples collected by Kennecott are suspect, as the TDS of samples collected at 460 and 195 psig are not in agreement. The sample collected at 460 psig appears to be diluted by excess steam.
- 4. Under throttled conditions, the flow rate stabilized at approximately 140,000 lbs/hr at a wellhead pressure of 450 psig. No stabilized data were obtained with the well flowing fully open, because of the short discharge time. Data collected during this time

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

showed a decrease in wellhead pressure from 245 to 190 psig, with a corresponding decrease in flow rate from 490,000 to 360,000 lbs/hr. Because of the steep rate of pressure and mass flow decline, no estimate of stabilized conditions has been made.

- 5. The producing zone has a productivity index of 300 lbs/hr/psi, based on a pressure survey conducted with the well flowing at 140,000 lbs/hr.
- 6. Pressure-buildup data were analyzed using both constant-pressure outer-boundary and infinite outer-boundary models. The formation flow capacity was estimated to be 6,500 and 11,700 millidarcy feet (md·ft) respectively from the two models; with skin factors of +6 and +10 respectively. The positive skin factors suggest that the well is damaged.
- 7. Temperature and pressure data from surface and downhole measurements were adequate to define the boiling-point curve for the brine. Some of the data, however, follow the pure-water boilingpoint curve, and this is believed to indicate that separation of brine and steam occurred in the flowline between the wellhead and the sampling loop. It is recommended that pressure and temperature gauges be installed at the bottom of the pipeline prior to the next flow test to confirm this interpretation.

- ۷ -

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

RECOMMENDATIONS

- During the flow test, problems were encountered with the operation of the James tube, muffler and weirbox due to mineral deposition. It is thought that the majority of these problems can be overcome by simple modifications to the system before the next flow test. The following modifications are recommended and have already been discussed with Bechtel:
 - a. The James tubes should be extended in length, to ensure that they discharge directly into the muffler and not into the baffle pipe.
 - b. An 8-inch line should be installed from the muffler to the brine pit, to allow the muffler to be drained.
 - c. The baffles in the weirbox and the weir plate should be removable so that sludge can quickly be cleaned out of the weirbox on a routine basis during the flow test.
 - d. A nitrogen bottle should be connected to the lip pressure tap line so that it can be blown down on a routine basis to prevent scaling.
- In addition to the above mechanical modifications, the following changes are recommended to improve observations and the accuracy of the collected data:
 - a. The sight glass on the weirbox should be relocated at least two feet upstream of the weir to ensure that the maximum head is being measured.

-vi-

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

- b. The weir crest length should be reduced from the present 15 inches to 10 inches.
- c. The pressure taps at the measuring orifice should be changed from flange taps to pipe taps, and gauges should be used to measure the pressure drop across the orifice.
- 3. The well should be flowed at only two rates during the final flow test to ensure that stabilized conditions are achieved because slow reservoir response was observed when the well was fully opened.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

1. INTRODUCTION

As part of the Salton Sea Scientific Drilling Program, well 2-14 was flowed from 28 to 30 December 1985, after encountering part losses of circulation between 6,100 and 6,227 feet in depth, when drilling out below the 9-5/8-inch casing shoe at 6,000 feet. During the flow test, the well was discharged to an atmospheric muffler and the well's output was determined by use of the James lip-pressure method combined with water-flow measurements across a weir. This method is not normally used for testing of high-salinity brine wells because of the problems with mineral deposition. Recognizing this problem, GeothermEx, Inc. recommended the use of a high-pressure separator, with continuous metering of the separated steam and brine phases for calculating total mass-flow rate and enthalpy. However, because of the cost of such an installation, it was decided to proceed with the atmospheric muffler and weirbox.

GeothermEx, Inc. personnel were on-site during the period of preparation for the flow tests and during the testing and sampling of 28 to 30 December. However, no GeothermEx personnel were present during the attempted downhole sampling of 31 December 1985.

GeothermEx, Inc. is responsible for the interpretation of physical and other data collected during the test. In addition, GeothermEx, Inc. has provided advice to Bechtel on various aspects of testing, logging and sampling the well.

The purpose of this report is to present the physical data collected during the flow test and an interpretation of that data. GeothermEx, Inc. SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

1.1 Flow-Test Facility

The facility used for testing well State 2-14 is shown schematically in figure 1. Using this facility it was possible to discharge the well to either:

- a) the mud pit used during drilling;
- b) directly to the brine pit through the bypass blooie line; or
- c) to the atmospheric muffler/separator, with the water being discharged to a weirbox and then to the brine pit.

The pipeline in the facility was constructed of 10-inch schedule 40 pipe, instrumented with temperature and pressure gauges at the measuring points shown in figure 1. In the fluid-sampling loop, 4 orifice plates were installed at the locations shown in figure 1 (FO-1 to 4) to provide 4 fluid-sampling environments at different temperatures and pressures. A bypass around the sampling loop was also provided, so that the discharged fluid only flowed through the sampling loop during periods of sampling.

The mass flow rate and enthalpy of the brine discharging to the muffler was monitored by recording the lip pressure at the end of the James tube and by measuring the water flow rate over a weir. Initially a 90° Vnotch weir was installed, but this was later replaced with a 15-inch rectangular-notch weir. An orifice plate was also installed upstream of the James tube to provide another method of calculating the mass flow rate and enthalpy. A Foxboro recorder was used to continuously monitor (a) the pressure upstream of the orifice plate, (b) the orifice plate differential pressure and (c) the lip pressure. The fluid level in the weir box was measured with both a dipstick and a sight glass.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

2. DESCRIPTION OF THE FLOW TEST

Well State 2-14 was flowed as part of the Salton Sea Scientific Drilling Program from 28 to 30 December 1985. The discharge history is summarized in figure 2 and in the following section. This section is based mainly on records and data collected by the U.S. Geological Survey on-site Science Manager and his staff.

The decision to flow the well was made on 24 December 1985 after partial losses of circulation were encountered between 6,100 and 6,227 feet in depth. After this decision was made, the drilling mud was displaced from the hole with fresh water, and the rig was put on standby status. A suite of logs, including static temperature and pressure surveys, was then run in the well, and these were completed by 28 December 1985. By this time the wellhead pressure had risen to 165 psig, because of heating and subsequent expansion of the fresh water; and it was felt that the well could possibly discharge without the need for nitrogen injection.

The well was opened to the mudpit at 1324 hours on 28 December 1985, and the initial flow was estimated to be approximately 35 gallons per minute (gpm), at a wellhead pressure of 6 psig. The flow continued at this rate, with discharge temperature increasing from 165°F to 196°F. However, the temperature stabilized at 196°F, and it was noted that the fluid was becoming more muddy and the flow rate was decreasing. Therefore, at 1530 hours the decision was made to inject nitrogen in order to initiate a full discharge. Tubing was run into the well to 1,500 feet, and nitrogen was pumped at a constant rate of 250 cubic feet per minute (cfm). By 1800 hours the well was discharging to the mudpit.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> At 1830 hours the flow was bypassed to the brine-pit blooie line, which was equipped with a lip-pressure tap (figure 1), to give an initial indication of the flow rate. At 1858 hours the flow was bypassed to the atmospheric muffler, with the separated water flowing across a 90° V-notch weir into the brine pit.

At 1938 hours it was noted that water was backflowing out of the baffle pipe surrounding the James tube. It was believed that this was caused by flooding of the muffler, because of limited capacity in the weirbox, and the flow was diverted back to the blooie line at 1944 hours. To increase the capacity of the weirbox, it was decided to replace the 90° Vnotch weir with a rectangular-notch weir having a crest length of 15 inches. It was also decided that the first baffle in the weirbox should be reduced in height.

While waiting for the welder to make the modifications, the flow was throttled back and rediverted to the muffler at 2151 hours. This was necessary because spray from the blooie line was being carried beyond the brine pit.

Modifications to the weirbox were completed at 0327 hours on 29 December 1985. While the modifications were being carried out, the flow was diverted to the blooie line, and the inside of the muffler was inspected to see if scale buildup was restricting the two 12-inch outlet lines. A coating of salt scale of approximately 1/4- to 1/2-inch thickness was found on the sides of the muffler; scale buildup also had occurred in the center of the muffler base. However, the two outlet pipes were clear.

It was also decided to replace the 7-inch James tube with a 5-inch James tube. After the James tube was removed, a buildup of scale was

GeothermEx, Inc. SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> observed inside the baffle pipe, starting where the fluid would have discharged from the end of the James tube. This was cleaned out and the 5-inch tube was installed. A vacuum truck was also utilized to clean out the weirbox, which was found to be full of sludge.

The flow was diverted back to the muffler after the modifications were completed. However, at 0413 hours the flow was again diverted to the blooie line because of excessive fluid backflow past the James tube. The James tube was removed and the baffle pipe was found to be badly scaled. The scale was removed and a 10-inch James tube was installed. The flow was rediverted to the muffler at 0522 hours. However, the same problem was encountered, and the flow again was diverted to the blooie line at 0654 hours. After a few minutes it was realised that spray from the blooie line was still being carried beyond the brine pit, and that it would be necessary to modify the end of the line to direct the flow down into the brine pit. The flow was therefore rediverted to the muffler.

At 0753 hours the flow was diverted through the sampling loop so that fluid sampling could be started. However, it was found that the temperature drop between each of the sampling spools was inadequate and that it was thus necessary to replace the pressure-reducing orifice plates. The flow was therefore diverted back to the bypass line at 0915 hours. The orifice plates were replaced, and flow restarted through the sampling spools at 1234 hours. As before, the temperature drops were found to be inadequate, and the flow was bypassed at 1244 hours. After further changes were made in orifice diameter, the flow was diverted back to the sampling loop successfully at 1416 hours. Sampling continued until 2005 hours.

While the orifice plates in the sampling loop were being replaced, the end of the blooie line was modified, to direct the flow down into the

GeothermEx, Inc. 5221 C RICHM

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> brine pit. Flow was bypassed from the muffler at 1227 hours. With the flow going to the blooie line, it was possible to remove the 10-inch James tube and to clean out the baffle pipe. The 10-inch James tube was also extended in length so that fluid would discharge directly into the muffler rather than into the baffle pipe, to overcome the problem of backflow from the baffle pipe. At the same time, preparations were underway to conduct temperature and pressure surveys with the well on discharge, using the "dewared" Kuster temperature and pressure tools.

However, prior to conducting the surveys, it was found that the flange above the master valve was leaking. It was decided to abort the surveys and shut in the well. The well was shut at 2115 hours, whereupon the bottom flange on the master valve also began to leak. Both flanges were retightened and a kill line was installed.

The well was reopened to the brine-pit blooie line at 0113 hours, 30 December 1985. At 0328 hours the flow was diverted to the muffler and the flow rate slowly was increased. The well was fully opened by 0435 hours. No problems were encountered with backflow at the baffle pipe, and there was no sign of excessive water carryover in the steam. It was found, however, that the weirbox quickly filled with salt sludge, and by 0515 hours the level was close to the bottom of the weir notch. The sludge was shovelled out manually, with the well continuing to flow to the muffler. However, the rate of scale buildup was sufficiently great to make this method of cleanout impractical. In addition, it appeared that the lippressure tap on the James tube had scaled up by 0548 hours.

With the well fully open, Kennecott then began to take fluid samples at sampling point PI-SP-2 (figure 1). It was observed, however, that the well output was falling off, possibly because of scaling in the

GeothermEx, Inc. SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> well. Hence, it was decided that the well should be throttled back as soon as possible. Kennecott completed their sampling by 0613 hours, and the well was throttled back.

÷.,

Flow was diverted through the sampling loop at 0743 hours to allow the second round of fluid sampling. Sampling was completed by 1520 hours.

During the morning of 30 December 1985, rigging up was completed for the flowing temperature and pressure surveys; running in-hole began at 1350 hours. After completing the surveys, the tools were left in the hole at 5,950 feet (measured depth) to record pressure and temperature buildup after the well was shut-in.

After sampling was completed, the well continued to flow through the sampling loop until 1700 hours, at which time a thermowell (TI-6) in the low-pressure spool of the sampling loop washed out. The flow was then bypassed, and the well was shut-in at 1730 hours. The wellhead pressure had declined to zero by 2008 hours, and the temperature and pressure tools were recovered at 0100 hours on 31 December 1985.

Following recovery of the temperature and pressure tools, the downhole sampler from Los Alamos National Laboratory was rigged up and run into the well at 0400 hours. The tool was recovered, but it was found that the sampling valve had not opened, perhaps because of high cable resistance caused by leaks in the cable head. The cable head was serviced and a second attempt was made to recover a fluid sample. This was also unsuccessful, and it was concluded that leaks between the conductors in the cable were preventing the valve from opening when a surface power source and conductor cable were used.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> Hence it was decided to use a battery pack, supplied by Sandia National Laboratory, to actuate the valve from downhole. During this run it was found that the valve did open, but because of the flashing which occurred when fluid entered the evacuated sampling vessel, the entry point scaled up. The motor was unable to close the valve because of the scale; and when the tool was recovered it was found that the battery pack had burnt out. After unsuccessful attempts were made to close the valve on the surface using a spare battery pack, it was concluded that the motor used to operate the valve also had burnt out.

Downhole sampling was therefore aborted at 2200 hours, and injection of the discharged brine back into the well was started at 2300 hours on 31 December 1985, at an approximate flow rate of 600 gpm.

During the downhole surveying and sampling, no evidence of scaling was found in the wellbore, indicating that the decrease noted in the flowrate when the well was fully open was a reservoir response and was not due to choking in the wellbore.

After completion of the flowtest, the pipelines and muffler were inspected for scale deposition. Pipelines were found to be relatively deposit-free, but deposits up to 18-inches thick were found in the muffler. The most severe deposition occurred opposite the tangential inlet, with a decreasing thickness away from that point. When the manhole cover was removed, a deposit 6 to 7 inches in thickness was found on the inside surface.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(1)

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

3. ANALYSIS OF THE DATA

Data collected from the wellhead, sample spool and muffler during the flow tests are tabulated in Appendix A and plotted in figures 3, 4 and 5. These surface data, along with data collected from downhole surveys, are analyzed in the following sections.

3.1 Estimation of Fluid Enthalpy and Pre-Flash TDS

The discharge enthalpy has been estimated from the temperature (581°F) measured at the bottom of the casing with the well on discharge (figure 6), modified for TDS, using the following formula:

 $h_t = 0.36(T)^{1.16} \cdot 10^{-0.6x}$

where: h_{+} = total fluid enthalpy (BTU/lb),

T = temperature (°F), and

x = TDS (weight fraction)

TDS could not be measured directly, because of steam separation. However, by use of the chemical concentration measured in the weirbox (370,000 ppm), combined with percentage-steam-flash calculations and equation (1) in an iterative process, the fluid enthalpy and pre-flash TDS were estimated respectively to be 400 BTU/1b and 272,000 ppm or 27.2 weight-%. Using this value for enthalpy, the steam fraction at atmospheric pressure is calculated to be 26.5 weight-%.

The calculated pre-flash TDS of 27.2 weight-% is close to the value of 24.5 weight-% estimated by Michels. Michels also estimated the preflash gas content to be about 0.17 weight-%, consisting of 99.6% weight-%

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> carbon dioxide. Michels gives no estimate of the fluid enthalpy but indicates that the solution of mixed salts appears to have a smaller heat capacity than its weight-equivalent of sodium chloride brine. This would suggest that the value of enthalpy calculated using equation (1) may be slightly high. However, for calculations of flow rate, it is believed that the estimated enthalpy of 400 BTU/1b is reasonable.

> Chemical samples were also collected by Kennecott using an LLL probe to sample at various points across the pipe. If the sampling was representative, the measured TDS should be the same as the pre-flash TDS. However, samples collected at 460 psig and 195 psig had TDS values of 102,430 ppm and 292,735 ppm respectively. The sample collected at 460 psig appears to be diluted with respect to the sample collected at 195 psig, probably due to entrainment of a higher percentage of steam. The sample collected at 195 psig is thought to be more representative of the true preflash TDS. However, unless the enthalpy of the sample is equal to the enthalpy of the steam and brine mixture in the pipe, the sample TDS will not be the same as the pre-flash TDS.

3.2 Flow Rate Calculations

The separated water flow rates were calculated from water levels measured in the weirbox (figure 5) using equations (2) and (3):

 $w_f = 8953.2 \ \rho_w \ H^{2.481} \ (90^\circ \ V \text{-notch weir})$ (2)

$$w_f = 11988 \rho_w (1.25-0.2H)H^{1.5} (15-inch rectangular weir)$$
 (3)

$$w_{f} = 11988 \rho_{w} (1.25 - 0.2H) (H + H_{v})^{1.5} - 3600 H_{v}^{1.5}$$
(4)

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

 H_v = velocity head = $\frac{velocity^2}{2g}$ (ft)

The density of water in the weirbox was measured and found to be 72 lbs/ft^3 . In the calculations of water flow rate, it is assumed that density remained constant at this value throughout the flow test.

The calculated values of water flow rate, based on both the dipstick and sight-glass measurements, are plotted in figure 5.

Equations (2) and (3) assume zero approach-velocity upstream of the weir. With the buildup of salt sludge in the weirbox, this assumption may not always be valid. Equation (4) is used for a rectangular weir when the upstream velocity is not negligible; it indicates that the actual flow rate will be greater than in the zero-velocity case. Therefore, equations (2) and (3) yield a minimum water flow rate. For an upstream velocity of 2 ft/s, the actual flow rate could be underestimated by approximately 20%.

The total mass flow rates shown on figures 3, 4 and 5 have been calculated from the estimated enthalpy of 400 BTU/1b and the measured water flow rate using flash calculations. Where possible, the flow rate also has been estimated from the lip-pressure measurements, using the James (1962) method, corrected for TDS. The correction to the James formula was made following the method outlined by Karamarakar and Cheng (1980) using the Fauske model for 2-phase flow. The total mass flow rates calculated by this method are included in figures 3, 4 and 5; the results match closely with flow rates calculated from the water flow rates and the estimated enthalpy of 400 BTU/1b.

GeothermEx, Inc. SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> Data were available from the orifice plate upstream of the James tube for only a short period on the night of the 28 December 1985. Therefore, these data are not analyzed in this report.

From the above calculations, the well was found to produce a stable total flow rate of approximately 140,000 lbs/hr throttled to a wellhead pressure of 450 psig. The well also was discharged with the throttling valve fully open; however, flow rate and wellhead pressure did not begin to stabilise during the period of observation: wellhead pressure declined from 245 to 190 psig, with a corresponding decline in flow rate from approximately 490,000 to 360,000 lbs/hr. Because of the continued high rates of decline in pressure and mass flow, it has not been possible to estimate a final stabilized flow rate.

3.3 Temperature and Pressure Data

Temperature and pressure data were collected from a number of points in the surface pipework (figure 1) during the discharge test, and from downhole surveys conducted while the well was flowing (figure 6). Data measured at the surface and the 2-phase data from the downhole surveys are plotted in figure 7. The data for pure water have been included in figure 7 for comparison purposes.

Measurements taken at the sampling spools and the downhole data lie close to a single curve, which is believed to define the boiling-point curve for this brine. Data from TI-8/PI-8, located upstream of the sampling loop (figure 1), follow the pure-water curve, whereas data from TI-1/PI-1 follow the brine curve at low pressures and the pure water curve at high pressures. The data are replotted to a larger scale in figure 8 to show these trends more clearly.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> These data and trends indicate that water and steam have separated in the pipeline, and that water is flowing along the bottom of the pipe with steam at the top. Hence, the measurements at TI-8/PI-8 were made in steam which is essentially pure, and the measured temperatures and pressures thus reflect pure-water saturation conditions. Similarly, at TI-1/PI-1 there are indications that separation is occurring at low flow rates (high pressures), where the measured temperatures and pressures follow the pure-water curve; but that at high flow rates (low pressure), turbulence has reduced the amount of steam separation, and the measurements follow the brine curve.

To test this hypothesis, it is suggested that temperature and pressure gauges be installed at the bottom of the pipe near TI-8/PI-8 for the next flow test.

The chemical samples collected by Kennecott also support the above hypothesis, as the high-pressure sample has only 35% of the TDS measured in the low-pressure sample. This suggests that the LLL probe was preferentially sampling steam.

3.4 Reservoir Deliverability

From the downhole static- and flowing-pressure surveys (figure 6), the drawdown during flow at 140,000 lbs/hr was calculated to be approximately 470 psi. This indicates that the well has a productivity index of 300 lbs/hr/psi, based on this single point.

The measured pressure buildup after shut-in is plotted on semi-log and log-log coordinates in figures 9 and 10, respectively. The last 4 data points are at the same pressure, suggesting that the well may have been

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

> affected by a constant pressure outer boundary. The data have therefore been analyzed using both a constant pressure outer boundary solution as well as the more common infinite outer-boundary solution. Using the constant pressure outer boundary solution and fluid properties for a 27.2 weight-% brine, the formation flow capacity and skin factor are calculated to be 6,500 millidarcy feet (md·ft) and +6, respectively. The positive value of skin factor indicates that formation near the well was possibly damaged. The measured productivity index will also be affected by this damage.

Using the more common infinite outer-boundary solution (figure 10), the formation flow capacity is calculated to be $11,700 \text{ md} \cdot \text{ft}$, with a skin factor of +10.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

GeothermEx, Inc.

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

4. REFERENCES

James, R., 1962. Steam-water critical flow through pipes. Proc. Instr. Mech. Engrs., 196(26), pp. 741-748.

Karamarakar, M. and P. Cheng, 1980. A theoretical assessment of James method for the determination of geothermal wellbore discharge characteristics. Report No. LBL 11498, GREMP-12, UC-66a.

SUITE 201 5221 CENTRAL AVENUE RICHMOND, CALIFORNIA 94804

(415) 527-9876 CABLE ADDRESS: GEOTHERMEX TELEX: 709152 STEAM UD FAX: (415) 527-8164

APPENDIX A

Data Collected During Flow Test

A.1: DATA FROM WELLHEAD AREA

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DELTIME	PISP1	PI1	TIl	TI2	PISP2	PI8	TI8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.100	6	-1.	-1.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-1.	-1.	181			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-1.	189	-1.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				193	193	-1.	-1.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-1.	-1.	-1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						-1.	-1.	-1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								1 .
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6						-1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								-1.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4.68415 $-1.$ 240 240 $-1.$ $-1.$ $-1.$ $-1.$ 4.684 15 $-1.$ 9 263 258 5 $-1.$ $-1.$ 4.850 50 35 293 290 8 $-1.$ $-1.$ 4.933 $-1.$ 85 370 340 8 $-1.$ $-1.$ 5.017 140 90 355 350 $-1.$ $-1.$ $-1.$ 5.100 190 170 390 383 120 115 345 5.217 180 150 382 378 120 115 345 5.384 200 175 398 395 165 155 365 5.600 180 175 398 395 165 155 365 5.967 220 220 412 408 220 205 387 5.967 220 220 415 410 210 205 388 6.267 220 220 415 410 210 205 388 6.400 200 180 405 400 170 165 370 6.634 200 180 405 400 170 165 370 6.634 200 180 397 392 145 120 365 7.284 190 170 390 390 150 148 362 7.67 180 165 395								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4.850 50 35 293 290 8 $-1.$ $-1.$ 4.933 $-1.$ 85 370 340 8 $-1.$ $-1.$ $-1.$ 5.017 140 90 355 350 $-1.$ $-1.$ $-1.$ $-1.$ 5.017 140 90 355 350 $-1.$ $-1.$ $-1.$ $-1.$ 5.100 190 170 390 383 150 140 370 5.217 180 150 382 378 120 115 345 5.384 200 175 398 395 175 160 370 5.717 220 220 412 408 220 205 387 5.967 220 220 415 410 210 205 388 6.267 220 220 415 410 210 205 388 6.267 220 220 415 410 210 205 387 6.634 200 180 405 400 170 165 370 6.634 200 180 403 398 170 165 160 368 7.284 190 170 390 390 155 148 362 7.67 180 175 393 390 150 148 362 8.900 260 260 420 410 400 255 250 395								
4.933 $-1.$ 85 370 340 8 $-1.$ $-1.$ 5.017 140 90 355 350 $-1.$ $-1.$ $-1.$ $-1.$ 5.100 190 170 390 383 120 115 345 5.217 180 150 382 378 120 115 345 5.384 200 175 398 395 165 155 365 5.600 180 175 398 395 175 160 370 5.717 220 220 412 408 220 205 387 5.967 220 220 415 410 210 205 388 6.267 220 220 415 410 210 205 388 6.400 200 180 405 400 170 165 370 6.634 200 180 400 398 170 165 370 6.634 200 180 407 392 145 120 365 7.667 200 180 407 392 145 120 365 7.650 180 175 393 390 150 148 362 7.767 180 165 395 390 150 148 362 7.767 180 165 395 390 150 148 362 7.17 200 260 240 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.933							
5.217 180 150 382 378 120 115 345 5.384 200 175 398 395 165 155 365 5.600 180 175 398 395 175 160 370 5.717 220 220 412 408 220 205 387 5.967 220 220 415 410 210 205 388 6.267 220 220 415 410 210 205 388 6.400 200 180 405 400 170 165 370 6.634 200 180 400 398 170 165 370 6.634 200 180 400 395 165 160 368 7.067 200 180 397 392 145 120 365 7.67 180 170 390 390 155 155 365 7.650 180 170 388 390 150 148 362 7.767 180 175 393 390 150 148 362 8.800 260 262 410 400 195 200 380 8.450 210 200 416 400 195 200 380 8.900 260 262 410 400 195 200 380 9.500 240 240 400 395	5.017							
5.217 180 150 382 378 120 115 343 5.384 200 175 398 395 165 155 365 5.600 180 175 398 395 175 160 370 5.717 220 220 412 408 220 205 387 5.967 220 220 415 410 205 200 385 6.400 200 180 405 400 170 165 370 6.634 200 185 400 398 170 165 370 6.634 200 180 405 400 170 165 370 6.634 200 180 400 395 165 160 368 7.067 200 180 397 392 145 120 365 7.650 180 170 390 390 155 155 365 7.650 180 175 393 390 150 148 362 7.767 180 165 395 390 150 1448 362 8.800 260 260 420 415 250 240 398 8.900 260 262 410 400 195 200 380 8.800 260 262 410 400 255 250 395 9.117 210 190 385 3	5.100	190	170					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		180	150					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.384		175	398	395	165		
5.717 220 220 412 408 220 205 387 5.967 220 220 415 410 210 205 388 6.267 220 220 415 410 205 200 385 6.400 200 180 405 400 170 165 370 6.634 200 185 400 398 170 165 370 6.834 200 180 400 395 165 160 368 7.067 200 180 397 392 145 120 365 7.284 190 170 390 390 155 155 365 7.650 180 170 388 390 150 148 362 7.767 180 165 395 390 150 145 360 8.450 210 200 410 400 195 200 380 8.800 260 262 410 400 255 250 395 9.117 210 190 385 380 200 200 380 9.717 300 300 420 419 300 310 415 9.983 320 320 425 422 325 330 420 10.483 340 330 426 425 330 340 422 10.750 340 338 426				398	395	175		
5.967 220 220 415 410 210 205 388 6.267 220 220 415 410 205 200 385 6.400 200 180 405 400 170 165 370 6.634 200 185 400 398 170 165 370 6.834 200 185 400 395 165 160 368 7.067 200 180 397 392 145 120 365 7.284 190 170 390 390 155 155 365 7.650 180 170 388 390 150 148 362 7.767 180 165 395 390 150 145 360 8.167 180 175 393 390 150 150 360 8.450 210 200 410 400 195 200 380 8.900 260 262 410 400 195 200 380 9.117 245 235 400 395 240 248 393 9.717 300 300 420 419 300 310 415 9.983 320 320 425 422 320 418 10.200 340 338 428 426 340 350 425 11.217 350 350 432 430					408	220		
					410	210	205	
							200	385
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							165	370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							165	370
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								368
7.0072001003903901551553657.2841901703883901501483627.6501801703883901501453608.1671801653953901501453608.1671801753933901501503608.4502102004104001952003808.8002602604204152502403988.9002602624104002552503959.1172452354003952252403909.2172101903853802002003809.5002402404003952402483939.7173003004204193003104159.98332032042542031232042010.48334033042642533034042210.75034033842842634035042511.21735035043243035035542811.65036036043643537037543012.13337537043643537037543012.650380380439438380382433 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>365</td>								365
7.264 170 388 390 150 148 362 7.650 180 170 388 390 150 145 360 7.767 180 165 395 390 150 145 360 8.167 180 175 393 390 150 150 360 8.450 210 200 410 400 195 200 380 8.800 260 260 420 415 250 240 398 8.900 260 262 410 400 255 250 395 9.117 245 235 400 395 225 240 390 9.217 210 190 385 380 200 200 380 9.500 240 240 400 395 240 248 393 9.717 300 300 420 419 300 310 415 9.983 320 320 425 422 325 330 420 10.200 330 325 425 422 325 330 420 10.483 340 330 426 425 330 340 422 10.750 340 338 428 426 340 350 425 11.217 350 350 432 430 350 355 428 11.650 360 360 434 432 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>365</td></t<>								365
7.050180170300300150145360 7.767 180175393390150150360 8.167 180175393390150150360 8.450 210200410400195200380 8.800 260260420415250240398 8.900 260262410400255250395 9.117 245235400395225240390 9.217 210190385380200200380 9.500 240240400395240248393 9.717 300300420419300310415 9.983 320320425420312320418 10.200 330325425422325330420 10.483 340330426425330340422 10.750 340338428426340350425 11.217 350350432430350355428 11.650 360360434432367370430 12.133 375370436435370375430 12.650 380380439438380382433 13.100 388388441439<								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
9.117 243 233 400 385 380 200 200 380 9.217210190 385 380 200 248 393 9.500 240 240 400 395 240 248 393 9.717 300 300 420 419 300 310 415 9.983 320 320 425 420 312 320 418 10.200 330 325 425 422 325 330 420 10.483 340 330 426 425 330 340 422 10.750 340 338 428 426 340 350 425 11.217 350 350 432 430 350 355 428 11.650 360 360 434 432 367 370 430 12.133 375 370 436 435 370 375 430 12.650 380 380 439 438 380 382 433 13.100 388 388 441 439 388 390 436								
9.2172101903003003952402483939.5002402404003952402483939.7173003004204193003104159.98332032042542031232041810.20033032542542232533042010.48334033042642533034042210.75034033842842634035042511.21735035043243035035542811.65036036043443236737043012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
9.7173003004204193123204189.98332032042542031232041810.20033032542542232533042010.48334033042642533034042210.75034033842842634035042511.21735035043243035035542811.65036036043443236737043012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436								
9.96332032542542232533042010.20033032542542232533042010.48334033042642533034042210.75034033842842634035042511.21735035043243035035542811.65036036043443236737043012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436								
10.20033032342342233034042210.48334033042642533034042210.75034033842842634035042511.21735035043243035035542811.65036036043443236737043012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436								
10.48334033042042042330035042510.75034033842842634035042511.21735035043243035035542811.65036036043443236737043012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436								
10.75034035842042035035042811.21735035043243035035542811.65036036043443236737043012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436								
11.21735036043243011.65036036043443236737043012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436								
11.05030030043643237037543012.13337537043643537037543012.65038038043943838038243313.100388388441439388390436	11.217							
12.13337537043643537037543012.65038038043943838038243313.100388388441439388390436	11.650	360						
12.65038038043943838038243313.100388388441439388390436		375	370					
13.100 388 388 441 439 388 390 436		380	380	439	438			
				441	439			
				441	439	390	395	440

d.

DELTIME	PISPI	PII	TII	TI2	PISP2	PI8	TI8
14 017	(00	390	442	440	395	400	440
14.017	400		446	445	412	420	442
14.350	410	410		447	415	420	442
14.950	420	412	446 449	447	420	425	441
15.467	420	420		449	420	425	442
15.967	420	420	450	448	390	390	445
16.217	420	420	465	400	400	405	445
16.517	400	400	455		400	415	445
17.050	415	415	458	448 449	410	415	449
17.534	410	415	457	449	415	422	441
17.950	415	418	447 445	440	405	410	440
18.400	405	400		442	405	410	442
18.500	405	405	445	442	415	420	449
18,717	415	420	459	439	430	440	448
19.217	425	425	450	449 449	430	435	445
19.650	430	430	450		418	425	440
20.300	415	415	447	445	415	422	442
20.867	415	415	446	446	415	420	442
21.617	410	410	445	442 445	410	415	440
22.383	410	410	445		410	415	446
23.200	410	410	445	444 450	430	440	448
23.450	440	440	450	450	450	455	450
23.883	450	450	454	452	455	455	450
24.450	450	460	455	453	453	460	452
24.800	450	452	455 455	455	445	465	450
25.283	450	460		455	460	460	450
25.700	450	455	455 455	455	465	465	450
26.150	450	460	455	455	460	462	450
26.483	450	460	455	455	460	462	452
27.017	450	460		455	460	470	450
27.567	450	460	455 455	455	460	468	450
28.100	455	460	455	455	460	465	453
28.600	455	465	455	455	-1.	470	453
29.150	455	460	455	455	-1.	470	452
29.683	455	460 465	455	455	-1.	470	450
30.233	460 460	465	455	455	-1.	470	450
30.800	460	465	460	455	-1.	470	450
31.717 32.017	400	-1.	397	400	-1.	-1.	380
36.033	-1.	-1.	-1.	-1.	-1.	175	-1.
36.133	-1.	-1.	-1.	-1.	-1.	210	380
36.233	-1.	-1.	-1.	-1.	-1.	235	388
36.317	-1.	-1.	-1.	-1.	-1.	262	400
36.383	-1.	-1.	-1.	-1.	-1.	290	408
36.466	-1.	-1.	-1.	-1.	-1.	313	415
36.533	-1.	-1.	-1.	-1.	-1.	332	420
36.600	-1.	-1.	-1.	-1.	-1.	340	423
36.683	-1.	-1.	-1 -	-1.	-1.	350	427
36.767	-1.	-1.	-1.	-1.	-1.	365	430
36.850	-1.	-1.	-1.	-1.	-1.	380	431
36.933	-1.	-1.	-1.	-1.	-1.	390	. 433
	-						

•

· .

×.,

•

• • •

DELTIME	PISP1	PI1	TII	TI2	PISP2	PI8	TI8
	11011						
37.033	-1.	-1.	-1.	-1.	-1.	410	440
37.100	-1.	-1.	-1.	-1.	-1.	410	440
37.100	-1.	-1.	-1.	-1.	-1.	420	445
37.183		-1.	-1.	-1.	-1.	430	445
37.266	-1.		-1.		-1.	440	447
37.350	-1.	-1.		-1.	-1.	450	450
37.600	-1.	-1.	-1.		-1.	450	450
37.876	-1.	450	455	450	-1.	470	455
38.417	-1.	450	466	458		450	450
38.967	-1.	450	462	452	$-\frac{1}{1}$.	220	392
39.333	-1.	245	422	420	-1.	205	-1.
39.450	-1.	-1.	-1.	-1.	-1.		388
39.517	-1.	228	416	416	-1.	210	
39.750	-1.	220	413	412	-1.	200 .	
40.000	-1.	210	420	410	-1.	190	380
40.267	-1.	200	407	405	-1.	180 -	380
40.667	-1.	190	402	401	-1.	170	375
41.100	-1.	310	425	420	-1.	320	412
	-1.	280	422	422	-1.	300	412
41.383	-1.	360	449	438	-1.	350	435
41.750		390	455	442	-1.	380	440
42.300	-1.		450	442	-1.	410	442
42.650	-1.	405		442	-1.	420	448
43.167	-1.	425	453	442	-1.	430	450
43.533	-1.	430	455			450	450
44.183	-1.	438	457	-450	-1.	440	452
44.983	·-1.	445	460	452	-1.	440	452
45.433	-1.	445	455	450	-1.		452
46.300	-1.	445	460	452	-1.	443	452
46.767	-1.	450	458	452	-1.	440	
47.300	-1.	455 ·	465	452	-1.	422	452
47.937	-1.	450	460	452	-1.	442	452
48.650	-1.	450	468	450	-1.	450	450
49.400	-1.	455	458	450	-1.	-1.	-1.
50.250	-1.	450	463	452	-1.	450	452
50.850	-1.	460	460	452	-1.	450	452
51.217	-1.	460	458	455	-1.	450	455
		460	458	455	-1.	465	455
51.883	-1. 400	-1.	-1.	-1.	-1.	-1.	-1.
52.033			-1.	-1.	-1.	-1.	-1.
52.633	400	-1.	-1.	-1.	-1.	-1.	-1.
53.267	375	-1.	-1.	-1.	-1.	-1.	-1.
53.567	340	-1.			-1.	-1.	-1.
54.183	60	-1.	-1.	-1.	-1.	-1.	-1.
54.733	0	-1.	-1.	-1.	-1.	- •	- •
			۰. ۱				•
•							
	•						
	•						

•

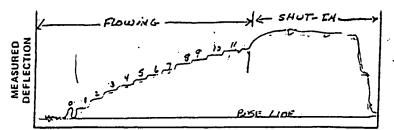
;

A.2: DATA FROM SAMPLING SPOOLS

DELTIME	PI3	TI3	PI4	TI4	PI5	TI5	PI6	TI6
25.733	270	-1.	110	-1.	62	-1.	40	-1.
26.200	260	-1.	110	-1.	59	-1.	38	-1.
26.517	275	432	125	372	56	330	40	307
27.050	268	432	125	377	59	331	40	307
27,600	270	432	120	373	59	333	40	309
28.150	275	431	120	373	55	327	40	309
28.633	275	428	120	374	58	325	40	306
29.200	275	428	120	374	57	326	40	306
29.767	-275	432	120	372	58	325	40	-1.
30.267	250	432	120	373	56	326	40	307
30.833	250	434	100	373	54	325	40	309
31.733	250	430	120	373	58	327	38	310
37.883	210	-1.	120	-1.	50	-1.	30	-1.
43.233	350	447	180	392	70	346	60 ⁻	328
43.600	325	452	165	393	82	348	55	328
44.000	335	454	165	393	80	349	59	329
44.383	335	454	170	393	91	348	65	329
44.800	350	452	170	395	84	348	60	326
45.167	338	454	170	395	80	350	60	326
45.633	335	454	165	394	80	350	60	329
46.150	323	456	170	398	85	350	61	328
46.817	355	457	160	395	80	350	58	329
47.367	343	453	170	395	82	350	62	329
47.967	340	451	175	396	79	35Ò	58	328
48.750	350	452	175	393	86	345	58	323
49.337	360	454	175	395	80	347	58	328

A.3: DATA FROM MUFFLER AREA

1


•

л,

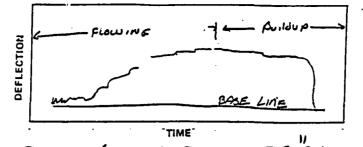
DELTIME	PI10	PI9	LII	LIIA	PIll	WF1	WF2	TMF
5.150 5.183 5.267 5.350 5.433 5.517 5.633 6.133 6.317 6.500 6.650 6.867 7.100 7.317 7.683 7.950 8.217 8.483 8.717 9.000 9.267 9.583 9.800 9.867 10.017 10.250 10.517 10.817 14.133 14.433 16.117 16.283 16.600 17.100	$\begin{array}{c} 20.0\\ 75.0\\ 60.0\\ 80.0\\ 80.0\\ 75.0\\ 82.0\\ 70.0\\ 80.0\\ 70.0\\ 80.0\\ 70.0\\ 70.0\\ 70.0\\ 70.0\\ 70.0\\ 70.0\\ 70.0\\ 70.0\\ 70.0\\ 20.0\\$	PI9 -1.0	LI1 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 10.875 10.375 7.625 7.875 8.375 8.000 8.000 8.000 7.875 7.440 -1.000 1.875 7.440 -1.000 1.875 3.625 3.125	$\begin{array}{c} -1.000\\ -1.000\\ -1.000\\ -1.000\\ -1.000\\ -1.000\\ -1.000\\ 10.438\\ -1.000\\ -1.000\\ -1.000\\ -1.000\\ -1.000\end{array}$	PI11 -1.0 10.0 5.0 13.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 -1.0	WF1 -1.00 -1.0	WF2 -1.00 -1.0	TMF -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 968.19 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 394.94 277.10 300.20 349.73 300.20 312.16 312.10 371.50 225.74 181.95
16.600	45.0	-1.0	3.625	3.688	-1.0	165.74	169.90	225.74
19.217 19.833 20.417 20.933 21.683 22.583 23.317 23.350 23.533 23.783 24.500	-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 35.0 25.0 22.0 25.0 23.0	-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	2.125 1.750 1.625 1.625 1.625 1.625 1.375 -1.000 -1.000 -1.000 -1.000 -1.000	2.188 1.688 1.688 1.688 1.688 1.563 -1.000 -1.000 -1.000 -1.000 -1.000	$ \begin{array}{c} -1.0 \\ -1.0 \\ -1.0 \\ -1.0 \\ -1.0 \\ -1.0 \\ 5.0 \\ -1.0 \\ 5.0 \\ -1.0 \\ 3.0 \\ 2.0 \\ 6.0 \\ \end{array} $	39.94 75.95 57.05 51.14 51.14 51.14 9.94 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00	54.07 79.26 54.07 54.07 54.07 48.26 -1.00 -1.00 -1.00 -1.00 -1.00	34.40 103.45 77.71 69.65 69.65 54.40 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00
24.950 25.350	25.0 25.0	-1.0 -1.0	-1.000 -1.000	-1.000 -1.000	7.0 7.0	-1.00 · -1.00	-1.00 -1.00	-1.00 -1.00

]

DELTIME	PI10	PI9	LII	LIIA	PI11	WF1	WF2	TMF	
25.767	25.0	-1.0	-1.000	-1.000 -1.000	10.0 10.0	-1.00 -1.00	-1.00 -1.00	-1.00 -1.00	
26.250 26.717	25.0 25.0	-1.0 -1.0	-1.000 -1.000	-1.000	9.0	-1.00	-1.00	-1.00	
27.167	25.0	-1.0	-1.000	-1.000	8.0	-1.00	-1.00 -1.00	-1.00 -1.00	
27.700	20.0	-1.0	-1.000 -1.000	-1.000 -1.000	10.0 8.0	-1.00 -1.00	-1.00	-1.00	
28.267 28.783	23.0 28.0	-1.0 -1.0	-1.000	-1.000	7.0	-1.00	-1.00	-1.00	
29.267	25.0	-1.0	-1.000	-1.000	7.0	-1.00 -1.00	-1.00 -1.00	-1.00 -1.00	
29.850	20.0 25.0	-1.0 -1.0	-1.000 -1.000	-1.000 -1.000	5.0 7.0	-1.00	-1.00	-1.00	``
30.333 30.917	20.0	-1.0	-1.000	-1.000	8.0	-1.00	-1.00	-1.00	`
31.817	10.0	-1.0	-1.000	-1.000	-1.0	-1.00 75.95	-1.00 169.90	-1.00 103.45	
38.050	20.0 50.0	7.0 10.0	2.125 3.750	3.688 3.688	-1.0 -1.0	174.08	169.90	237.10	
38.500 38.883	50.0	7.0	3.500	3.688	-1.0	157.52	169.90	214.54	
39.183	155.0	25.0	5.875	-1.000	-1.0	331.18 361.42	-1.00 -1.00	451.07 492.26	
39.267	150.0 150.0	24.0 24.0	6.250 6.250	-1.000 -1.000	-1.0 -1.0	361.42	-1.00	492.26	
39.283 39.350	135.0	22.0		-1.000	-1.0	341.19	-1.00	464.70	
39.433	130.0	22.0	5.625	-1.000	-1.0	311.39	-1.00 316.31	424.12 410.80	
39.800	127.0 120.0	20.0 20.0	5.500 5.458	5.688 5.688	-1.0 -1.0	301.61 298.35	316.31	406.35	
40.033	-1.0	15.0	5.250	5.188	-1.0	282.30	277.52	384.49	
40.333	110.0	17.0	-1.000	-1.000	-1.0	-1.00	-1.00 277.52	-1.00 358.64	
40.717	115.0	15.0 15.0	5.000 1.750	5.188 1.688	-1.0 -1.0	263.31 57.05	54.07	77.71	
41.117 41.433	20.0 30.0	15.0	3.500	3.688	-1.0	157.52	169.90	214.54	
41.833	45.0	15.0	3.375	3.438	-1.0	149.42	153.45 186.81	203.51 225.74	
42.333	60.0 45.0	15.0 15.0	3.625 2.750	3.938 3.188	-1.0 -1.0	165.74 110.86	137.50	150.99	
42.683 42.967	45.0 -1.0	-1.0	2.750	3.188	-1.0	110.86	137.50	150.99 150.99	
43.217	40.0	10.0	2.750	3.188	-1.0 -1.0	110.86	137.50 137.50		
43.567 44.267	. 50.0 45.0	10.0 10.0	2.875 2.875	3.188 3.188	-1.0	118.29	137.50	161.12	
44.207	40.0	10.0	2.750	2.688	-1.0	110.86	107.19	150.99 141.05	
45.433	40.0	10.0	2.625	2.938	-1.0 -1.0	103.56 103.56	122.07 122.07	141.05	
46.637 46.933	40.0 40.0	12.0 8.0	2.625 2.625	2.938 2.688	-1.0	103.56	107.19	141.05	
40.933 47.467	40.0	8.0	2.625	2.688	-1.0	103.56	107.19	141.05	
48.033	38.0	7.0	2.375	2.438	-1.0	89.43 110.86	92.91 107.19	121.81 150.99	
48.800 49.437	45.0 45.0	7.0 7.0	2.750 2.625	2.688 2.563	-1.0 -1.0	103.56	99.97	141.05	•
49.437	45.0 35.0	7.0	2.625	3.063	-1.0	103.56	129.72	141.05 131.33	
51.150	40.0	10.0	2.500	3.188	-1.0 -1.0	96.42 63.17	137.50 107.19	86.03	
51.600 52.367	-1.0 0.0	-1.0 5.0	1.875	2.688 -1.000	-1.0	-1.00	32.14	-1.00	
32.307	0.0			1					
			•						

TIME

TEST DESCRIPTION A.4: FLOWING SURVEYS AND PRESSURE BUILDUP

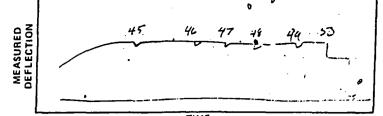

	DEPTHS	STED	ULOA	TMENTS		PSI	PSI	TIME	REAL		1 .	DATE	EM. 10.	
REMARKS	MEASURE	PSI	OEPL	DEPL	٥Ę	30.00	OEPL INCH		TIME	I. HR.		1995	TEST NO.	READ NO.
2Ex3 317	SURFICE	~	-	-	-		0	0.	1			12-30	2	0
-	275 (F. GAGE					416.2	1425	0	1415				2	1
2:0 min 510	1500	·.				571.0		.3305	1451				2	2
	2000			777-		636.6	.2150	.4340	1510				2	3
	2500		2	3		722.5	. 24 40	.5320	1522				z	4
	3000		7	17 7 7	37	1.255	.2810	.638	1535				2	5
	.3500		7		160	927,2	1330	.7415	1530				2	6
233111 300-	4000		3 2		م	1170.3	.3955	.913	1617				2	7
14 97	4500		ントー	3	SS	F	.4380	1.012	1631				2	5
4995	5000		<u>></u>		S	1598.2	.540	1.1165	1645				2	1
5493	5500		Bived			1814.3	.6130	1.220	1659				- <u>-</u>	;)
5939	5952'		Rec Date	Car Su		2032.6	. 685 3	1.210	1725				2	17
Init Time .	•							·	.	-UA	Buil			
1.272 - 1.41.						038.6	6893	1451		0	ò	12-30	2	12
20 1/12-1	5750'					060.8	.6955	1.453		17	1		2	13
1 1/ 00 :075	5950'					099.3	7035	1.465	•	103	2		2	14
	59501					2133.4				.05	3		2	15
	5950'					14.6	7365	1.470	ı	107	4		,	2
÷	5950'					2189.8	739	.486	1	198	5		2	7
	5950'			:		213.5	747 2	. 493	1	.15	6		2	8.
•	5950'					234.2	754 2	.500	(.12	7		2	9 :
	5950'					253.5	7605 2	1.507		.13	૬		2	o.
	5950'					278.2			1	115	9		2	
	59.501					287.6	772	.520 .	1	רוי	10		-	7.
	5950'					302.4		527 .	1	.18	11			3 2
,	5950'				•	314.3		.534 .	1	,23	12			1 1
	5950'					326.2	785 2	541	1	,22,	13			5 7
	5955'					338.0	739 2	548 .	1.	12	4		-	6 2

I - UNADENS.

١

1/1

٢



			France # 17AAL
·		3/17/E 6-14	ELL/19/11 - 1/777
TEST DESCRIPTION	BUILOUP TEMP.		

elem. 27934		NO.	DATE	MIN	SE TIME	REAL	TIME DEPF	TEMP DEPF	TEMP	DEPTH	REMARKS
<u> المعرد ، ا</u>	D	2	1959				462	-7		Surface	Difficult Too Locate. on C
	1	2				1451	507.7	1:0910	264.3	15cd	FLOWIND
	2	2					517.8	(1)7	269.9	2000'	1
	3	2				1522	535.6	1.1500	277 251.4	2500'	(
	4	2				1535	543-7	1.1840	254.3	3000	
	5	2				KSO	558.0	1.220.	292.2 266.6	3500	
	6	Z				1617	5679	1,2455	297.7 272,1	4000'	<u> </u>
	8	2				1631	575.2	1.2640	501.8 276.2	4500'	4497
	8	Z				1645	576.9	1.2655	3.2.7 277,1	ירעיטצ'	4995
	1	2				1659	578.7	1.2736	3-218,1	5500'	
	10	2				1726	580.6	12780	304.9	5942	5789 4
		·	·				<u> </u>				
				-	·		TEMP	.	·		Note Base Live DRAWN AT
							(°F)	- correc	ted for		DRAWN AT
								ambien	+		Approx 78°F
											Add 25°C to READS
							.		:	•	<u> </u>
							÷				
	•						• ••••••	••••	• • • •		
			·	•							• ·· ·••
						·					
											· · · · · · · · · · · · · · · · · · ·
ŀ			-								

...

LEEULUEN

	LEM. NO.	DATE	1 1	APSE TIME	REAL	TIME	PSI	PSI	ADJUS FAC	TMENTS TORS	ULGA	STED	DEPTHS	REMARKS
READ	NO.	1951	1	HR.	TIME	DEPL	INCH		٥F	DEPL	DEPL	PSI	MEASURE	nements
27	2		15	.25		1.555	.793	1					5150	- 301/1.0
.2.3	1		16	רב,		1562	.795	2352.8					5950	
2.5	2	· ·	17	.28		1.5:9	. 7985	2363.2					5950'	
2:0	2		13	130		1.576	. 8015	2375.1					5950'	·
31	2		14	132		1.583	.532	2382-5					5750	
3,2	2		23			1.5:10	.3065	2389.9					5750	
3	2		21	. 35		1.517	.2035	2395.9			·		<u>u</u>	<u> </u>
ुन	2		22	<u>ר ה</u>		1.607	.810	2400.3				· · · <u>-</u> ·	1:	
:1	2		23	26		1.411	1312	2406.2					11	ļ
32	2		24	.:12				2410.7	_				11	
57	2		25	1.12-		1.625	.3150	2415.1					11	
3	2		26	43				2418.1					1,	
? -	2		27	.75				24215					· · ·	ļ
	2		28	4?	_			2425.5					!	
	2		24	.43				2428.5	·				1,	
-	2		30	.50				2432.9					P	Time Unit
3	2		45	.67				2453.2					<u> Ч </u>	10-2.0645
4	2 1		د؟	. 83				2465.5	· ·				η	
3	2		1,0	1.0				2474.4					•	
6	2		120	2.2	2	.307	840	489.3			<u>. </u>		11	·
2	2		80	3.0		2,742 •	341	2492.2					<u>. II</u>	
8	2	:	240	4.0	3	.176 .	841	2492.2					đ	
<u>4</u>	2	[:	300	5.0		.602 .	I	2492.2				·	n	
	2	د	27	5.45	3	932	841	492.2					5750'	Pull OU? IT
4	2	3	43	5.72		<u>1.120 ·</u>	555 1	142.6					4000'	Ascending
												·		··

EST DESCRIPTION (CONTINUED) BUILDUS - ELEMENT S 50468 STOTE AND 2-14

LEFWADEN

Di.... 454.0

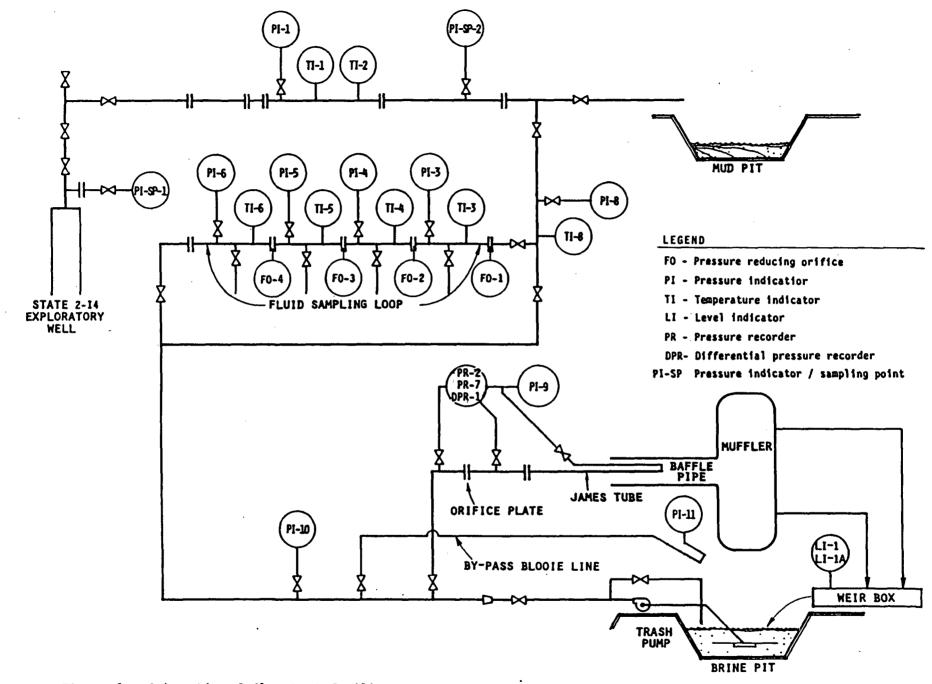
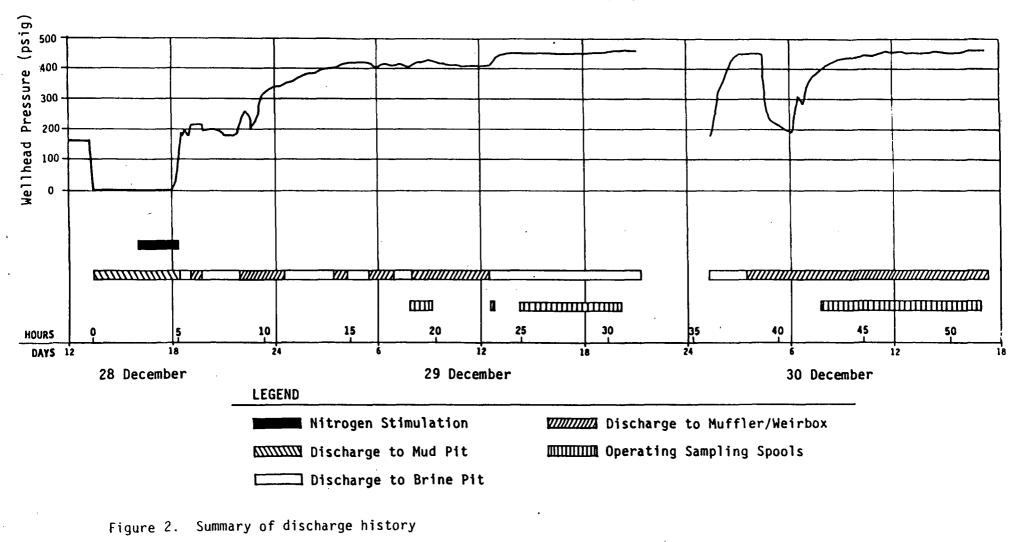



Figure 1. Schematic of flow test facility

SALTON SEA SCIENTIFIC DRILLING PROGRAM

WELL STATE 2-14 FLOW TEST 12/28/85 - 12/30/85

1986, GeothermEx, Inc.

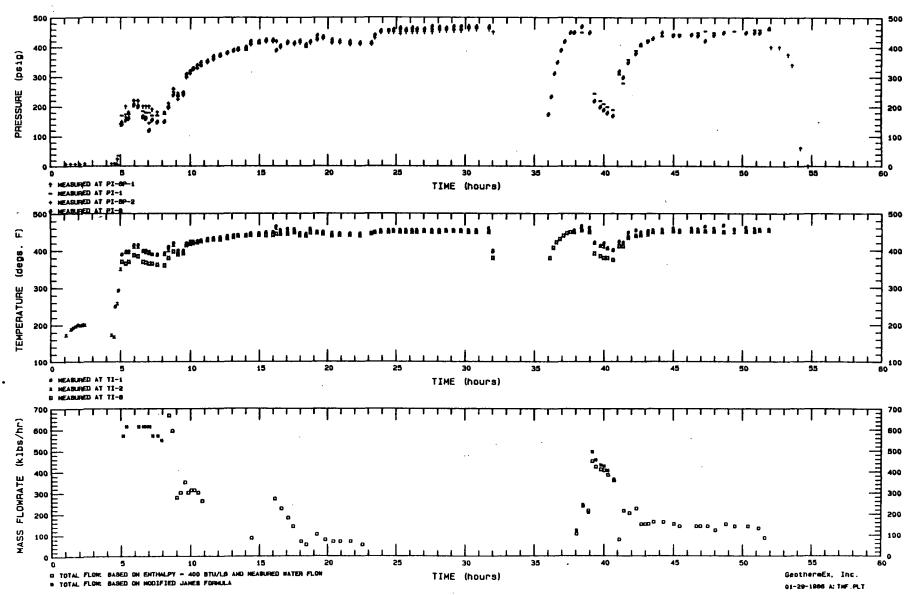


FIGURE 3: DATA FROM WELLHEAD AREA, WELL STATE 2-14 FLOWTEST

.

~,

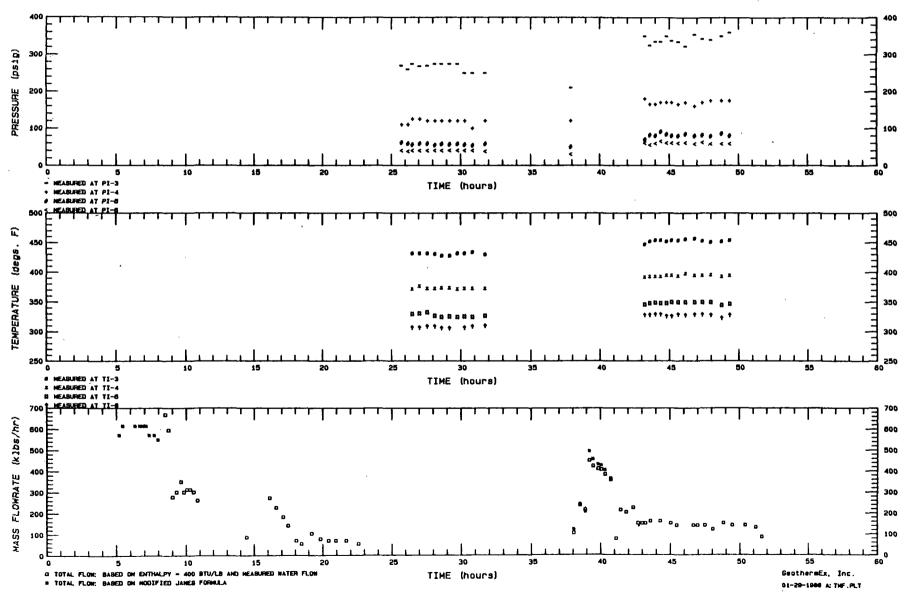


FIGURE 4: DATA FROM SAMPLE SPOOLS, WELL STATE 2-14 FLOWTEST

- · · · ·

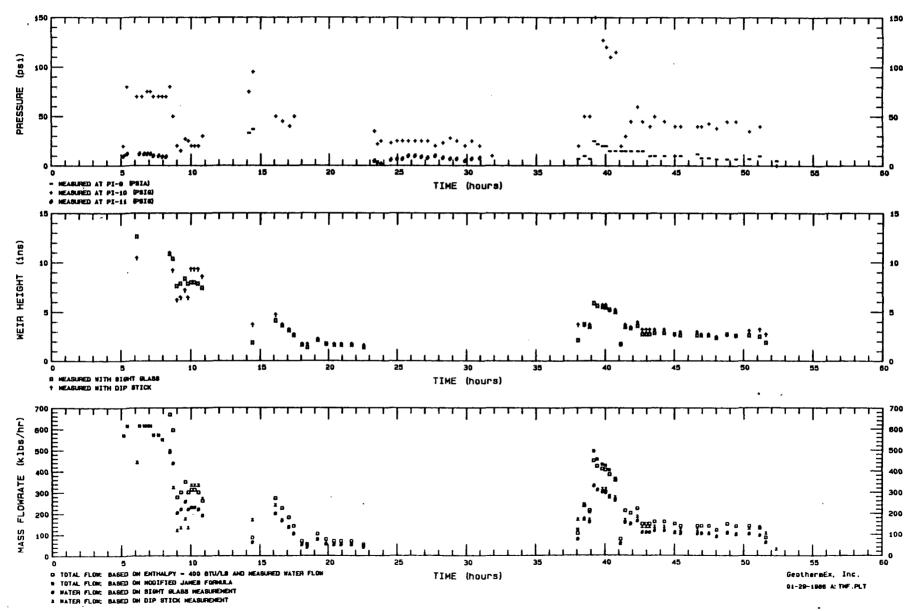


FIGURE 5: DATA FROM MUFFLER AREA. WELL STATE 2-14 FLOWTEST

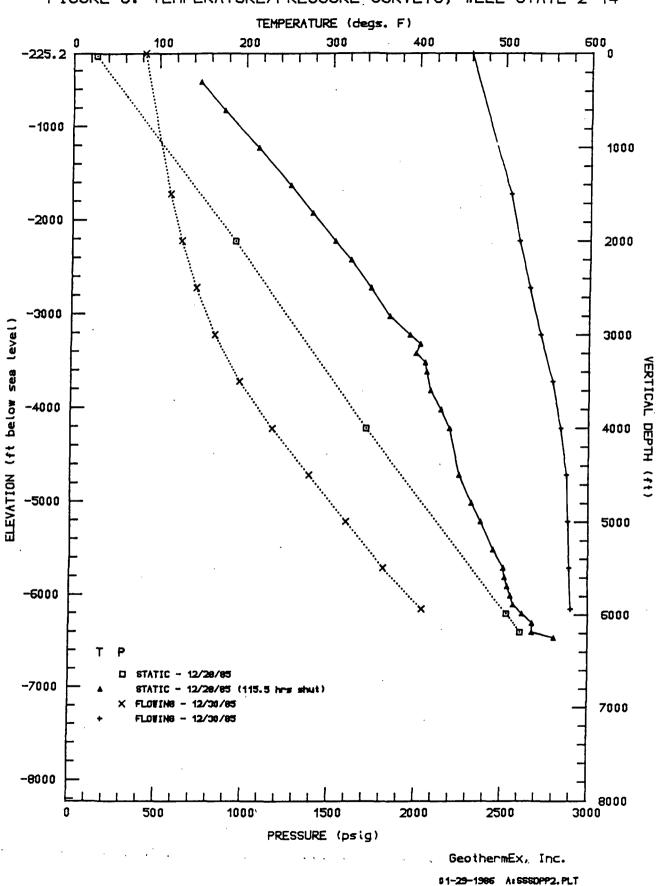


FIGURE 6: TEMPERATURE/PRESSURE SURVEYS, WELL STATE 2-14

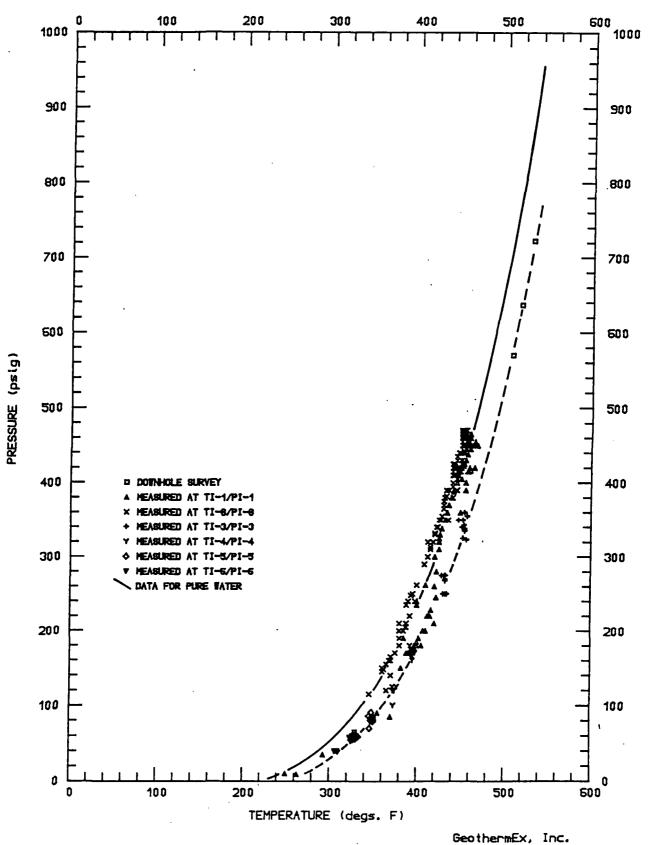
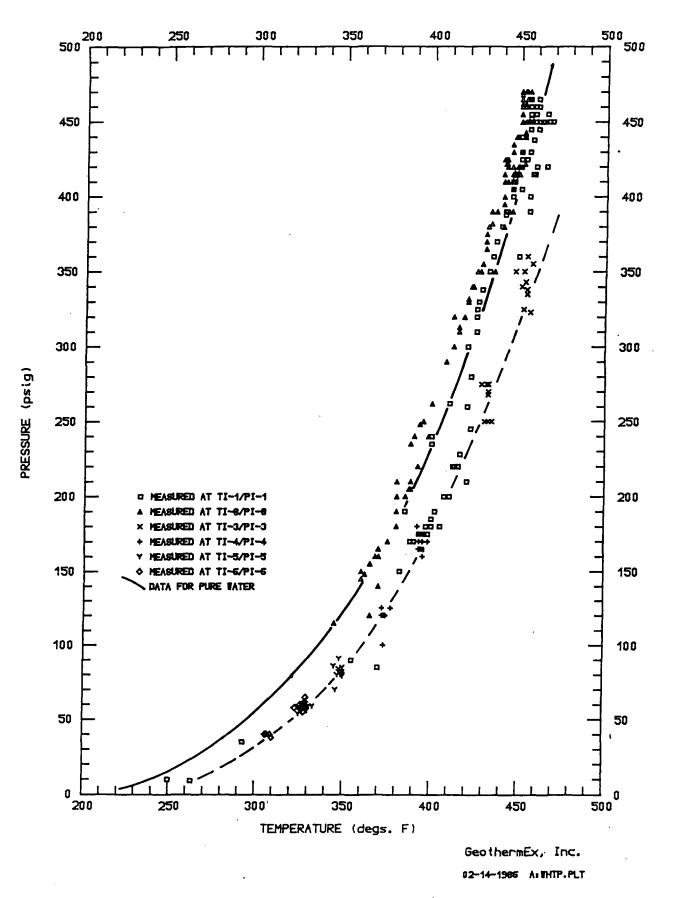
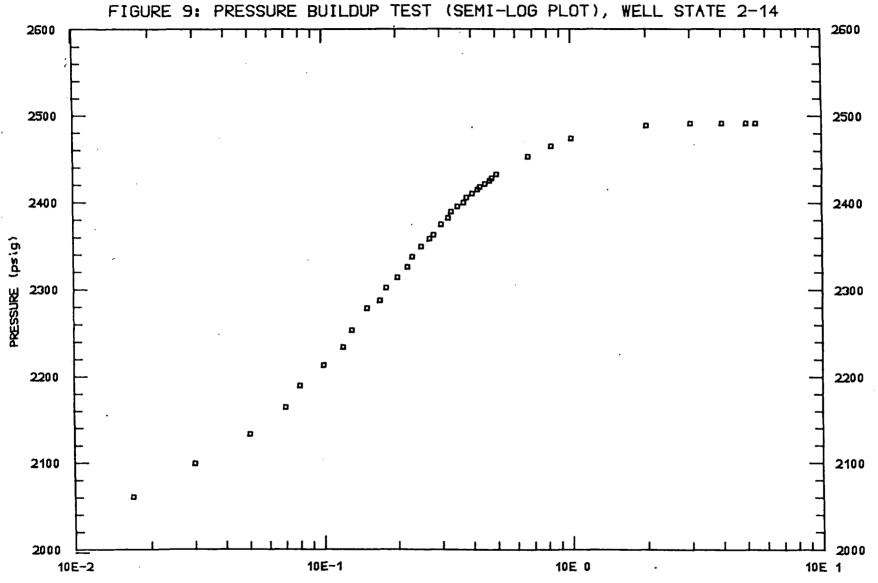
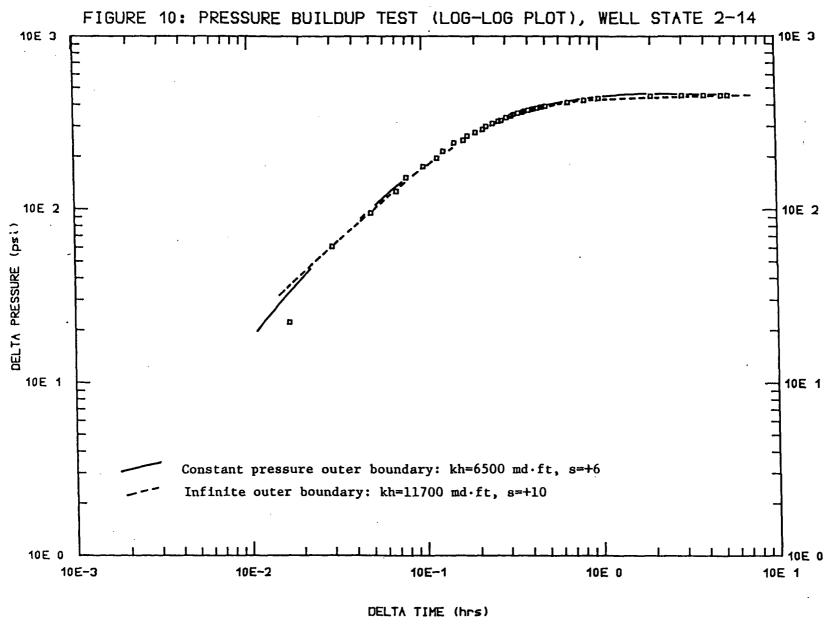




FIGURE 7: BOILING POINT CURVE, WELL STATE 2-14

02-14-1985 A: DHTP.PLT


FIGURE 8: BOILING POINT CURVE, WELL STATE 2-14

DELTA TIME (hrs)

GeothermEx, Inc. 01-29-1985 A185SDPPBU, PLT

GeothermEx, Inc. 02-14-1985 ArsspppBU.PLT