GL00572

ł

1. ,

December 1988

WELL TEST ENGINEERING REPORT ON THE STATE 2-14 WELL TEST JUNE 1 - JUNE 25, 1988 SALTON SEA SCIENTIFIC DRILLING PROGRAM

ł

TABLE OF CONTENTS

			-	
1.0	SUMM	ARY AND RESULTS	Page 1	
2.0	INTRO	DUCTION	7	
3.0	DESCI	RIPTION OF TESTING	12	
	3.1 3.2	Test Facility Test Apperations and Data Acquisition	12 17	
		3.2.1 Overview 3.2.2 Data Acquisition 3.2.3 Test Operations Summary	17 18 19	
	3.3 3.4	Data Quality Control Data Reduction	24 27	
4.0	DOWNE	HOLE SURVEYS AND TRANSIENT PRESSURE TESTING	31	
	4.1 4.2 4.3	Description of Surveys Flowing Temperature and Pressure Profiles Transient Pressure Tests and Analyses	31 33 34	
		4.3.1 Well Behavior	35	
		4.3.1.1 Deliverability 4.3.1.2 Productivity 4.3.1.3 Skin	35 37 38	
		4.3.2 Reservoir Behavior 4.3.3 Injection Well Behavior	38 44	
	4.4	Caliper Logging Attempt	48	
5.0	REFEI		52	
Table Table Table Table Table	e 3-1 e 3-2 e 3-3 e 3-4 e 4-1	Instrumentation for 19-day Test of Spate 2-14 Meter Calibrations Temperature and Pressure Instrument Checks Summary of Temperature/Pressure Profile Survey Injection Summary (Imperial 1-13)	15 25 25 ys 29 47	
Table	à A-1	Flow Test Data, State 2-14, Add June 1 - June 20, 1988	endum	A
Table	e A−2	Raw Data, State 2-14 Flow Test, June 1 - June 20, 1988	H	11

٠

TABLE OF CONTENTS (Continued)

			age	
	-	TABLES (Continued)	_	
Table	E-1	Brine Compositions Adden	dum	E
Table	E-2	Downwell Temperatures, Pressures, and Heat "		**
		Loss Rates		
Table	E-3	Pre-Flash Brine Compositions "		11
Table	E-4	Computation of Composition and Physical "		н
		Properties for Flashing Geothermal Fluids		
		Effective Flach Temp: 550 6 F		
Tablo	r_ 5	Computation of Composition and Developal "		11
Table	<u> </u>	Computation of Composition and Physical		
	Ō	Properties for Flashing Geothermal Fluids		
	Ů.	Effective Flash Temp: 547.9 F		
Table	E-6 =	-Somputation of Composition and Physical "		**
	-	Properties for Flashing Geothermal Fluids		
		Effective Flash Temp: 570.2 F		
Table	E-7	Computation of Composition and Physical "		
		Properties for Flashing Geothermal Fluids		
		Effective Flach Temp: 563 5 F		
		Errederve frash remp. 505.5 r		
		7700700		
		FIGURES	-	
Figure	2 1-1	Well Test History of State 2-14,	3	
		June 1 - Mane 20, 1988		
Figure	e 1-2	Deliverability Curve, State 2-14	5	
		June 1988 👖		
Figure	2 1-3	Inflow Performance, State 2-14	6	
		June 1988		
Figure	2-1	30-Day Test Schapple for State 2-14	0	
rigure	= 2 - 1	Calton Can Casthernal Diald	0	
	0.0	Salton Sea Geothermal Field		
Figure	2-2	Revised Test Plan as. Actual Flow Rate History	11	
Figure	e 3-1	Test Facility, State 2-14	13	
Figure	e 4−1	Well Diagram, State 🕰 14	32	
Figure	e 4−2	Example Deliverability Curves	36	
Figure	e 4-3	Flowing Pressure at 5, NOO Feet (Rate Change)	40	
		6/12-13/88		
Figure	∧ <i>∧ ∧</i>	Bottom Hole Pressure at 5 000 Feet	4 1	
rigure		$(Date Change) \in (14, 15/99)$	41	
n:		(Rate Change) 0/14-15/00		
Figure	4-5	Bottom Hole Pressure at 5,000 Feet	42	
		(Final Flow and Buildup) 6/20-21/88		
Figure	e 4−6	Semi-Log Pressure Buildup Plot	43	
Figure	e 4-7	Computer Analysis of Drawdown and Buildup Data	45	
Figure	4−8	Injectivity vs. Cumulative Injection,	46	
-		Imperial 1-13, June 5-24, 1988		
Figure	E-1	Flash Initiation Conditions	ndua	nΞ
х т:-		of Mont Data		
A. 118		or test Data		
B. Dat	a Snee			
C. Dai	.ly Wel	.1 Test Reports		
D. Dat	a Redu	action Methods		
E. Brine Data and Steam Flash Model for June 5, 1988				
F. Miscellaneous Supporting Calculations				
G. Downhole Surveys				
H. Sum	marv c	of Attempts to Run a Caliper Log in the		
ידט ידט	mary (A Mall		
500	ile 2-1	.4 MGTT		

•

WELL TEST ENGINEERING REPORT ON THE STATE 2-14 WELL TEST JUNE 1 - JUNE 25, 1988 SALTON SEA SCIENTIFIC DRILLING PROGRAM

1.0 Summary and Results

A 19-day step-rate flow test of the State 2-14 well, the Salton Sea Scientific Drilling Program (SSSDP) well, was carried out from June 1 to June 20, 1988. In the first 13 days there were three, rate steps of two to seven days' duration with flow rates from 121,000 lbm/hr to 410,000 lbm/hr. During the final six days there was an attempt to achieve stable operation at 750,000 lbm/Mr, but operational problems and limitations of the brine injection-system prevented extended operation at that rate. A flow rate of 768,000 lbm/hr was achieved on June 15, but this high flow rate was maintained for less than one hour before problems with the separator level control forced curtailment. Through the remaining five days, pump mechanical failures and persistent problems with cavitation in the brine pumps reduced the brine disposal capacity which became the governing factor on the well flow rate. Far the end of the test, it was possible to increase the flow rate and maintain an average of 425,000 lbm/hr for the last 25 hours.

For purposes of reservoir engineering analysis and obtaining representative chemical samples, the test was scheduled as a series of rate steps (constant rate flow periods), with stepwise rate increases separating the periods. The planned duration of the periods, based on a conservative estimate of the time required to reach essentially scable operation, was originally seven days. Early in the test, when it was recognized that the well was characteristically very quick to stabilize, the plan was revised to make three-day rate steps with a six-day flow period at the end of the test.

The operational problems mentioned above resulted in some frequent flow rate changes and shortened ate steps in the last six days. However, most of the data acquired during that period are useful for defining the production characteristics of the well.

During the first rate step, the well was produced at an average of 121,000 lbm/hr. This was significant is lower than the planned initial rate of 200,000 to 250,000 lbm/hr, but this low flow rate was necessary because the test factility was not entirely complete and the residual brine had to be retained in the brine pond until the injection system was operational on June 4th. Budgetary and schedule constraints made it imperative that the test start as scheduled, and the injection system was completed while the test operations proceeded.

After the injection system was operational, the flow rate was held at about 113,000 lbm/hr average until June 8, a day after the separator was placed into service and direct flow measurements of the separated steam and brine were possible. Late on June 8, the flow rate was increased to 250,000 lbm/hr and the succeeding rate steps were shortened. For the second rate step, the well was produced at an average rate of 228,000 lbm/hr for 3 1/2 days. Figure 1-1 is a plot of flow rate and wellhead conditions during the test.

Downhole temperature and pressure profile surveys were run on June 5, 12, 14 and 20. Pressure drawdown was recorded at the rate increases on June 12 and 14, and the pressure buildup was recorded for 44 hours after the final shut-in on June 20.

It was planned that after the flow test and pressure buildup period the well would be produced again at a high flow rate (>1,000,000 Thm/hr) directly to the brine pond. The purpose was to define a higher point on the deliverability curve, within the expected commentational operating range. However, the well would not flow spontaneously when the valves were opened, and two attempts to induce flow wete unsuccessful. This was probably because the wellbore had cooled during the shut-in and not an indication of well damage or depletion. In the attempts to induce flow, common techniques of pressurizing the well with air at the wellhead and displacing brine from the wellbore with fresh water we employed. More effective methods, such as nitrogen lift were or allowing the well to heat up for a few days with fresh water in the wellbore, would have involved more time and expense and were precluded by budget constraints.

On August 8, 1988, 44 days after the end of testing operations, Kennecott attemped to run a casing caliper log in the State 2-14 well and discovered a constriction in the production casing near the surface. A caliper logging tool with clearance for a minimum hole diameter of 3 1/2-inches stopped in the constriction about 26 inches b ow the top of the 9 5/8-inch production casing. A television U camera having a 2 1/8-inch outside diameter was run in the well a week later and passed through the constriction. The television image was impaired by turbidity in the water, but was reported to have shown a buildup of whitish scale (Tinsley, 1988). Further limited attempts to inspect and sample the suspected scale deposit were unsuccessful. As a result, the cause of the constriction has not been established with certainty. It is considered most likely that the constriction formed during the 19-day flow test, in which case it would have impaired the well's deliverability. Although the effect on well deliverability cannot be quantified with certain-ty, analysis of the deliverability data indicates that the constriction (assuming it existed at the time) did mot seriously alter the test results. : Also, it is virtually cortain that it was not the cause of the well's failure to flow again spontaneously for a high-rate flow test.

The test data and analyses yielded the results summarized below:

a. Reservoir engineering analysis of the pressure build-up test indicates that the near-well reservoir has a transmissivity of about 233,600 md-ft and a skin factor of +23.1. This is indicative of a highly productive

2

FIGURE 1-1

reservoir with substantial near-well impairment, probably caused by the drilling and workover operations.

- b. The deliverability curve (Figure 1-2) and the inflow performance curve (Figure 1-3) defined by the rate steps show that the well has a high productivity and is capable of flow rates greater than 800,000 lbm/hr, at 250 psig wellhead pressure. At 800,000 lbm/hr, the well would yield approximately 12 Mwe in a dual-flash power plant.
- c. Analysis of the June 5 temperature survey data indicates flash initiation at a depth of about 3,200 feet and a temperature of 570°F. Based on analyses of brine samples collected from the flowline and thermodynamic flash calded ations, the pre-flash brine TDS is about 247,000 mg/kg, and the steam flash to atmospheric pressure is about 26 percent.
- d. Well productivity improved during the course of the test. On at least two occasions (June 3 and 5) there were rapid increases of 7 and 12 psi in the wellhead pressure which were not associated with any rate change. This strongly suggests that the productivity suddenly improved. Another improvement in evident in Figure 1-2, where the deliverability for the last three days (June 18-20) is shown to be better than it was earlier in the test. Such increases in productivity are unusual and probably resulted from clearing of blockages inside the wellbore or in nearby formation fractures by the brine flow.

A

FIGURE 1-2

A361400

5

FIGURE 1-3

6

The long-term flow test of the State 2-14 well was originally planned as a 30-day step-rate test with three rate steps scheduled as follows:

	Plannea	
Step No.	Duration (days)	Planned Flow Rate (lbm/hr total mass)
1	7	200,000 - 250,000
2	7	400,000 - 500,000
م 3	16	600,000 - 750,000

The plan is diagrammed in Figure 2-1.

This was the first long-term test of the well. Three previous tests, during and after drilling, were done with a very simple test facility and were limited to 54, 37, and 12 hours duration, respectively, by the storage capacity of the brine pond. To adequately test the well, a more elaborate test facility, such as the one used for this test, was required. It provides the necessary capability of brine injection and the advantages of steam brine separation for separate metering and sampling of the two phases.

Experience in commercial geothermal operations in the Salton Sea field has shown that long-term production tests are plagued with operational problems mused by scale deposition and heavy precipitation of silica and salts from the brine. Handling and injecting the brine and keeping the instrumentation in operation can be particularly difficult. Many features of the flow test facility and test plan were designed to circumvent these problems and allow stable operation of the well through the planned schedule of rate steps. At best, ong-term tests with temporary flow test facilities are troublesome, invariably there are deviations from the test plan and uncertainties in the data caused by operational problems.

The objectives of the test were defined as follows:

- a. Demonstrate the long-term producibility of the well and reservoir.
- b. Obtain the necessary production data and downhole measurements to perform a reservoir engineering analysis of the well's performance and the near well reservoir properties.
- c. Obtain samples of the brine, steam and noncondensible gases for chemical analyses necessary to characterize the reservoir fluid and calculate its physical and thermodynamic properties. Analyze for changes in composition associated with rate changes.
- d. Measure the preflash temperature of the brine, and obtain other data necessary to calculate the enthalpy of the produced fluid and the rate of energy production.

ω

e. Provide an opportunity for other experimenters to perform tests in conjunction with the flow test.

It was not within the scope of the test to measure well-towell pressure response, calculate areal reservoir properties or estimate reservoir size.

The step-rate test is a standard reservoir engineering method of obtaining the downhole transient pressure response data for determination of reservoir properties and a deliverability curve for the well, (i.e., a graph of production rate vs. wellhead pressure). The planned duration of each rate period was estimated to be adequate for the well to reach essentially stable operation with respect to flow rate, pressure, and chemistry at each step. ¹ The schedule of increasing rates also made the operation of the flow test facility easier by allowing a step-wise approach to the higher rates.

A total of five downhole pressure and temperature surveys were planned to acquire data for reservoir engineering analysis and characterization of the brine before flash. Production logs, which might normally be run to delineate and quantify zones of inflow, were not planed because the mechanical condition of the well is such that logging tools should not be run deeper than 5,500 feet.

The planned flow rate and duration of each step were revised during the test on the basis of a number of factors, including well deliverability, time required for the well to stabilize after each rate change, test facility performance, and injection system capacity. The order and regnitudes of the rate steps were chosen to provide a broad range of rates for reservoir engineering analyses, to allow for shakedown of the test facilities, and to permit preliminary evaluation of the well at a low flow rate.

The first flow rate period was for the planned 7-day duration, but at less than the planned flow rate. By the eighth day of the test, several factors had con to light or had been confirmed, influencing plans for the remainder of the test. These factors were:

- a. The remaining budget would not support a full 30-day test.
- b. The State 2-14 well was confirmed to be a very high productivity well, and its flow conditions stabilized within hours after a rate change. Therefore, for purposes of reservoir engineering and defining the well's deliverability, shorter duration flow steps would suffice.
- c. The well was clearly capable of very high flow rates, and to define its deliverability in a useful range of flow rates, three additional rate steps (for a total of four) were considered necessary. The total time for the series of rate steps was reduced to 19 days, from the original 30-day plan.

d. The maximum flow rate of the well would be constrained by the test facility; therefore, the full flow rate potential of the well should be determined by a maximum rate flow directly to the brine pond. To accomplish this without compromising the planned reservoir and well performance analyses, the test at maximum flow rate was scheduled as a separate test following the planned series of rate steps and shut-in period. Because the brine production would exceed injection capacity, this test was to be of only a few hours duration, as determined by the maximum injection rate and brine pond capacity.

The revised test schedule is shown below. The second rate step was underway at the time of this revision.

Step No.	Dur ation (days)	Flow Rate (lbm/hr total mass)	Start Date	End Date
	#-			
1	7 🖵	125,000	6/1	6/8
2	3	250,000	6/8	6/11
3	3	M 0,000 - 500,000	6/11	6/14
4	3	650 000 - 750,000	6/14	6/17
-	2	Shut by to monitor pressure buildup	6/17	6/19
-	<1	Maximum fate flow directly 😭 pit	6/20	6/20

Soon after the above revision, the test funding was increased and the final rate step was extended another three days to a shut-in on June 20, 1988. This was the second and last revision of the test plan. It is shown graphically in Figure 2-2, superimposed on the actual flow rate history.

The detailed discussion which follows describes the test facilities and operations, documents the production, injection, and downhole survey data, and presents the basic reservoir engineering analyses.

- L

÷.

-

3.0 Description of Testing

This section describes features of the test facility and test operations pertinent to acquisition of data for reservoir engineering analysis.

3.1 Test Facility

The test facility is shown schematically in Figure 3-1. Following the flow path through the facility, the components and operation are as follows:

- . A 10 Pinch flowline from the wellhead was connected to a gate valve used as a manual throttling valve at the inlet to the factity. This valve was used to control the flow rate of the well.
- . The two-phase brine/steam flow was normally routed through the separator. However, manifolding was provided to allow diversion directly through a blooie line to the brine pond or through either or both of the atmospheric separators, i.e., the atmospheric flash tank and the vent silencer.
- . During normal meration, the separator was typically operated at about 200 psig. The nominal ratings of the separator were 750,000 lbm/hr and 500 psig. Steam from the separator flowed through an orifice meter and a steam backpressure control valve and was vented to atmosphere in the vent silencer.
- . Brine from the separator was routed through either of two parallel piping runs, each with an orifice flow meter, a liquid level control valve to maintain separator level, and a fixed throttling orifice to reduce the pressure drop across the control valve. Let A had an orifice plate for brine rates up to about 400,000 lbm/hr, and Leg B was set up for brine rates up to about 900,000 lbm/hr.
- . Downstream of the fixed throttling office, the brine pressure dropped to near atmospheric, resulting in a secondary flash. The two-phase mixture flowed to the atmospheric flash tank in which the steam was vented to atmosphere and the brine flowed by gravity into a weirbox. Steam vented in the atmospheric flash tank could not be metered, but rates could be calculated on the basis of the theoretical flash to atmosphere from separator condition.
- . Fresh water from an irrigation canal was metered and injected upstream of the atmospheric flash tank to prevent salt precipitation.
- . Flow through the weirbox was discharged to the brine pond. The weir served as a redundant measure of the flow rate, after corrections for dilution water flow and steam flash.
- . The brine pond provided residence time for precipitation and settling.

Two pumps transferred brine from the brine pond through seven 500-barrel steel tanks piped in parallel. It was intended that additional settling of solids take place in these tanks. Three of the tanks were originally designed as gravity sand filters, but they were used only as settling tanks for this test.

. Brine was pumped from the tanks through an orifice meter run and approximately 3/8 mile of 8-inch pipeline to the Imperial 1-13 well, which served as the injector. The brine was not filtered before injection because: (1) budget limitations precluded installation of the filter media and pipin and (2) the risk of plugging the injection well was recognized and accepted before the test.

Table 31 is a list of the test instrumentation. The instrument identification numbers in the list and on the data sheets correspond to the identification tags that were on the instruments. The identification numbers PI-10 and TI-10 were inadvertently used in two places, but the gauges were clearly identified by their locations, and it was not a source of confusion.

N

TABLE 3-1

INSTRUMENTATION FOR 19-DAY TEST OF STATE 2-14

Location	Instrument No.	Description
Wellhead expansion spool	PI-0	0-1000 psi pressure gauge, liquid-filled
Flowline Hownstream of wellhead	PR-1 PI-1	Pressure recorder 0-600 psi 0-600 psi pressure gauge, liquid-filled
	TI-1	150 ⁰ -750 ⁰ F dial thermometer
Throttling valve on east side of		
Upstream	Г ¹⁻⁹ тц-9	0-600 psi pressure gauge, liquid-filled 50-500°F dial thermometer
Downstream	PI-10 TI-10	(not used) 0-600 psi pressure gauge, liquid-filled 50-500°F dial thermometer
Separator level	LCR-10	Circular chart recorder
Separator, brine outlet	₽I-4 TI-109A	0 %6 00 psi pressure gauge 59-500 F dial thermometer
Brine leg A Brine leg B	FPR-108A FPR-108B	Circular chart recorder, 0-100 in. mater differential (red pen) and 0-500 psi static range (blue pen) Circular chart recorder,
		(red pen) and (500 psi static range (blue pen)
Downstream of L.C.V.		IJ
Brine leg A	PI-143A	0-400 psi pressure gauge, liguid-filled
Brine leg B	PI-143B	0-400 psi pressure gauge, liquid-filled

Location	Instrument No.	Description
Steam outlet from separator	PI-155 PCR-103	0-600 psi pressure gauge Circular chart recorder/controller
P F L	TI-101 FR-102	0-600 psi 50-500 F dial thermometer Circular chart recorder, 0-200 in. water differential range (Changed to 0-300 in. water on 6/15/88.)
Weir box at outlet of atmospheric flash tank	Weir Level	Sight gauge
Brine pond	Pond Level	Sight gauge
Fresh water supply	F.W.N meter	Totalizing water meter
East Brine tank	Brine Tank Level	Sight gauge
Injection pump discharge	PI-10	0 4 00 psi pressure gauge
Upstream of injection orifice run	TI-10	0-250 [°] F dial thermometer
Injection orifice	FR-1	Circular chart recorder, 0-1 in. water differential
Inject ion wellhead	PI-141	0-400 psi pressare gauge
,	ŢI ⊱140	0-250°F dial

3.2.1 Overview

The State 2-14 well was flow tested in a series of rate steps for 19 days beginning June 1, 1988, and finishing June 20, 1988. The flow rate history is illustrated in Figure 1-1, and a listing of the test data is given in Addendum A (Table A-1).

The test was planned and conducted as a step-rate test, but parts of it deviated from the ideal of long, constant-rate flow periods. Although the well itself showed no appreciable pressure decline, there was a tendency for the flow rate to drift downward, probably because of scale deposition in the throttle valve. Occasional adjustments of the throttle valve were required to estore the desired rate. This is a common occurrence in Salton Sea field testing and did not affect the validity of the test.

The only serious problems with maintaining desired flow rates occurred during the last five days when high flow rates were attempted and the brine injection system could not keep up. This introduced some uncertainty to the classical semi-log interpretation of the pressure buildup data, which assumes a stable flow rate prior b shut-in. However, multiple regression analysis using a computer code which could accomodate the variable rate history did not improve the interpretation (discussed later in Section 4.3.2), indicating that other uncertainties in the data and assumed reservoir model were dominant.

The highest flow rate of 708,000 lbm/hr was maintained for less than one hour because of separator control problem. Therefore, the deliverability data at that rate do not represent a fully stabilized condition. However, stable flow was achieved at rates up to 640,000 lbm/hr. As discussed previously, the attempts on June 23 and 24 to flow the well for a short, highrate test were unsuccessful.

The separator was operated near 200 sg throughout most of the test. This pressure was chosen based on consideration of the following factors:

- a. The brine is known to deposit silica scale more rapidly when it flashes to low pressures. Because rapid scale buildup in the brine meter runs and level control valves should be avoided, an operating separator pressure of about 200 psig or above was specified. This choice was based on observations of scaling behavior on previous SSSDP tests and other Salton Sea field flow tests.
- b. Operating at higher pressures would result in a greater fraction of the steam flow being released in the secondary flash to the atmospheric flash tank. This could result in carryover from the atmospheric flash tank at high flow rates, and would result in less of the steam flow being metered.

As shown in Figure 1-1, the well was initially produced at about 121,000 lbm/hr. This was significantly lower than the planned initial rate of 200,000 to 250,000 lbm/hr. This lower flow rate was desirable because produced fluid had to be retained in the brine pond until the injection system was completed. Ideally, test startup would have awaited completion of the injection system, but budgetary and schedule constraints made it imperative that the test start on June 1 as scheduled.

Once the injection system was operational, the production flow rate was held at about 113,000 lbm/hr average until June 8, a day after the separator was placed into service and direct flow measuremeness of the separated steam and brine were possible.

Late in June 8, the flow rate was increased to 250,000 lbm/hr, and the succeeding rate steps were shortened as discussed in Section 2.0 During this second rate step the well produced at and average rate of 228,000 lbm/hr for 3 1/2 days. For the third rate step it produced at an average rate of 410,000 lbm/hr for slightly more than two days and reached stable flow conditions. During the last six days of flow there were four periods of about one day's uration each, during which the well's flow rate was maintained approximately constant. Although the planned six-day final rate step was not achieved, the four one-day flow periods provided deliverability data at flow rates up to 640,000 lbm/hr.

After the flow test and pressure buildup, an unsuccessful attempt was made to produce the well at a high flow rate (>1,000,000 lbm/hr) directly to the brine pond. The purpose was to define a higher point on the deliverability curve, within the expected commercial operating range. However, when the valves were opened the well would not flow spontaneously. This was probably because the wellbore had cooled during the shut-in period, with a resulting increase in brine density in the wellbore. It is not an indication that the well was damaged or depleted. There were two additional attempts on June 23 and 24 to induce flow, but neither was successful. First the well was pressurized at the wellhead with compressed air, the pressure was held for two hours, and then the valves were opened. In the second attempt, fresh water was injected to displace the denser brine from the wellbore, the well was allowed to heat up for nine hours, and the valves were opened again. On each attempt the well flowed briefly and died without achieving, flashing flow. These methods of inducing flow are common techniques and were chosen to minimize costs. More effective methods, such as nitrogen lift or allowing the well to stand for a few days with fresh water in the wellbore, were ruled out by time and budget constraints.

3.2.2 Data Acquisition

Readings from the instruments listed in Table 3-1 were recorded manually on data forms every two hours, or more frequently when conditions were changing. The data sheets are included in Addendum B. Data from those forms were manually entered into a computer file, which is listed as the "Raw Data" in Addendum A (Table A-2). Many of the readings were of value only for operating information, but certain parameters, listed below, were important to the interpretation and analyses of the test results.

Wellhead pressure, measured on flowline near wellhead (State 2-14) Wellhead temperature measured on flowline near wellhead (State 2-14) Steam flow from the separator Steam pressure at the separator outlet Speam temperature at the separator outlet Brine flow from the separator Brine temperature at the separator outlet Wellhox sight gauge Injection flow rate (to Imperial 1-13) Injection flowline pressure (at Imperial 1-13)

Calibration checks were performed on these instruments, as discussed in Section 3.3.

Downhole temperature and pressure profile surveys were run on June 5, 12, 14 and 70. Pressure drawdown was recorded at the rate increases on June 12 and 14, and the pressure buildup was recorded for 44 hours after the shut-in on June 20.

3.2.3 Test Operations Summary

The test operations are summarized below. The more detailed Daily Test Operations Reports the in Addendum C.

June 1

R

Well had been shut since wril, 1988, and had 183 psig pressure on the wellhead. (Wellbore was full of fresh water which had been injected to cool the well for logging in April.) Opened well at 17:30 and began flow. As flow became stronger, cut well back to prevent fluid discharge from blooie line damaging the pit div der curtain. After well was on for approximately 25 minutes, switched well flow through atmospheric flash tank (AFT) to measure brine flow rate in weirbox. Rate reached 478,000 lbm/hr brine (after flash to atmosphere) at 18:00 and then was throttled back to 90,000 lbm/hr at 19:05. Well flow gradually increased without any valve adjustment to 121,000 lbm/hr brine by midnight.

Flowing well through AFT because separator and brine handling portions of the facility are not yet ready.

June 2, 3, & 4

Continued to flow well at between 90,000 and 120,000 lbm/hr brine through the AFT and into the brine pond. Workers continuing to assemble facility, i.e., the brine pumps and the injection system pumps. Some work also done on the separator and fresh water dilution system.

Operations problems during this period consisted mainly

of a gradual flow rate decline, probably due to scaling or plugging of the throttle valve. The flow rate decline was corrected by cycling the valve or by opening it slightly. Other problems included a discrepancy in the two wellhead thermometers. Investigation revealed that one thermowell extended farther into the flowstream than the other. By using the deeper thermowell and insulating the pipe surrounding it, readings became consistent. Check of thermometer at this point with an RTD showed dial thermometer reading 2°F low. Salt formed in weirbox and on weirplate, making readings difficult.

On June 4 the injection system was completed and injection of fluid from the brine pond and storage tanks into Imperial 1-13 well began. On June 4 the fresh water diluent system was complete enough to allow a water hose to be placed into the weirbox. This prevented additional salt buildup and dissolved the already deposited salt in the weirbox and the lines from the AFT.

June 5, 6, & 7

Continued to flow well at about 90,000 lbm/hr brine rate. On June F Pruett ran a pressure and temperature survey. Survey time was shortened due to scale buildup on capillary tube and concern about not being able to get back out of the well with tools. Switched flow through separator, but operated at atmospheric pressure. Modified weirbox to prevent leadage around the sides and bottom of weirplate, and added an outfall trough to extend the outfall farther out in the brine wond to prevent berm erosion.

At 17:30 on June 6, a small leak developed on the main flowline just downstream of the throttle valve. The well was shut in, and a patch was welded over the leak area. Flow resumed at 20:28.

On June 7, pressured the separator to 200 psig and placed it in service. Metered by ne and steam through orifice meters for the first time, although steam meter operation was suspect. It was found that the pressure taps were plugged and the recorder was not zeroed. These problems were corrected.

June 8

Continued to flow well at approximately 96,000 lbm/hr post-flash brine rate, or about 117,000 lbm/hr total mass flow until 19:55. Increased rate at 19:55 to 250,000 lbm/hr total mass flow. Separator operation satisfactory except for a 40-minute period during which the controls had to be operated manually because the instrument air compressor was down.

June 9

Continued to flow well at average rate of 250,000 lbm/hr total mass flow until 19:20, when rate was curtailed

due to salt buildup in the outlet lines of the AFT. This buildup restricted the brine flow from the AFT and caused it to fill up and start overflowing. Added fresh water upstream of AFT, and it dissolved the salt. At 20:05 reopened throttle valve, and by 21:30, operations were back to normal except that flow rate was a little lower at 232,500 lbm/hr total mass flow.

June 10

Flowed at average rate of 225,000 lbm/hr, although flow rate gradually declined, apparently due to plugging of throughe valve. Actuated throttle valve periodically to dislodge the scale and allow plugging particles to pass throughe the valve. After actuation, the rate would increase to nearly 240,000 lbm/hr. Recalibrated all chart recorders

June 11

Flow rate gradually declined from 230,000 lbm/hr to 208,500 lbm/hr during day due to scale buildup in throttle valve or flowline. Attempted to run pressure and temperature survey prior to a planned rate increase, but pressure sensing tubing (capitlary tubing) plugged. Aborted survey and postponed rate increase.

N

June 12

Began day with flow rate at 208,400 lbm/hr and declining. Made throttle valve adjustment at 02:48 and increased flow rate to 216,000 lbm/hr, but it continued to decline. By 10:00, flow rate had failen back to 211,000 lbm/hr. Ran temperature and pressure survey beginning at 09:55. Hung capillary tubing at 5,000 feet (at 12:12, and by 12:35 pressure had stabilized. During the period 13:14-13:22, opened throttle valve and increased flow rate up to 415,000 lbm/hr. Flow rate immediately started a gradual decline, reaching 408,200 lbm/hr by the end of the day.

June 13

At 00:22 increased flow rate to 420,000 lbm/hr. Rate promptly resumed its decline, and by 22:41 it was down to 398,000 lbm/hr. During the gradual flow rate decline, wellhead pressure and downhole pressure at 5,000 feet, as measured by the capillary tubing transducer, were increasing. This indicated that the well was not drawing down, as a rate decline might normally suggest. Increased flow rate again at 22:25. At midnight the flow rate was 414,800 lbm/hr.

R

Pulled capillary tubing and temperature instruments from the well.

June 14

Maintained flow rate at between 404,000 lbm/hr and

•

415,500 lbm/hr by adjusting throttle valve to compensate for scale buildup.

Ran temperature and pressure survey on capillary tubing prior to scheduled rate change. Temperature survey complete and capillary tube chamber at previous setting depth of 5,000 feet at 18:01. Increased flow rate to 545,000 lbm/hr between 19:37 and 20:00. Also increased separator pressure from normal 200 psig to 250 psig in order to keep steam flow meter reading within range.

By 24:00 flow rate had declined to 538,000 lbm/hr June 15

Flowed well between 532,000 and 538,600 lbm/hr until 19:25 when the rate was increased. An instrument technician increased the steam meter range by changing the differential spring and recalibrating the meter. This range change allowed the separator pressure to be reduced to about 200 psi and the steam flow to remain within the chart range.

Pulled capfllary tubing and temperature instrument from well.

Experienced difficulty in transferring fluid from the brine pond into the settling tanks and from the tanks into the injection well at adequate rates to keep up with the increased well flow tate. At 20:02, the flow rate was 696,000 lbm/hr. By 20:30, it was 768,000 lbm/hr, but operational problems with the separator level controller and control valve made it necessary to throttle back. Day ended with flow rate at 425,000 lbm/hr.

June 16

Rate gradually declined to 352,000 lbm/hr until 04:00 and remained near that rate until 08:40 when it was increased to 540,000 lbm/hr. Around 12:00, the separator level control system was placed back in operation.

From 13:38 to 15:00 gradually increased flow rate up to 644,500 lbm/hr and kept it there until end of day.

Continued to have problems with brine pond-to-tank transfer pumps, and the level in brine pond continued to rise.

ŗ,

June 17

Day began with well flowing 645,800 lbm/hr. By 14:00 flow rate had declined slightly to 641,200 lbm/hr. At 14:13 rate was cut to 435,000 lbm/hr due to problems with the brine pond pumps and a high level in the brine pond. The flow rate was further reduced in incremental steps, and by 22:50, it was down to 170,200 lbm/hr. Pumps remained a problem. Experienced operational difficulties with both the pond-to-tank pumps and injection pumps. Injection well injectivity appears to have declined approximately 30 percent during the last two days.

June 18

Flowed well at between 160,000 and 180,000 lbm/hr all day while trying to solve injection pump problems. Made several modifications without positive result. Also started having problems with Leg B brine meter.

June 19

well flowed an average 160,000 lbm/hr from start of day until 15:40. During the period between 15:40 and 16:30 gradually increased flow rate to 425,000 lbm/hr, but by midnight it had gradually declined to 407,000 lbm/hr.

Problems with injection pumps continued after repair and reconfiguration. Pumps pulled pond level down below solids level and transferred some sludge into the tanks. and probably into the injection well also. Injectivity appears to have declined by about 20 percent today.

June 20

M

Increased well flow rate to 426,000 lbm/hr shortly after start of day and kept it near that rate until well was shut in at 17:54. Prior to shut-in, ran capillary tubing and temperature institument in the well and hung at 5,000 feet. Downhole pressure at 472,000 lbm/hr flow rate was 1,965.45 psia; and 33 prinutes after shut-in of well, it reached a high of 2,128.2 psia.

Injectivity of injection well continued to decline.

June 21

Well shut-in. Capillary tube pressure declined to 2,125.59 psia at 08:00, down 2.6 psi from the high of 2,128.2 psia. Purged capillary tube verified that reading was correct and that there was not a leak in the tube or chamber. Suspect that cooling of Helina in capillary tube increased density by 2.6 psi or more, accounting for decline at surface readout.

Added and mixed 660 gallons of 12N HCLE o brine tanks to dissolve some of the solids.

Removed instrumentation from steam and brine lines. Moved static pressure recorder from separator to injection wellhead for injection falloff test.

June 22

In State 2-14, capillary tube pressure reading 2,123.47 psia at 08:00, down 2.12 psi from yesterday. Injected acidified fluid from tanks into Imperial 1-13.

June 23

Pulled capillary tubing, chamber and temperature instruments from well. Ran in hole with fluid sampler on braided wireline at 2,500 feet. Opened well valve and attempted to flow well. Well bled off trapped gas, flowed a small amount of brine and died. Ran in hole with sampler to 5,000 feet and pulled out of hole.

Depressed well fluid level with air by pressuring casing to 105 psig at the wellhead. Opened flowline valve, blew off gas, would not flow. Pumped 11,000 gallons of fresh water into well. Will allow water to heat up in wellbore and try again tomorrow.

Injected canal water from tanks into Imperial 1-13.

June 24

At 07:05, pressure on wellhead was 45 psig. Added additional pressure by pressuring with air to 110 psig. Opened valve, well flowed for a short time then died.

Injected friends water from tanks into Imperial 1-13. Rigged up wireline unit and ran in hole to 1,300 feet (ground level reference) with pressure and temperature tools and hung for injection falloff survey. Injected into well for approximately 2 Nours and 15 minutes at a rate of approximately 190,000 lbm/hr.

June 25

Pulled tools from Imperial 1-13. Reset tools and ran traverse survey at 20 ft/min Wom surface to 1,470 feet, where tools stopped.

Put 6,060 gallons of fresh water into State 2-14, then shut in.

3.3 Data Quality Control

The following steps were taken to assure data quality:

A

- a. All flow and pressure recorders were calibrated by Instrument Specialists Company before the test and at times during the test as shown in Table 312.
- b. All pressure gauges were calibrated before the test. The gauges at the wellhead (PI-1) and steam discharge from the separator (PI-155) were checked against a test gauge at operating conditions during the test. The test gauge was an Ashcroft 0-600 psi gauge with 0.25 percent accuracy. The check readings are documented in Table 3-3, and pressures listed in the Flow Test Data table (Table A-1) are adjusted accordingly.

TABLE 3-2

METER CALIBRATIONS

- c. The bimetal dial thermometers could not be calibrated in the field before the test. However, several check readings on the critical parameters were taken at operating conditions during the test, and the gauge readings were adjusted accordingly. There were two instruments used as standards. One was a Wahl platinum RTD digital thermometer, and the other was an ASTM mercury thermometer. The check readings are documented in Table 3-3.
- d. Weirbox sight gauge readings were taken at normal data recording intervals. Although the weir is inherently less accurate than the orifice meters, it was potentially important as a redundant measurement of the brine flow rate

Early in the test (until June 7), when the separator was not in operation, the weir provided the primary flow measurement. Until injection started on June 4, brine pond level measurements were used to check the cumulative brine production calculated from weir flow readings.

- e. Pruett Industries recalibrated their Kuster temperature instruments after the June 5, 1988, survey and then corrected the June 5 readings accordingly. The Kuster KPG gauge has an advertised accuracy of $\pm 2^{\circ}$ F, although the results typically suggest that this standard is not achieved under field conditions. Temperature surveys are discussed in Section 4 $\frac{1}{2^{\circ}}$.
- f. Pruett Industries measured downhole pressures with a Paroscientific digital quartz pressure transducer on a helium-filled capillary tube. The transducer used has a range of 0-3000 psia, an advertised accuracy of 0.01 percent of full scale, and a repeatability of 0.005 percent of full scale. Probably the greatest source of inconsistency from survey to survey is in the measurement to the 5,000-foot datum. This inconsistency was minimized by Pruett using the same unit on all of the State 2-14 runs. The repeatability of the peth measurement is probably about 0.1 percent.

The correction for the pressure of the static helium column in the capillary tube was calculated by Pruett from the measured temperature profile and the measured pressure at the surface. This correction was typically about 24 psi and would be expected to be duite precise, except during the pressure buildup when the well was shut in and cooling off. This problem is discussed further in Section 4.3.2.

A significant unknown during the test was the rate of scale deposition in the brine meter runs and its effect on the brine flow rate measurements. After the test ended, the orifice plates and piping were disassembled and inspected to measure the scale buildup and estimate the magnitude of the effect. Results are discussed in Section 3.4. Another form of data quality control was a routine of frequent review of the data for evidence of instrument malfunctions, as well as data reduction and review for the daily test operations reports. These efforts resulted in quick recognition and correction of flow recorder problems, inconsistent temperature gauge readings, and several occurrences of scale-plugged pressure ports. Initially, temperature readings were influenced several degrees by wind and ambient temperature. This problem was corrected by insulating around thermowells and using only the thermowells with adequate penetration into the flow stream.

There was a major problem with the steam orifice meter that was not discovered until after the test. Post-test analysis of the brine and steam flow data led to some suspicion of a problem with the steam orifice meter. When the required brine chemistry and final exprrections to the downhole temperature data were available, the theoretical flash fraction at the separator was calculated to be 14.0 percent for average test conditions. Bv comparison, flash fractions at the separator calculated from flow data reported in the daily test operations reports were typically in the range of 20 to 21 percent. As a result, the orifice plate was removed for inspection and some debris was found in the pipe on top of the orifice plate, obstructing an estimated 20 to 40 percent of the flow area. The orifice plate was installed as one of the last activities during construction. The pieces of metal or scale debris were apparently dislodged upstream and carried to the orifice plate when flow was first diverted through the separator. An empirical meter coefficient was determined for the steam flow meter to achieve a match between the indicated and theoretical flash fraction at the separator. Using a value 41 percent less than the steam meter coefficient for an unobstructed orifice gave a consistent match throughout the test, indicating that the orifice plate was alrea (blocked by the time steam flow was first being recorded. The Method of calculating flash fraction is discussed in Section 3.4.

3.4 Data Reduction

Flows, pressures and temperatures in Table A-1 were calculated from the raw data (Table A-2) by the methods detailed in Addendum D. Corrections to temperature and pressure readings are based on instrument checks listed in Table 3.4.

As discussed in Section 3.3, the separat flow, as originally measured, was erroneously high because there was debris lodged against the orifice plate which partially blocked the flow. To obtain a reasonable estimate of the true steam flow, a correction factor was derived which achieved a match with the theoretical steam flash fraction. Specifically, the steam meter coefficient was adjusted to match the average of the steam flash fractions at the separator (calculated as #7 in Addendum D) to the average of the theoretical flash fractions from the enthalpy condition representing an average of the four downhole temperature surveys. Flash fractions for a range of separator pressures were calculated using a computer model for hypersaline The model was calibrated by the physical brines (Addendum E). and chemical data collected during the test.

Average temperature at 3,750 feet on the four downhole temperature surveys = 572.6 F Average of the flow rates for the temperature surveys (Table $(3-4) = 291.000 \, \text{lbm/hr}$ Wellbore heat loss between 3,750 feet and surface (Addendum E) = 2.07×10^6 Btu/hr Average heat loss from flowline to separator (Addendum F) = 0.5×10^6 Btu/hr (Both of the above heat loss rates are relatively insensi-tive to flow rate.) Effective preflash brine temperature = brine temperature at 3750 feet minus temperature change corresponding to enthalpy losses in wellbore and flowline = $572.6^{\circ}F - || (2.07 + 0.5) \times 10^{\circ} Btu/hr$ 2991,000 lbm/hr x 0.825 Btu/lbm°F $= 562^{\circ}F$ The theoretical firsh fraction from 562°F, calculated as in Addendum E, as a fungtion of separator pressure is: Pressure (psia) Flash Fraction 217.4 0.1392 214.9 0.1399

The theoretical flash fraction to atmospheric pressure = 0.2664.

212.4

₹0.1406

Ideally, the total steam flow to atmosphere could be calculated by subtracting brine flow at the weir (Table A-1 Column 12) from the total flow. However, this procedure involves a substantial uncertainty because the result is the difference of two large numbers, each subject to some uncertainty. The total flow is the sum of brine and steam flows, each measured by an orifice meter. These would each be expected to have an accuracy of about +5 percent under favorable conditions. The weir is inherently less precise, and there is more scatter to the feadings because the brine flow commonly cycled up and down slightly with the action of the control valve. The orifice meter readings taken from the recorder chart were each averaged over the cycle, but the weir readings were spot readings. Therefore, the weir flow data were not used to calculate steam flow.

The normal procedure would be to measure steam flow from the separator and calculate the secondary flash to atmosphere thermodynamically. For this test, however, the flash fractions were determined entirely by calculation as described previously. The calculated flash fraction at the separator for average test conditions is 0.140 and the total flash to atmosphere is 0.266.

	SUMMARY OF	TEMPERATU	RE/PRESSURE	PROFILE SU	RVEYS
DATE	RUN NO.	START IN HOLE	ON BOTTOM	FLOW RATE (LBM/HR)	TEMP AT 5000'(⁰ f)
6/05/88	01	13:00	14:36	117,000	575.1
6/12/88	D ⁰²	09:55	12:12	211,000	568.9
6/14/88		15:08	18:01	404,000	573.6
6/20/88	04	14:20	16:40	432,000	582.0
· .		_			
		M			
		N			-
	•		A		
			R		
			Ŋ.,		
		₹	•		
			••		
			¥ •	R	ı
्ये व गर - दुवे			19 19 19 19 19 19 19 19 19 19 19 19 19 1	A	
			ŧ	F	
- 43 - 43			:		T
	· · · · · ·		• •	· ·	
	· .		ц.		
				'n	
			1		
		,			

黛

TABLE 3-4

-

As would be expected, when the total steam flow to atmosphere is calculated as the difference of total flow and weir flow, the scatter is so great that the individual numbers are useless. However, if the cumulative total flow and cumulative weir flow for the whole test are used to calculate an overall average, a flash fraction of 0.20 results. Considering the uncertainties in the measurements, this is in reasonable agreement with the theoretical flash fraction of 0.266.

Scale buildup on the brine orifice plates is a common problem, and its effect on the readings is largely undetermined during the test. It is principally for this reason that the weirbox was used as a backup measurement of the brine flow. After the test, the brine orifice plates were removed and inspected, and although there was scale on the plates, it was relatively minor. Each of the plates (Leg A and Leg B) had a scale deposit which effectively reduced the orifice bore and rounded the edges. Both plates, when clean, had standard, sharpedged orifices. Post-test observations of the orifice plates are summarized as follows:

	Original Orifice Bore	Average Bore Dhameter Reduction By Scale	Approximate Radius of Curvature on the Entrance
Tog	(inchoc)	· (inchoc)	(inches)
<u>red</u>	(Inches)	(Inches)	(Inches)
А	4.800	0.375	0.188
В	7.1464	0 25	0.125

Scale on the pipe in the meter runs after the test was about 1/4 inch thick, which is negligible

Qualitatively, rounding at the entrance and bore diameter reduction have offsetting effects on the meter coefficient. Calculations presented in Addendum M show that the observed scale buildup would cause indicated Leg A flow rates to be 3.9 percent higher than actual and indicated Leg B rates to be 2.6 percent higher than actual. Since these values are small, and within the expected accuracy of the meters, the effect of scale deposition could be neglected. Thus, the orifice meters were used for calculating brine flow, rather than the weir during all portions of the test when they were operational.

· ·

4.0 Downhole Surveys and Transient Pressure Testing

Downhole pressure and temperature surveys were run during the flow test to fulfill the following objectives:

- Measure stabilized flowing pressure at the 5,000-foot datum at various flow rates to define the well's inflow performance (Figure 1-3).
- Record the downhole transient pressure response to flow rate changes and the pressure buildup at the end of the tests. These data are used to calculate near-well reservoir properties (Sections 4.3.1.3 and 4.3.2.).
- Measure the flowing temperature and pressure profiles between the surface and 5,000 feet at various flow rates to provide data for thermodynamic flash calculations, to determine the depth at which flashing begins and to establish the relationship, if any, of brine temperature to flow rate.

Typically, a well test would involve a static downhole temperature and pressure survey to establish equilibrium shut-in conditions before the start of flow. This was not done immediately prior to the June 1988 test of State 2-14 because: 1) a suitable static survey had been run on November 18, 1987; and 2) well conditions immediately before the flow test were such that static survey data would have been misleading. Brine in the wellbore had been displaced by fresh water in April, 1988, to cool the well for a casing impection log. The lower density fluid in the wellbore would have distorted the downhole pressure measurements relative to measurments in a brine-filled wellbore during the test. The November 18, 1987, survey was run 79 days after the last previous flow test and is more nearly representative of static conditions than any survey that could have been run immediately before the June 1988 test.

Production logs to define the inflow(s) within the openhole production interval would have been desirable, but were ruled out because of the risk of losing logging tools. The casing was suspected to be in poor condition below about 5,500 feet, and the condition of the open borehole (below 6,000 feet) was questionable after the August, 1987, redrill attempt. Figure 4-1 is a diagram of the State 2-14 well.

4.1 Description of Surveys

The following downhole surveys were run during the test:

- June 5 Flowing temperature and pressure profile, 500 5,000 feet
- June 12 Flowing temperature and pressure profile, 500 5,000 feet, and pressure drawdown at 5,000 feet during rate change
- June 14 Flowing temperature and pressure profile, 500 5,000 feet, and pressure drawdown at 5,000 feet

FIGURE 4-1

June 20 - Flowing temperature and pressure profile, 500 - 5,000 feet, and pressure buildup at 5,000 feet.

The survey data and plots are in Addendum G. All temperature surveys were run with Amerada-type Kuster instruments. All pressure data were obtained with a helium-filled capillary tube run downhole, connected to a Paroscientific digital quartz pressure transducer at the surface. Downhole pressure data in Addendum G for the June surveys are in units of psia and have been corrected for the gravity head of the helium column at flowing temperature conditions in the wellbore.

In each of the surveys, pressure and temperature were both recorded on the same trip in the hole by running the Kuster temperature instrument in tandem with the capillary tube chamber. Outside diameters of the temperature instruments and chambers were 1.25 and 1.50 inches, respectively.

4.2 Flowing Temperature and Pressure Profiles

Four temperature and pressure profile surveys were run during the flow test peach at a different flow rate. The data are used in Addendum boas a basis for selecting the flash initiation conditions and to estimate enthalpy losses from the wellbore. As described in Addendum E, these values and chemical analyses of brine samples from the flowline are used in a computer model to perform Nash calculations and determine the pre-flash brine composition. Results based on the June 5 survey data show a brine with a flash Anitiation temperature near 572°F, a pre-flash TDS near 247,000 mg/kg, and a CO, content near 3,900 mg/kg (total flow basis). The Dalculated steam flash to atmospheric pressure is 25.5 percent. The average flash initiation temperature for the four surveys is 772.6°F and the average flash fraction to atmospheric pressure is 26.6 percent.

Temperatures measured at 5,000 feet, shown in Table 3-4, vary within a range of 13°F. For all four surveys, the apparent depth of flash initiation is above 5,000 beet, so the measured values should reflect the combined temperature of the inflows, except for a minor heat loss correction. The variation of temperature among surveys is greater than would be expected unless it resulted from changes in the distribution of inflow among production zones of differing temperature. However, the variations of temperature in Table 3-4 do not appear related to either flow rate or time, factors which could control the inflow distribution. Subject to any insight which may be drawn from chemistry data, it is presumed that the scatter in the temperature data reflects inaccuracies in the Kuster instruments.

The depth of flash initiation is indicated on a temperature survey plot by a departure from the straight line (single-phase flow/conductive heat loss) profile in the lower portion of the well. In general, for a constant brine composition and temperature, flash depth is a direct function of wellbore pressure drawdown, and therefore, flashing occurs deeper at higher flow rates. The flash depths interpreted from the four temperature surveys in the State 2-14 well are listed below.

DATE	FLOW RATE (1bm/hr)	DEPTH OF FLASH INITIATION (ft)
6/05/88	117,000	3,160
6/12/88	211,000	3,400
6/14/88	404,000	4,000
6/20/88	432,000	3,600

Depths of flash initiation on June 14 and June 20 deviate somewhat from expected values. Based on the average well productivity observed (Figure 1-3), and assuming constant brine properties, the flash depth on June 14 would have been predicted at 3,600 feet instead of the observed 4,000 feet, and the flash depth on June 24 would have been predicted at 3,800 feet instead of the observed 3,600 feet. The flash depth being greater than expected on June 14 could result from an increase in brine temperature or a temporary increase in non-condensible gas content. If any of the observed increases in well deliverability were due to additional fractures opening up, then either the temperature or gas content of the brine could have changed. A change in gas content appears more likely. The shallower than expected flash initiation on June 20 is consistent with the observation of an improved well deliverability in the last three days.

4.3 Transient Pressure Tests and Analyses

Transient pressure testing in wells is conducted for two main purposes: i.e.; (1) to determine the production capabilities and characteristics of the well, and (2) to assess reservoir properties and long-term behavior of the reservoir. The best test to determine well parameters is a multi-rate test where sufficient time is allowed after a change in flow rate for the pressure to stabilize. More useful information for reservoir analysis is obtained if the well can be flowed at a constant rate for a relatively long time. Flow tests are usually designed to accomplish both purposes simultaneously to save money and time, which means that the well is flowed in successively increasing flow rate steps at the beginning of the test and then allowed to flow at a constant high rate for as long as is economically and operationally feasible.

During a test of this design, downhole presture and temperature measurements are made before and during each rate change, along with surface measurements of flow rate, temperature, and pressure, and a final downhole pressure build-up. These data are used to calculate well deliverability or flow rate available at varying wellhead pressures, productivity or flow rate at varying downhole pressures, and important reservoir parameters such as transmissivity, reservoir storage capacity, reservoir temperature, and enthalpy. From a carefully planned test under some reservoir conditions, reservoir size and the nature of reservoir boundaries and flow regimes can be determined as well. These latter types of information are usually best obtained from a long period of constant flow.

The test of State 2-14 was originally planned as two sevenday flow rate steps followed by a final extended flow for 16 days at the highest rate that could be maintained through the test Unfortunately, operating problems and budget confacility. straints prevented obtaining an extended flow period at a high, constant rate. The interpretation of the data obtained was also complicated by several unscheduled changes in flow rate occasioned by operating problems, as well as by the apparent continued improvement in well deliverability during the course of the test. Nonetheless, the test yielded quantitative data about well deliverability and productivity. In addition, qualitative and semipmuantitive statements about the well and near-well reservoir parameters can be made which, while less certain, will aid in expanding understanding of the reservoir and in interpretation of chemical and geologic data obtained from this and previous well tests.

4.3.1 Well Behavior

Well behavior data were obtained from surface and downhole pressure measurements and from flow measurements. Wellhead pressure measurements were used to plot a deliverability curve and predict deliverability at different wellhead pressures. Pressure transients measured downhole during step rate changes were used to plot a productivity curve and calculate a productivity index.

4.3.1.1 <u>Deliverability</u>

Deliverability of geothermal wells is generally depicted as a plot of flow rate vs. wellhead pressure. Wellhead pressure is controlled by reservoir pressure, fluid enthalpy, flow rate, wellbore flow characteristics, heat losses in the wellbore, and fluid chemistry. As a result, the relationship between reservoir pressure and wellhead pressure is not a simple one, and fluid deliverability at the wellhead can not be easily predicted from downhole pressure measurements.

The Salton Sea reservoir is a single phase, liquid-dominated reservoir with flow induced by decreasing density in the fluid column as boiling takes place in the wellbor. Flow characteristic of an extensively fractured formation having significant matrix storage capacity is typical. Some representative deliverability curves for this kind of reservoir are shown in Figure 4-2. Curve A represents a liquid reservoir with high permeability. Curve B represents a relative decrease in reservoir temperature, pressure or gas content. Curve C shows the effect of either an increase in reservoir temperature or gas content of an increase in reservoir pressure. ¹ Curve D shows the effect of scaling in the wellbore, and curve E shows the effect of a lower reservoir permeability.

Figure 1-2 shows the deliverability curve for the State 2-14 well. The date of each data point plotted in the figure is written beside it. Data for June 2-17 represent pressure and flow rate measurements made during step rate increases. Data for June 18-20 represent data collected at the end of the test after the highest flow rate step. Several points should be noted about this plot:

Example Deliverability curves:form of the variation of mass flow with wellhead pressure. (From "Geothermal Reservoir Engineering", Grant, et al, 1982; in part after James, 1980a, 1981.)

- 1. The well was not tested at high enough rates to determine the maximum flow rate at typical commercial operating wellhead pressures of 250-350 psig. However, by projecting the general shape of the curve to lower wellhead pressures, an estimate of the flow rate in the commercial operating range can be made. The dashed line represents the shape of the projected curve. An estimated 770,000 lbm/hour total flow could be expected at 350 psig and, less certainly, about 810,000 lbm/hr could be produced at 250 psig.
- 2. The increased well deliverability observed later in the test suggests that the well improved during the course of the test. It is likely that flowing the well at higher rates cleaned up drilling solids from the reservoir rock and also may have opened up either the old or new leg of the wellbore.
- 3. At very low flow rates, deliverability curves often show a curve toward the origin just before the lowest sustainable flow. Points on this deliverability curve for the low flow rates at the beginning of the test are more likely representative of wellbore damage followed by clean up after high flow rates.

4.3.1.2 Productivity

The productivity index (PI) of a well is usually defined as the flow rate change per unit change in downhole pressure. PI is the slope of the inflow performance curve, which is a plot of flow rate vs. downhole pressure. The inflow performance, or productivity, represents the production capability of the reservoir as it is affected by well completion. The influence of fluid enthalpy, chemistry, and gas content are generally not large in a single-phase reservoir.

Well productivity was assessed using pressure measurements made in the liquid column at 5000 feet in State 2-14. This is above the probable primary entry zone at about 6200 feet. During flowing conditions this should not influende the reliability of either productivity or pressure drawdown measurements, because the temperature in the flowing single-phase liquid column would be subject to only small amounts of cooling between 6200 and 5000 feet due to heat losses.

Figure 1-3 shows flow rate plotted against downhole pressure for four stabilized flow rates. An average productivity index of 1527 lbm/hour/psi was found using these data. The productivity curve is a straight line through the four flowing points, which would be expected from a reservoir producing single-phase liquid from only matrix permeability. However, since well improvement was noted from other data collected during testing, this productivity may be conservative. For reservoirs with only matrix permeability, the static pressure should also fall on this line. No static pressure survey was run prior to the beginning of the test, so a static survey from August, 1987, following recompletion of the well and a 12-hour flow test was used. The point at 5,000 feet does not fall on the extrapolated productivity curve. Fractured reservoirs often show a non-linear relationship between pressure and flow rate. The Salton Sea reservoir, being extensively fractured, but also having significant matrix storage capacity, typically exhibits characteristics of both linear and radial inflow.

4.3.1.3 "Skin"

Downhole pressure drop includes not only pressure changes in the reservoir under flowing conditions, but also pressure changes due to pressure losses as fluid enters the wellbore, i.e.,"skin effects", and changes due to differences in the amount of fluid stored in the wellbore, i.e., "wellbore storage". These pressure losses are characteristic of the wellbore and near-wellbore and are proportional to flow rate. In geothermal wells it is often very difficult to separate these pressure losses from each other, and they are generally lumped together and calculated as a "skin factor".

Horner plot analysis of the buildup data yielded a calculated skin factor, s of +23.1 where:

S	H	a		M	$\frac{\operatorname{hr} - \operatorname{P}_{wf}}{\operatorname{m}} - \log\left(\frac{k}{\left(\frac{g_{\mu}}{\operatorname{pr}_{w}}^{2}\right)} + b\right]$
		S		2	skingfactor
		P1	b -	8	pressure at 1 hour after shut-in
		pe	: :	Ξ	flowing bottom hole pressure
		mwr	•	2	slope Apf semi-log straight line (on a
					plot of pressure vs. log of time)
		k		IJ	permeabilaty
		ø		=	porosity
		μ		8	viscosity 🕅
		c		8	compressibility of system
		r.,		8	radius of wellbore
		a,	b	=	unit coefficients

Positive values of the skin factor indicate large pressure drops as the fluid enters the wellbore. These can be caused by wellbore damage during drilling, pressure of op across liners or through perforations, partial penetration completions, and in some cases, closing of fractures as pressure diecreases and/or turbulent flow as large volumes of fluid enter the wellbore at very high rates. Many wells in the Salton Sea entermal field show high apparent positive skin factors, even though they are extensively fractured and would normally be expected to exhibit negative skin factors. Morris, Campbell and Petty (1985) have suggested that turbulent flow in the formation may be the dominant factor in this effect. In the case of State 2-14, it seems very likely that the well has sustained major wellbore damage during drilling and recompletion. However, it is also probable that the high flow rates in this well contribute to the apparent skin effect by causing non-Darcy flow conditions.

4.3.2 Reservoir Behavior

Two measurements of well drawdown were made during rate

changes on June 12 and June 14, 1988. Figures 4-3 and 4-4 show the variation of the observed pressures versus time from the initiation of the rate change.

Figure 4-3 shows that following the rate change from 210,000 lbm/hr to 414,000 lbm/hr, the well showed an initial drawdown of 104.1 psi, then recovered rapidly and began to drawdown again. The maximum drawdown of 113.6 psi was reached one hour and 35 minutes following the rate change. Following this maximum drawdown, the well again began to recover. Small adjustments in the flow rate immediately following the rate change may explain some of this observed recovery, but during most of the 19.5 hours following the change, the rate remained fairly constant, increasing only slightly. During this period the well recovered a total of 9.5 psi when it would have been expected to continue drawing down.

Figure 4-4 shows the second drawdown measurement which was made on June 14 when the flow rate increased from about 404,000 lbm/hr to 538,000 lbm/hr. Following an initial drawdown of 115.5 psi the well recovered a total of 42 psi. Since the well was flowing at a nearly constant rate and no dramatic enthalpy changes were observed of this pressure recovery following drawdown due to a rate change to further evidence for improvement of the well. Unfortunately, it makes both drawdown curves impossible to analyze accurately for quantitative reservoir parameters.

Prior to shut-in of the well on June 20, pressure measure-ments were again made. The well was shut in at 17:54, but due to the effects of wellbore stor and the slow rate at which the valves could be turned, the beginning of build up was not observed downhole until 18:00 Figure 4-5 shows a plot of pressure at 5000 feet versus time. Following an initial very rapid build up of 163 psi, the downhole pressure began to drop and continued to drop slowly for the next 44.5 hours, when measurement was ended. This drop in pressure is most likely due to cooling of the fluid between the bottom of the pressure tool and the inflow zone, and is therefore largely the result of brine density changes in the wellbore. There is also a possibility that two or more inflow zones feed this well and that differential pressure depletion between the zones could result in crossflow after shut-in. However, crossflow generally causes the downhole pressure to increase and decrease over shorter time periods than the 44.5 hours of this build up. Another possible periods than the 44.5 hours of this build up. explanation of this drop in pressure could be incerference from the neighboring field area under production by Magma Power Company. Well testing was going on in a newly completed Magma well during the period of build up; however, the distance to the Magma well is more than a mile. The testing of the Magma well is not likely to have had an effect on the State 2-14 well, given the high permeabilities and storage capacity in this reservoir.

As a result of the drop in pressure only 1.5 hours after shut-in, the build up data are not amenable to analysis for detecting reservoir boundaries. However, a semi-quantitative estimate of reservoir parameters and skin effect in the well was made using a semi-log plot. Figure 4-6 shows pressure plotted against log time, with the semi-log straight line required for

FIGURE 4-3

41

.

SEMI-LOG PRESSURE BUILDUP PLOT

analysis showing only for a brief period prior to the pressure dropoff. A transmissivity or "kh" of 233,600 md-ft was calculated using the final flow rate of approximately 435,000 lbm/hr. The skin factor of +23.1 previously discussed was also calculated from this plot.

Pressure response matching using the nonlinear, multiple regression computer code ANALYZE was also attempted, because this code can accomodate the variable flow rate history of the test. Using the "kh" and "skin" calculated from the Horner plot as initial estimates of reservoir properties and the entire drawdown and buildup history as input, ANALYZE calculated a transmissiv-ity ("kh") of 1x10 md-ft, a storage coefficient ("Øch") of 0.00053 ft/psi and a "skin" of +13.3. Using the buildup only resulted in a kh of 1x10 md-ft, a storage coefficient 0.00051 ft/psi and a skin of +12.4. This result for kh is extremely high and a good matcher of the response curve was not achieved, particularly for the drawdown segments (Figure 4-7 A-C). This suggests that reservoir anisotropy or wellbore storage effects dominate response and/or the input data available are insufficiently accurate to allow a good match using this computer code. Use of these kh values for quantitative prediction of future reservoir behavior is not recommended.

The reservoir and well parameters indicate qualitatively, at least, that the reservoir has high permeability and adequate storage capacity and is therefore capable of producing at high flow rates for extended periods. However, because the data are not amenable to boundary analysis, neither the life of the reservoir nor the total production capacity can be estimated. Nearby shallower portions of the same reservoir tapped by Magma Power and UNOCAL have produce for long periods with little observed pressure drawdown, but no detailed data are available to the public from these wells.

4.3.3 Injection Well Behavior

The Imperial 1-13 well was used as an injector throughout the test. Figure 4-8 shows a plot of injectivity, defined as flow rate per psi of pressure at the wellhead versus cumulative injection. Table 4-1 shows daily and cumpative injection by date. From the time that injection started, the injectivity began to decline. The injectivity decrease show by the Imperial 1-13 well is typical for a well undergoing formation plugging. In most cases of injection well plugging, suspended solids enter the formation, coating the walls of the pores. Solids are filtered from the solution by the porous medium, Treducing the permeability of the formation near the wellbore and forming a filter cake on the wellbore face. The filter cake, once formed, acts as a fine filter, removing smaller and smaller particles from the fluid and further reducing the injectivity of the well. The filter cake produces the effect of a variable skin factor, with the additional problem that the formation near the wellbore may have been damaged by the entry of solids prior to formation of the filter cake. Decrease in injectivity is generally geometric. The curve for Imperial 1-13 displays this pattern.

TABLE 4-1

1.5

INJECTION SUMMARY	
$\frac{\text{KENNECOTT IMPERIAL } 1-13}{\text{June 4} - \text{June 24. } 1988}$	
DATE (10 1b)	CUMULATIVE MASS INJECTED (10 1b)
$\begin{array}{c} 6/1 \\ 6/2 \\ 0 \\ 6/3 \\ 6/4 \\ 838 \\ 6/5 \\ 5,225 \\ 6/6 \\ 243 \\ 6/7 \\ 1,130 \\ 6/8 \\ 2,307 \\ 6/9 \\ M \\ 2,578 \\ 6/10 \\ 4,145 \\ 6/12 \\ 3,412 \\ 6/13 \\ 6/12 \\ 5,107 \\ 6/14 \\ 5,882 \\ 6/15 \\ 6,497 \\ 6/16 \\ 7/426 \\ 6/17 \\ 5,705 \\ 6/18 \\ 6,1 \\ 6/19 \\ 5,521 \\ 6/20 \\ 3,846 \\ 6/21 \\ 794 \\ 6/22 \\ 1,471 \\ 6/23 \\ 0 \\ 6/24 \\ 639 \\ \end{array}$	$\begin{array}{c} 0\\ 0\\ 838\\ 6,063\\ 6,306\\ 7,436\\ 9,743\\ 13,541\\ 16,119\\ 20,264\\ 23,676\\ 28,783\\ 34,665\\ 41,162\\ 48,488\\ 54,193\\ 60,343\\ 65,864\\ 69,710\\ 70,504\\ 71,975\\ 71,975\\ 71,975\\ 71,975\\ 72,614\end{array}$
F	R F T

€ 4

Although at times brine was taken out of the holding pond and directly injected without allowing for settling, these periodic increases in injected solids did not alone cause the injection well to plug. Injection of unfiltered brine from the start of the test resulted in a decrease in injectivity. Even with the settling in the brine holding tanks, suspended solids sufficient to cause plugging were injected into the well.

After shut-in of the State 2-14 well, the brine remaining in the holding pond was injected into the Imperial 1-13 well. The portion of this fluid held in the tanks at the time of shut-in was treated with 12N hydrochloric acid. The seven tanks held an estimated 107,016 gallons of brine at the time the acid was added. The acid was added as evenly as possible to each tank and agitated with a small pump. The tanks were allowed to stand overnight, and the brine was injected the next day mixed with added fluid from the holding pond. During the injection of this acidified brine, continued build-up of wellhead pressure was observed. No improvement in injectivity resulted from this acidification of the injection well. In fact, the injectivity decreased during injection of this fluid from 2970 lbm/hr/psi to 1900 lbm/hr/psi.

The Imperial 1-W well was known to have problems with sand infill from the formation during drilling and completion. Therefore, the injection zone probably has matrix permeability. Further sand inflow may have reduced the injectivity of the well during this test, but the largest impact on the injectivity appears to have been plugging by suspended solids precipitated by the produced brine.

4.4 Caliper Logging Attempt

On August 8, 1988, 44 day, after the end of testing operations, Kennecott attempted to run a casing inspection caliper log in the State 2-14 well. Details of the operation are documented in Addendum H. Two different caliper tools were run and both encountered a constriction that propped the tools in the 9 5/8-inch casing about 26 inches below the top of that casing string. The caliper tools, having clearances for minimum hole diameters of 7 1/4-inches and 3 1/2-inches, both stuck at approximately the same place and had to be pulled free. The constriction, or at least the top of it, occur where the 9 5/8inch casing comes through the casing head.

On August 15, 1988, a television camera having a diameter of 1/8-inclus was run through the wellhead and through the 2 constriction in the 9.5/8-inch casing to a point about 2 feet below where the caliper tools stuck. Although the video image was impaired by turbidity in the water, it shows what is thought to be a heavy buildup of whitish scale (presumed to be calcium There was an attempt to obtain a sample of carbonate). the scale by dislodging it with a hydroblaster. However, the hydroblaster pipe bent when it was inserted downhole and the attempt was aborted because there was no replacement immediately available. The upper portion of the wellhead had been dismantled to run the caliper and television logs, but there was no whitish scale to sample in those parts. None of the attempts at logging or sampling was successful at positively identifying the scale or defining the profile of the constriction, and budget constraints prevented further efforts.

The discovery of a constriction in the casing prompts several questions regarding its origin and possible effects on the flow test. Apparently the constriction did not exist at the time of the casing inspection log in April, 1988. The most reasonable conclusion is that it formed during the 19-day flow test. Two possibilities are that (1) it is a partial collapse in the 9 5/8-Och casing which may have occurred at the beginning of the test, or (2) it is simply a scale buildup. Normally, a heavy scale builder would be reflected in a declining well deliverability, but the deliverability actually increased as the test progressed. This implies either that the constriction formed very early in the flow test, or that factors increasing the deliverability more than offset the increasing flow resistance.

The question of whether or not calcium carbonate scale could reasonably be expected from the standpoint of the brine chemistry is not within the scope of this report. However, the abrupt nature of the constriction in a region where the pressure gradient would not be expected to be extreme suggests that it is not a normal scale buildup. Likewise, there are problems with the hypothesis of a casing collapse. It is difficult to envision a mechanism for a collapse failure within the wellhead. Collapse is a well-known means of failure of production casing strings or tieback strings downhole where a pocket of water trapped in the annular cement expands therally and exerts pressure on the casing. However, this mode of failure is not likely to have occurred in the State 2-14 wellhead because the annular space was vented to relieve the pressure of thermal expansion. Also, there was no collapse in the three previous flow tests of the well and one would not have been expected in this test. Other causes such as weakening of the 9 5/8-inch casing by corrosion, or a mechanical problem in the wellhead, are possible explanations.

Because the profile through the restriction is not known, it is not possible to quantify the flow resistance, but it is of interest to explore its possible significance. The minimum dimension through the constriction is known to be greater than 2 1/8-inches and less than 3 1/2-inches. Assuming that the equivalent minimum inside diameter of the constriction is 3.0 inches, flow velocities shown below are calculated for average conditions of the last 25 hours of flow.

Average Flow Conditions at the Wellhead:
Flow rate = $425,000$ lbm/hr
Wellhead pre s sure = 540 psia
Steam mass fraction = 0.0700 (Table E-7)
Specific volume of the steam/brine mixture
(assumed homogeneous) = 0.677 cu ft/lbm (Table E-7)
Calculated Velocities:
Flow velocity in clean 9 5/8-inch casing = 19.5 ft/sec
Flow velocity in 3-inch diameter = 163 ft/sec
The velocity in the assumed constriction is less than the

critical velocity of 250 ft/sec for those conditions, and therefore the constriction did not constitute a critical choke. However, the pressure loss could still be significant. Assuming a round, venturi-shaped constriction only a few feet long, with a 3-inch diameter throat and the flow conditions stated above, the pressure drop would be in the range of 40 to 50 psi. However, deliverability data (Figure 1-2) indicate the flow restriction is less severe than that. For example, the actual wellhead pressure on June 17 at 640,000 lbm/hr flow rate is greater than could have existed if the constriction were as severe as the hypothetical case described above. Therefore, if the constriction existed at the end of the flow test as it does now, its minimum clearance is probably larger than three inches or its cross-section is elongate, having larger flow area than a round venturi.

Further evidence that the flow restriction was not severe is obtained from the pressure surveys (Addendum G). Extrapolations of the four downhole pressure profiles to the surface do not reveal any gross mismatches with the measured wellhead pressures. Although the extrapolations are not precise, a large, localized pressure drop would be expected to create a significant discontinuity in the pressure profiles.

On the basis of the following observations, it is concluded that the constriction was not the cause of the well's failure to flow spontaneously for the high-rate flow test on June 23 and 24, 1988.

- 1. In the attempt to initiate flow on June 24, after the well had been shut in overnight with fresh water in the wellbore, the well produced the fresh water back at a peak rate of 120,000 lbm/hr, but the flow diminished and the well died before achieving flashing flow. The nature of this initial flow of water was normal, and it was expected that flashing would start in the wellbore accompanied by an increasing flow rate. The fact that flashing flow did not start is an indication that the well had not been allowed to heap up long enough after injecting the fresh water.
- 2. Assuming the constriction existed at the end of the 19day flow test, it did not impose a large pressure drop at that time, at a flow rate of 425,000 150/hr. During the attempt to initiate flow on June 24, the pressure drop through the same constriction at the much lower flow rate of 120,000 lbm/hr would have been negligible because the pressure drop through any constriction is a strong function of flow rate and is not significant at low flow velocities.

Facts and tentative conclusions about the casing constriction are summarized as follows:

1. It formed sometime after the casing inspection log in April, 1988, and before the attempt to run a casing caliper log on August 8, 1988. The most probable time is during the 19-day flow test.

- 2. The downhole video inspection is not definitive, but shows the constriction to have the appearance of a buildup of whitish scale.
- 3. The 2 1/8-inch diameter television camera passes through the constriction, but caliper logging tools with clearances for minimum hole diameters of 3 1/2-inches and 7 1/4-inches stuck at about 26 inches below the top of the 9 5/8-inch casing string.
- 4. Although it has the appearance of a scale buildup, there is a possibility that a partial casing collapse is at least a contributing factor. Information is incomplete and there are questionable aspects to both hypotheses. Further study of the problem using the available information is probably not worthwhile. Instead, it is recommended that the well be killed and that the tree be removed down to the top of the lower master valve to allow visual inspection and sampling. Further work to describe the constriction and remove it would be guided by the findings at that point.
- 5. If the constriction existed near the end of the flow test, its effect on the well deliverability cannot be quantified when certainty, but apparently it was not severe. By comparison of wellhead pressures at 640,000 lbm/hr (on June 17) and 425,000 lbm/hr (average for the last 25 hours) the upper bound on pressure drop through the restriction is about 20 psi at the 425,000 lbm/hr flow rate. The downhole pressure profiles, as discussed above, suggest the action pressure drop was less.

Because the pressure dropimposed by the constriction was relatively small, wellbore flow modeling is not likely to yield the precision necessary for a refined estimate of the effect on deliverability.

6. The constriction was not the cause of the well's failure to flow spontaneously for the appempted high-rate flow test on June 23 and 24, 1988.

· ·

. 1

\$ % *****

R

5.0 References

ASME, 1971; "Fluid Meters - Their Theory and Application", Sixth Edition

Grant, Malcolm A., Donaldson, Ian G., and Bixley, Paul F., "Geothermal Reservoir Engineering, Academic Press"; 1982

Kreith, Frank; "Principles of Heat Transfer", International Textbook Co.; 1958

Marks, Lionel S.; "Mechanical Engineers' Handbook", Sixth Edition, McGraw-Hill; 1958

Morris, C.W., Campbell, D.A., and Petty, S.; "Analysis of Wells An Naturally Fractured Formations with Rate-Sensitive Flow", paper SPE 14169 presented at the 1985 SPE Technical Conference and Exhibition, Las Vegas, NV; 1985

Tinsley, Glan E., Letter to Mr. Jake Rudisill, Geysers Geothermal Co., regarding attempt to run caliper log in the State 2-14 well August 16, 1988.

5

N

page 1 of 5

(**†** 1)

TABLE A-1 FLOW TEST DATA STATE 2-14 June 1 - June 20, 1988

	DATE	TIME	₩HP	WHT	SEP.	SEP.	SEPARATO	IR FLOW	SEP.	TOTAL	CUM. TOT.	WEIR	CUM.WEIR	INJEC.
•					PRES	TEMP	STEAM	BRINE	FLASH	FLOW	FLOW	BOX FLOW	FLOW	FLOW
			psig	F	psig	F	lb/hr	1b/hr		Ib/hr	k1b	lb/hr	k1b	lb/hr
	06/01	17.07	170							0	Û	n	0	n
	06701		170	170						119 201	112	00, 200	0	0
	06/01	21.02	474	100						100 705	-020	02,000	275	ů Ú
	06/01	21:03	$\sum_{n=1}^{n}$	- 400 - 400						127,703	300 447	10,770	27J 402	0
	00/01	23:00	70	403						121 207	000	127,102	776	u Q
	06/02	01:00	- 107 - 101							101,007	.1 215	120,000	170	ů Ú
	00/02	03:02								100,714	1 710	02 003	1 004	U D
	06/02	03:33	400	471						123,700	1 000	100,000	1,200	0
	06/02	07:12	400		-					104,000	2 141	100,070	1,413	. 0
	00/02	11.00	400	470	_					119 201	2,141	100,070	1,001	0
	06/02	12.01	400	AL 0						117,001	2,007	05 7430	1,700	v o
	06/02	15:01	70J 504	400						114,074	2,023	112 704	2,302	0
	007.02	13:03	507	400		M				130,714	2,073	112,/04	2,100	0
	06/02	1/:00	507	400						172,700	3,200	110 704	2,000	U A
	06/02	17:00	505	400			1			130,714	3,002	112,704	2,041	U A
	00/02	21:00	505	400			U U			150 714	3,033	112,704	2,000	U A
	06/02	23:00	505	401			R			150,714	4,100	112,704	3,072	, ų
	06/03	00:38	203	480						100,714	4,431	112,704	0,014	ų n
	06/03	02:37	203	4/8				⋒		127,700	4,714	70,773	3,323	ų v
	06/03	03:03	DVZ Exc	8/8 170						127,703	9,702	70,773	3,720	ů v
	06/03	07:00	202	4/8				Ē		124,007	J,∠40 E 257	93,220	3,717	U O
	06/03	08:00	503	4/6					í.	129,700	3,33/	96,993	4,006	U O
	06/03	10:12	202	4/3						119,601	3,631	. 89,438	4,211	U O
	06/03	12:00	505	4/3					Y	119,601	5,84/	89,438	4,3/2	ų
	06/03	14:00	503	480						U	5,9/1		4,460	U
	06/03	16:01	513	492						134,900	6,100	100,8/8	4,562	0
	06/03	18:03	514	494						140,078	6,382	104, /50	4,773	Ű
	06/03	20:06	509	493		۰. بر	¥			129,	6,609	96,993	4,9/9	U
	06/03	22:05	506	492			î			134,000	• 6,921	100,8/8	0,176	U
	06/04	01:02	507	494	 		Sec.		,	140,0/8		104,/50	5,4/9	0
	06/04	03:00	- 306	494		يە بولۇپسى خەر			•	129,700	7 051	- 96, 993	J,6//	0
	06/04	00100	306	-494				÷ .		129,700	7,851	96,993	5,8/1	U
	06/04	07:00		493	<u>ę</u> .				•	134,900	8,11	100,878	6,067	Ų
	06/04	0.45.00	208	472				•		117,001	8,3/1	87,438	. 0,200	Ų
	06/04	11120	500	. 100			*			129,703	8,001	5 0, 400	0,4//	U O
	06/04	13103	500	402			サード			117,601	8,8/0	767,438 05 - 10	6,63/	V
	07/04	17:02	307 507	470	A .	i 10				119,072	7,100	. 33, 100	0,011	U O
	06/04	1/:00	507	40/			. *			129,007	7,300	73,220	7,1/0	0
	06/04	17:00	306	484	•	. ž				107,//4	\$15,78 0,700	82,089	7,162	U
	06/04	21:01	202	484	ħ	- Ą	4 h	6 10		107,774	7,/77	82,089	7,328	U
	06/04	23103	203.	4/9	•	9		λ		104,96/	10,01/	/8,494	/,491	U COL COD
	06/05	01:09	100	480	t_j		Υ.	4		106,16/	10,239	/9,392	/,657	301,622
	06/05	03:04	205	492	•		- -			107,370	10,444	80,291	7,810	259,460
	06/05	04155	211	492	-	•				108,572	10,644	81,190	7,959	467,023
	06/05	06:58	505	490						109,774	10,867	82,089	8,127	162,163
	06/05	09:15	514	494	•					134,858	11,147	100,847	8,335	0
	06/05	11:00	514	492						119,601	11,369	89,438	8,502	278,920
	06/05	13:08	- 513	492						114,652	- 11,619	85,737	8,689	136,217

ζ.

TABLE A -1

page 2 of 5

ł

1

DATE	TIME	WHP	WHT	SEP.	SEP.	SEPARAT	OR FLOW	SEP.	TOTAL	CUM. TOT.	WEIR	CUM.WEIR	INJEC.
				PRES	TEMP	STEAM	BRINE	FLASH	FLOW	FLOW	BOX FLOW	FLOW	FLOW
		psig	F	psig	F	lb/hr	lb/hr		lb/hr	kіb	lb/hr	klb	lb/hr
06/05	15:00	515	491						124,619	11,842	93,190	8,856	129,730
06/05	17=00	513	491						119,601	12,097	89,438	9,038	308,109
06/05	19:12	513	494						129,705	12,361	96,993	9,244	155,676
06/05	21:02	-313	491						119,601	12,589	89,438	9,414	314,595
06/05	23:10	507	492						119,601	12,845	89,438	9,605	155,676
06/06	01:05	506	3 92						116,325	13,071	86,988	9,774	136,217
06/06	03:04	508	=1 93						113,050	13,298	84,539	9,944	Q
06/06	05:45	505	491						109,774	13,597	82,089	10,168	0
06/06	08:00	510	493	-					110,238	13,845	82,436	10,353	97, 298
06/06	10:10	510	492						110,703	14,084	82,784	10,532	0
06/06	12:15	510	494	Ī	250				111,167	14,315	83, 131	10,705	8
06/06	14:11	510	494						111,633	14,530	83,479	10,866	Q
06/06	16:25	512	494						112,097	14,780	83,826	11,053	0
06/06	17:40	439				0			0	14,850	0	11,105	0
06/06	17:58	383				1			0	14,850	0	11,105	0
06/06	21:03	455	464						113,259	15,025	84,695	11,236	0
06/06	23:00	514	494			N			113,723	15,246	85,042	11,401	0
06/07	01:08	513	493	•	263	ų v	_		114,188	15,489	85,390	11,583	0
06/07	03:00	512	493		262		A		114,652	15,703	85,737	.11,743	0
06/07	05:00	513	492	186	404	17,024	102,863	0.14	119,886	15,938	%,99 3	11,925	0
06/07	07:00	512	492	212	414 [.]	17,659	113, 🗃	0.14	130,808	16,188	89,438	12,112	0
06/07	09:05	513	49 2	208	412	17,54 6	111,092	0.14	128,638	16,458	100,847	12,310	0
06/07	10:00	512	493	209	413	17,442	111,092		128,533	16,576	85,737	12,396	0
06/07	13:00	514	493	210	412	17,546	111,092	0Ŭ14	128,638	16,962	89,438	12,658	Û
06/07	16:08	514	487	211	410	19,796	106,977	0.16	126,773	17,362	89,438	12,939	194, 595
06/07	18:03	514	493	, 213	412	20,247	111,092	0.15	131,339	17,610	68,037	13,089	9
06/07	20:03	514	493	212	411	20,203	102,863	0.16	123,066	17,864	74,953	13,232	0
06/07	22:03	514	492	209	405	18,628	98,748	0,16	117, 77	18,104	85,737	13,393	334,055
06/08	01:04	512	491	207	482	17,827	102,863	0.15	120,690	<u>18,</u> 464	82,088	13,646	285, 406
06/ 0 8	04:00	511	. 491.	204	400	17,707	98,748	0.15	116,455	10 311	89,438	13,898	285,406
06/08	06:00	506	492	207	404	17,469	98,748	0.15	116,217	19,044	85,737	14,073	285,406
06/08	07:55	507	492	207	405	18,544	96,691	0.16	115,235	19,26	93,190	14,245	194,595
06/08	10:10	508	490	204	400	19,131	106,977	0.15	126,108	19,539	🖲 82,088	14,442	0
06/08	12:05	508	491	202	398	19,044	98,748	0.16	117,792	19,771	67 ,438	14,606	Û
06/08	16:03	507	490	198	394	18,868	90,519	0.17	109,387	20,222	68,037	14,918	0
06/08	18:01	506	491	199	396	18,912	94,634	0.17	113,546	20,441	68,427	15,052	0
06/08	21:00	530	501	212	404	27,371.	222, 183	0.11	249,554	20,982	129, 182	15,346	Û
06/08	23:55	535	501	-212	406	23,061	218,069	0.10	241,129	21,698			0
06/09	01:05	532	501	205	404	36,772	222, 183	0.14	258,955	21,990	187,691	15,993	Û
06/09	03:15	530	501	210	403	36,983	222,183	0.14	259,166	22,551	193,587	16,406	ß
06/09	04:05	530	501	207	403	36,983	222,183	0.14	259,166	22,767	187,691	16,565	0
06/0 9	06:15	532	501	209	402 -	36,859	220,126	0.14	256,976	23,326	187,691	16,972	0
06/09	08:00	534	501	209.	402	36,850	220,126	0.14	256,976	23,776	193,587	17,306	Û
06/09	10:30	535	501	210	402	37,195	222,183	0.14	259,378	24,421	197,270	17,794	272,433
06/09	12:15	537	501	207	402	36,506	218,069	0.14	254,574	24,871	197,270	18,139	259,460
06/09	14:10	53 5	501	207	403	36,983	222,183	0.14	259,166	25,363	187,691	18,508	259,460
06/09	20:30	537	501	202	401	33,251	197,496	0.14	230,747	26,915	187,691	19,697	275,676

1

.

,

TABLE A-1

.

• •

DATE	TIME	WHP	WHT	SEP.	SEP.	SEPARAT	OR FLOW	SEP.	FOTAL	CUM. TOT.	WEIR	CUM.WEIR	INJEC.
				PRES	Temp	STEAM	BRINE	FLASH	FLOW	FLOW	BOX FLOW	FLOW	FLOW
		psig	F	psig	F	lb/hr	lb/hr		lb/hr	klb	lb/hr	klb	lb/hr
06/09	23:05	535	501	198	392	34,962	197,496	0.15	232,458	27,513	187,691	20,182	265,947
06/10	01	535	502	199	392	34,962	197,496	0.15	232,458	27,978	172,547	20,542	278,920
06/10	02120	535	502	199	391	34,421	193,382	0.15	227,802	28,266	180,383	20,763	278,920
06/10	04:00	5 95	502	200	393	34,408	195,439	0.15	229,847	28,647	185,256	21,067	0
06/10	05:55	505	502	202	395	32,956	189,267	0.15	222,223	29,080	176,941	21,414	9
06/10	08:00	537	59 2	201	397	33,299	193,382	0.15	226,681	29,548	180,326	21,787	()
06/10	10:30	540	[5] 2	201	408	30,263	193,382	0.14	223,644	30,111	173,968	22,230	. 0
06/10	12:20	537	502	n ²⁰¹	409	30,049	193,382	0.13	223,430	30,521	179,938	22,554	Û
06/10	14:11	541	502	L1%		30,052	185,152	0.14	215,204	30,926	181,193	22,888	· 0
06/10	16:15	540	502	1 9 8	401	29,343	181,038	0.14	210,381	31,366	151,801	23,232	0
06/10	18:10	543	502	197	397	29,628	181,038	0.14	210,666	31,770	162,498	23,533	212,757
06/10	20:10	533	502	209	₹ <u>3</u> 96_	30,090	213,954	0.12	244,044	32,224	193,115	23,889	220,541
06/10	22:05	537	502	207		29,233	201,611	0.13	230,843	32,679	183, 562	24,250	220,541
06/11	00:08	53 5	502	207	393	28,510	201,611	0.12	230,121	33,152	181,655	24,624	415,136
06/11	02:10	537	502	208	395	28 574	197,496	0.13	226,070	33,616	184,545	24,997	395,677
06/11	04:05	535	502	210	393	28,339	197,496	0.13	225,835	34,049	178,502	25,344	402,163
06/11	06:15	535	502	209	394	28,27	193,382	0.13	221,657	34,534	179,133	25,732	Û
06/11	07:50	537	502	208	395	28,574	¥ 193,382	0.13	221,956	34,885	178,188	26,015	0
06/11	10:00	537	502	· 208	397	29,081	190,700	0.13	219,981	35,364	171,912	26,394	0
06/11	12:13	540	502	208	400	29,081	180,163	0.14	214,233	35,845	162,465	26,765	0
06/11	14:05	545	502	208	399	29, 153	183,0%	$\mathbb{R}^{0.14}$	212,249	36,243	168,665	27,074	162, 163
06/11	16:05	545	502	206	3 99	29,167	183,0	50.14	212,262	36,667	169,821	27,412	240,001
06/11	18:20	540	502	203	391	28,252	185,153	0-13-	213,404	37,146	169,648	27,7 9 4	252,974
06/11	20:15	535	502	202	387	27,117	181,038	0.1	208,155	37,550	169,417	28,119	265,947
06/11	22:05	540	502	202	385	26,760	174,866	0.13	201,626	37,926	165,602	28,426	271,136
06/12	00:05	535	502	207	390	27,428	181,038	0.13	208,466	38,336	170,168	28,762	269,190
06/12	02:22	537	502	208	391	27,128	172,809	0.14	199,937	38,802	168,203	29,148	269,190
06/12	04:02	537	502	202	388	28,902	187,210	0.13	216,11	39,149	183,528	29,441	0
06/12	06:30	540	502	201	385	28,835	178,981	0.14	207,815	39,672	178,428	29,888	0
06/12	08:08	540	502	199	386	29,856	181,038	0.14	210,094	4	178,544	30,179	0
06/12	10:00	540	503	203	396	30,044	181,038	0.14	211,082	49, 486	184,378	30,518	252,974
06/12	12:08	545	503	201	392	29,549	222,711	0.12	252,260	40,900	60,558	30,886	233,514
06/12	14:11	507	497	214	395	58,265	367,958	0.14	426,223	41,596	26,168	31,354	376,217
06/12	16:00	512	499	211	395	59,943	358,275	0.14	417,218	42,362	299-449	31,894	368,433
06/12	18:05	. 518	500	212	395	60,540	358,275	0.14	418,814	43,233	300,096	32,523	324,325
06/12	20:03	515	500	213	396	60,673	353,433	0.15	414,106	44,052	290,950	33,109	0
06/13	00103	313	200	211	387	27,64/	348,392	0.15	408,238	40,69/	292,090	34,2/0	300,460
06/13	02:05	- 513	477	214	383	60,424	358,2/5	0.14	418,698	46,544	295, 323	34,8//	348,974
06/13	04:02	514	500	214	392	60,603	353,433	0.15	414,086	4/,349			259,460
06/13	00:00	511 E10	200	213	370	00,063	JJJ, 4JJ	0.10	413,476	46,218	7 .7.4	AZ 21A	162,163
06/13	10-11	312	200	213	331	00,137:	: J4Ø, JYZ	0.10	408,/31	48, 777	291,533	36,618	291,893
06/13	10111	51/	200	213	408	60,137	343,/30	0.15	403,889	49,8/3	291,452	37,245	004.005
06/13	11:00	01/	200	213	400	37,910	348, 592	0.15	408,502	50,5/7	• 293,495	37,752	324,325
06/13	14:03	31/	200	214	406	60,04Z	343,/58	0.15	403, /92	51,443	291,553	38,376	295,136
06/13	16:03	218	200	213	400	57,834	343,/00	0.15	403,584	52,251	307,197	38,9/5	194,595
06/13 06/13	18:00	319	200	213	394	37,/38	343,/50	0.15	403,008	53,0/1	292,198	JY, 584	361,94/
06/13	20:06	218	200	214	392	60,042	J4J, /JU	0.15	403, /92	53,885	293,963	4U,I/5	Ű.

ł

DATE	TIME	WHP	WHT	SEP.	SEP.	SEPARAT	FOR FLOW	SEP.	TOTAL	CUM. TOT.	WEIR	CUM.WEIR	INJEC.
				PRES	TEMP	STEAM	BRINE	FLASH	FLOW	FLOW	BOX FLOW	FLOW	FLOW
		psig	F	psig	F	lb/hr	lb/hr		lb/hr	klЬ	lb/hr	klb	lb/hr
06/13	22:15	519	500	211	392	59,019	338,909	0.15	397,928	54,747			149,190
06/14	00+85	513	500	215	391	61,322	353,433	0.15	414,755	55,492	320,148	41,398	149,190
06/14	02 : 02	_513	500	215	391	60,939	348,592	0.15	409,530	56,296	321,913	42,024	142,783
06/14	04:03	⊒ ¶13	500	215	392	61,092	348,592	0.15	409,683	57,122	301,321	42,653	282,163
06/14	05:53	513	500	214	392	60,806	343,750	0.15	404,556	57,868	294,852	43,199	259,460
06/14	08:02	513	3 00	213	392	61,055	343,750	0.15	404,805	58,738	274,024	43,811	246,487
06/14	10:01	513	-4 99	215	394	62,089	353,433	0.15	415,523	59,552	316,614	44,396	272,433
06/14	11:57	517	50 0	216	395	63,244	348,592	0.15	411,835	60,352	330,167	45,022	259,460
06/14	14:05	517	500	=216	384	62,859	347,623	0.15	410,482	61,229	317,065	45,712	240,001
06/14	16:07	517	500	216	391	62,85 9	343,750	0.15	406,609	62,059	319,624	46,359	214,055
06/14	18:07	519	500	215	391	62,744	334,067	0.16	396,811	62,863	328,948	47,008	252,974
06/14	20:09	456	490	268	R4021	80,529	464,789	0.15	545,318	63,821	450,970	47,801	285,406
06/14	22:06	476	492	266		79,818	464,789	0.15	544,606	64,883			214,055
06/15	00:06	480	492	264	405	78,258	459,947	0.15	538,205	65,966	439,660	49,560	285,406
06/15	02:07	476	492	265	406	78,398	459,947	0.15	538,346	67,052			298, 379
06/15	04:06	480	492	265	407	78,113	459,947 g	0.15	538,060	68,119			376,217
06/15	06:25	480	492	264	407	77,9	459,947	0.14	537,921	69,365	414,186	52,256	480,000
06/15	08:04	485	493	247	408	74,378	459,947	0.14	534,325	70,250	396,232	52,925	314,595
06/15	10:00	485	491	260	42 9	77,191	452 106	0.15	532,297	71,281	414,482	53,709	347,028
06/15	12:07	485	491	260	410	77,697	459,947	0.14	537,644	72,413	477,700	54,653	347,028
06/15	14:02	489	491	260	408	78,710	459, 📆	0.15	538,658	73,445	414,062	55,508	0
06/15	16:00	490	491	260	418	78,710	453, 169	0.15	531,879	74,498	467,667	56,375	0
06/15	18:02	491	492	260	416	78,710	453, 169	N 10	531,879	75,579	447,200	57,305	337,298
06/15	20:02	410	481	263	410	93,770	602,289	0 U 3	696,059	76,807	581,612	58,334	421,623
06/15	22:03	409	481	263	409	90,833	677,817	0.12	768,650	78,284	606,278	59,531	415, 136
06/16	00:0 8	491	493	200	410	58,531	366,221	0.14	424,752	79,527	453,192	60,635	415,136
06/16	02:08	495	494	187	400	54,097	319,503	0.14	373,644	80,325	432,941	61,521	421,623
06/16	04:10	499	498	175	397	51,760	300,591	0.15	352, 51	81,063	421,567	62,390	544,866
06/16	06:07	497	498	176	. 397	51,896	301,379	0.15	353,275	81,751	384,029	63,175	402,163
06/16	08:19	503	498	175	397	51,760	300,591	0.15	352,351	2,528	385,163	64,021	405,406
06/16	10:22	504	498	216	415	71,952	463,804	0.13	535, 756	83,438	403,654	64,830	205,440
06/ 16	12:02	505	498	237	415	_. 74,860	421,215	0.15	496,075	84,298	378,612	65,482	337,298
06/16	14104	473	491	223	416	86,759	508,363	0.15	595,121	85,407	73,600	66,348	337,298
06/16	16:25	417	483	252	423	91,386	561,620	0.14	653,006	86,874	STZ 168	67,518	421,623
06/16	17:57	419	484	253	424	92,577	551,937	0.14	644,514	87,868	502,424	68,304	0
06/16	19:58	405	482	244	422	90,005	551,937	0.14	641,942	89,166	526, 9 	69,342	0
06/16	21:59	407	483	243	422	89,304	551,937	0.14	641,240	90,460	507,106	70,384	321,082
06/17	00 :03	397	483	243	421	89,003	556,778	0.14	645,781	91,789			356,758
06/17	02:08	406	485	244	- 421);	88,674	556,778	0.14	645,452	93,135	510,145	72,495	210,811
06/17	04:17	412	484	244	420	88,173	551,937	0.14	640,110	94,516	509,619	73,592	246,487
06/17	06:00	430	485	243	420	87,803	551,937	0.14	639,7 39	95,615	503,702	74,461	324,325
06/17	08:06	440	484	240	420	86,198	550,000	0.14	636,198	96,955	611,297	75,632	0
06/17	10:04	440	483	241	421	90,981	561,620	0.14	652,601	98,222	597,157	76,820	343, 785
06/17	12:05	445	486	246	420	90,353	542,254	0.14	632,606	99,518	536,665	77,964	343,785
Ú6/17	13:46	452	487	234	420	89,236	551,937	0.14	641,172	100,590			0
06/17	15:08	476	500	223	415	61,344	372,799	0.14	434,143	101,325	401,090	79,394	220,541
06/17	16:00	491	500	225	414	61,036	377,641	0.14	438,677	101,703	400,249	79,741	330,812

•

•

.

ŗ

!.

DATE	TIME	WHP	WHT	SEP.	SEP.	SEPARAT	OR FLOW	SEP.	TOTAL	CUM. TOT.	WEIR	CUM.WEIR	INJEC.
				PRES	TEMP	STEAM	BRINE	FLASH	FLOW	FLOW	BOX FLOW	FLOW	FLOW
		psiq	F	psig	F	lb/hr	lb/hr		lb/hr	k1b	lb/hr	k1b	lb/hr
				1 2									
86/17	18:00	501	500	223	415	60, 782	377.641	6.14	438, 423	102.580	385, 143	80.526	Û
06/17	20.000	505	506	219	412	41 221	251.761	8.14	292 982	103 324	242,564	81,165	369.731
86/17	22.01	515	505	217	408	32 999	242 078	8 12	275 866	103 997	198 014	81 682	284,109
06/19	00.00	77537	504	217	407	24 960	145 247	0.12	170 207	104 259	170,014	01,001	104,102
86/19	00.00	Ett.	586	220	407	25 175	164 613	0.10	129 722	104,000	153 909	82 317	330 812
(16/19	02.55	560	-505	221	410	25,170	145 247	0.15	170 475	105 040	100,000	97 597	330 812
06/18	06.00	541	Ena	220	489	25,175	135.563	0.16	160 738	105,040	100,405	02,002	324, 325
06/10	10.00	555	505	- 221	ANG	25 228	145 247	0.15	170 475	105,000	155 901	92 197	304 966
06/10	10.07	540	505	221	400	20,220	193 227	0.10	210,713	105,727	147 255	03,107	
06/10	10:00	500	504	210	407	20,000	130,002	0.12	170 000	100,114	155 001	00,407 07 012	0 200 270
06/10	12:07	330	505	217	407	23,121	140,247	0.15	1/0,000	100, J23	154 202	03,000	270,373
00/18	14:02	000	303	221	405	23,220	130,303	0.10	100,/72	100,000	100,272	04,100	271,033
00/18	10:14	207	303	217	Ĩ.	Nor 101	133,003	0.10	100,000	107,187	1/0,3/3	84,437	434,370
06/18	18:01	22/	202	219	10	125,121	104,730	0.14	180,001	107,493	158, /91	84,/03	389,190
06/18	20:02	555	504	221	406	25,228	123,880	0.17	151,109	10/,82/	152,433	85,067	363,244
06/18	22:02	554	504	218	405	25,068	125,880	0.17	150,948	108,129	146,777	85,366	363,244
06/19	00:00	557	504	216	404	24,512	116,197	0.17	140,709	108,416	153,011	85,661	0
06/19	02:01	560	504	217	403	24,565	WZ5,880	0,16	150,445	108,709	134,639	85,951	382,704
06/19	04:09	560	504	217	400	24,115	154,930	0.13	179,045	109,061	140,419	86,244	311,352
06/19	05:42	560	504	216	400	24,063	116 497	0.17	140,261	109,308	134,346	86,457	343,785
06/19	08:11	563	502	212	400	23,855	145,247	0.14	169,101	109,692	146,199	86,806	0
06/19	10:03	562	502	201	398	23,270	145,24	₩.14	168,517	110,007	140,419	87,073	0
06/19	12:01	566	504	215	396	24,011	116,190	W.17	140,209	110,311	149,667	87,358	350,271
06/19	13:42	565	503	210	394	23,749	145,247	0.4	7 168, 996	110,571	149,667	87,610	353, 514
06/19	16:15	516	494	223	398	61,531	377,641	0.14	439,172	111,346	450,526	88,376	360,001
06/19	17:02	527	497	223	395	59,660	367, 9 58	0.14	427,618	111,686	433,309	88,722	350,271
06/19	18:01	527	494	222	396	59,534	348,592	0.15	408,126	112,097	452,639	89,157	343,785
06/19	21:59	527	494	223	401	58, 726	338,909	0.15	397,635	113,695	343,325	90,736	334,055
06/20	00:02	525	497	221	400	58 , 479	348, 592	0.14	407,07	4,520	383,207	91,481	334,055
06/20	02:01	517	494	223	399	61,531	358,275	0.15	419,806	115 <u>, 34</u> 0	364,827	92,222	330,812
06/20	04:03	523	497	224	400	61,660	377,641	0.14	439,301	116 20 3	343,163	92,942	350,271
06/20	06:08	510	498	225	400	61,600	367,958	0.14	429,558	117,118	344, 994	93,659	207,568
06/20	07:58	525	499	223	400	58,726	367,958	0.14	426,684	117,903	60,890	94,306	246,487
06/20	10:02	52 5	497	223	401	60,875	367,958	8.14	428, 833	118,787	1378,583	95,070	210,811
06/20	11:43	525	499	223	401	60,595	367,958	0.14	428,552	119,509	354 789	95,688	246,487
06/20	14:18	525	497	221	398	60,340	358,275	0.14	418,614	120,603	343 838	96,590	0
06/20	16:02	525	497	221	400	60,340	386,763	0.13	447,103	121,353	355, 363	97,1%	233,514
06/20	17:21	525	495	224	400	60,722	374,420	0.14	435,142	121,934	445,910	97,723	162,163
06/20	17:54				• •	j 🕺 0.	0		0	122,054	0	97,846	0
					:	.j.	1						
						化十十							
					:	17 A 1	: } <u>,</u>						
				•			4. 						
						•					•		

•

.

ţ

;

i

į

Į

TABLE A-2 RAW DATA STATE 2-14 FLOW TEST June 1 - June 20, 1988

DATE TIME PI-1 TI-1 PI-155 TI-109A FR-102 FR-108 WEIR FRESH DPR-1 METER COEFFICIENTS (whp) (wht) (sep.P)(sep.T)(steam (brine BOX WATER (injec. STEAM BRINE INJEC. meter) meter) level gpm meter)

06/01	17:07	183					0.00		
06/01	19:00	455	477				2.25		
06/01	21	479	481				2.38		
06/01	23:00	495	481				2.88		
06/02	01:00	∋492	468				2.75		
06/02	03:02	492	472				2.63		
06/02	05:55	491	469				2.38		
06/02	07:12	49	468				2.44		
06/02	09:04	493	n 468				2.44		
06/02	11:00	491	L				2.25		
06/02	13:01	490	466	•			2.19		
06/02	15:03	511	478				2.63		
06/02	17:00	512	481	8			2.88		
06/02	19:00	512	478				2.63		
06/02	21:00	510	478				2.63		
06/02	23.00	511	479	A			2.63		
06/02	00.58	510	479	U			2.00		
06/03	n2•59	510	476		R II		2.00		
06/03	02.07	507	476		\mathbb{N}		2.00		
06/00	07.05	507	· A76		/	2	2.00		
00/00	07.03	507	474		ļ	<u> </u>	2,01		
04/03	10.12	500	7/4 171			U	2.00		
06/03	10:12	510	4/1			R	2.20		
06/03	12:00	510	4/1			U U	2.23		
06/03	14:03	508	4/0			9	S 2.44		
06/03	10:01	510	450				¥ 2.44		
06/03	18:03	513	472				2.30		
06/03	20:06	014	491				2.38		
06/03	22:05	511	490				2.44	•	
06/04	01:02	512-	492				2.50	J	
06/04	03:00	511	492				2.38		
06/04	05:00	511	492				2.38	R	
06/04	07:00	511	491				2.44		
06/04	09:00	513	490				2.25		
86/84	11:20	513	484		•		2.38		
06/04	13:03	513	480				2.25	Ē	
06/04	15:02	512	488				2.19		
06/04	17105	512	485	**			2.31	97	2
06/04	19:00	511	482	e 6			2.13	U	
06/04	21:01	510	482				2.13		
06/04	23:03	508	477		•		2.0 6		
06/05	01:09	506	478		· ·			4.65	64865
06/05	83:04	510	490		•			4.00	64865
06/05	04:55	516	490					7.20	64865
06/05	06:58	510	488				2.13	2.50	64865
06/05	09:15	519	492				2.44		64865
06/05	11:00	519	498				2.25	4.30	64865
06/05	13:08	518	490				2.19	2.10	64865
06/05	15:00	520	489				2.31	2.00	64865

ł

		(WEB)	(WESC)		36 9 ,17	(SUEEm)		level		notou)	OILHH	DUTUE	100201
						meceri	Merel)	IEAET	Sha	mecer/			
06/05	17:00	518	499					2.25		4,75			64865
06/05	19:12	518	492					2.38		2.40			64865
06/05	$2 \mathbf{D}$	518	489					2.25		4.85			64865
06/05	23:10	512	498					2.25		2.40			64865
06/06	01:05	2 511	490							2.10			64865
06/06	03:04 ^U	U 511	491										64865
06/06	05:45	511	491					2.13					64865
06/06	08:00	5	491							1.50			64865
06/06	10:10	515	n 490										64865
06/06	12:15	515	492		250								64865
06/06	14:11	515	492	1									64865
06/06	16:25	517	492										64865
06/0 6	17:40	444		ል ወ									64865
06/06	17:58	388		M									64865
06/06	21:03	460	462	• • • •	0								64865
06/06	23:00	519	49 2										64865
06/07	01:08	518	491		263	0							64865
06/07	03:00	517	491		2			2.19					64865
06/07	05:00	518	490	186	404	u _	2.50	2.38				41145	64865
06/07	07:00	517	` 490	212	414	A	2.75	2.25				41145	64865
06/07	09:05	518	490	208	412	0 4	2.70	2.44				41145	64865
06/07	10:00	517	491	209	413	ם ב	2.70	2.19	•			41145	64865
06/07	13:00	519	491	210	412	0	12.70	2.25				41145	64865
06/07	16:08	519	485	210	410	2.75	250	2.25		3.00	7015	41145	64865
06/07	18:03	519	491	212	412	2.80	2.7	1.88			7015	41145	64865
06/07	20:03	51 9	491	211	411	2.80	2.50	2.00			7015	41145	64865
06/07	22:03	519	490	208	405	2.60	2.40	2.19		5.15	7015	41145	64865
06/08	01:04	517	489	206	402	2.50	2.50	2.13		4.40	7015	41145	64865
06/08	04:00	516	489	203	400	2.50	2.40	2.25	U	4.40	7015	41145	64865
06/08	06:00	511	490	206	404	2.45	2.40	2.19	. (4.40	7015	41145	64865
06/08	0/:55 .	512	. 490	206	400	2.60	2.35	2.31		.00	/015	41145	64865
06/08	10210	213	488	203	480	2.70	2.60	2.13		12	/010	41140	64860 (1066
06/08	12:00	313	400	201	. 370	2.7U	2.40	1 00		<u>a</u>	7013	41143	0400J (40/5
00/00	10:03	31Z 511	400 400	100	,374 	2.70	2.20	1.00		-	~ /013	41143	6400J 44045
00/00	10:01	511	407 100	220	370	2./0	2.30 5.40	1.00			17015	4114J A11A5	0900J 64065
60700 00700	21100	540	477	203	404 * A06	3.00	5 30	2.00			7045	-4114J	64865
00/00	23:33	537	473	206	400	3.20	5.40	3.88	25.0		7019	41145	64965
06/09	03:15	535	499	218	403		5.40	3.95	25.0		7015	41145	64865
06/09	04+05	575	100	1 202	407		5.40	3,88	25.0		7015	41145	64865
06/09	06:15	537	499	21145	412	(5.35	3.88	25.0		7015	41145	64865
06/09	08:00	539	499	208	402	ł,	5.35	3,95	25.0		7015	41145	64865
06/09	10:30	540	499	210	402	,	5.40	3.81	25.0	4.20	7015	41145	64865
06/09	12:15	542	499	207~	402		5.30	3.81	25.0	4.00	7015	41145	64865
06/09	14:10	540	499	207	403		5,40	3,88	25.0	4.00	7015	41145	64865
06/09	20:30	542	499	202	401		4,80	3.88	25.0	4.25	7015	41145	64865
06/09	23:05	540	499	198	392		4.80	3.88	25.0	4.10	7015	41145	64865
							· · · · · · · · · · · · · · · · · · ·						

392

•

4.80 3.88 51.2 4.30 7015 41145 64865

06/10 01:05

540

500

199

DATE TIME PI-1 TI-1 PI-155 TI-109A FR-102 FR-108 WEIR FRESH DPR-1 METER COEFFICIENTS (whp) (wht) (sep.P)(sep.T)(steam (brine BOX WATER (injec. STEAM BRINE INJEC

~

ţ

:

DATE TIME PI-1 TI-1 PI-155 TI-109A FR-102 FR-108 WEIR FRESH DPR-1 METER COEFFICIENTS (whp) (wht) (sep.P)(sep.T)(steam (brine BOX WATER (injec. STEAM BRINE INJEC. meter) meter) level gpm meter)

.

06/10	02:20	540	500	199	391		4.70	4.00	54.7	4.30	7015	41145	64865
06/10	04:00	540	500	200	393		4.75	4.06	54.9		7015	41145	64865
06/10	05055	540	500	202	395		4.60	3.95	53.8		7015	41145	64865
06/10	03100	542	500	201	397		4.70	4,00	54.8		7015	41145	64865
06/10	10:30	545	500	198	408	4.30	4.70	4.00	65.8		7015	41145	64865
06/10	12:20	542	500	198	409	4.27	4.70	4.06	64.1		7015	41145	64865
06/10	14:11	546	500	195		4.30	4.50	4.00	53.3		7015	41145	64865
06/10	16:15	545	500	195	401	4.20	4.40	3.63	53.8		7015	41145	64865
06/10	18:10	548	_500	194	397	4.25	4.40	3.75	51.8	3.28	7015	41145	64865
06/10	20:10	538	500	206	396	4.20	5.20	4.13	50.0	3.40	7015	41145	64865 -
06/10	22:05	542	500	204	393	4.10	4.90	4.00	49.2	3.40	7015	41145	64865
06/11	00:08	540	500	204	393	4.00	4.90	4.00	52.5	6.40	7015	41145	64865
06/11	02:10	542	500	205	395	4.00	4.80	4.00	47.5	6.10	7015	41145	64865
06/11	04:05	540	500	Real fr	393	3.95	4.80	3.95	51.1	6.20	7015	41145	64865
06/11	06:15	540	500	208	394	3.95	4.70	3.94	48.3		7015	41145	64865
06/11	07:50	542	500	205	395	4.00	4.70	3.56			7015	41145	64865
06/11	10:00	542	500	205	U 397	4.07	4.60	3.95	62.5		7015	41145	64865
06/11	12:13	545	500	205	408.0	4.07	4.50	4.00	85.7		7015	41145	64865
06/11	14:05	550	500	205	399	4.08	4.45	4.13	92.3	2.50	7015	41145	64865
06/11	16:05	550	500	203	399	4,0	4.45	4.13	90.3	3.70	7015	41145	64865
06/11	18:20	545	500	200	391		4.50	4.13	90.6	3.90	7015	41145	64865
06/11	20:15	540	500	19 9	387	3.85	4.40	4.13	91.0	4.10	7015	41145	64865
06/11	22:05	545	500	199	385	3.80	-1.25	4.13	97.6	4.18	7015	41145	64865
06/12	00:05	540	500	204	390	3.85	4.40	4.13	89.7	4.15	7015	41145	64865
06/12	02:22	542	500	205	391	3.80	4.2	4.13	93.1	4.15	7015	41145	64865
06/12	04:02	542	500	199	388	4.10	4.55	4.31	93.0		7015	41145	64865
06/12	06:30	545	500	198	385	4.10	4.35	4.25	93.0		7015	41145	64865
06/12	08:08	545	500	196	386	4.15	4.40	4.25	92.8		7015	41145	64865
06/12	10:00	54 5	501	200	390	4.25	4.40	4.31	T)	3.90	7015	41145	64865
06/12	12:08	550	501	198	392	4.20	2.30	4.00	87.0	3.60	7015	96831	64865
06/12	-14:11	512	495	202	395	8.05	3.80	5.56	89.0	- 80	7015	96831	64865
06/12	16:00	517	497	199	395	8.19	3.70	5.63	95.3	5 68	7015	96831	64865
06/12	18:05	523	498	199	396	8.40	3.70	5.63	83.8	5.00	7015	96831	64865
06/12	20:03	520	498	200	.396	.8.40	3.65	5.50	88.0	17	7015	96831	64865
06/13	00:03	518	498	198	. 387	8.30	3.60	5.50	86.0	5.48	7015	96831	64865
06/13	02:06	518	497	201	387	8.35	3.70	5.50	80.4	5.38	1012	96831	64865
06/13	04102	519	498	201	392	8.38	3.65		88.9	4.00	/015	96831	64865
06/13	00:08	210	478	200	390	8.32	3.63		91.7	2.50		96831	64860
06/13	08:02	517	498	208	160	8.33	3.60	5.50	8/.0	4,50	/015	96831	64865
06/13	10:11	522	498	200	408	8.33	3.55	5.44	/6.8	0.00	/015	96831	64865
06/13	11:55	522	9498	200	400	8.30	3.60	5.38	63.6	5.00	/015	96831	64865
06/13	14:03	522	498	201	406	8.30	3.55	5.50	87.0	4.55	/015	96831	64865
06/13	16:03	523	498	200	400	8,29	3.55	5,56	/0.0	3.00	7015	96831	64865
06/13	18:05	524	498	200	394	8.28	3.55	5.50	85.8	5.58	/015	96831	64865
06/13	20:06	523	498	201	392	8.30	3.55	5.50	82.8	0.00	7015	96831	64865
06/13	22:15	524	498	199	392	8.20	3.50	p	80.8	2.30	/015	96831	64865
06/14	00:05	518	498	202	391	8.45	3.65	5.75	78.3	2.30	7015	96831	64865
06/14	02:02	518	498	202	391	8.40	3.60	5.75	/5.2	2.20	7015	96831	64865

DATE TIME PI-1 TI-1 PI-155 TI-109A FR-102 FR-108 WEIR FRESH DPR-1 METER COEFFICIENTS (whp) (wht) (sep.P)(sep.T)(steam (brine BOX WATER (injec. STEAM BRINE INJEC. meter) meter) level gpm meter)

06/14	04:03	518	498	202	392	3.42	3.60	5.56	80.2	4.35	7015	96831	64865
06/14	05:53	518	498	201	392	8.40	3.55	5.50	81.2	4,00	7015	96831	64865
06/14	6	518	498	200	392	8.45	3.55	5.31	87.3	3.80	7015	96831	64865
06/14	10:01	518	497	202	394	8.55	3.65	5.75	84.4	4.20	7015	96831	64865
06/14	11:50	522	498	202	395	8.70	3.60	5.88	81.7	4.00	7015	96831	64865
06/14	14:15	522	498	202	384	8.65	3.59	5.75	83.6	3.70	7015	96831	64865
06/14	16+07	7972	498	202	291	3 65	3 55	5 75	79.2	3 30	7015	96931	64965
06/14	19.07	God	499	202	991	9.60 9.60	3 45	5 99	83.8	3 90	7015	96921	64865
06/14	20.09	361 0	100	204	400	18-00	3 20	7 13	01 7	A A0	7015	04001	- 24025
06/14	20.07	401		200	400	10.00	4.00 A.00	2410	100.0	7.70	7013	20001	0700J 64065
06/14	22:00	401 0		240	400	7.7J 9.00	4.00	2 00	100.0	3.30	7015	20031	0400J 44045
06/15	00:00	403	43	240	400	7.00	4.75	0.00	6J.6 4 A	4.40	7015	70001	0400J 4404E
06/15	02:07	401	400	247	400	7.00	4.75		64.4 61.6	4.00	7015	02001	0400J 64065
06/13	04:00	400	4 20		407	0.75	4.75	6 63	25 0	3.00 7 Aŭ	7015	70031	0400J
00/13	00:20	400	470 0		407	7.73	4.75	0.00	74.0	/ 40	7010	20001	04000
06/13	00:04	470	471	24/	408	7 05	4.73	0.00	/4.3	4.80	/013	76831	09000
06/10	10:00	490	400	248	423	7.30	4.70	0.00	04./	0.30	8072	96831	64860
06/13	12:07	490	487	248	410 A	8.00	4.70	0.88	0.0	0.30	809Z	96831	64860
06/15	14:02	474	489	248		8.10	4.70	0.20	0.0	0.00	8592	96831	64860
06/15	16:00	490	489	248	-418	8.10	4.68	7.00	40.0	0.00	8592	96831	64865
06/15	18:02	496	490	248	416	A 10	4.68	7.13	99.2	5.20	8592	96831	64865
06/15	20:02	415	479	246	410	<i>a</i> 9960	6.22	8.13	56.6	6.50	8592	96831	64865
06/15	22:03	414	479	247	409	9. 🕅	7.00	8.25	37.5	6.40	8592	96831	64865
06/16	00:08	496	491	191	410	6. 0 2U		6.88	42.4	6.40	8592	96831	64865
06/16	02:08	500	492	179	400	6.50	\mathbf{M}	6.75	55.0	6.50	8592	96831	64865
06/16	04:10	504	496	168	397	6.40	Y	6.63	52.4	8.40	8592	96831	64865
06/16	06:07	502	496	169	397	6.40		6.25	52.0	6.20	8592	96831	64865
06/16	08:19	508	496	168	397	6.40		6.25	50.0	6.25	8592	96831	64865
06/16	10:22	509	496	204	415	8.08		6.50	61.4	3.20	8592	96831	64865
06/16	12:02	510	496	225	415	8.05	4.35	6.25	3 .3	5.20	8592	96831	64865
06/16	14:04	478	489	206	416	9.60	5,25	7.19	64.5	5.20	8592	96831	64865
06/16	16:25	422	. 481	235	423	9.55	5.80	7.63	62 🕻	2 6.50	8592	96831	64865
06/16	17:57	424	482	236	424	9.65	5,70	7.50	72.4	u 8,60	8592	96831	64865
06/16	19:58	410:	480	, 227	422	9.55	5.70	7.63	54.6	0	8592	96831	64865
06/16	21:59	412	481	227	422	9,48	5.70	7.50	64.2	4.35	8592	96831	64865
06/17	00:03	402	481	227	421	9.45	5,75		60.7	5.50		96831	64865
06/17	02:08	411	483	228	421	9.40	5.75	7.50	59.1	3.25	3592	96831	64865
06/17	04:17	417	482	228	420	9.35	5.70	7.50	60.0	3.80	2592	96831	64865
06/17	06:00	435	483	222	420	9.33	5.70	7,44	58.5	5.00	8592	96831	64865
06/17	08:06	445	482	224	420	9.22	5.68		53.6	0.00	8592	96831	64865
06/17	10:04	445	481	224	421	9.70	5,80		53.3	5.30	8592	96831	64865
06/17	12:05	440	484	229	420	9.55	5.60	7.75	60.7	5,30	8592	96831	64865
06/17	13:46	457	485	217	420	9,65	5.70		64.9	0.00	3592	96831	64865
06/17	15:08	481	498	215	415	6.78	3,85	6.50	65.9	3.40	8592	96831	64865
06/17	16:00	496	498	217	414	6.72	3,90	6.50	67.3	5,10	8592	96831	64965
ű6/17	18:00	506	498	215	415	6.72	3,90	6.38	72.5	0.00	8592	96831	64965
06/17	20:02	510	504	215	412	4.60	2.60	4.99	74 6	5 70	8597	96821	64000
06/17	22:01	520	503	214	4112	3.70	2,58	4,38	77 7	4, 38	8597	96831	64865
06/18	00:08	562	504	215	407	2.70 2.90	1 50	7100	92.0	6 00	00072 QCQ0	02001	64065
V0/10	VV1 VV		- VV	71 0	797	4,00	1100		04.0	v. 00	0072	10001	UTOOU

page 5 of 5

PI-1 TI-1 PI-155 TI-109A FR-102 FR-108 WEIR FRESH DPR-1 METER COEFFICIENTS DATE TIME (whp) (wht) (sep.P)(sep.T)(steam (brine BOX WATER (injec. STEAM BRINE INJEC. meter) meter) level gpm meter)

06/18	02:05	562	504	219	407	2.80	i. 70	3,88	83.6	5.10	8592	96831	64865
06/18	03:55	565	503	220	410	2.80	1.50	3.56	73.9	5.10	8592	96831	64865
06/18	04+04	546	502	219	409	2.80	1.40		76.0	5.00	8592	96831	64865
06/18	03:04	560	503	220	408	2.80	1.50	3.88	80.0	4.70	8592	96831	64865
06/18	10:03	2 568	503	219	407	2.90	2.00	3.75	78.0	0,00	8592	96831	64865
06/18	12:09 ⁰	⁰ 555	502	218	407	2.80	1.50	3,38	80.0	4.60	8592	96831	64865
06/18	14:02	5 6 5	503	220	405	2.80	1.40	3.88	30.0	4.50	8592	96831	64865
06/18	16:14	564-	503	218	406	2.80	1.40	4.13	39.0	6.70	8592	96831	64865
06/18	18:01	562	N 263	213	405	2.80	1.60	3.88	75.0	6.00	8592	96831	64865
06/18	20:02	560	2000 لېچا	220	406	2.80	1.30	3.88	86.0	5.60	8592	96831	64865
06/18	22:02	559	502	217	405	2.80	1.30	3.75	79.0	5.60	8592	96831	64865
06/19	00:00	562	502 l	215	404	2.75	1.20	3.88	85.0	0.00	8592	96831	64865
06/19	02:01	565	502	n216	403	2.75	1.30	3,75	100.0	5.90	8592	96831	64865
06/19	04:09	565	502		480	2.70	1.60	3.75	90.0	4.80	8592	96831	64865
06/19	05:42	565	502	215	4 00	2.70	1.20	3.63	84.0	5.30	8592	96831	64865
06/19	08:11	568	500	211	400	2.70	1.50	3.75	80.0	0.00	8592	96831	64865
06/19	10:03	567	500	200	ັ 398 ຼ	2.70	1.50	3.75	90.0	0.00	8592	96831	64865
06/19	12:01	571	502	214	314	2.70	1.20	3.75	74.0	5.40	8592	96831	64865
06/19	13:42	570	501	209	394	2.70	1.50	3.75	74.0	5.45	8592	96831	64865
06/19	16:15	521	492	215	398	€ /∆ €	3.90	7.13	92.5	5.55	8592	96831	64865
06/19	17:02	532	495	215	395	6.60	3.80	6.88	76.8	5.40	8592	96831	64865
06/19	18:01	532	492	214	396	6.60	€3.60	7.00	66.0	5.30	8592	96831	64865
06/19	21:59	532	492	215	401	6.50	V3.50	6.13	101.0	5.15	8592	96831	64865
06/20	00:02	530	495	213	400	6.50	3.807	6.13	32.0	5.15	85 9 2	96831	64865
06/20	02:01	522	492	215	399	6.80	3. 🔏	6.13	63.8	5.10	8592	96831	64865
06/20	04:03	528	495	216	400	6.80	3,90	5.88	60.0	5.40	8592	96831	64865
06/20	06:08	515	496	217	400	6.78	3.80	5.88	56.0	3.20	8592	96831	64865
06/20	07:58	530	497	215	400	6.50	3,80	6.06	60.0	3.80	8592	96831	64865
06/20	10:02	530	495	215	401	6.73	3.80	6.13	1000	3.25	8592	96831	64865
06/20	11:43	530	497	215	401	6.70	3.80	6.00	60.0	_3.80	8592	96831	64865
06/20	14:18	530	495	213	398	6.70	3.70	5.88	58.0	3.08	8592	96831	64865
06/20	16:02	530	495	213	400	6.70	9.40	6.00	59.0	3.60	8592	41145	64365
06/20	17:21	530	493	216	400	6.70	9.10	6.88	55.0	2.5	8592	41145	64865
06/2 0	17:54	-,				0.00	0.00	0.00	0.0	0.60	8592	41145	64865
											C		
	•										5		
	•	÷			•						77	5	
				. I	54						U		
				ń									
				**;									

•

.

Dent Dear Jubb Lugston · · · · · STARTUP DATA SHEET DATE 6-1-88 KENNECOTT STATE 2-14 PAGE 1/2 (overlaps page WELLHEAD PIT V.S. THROTTLE VALVE AFT 10 Pit marker - 1ST Black TI-1 WEIR U LEVEL (Ththei) mark bin quine sta PI-1 UPSTREAM DOWNSTREAM WEIR TEMP PRESS/Tem PRESE/T LEVEL PRESS. LEVEL TIME (°F) COMMENTS (Dsia) (psig) (F) (psig) (F) (inches (inches) 83 STATIC Been open with 1707 0 Amble VAILESJ 1718 1.3 \cap OPALI JUNE Vale 5 っとう 73 ingen ditte 171 Begg opening Thurtle 1730 _____ Z 731 . 1217 D 43 768 1738 HEATING US RATELL £ Bach Throthing Back 20 e 320 1700 121 Ø to Bogininto ATF 038 Growth 8-10" 1742 398 1750 215 3/ac Rupture Disc On way your Switcher to orthe Disc Ris 5 O 1800 370 455 475 1 č 445 0531 Reduced Flow 1 Torn a THOSHLO VALVE 1833 2 11477 455 1900 2% 2114 1905 K445P 29? LEAK UNDEr un Box. Surfeler 3" (2114) 214 1930 2757 4705 Û Swinder BALL TO ATE Put Some lease By uner place 455? 4651 308 3/4-7 460-465 4-18 314 (211/2 1957 465 4717 328 2318 470 4 14 223/8 468 481 2705 2103 479 23/4 4759 24er 5" 473 (23'14) 485 419 207 481 2158 2718 475T 53/4/24 Broke Salt of with place 481 7 464 495 482 23.00 LEAL BLAWEEN TWO 474 24 1260 6/2 (243/2) 23/4 494 449 480 083 2400 MASTER VALUES

4	• · · ·			· · · ·					
-				STAR	TUP D	ATA SH	tEÉT	_	
				KENN	ECOTT S	TATE 2	-14		TE 6/1/88
			ÿ					PA	$GE = \frac{2}{2} / \frac{2}{2}$
1.		WEUL	HEAD	THROTTLE	VALVE	PIT	AFT	V.S.	(Over tops page 1)
		•	-	UPSTREAM	DOWNSTREAM		WEIR	WEIR	
T	IME	PRESS.	IEMP (°E)	PRESS	PRESET	LEVEL (inchas)	LEVEL (inchas)	LEVEL	COMMENTS
	738	Verg)	AN AL		17 7250	Unche 3/	L'INCRESS		The Hled back
	742	:		167	71/7/00			} .	Throttled back too much
	746	and the second		120	22/2510				Started opening to AF
	750			195	40/200	C		·····	Valve to AFT open.
	757			330	9-1258	Z	16510	a Él .	All CL. H. AET
	800			2	13/3/2	>	176	via 7100	MI TOW TRAL AFI
	000 005			350	1000000	ţ	618		
	200			360			- 3/2	// //	P 1 W T
100	0.7			290	05/ 745	·	5/0		TIMCA one WHEET S'
	813			903	80/345		3 78		PR Disc on M/c-1 failed
18	22	470	475	756	80/345	···-	278	~ '	
18	30			425	85/345	· · · · · · · · · · · · · · · · · · ·	578		THAN A
18	33			-	-	UN 7° mars Et		· · · · (PINCHED I WHEEL 9
1/20	38			440	45/3/5°		3/4	<i>n</i> n	<u> </u>
1/84	45			480	50/319		318	1 ((<u> </u>
190	70			495	51/320	·····	3'0	n N	it
191	ชชิ	-	-				T		Pinched Killight at
19	07		· · · ·	<i>44</i> 0	25/270°		218		at
	mo	UD TO C	Le + #10	-				Ĵ	1 7

----.

•

F.F.

DATA SHEET NO. 1A FLOW TEST DATA KENNECOTT STATE 2-14

.

DATE: 6/2/88

E F

PAGE: _/_/__

		We]	llhead	Throttle Valve				St	eam		Sep.Level	High Pressure Brine, LEG:					
Nominal <u>Time</u>	Actual Time	PI-1 PSIG	TI-1	9 PI- M PSIG	71- ⊈ F	PI-13 PSIG	TI-13 F	PI-103 PSIG	TI ₀ 103	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PJTO	TI-109A PSIG	FR-108 Red Pen	PR-108 Blue Pen	PI-143 PSIG
	0000	496	469	483	466	24	260	~									
0000	0100	492	468	482	466	21	254					ויידיא		1			
	0158	492	467	484	465	20	275		×.								
0200 CRM	0302	492	469	486	466	19	269	1	and the second s			Ī					PI-143 PSIG
	0357	493	469	485	465	19	269										
0400	0458	493	467	483	463	1/2	265										
	0555	491	466	483	462	15	263										
0600	0712	491	465	483	46-	17	232										PI-143 PSIG
	0800	493	465	484	462	17	257		\mathbb{Z}		- XX						
0800 494	0904	493	465	484	462	17	255					5					
	1000	493	466	484	462	- 18	255	200				K .					
1000	1100	491	464	482	461	17	25	$\frac{1}{2}$		r							
1000	1156	490	464	481	461	16 =	253					`-	R				
1200	1301	490	463	480	460	16	251							<u>k</u>			-108 PI-143 <u>Je Pen PSIG</u>
	1402	504	466	486	462	26	270							·			
1400	1503	511	468	505	4	25	267							<u>```</u> .			
1600	1602	5/2	478	505	+	23	266								K		
1000	1700.	512	481*	507	1465	23	263		* 71.	1 Wais	moved						
1900	1800	512	479	507	464	25	260	1	l to	TW-1A							
1800	1900	512	279	507	465	23	277									N	
2000	1958	511	418	506	465	22	276					-					1
2000	2100	510	478	503	464	22	275						ļ	l		<u> </u>	<u>k.</u>
2200	2200	511	480	505	465	23	273		1		1					ľ	No. 1
سو{لر	2301	511	479	505	465	22	272							 	<u> </u>		<u></u>
		c	0	۰.	,						Anini	e-	,	1 1			
SHIFT SUPE	RVISOR	C22.	3-2	1.	6-2-	58 0	0120	SHI	FT SUPER	ISOR 7	1/10-	:ty	6/	3/88	0530	>	

SHIFT SUPERVISOR _____

1

signature

<u>_____</u> time

date

SHIFT SUPERVISOR _____

signature

6/3/88 0530 date time

DATA SHEET NO. 18 FLOW TEST DATA KENNECOTT STATE 2-14

DATE: <u>6/2/88</u> PAGE: <u>1</u>1

Â

		I.P. Arine	AFT Hete Box	Brine	Pond	Fresh	Brine Tank #1	Booster Pump Dische	Injec Pump I	ction	Injection Flow Meter	Imperia	1 1-13 Hellbead
Nominal	Actual	PI-144	Level	Level	PI-127	F.W. Meter	Level	PI-129	PI-10	TI-10	DPD-1	PI-141	TI-140
	0000	- Paly	Inches ユ³/ル	Linches 6/2	PSIG	gallons	Inches	P51G	PSIG	o r	<u>ked ren</u>	PSIG	<u> </u>
0000	0/00		21/4	7%					n N	- [-1]			
	0158		23/4	73/4					U	- U			
0200	0302	,	25/8	81/2									
	0357		25/8	9			1						
0400	0458		25/8	91/2			Kox	$\boldsymbol{\boldsymbol{\zeta}}$					
0600	05 55		278	10			Ľ,		-	-			
0800	0712		27/16	10 78				~					
0800	0800		27/16	113/8				$\mathbf{V}_{\mathbf{r}}$					
	0904		27/16	113/4		5		Xes					
1000	1000		23/8	12/2	5	h		Q.	<u> </u>				
	1100	·	21/4	13					<u>Y</u>				
1200	1156		25/16	131/4	\prec								
	1301		27/16	13%	<u></u>					\sum			
1400	1402		23/4	14 3/8									
	(503		278	145/4	· · ·						<u> </u>		
1600	1008				· ·		•						
<u> </u>	1700	~		16		· · ·							
1800	(800		2 24		• .								
<u> </u>	1900		6 18										
2000	192		2 3/8	1712									
	2200		2 18	18 14		<u> </u>	l						
2200	2200			1074	Ì					ļ			

SHIFT SUPERVISOR signature

ن ب 20 date

time

UL. signature date time
DATA SHEET NO. 1A FLOW TEST DATA KENNECOTT STATE 2-14

DATE: 6-3-28

4

PAGE: _/_/___

		We]	lhead		Throttl	e Valve			St	eam		Sep.Level	H	igh Pres	sure Brin	e. LEG:	
Nominal Time	Actual Time	PI-1 PSIG	TW-/A TI-1 0F	q PI-122 PSIG	₩- ₽	IO PI-121 PSIG	TI-22 °F	PI-103 PSIG	TI _õ 103 F	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PJU	TI-109A PSIG	FR-108 Red Pen	PR-108 Biue Pen	PI-143 PSIG
	0002	510	478	505	465	22	12761					20					
0000	0058	סה	478	504	465	22	1275										
·	0159	510	477	503	464	20	1274		\sim								1
0200	0259	510	476	500	465	20	275		Low!		Ű						
	0407	507	476	500	464	19	272	f	ð								
0400	1503	507	476	498	464	19	276			X							
	0605	507	476	499	464	19	1617										-
0600	0705	507	476	499	464	19	160				1			1			
	0800	508	474	500	464	18	244		Z		'P						
0080			,,,,	-	$ \langle 1' $		M	5				\geq					
	1012	510	471	501	464	.19	200			-							
1000				:	IV			1	-		ļ		ļ	}	}		}
	1200	510	471	501	464	205	5/61					×.					
200	1300	509	471	500	464	19	240						\mathbf{N}				
	1405	508	478	500	444	19	2/58	in the		in the		2					
1400	1500	515	183*	507	44	23	2617	P-T	TraulA	Tim AI	100, 485	EL.manulu					
	1601	580	490-	519	4165	24	74	MEL	Log THER	m-486							
1600	1705	518	491	5,4	# K46K	25	251	LET		4,42	t				40%	Do to ha	K
	1803	519	492	11	469	22	2-51								Celins		
1800	1900	517	477	504	465	23	254			·					Salla	240 14	
2000	2006	SIM	491	506	1464	20	253										1 -
2000	2105	511	491	505	1464	21	1250									40 "	<u> </u>
	2205	511	490	505	464	22	252							1	nker E	IT PER	METER
2200	2304	512	491	506	465	21	251							ļ	icum-	39"	

Bignature

. .

time date

date

time

.

signature

DATA SHEET NO. 1B Flow TEST DATA Kennecott State 2-14

DATE: 6-3-88

PAGE: /////

			AFT V	Brine	Pond	Fresh Water	Brine Tank #1	Booster Pump Dische	Injec Pump I	tion	Injection	Imperia	al 1-13	
Nominal	Actual	PI-144	Level	Level	PI-127	F.W. Meter	Level	PI-129	PI-10	TI-10	DDJ -1	PI-141	TI-140	
<u>Time</u>	0002	PSIG		1936	PSIG	gallons	Inches	PSIG	PSIG	- of	Red Pen	PSIC		
0000	0058	6	2-18	20%		Gio	ł		l m	ักไ		} .		
	0159	·	21/2	2014	1/2 9	white .	<u> </u>			L-8			Slushy :	SALT.
0200	0259		278	2114	Topo	Fullite			μ				Forming 1.	يدن روجس م
0400	0407	÷.	23/8	2134	1/2 of	blk		-						
	0593	*!-	218	2214	Btm.	f Red	L	5	L					
0600	0605		278	2234	Miduje	of Red								
	0705		25/16	23	Non-to	op of Rede			ļ			·		
0 8 00	0800		2?8				5			1 e				
1000	1012		2 1/4		5	D								
1200	1200		244	2514	66. +	Red								
	1330		23/16	26.14	Top of	Ked	ļ							
1400				Ð										
1600	1515		3/8	2-7 2-11	3/4 3	wh.6								
1800	1710		27/1	27 25'h	3/4 - , 1/4 - ,	chite Rel	Filli	E TANKS E	ron pi	ŧ				
2000	1912- 2012		27/11	24'14	Black	white Int	-bac-)	TANKS 1	 Full					
2200	2110		2%	25/14	BTM	og Cel e og fræl								
	2308	• ·	251	8 26	3/4 0	Red								
SHIFT SUP	ERVISOR _	Signatu	Faire L	da) <u>t-fé</u>	<u>0/45</u> time	SHIFT	SUPERVISOR _	RVV. Big	natire		<u>4/28</u> date	<u>C630</u> time	

÷

۰.

	•.	- []	,					DATA FL KENNE	SHEET OW TESI COTT SI	NO. 1A Data Tate 2-1	4				DATE Page	: <u> 6-</u> : <u> </u>	<u> / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ / / _ /</u>	
-			We.	lhead		Throttl	e Valve			St	eam		Sep.Level	HI.	gh Pres	sure Brin	e, LEG;	· · · · · · · · · · · · · · · · · · ·
-	Nominal Time	Actual Time	PI-1 PSIG	TI-1 op	G PI-121 PSIG	71-192 F	10 PI-13 PSIG	10 TI-1≇ °F	PI-103 PSIG	TI-103	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PJQ	TI-109A PSIG	FR-108 Red Pen	PR-108 Blue Pen	PI-143 PSIG
-	0000	0102	514	49-	507 506	465	الم ابل	253	×				m	Jelin -	1391 391		() 	
	0200	0158	514	491 492	506	465	21 21	242	, v	ti sa		ſ						
-	0400	0405	511 .5/1	492 492	505	465	2 0 20	243		X								
- -	0600	0615	5 77 511	490	504 505	465	20	235	6		X	Xa and a start		Cella	c - 36	12" 1)0	to flush	
-	0800	0900	512 513	491	505 506	445	20	233				×.	x	Cella	34	Down to	flusa	(~1)"
-	1000	1000	513 513	491	507 506	445 444	22 21	200										
	1200	1215 1303	513 513	480	506 506	444	21	2211	, ,					Cella	- 35'	Down T	fluid	
-	1400	1409 1502	513	486 488	506 507		20 21	-57				•		Cella	34	Do t	FULL	
-	1600	1605	513	485	Sol	463	20	鬥				•				\setminus		
-	1800	1812	512 511	487		464	1 5	7-5						Celia	33"	Dn t	Fluig	
-	2000	2001 2101	510	485 482	505	463	20 19	F17 213						Cell	32	Do To	, F,	
	2200	2201	510 5°8	482 477	501 499	4631	19	204 204						-	32"			
:	SHIFT SUPE	RVISOR _	<u>()</u> Bi	Q J gnature	in here	<u>6-</u> dat	e	 <u> </u> time	SHI	FT SUPER	STAT	L Pit i VVen signa	ture	~ {f	5775 $\frac{5}{88}$ date	$\frac{53}{\text{time}}$	2 2	347

.

a a a comme a commencia a c

ः च

____ ·

10

•

المتحديد والمراجع والمحمد والمحمد والمحمد والمحمد والمراجع والمحمد والمراجع والمحمد و

DATA SHEET NO. 18 FLOW TEST DATA **KENNECOTT STATE 2-14**

AFT Brine Pond Fresh Brine Booster Injection Injection Imperial 1-13 ...P. Brine Weir Box Pump Dischg Pond Pusp Water Tank #1 Pump Dischg Flow Meter Injection Wellhead PI-144 DFR-1 Red Pen Nominal Actual Level Level PI-127 F.W. Meter Level PI~129 PI-10 TI-10 PI-141 TI-140 Tipe Time PSIG Inches Inches PSIG Inches PSIG PSIG OF. gallons PSIG oF BOTH OUTLEY LINAS SE AFT TO WE SUZY 2700 STAT 21/2 261/2 14 23 0010 h. 44 0000 27 1/2 0105 2 Nu + white the 師可 6202 21/2 74 0 271/2 \$ Ack 0200 23/8 28 3/4 0300 BIL A. 0405 21/1 28/2 V4 .+ Real 0400 281/4 0500 2.7/8 1/2.54 0618 ... コル 2912 1/4 of WKite 0600 ____ 21/1 30 0709 74.f 0803 14 of BUK Z 2% 30/2 0800 3014 0909 24 12 0 + 13 LE Ker 3114 ~Btm 10'06 2316 1000 .40 ~ 1/4 2% 1125 312 To. Ini to ta. **R**, 214 31%-Red 1200 106 Starter Objection at 1145 hrs 1220 Brine flow recorder not 1200 12.5 3124 214 hooked up. (WALKed Dit BANK-OK) 1320 23/10 Just Reliter In 313/4 1-3 1411 TANKS Kel 195 108 1400 2 1/1 rts 2 3/4 1 1505 3/45 10% 118 105 ful 1611 ろレ JE 1600 3/42 1708 21 5/acc 11 1/2 ST AT ITIL WO' King on WERREY Restart ~1800 1817 31 3/4 1711 Black a 1800 د 14 1910 BILL 50 301 . 218 12314 ALL PUMPS Shot 118 4 Bisco KH 31 18 ساه ن ک 2000 7/18 أيبذا 21 112 1/4 トロコ 32 1/4 TO PA 2205 218 تعر Started wit pump at 2332 2200 booster pump at 23#7 1/4 Started the ΛH 2. 2307 0.9 F

DATE: 6-4-27 PAGE: 1 / 1

signature

SHIFT SUPERVISOR

0030 date time

SHIFT SUPERVISOR

0530 time date

signature

DATA SHEET NO. 1A FLOW TEST DATA **KENNECOTT STATE 2-14**

DATE: ___6-5-88 PAGE: _/ /_/

Wellhead Throttle Valve Sep.Level High Pressure Brine, LEG: Steam 11-12) E No. 10 10 10 10 ÷0 PCR-103 FR-102 LCR-107 PJQ TI-13 Nominal PI-1 ₹**J**_1 TI-103 0F Actual PI-12 PI-19 PI-103 Chart TI-109A FR-108 PR-108 Chart Chart. PI-143 Reading PSIĞ PSIG Red Pen Time Time PSIG PSIG PSIC Reading Reading PSIG Blue Pen - crint 313/4 10- TV 500 479 Hirid 002-502 14-03 18 212 0000 M \$08 16 500 478 $\langle \gamma \rangle \langle \gamma \rangle$ 0109 4-62 497 Cellar 315 16 478 Down to plaint 0222 505 -63 ſ 0200 0304 510 501 19 490 517 510 0400 20 490 465 ¥1 Z Z 0400 516 490 0455 510 د 2 415 0608 520 492 513 23 2∛3 Nelland . 0600 2658 513 480 520 24 487.5 0755 519 দেশ্য 513 25 24\$ 465 su marchary there 0800 487.5 Yel 0915 519 492 512 414 27 1 2 hin lk 11:00 1005 519 491 512 27 H6\$ 5 J. 1000 519 465 1100 512 490 255 511 465 1205 519 492 5213 RTD +110 1200 518 25 487' 510) Up jin , -herm (490) 461 1308 217 Mercur فالمشر 511 518 1410 489 1400 . 23 520 50 29" 1500 Do to Fluis 444 سزال ف 1600 519 24 489 Sim 1600 SUL 1 518 7 30 489 24 1271 3h to Filmo Des 12 Celia 24 1805 518 490 1800 23 ้รกม 1912 518 991 5481 $\frac{1}{2}$ 2001 489 510 2000 518 2102 510 ン 489 489 509 20 SIT 2200 2200 512 490 20 2310 508

SHIFT SUPERVISOR

signature

. . . .

DWL 6-6-57 time date

SHIFT SUPERVISOR <u>AVVisity</u>

6/6/88 0450 date time

DATA SHEET NO. 1B Flow test data Kennecott state 2-14

.

DATE: 6-5-88 PAGE: _____

E. Tak

1 1

	~	I. P. Brine	AFT	Brine	Pond	Fresh	Brine	Booster Burn Discha	Injec	tion	Injection	Imperia	1 1-13	
Nominal	Actual	PI-144	Level	Level	PI-127	F.W. Meter	Level	PI-129	PI-10	TI-10	DPR-1	PI-141	TI-140	
<u></u>	Time	PSIG	Inches	Inches	PSIG	gallons	Inches	PSIG	PSIG	oF	Red Pen	PSIG	0F	
0000	0026	N	TINUSC	31 14	3/1 a	Luhite	16	<u> </u>	94	105 m	4.6 Blue per			
		·	1 -	30	19	l	1401	3/	<u>× - U</u>	1105	4.5			
0200	0225			284	Btn of	red	1.21				4.4			
	0.208		3.9%	26-14	rot	hite	1.52				H.O	 		
0400	0404		Lex	2512	14.04	Read	22	3			4.6 Blue			
 	0.00		- 24	Vit lev	2/ gang	<u>e. </u>		4 30		100	1-2 pen	<u>k</u>		
0600	06	÷ .	2/4	and can	+ be		16	120		100	rea /. 2 pen , E , Pr	P LI		50 * 1
	0/00		2/0					100		99	× 17	<u>statin</u>	<u>k</u>	POTOL
0800	0000		24	~		-				78				Restort
	0720		2/16					0				 		inj.0753
1000	1010		1 3/16	-	· •		29			~~~	, <u>,</u>	1	ļ ,	· • •
	1105		14	·	-	·		43		<u> </u>	4.3	↓	├}	SD para
1200	1210		218				17	0		92	2.3		(inj. on
	1315		2%				20	0		100	2.1		`	Vacuum
1400	1418		25/10		Running		211/2	0 50		101	2.0			
1400	1504		25/1	U-	-		221/2	0 50		101	2.0	•		
1600	1604				~		2514	0 50		100	(lois ST	the Ind P	intersp
1000	1706		9 14	-	~		13 h	45		98	4.75 1	1710 5	D Duno	
	1808		> 21/4		~		16 12	050		97	2.3 -	- GRAVIT	ATINg ILE	الوس م
1800	1917		23/8	1	-	•	20"	050		96	2.4			
	1001=	4	25/1		~	•	271/2			90	2.2	20105	the led :	nd pump
2000	+105		214		~		22"	40		89	4.85	Sur 2	forning	
	2205		25/1				1212	20-20-10		6 95	5.0	7710	SD pom	P
	2315		12/14		-	<u> </u>	118	0		91	2.4	<u> </u>	L	
SHIFT SUP	ERVISOR -	USF_ signatu	ure '	<u>6-0</u>	o <u>5</u> 8 ite	DADL time	SHIFT	SUPERVISOR	<u>X V 7</u> Bil	gnaturé	<u>(a</u>	<u>date</u>	0450 time	

. ..

DATA SHEET NO. 1A FLOW TEST DATA KENNECOTT STATE 2-14

DATE: 6-6 88 PAGE: 1 1

4

		We.	1head		Throttl	e Valve			St	еад		Sep.Level	H	igh Press	sure Brin	e. LEG: A	(north)
Noninal	Actual	PT_1	77-1		9	-10		155	101	PCR-103	FR-102	LCR-107	รถ,	TT 1004	FD 109	DB 100	DT 1/2
Time	Time	PSIG	°o _F	PSIG	** F	PSIG	°F	PSIG	¹¹ ₆ F	Reading	Reading	Reading	F	PSIG	Red Pen	Blue Pen	PSIG
	0005	512	490	506		÷0						20					
0000	0105	51	490	505		20						m	1 2110	26"		=110	
	0158	51	491	505		2-1					()	9130 50			AFT 1.	T 2V ct-	2
0200	0304	511	491	505		27					U	1-15-74-11	Diner	T Con	actions.		
	0400	510	491	502		28					-			1			
0400					l.					\leq							
1	0545	E10:	491	503		24		Start	a div	ierting	flow	thru seo	erate	- t	0630		
0600			. .					_		Notin	Not in Service	Not in Service	ł		Not in Service	Not in service	
	0800	515	491	509	• •	20		6		1		1			1		
0800								5									
	1010	515	490	509	;	20	50	-									
1000				:													
	1215	515	492	509		24		7±	250	[Ň		10±	250	1	1	
1200							-			1							
	1411	515	492	509		18				l			241	m	- 20	oints claid	
1400									_				5100	HFT W	Er Sox	sin - u	ی <i>ما</i> ل بن
1600	1625	517	492	SI ANN	T.	19		7	いい								
1600				لالم													
1000	1720	SHUT	<u>×"</u>	sma Sma	u les	K Jur	ofted in	Floralia	Downst	2A_ 2 7	hoor le Vo	loc.					
1800	1740	444	নিকা 🖸	SALITA	Le se	Bin in	idiar	1/2 53	$4 \rightarrow 3$	(int							
0000	2020	35		+10(1) 4	10.	·											
2000	2103	460	462	459	450		ming r	24.2						ļ			
	2210	515	491	508			_	6	252		ł					1	· ·
2200	2300	519	490	SIJ	<u> </u>			4	252		l	<u> </u>	<u> </u>	ļ	ļ <u> </u>	<u> </u>	
			_	<i>^</i>											•		}
SHIFT SUPE	RVISOR	いと	Frei	2	6-7.	88 0	527	SHI	FT SUPERV	ISOR	VVi	rity	6	7/88	0530	2	i

SHIFT SUPERVISOR ___

.

.

**

6-1-81 date

signature

a .

0021 time

SHIFT SUPERVISOR

ven signature

date 20 time

DATA SHEET NO. 18 Flow test data Kennecott state 2-14

. `

DATE: 6-6-58 PAGE: ____

:

		I P Brine	AFT	Brine	Pond	Fresh	Brine	Booster Burn Discha	Injec	tion	Injection	Isperia	1 1-13
Nominal	Actual	PI-144 PSIG	Level	Level	Pi=127	F.W. Meter	Level	PI-129 PSIG	PI-10 PSIG	TI-10	DER-1 Red Pen	PI-141 PSIG	TI-140
0000	0008		514	To low	Lost		211/2		0 5 D	89	2.2	Well con	VALUUM from Put + Put
0200	0202		tn V.S.	. \	SQ at OII5	· · ·	13"			-	S.D.	STOPP	ed Gravitaring
400	· · · · · · ·		back to A off 35	FT :	S.D.			3					
0600	0545	×	2% Out of		5.D.	•==	5, <u>200 g</u>					Ram boo 0730 - Then S.	ster pump 0750 D. and allowing
0.800	0800	ı	service to weld in weir plate		5.D.		یر/7 = موديدا	2			1.5	well to	inject d
1000	1005		AND Exten outpall pla	ha !	5.0.7		6344"			82	0		
1200	1220			1	-		6 1/2				0		
1400	1415		Č		SD		6/14				0		
1600	ددما		D	-	50		6'14		J.	-	0		
1800													
2000						·							
2200					•								

date

signature

0021 time

signature

date time

و ما ما و مناطق ما منظوم و مناطق و ما

. م نو		· ·			······	······································					State	2-14	cellan.					
	Company at out TI - 101	let of a	carding, separa	Ator :	(PI-1: 10 •F	$m_{sten} = 2$	- 70ms	DATA FL KENNE	SHEET	NO. 1A T DATA TATE 2-1	at 14 4 at 21	100,211 18,20" 05,20	down to wt	wir r	DATE Page	: <u>6</u> -	- 7 - 58	
		mercury	The rm	11head	<u> </u>	Throttl	e Valve	Thermo	<u> </u>	<u>0 F</u>	team		Sep.Level	H.	igh Pres	sure Brin	ne. LEG: A	n
	Nominal 	Actual Time	PI-1 PSIG	TJ-1-	PI-12 PSIG	т <u>і</u> -жа гі-жа	91-13 PI-13 PSIG	TI-13 %	155 PI-163 PSIG		PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PJ-70	TI-109A PSIG	FR-108 Red Pen	PR-108 Blue Pen	PI
	0000	0015.	519	491	511 51/		15			252		}			264			T
	0200		517	i 4a i	509		18			251		ſ	╞ ╴╢╢╢╢ ╞╸		2(2			m
	0400	0400	517	490	509 509-	T Sat	155		15.8	389	2	Werking	68	164	389	2.5	14.4	
	0600	0605	515	# 89	509		195		187	403	178	-:	75	192	405	2.7	17.6	
•	0800	0800	517	490	509		217		212	24	200		70	223	414	2-75	20.2	ť
	1000	1000	517	490	510		212	2	2.07	413	200		67	218	413	2.7	20.2	$\frac{1}{1}$
	1200	1200	E I G				2.01	\triangleleft	209	710		γ	,		417	27	202	+
	1400	1418	519	491	511		213		210	412	201	20	80	218	+11	3.0	20.2	t
	1600	1608	519	485	511		216		210	412	202	2.75	67	224	410	2.0	20	
	1800	1803	519	491		-	121		212	413	303	28	64	226	41-41-	2.7	20.6	
	2000	2003	514	491	510		214		111	413	200	2.7	64	224	411	2.5	20.4	Ţ
	2200	2203	519	490	511		211 208		208	405 (W	192	2.6	63	216	405	24	19.9	T

DATA SHEET NO. 1B Flow test data Kennecott state 2-14

DATE: __ 6-7-88 PAGE: __/_/_

		I. P. Brine	AFT Weir Box	Brine Pond	Pond	Fresh Water	Brine Tank #1	Booster Pump Dische	Inject: Pump Die	ion schr	Injection Flow Meter-	Imperia Injection	il 1-13
Nominal Time	Actual Time	PI-144 PSIG	Level Inches	Level Inches	PI-127 PSIG	F.W. Meter gallons	Level Inches	PI-129 PSIG	PI-10 PSIG	TI-10 oF	DPR-1 Red Pen	PI-141 PSIG	TI-140 of
0000		/			5.D	(5'2'	5. <i>D</i> .	0				
0200	0300		23/16		、 ·					A		· · · ·	- ,
0400	0400	. \	278 23/8			/							
0600	0610		278 21/4			(t I		
0800	0820		278										
1000	1005		27/6		Ran 1		0C	:					
1200	1305		21/4		pitpump and S.D.	Z	<i>اب</i>	1	e1 2	. 4.	and the second	,	
1400	1430		214	l	Rt Zumili S	noingr (27"						3
1600	162%		2114		<u>4</u> .D.	. /	(2)4)	NO Ind	20	98 	3.0 Alt Shann	An esta	1640 PUMP SD LOAT SULTIN a peur minute Rubur
1800	1810		17400	318 WEIRE	SD W REDI	15 -1Johata	9'14 -	WITH Bring	SD SD CA	<u>r</u> ,	A 1.12 0 2	~~ + <1	5100
2000	2010		+18	(2010)-	WAST PUL	mest. poup	10		73	Ő B	5.3		2050 37" in TANK
2200	2206	<u>0</u> .,	21/16	Both	e miloo Evances	2	14"	E		+ 107	5.5	5(105°
SHIFT SUP	ERVISOR _	C S.J.		2315 <u>6-</u> da	- S D - <u>5</u> F te	Eas Trump Line	SHIFT	SUPERVISOR	RYVC. sign	ature	<u>(c</u>	/7/78 date	1500 time

11

1

··· ·

	•						KEÑNE	COTT SI	TATE 2-1	4 Wtr	in col 0215	lar 21" di	שידי ה	PAGE	:/	/	
		We.	lhead		Throttl	e Valve			S	eam		Sep-Level	н	igh Pres	sure Brin	e. LEG: A	Nur
Nominal <u>Time</u>	Actual Time	PI-1 PSIG	TI-1 OF	PI-12 PSIG	9 TJ- 52 F	(0 P1-13) PSIG	TI-13 °F	155 PI-148 PSIG	101 T1-109 F	PCK-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PI-4	TI-109A	FR-108 Red Pen	PR-108 Blue Pen	PI- PSI
0000	0104	517 517	489	510	\mathbf{i}	206	í	204	405 406	191	2.5	03 600	1-12	ددینہ 402	7.2	19.9 19.9	
0200	0215	516	489	50		205	t	204	2454	19;	2.5	63	210	401	2.4	19.5	
0400	0400	516	489	509		204		203	404	131	ð	65	209	400	2.4	19.5	11
0600	0600	511	490	505		209		20%	410	19.7	2.45	64.	212	404	2.4	19.5	9
0800	0755	512	490	509		210		206	4120	200	2.6	64	222	405	2.35	20.0	1.
1000	1010	513	488	507		207		2 900	410	195	2.7	64	214	400	2.6	19_5	1
1200	1205	513	489	506		206	6	601	407	195	2.7	64	213	376-	· J. 4	19.5	9
1400	IN ME	ETINS				5								2.29 -	1		•
1600	1603	512	488	507		204	:	197	407	190	27	64	208	394	<u>-</u>	19.0	e I
1800	1801	511	489	11		204		198	408	189	7.7	64	211	396	2.3	19.0	$\frac{1}{1}$
2000	Chang 2100	ry R.C.	r- Ω r Δ3a	1950 -	ا ماد مد			209	417	195	3.8	63	21.9	1.04	5.4	1.700	1
2200	MAJO 2355	2 . 7 540	et 2 499	200: 6	ST S.	PPly A	i-Tu	1 cm+	416	192	3.2	64	214	406	5.3	2(0	1

بر-

.

.

Ĵ,

.

1:							DATA S Flow Kenneco	HEET NO TEST DA TT STAT	. 18 Ata E 2-14				DATE Page	: <u>6-8 5</u> : <u>1</u> 1	
	Nonipall	Actual	L.P. Brine	HFT Weir Box	Brine Pond	Pond Puap	Fresh Water	Brine Tank #1	Booster Pump Dischg	Injec Pump [PI-10	tion	Injection Flow Meter	Imperia Injection PI-141	al 1-13 n Wellhead TI-140	`
	Tipe		PSIG	Inches	Inches	PSIG	gallons	Inches	PSIG	PSIG	oF	Red Pen	PSIC	oF	
	0000	7000 100		13/4-214	-	EAST		33.	70	S.D.	108	5.3	0035)	Reduced In RPM: Noi	J Pump se in pum
	0200	0223		2 !'4				281/2	45		1035	4.4		-	
	0400	0405		2 1/4				261/2	47		97	4.4			
	0600	0608		23/16		/		27	43	²	93.	4.4 :	33	94	·
	0800	0805		25/16		S.D. ~0830		12	5.D. 0810		95	3.011		Borster Started at 0806	pump
	1000	1020		21/8					A closed inj lime val	æ	t		+ Marti State	, internet in the second se	
	1200	1210		21/4		i	Z	9	0~~	• • • •		0			
	1400				, c	5									
	1600	1610		1 ⁻¹ /8 1 ⁻¹ /8				814	0					No Frest	(CANAI)
	1800	1805 1913		17/5		· .		8714	=						
	2000	7105		27/8			•								
	2200	7357		SATED	Un	•									
	SHIFT SUP	FRUISOR	$(1 \subseteq \mathcal{F})$	1	6-9.	<i></i>	0050	6117 2 9		MN N	le to	- k.	17/18	0420	`

.

.

n de la companya de l

æ

DATA SHEET NO. 1A FLOW TEST DATA KENNECOTT STATE 2-14

1.5

......

· · · · · · · · · · · ·

DATE: 6-9-58 PAGE: _/_/_/_

.

		We1	lhead		Throttl	e Valve			St	ean		Sep.Level	H	igh Pres	sure Brin	e. LEG: /4	101-
Nominal	Actual Time	PI-1 PSIG	TI-1 oF	7 PI-12 PSIG	71-12 71-12	IO PI- 18 PSIG	TI-13 0p	155 PI-193 PSIG	101 TI ₀ 102 F	PGR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PI-4	TI-109A PSIG	FR-108 Red Pen	PR-108 Blue Pen	PI-143 PSIG
0000	0105	635-544	+91	520-220	1	213		206	417	192	BAD	. 64		40.4	5.4	10.7	195
0200	0210	532-41	4?1	520.530		214		208	418	195	3.05	645	214	405	5.4	· 19.9	196
0400	0315	532-38 530-39	499	<u>525-32</u> 520-530		212		207	416	196	3.0	64	214 213	403	5.4	20.0	194
0600	0615	535-40	499	522-528	:	211		209	416	198	2.95	64.	215	402	5.35	20.0	196
0800	0800	537-40	499	525- 53 2		212		208	· 418	COT	1.2	64	217	402	5.35	20.7	194
1000	1030	538-42	499	530-535		215		210	9477 9	202	7.3	64	220	402	5.4	20.0	194
1200 ,	1215	540-45	499	536-40	, .	217		2 97	417	201	***	.64	220	402	:5.3	20.0	195
1400	1410	538-545	199	536- 40		212		207	417	700	340	64	222	4.93	5.4	20.0	195
1600 17 <i>0</i> 2	1507 485	542-45	499	5-5-40		3-5		198	417	189			3.1E	382	Upse	+	
1800	EVEL	THING	ا ست	famein	AnvA	ىم 0 (-	u Arti	n - 1	LOSTI	fir Con	<i>م</i>		in the second	9月 -			
2000	2030	510-4 4	499	535-40		<u>+17</u>		202	-4	190	Ban. B.ac.	Vu t	-18	401	1.2	19.6	19/
2200	2201	540-45	500	530-30		208		202	412	188			200	396	4.6	19.9	188

SHIFT SUPERVISOR

.

N

.....

signature

6-10-28 0.005 time date

SHIFT SUPERVISOR <u>RUVeri</u>

signature

date

. . . .

0320

time

-

	•		L P Brine	HET. Box	Brine	Pond	Fresh	Brine Tank fl	Booster Puep Dische	Inje Puso	ction Dische	Injection Flow Meter	Imperia	il 1-13 i Wellhead
	Nominal Time	Actual Time	PI-144 PSIG	Level Inches	Level Inches	PI-127 PSIG	F.W. Meter	Level Inches	PI-129 PSIG	PI-10 PSIG	TI-10	DPR-1 Red Pen	PI-141 PSIG	TI-140
	0000	0105		37/8*	1	50		8314	SD.	S.D.	-			
	0200	0220		37/8*									<u> </u>	-
	0400	0410		378		1	<u> </u>	ł		E				
•	0600	0620	, <u>.</u>	37/8				121/2			:+ -			
	0800	0814		3 15/16		started east pum	¢	15	-	0,	92		Openel to allow	butterfly at
•	1000	1035		3'3/10		SD. east,		05	48		118	4.2	5+	fer pamp 3
	1200	1225		312/16		esi U	Z	25	50/70	Butter	127	- 4.0	20	132
	1400	1410		3 1/8		1200 8 70		34	80	<u> </u>	134	40.	at the second	-34
	1600	1407	<u>`</u>	5'1-20		1900 RI	h	30 1/2	70	лан 1 Х.С. 2 С.С 2	134	3.8		
•	1800		·							<u></u>			20	
•	2000	و ج م ج		2710		W LACU PR	5400	27	100			10.2	21	
· · ·	2200	2205		37/8	مورد ه مرو	1100	5-00	24	60		126	4.2		
	SHIFT SUP	FRVISOR	(1) 2 =	En 2	6-	1358)			R 1/ V.	inter a	· · · / ·	11-198	0320

8.00 g

*** ********* Pillion K

and the second second

لم مد به علامان والم

.

es AST Digi	of dial TM Men tal T	therm rewry t	om herno	4/5	9	414 402	ENNE	OW TEST	DATA	ASTM Digit	A dial merc. t al T/C	therm 40 therm 40	8 40	9 9 PAGE	: <u> </u>	_/_	
0		We	lhead		Throttl	e Valve			St	еан О		Sep.Level	H:	Igh Pres	sure Brit	19. LEG: /-	~~~
Nominal Time	Actual Time	PI-1 PSIG	TI-1	G PI- 12 PSIG	TI-12 F	PI-10 PSIG	TI-13	155 PI-193 PSIG	0 TI_105 F	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PI-4	TI-109A	FR-108 Red_Pen	PR-108 Blue Pen	F
0000	0005	535-54	500	230-72		20.		<u> </u>	801 مارت	185	-		207	393 392	4.9	20.0 Ng 2	
0200	0220	538-45	500	530-35		207		199	407	185			208	391	4.7	19.5	T
0400	0400	538-42	500	530-36		207		200	411	188	0		209	393	4.75	19.5	+
0600	0555	538-42	500	530-35		20%		202	412	190			209	395	4.6	19.5	t
0800	0800	541-45	500	535-38		203		201	415	3			213	397	4.7	19.5	†
1000	1030	543-48	500	535-40		210		198	475	193	4-3		214	408	4.7	Changed Te L-10 Chart	;
1200	1220	540-45	500	535-40		210	6	P 98	414	192	4.27		214	409	4.7	4.4	T
1400	1411	545-48	500	540-44		+09		195	713	191	4.3		م ار ا		4.5	• 4.4	T
1600	1615	543.48	500	541-46		308		195	412	189	4.2		209	401	44	4.4	T
1800	1810	545-50	500	5+3-45 U		704		194	413	185	4,25	A CHARLES	209	397	4.4	4.4	T
2000	2010	536-42	500	530-40		-16.	1	206	3.1	192	4.2		217	396	5.2	4.5	Ť
2200	2205	540-45	500	530-36		216	:	204	ماد ر :	191	4.1		213	39,	4.9	4.45	Ţ

.....

.

·**·**/

5.

and an and the second sec

signature

· _. .. -. •

1

date time

date

signature

.

.

time

.

à,

	<u>wa</u>	J	HFT	Brine	Pond	Fresh	Brine	Booster	Injec	tion	Injection	Imperia	1 1-13
Iominal	Actual	PI-144	Level	Level	Pump PI-127	Water F.W. Meter	Level	PUBD Dische PI-129	Pump I PI-10	TI-10	DPR-1	PI-141	TI-140
Tipe	Time	PSIG	Inches	Inches	PSIG	gallons	Inches	PSIG	PSIG		Red Pen	PSIG	
000	0010		2'/8	10		705.00	2012		K		4.3	55	(-)
200	0230		4	below mul	W 1200 Lost Suc	24,600	19/2	47			4.3		
400	0405		4 1/6	~		29,800	11	5.0.0330	Butte	Fly	0		
600	0558		315/14	262	1	36,000	11		July .	pen!	0		Walked pit
800	0808		4	29	Ran	43,000	112		•		0		
000	1034		4	311/4	0955- 1015	51,000	66				0		•••
200	1225		41/L	332		53300	30		N 7 . M		0	·	RAN 5-
400	1410		4	35 1/8	S)	65,900	32	58		en como	0 13		577 ta In] 1400 SD 8 1422 FRAD
600	1620	Building Le	121 in 521 35/8	39		72300	3272						Strate ILS
800	18 (2	,		m. z. / 13 m. 39/12	W 1175	51.9. 781 2	72	55		174	3.15		1755 1828 Lost Gensen
000	2012	Loging Levi	418 Sa Panin	السلاف (11) ب ع-1 "الر"	Ē.	50.0 84100	, cla 33	LE PUMP DIS	2=130 ([]ow		3.4	25	112
200	5002 7130	Ô,	4	27	E.SD E sta	52.2 4.2		2 7		177	24	15	120

1.1.1

1...

		We]	lhead		Throttl	e Valve			S	ean		Sep, Level	H:	igh Pres	sure Brin	e. LEG: /-	11,0000
Nominal Time	Actual Time	PI-1 PSIG	TI-1	PI-12 PSIG	TI-12 F	PI-121 PSIG	11-13 F	155 PI-168 PSIG	/3/ 11-283 F	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	Pl-4	TI-109A	FR-108 Red Pen	PR-108 Blue Pen	PI-1 PSIG
0000	0008	5-8-45	500	520-33		111		204	400 100	191	4.0			393	49	4.45	18-
200	0210	540-45	500	5:0118		' i		205	410	190	4.0	Œ	2-13	395	4.8	4.45	190
400	0405	540 port 1s	500	530-35		211		207	410	193	3		211	393	4.8	4.45	18
600	0615	540	500	525.32		213		206	411	196	3.95		210	394	4.7	4.45	184
800	0750	542	500	525-32		212		205	414	198	4.0		213	395	4.7	4.45	18
.000	1000	540-45	500	530-49		212		205	41%	200	4.07	÷ 17 - 2	214	397	4.6	4.45	17
200	1213	542-48	500	535-40		216	e	5	4.8	200	4.07		1 434, "	400	-4.5	4.45	18
400	1405	548-52	500	542-46		212		205	418	200	4.08		214	379-	4:45	4.45	170
600	1605	548.52	500	536-42		716		203	417	198	4.1		716	399	4.45	4.45	(70
800	1820	540-48	500	54-45		208		200	_	188	4.0		209	391	45	4.45	17
2000	2015	538-44		530-40		204	1	199	405	186	3.85		200	387	4.4	4.4	17
2200	2205	540-50	500	530-40		204		199	404 (105	182	3.8	5 g - 17 m 7 - 20 7 - 20	204	385	4.25	4.4	17

in the second

Bignature

date time

date time

DATE: 6-11-88

<u>ب</u>ت

• •	Inlet to we Temp = 108	c = 22	.6°F 0r {+	ize abov izinal intina t	e (x	x) reac	TENNECO	HEET NO TEST DI TT STATI	. 18 Ata F 2-14				DATE	: <u> </u>
	at 12201	~	<u> </u>	evel -	Brine	Pond	Fresh	Brine	Booster	Injec	tion	Injection	Imperia	1 1-13
	Mandanall	A . A	L.P. Brine	Weir Box	Pond	Punp DI 127	Water	Tank 🚛	Pump Dischg	Pump D	ische	Flow Meter	Injection	Wellhead
	Time	Time	PSIG	Inches	Inches	PSIG_	gallons	Inches	PSIG	PSIG	oF	Red Ben	PSIG	oF
	0000	0015	,	4	16 (34±)	5	525	ملأ	874	-81	(14	LL. 4		Buty Pumps bung
	0200	215		4	10 3 (29)	U	102600	30	76	76	1135	6.1		
	0400	0413		3'5/16	(25") (below	S.D. E Start W	108200	-23/2	75	75	108	6.2	- 45	108
	0600	0624	/	3'5/16	63/(25)	SD. W at 0500	114900	18	at 0453 0	0		· 0.		
	0800	0758		39/16 Freih wtr	83/4 (27)		119,440 F.W. Shut.	18'2	c r	Ó		0		
	1000	1025		3'5%	12 (304)		127,700	42	0	0		0	- Or allotte and	*
	1200	1225		4	142(33)		12200	20%	0	0	م من جنب التي	0		
	1400	1424		4%	16%(35)	East	145,400	20	≤.D.	210 Started	107	2.5	. myratic i	Started inj @ 1375
	1600	1608	/	4'18	1:=+++=++	Elmony	155000	2512	Running	50.		3.7		
	1800	1823	/	11/18	147, 33	Ēk	167200	8"	5 1525 Lowal840	50	, ,	3.9		SD Ind Pump 18: Ristater 18:40
	2000	2020		4'18	11 291	•]E :	-00800	25	48	50	117	4.1		SD Pro Prop 20
	2200	2210		4 18	10/1:12-831	E	188500	28	48	50	109	4.1		In Punp Caritat

.

. .

۰.				Riesalia		-	DATA S	HEET NO	. 18				DATE	6-12-88
-				criz. sta Level	rting 1	neasure reading	FLOW KENNECO	TEST DA	ATA E 2-14				PAGE	<u>i</u>
			L.P. Brine	AFT Weir Box	Brine Pond	Pond Pump	Fresh Water	Brine Tank 🕰	Booster Pump Dischg	Inje Pump	ction Dischg	Injection Flow Meter	Imperia Injection	1 1-13 Wellhead
	Nominal Tipe	Actual Time	PI-144 PSIG	Level Inch es	Level	PI-127 PSIG	F.W. Meter gallons	Level Inches	PI-129 PSIG	PI-10 PSIG	TI-10 oF	DPR-1 Red Pen	PI-141 PSIG	TI-140 of
•	0000	0006		4'18	814 (264	L)E	199300 89.7 ₇ r	2812	45	٥ċ	105		29	105
	0200	0231	. /.	478	Below mud line	5.D.at 0234	2/2,300 93.1 gr-	27	50 5.0. 02.39	50	195	4.15		~
	0400	0413		45/16	734 (26		2-21,800 93.0gr-	24	S.D.		•	0		
	0600	0636		4 %	1134(30)		235,100 93.00pm	25/2				0		
	0800	0816	1	4.14	13%(32)		244,400	262		Kotan hand 10	00	0		
	1000	1007		45/16	164(345	E	254,700 GI 67	, <u>+</u>		30	101	3-9	Started	inj. at 1000.
	1200	1221	/	4	14 4 325	Ē	22 00	32		<u>.</u> 44.	104	3.6	. 3.0	121
	1400	1420		5 %	131/4 319		277500	22/12	Statu Her 3 89	5 89	Tro .	5.8		1404 - Inchit
	1600	1506		5518 5318	112 103/ 20) W	282000 1257 287 200	32 30	8- 84	84	126	5.65 5.68	52	135°
•	1800	1810		151F15	Below msmt Point	W. 57.2	83.8	30 11	70	07	136	5.0		SD IL Punks AT 1847 145
	2000	2007		5 1/L	12.34 31	50.	308330	-12	50	SD				
	2200	2210		51/2	14314(35		318600	12	SD	58				
	SHIFT SUF	£3 45 _ PERVISOR	C. E. Z.	uch_	6-1	3-58	0031	Shift	SUPERVISOR					STATEL TI PUL
			signatu	re	da	ite	tise		_	si	gnature		date	time

.

-

.

ĩ

.

						1.e.,								
. •			Riso abo crig. sta Level	ve ivtime 1	Tape Measure reading	DATA SI FLOW KENNECO	HEET NO TEST DA IT STATI	. 18 NTA E 2-14				DATE : PAGE :	<u> </u>	<u></u>
		L.P. Brine	AFT Weir Box	Brine	Pond	Fresh Water	Brine Tank 🕊	Booster Pump Dische	Inje Pusp	tion Disch#	Injection Flow Meter	Imperia	l 1-13 Wellhead	
Nominal	Actual Time	PI-144 PSIG	Level Inches	Level Inches	PI-127 PSIG	F.W. Meter gallons	Level Inch es	PI-129 PSIG	PI-10 PSIG	TI-10 oF	DPR-1 Red Pen	PI-141 PSIG	TI-140 of	. :
0000	0006		4'18	814 (264	()E	(99 300 89.7 ₃ r	2812	45	dć	105		29	105	
0200	0231	. /.	478	Below mud line	5.D. at 0234	212,300 93.19-	27	50 50.0239	50	1900	4.15		-	
0400	0413		45/16	734 (26	>	221,800	24	S.D.	N		0			•
0600	0636		4 %4	1134 (30)		235,100	25/2				at the			•
0800	0816		4 1/4	137,(32		244,400	262		City - had 10		0			•
1000	1007	j	45/16	16-4 (34-5	E	254,700	, <u>y</u> c		30	101	3-9	Started	inj. at i	600.
1200	1221	/	4	14 4 325	E	2200	32		44	104	3.6	20	121	1
1400	1420		5%	131/4 319		89 6PM	28/12	State Her 3: 89.	5	122	5.8		1404 - J Az	nckite en sliget
1600	1506		5518 5518	1121 103/ 20) W	282000 95.3- 287700	32 30	8- 84	84	も同	् ऽ.५५ ऽ.५४	52	135°	FRANC
1800	1810	· ·	15 F18	Below momt Point		83.8	3011	70	07	136	15.0		50 T.1 AT 1847	Pombs 145
2000	2007		512	12.34 31	SD.	308330	-12	SD	SD					
2200	2210		51/2	1431435		218600	12	SD	SN					- -
SHIFT SUP	+345 PERVISOR _	C.S. J. signatu	ire	6-1. da	<u>) - ; ; ;</u> te	Col/ time	SHIFT	SUPERVISOR	si	gnature	· · · · · · · · · · · · · · · · · · ·	date	STATE I	- Shrifi i

•

1

ر. بر ارونیده مدرون

DATE: 6-13-88 DATA SHEET NO. 1A FLOW TEST DATA PAGE: _/ // KENNECOTT STATE 2-14 Wellhead LEG:8 Throttle Valve Sep.Level High Pressure Brine. รองสม Steam PI-155 PCR-103 FR-102 LCR-107 101 Q PI-10 TI-1 TI-13 TI PI-4 II-109A TI-109A FR-108 PR-108 PI-143 Nominal PI-1 PI-10 Chart Chart Chart Actual 5 Red Pen Blue Pen PSIG PSIG PSIG PSIG PSIG Reading Reading Reading Time Time Sop to be 0000 8.3 185 194 198 3.6 4.5 406 211 387 25-71 498 450-510 0003 1947.04 216 9450 0106 497 490-510 0200 291-2 3,7 4,5 1903,1 222 8.15 64 195 189 389 212 515-19 478 0206 QX 64 0400 490-510 1944.53 214 498 792 201 3.65 4.5 194 410 189 213 518.20 0402 0600 72-518 498 8.32 370 3,35 181 190-510 411 20) 189 64 4.5 060% 1945.25-218 212 3,6 0800 200 192 0802 498 PF 2/7 515-520 192 8.33 64 371 4.5 490-510 1946.65 220 out of 500-51.0 hole 1000 1000 412 520-525 498 8.33 4:55 200 193 1011 64.5 ~7.55 196 220 217 408 Adjusted throttle valve 11 20 520-525 498 1155 202. 8.3 400 1200 500-510 225 217 356 456 200 412 94 64 4.55 F3/65 1403 22 201 416 193 8.3 64 405 26 707 520-25 500 - 15 498 1400 455 217 3.55 8.29 202 1603 521-26 498 490-519 226 200 192 60 400 413 1600 4.55 54-18 498 SPUTIC 224 415 8.18 64 3.55 198 1805 Jav 114 394 191 1800 4.55 195 448 8.3 63 3.55 201 416 189 392 S>12 490-515 コンノ 216 2006 2000 411 4.53 490-55 219 199 8.2 64 214 392 3.5 197 185 2211 521-27 498 2200 6.8 6/14/88 0640 6-1458 OUUI SHIFT SUPERVISOR SHIFT SUPERVISOR signature signature date time daté time

÷X-

DATA SHEET NO. 18 FLOW TEST DATA KENNECOTT STATE 2-14

• •

AFT Heir Box

Level

Inches

512

51/2

50

Arons To Gat le

L.P. Brine

PI-144

PSIG

(18.7n

signature

Actual

Time

0008

0226

0415

0500

2615

Nominal

Tipe

0000

0200

0400

0600

111 PAGE : Pond Injection Injection Imperial 1-13 Brine Fresh Brine Booster Injection Wellhead Pond Pump Water Tanks # Pump Dischg Pump Dischg Flow Meter PI-141 TI-140 PI-127 F.W. Meter TI-10 DPR-1 Level Level PI-129 **PI-10** Inches PSIG gallons Inches PSIG PSIG oF Red_Pen PSIG 07 STATE JAJ 639 86.4 1834 (37) 1500 328800 24 1548 72 72 Opened throthe 0020 130 90.4 for Pond pamp 1700 11 Q 16之 18/4 (35) 2232 33 99 00 5.58 N1500 74 雀 127 ANT. 0315 - Courceling Ing Kong Jajection 04 - 0415 NI 100 1700 80.0 12 160 211 349500 -5 01-0500 3.3-0500-05A 5.5-0500-055 5.5-0530-0600 8.5-0500-0645 1100 a25 125 0 125 N1800 360600 18 %

0800	0815	/	5.5	153/4(-4)	Ē	371300	iles 2	55	55	126	2.0-0650-0652 6.2-0650-0705 4.9-0705-0720	30	130
1000	1023		57/16	/6½ (29±)	W130D	3809	LL 3	0	0	125	4.5-0745-0745 4.5-0745-0755 4.5-0755-275 3.7-08 NS-0745		й. 1
1200	12:10		53/8	16/4 35	E- W 850	507100	32	62	62	17/	2.5-07+5-1015 0 1015-1109 2.7 1107-1800 53 1800-	O	
1400	1405		51/2	15 ³ /4 (34)	W PD	397700	30	51	30	139	4.55 -		1410 Stort in Gan may coose Control Apr. Control Value on
1600	1615		5%	435	W-800	406800 1970 5ª	31	50	3 (138	3.0		Control VAILE RALLE Control VAILE RALLE On Augu 1605 +
1800	1704			-	E STAT	e 1812.		Statel @ 17	K-S0			18	138
	180%		18h	151/4 B31/4	DW-1300	416500	15'12	84	SD.	138	5.58		
2000	2010	۵C	512	123/4 0	E 50	4-660	. s 32	• •		-1360 H	e Pinelad		, ,
2200	1115		Too much	133/4 (32)	w.800	436700	30 12	5>	50	140	2.3		Z227 opened throthe value ofter laardings

SHIFT SUPERVISOR

31

6-14-58 06 date time

SHIFT SUPERVISOR KAN signature

14/88 0540 date time

DATE: 6-13-88

• 1	, 	•			· · · · ·				1	•			;	•	ant Deserv			
	Nosinal Time	Actual Time	PI-1 PSIG	TI-1	PI- M PSIG	Throttl	e Valve 10 PI-10 PSIG	TI-13	/55 PI-200 PSIG	10/ 11-100 F	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PI-4	TI-109A	FR-108 Red Pen	PR-108 Blue Pen	P
۲	0000	0005	515-209	498	410-509 R	$\overline{)}$	123		802	412	188	8.45	. 64	25	391	3,65	455	(
•	0200	0202	515-20	798	495 - 505		218	-:)	202	: 474	188	8,4	6.	214	371	J.6	4.6	[
	0400	0403	5 15-20	498	490-500		220		202	417	190	8,42	4,5	215	392	3.6	4.5	1
-	0600	0553	575-20	44 K	492-510		224	-	201	417	190	8.4	64.5	213	392	3.55	4,55	1
-	0800	0.02	515-20	498	495-505	7	218		200	415	197	275	65	218	792	3,55	4.55	ľ
t.'	1000	1001	515-20	497	490-510	/	230		201		195	8,55	96	220	394	7.65	4.55	.2
	1200	1157	520-25	498	500-510		225		202	417	195	8.7	64	220	375	7.6	4.55	
:	1400 *	1405	520-25	498	998-511		226		202	413	194	8.65	64	318	384	3.59	4.55	
	1600	1607	520-25	498	496-514	-	176-	1	702	416	193	8.65	64	719	391.	3,55	4.6	6
•	1800	1807	271-78	498	498-516	By BAL	772		204	416	192	8.6	64	166	391	3.45	4.55	2
•	2000	2009	469-0	HS.	429-33	1833.0	280	1.	72	435	2.40	120	64	267	403	4.8 -	5.0	ē
	2200	2104	479 481	489	444-50	1870.4	277		248	434 432	238 234	10.0 9.95	64	264	406	4.8	5.0	
	¥ .	2310	Λς	* 2	1	1871.3					. <i>1</i>	2 14	1-1	(I alar	Nd 19		

A REAL PROPERTY OF A DESCRIPTION OF A DE

.

• • •

· •••

4

DATA SHEET NO. 18	
FLOW TEST DATA	
KENNECOTT STATE 2-14	

ي مسر بد المشتر التي

والوالية ويوهدون والتوالية المتحجج والتجار المتحاد المحاد

.

r'

DATE: <u>6-14-88</u> PAGE: <u>1</u>1<u>1</u>

2

....

II-10 DPR-1 OF Red Pen 140 2.3 140 2.3 145 4.3 145 4.35 145 4.2 145 4.35 145 4.2 145 4.2 145 4.2	Alise Law Tradition PI-141 TI-140 PSIG oF 44 194 35 191
04 Reguren 140 2.5 745 2.5 145 4.35 145 4.35 145 4. 195 3.8 150 4.2	44 194 35 191
145 4,35 145 4,35 145 4 195 3.8 150 4.2	44 194 35 191
145 4,JJ 145 4,JJ 145 4 195 7.8 150 4.2	44 194 35 191
145 4,35 145 4 195 3.8 150 4.2	44 194 35 191
145 4 195 2.8 150 4.2	35 191
195 2.8 150 4.2	35 191
150 4.2	and the second sec
147 4	40 150
146- 3.7	
136 3.3	Filest Co milting out 301 min
139 3.9	LA Ben 1801 Prix
139 44	1933 Oza one tu 047 Open Eneropsi
137 5.75 142 3.3	** 250
	136 3.3 139 3.9 139 44 139 44 137 5.75 142 3.3 USputtur _

444,- -, **

	9							DATA	SHEET	NO. 1A					DATE	• 6-	5-88	171-
•	·			•				FL	OW TEST	DATA ATE 2-1	4		-		SPACE	141	<u>.</u>	
		•	· Wel	llhead	1. 18	Throttl	ê Valve	•		5	éan		Sep Level	H.	t sh Pres	hure-Brin	e. LEG. B.	South.
8	Nominal Time	Actual Time	PI-1 PSIG	TJ-1	PI-1		Pisto	71-13 F	PI-25 PSIG	TI-JAN	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PLA	T1-109A	FR-108 Red Pen	PR-108 Blue Pen	PI-143 PSIG
•	0000	909 5 6	-485	490	459-55	1873.73		\sum	2.4.	H31 ;	232	9.85	•4 •	20	3425	4.75	5.0	252.
بر می رد : ۲	©0200			990	448			- 1		433	235			263		475	5.0	250
1	0400	0505		1990	4470 - 455	1812.31	1) 4 		248	484	. 235			262	101		5.0	39-2
	0600 9	0400	490	491	455	11 77.00	274		247	417	240	Ø35	65 1	26.7	408	475%	3505-	1200
•	0800 19950 - Mr.	ott. 200	490.	489	455	5	2.75		248 •				495		4.29	4,7	5.05.	253
	1000	1059 1207	490,	489	455	note 1100 km	.2.74	i i	248	972	Pot.Q.	-7, 2	67.5	245	41.0	4,75	5.04	260 5
	1400	14 02	ંમન્	484	700-45	antal	276		48	453,	237	8.1	145	2 \$3`	408	4.26-	-05.04	200
	ÓDat	1900	.495	489	450 - 460 45.7		9		No.	433	.239	8.(~	s 6 4,5	261-	41.8	4,62	7.9	26/
	1800	18:02	496	490	15-8	بالحي	282		248	437	238	Ř. f.	<u>6</u> 15	264	416	4,65	5.4.4.	262
, , ,	2000	R002 2109	415.	479	362.		292		246	43	133	9.6	7 24		410 410	6.27	5.0	225
- -	2200	22,03	<i>₩14</i> .	147 <u>9</u>	358	<u> </u>	275		247	433	236	.9.3	·5.4.0;	200	1409	6, 7	5,0	44 -
• -	SHIFT SUPE	RVISOR	9i	gnature		*		time	SHI	FT SUPER	VISOR	Bignat	ure		late	time		

.

-11-1

بيليقن

.

一题

	•.		* . • .		· · •	DATA S Flow Kenneco	HEET NO TEST DA TT STAT	. 18 Ata E 2-14	•	•	() () () () () () () () () () () () () (DATE : PAGE ;	<u>6 -15 -8</u> <u>1</u>]]
<u> </u>		L.P. Brine	AFT Weit Box	Brine	Pond	Fresh Hater 2	Brine Tanki 🗰	Booster Pump Dischs	Injec Pump I	tion Disch#	Injection Flow Mater	Imperia	l 1-13 Wellhead
Nominal Time	Actual	PI-144 PSIG	Level Inches	Level Inches	PI-127 PSIG	F.W. Meter gallons.o ^d	Level Inches	PI-129 PSIG	PI-10 PSIG	TI-10	DPR-1 Red Ren	PI-141 PSIG	TI-140
0000	0012).	6718	in in BC	E Granino 1300	565300	24	80	. 80	150	4.4	72	150
0200	0710			. 37%	E.50	S78900	,29	· ·	85	1526	4.6	8	· · · ·
0400	0415 0503		6.5	38 17%	E-	580600	30	120	129	150	5.8.	7.2	151
0600	0633 0712 •		6 5/4	* <u>* 1</u> 67/4 36	E- W-1100	589600	23 20	165	165	162	7,4 · 7.4.	~	
0900	0814		6.5	J , 5	E - W - 12 F d	597100	27.25	₩	90	945	4.85	65	(72.
1000	1013		6 5/8	* 76	E- W-800	604800	, <u>1</u> 745- ,	108	0,5,	170	8.35	- Andrews	
1200	1213	-	67/8	35.5	e - W-1450	522300	19.5	ملیند مراجع	05	170	5.55	42.	17 5
1400	1414		БЦ	3%	50	604950	10.5	50 [reudo 42)	<u>.</u> \$9	37	no plan	SD	Soulton A:
1600	1609	•	7″	40	W-SD	609400	10,75	50	SD	SD.	B	SD .	Postingeter Freshingeter
1800	סידו		₽₽₽	40	E-Kny	621400	24,25	2D	*42	150	5,20		Somecon
2000	2012		8%	42	W 975	623300	31.70	\$B	126	155	8:5	·	at 19:25 How hat rough
2200	2212		84	415	12-Pm 12-136	632800	31.5	SD	127	251	6.4		
HI FT S UF	ERVISOR _	·				\$	Shift	SUPERVISOR	· ·	;* 			; ٤
•		signatu	ire	da	te	time			si	gnature	-	-date	tise

ŝ

7

Ö

-6

.,

٠

•

R

		#A		- 6 - 6	~			KENNE	COTT ST	ATE 2-1	4	- S			PAGE	<u> </u>	- <u>7'</u> • ~	
· · ·	Nominal Time	Actual	PI-i -		PI-12 PSIG	ETI-12	PI-13 PSIG	. T]-13	PI-100- PSIG		PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Chart	er.	TI-109A	FR-108 -	PR-108 Blue Pen	PI-143 & PSIG
ر مرج	0000.	0008	196	scon (3		221	5.	191.	408	AIST :	682	53.0	13	410-	Biaken	431 -	3022
· · ·	0200	Q:408	500	492	475		200	.(·7.79	402	15	6.00	46.	1710	460	1.77	40.	165
ß	.0400	0410	504	496.	478		205.	.	168	40 r	. 150	6	40	165	TT.	9. 75.	4.0	185
1	0600 •	0607	502	498.	480.	5.	199		169	3.99	15TT	604	-40	166	397:	9.75	\$ F.O	165
1.0	0800	0:814	50.88	476	482		200	. 3	168	4.05	155	6.4	\$ 42	\$85	397.	9.	40	165
/ 18 • •	1000	1027	-504	\$.9°	4.86		234	9- P	20	Ety 18.	193	8.08	.4.8	2/7	415	Oes.	D.S	226
ر متدریم	1200	1151 1202	512.	5498	488.		236	-	12:5	415	213 °	8,05	. 61' 	225	415	4.4	• 7	222
and i	,1400	1404.	497 y	4.89	472	· · · · · ·	253		206	421	1.87	9.8	34.	228	P.1	5:25	11 0.	275
nts por	1600 C	Ĵ695	4,22	યુજો	3:85.		J.71		295	430	225	9,55	63.	248	423	5.80°		251
, u	1800	1757	<u> オ</u> え4	482	3		277		236 3	432	Zas:	9,65	62	2.56	424	5.7	. La	2.51
÷ 0	2000	1958	410	4800	087	9	269	0 .	227	4.29	225	9:35	63	-248	4212	5.7		342
•	.2200	2159	412	781	385	1	269	هجه	227-	429.	222.	9. P .	63	245	422	5.7	a start	240

SHIFT SUPERVISOR <u>au Minhaic</u> <u>B/17/88</u> 0205 Biguature date bine d

SHIFT SUPERVISOR

. . signature

te date

« time

Ĩ.

Steam = 14600 Ch PTUS Brine = 97,600 CK

-

J-j= 64200 CL Sep = 10 I - 4

~

DATA SHEET NO. 1A Flow test data Kennecott state 2-14

DATE: 6/16/88

....

PAGE: __

		We	11head		Throttl	e Valve			St	ean.		Sep.Level	H	lgh Pres	<u>sure Brin</u>	a. LEG:	
Nominal Time	Actual	PI-1 PSIG	TI-1	PI-12 PSIG	Time- TI-12 Op	PI-13 PSIG	Water TI-13	PI-103 PSIG	TI-103	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	-8 P1-4	TI-109A PSIG	FR-108 Red Pen	PR-108 Blue Pen	PI-143 PSIG
Pate Inc	1338	496	511	488	1540	236	683200	202	418	19)	8.0	64	22.25	415	4.25	TOTAL	227
0000	1352	489	490	453		254		211		9,1	7,	65-	235	420	5.1		
	1404	478	1	432	1413	253	685400	197		9,6			· · · · · ·	1	5,25	F	
0200										139K					SIZK	651/c	
0400	1615	422	481								0			-			
0600														-			
0800				ī					õr			P.					
1000				:											and the second		
1200								Ł				aller and		4 1	Land Marine Land		
1400						Σ								المعنى المحمد المحم المحمد المحمد	ser en	s -	
1600					- -									2/ 2)			
1800														a contraction			
2000		ſ	Ĩ							-				șt.			
2200			, ≜				:					Σ[]; [] (, 1) (, 44)7+					
SHIFT SUPE	ERVISOR		4	<u> </u>			• ··	SH1	FT SUPER	/ISOR	•	. f. <u>.</u>			•	•• • •- <u>-</u> •	
		51	gnature	i	dat	te –	time	5113			signa	ture		late	time	•	۰. ۱

inter a

			73				DATA SI Flow Kenneco	HEET NO. Test da It state	18 9 ,		.	7	• DATE: PAGE:	<u>67.16</u>	<u> 88 .</u> .
•			L.P. Brine	Weir Box	Brine P Pond P	Pond	Fresh Water	Brine Tank #1	Booster > Pump Dischs	Injec Pump D	tion .	Injection . Flow Meter	Impéria Injection	l 1-13 Wellhead	
	Nominal	Actual	PI-144	Level	Level PI	1-127	F.W. Meter	Level	PI-129	PI-10 PSIG	TI-10	DPR-1	PI-141, PSIG	TI-140	46.
•.	0000	0017-	0	6-7-0	42? E	-01- -066	638100	151	SD.	[].Ŧ.°	150	6.4	0.0.yr	146 2	vel controller
-	0200	0217		634	4127E	-Qn 24000	644700	29.5	- 5D.	145	150	Щ.5.,			Gt 11:02
	0400 _	0440	ð .	65/1 0	-10 From break B In tope	- 01 - 01	\$52200	33	-200	202	150	8.4:			· · a _ ·
	0600	0622		·b'/4	-14 . 5 W	- gn -1100	652500.	. 37.	*: 1:35. (715	1600	6,2	\$0.	160	
	0800	0830		-6-14	-15- W	- 0M -1200 :	663900	- 32	440	140,	167.	6,25			
	1000	1037		6'120	[F E	-on e	67,700	M.	ST)	62.	185	7.2	· Ville	166.61	1115 1055
	1200			60	-16 G W.	-ion 1101)	676308	32	165	Sp	165	.5.2			•••
	1400	14 13	:	7.3/16	-16%2 W.	-1160	645400	29	100 50	SD -	172-			и • н	••
, .	1600	1625		75	-16	-6N. -1150	693700-	193	14.8	148	162.	6.5%		•	- an med
	1800	1803		7.5_	-12/2 1	-010 1-5D	700500	83	SD	50	175	.0	Ō	170	C.Value A
远潮	2000	2002		LL S	-7- 1	2-0N 2-1150	707300	.20	SP	SD.	138	ð		•	clanged
	2200	2205		72	-6: E	57	715200	25%		97	157	4.95		- 3	- Josef
۰۰ <u>۱</u>	Shift Sup	ERVISOR _	Paul U	nulin	6/17/4 déte		22.61 time	SHIFT S	SUPERVISOR	318	nature		date	time	

· · · •

.

5 1°5'

あたためが

•	···· ····				•		 १ द्युव्य	DATA • FL Kenne	6 227 Sheet .ow test icott st	NO. 1A DATA ATE 2-1	4	•	6. TG:	245 242 -142	DATE • PAGE	<u> </u>	17788	- 6 <u>-2</u> 42 T6-278
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	We	lihead		Throttle	a Valve-	•	10 820	St	eam		Sep.Level	Н	igh Pres	sure Brin	e. LEG:	8
• .'	Bominal Time	Actual Time	PI-1 PSIG	TI-I or	PI-12 PSIG	т <u>і</u> -і2	PI-13 PSIG	71-13 6p	PI-105	101 11-103 F	PCR-103 Chart Reading	FR-102 Chart Reading	LCR-107 Chart Reading	PI-4	TI-109A PSIG	FR-108 Red Pen	PR-108 Blue Pen	PI-143
	0000	0003	402	481	3.86		266		227	429	210	9,45	63	2.24	921	5.75		242
-	0200	0208	411-	483	385	·/ -	266	1.	228	429	212	9.4	1×	245	1421	5.75		·2 KK
·	0400	0417	417.	482	387		2.66		228.	426	213:	925	-67	244	420	5.7-		242
	0600	0600	455.	103	370		268	•	327	\$29	213	9,33	66	244	420	5.7		RE-
	0800	0806	445	472	392.		267		224	4.50	72.15	9.22	. 68	242	420	5.68		245
• • • ·	1000	1004	445	484	377	•	276	•	12	452	215	9,7	74 .	298	421	5.8	· . / • •	245-
	1200	1205	442	484	392	. / .	2		2.29	430	210	9.55	.72	240	420	5.6		240
Cutarha	1400 -/#1	1508	457	495	375		·2.70		217	429	208	9.65	14-	250	420	5.9		242
Car talle	1600	1600	49%	498	515		24	1	212	727	202	6.72		199	414	3.9.		222
cut wat	1600 (112/8	1800	506	500	515		241			426	200.5	.6.7	· 62		115	3,9		223
C.h.ra	2000	2002	510 88 522 chard	50	525.		222	•	2.3.	122	200.0	4,6	61	226	412	2.6		1,8-3
Cu-	2200 Vita : 1250	22 • [.	52.0 [• 45	503	555		219	· .	214.	415	15	3,7	61	22	4.08	2,5		15,2
•	SHIFT SUP	ERVISO) in the	•	· ·		X. •		• כטז	FT SUPPO		•	· · ·	•.			• . :	•
			si	gnature	· ·	dat	e	time		יין בייגער באזי איין בייגער בייגער	4 By	Bigna	ture	(date	time	4	

.

......

۲

;

		iki in	fa	· · · · · · · · · · · · · · · · · · ·	Ę	DATA S FLOW KENNECO	HEET NO TEST DA TT STAT	. 18 NTA E 2-14	• •	•	•	DATE	: <u>6/17</u> : <u>()</u> 1	199
Nominal	Actual	L.P. Brine PI-144 PSIC	Weir Box Level	Brine Pond Level	Pond Pump PI-127 PS10	Fresh Water F.W. Meter	Brine Tank #1 Level	Booster Pump Dischg PI-129 PSIG	Injec Pump I PI-10 PSIG	ction Dischs TI-10	Injection Flow Meter DPR-1 Red Pen	Imperio Injection PI-141 PSIG	al 1-13 Wellhead TI-140 oF	- -
000	Q007		Contr Get in	-4,5	E-ON W'SD	722600	30,5		105	160	315	82	167	• •
200	0219	1/	71/2 (bru	- 3,5 belo Lialo below t Iso Hk drop	E-1750 P	780400	72.5	55	2		7.25	1		•
400	0424		71/2	e-2	5 on WIZOD	737900	16	62		149	3.8	55	1.47 (- 1043
600	0610		77/16	-1,5	E oa W160 j	744100	12	100		14.4	5.0		. د	
800	0815		83/8	+5.5	no suction	750800	7 🔊	- off	J.	100	0	0		
000	1017		8 74 body alos of sale off weir	+7,5	e W1000	757200	QĘ,	180		143	5.3	74	145	
200	1214		73/4	+8	6 on W1191).	204400	31	100		150	5.3	an a		_ •
400	1551		5 4	12	ć das W da	770700 776100	5.5	off	0TT- 65	140	3.4			-
600	1655		62	Tape	KE ON WSD	779600	26	4 • • • • • • • • • • • • • • • • • • •	110	152	5 ,	7.2	151.	
800	1805		Soft in	-23;	E-On W-SP	788300	224	SD .	SD	Ho	50			Red
000	2007		478	-23	E-OW W-ON	797400	3234	SD	112	159	5.7-	81.	151	pon
200	7208		누글	-25	E=00 W-01	806306	26	92	92	149	4.8.			210 Refe
FT SUP	ERVISOR	Rignati				tine	SHIFT	SUPERVISOR		PRATURA		ہ . مادار	tiso	Sec.

4

<u>مخ</u>ریکہ

- 21

•

ŝ 1 ÷ ł

2.8 %

لزنيم

DATA SHEET NO. 18 FLOW TEST DATA KENNECOTT STATE 2-14

: . .

signature

date

. time

۰.

- . . . **.** .

		L.P. Brine	Weir Box	Brine Pond	-Pond Pump	Fresh Water	Brine Tank #1	Bocster Pump Dischg	Injec Pump I	ction Dischm	Injection Flow Meter	Imperia Injection	1 1-13 Wellhead	_
Nominal Time	Actual Time	PI-144 PSIG	Level Inches	Level Inches	PI-127 PSIG	F.W. Meter gallons	Level Inches	PI-129 PSIG	PI-10 PSIG	TI-10 of	DPR-1 Red Pen	PI-141 PSIG	TI-140 	-
0000	0016		47	-2.5	E-ON W-SD	817300	18 -	C [°] .	SD	137-	S	ZD		
200	6212		328	-315	E-ON	827000	363		95		5.2		-	•
400	0403		39/16	-6	E-or W-no Suck	835200	34	P		130	5,2			-
600	0615	í.		-9	E-on W-off	844101 75 apm	32	120	100	127	5.5	80	150	_
800	0818		578	-11	E ON Noff	852800	323	= 95-	sj]26	4.7			_
000	1019	•	33/4	-13	sft	78 3000	G.	, 50 .	510		0	•	*	
200	1219		37/8	-12	E-04	\$77200 \$ 99pm	JI		.94.	14.9	4,6			•
400	1410		37/8	-1272 -130	<i>হ স</i> দ	881 100 80 apm	57	76		125	4.6		• •	
600	1643		41	-4 C	SFON W-ON	891800	32	142	142	125	6.7		· .	F. W
800	1808		34	-165	E-ON W-SD	900\$00	263	138	138	125	6.0	84	128	- 3
2000	2008	Ĩ	374	-18	E-OW	711100	24.5	135	/35	125	5.6			4 4
2200	2211	<u>0L,</u>	334	-21	E-OFF W-OFF	920600	8.5	SD	SD	117	SP	SD		- 2 0- 0

signature

DATE: <u>6//R/8</u>2 Page: <u>/</u>/_/_

1.1

pun

tise

date

DATA SHEET NO. 18 FLOW TEST DATA KENNECOTT STATE 2-14

Injection Injection Imperial 1-13 Brine Bocster Brine Pond Fresh Injection Wellhead .P. Brine Tank #1 Pump Dischg Pump Dischg Flow Meter Weir Boy Pond. Pump Water Actual PI-144 PI-127 F.W. Meter PI-129 PI-10 TI-10 DPR-1 PI-141 TI-140 Nominal Level Level Level PSIG Inches PSIG PSIG oF Red Pen psig oF Tipe Time Inches PSIG gallons Inches E-ON -2.5 SD 37 178 81730 SD 18 SD SL 0000 0016 4 w-SD E-ON 363 -3,5 95 130 5.1 32 827000 0200 6212 w-ch e-or 34 120 3 9/16 -6 835200 5,3 19403 0400 W-NO SUCK 5.5 E-on 844101 -9 0615 32 127 80 0600 w-oft 120 100 5.0 150 ••• 75 apm EOH 5718 JZ 0818 -11 85280D 80 1 pm 126 4,7 0800 95 Woff SD 78 300 œ. off 10 19 3-14 , so 1000 ~13 Ô SU \$73200 E-ON 37/1 -12 14.9 4,6 1200 94 33 1219 A gpm -1272 118 416 37/8 881 100 ETR 57 76 4.5 125 1400 -130 1410 æ. 100 Pr 2 81 apm Fixina SF. -ON 1643 4 3Z 142 891800 125 6.7 1600 142 WHS W-on 89 gage 18 19 E-OW 6.0 -165 263 1808 125 138 138 84 1800 900800 128 in-SD 37 5.6 Han E-OW 9 135 -18 1100 125 24.5 /35 2000 2008 MC. ナーロンドレ W/pons 33 OL, E-OFF SD 920600 SD -21 8,5 2211 SD 117 -0 2200 SD W-OFF >uction on Bocster

SHIFT SUPERVISOR

signature

PAGE :

DATE: 6/18/88

SHIFT SUPERVISOR

ىكى ئارىكە

signature

date

time

time

date

pump

	······································	T	5 502		•		DATA FL Kenne	SHEET OW TEST COTT ST	NO. 1A Data Tate 2-1	4				DATE PAGE	: <u>6/</u> : <u>1/</u> /	<u> </u>	<u>6</u>
	43	We	lhead		Throttl	e Valve			\$I		FR-102	Sep Level	H	igh Pres	sure Arin	M. LEG: F	{
Nominal Time	Actual - Time	PG-1 PSIG.	TI-1 OF	PI-12 PSIG	71-12 8	P1-13 PSIG	TI-13 0F	PI-103 PSIC	11-103 P	Chart Reading	Chart Reading	Chart Reading	PJ-4	TI-109A PSIG	FR-108 Red Pen	PR-108 Blue Pen	PI-1 PSIG
0000	6000	562	502	560)	215	ζ.	215	419	1997	2.75	61	1220	404	1,2		1
0200	0201	565	502	557		225		216	419	200-	2.75	-67 ·	220	453	1.5		10
0400	0409	555	502	560		スコク		216	415	198	O r	61	2.20	400	1.5		12
0600	0542	565	502	555		218		215	\$17	197	2.7	61	220	420	1.9		12
0800	6811	568	500	560	•	210	-	211	416	200	2.7	61-	220	400	0		15
1000 .	1003	567	500	562		220	, k	210	415	200	2.7	61	225	318	20		10
1200	1201	571	502	555		211		214	414	198	2,7	61	217	776	1.0		11
1400	1542	570	501	560		25		209	413	195	2.7	60	215	3.74	0,5		1.
1600	1615	521	492	554	n	255		B15	424	202	6.8	58	a25	328	3.9		2:
1800	1702	532	495 492	J.C.		241		215	424	20	6.6	61	229	195	3.8		2
2000	2000	532	1961	514.		239		215	426	210	6.6	61.	230	400	3.5		3
2200	2759	532 ⁴	495	512		236	ļ.	215	425	210	6.5	6/	226	2)01	3.5		a
HIFT SUPE	RVISOR _		thature		+ah -			SHI	FLSUPER	VISOR	ed con		•		+100		

.

signature date time

. . . .

DATA SHEET NO. 1B Flow test data Kennecott state 2-14

....

		I.P.Brine	Weir Box	Brine Pond	Pond	Fresh Water	Brine Tank #1	Booster Pump Dische	Injec Pund I	tion	Injection Flow Meter	Imperia	l 1-13 Wellhead	
Nominal Time	Actual Time	PI-144 PSIC	Level: Inches	Level Inches	PI-127 PSIG	F.W. Meter gallons	Level Inches	PI-129 PSIG	PI-10 PSIG	TI-10 of	DPR-1 Redi Pen	PI-141 PSIG	TI-140 of	
0000	0012		378	-215	E-OM W-SD	930800	26	S P	SD	SA	L2D	SD		
0200	0208		34	-22	E-094 60-50	941400	342-		17	120	5.9-	broke co	eplinu	New Lujestry
0400	0419		\$3/4	-28	E-on N-SD	953400 909pm	J,	1000		140	4,8	new com slow s-b	nting- arbnp	is criticity
0600	1550		35/8	mad	E-on W-st	961200 849p=	241/2	130	130	160	5.3	97	165	(bs.(1)
0800	0817		33/4	4"	6-80 W-04	975500 80 gpm	240	50	SD	/	0		•	
1000	1010		33/4	51/2"	off	9824	34	SO	sip	<u> </u>	0	a de clantar a se		_
1200	1207	· •	33/4	71/2	E- 01 W-61	79210D 749100	26 1/2	ðn-	97	110	3.7	94	112 (12	219 hrs) 255 hrs)
1400	1353		33/4	418	5= 517. N·on *	1000000 74 gym	2872	on	130-	140	5.95	96	124_	1427-
1600	1624		78	Mud	E-50 W-00	1011100	184	ON series	140	138	5155			Incroasing Rato 15:40161
1800	1707 1813	Į Į	\$7.18	nod	E-SD W-On	1014000	12 2834	on	122	150	5,4	90	152	
2000	2007	Ĩ	64	m.Z	E-AN W-SD	1026000	33	DN	114	16D	5,2	•		- 2/20
2200	2206		6 7	mud	E-OW N-SD	1038000	26	00	120	165	5115	94 -		
SHIFT SUP	ERVISOR _						SHIFT	SUPERVISOR				•		, <u>.</u>
	-	signati	Ire	da	ite –	time			ві	gnature		date	time	

DATE: PAGE

5

Nel .

1.00

1300 hrs-sauple at weir 230.50F Diluted 50.50 S.G. 1.138 at 800 DATE: 6/20/88 DATA SHEET NO. 1A 8.5 FLOW TEST DATA **RENNECOTT STATE 2-14** 15.45 91VCC31 Throttle Valve Steam Sep Leve High Pressure Brine, LEG Wellhead PCR-103 FR-102 LCR-107 155 PI-105 TI-12 PI-4 PR-108 PI-143 11-103 F Chart Chart TI-109A FR-108 Sceinal Actual PI-1 TI-1 PI-12 PI-13 TI-13 Chart PSIG PSIG Red Pen Blue Pen PSIG PSIG PSIG Reading Reading Reading Time Time PSIG 222 Hor 3,6 510 495 232 213 424 6.5 61 0002 530 0000 212 208 A.A 1..... 37 61 215 21D 6.8 390 218 424 0200 492 502 235 226 522 0201 · 1 **F**2 505 6.8 227 1.9 218 0403 528 495 1425 0400 240 221 216 400 62 6,70 218 0608 515 228 240 217 3.8 496 425 スル 400 0600 525 2.400 9 \$25 530 SH 215 6.5 62 3.8 211 231 6758 232 505 0800 497 TC 405 1407 400 530 215 6.73 401 3,8 1002 495 510 242 215 61 230 1000 223 1143 6.7 3.8 235 423 401 5 30 497 510 1200 215 230 €€ 225 61 229 14 18 3.7 6.7 495 240 423 213 398 + 530 510 23 220 1400 9.4 210 1602 530 424 6.7 61 100 495 510 1213 229 240 212 1600 beton 172) 5:0 493 232 400 425 9,1 569 243 216: 214 6.7 r. 1800 1754 UU :5 2000 3 7:54 0 2200 . SHIFT SUPERVISOR SHIFT SUPERVISOR signature date time signature date time \$41.29
DATA SHEET NO. 1B Flow test data Rennecott state 2-14

naire any the faile in

DATE: PAGE :

.

2

م وروده والجور.

<i>,</i>		L.P. Brine	Hair Bor	Brine Pond	Pond	Fresh Vater	Brine Tank fi	Booster Pump Dischs	Injer	ction Dischs	Injection Flow Meter	Inperia	il 1-13 Nellhead	- 、
Nominal Time	Actual	PI-144 PSIG	Level Inches	Level	PI-127 PSIG	F.W. Meter	Level	PI-129 PSIG	PI-10 PSIG	TI-10	DPR-1 Red Pen	PI-141 PSIG	TI-140 of	-
0000	0008		6\$	Mund	E-ON w-ON	1041800	35	ON	120	166	Sict	0019	165	Taylow 41
0200	0207		6*	Mud		1049400	3社	ON	122	170	5.1		-	_
0400	0411		57/8	Mud	E-00 W-00	1057100 60 gpm	31	ON	1350	775	5.4	89	171 4	95-25)
0600	0614		57/8	Mud	EOM	1064700 569pm	23%	ØN	85	172	8.4	80.	175 (0532) (0600)
0800	0821		6716	-1/2	E on W on	1072000 60 gpm	24	20n	. 92 -	9167 82171	3.8		1	-
1000	1008	· .	678	+1	E og Woff	1078400		on	95	167	3.25	84	168 (1	<u>o</u> 21)
1200	1150		6	17z	t on Woff	1081600 1081600	76	or	110	160	J.8	Dave TV CH,F	plaier - Jusd	- 306,000ppm
1400	1424	12.00?	57	(1))	K off	≠093500 58 grm	29	3D	50	192	0		P (%)	R1414:20
1600	1613	210	6	-2	ENV.	109990D	335	ON	65	132	3.6		· · · ·	tol P bring
1900	173	215	6.7=	1234	EON	1104200	253		55	135	2.5			-
2000														_ \
2200										1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				-

SHIPT SUPERVISOR

1

signature

date time

21

SHIPT SUPERVISOR

date

time

signature

DATA SHEET NO. 18 FLOW TEST DATA KENNECOTT STATE 2-14

.

.

.....

. . .

DATE: 6/2.4/88 PAGE: 12

....

......

.

		L P Brine	Netr Box	Brine	Pond	Fresh Vater	Brine Tank #1	Booster Pump Dischs	Injec Pusp D	tion	Injection Flow Mater	Isperia Injection	1 1-13 Wellhead
Nominal Time	Actual Time	PI-144 PSIG	Level Inches	Level Inches	PI-127 PSIG	7.W. Heter gallons	Level Inches	PI-129 PSIG	PI-10 PSIG	11-10 of	DPR-1 Red Pen	PI-141 PSIG	T1-140
0000												D .	
0200				•									-
0400									õ				
0600											.• HF _	-	
0800	Inj	icted for	esh wa	ter C	915-	0950		\checkmark	,	- -			
1000	0945			·		ĕ		200			4.7 -	155	93
1200						Z					a and a state of the state of t	and the	
1400											an an An an		9-2 • E. •
1600					4	-						an a the section of	1
1800				J								• • • • • •	
2000		- M				·						1	
2200					·								·

SHIFT SUPERVISOR

signature

1

time

····*

date

date

time

••		Jupe Da	A For J	SURVE	9		DATA S	HEET NO. 					DATE Page	: <u>6-24-88</u> : <u>212</u>	
	<u></u>		You of		Brine	Pond	Fresh	Brine	Booster	Inje	ction	Injection	Imperia	1 1-13	
	Nominel	Actual	L.P. Brine PI-144	Level	Level	PUED PI-127	Vater F.W. Meter	Level	PURD DISCHE	PI-10	TI-10	DPR-1	PI-141	TI-140	
		1830	P310	Inches	Inches			Anteines		- F310	Gar			STA-Le End	
	0880	190		· · ·				Pn·II				LL.	! !		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	1905										537		Ing Brost	pun
		1915			·			DN 14		65		3.2		TOO FPM	
	0400	1930						Dn 17		170		3.1	165	93	
		1937			 		┢────	01 20		IRA_		3-6	ļ	the Ind P-	6 6B
•	0000	1945		1	1					180		<u></u> , >, 45	• .	1	
•		2000						DN JJA		180		3.55		 	
	9800	2020		}	1	ł	· ·	ON 2014		190	T.	26	ļ		
		2045	·		 				· · · · · · · · · · · · · · · · · · ·	180	1	3.42	180	910F 20	48 sta
•	400 0					Į		K						shu but	tting interfly
· .	1000						7			1					
				· .						ain air an the state	a Sing and and a second se	La Contractor		and the second	
	1400						T	I	.*	State State					
					ļ	5	<u> </u>		it south						
	1000								}						
		-				<u> </u>	<u> </u>	 	<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			a week a the state states		
	1800			hnn		ł .		1							
, 1 1	·	+	~		<u> </u>	<u> </u>	<u>†</u>	} -		<u></u>			夏海·东 西		
增快	.2650				1	Į				1					
					1			1	 					<u> </u>	
*							·	· .							
·:		•									•	2. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
	SHIFT SU	PERVISOR _		·	. <u></u>	<u> </u>		SHIFT	SUPERVISOR _				·		•
			signati	ur .e	di Turk	DTC 	time			si	ignature		dàte	time	
		1			• •		• •							an an a' tha	

معصا والعرب المبلك وكثري أأراك

.

NOTES REGARDING DAILY WELL TEST REPORTS

- 1. Pressure and temperature data are uncorrected readings, except as noted on each report.
- Brine flow rates in the daily reports were calculated using meter coefficients which were calculated before the test using an estimated brine density of 1.2. Flow rates in Table A-1 were recalculated from the raw data using the true brine properties.
- 3. Steam flow tates in the daily reports are erroneously high because of the orifice meter problem described in Section 3.3.
- 4. Some daily reports are marked "REVISED". The revisions consisted soley of correcting typographical errors and revising unclear wording. Neither the data nor the intended meaning was changed.
- 5. Units of flow rate shown as lb/hr in the reports mean pounds mass per hour.

R

പ

WELL TEST REPORT

KENNECOTT STATE 2-14

June 01, 1988

Day #0 of test

(This report and succeeding reports cover the period from midnight to midnight.)

Began 30-day flow test of State 2-14 today. Before starting flow, SIWHP =183 psig. (Wellbore was full of canal water because water had been injected to cool the well for beging last April.)

Checked facility and instrumentation and discussed startup procedure. Flowline throttle valve closed, wellhead valves open, and other valves arranged to divert all flow through blooie line to large pit.

Began opening throttle valve at 1730 hrs. Well achieved flashing flow by 1735 hrs and continued to heat up and flow stronger. Throttled well back to prevent damage to pit divider byfilgw from blooie line.

At 1746 hrs started opening bypass to AFT and closing valve to blooie line. At 1757 hrs all flow was going overectly to AFT and brine flow (after flash to atmos.) was being measured in weir box. Brine flow peaked at 478,000 lb./hr at 1800 hrs, then started the pttling well back. At 1800 hrs, WHP = 370 psig; WHT = 455° F (TI-1). Gradually reduced rate to 90,000 lb/hr brine at 1905 hrs.

At 1930 hrs it was discovered that brine way starting to erode pit bank around outlet of weir box. Diverted flow to vent silencer and layed plastic apron under weir discharge. At 1957 hrs repair complete and switched flow back to AFT.

Well continued to flow at average brine rate of 121,000 lb/hr through midnight. At midnight, WHP = 496 psig.; WHT = 469°F by TI-1 and 480°F by TI-1A. (Will check TI's later with mercury thermometer). As of midnight, cumulative brine production (after flash to atmosphere) was 950,000 lb. Pit level rise = 6.5 inches since start of test.

Salt is forming on weir plate and is being chipped off before each reading.

WELL TEST REPORT

KENNECOIT STATE 2-14

June 02, 1988

Day #1 of test

Continued to flow well directly to AFT, measuring brine flow rate in weir box and gauging the pit.

	Summary of	Flow Data	
	WHP	WHIP	Brine Flow
<u> </u>	(psig)	(@ TW-1A) (°F)	(1b / hr)
0000	496	480	120,800
0800	493	469	100,900
1355	- Opened throttle valve	1/4 turn	
1600	512	478	120,800
2400	510 n.n	478	112,800

Rate declines slowly at a constant throttle valve setting, probably because of scale buildup in the valve.

Investigated discrepancy in WHT reaches between TI-1A and TI-1. Switched positions of the two dial thermometers and found they were in fairly good agreement, indicating that the discrepancy is due to the thermowells, not the dial thermometers. TW-1A extends further into the flowline because it has no lagging extension. Removed dial thermometer from TW-1 and will use only TW-1A. Still, WHT readings are somewhat erratic and unconfirmed. Wind causes readings to be lower. Plan to wrap insulation around pipe at thermowell. Waiting on ASTM mercury thermometer to check dial thermometer.

As of midnight, cumulative brine production (after flash to atmosphere) was 3,565,000 lb. Pit level rise = 19 3/4 inches since start of test.

Salt is forming on the weir plate and is being chipped off before each reading. Also, salt sludge is collecting in bottom of weir box and is being shoveled out occasionally. Expect to have dilution water system ready on June 03, 1988.

WELL TEST REPORT

KENNECOTT STATE 2-14

June 03, 1988

Day #2 of test

Continued to flow well directly to AFT, measuring brine flow rate in weir box and gauging the pit and tanks.

	O WHP	WHIT*	Brine Flow
time	O(psig)	(°F)	(lb/hr)
0000	510		112,800
0800	508		97,000
1600	518 n	492	100,800
2400	514	4974	104,700

*See comments below regarding emperature corrections.

Well producted at a nearly constant rate all day with no throttle valve adjustments. Between 1405 and 1440 hrs wellhead pressure and temperature increased by 7 psi and 5°F with no significant change in flow rate. The increase is apparently due to a change in downhole conditions, either in the wellbore or reservoir zones feeding the well.

At 1330 hrs insulation was installed around the pipe and thermowell at TW-1A. Insulation increased the dial thermometer readings by $7^{\circ}F$. Additional insulation was wrapped around the base of the thermometer.

Removed TI-1 from TW-1A and measured temperature with platinum RTD digital thermometer. Temperature was 492°F with RTD and 490°F with dial thermometer (both measurements with insulation around pipe and thermowell.) Temperature values in the above table are TI-1 readings plus 2°F to correct to RTD reading.

Installation of pumps and piping to transfer brine from pit to tanks was completed. From 1700 to 2000 hrs, transferred 75,000 gallons of brine (about 750,000 lb) from pit to tanks. Will hold brine in tanks until injection system is ready (expected June 04, 1988).

As of midnight, cumulative brine production (after flash to atmosphere) was 5,907,000 lb. Pit level has risen 26¹/₂" since start of test.

Salt is forming on the weir plate and salt sludge is collecting in the weir box, but sludge buildup diminished late in the day.

Temperature gauges upstream and down stream of the the throttling valve (TI-9 and TI-10) are intended only for operating information and should be ignored for other purposes. Readings are affected by wind and ambient temperature.

	MESQUITE GROUP, INC.		
	WELL TEST REPORT		
	KENNECOTT STATE 2-14		
•	June 04, 1988		
	Day #3 of test	Į	12

Continued to flow well directly to AFT, measuring brine flow rate in weir box and gauging the pit and tanks.

		Summary of Flow Data	. · ·
Time	(HP sig)	(<u>°</u> F)	Brine Flow (lb/hr)
0000	514	494	104,700
0800	512	49 3	97,000
1600	513	487	89,400
2400	509	481 n n	89,400 (est)
	*Temperature value shown i	TI-I reading plus 2° F.	

Well produced at a gradually declining rate all day with no throttle valve adjustments. Decline is probably due to scale buildup in the throttle valve. As of midnight, cumulative brine production (after flash to atmosphere) was 8,151,000 lb.

Installation of injection booster pump was completed and injection into Imperial 1-13 started at 1145 hrs. Injection flow rates were calculated from tank gaugings until flow recorder was hooked up at 1800 hrs. Injectivity of Imperial 1-13 was poor at first, but improved rapidly (normal behavior). Injection data are given on the attached supplemental data sheet. SIWHP on Imperial 1-13 before injection was 50 psig.

Fresh water (canal water) piping system was completed. Washed and chipped away salt from weir box outfall and began to clean out weir box and outlets from AFT at about midnight. Outlets from AFT were almost totally salted off.

اہے

	SUPPLEMENTAL DATA SHEET For Startup of Injection						
	June 04, 1988						
Time Period	Avg Press. at Inect. Pump (psig)	Avg. IWHP (psig)	Average	Inject. Rate	Cum. Inject. (lb)		
1145-1331	 200	195	75	44,800	79,000		
1331-1340	295	260	461	277, 200	42,000		
1450-1712	196	185	460	276,000	653,000		
2347-2400	100		492	295,000	64,000		

•

838,000

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 05, 1988 Day #4 of test

Continued to flow well directly to AFT, measuring brine flow rate in weir box and gauging the pit and tanks.

	WHIP WHIP	WHT *	Brine Flow
Time	(psig)	<u>(°F)</u>	(lb/hr)
0000	509	481	82,100 (est.)
0800	519	493	89,400
1600	519	491	89,400
2400	512	492	89,400

* Temperature values shown are 1-1 readings plus 2° F.

Well produced at a nearly constant rate all day with no throttle valve adjustments. Between 0300 and 0320 hrs wellhead pressure and temperature increased by 12 psi and 12° F with no significant change in flow rate. This is similar to the change that occurred on June 03, and is apparently due to a change in downhole conditions, either in the wellbore or zones feeding the well.

As of midnight, cumulative brine production (after flash to atmosphere) was 10,253,000 lb.

Weirbox was out of service from midnight until 0600 hrs while cleaning out salt and plugging leaks that developed around weir plate.

Pruett Industries arrived on location at 1100 hrs^{II} to run pressure and temperature survey in State 2-14. Made up Kuster temperature <u>mool</u>, cap tube chamber and sinker bar on cap tubing and rigged up lubricator. Started in hole at 1300 hrs. Made temperature stops every 500 ft. down to 5,000 ft. them made pressure stops coming out of hole. Twice while pulling out of hole.cap tubing got stuck in lubricator packoff (at 1300 and 1069 ft.) because of minor scale buildup on tubing. Both times, tubing was freed by loosening packoff. (for remaining surveys, Pruett will bring hydraulic packoff instead of mechanical packoff. Pressure and temperature data are given below.

Temperature Data

Pressure Data

Depth from KB (feet)	<u>(°F)</u>	Depth from KB (feet)	psia
500	517.8	0	529.80
1000	530.6	1300	727.22
1500	545.5	1600	791.56
2000	562.6	1800	840.90

June 05, 1988

Injected brine into Imperia 1-13 at various rates for most of the day. Injection data are summarized on the attached sheet.

N

M

4

Y

പ്പ

NMSU experimenters finished sampling today.

Page 2

Time Period		Avg. Press at Inj. Pump (psig)		Avg. gpm	Inj. Rate lb/hr	Cum Inj. (thousand lb)
0000-0415	Π	80	**	471	282,000	1,198
0415-0630	ط <i>لع</i> آلے	120		750	450,000	1,013
0630-0701 0701-0753 0753-0840	⊒ ∀	0 		407 0 640	244,000 0 385,000	126 0 302
0840-1020 1020-1035	R			0 663	0 398,000	0 100
1035-1115	O			460	276,000	184
1115-1610 1610-1710 1710-2010 2010-2210 2210-2400		0 4 40 0		225 492 246 523 246	135,000 295,000 148,000 314,000 148,000	664 295 444 628 271
		\forall				5,225
		P	J			
			1			
				l		
					d	
	•					

.

June 05, 1988 SUMMARY OF INJETION INTO IMPERIAL 1-13

.

•

-

•

.

WELL TEST REPORT

KENNECOTT STATE 2-14

<u>June 06, 1988</u> Day #5 of test

Continued to flow well directly to AFT until flow was diverted through separator at 0630 hrs. Temporarily, separator was run at low pressure, with steam control valve fully open and bypass open around brine level control valve, while modifications to the weir box were done. Brine flow rate was constant at 89,400 lb/hr. Average WHP = 513 psic, Average WHT = 493°F.

At 1712 hrs a small leak was discovered in the 2-phase flowline, immediately downstream of the throttle valve. Leak was apparently caused by erosion. Well was S.I. at 1720 hrs and leak was repaired by welding a half sole patch on the pipe. Well was opened up again at 2028 hrs and wellhead pressure and temperature stabilized at previous conditions by 2200 hrs. After flowline leak was repaired, welder resumed work on weir box. Throttle valve setting was not disturbed and flow rate measurements taken after weir box was back in service early on June 07, 1988 confirm that flow rate was constant throughout the day.

As of midnight, cumulative brine production (after flash to atmosphere) was 12,358,000 lb.

Injected brine into Imperial 1-13 off and on between midnight and 0800. Refer to attached injection data summary.

Personnel from PNL arrived and began rigging up for sampling.

Shut-in WHP readings on State 2-14 were as follows:

Time	Press. (psig)
1740	
1/40	4 4 4
1758	388
1813	352
1855	285
1942	285
2024	238

INJECTION DATA SUMMARY

•

IMPERIAL 1-13

•

•

June 06, 1988

	ĵ	Avg. Press	Avg İnj	ection Rate	Mass
Time Period		at Inj Pump (psig)	gpm	lb/hr	Injected (thous lb)
0000-0115 0115-0730 0730-0750 0750-0815? 0803-2400	Ą		230 0 250 84? 0	138,000 0 150,000 50,000? 0	172 0 50 21 0 243
		Å ⊌	N N	·	
			ľ		
]

WELL TEST REPORT

KENNECOTT STATE 2-14

Continued of flow well through separator at low pressure until modifications to weir box were complete. From 0245 to 0400, level control on separator was put in operation and pressure was increased up to planned operating condition of approximately 200 psig. Brine flow is through the "A" (north) metering leg.

Well produced at a nearly constant rate all day. Production data are summarized as follows:

Time	WHP (psig)	WHT* (°F)	Sep Press (P10155) (psig)	Stm Flow from Sep <u>lb/hr</u>	Brine Flow from Sep <u>lb/hr</u>	Brine Flow at Weir <u>lb/hr</u>
0000	517	492				
0800	517	492	214	N/A	123,750	89,440
1600	519	493	210	13 ,480	117,000	89,440
2400	517	491	204	1 30,000	112,500	89,440

*Temperature values shown are TI-1 readimps plus 2°F.

Flow rates of steam and brine at the end of the day appear to be consistent with expected levels of flash, but flash calculations have not been done yet.

As of midnight, cumulative brine production (after flash to atmosphere) was 14,595,000 lb.

Injected brine into Imperial 1-13 as required to keep pit level down. Refer to attached injection data summary. Based on tank gauge readings, the capacity of the west pit pump is more than 300,000 lb/hr.

Personnel from EMSI (contractor for EPRI) returned to the site and collected samples from steam and brine lines at the separator.

INJECTION DATA SUMMARY

Esc

WELL TEST REPORT

KENNECOTT STATE 2-14

June 08, 1988

Day #7 of test

Continued to flow well at average of 136,000 lb/hr total mass rate until 1955 hrs when flow rate was increased to approximately 300,000 lb/hr. At 1955 hrs opened throttle valve 1/2 turn, allowed suparator conditions to restabilize, then opened throttle valve an additional 1/4 turn to achieve desired rate. Brine flow is through the "A" (north) metering leg. Production data are summarized as follows:

Time	WHP (psig)	WHT* (°F)	Sep Pres (PI-155) (psig)	Stm Flow from Sep (lb/hr)	Brine Flow from Sep (lb/hr)	Total E Flow <u>lb/hr</u>	Brine Flow at Weir <u>lb/hr</u>
0000	517	491	20	30,000	112,500	142,500	82,100***
0800	512	492	206	30,160 J	105,750	135,910	89,440
1600	512	490	197 Č	31,900	99,000	130,900	68,000***
2400	540	499501	210	₩38,960**	238,500	300,000*	**202,100

* Temperature values shown are TI-1 peadings plus 2°F.

- ** Steam orifice meter appears to be out of calibration. The indicated steam flow is unreasonably low. The total flow of 300,000 lb/hr is an estimate based on the measured brine rate and expected flash.
- *** Weir box readings at 0000 and 1600 were nower than average because brine LCV was cycling.

The steam backpressure control valve is being operated manually because it sticks and moves in jerks on the pneumatic actuator. Manual operation is very satisfactory because well flow is stable. When rate was increased, the bypass valve around the brine LCV and fixed choke had to be opened slightly because of excessive pressure drop across the choke.

At about 2150 hrs generator ran out of fuel - lost lights and instrument air and separator dumped. Generator and instrument air compressor were back on line and separator operation was back to normal by 2230 hrs.

As of midnight, cumulative brine production (after flash to atmosphere) was 17,064,000 lb.

Injected brine into Imperial 1-13 from 0000-0810. Average rate was 282,500 lb/hr (470 gpm); average pump discharge pressure = 45 psig; average IWHP = 35 psig. Total mass injected = 2,307,000 lb.

Personnel from UURI collected samples from steam and brine lines at separator before the rate change. They expect to return for more samples on last day of test. EMSI also sampled before rate change. MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 09, 1988 Day #8 of Test

Continued to flow at average rate of 283,000 lb/hr. Canal water was being added at weiropox; but salt was building up in outlets of AFT enough to restrict brine flow from AFT and causing excessive carryover. Carryover was noticeable after 100 hrs and was worse during minor separator upset at 1530 hrs.

At 1700 hrs motor on instrument air compressor went out, causing another separator upset. By 1800 hrs separator pressure and level were restored to normal with steam backpressure control valve and brine level control valve on manual operation. Well flow is stable and separator level is held constant with occasional malve adjustments.

Because of salt problem, a tengerary connection was made to inject canal water upstream of the AFT at the downstream end of the brine metering skid. Started injection at that point of 1910 hrs. Fresh water apparently dislodged salt and plugged outlets of AFT. At 1920 hrs brine started coming over the top of the AFT. Immediately closed throttle valve 3/4 turn and opened blooie line to pit to reduce flow to AFT. Continued fresh water injection and by 2000 hrs AFT was unplugged.

At 2005 hrs reopened throttle value and by 2130 hrs had restored normal operation.

Brine flow recorder oppeared to be responding slowly, so at 2100 hrs the flange taps were rodded out. Recorder was working OK.

Brine flow is through the "A" (north) metering leg. Production data are summarized as follows:

Production Summary

n n

Time	WHP* (psig)	WHT** (°F)	Sep Press (PI - 155) (psig)	Steam (lb/hr) from	Brine (lb/hr) separater	Total I Flow Cat (lb/hr)	Brine Flow Weir*** (lb/hr)
0000	540	501	208	59,500**	224,100	283,600**	202,000
0800	538	501	208	59,000**	222,000	281,000**	202,000
1500	542	501	208	59,500**	224,000	283,600**	202,000
2400	538	501	200	52,900**	199,200	252,100**	172,000***

June 09,1988 page 2

- * Temperature values shown are TI-1 readings plus 2°F.
- ** Steam orifice meter appears to be out of calibration. Steam flow and total flows shown above are estimates based on the measured brine flow and expected flash.
- *** Weir box brine rate at 2400 hrs is corrected for fresh water injection rate and resulting steam condensation.

As of midnight, cumulative brine production (after flash to atmosphere) was 21,831,000 l

Injected bring into Imperial 1-13 from 0930 hrs through midnight. Average rate was 262,000 lb/hr (436 gpm). Average IWHP = 30 psig; Average IWHT = $133^{\circ}F$.

Brine flow rates from the separator June 07, and June 08, are in error because wrong meter coefficient was applied. Reported flows should be reduced by 7.8 percent. Revised summary of flow rate data for those dates will accompany tomorrows report.

Analyses by Unocal of samples taken June 09, 1988, at separator:

Brine: TDS = 293,374 ppm, Cl 📜 176,025 ppm

Steam Condensate: TDS = 8 ppm,

KENNECOTT STATE

1220 hrs 6-10-88 Brine flow at sep= 4.7 x 41,500 = 195,050 lb/hr

Steam flow at sep= 4.27 x 11,900 = 50,813 245,863 lb/hr TOTAL 50,813 245,863

Flash at sep=

Brine at weir box, less diluent = $212,000 - 55 \times 575 = 180,375$

Steam press at sep outlet = 198 psig

<u>195,050 - 180,375</u> Secondary Flash = 195,000

WHP = 542 psiqWHT = 502409 ALT F Brine temp at sep. outlet = Agrees with ASTM Mercury Therm. Brine press at sep outlet = 214 psig Steam temp at sep outlet $= 414^{\circ}F$ Bimetal Dial Therm. Steam temp at sep outlet = $402^{\circ}F$ ASTM Mercury Therm.

= .207

_

MESQUITE GROUP, INC. WELL TEST REPORT June 10, 1988 Day #9 of test

Continued to flow at average rate of 246,000 lb/hr. Brine and steam rates were gradually declining, probably due to scale buildup in the throttling valve. At 1940 hrs opened throttle valve 12 turn then closed back 1/2 turn to clear scale buildup. Flow rate increased to earlier rate.

Brine flow is through " A " (north) metering leg. Production data are summarized as follows

Time	(WHP (psig)	WEF,	Sep.Press (155) (155)	Stm Flow from sep (15/hr)	Brine Flow from sep (15/hr)	Total (15/hr)	Brine Flow at Weir *** 15/hr
0000	540	501	200	52,900**	199,200	252,100**	172,000
0800	543	502	201	51,850**	1 9 5,050	246,900**	180,950
1600	545	502	195	50,000	182,600	232,600	152,400
2400	542	502	204	600	203,350	250,950	184,400

* Temperature values shown are TI-1 readings plus 2°F. .

- ** Steam orifice meter was not in service for readings at midnight and 0800 hrs. Steam flows and total flows at those times are estimates based on the measured brine flow and the flash fraction calculated from later readings.
- *** Weir box brine rate is corrected for fresh wate injection rate and resulting steam condensation.

Instrument technician from Instrument Specialists artived before 0800 hrs to troubleshoot steam flow recorder. He recalibrated the recorder and the flange taps were rodded out. Meter was back on line by 1000 hrs. Calibration on all other flow recorders was checked.

As of midnight, cumulative brine production (after flash to atmosphere) was 25,969,000 lb.

Injection Data Summary

പ

Imperial 1-13

	Avg Press	Avg	Avg In	ject Rate	Mass
Time Period	(psig)	(psig)	gpm	lb/hr	(thous. lb)
0000-0330	45	35	460	276,000	966
0330-1400	0	0	0	0	0
1400-1422	45	-	460	276,000	37

page 2

	Avg Press	Avg	Avg In	ject Rate	Mass
Time Period	(psig)	(psig)	gpm	lb/hr	(thous lb)
1422-1720	0	0	Ó	0	0
1 720-2322	22	15	7 364	218,000	1,315
2322-2400	87	50	685	411,000	260
	J		, , , , , , , , , , , , , , , , , , ,		2,578

Between 1230 and 1245 hrs checked temperatures at brine and steam outlets of the separator with the following regulats:

		O	Dial Thermometer	ASTM Mercury Thermometer
Steam	(TI-101)		414°	402°
Brine	(TI-109A)		409°	4 09°

TI-101 readings should be corrected by subtracting 12° F. Readings on data sheets are all direct readings with no corrections applied.

At 2130 hrs took sample of brine from weir box and measured its specific gravity. Sp. gr. = 1.26 at 60°F. At the time sample was taken brine flow from separator was 207,500 lb/hr and dilution water was being added at 52 gpm.

			·	KENNEC CORRECTED 1 June	OTT STATE 2-11 PRODUCTION DAT 7 and 8, 1988	4 TA FOR		
T	ime	WHP (psig)	WHT* (°F)	Sep Press (PI - 155) (psig)	Stm Flow from Sep** (lb/hr)	Brine Flow from Sep lb/hr	Total Flow** (lb/hr)	Brine Flow at Weir (lb/hr)
5/7	0000 0800 1600 2400	517 517 519 517	492 492 493 491	214 210 204	30,330 28,680 27,580	- 114,100 107,900 103,750	144,430 1136,580 1131,330	N/A 89,440 89,440 89,440
6/8	0000 0800 1600 2400	517 512 512 540	491 492 490 501	204 206 197 208	27,580 25,920 24,270 59,500	103,750 97,520 91,300 224,100	131,330 123,440 115,570 283,600	89,440 89,440 68,040 202,100

WELL TEST REPORT KENNECOTT STATE 2-14

June 11, 1988

Day #10 of test

Continued to flow at average rate of 240,000 lb/hr. Brine and steam rates were gradually declining, probably due to scale buildup in the throttle valve or flowline. (early on June 12, the rate was increased slightly to adjust for the decline.)

	Brine flow i	s through	"A" (north) met	ering leg.	Production da	ata are su	mmarized	
as fol	llows:	-	\bigcirc					
			Sep Press	Stm Flow	Brine Flow	Total	Brine Flow	**
	WHP	WHT*	(PI-155)	from Separ	from Separ	Flow	at Weir	
Time	(psig)	<u>(°F)</u>	(psig)	(lb/hr)	(lb/hr)	(lb/hr)	(1b/hr)	
0000	542	502	204	47,600	203,350	250,950	184,400	
0800	542	502	205	47,600	195,050	242,650	178,200	
1600	550	502	203	48,790	184,680	233,470	169,700	
2400	540	502	204	820	182,600	228,420	171,400	
				V7/				

* Temperature values shown are TI-1 readings plus 2°F.

** Weir box brine rate is corrected for fresh water injection rate and resulting steam condensation.

Downhole pressure and temperature survey and flow hate increase were scheduled for today. Pruett arrived at 1245 hrs and rigged up for survey. Made up Kuster temperature tool and cap tube chamber, rigged up wireline BOP and lubricator and ran in hole to 1,000 feet. Tried to purge cap tube, but tube was plugged. Pulled out of hole, cut off 100 ft of cap tube and blew helium through tube okay. Picket up tools and lubricator again, ready to run in hole. Tried to purge cap tube again, but tube was plugged. Tried to clear tube - no results. Layed down lubricator. Pruett ordered pressure intensifier from Bakersfield to blow out obstruction, however that will take 24 mours. In order to minimize delay, decision was made to run survey tomorrow morning with a different spool of cap tubing. Pruett crew left the site at 2200 hrs. Rate change is postponed until then.

As of midnight, cumulative brine production (after flash to atmesphere) was 30,192,000 lb.

Injected brine into Imperial 1-13 as required to keep pit level down. Refer to attached injection data summary.

page 2	Avg Pres	Avq	Avg In	njet Rate	Mass
Time Period	at Inj Pump (psig)	IWHP (psig)	gpm	lb/hr	Injected (thousand lb)
0000-0135	87	50	690	414,000	656
0135-0152	-	-	567	340,000	96
0152-0453	75	45	653	392,000	1,183
0453-1345	o 📕	0	0	0	0
1345-1500	10 📕		267	160,000	200
1500-1825	· 30 .	20	395	237,000	810
1825-1848	o 🔮	0	0	0	0
1848–2115	50	28	428	257,000	630
2115 - 2150	0		0	0 [×]	0
2150-2400	46		438	263,000	570
					4,145

1

٦

d

SALTON SEA SCIENTIFIC DRILLING PROJECT

KENNECOTT STATE 2-14

Revised Test Plan

June 11, 1988

Background

A flow test of State 2-14 was begun on June 1, 1988. It was originally planned as a 30-day step-rate test with three planned rate steps defined as follows:

Step No.	Planned Uuration (days)	Planned Flow Rate (lb/hr total mass)
1	U ₇	200,000 - 250,000
2	7	400,000 - 500,000
3 .	16	600,000 - 750,000

The test began on June 1, 1988, and the first flow period was completed on schedule in seven days, ending on June 8, when the the was increased. During the first flow period the well was produced at an average rate of 150,000 lb/hr. The rate was constrained to less than the planned 200,000 W/hr minimum because it was necessary to store the produced brine in the pit until injection facilities were completed. The second step is under way with the well producing at 250,000 lb/hr.

During the time since the original test plan was finalized, several factors have come to light or have been confirmed which influence plans for the remainder of the test. These factors are:

- 1. The remaining budget will not support a full 30-Day test.
- 2. State 2-14 is a very high productivity well and its for conditions are found to stabilize within hours after a rate change. Therefore, for purposes of reservoir engineering and defining the well's deliverability characteristic, shorter flow steps will suffice.
- 3. The well is clearly capable of very high flow rates and in order to define its deliverability in a useful range, three additional rate steps (including the one which began on June 8) will be needed.
- 4. While at least one experimenter (UURI) was counting on rate steps of at least seven days' duration, most are in favor of compressing the schedule.
- 5. There is broad interest in a short, maximum rate flow directly to the pit for several hours. The only way this can be accomplished without compromising the planned reservoir and well performance analyses is to do it as a separate test after the step - rate test and final shut-in period are over.

Revised Test Plan

The recommended plan is for a 19-Day testing program defined as follows:

Revised Test Plan (cont'd)

Step No.	Duration (Days)	Flow Rate (1b/hr Total Mass	Start Date	End Date
1*	7	1′50 ,00 0	6/1	6/8
2**	3	250,000	6/8	6/11
3	3	450,000 - 500,000	6/12-11	6/13/14
4	<u>a</u> 3	650,000 - 750,000	6/14	6/17
-		Shut in to monitor pressure buildup	6/17	6/19
-		Maximum rate flow directly to pit	6/20	6/20
* Ste ** Ste	ep No. 1 compland ep No. 2 underway	- 44 F		

Each flow rate increase except the one on June 8, will be accompanied by a downhole pressure and temperature survey as specified in the original program. A profile survey and pressure buildup test will also be conducted at the end of the fourth flow period, as specified in the original plan.

end matche H

Page 2

WELL TEST REPORT

KENNECOTT STATE 2-14

June 12, 1988 🔒

Day #11 of test

Well was flowing at 228,4000 lb/hr at midnight, with rate declining gradually due to scale in throttle valve. At 0248 made small throttle valve adjustment and rate restabilized at 237,600 b/hr but continued declining slowly. This rate adjustment was small to avoid an effect on the pressure and temperature survey scheduled for later.

Between 1150 and 1200 hrs, brine flow from the separator was switched to the south meter run (leg "B") in anticipation of increasing the flow rate.

Pruett arrived on location at 0630 hrs, rigged up, and ran pressure/temperature survey in State 2-14 with cap tubing and Kuster temperature tool. Started in hole at 0955 hrs. Profile survey was complete and tools were hung at 5,000 ft at 1212 hrs to monitor pressure drawdown. Cap tube pressure stabilized by 1235 hrs.

At 1314 - 1322 hrs opened throttle wive 1 turn to increase flow rate. Planned rate was 450,000 to 500,000 lb/hr. Rate stabilized at 460,000 lb/hr.

Production data are summarized as follows;

Time	WHP** (psig)	WHT* (°F)	Sep Press (PI-155) _(psig)_	Stm Flow From Sep (1D/hr)	Brine Flow From Sep _(lb/hr)	Total Brn Flow*** Flow at Weir (lb/hr) (lb/hr)
0000	535	502	204	45,820	182,600	228,420 171,400
0800	541	502	196	49,390	182,600	231,990 178,700
1200	545	503	198	49,980	182,600	232,580 179,600
1400	508	498	193	95,800	→ 370,900	466,700 296,260
1600	510	499	190	97,460	361,100	458,560 298,512
2400	511	500	198	98,770	351,360	450,130 291,870

* Temperature values shown are TI-1 readings plus 2°F.

** Pressure values shown are PI-1 readings less 5 psi.

** Weir box brine rate is corrected for fresh water injection rate and resulting condensation.

) ||

Downhole pressure at 5000 ft was 2053 psia before flow rate change and 1945 psia after.

.

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 13, 1988 Day #12 of Test

The well was flowing 450,000 lb/hr at midnight, with rate declining gradually due to scale in the throttle valve. The well head pressure was 513 psig. The valve was adjusted at 0022 hrs and the rate restabilized at 460,000 lb/hr. By 2200 hrs the rate had declined to 439,000 lb/hr and wellhead pressure was up to 519 psig so the throttle valve was adjusted at 2225 hrs and the rate was 457,000 lb/hr with a wellhead pressure at 513 psig at midnicat.

The capillary tubing remained in the well from yesterday to measure the pressure drawdown at the higher rate. Pruett personnel arrived on site at 0800 hrs and pulled the tubing and Kuster temperature instruments from the well by 1000 hrs and rigged down.

Production Summary Kennecott State 2-14							
Time	WHP* (psig)	WHT** (°F)	Sep Press (PI-155) (psig)	Stm Flow (1b/hr) From Sep	Brn Flow (lb/hr) parator	Total flow (lb/hr)	Brine*** at Weir _(lb/hr)
0000	513	500	198	98 300	351,000	450,000	335,000
0800	512	500	200	99,100 N	351,000	450,000	292,000
1600	518	500	200	98,600	346,000	445,000	307,000
2400	513	500	202	101,000	56,000	457,000	320,000

- * WHP = PI-1 reading 5 psi
- ** WHT = TI-1 reading + $2^{\circ}F$
- *** Weir box brine rate is corrected for fresh water injection rate and resulting steam condensation.

Attachement to June 13, 1988 Daily Report

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 14, 1988 (REVISED)

Day #13 of Test

flowing 457,000 lb/hr at midnight with a wellhead Well was pressure of 513 psig. By 0800 hrs., the flow had declined to 447,000 lb/hr due to scale buildup. The throttle valve was adjusted at 20900 hrs and the flow rate increased to 458,000 1b/hr. The wellhead pressure remained at 513 psig. Continued to operate at ner this rate until the rate change later in day, although several throttle valve adjustments were necessary to These adjustments were necessary to compensate for maintain it. what is believed to be scale build in the pipeline or valves. Downhole measurements support this conclusion as capillary tube measurements obtained after it was rerun in the hole were just a few points different from when it was pulled the previous day, indicating very little change in the reservoir conditions.

Pruett personnel arrived on location at 1300 hrs, rigged up, and ran pressure/temperature survey with capillary tubing and Kuster temperature tool. Started is hole at 1508 hrs, made stops every 500' for temperature measurements, and arrived at final setting depth of 5000' at 1801 hrs. Repurged tubing, hooked up computer and began recording downhole pressure data.

Ready to make rate change at 1830 hrs. Waited on EMSI to take final brine and steam samples then increased the rate at 1937 hrs by opening the throttle valve (1) turn. While stabilizing rate, increased separator pressure from 200 a 250 psig in order to make steam meter read in range. Plan to operate at this pressure until steam meter can be recalibrated for higher range tomorrow. Steam meter now reading maximum. Total flow after rate change 600,000 lb/hr \pm . This is below the scheduled 650-750,000 lb/hr but carryover from atmospheric flash tank and limitations of pond and injection pumps make it a prudent one.

Time	WHP* (psig)	WHT * * 0F	Sep Press (PI-155) psig	5 <u>Flows f</u> Steam (lb/hr)	rom Sep. Brine (lb/hr)	Total Fædw (lb/hr)	Brine Flow at Weir*** (lb/hr)
00:00	513	500	202	101,000	356,000	457,000	320,000
08:00	513	500	200	100,600	346,000	447,000	274,000
10:00	513	499	202	102,000	356,000	458,000	316,000
18:00	519	500	204	119,000	337,000	457,000	329,000
20:00	456	490	250	131,000	468,000	600,000	451,000
24:00	480	492	246	128,000	464,000	592,000	440,000

* WHP = PI-1 reading - 5 psi.

** WHT = TI-1 reading + 2° F

*** Weirbox brine rate is corrected for fresh water injection rate and resulting steam condensation.

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 15, 1988 (REVISED)

Day #14 of Test

At just after midnight the well was flowing at an average rate of 592,000 lb/hr and stayed near that rate until changed at 19:25. The pit level gained 5" during the day due to operational problems (maintaining suction) of the pumps. When they had suction, they dould pull the level down or at least stay even, but keeping them primed was most difficult. Suspect this problem is caused by the short circuiting of the hot produced fluid directly to the pump suction over the sagged pit curtain.

The Instrument Special sts Co. technician arrived before 07:30 and replaced the 200-inch w.c. differential spring in the steam rate recorder with a 300-inch w.c.spring. The addition of this spring will allow the vessel pressure to be reduced to the original pressure of around 200 beig and still keep the steam flow recorder pen within the chart range. This reduction will cause a higher percentage of the bride to flash and be measured by the steam flow meter and reduce the flow and velocity in the brine run and AFT which should help the carryover problem.

Since the previous rate increases had not had a significant effect on the WHP, it was decided to increase the rate to 725,000 lb/hr. At 19:25 the throttle valve was opened (1/2) turn. By 20:00 the WHP had dropped to 410 psig and the total flow increased to 720,000 lb/hr. The level control on the separator was not working correctly and the liquid level was fluctuating. The carryover from the atmospheric flash tank was excessive. At 23:02 and 23:25 hrs the throttle valve was pinched to reduce flow. At 0050 hrs (6-16) the level in the separator went past the top of the sight glass so the level control bypass valve was opened. A short time later the level control valve went wide open and emptied the separator through the brine_line. The level indicator still read high and the brine meter was off scale. Separator control was put on manual and the brine_meter was not working. Plan to repair everything after daybreak G/16.

g

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 15, 1988 (REVISED)

Day #14 of Test Continued

Production Summary

Time	WHP	WHT**	Sep Press (PI-155) psig	Flows f Steam (lb/hr)	rom Sep. Brine (lb/hr)	Total Flow (lb/hr)	Brine Flow at Weir*** (1b/hr)
00:00	480	492	246	128,000	465,000	592,000	440,000
10:00	485	4	247	128,000	459,000	587,000	414,000
18:00	491	492	248	131,000	457,000	588,000	447,000
20:00****	410	481	246	154,000	566,000	720,000	581,000
22:00****	409	481	247	149,000	673,000	822,000	606,000
24:00****	491	493	221	92,000	N/A	N/A	N/A

* WHP = PI-1 reading - 5 psi ** WHT = TI-1 reading + 2

 \square

*** Corrected for fresh waten injection and condensation *** Unstable flow **** Unstable flow

Pruett personnel arrived at 09\050 and pulled cap tubing out of well. The final pressure at 10:00 at 5,000' was 1,875 psia. They were out of the hole and in the lubricator by 11:00, but the lubricator was salted up and they didn't get off the wellhead until 14:00.

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 16, 1988 (REVISED)

Day #15 of Test

At midnight, as stated in yesterday's report, the separator control and the brine meter were not working. The estimated flow rate was 590 10/hr and the WHP was 491 psig. By 12:00 the rate had dectined to 548,000 lb/hr and the WHP increased to 505 psig. At this time the separator controller and brine meter were back in operation and from 13:38 until 15:00 the throttle valve was opened in small increments and the flow gradually increased to 707,000 lb/hr. CAt 17:30 the pond pumps lost suction and there was no injection until 21:30 when the suction lines were cleaned and the pumps repriled. However, one pump would not start and was left down. At midnight the flow was steady at 707,000 lb/hr with WHP of 406 psig.

Production Summary

Time	WHP* (psig)	WHT** of	Sep Pres (PI-155) psig	f <u>Flows</u> Steam	from Sep. Brine (1b/hr)	Total Flow (lb/hr)	Brine Flow at Weir*** (lb/hr)
				D 1	****	* * * *	
00:00	491	493	221	92,000	516,000	608,000	453,000
12:00	505	498	225	124,000	424,000	548,000	378,000
14:00	473	491	206	142,000	512,000	654,000	361,000
18:00	414	484	236	152,000	556,000	709,000	502,000
24:00	406	483	227	146,000	91,000	707,000	510,000
					-		

[]]

പ്പ

* WHP = PI-1 reading - 5 psi ** WHT = TI-1 reading + 2°F

*** Corrected for fresh water injection and condensation

**** Estimated

SALTON SEA SCIENTIFIC DRILLING PROJECT

•

KENNECOTT STATE 2-14

REVISED TEST SCHEDULE

June 16, 1988

	ſ	ા અન્ય ગય સં
Date	مطالب ال	Activity
6/16	I V	Increase flow rate to 700,000 lb/hr
6/17	V	Reduce rate as needed to avoid carry over
6/18		Sentinue to flow well
6/19		Run T survey with capillary tubing and Kuster temperature tool. Shut in well between 1200 and 2400 hrs with cap tube in well to measure buildup
6/20		Watch building
6/21		Open well and the at 200,000 lb/hr. Rig up DMSTE, Pruett and make two runs with downhole fluid sampler.
6/22		Open well for maximum flow.
6/23		Run depth determination survey in Imperial 1-13 to and run capillary tubing in well. Inject into Imperial 1-13.
6/24		Inject into Imperial 1-13.
6/25		END

പ്പ
MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 17, 1988 (REVISED)

Day #16 of Test

Just after midnight the total flow was 707,000 lb/hr and the WHP 406 psig. From midnight to 14:00 the flowrate gradually declined and the WHP gradually increased. Did not attempt to adjust rate because of other operational problems.

The pond pump which would not start at 21:30 on 6/16, was finally started at 03:00 on 6/17. However, suction problems remained and the pit continued or rise. Shortly after getting the second pond pump started one of the injection pumps lost the coupling between the pump and motor and was out of service.

By 14:13 hrs the pond level was too high and the flow rate was cut to 482,000 lb/hr. Further problems with the pit pumps necessitated additional reductions to 323,000 lb/hr at 19:20, 300,000 lb/hr at 21:05, and 189,000 at 22:50. It remained there until the end of the day.

The injectivity of the injection well has dropped approximately 30% since the 15th when the fresh water pump was down for 4 hours. This was probably due to salt deposition and may not be permanent.

Pruett wireline service informed us that a recalibration of the temperature tools used in some of the surveys showed a discrepancy and the results will be recalculated.

Production Summary

Time	WHP* (psig)	WHT** OF	Sep Press (PI-155) psig	Flows f Steam (lb/hr)	rom Sep Brine (1b/hr)	Total Flow (lb/hr)	Brine Flow at Weir*** (lb/hr)
00:00	406	483	227	146,000	561,000	707.000	510.000
14:00	452	487	217	146,000	556,000	703.000	N/A
18:00	491	500	215	101,000	381,000	482.000	385,000
20:00	491	506	215	69,000	254,000	323, 000	242,000
22:00	560	505	215	56,000	244,000	300,000	198,000
24:00	557	506	219	43,000	146,000	189,000	N/A

* WHP = PI-1 reading - 5 psi. Is not reading correctly.

*** Weir flow corrected for fresh water injection and condensation.

^{**} WHT = TI-1 reading + 2°F

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 18, 1988 (REVISED)

Day #17 of Test

Continued to flow well at about 200,000 lb/hr while waiting on a replacement injection pump. It finally arrived and was promptly put into service. However, it did not help, as the pumps appeared to be suction limited. Continued to look for reasons for limitation. Connected one injection pump to a different outlet on the suction header but there was no improvement. Will continue to make changes in attempt to correct problem.

The wellhead pressure gauge did not work properly for a while. The sensing port was rodded out and the gauge resumed proper readings.

The brine flow recorder on Leg B, after the rate was reduced, fluctuated greatly even when the well flow appeared to be stable. Will check out as time permits.

The injectivity of Imperial 1-13 has improved about 10% since the 16th. The proportion of fresh water being injected is large and is probably dissolving the salt that was deposited on the 15th.

Production Summary

Time	WHP* (psig)	WHT** OF	Sep Press (PI-155) psig	Flows Steam (lb/hr)	Frine Brine (hr)	Total Flow (lb/hr)	Brine Flow at Weir*** (lb/hr)
00:00	557	506	219	43.000	146 000	189.000	239.000
10:00	563	505	219	44,000	151,000	195,000	147,000
18:00	557	505	218	43,000	166,000	208,000	159,000
24:00	557	504	215	42,000	117,000	159,000	153,000
* [** [*** [WHP = PI-1 WHT = TI-1 Weir flow (readin readin correct	ng - 5 psi ng + 2°F ted for fre	esh wate	r injectio	on and con	densation.

പ്പ

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 19, 1988 (REVISED)

Day #18 of Test

Well flow continued at a low rate of 150,000 lb/hr while the injection pumps were being reconfigured again to try and correct the suction problem. The reconfiguration was complete by 02:00, but when the second pump was started the coupling broke on the other pump. A coupling was removed from the stand-by pump, and used to replace the broken one. It was operational before 04:00. The suction problem remained and the injection rate did not increase.

The pond level was pulled down to below the sludge line by 06:00 and some sludge was transferred into the injection tanks and probably into the injection well as the injectivity appears to have declined by about 20% and the wellhead pressure risen. The injection pumps were unable to buck the increased pressure and maintain adequate flow. By noon the pumps were put into series in order to increase their pressure output.

The rate was increased to 483,090 lb/hr with a WHP of 416 psig from 15:40 to 16:30 and then gravially declined to 449,000 lb/hr by midnight with a WHP of 525 psign =

Tomorrow Pruett will run in the hole with capillary tubing to record pressure build up when the well is shut in.

Production Summar

Time	WHP* (psig)	WHT** of	Sep Press (PI-155) psig	Flows fr Steam (lb/hr)	rom <u>Sep.</u> Brine (1b/h r)	Total Flow (1b/hr)	Brine Flow at Weir*** (lb/hr)
00:00	557	504	215	41,500	117.000 -	159,000	153,000
14:00	566	504	214	40,700	97,600 =	138,000	150,000
16:30	516	494	215	103,000	381,000	483,000	451,000
24:00	525	497	213	98,000	351,000	ee9,000	383,000

പ്പ

- * WHP = PI-1 reading 5_psi.
- ** WHT = TI-1 reading + $2^{\circ}F$
- *** Weir flow corrected for fresh water injection and condensation. The sight gauge seems to be out of zero, and will be checked when well is shut in.

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 20, 1988 (REVISED)

Day #19 of Test

Well was flowing 449,000 lb/hr at a WHP of 525 psig at midnight. At 00:41 the throttle valve was opened slightly to compensate for scale buildup and maintain flow.

At 12:12 the second injection pump blew a plug and had to be shut down. Both pond suction pumps were then shut down and the pond began filling.

Pruett wireline personnel arrived on site and began rigging up at 12:45. Started in the hole with capillary tubing and a temperature instrument at 14:20 and reached 5,000 ft at 16:40. Downhole pressure at 5,000 ft was 1,965.45 psia.

EPRI arrived on site at 6:00 to take final gas samples and finished sampling at 17:30.

At 15:00 noticed pressure on the shut in Brine A leg of 210 psig. It was also hot which indicated a leakage by the stop valves. Since at times the weir box flow had been higher than the orifice meter flows on leg B decided to switch back through A leg and see if the rate changed significantly. Did this at 15:45. Measured flow on B leg 361,120 lb/hr and on Anleg 377,650 lb/hr. Not a significant difference, 4%.

Pressure at 5,000 ft built-up The well was shut-in at 17:54. from 1,965.45 psia to 2,128.20 psia in 33 minutes.

Production Summary

Time	WHP* (psig)	WHT** OF	Sep Press (PI-155) psig	<u>Flows</u> f: Steam (lb/hr)	rom Sep. Brine 2 (lb/hr)	Total Flow (lb/hr)	Brine Flow at Weir*** (lb/hr)
00:00	525	497	213	97,800	351,000	9,000	383,000
06:00	510	498	217	103,000	371,000	474,000	345,000
12:00	525	499	215	101,000	371,000	470,000	355,000

5

* WHP = PI-1 reading - 5 psi. ** WHT = TI-1 reading + 2° F

*** Weir flow corrected for fresh water injection and condensation.

Injectivity of Imperial 1-13 continues to decline. At midnight injectivity was 3,900 lb/hr/psi. At 06:00 it was 2,600 lb/hr/psi.

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 21, 1988 (REVISED)

Day #20 of Test

At 08:00 the downhole pressure in State 2-14 was 2125.59 psia, down 2.2 pse-from 21:30 on 6/20/88. Pruett purged the helium in the capillary tubing at about 10:15. By 11:00 the pressure had stabilized at 2,125.65. The decrease in pressure may be due to either cooling of fluids below the tool or interzonal flow. Downhole pressure will continue to be observed until June 22, 1988.

At 11:00 the State 2-14 wellhead pressure was 84 psig.

Testing of the sludge from the brine pond with hydrochloric acid showed that some of the solids dissolved. Twelve 55-gallon drums of 12 HCl were added proportionally to all (7) brine tanks, agitated with a small pump and allowed to settle overnight. At 17:00 the pH of the fluid was 1.0, no fluid was injected.

Instrumentation from the steam and brine lines is being rigged down. Steam separator static pressure recorder moved to injection wellhead for injection test.

	U U	
Time	Injectich Rate	
00:00	192,600 May/hr	
06:00	173,340 15/hr	

N

_

At shut-in the injectivity was 2,500 lb/hr/psi.

Bec7.jul

MESQUITE GROUP, INC.

WELL TEST REPORT

KENNECOTT STATE 2-14

June 22, 1988 Day 21, 1988

Downhole pressure in State 2-14 at 5000' was 2123.47 at 0800. No flow planned for the ay. Continued to monitor pressure through the night.

Injection of acidified brine from tanks started at 10:42. Injection rate averaged 270,000 m/hr. Wellhead pressure was 135 psig at 14:15 hrs when injection stopped for pump repairs. Injectivity was 1900 lb/hr psi when injection stopped.

Restarted injection at 15:15. Injected from 15:15 to 17:45 and 18:40 to 19:07.

	Imperial 1	-13 Jection Data	
Time	WHP	Flow Flow	Temp
11:00	93	276,000	105
13:00	113	263,000	101
14:00	135	257,000	105
16:00	93	192,600	-
17:00	97	179,760	
19:00	98	160,500 الم	\$
		E .	

Total mass injected this day = 1,472,000 lb.

പ്പ

MESQUITE GROUP, INC.

WELL TEST REPORT

KENNECOTT STATE 2-14

June 23, 1988

Pruett pulled cap tubing and temperature bomb at 07:00. Temperature chart was good, but data were not available at report time. Pruett reported that their Kuster temperature elements had been recalibrated and that temperature data from surveys early in the test will be revised.

Pruett creatifrom Bakersfield rigged up braided line unit to run downhole sampler. RIH to 2500 at 11:30. Opened well - flowed a small amount of brine and died.

Pruett RIH to 5000' to collect sample, then POH trying to swab well in. Well did not flow.

Rented air compressor and pressured up well with air to 105 psig. Waited 2 hours, then opened well at 17:00. Well flowed a small amount of brine and died. Decided to back well down with canal water and leave it shut in to heat up until tomorrow morning.

Connected fresh water to flowline and pumped in 11,000 gallons of canal water between 19:35 and 23:40. Final WHP = 8 psig. Shut in well to allow it to heat up.

Injected canal water from tanks into Imperial 1-13 from 15:10 to 15:30. Estimated average rate = 100,000 lb/hr; average THP = 60 psig. Estimated mass injected = 33,000 lb.

2

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 June 24, 1988

State 2-14 SIWHP = 45 psig at 06:55. Starting at 07:05, pressured up at wellhead with air. Pressure was up to 110 psi at 07:35 - shut down compressor and left wellhead shut in. Pressure was 115 psi at 08:05 then started to decline slowly. At 08:54 (with SIWHP - 122 psi) opened well through AFT. Well flowed for about 10 minutes and died. Peak WHT = 242 F; peak flow rate through weir box was 120,000 lb/hr.

Checked availability of coil tubing and nitrogen units. None available until tomorrow. Decided to abort the downhole sampling and high rate flow test.

Injected fresh water from tanks into Imperial 1-13 from 09:15 to 09:50. Average rate was 251,500 lb/hr; IWHP = 155 psig IWHT = 93 F.

Pruett slickline unit arrived at 16:00 and rigged up on Imperial 1-13 for injection alloff survey. RIH with Kuster pressure and temperature tools and hung at 1,300' GL (ground level reference). Tools in place at 17:15 hrs.

Started injection at 18:30 hvs, lost suction to pumps at 18:32 hrs then regained it at approximately 18:36. Injected at 208,000 lb/hr until 18:50 hrs when it became apparent that this rate could not be sustained for the estimated two hours. Cut rate to 181,000 lb/hr and injected at a slightly declining rate until 17:37 hrs when rate was down to 166,000 lb/hr. Increased rate to 187,000 lb/hr and injected at that average rate until injection complete at 20:48. Injection wellhead pressure was 165 psig at 165,000 lb/hr and 180 at 187,000 lb/hr. Average injection temperature 92 F. Downhole tools left in Imperial A13 for falloff.

Put an estimated 800 gallons of fresh water Fato State 2-14.

^

٦Г

MESQUITE GROUP, INC. WELL TEST REPORT KENNECOTT STATE 2-14 AND IMPERIAL 1-13 June 25, 1988 (Final Daily Report)

P

POH with tools from Imperial 1-13, obtained pressure and temperature charts. Reset tools and made traverse survey with two temperature and 1 pressure instruments at 20' per minute from surface to 1,400' (GL) where tools set down. POH. Rigged down and left site.

Put an estimated 5,260 gallons of fresh water into State 2-14 until wellhead pressure came up to meet pump discharge pressure at 60 psig and injection stopped. Shut off pump and shut in well. Total fresh water put into well since attempt to flow 6,060 gallons.

R

N

ADDENDUM D

DATA REDUCTION METHODS

Parameters in Addendum A, Table A-1, are defined and calculated as shown below.

- 1. Wellhead Pressure (WHP) in psig = PI-1 reading -5 psi*
- 2. Wellhead temperature (WHT) in ${}^{O}F = TI-1$ reading $+2{}^{O}F^*$
- 3. Separator pressure in psig = PI-155 reading +1 psi* + pressure drop across the steam metering orifice. (The resulting value approximates the pressure at the brine/steam interface in the separator.)
- 4. Separator temperature in ${}^{O}F = TI-109A$ reading. (This value neglects any temperature loss in the steam piping from the separator to the thermometer.)
- 5. Steam Flow in lbm/br = FR-102 reading on a 0-10 square root chart x

7,015 x Separator Pressure + 15 215 215 0.5

for the period from 13:00 on June 7 to 08:04 on June 15 when FR-102 had a 200-Anch differential range spring, or

8,592 x Separator Pressence + 15 0.5 215

after 10:00 on June 15 when FR-102 had a 300-inch differential range spring. (Separator pressure in the above equations is defined in #3 above.)

From 05:00 to 13:00 on June 7, the brine orifice meter was in operation, but not the steam meter. During that period,

Steam Flow = Brine x Separator flash 1-Separator flash 6. Brine Flow = FR-108 reading x 41,145 lbm/hr (leg A) 96,831 lbm/hr (leg B) * Correction to match "standard". Refer to Table 3-3.

These orifice factors were calculated by the ASME method (ASME, 1971) for the following conditions: FR-108A Dia. Pipe = 11.938 in. Dia. Orifice = 4.8 in. Temp. = 414° F Pres. = 229 psia 🖾 alinity = .2933 wt. frac. Density = 65.88 lbm/ft3 Chart Full Scale = 100 in.water Reading = 1 $FLOW = RATE = 41144.72 \ lbm/hr$ FR-1088 Dia. Pipe = 11.938 in. Dia. Orifice = 7.1464 in. Temp. = 414 F Pres. = 229 Sia Salinity = .2933 wt. frac. Density = 65.88 lbm/ft3 Chart Full Scale = 100 in.water Reading = 1Reading = 1 FLOW RATE = 96830.56 lbm/hr From 00:08 to 10:22 on June 16 the brine meter was not func-From 00:08 to 10.12 tioning. During that period Brine flow = Steam flow $x \frac{1-\text{Separator flash}}{\text{Separator flash}}$ 7. Separator Flash = Steam Flow Total Flow 8. From June 1 to 03:00 on June 7: Total Flow = Weir Flow x 12 R (1-0.2552)The weirbox was the only flow measurement available in this interval. The theoretical flash to atmosphere is 0.2552 for a preflash temperature of 545°F and preflash TDS= 247,000 ppm. The 545°F effective pre-flash temperature was calculated as follows: , İ

 $(^{\circ}F)$ Temperature at 3,750 feet from the June 5, 1988 survey (Addendum G) 571.8 Less effective temperature loss in wellbore Wellbore heat transfer rate Brine specific heat x flow rate -2.07 x 10⁶ Btu 0.825 Btu/(lbm-F) x 117,000 lbm/hr = -21.4P Less effective temperature loss in surface piping $\frac{-0.5 \times 10^6}{0.825 \text{ Btu}/(1\text{bm}-F) \times 117,000 \text{ lbm/hr}}$ = -5.2 Effective pre-Flash temperature = 545.2 From 05:00 on June 7 through June 20: Total Flow = Bring flow + Steam Flow 9. Cumulative Flow = Cumulative total flow from the start of the test. 10. Weir Flow = (Weirbox $1.5 \times 26500 - (GPM fresh water)$ x578) 26,500 is the coefficient for a 14.75-inch square-notch weir and a specific gravity of 1.20 The factor 578 is the conver-sion from gpm of fresh water to 1bm/hr times the factor 1.156 to account for steam condensed by the addition of cool water. From June 1 to 03:00 on June 7, any gaps in the weir box readings were filled in by interpolation. Gaps occurred because sometimes there was too much steam blowing around the weirbox to approach it. 11. Cumulative Weir Flow = Cumulative flow prough the weir from start of test. This number does not include dilution water or the steam condensed by it. It represents only brine from the well, after the flash to atmosphere, as if there were no dilution water added.

P

R

M

. [

N

and a second

A

R

R

12. Injection Flow = DPR-1 reading

This orifice factor was calcul 1971) for the following conditions:

 $\frac{FR-1}{Dia. Pipe = 7,981 in.}$ Dia. Orifice = 5.5 in. Temp. = 170 °F Pres. = 100 psia Salinity = .3378 wt. fra Density = 75.93879 lbm/f Chart Full Scale = 100 in Reading = 1

FLOW RATE = 64865.25 lbm,

Section . いたり

T

R

A F

the second secon

ADDE

ADDENDUM E

SALTON SEA SCIENTIFIC DRILLING PROJECT WELL STATE 2-14 BRINE DATA AND STEAM FLASH MODEL

FOR JUNE 5, 1988

CONTENTS

SUMMARY i
INTRODUCTION 1
SAMPLING 2
DATA
DATA TREATMENT
Charge #alance 4
Density Computation 4
Dilution Factors 5
Apparent In Situ Concentrations 5
Reconstruction of Weirbox Sample
Net In Situ Concentrations 8
Flash Initiation Temperature 8
Effective Flash Temperature 8
Wellbore Heat Losses 9
Heat from the Surface Facility 10
FLASH MODEL FOR THE BRINE
Thermodynamic Data for Heavy Brines 11
Modeling Gases 12
Determining Pre-Flash Teg
The Non-Adiabatic Model 12
Results for an Adiabatic Model
of Steam Flashing
Steam Yields from the Brine
Implications for NaCl Deposition
Scale and Sludge Deposits
CONCLUSIONS 17
REFERENCES 18

TABLES

A

.

1.	Brine Compositions
2.	Downwell Temperatures, Pressures, and Heat Loss Rates
3.	Pre-Flash Brine Compositions
4-7.	Computations for Composition and Physical Properties
	For Flasking Geothermal Fluids
	(Selected Match Conditions)

FIGURE

•

1. Flash Initiation Conditions

D

ADDENDUM E

BRINE DATA AND STEAM FLASH MODEL FOR JUNE 5, 1988

SALTON SEA SCIENTIFIC DRILLING PROJECT WELL STATE 2-14

P j SUMMARY

A computer model for thermophysical properties of hypersaline brines has been calibrated by the physical and chemical data collected during a flow test of State 2-14. This report focusias mainly on assembling an internally consistent set of data for June 5, 1988, the fourth day of the flow test. The model incorporates thermophysical properties of NaCl brines having a range of TDS values that spans those observed in the geothermal fluids. It also models the pressures of multiple gases in any proportions.

Brine samples were collected from the flowline on June 3, 4, and 5 and from the weirbox on June 5. Downwell measurements of temperature and pressure on June 5 provide a basis for selecting the flash initiation conditions and an estimate of enthalpy losses from the wellbore.

Results show a brine with flash initiation temperature near 570°F, pre-flash TDS near 247,000 mg/kg, CO₂ content possibly near 3900 mg/kg (total flow basis), and a steam yield near 25 weight percent of total flow. Scale and sludge formation is estimated to be a faut 1400 mg/kg or nominally 100 pounds per megawatt hour of produced electricity.

٦

ADDENDUM E

BRINE DATA AND STEAM FLASH MODEL FOR JUNE 5, 1988

SALTON SEA SCIENTIFIC DRILLING PROJECT WELL STATE 2-14

INTRODUCTION

j,

The purposes of this addendum are to establish a pre-flash composition of the brine and present computations that show the evolution of the brine through the wellbore and surface facility with computational results matched to measured data where they are available.

Brine samples were taken on June 3, 4, and 5 from the two-phase flowline near the wellhead. An additional sample of brine was taken from the weirbox on June 5. Sampling was done on these days to support a set of experiments by Dr. Dennis Darnall, New Mexico State Univesity, Las Cruces, New Mexico. Other sampling by EPRI was done later, but results are not available at the time of this writing.

Downwell measurements of temperature and pressure are available for one of the sampling days, June 5, and also for June 12, 14, and 20.

At the time of these samplings, the steam separator was not in operation, nor was diluent (canal) water being added to the brine stream.

No data on gas collections during the June 1988 testing were available at the time of this writing. However, gas data and complete brine compositions are available for the flow test of December 1985, when the well was produced from depth of 6200 feet.

The computations used with these data for hypersaline brines are more complicated than for other geothermal samples. Density differences must be accounted for among native fluids, preserved samples, and analytical standards. Flash calculations must account for the high and changing salt content of the evolving residual liquid which yields steam. One sample, from the weirbox, lost some material due to supersaturation of some components, but it was possible to mathematically reconstitute that composition, simultaneously giving a quantitative measure of solids deposition.

1

SAMPLING

The weirbox sample was obtained by dipping a container into the active flow stream. Some of that fluid was then suction filtered and an aliquot placed into a preweighed sample bottle containing dilute acid. The sample was clearly not complete since suspended solids, mostly related to silica precipitation, were visibly abundant and provided the main motive for filtering. Solid sodium chloride was abundant in the weirbox as a consequence of steam losses which resulted in its supersaturation. Additional sodium chloride precipitated from the sample while filtering.

Samples from the flowline were taken with a Teflonlined probe/cooling coil assembly. Access was through a gate valve on the flowline about 40 feet from the wellhead. The probe, 1/4-inch 0.D. stainless steel, was inserted into the flow space of the flowline through an access valve assembly located at a 3-o'clock position on the horizontal flowline. Flowline temperatures at the sampling point were essentially those of the wellhead, near 492° F.

Although the flowline carried a mixture of steam and brine, it was intended to locate the tip of the probe near the pipe wall where a continuous liquid phase might be encountered. Cooled brine discharging from the coil end was directed into a pre-weighed sample container containing dilute nitric acid.

At the time of flowline sampling, the attempt to obtain steam-free brine appeared diccessful. It was possible to adjust the probe tip position so that no gas bubbles (effervescence) were associated with the discharge from the sampling assembly. Success is further indicated by the essential identity of apparent in situ concentrations for the brine samples collected on successive days. Additionally, the relative difference in salt contents of the sample from the flowline and the weirbox (aftin adjustment for precipitation) are in good correspondence to what would be expected from steam release between the two locations. Scale deposition in the probe/coil sampling equipment appeared minor and is not considered further.

DATA

Results of the chemical analyses are presented in Table 1A. Other data for computing dilution factors and densities of samples as delivered to the analyst are given in Tables 1C and 1D. The purposes and applications of the dilution and density factors are explained in subsequent sections. Analyses for most reported elements were made by inductively coupled plasma (ICP) with comparative standards matching the approximate brine composition. In addition, ammonium was determined by specific ion electrode and chloride and bromide by titration. Sulfate and bicarbonate were not determined. Other experience with the Salton Sea resource indicates their concentrations are negligible. The ICP scan tests for 37 elements, 16 were above detection limits.

Measured downwell temperatures and pressures versus depth are given in Table 2A and Figure 1, which are based on data in Appendix D. Temperature data were obtained by Kuster gauge. Listed temperature values are derived from a calibration of the tool made after the measurement run. Pressures were measured with a capillary tubing assembly with surface readout. Temperature and pressure tools were run simultaneously on the same line. Point measurements were obtained by stopping the tools at pre-selected depths. This allowed tools to equilibrate at each reported point. Temperatures are believed accurate to $\pm 3^{\circ}$ F and pressures to ± 0.3 psi.

Surface temperatures and pressures were monitored by calibrated dial thermomeners and bourdon-type gauges. Data were recorded manually. Temperature gauge calibration was done in the field using a Aplatinum resistance thermometer (PRT) as a reference. Some early complications with external cooling of the thermometer webls were solved by insulating them. Surface data are reported in Appendix D. The temperature on June 5 is taken as 492°F at the wellhead and the sampling point. Pressures ranged from 503 to 513 psig.

Brine flow rates were indicated by measurements at the weirbox, including adjustments for team loss. The steam separator was not in service on June 5; therefore, separate measurements of steam and brine and not available. Mechanical conditions that invalidate the steam flow data were discovered after the test. This absence of steam measurements is a major motive for the steam flash modeling of this section.

DATA TREATMENT

A principal objective of data treatment is to determine the pre-flash concentration of the brines that is consistent with measured concentrations in partially flashed samples and with other data. Five kinds of adjustments to data are required to accomplish this objective. The last of the five involves computing steam yields, including allowance for enthalpy losses between the measured temperature at the flash point in the wellbore and the temperature at the surface sampling point. The proprietary computer program FLAGASA was used to support this report. It has been designed to deal with steam flash from gassy, briny liquids, especially of the Salton Sea resource type.

The flash computations of FLAGASA are best applied to analytical results that have been accurately adjusted to represent the field concentrations. These adjustments account for: (1) Raw analytical results show small mismatches between the electrically positive and negative components. The mismatch is resolved by increasing the concentrations of selected components. (2) Field preservation of the samples involved acidification and dilution with dilute nitric acid. Since nitrates are not a part of natural geothermal fluids, they are not analyzed and are inconsequential to the fluid description. However the dilution effect must be accounted for. (3) Analytical results are presented in units of mg/l, which are unworkable for salty brines that involve large changes in temperature, hence molar volume. Conversion to units like mg/kg are required. (4) The weirbox sample involved losses of material and that sample must be mathematically reconstructed before it can be used as a reference with the flash computations.

Charge Balance

A

Analytical data in Frable 1A show an excess of positive charge. For each analysis, a balance is forced by reducing the concentrations of cattion (+) species. The total amount of charge reduction needed for overall balance is distributed among the several species in proportion the the fraction of total charge each species represents in the analysis. Results are given in Table 1B.

The negative species (anions) were not adjusted. Only chloride and bromide are reported. Since bromide is minor, this is equivalent to accepting the chloride as a reference material. This is reasonable because the chloride analysis is inherently one of the most accurate in the set.

F

Density Computation

The analytical results are presented in units of mg/l whereas only weight fractions (i.e. mg/kg) are practical for describing brines that flash. The difference can be accounted for by the density of the sample <u>as</u> <u>delivered to the analyst</u> in the acidified form. Dividing the mg/l results by density (kg/l) yields the useful weight fractions.

Those sample densities were not measured, but they can be computed from the analytical results; the process is indicated in Table 1C. The procedure takes advantage of the brine being dominated by chlorides. Specifically, the density of a mixed-salt brine can be represented by a pure NaCl brine of different weight concentration.

Density factors given in Table 1C are used to generate the concentration of a fictitious NaCl brine which has the same density as the mixed salt brine sample. Specifically, the factors represent the number of ppm of Na (as chloride) which have the same effect on solution density as one ppm of cation X (as chloride). Values are based on data given in CRC (1986). Unit values are used (Table 1C) when there is insufficient data to evaluate a density factor.

The product of density factor and measured concentration of I yields the mg/l of Na required for equal density. Summing the products yields an equivalent concentration for the mixture, which can be converted to a molar basis. Density of the mixed-salt brine can then be determined by entering a table for (pure) NaCl brine densities at the appropriate molar concentration. Values for g/ml in Table 1C are also based on CRC (1986).

Dilution Factors

Dilution factors for the brine samples account for the dilution and acidification made in the field at the time of sampling. Data for computing those factors and the results are given in Table 1E. The dilution factor (dil) is a multiplier for the analytical result, converting the labsample concentrations to a field basis. Additional dilutions were made in the analytical laboratory so that the concentrations of components in the analyzed aliquots were 'on scale' for the analytical methods. Those laboratory dilutions are made on a volume, not weight, basis and are not detailed here. They are presumed accounted for in the reported analytical results.

Apparent Field Concentrations

In situ concentrations for all components are given by X*dil/dens, where X is a reported analytical concentration, 'dil' is a dilution factor, and dens' is a sample density as described above. Results are listed in Table 1C; units are mg/kg.

The uniformity of results for the flowline samples is remarkable -- many components show variations much smaller than one percent relative, which in some cases is better than the expected analytical precision. It deserves note that the dilution factors were unknown to the analyst, hence the analyses were appropriately 'blind'.

Such small contrasts indicate that steam was not contaminating the brine samples obtained by the probe. The effect of inadvertent amounts of steam in the samples would be erratic results in the analysis. Furthermore, the similarity among the flowline results for three successive days indicates a remarkable uniformity of the produced fluid. That indicates it is probably free of contamination by other fluids introduced into the well by drilling, completion, or injection #disposal.

Reconstruction of the Weirbox Sample

The welirbox sample (Code 254) was known to have lost considerable sitica and iron from solution before collection, as well as sodium phloride. It deserves note that deposition of NaCl at atmospheric flash conditions requires special accomodations, such as addition of fresh water, to sustain fluid production.

Additional materials were lost during filtering. However, not all of the 19 measureable components are depleted during flashing, cooling, filtering, etc. Specifically, lithium, boron, manganese, bromide, and others are known or thought to be unaffected. Thus, they can be used as references.

Usually, chloride is a reliable reference, partly because the chloride analysis is one of the most accurate. In this case, however, reconstruction of the chloride content necessary, and that can be done by involving the is element/chloride ratios of the flowline samples with the weirbox sample data.

If no losses occurred between the flowline sampling point and the weirbox, the ratios of completents would be the same at both locations, regardless of the steam releases. The procedure used here for reconstruction involves simultaneous adjustment of the chloride and X concentrations in the weirbox sample to obtain a match with the X/Cl ratio indicated by the flowline samples. Specifically, equation (1) applies: ٦٢

$$(X/C1)_{FL} = [(X+^X)/(C1+^{C1})]_{WB}$$
 (1)

۴۹ ب

where 'X and 'Cl are test increments for the weirbox sample. For a single increment 'Cl, the ppm amounts of each 'X are found which cause a match with the $(X/Cl)_{FL}$ ratio for the

flowline samples. The test values for $(X/Cl)_{FL}$ are the average for the three flowline samples.

In Table 3A, a trial is shown for the case where Cl = 10,700 ppm. Column headed 'Change in X' is the 'X value which establishes the equality in equation 1 when Cl = 10,700. The column labeled 'Resid X' is an internal test to show that the selected 'X does yield the equality.

Other descriptors of X are also presented. The column Tchg in X' shows the size of X in relation to X+X and indicates the relative magnitude of X. The column 'Chg in sigma maints' is the ratio of $X/(sigma)_X$, where $(sigma)_X$ is the standard deviation of X for the three flowline samples. It is especially useful to note which and how many components change by less than 3 sigma units, for these are the tracers which are not lost due to flashing or cooling.

Selections of Cl are tested by reviewing which and how many components are changed by less than three sigma units when the $(X/Cl)_{FL}$ ratio values are established for (X+X)/(Cl+Cl). For example, when Cl = 10,700 (Table 3A) there are eight components for which X values are smaller than 3-sigma; manganese, zinc, strontium, boron, lithium, barium, magnesium, and bromide.

Alternatively, when Cl = 11,000 or 10,500 (results not shown), only seven components are fitted to the corresponding $(X/Cl)_{FL}$ values by changes smaller than 3sigma. Other, more extremeD choices for Cl give still poorer correspondences. Accordingly, the changes shown in the trial for Cl = 10,700 are considered the best estimates for depositional losses from the weirbox sample.

It seems significant that lead, arsenic, cadmium, and copper have lost relatively high percentages of their initial concentrations (Table 3A). They are possibly not related to the silica deposition, but they may be related to sulfide reactivity.

Iron losses are mostly related to the silica deposition, but may also be involved with sulfide. It is useful to note that sulfide is scarce if this brine (generally too little to smell), and probably less than 15 ppm. Thus there is not enough to go around to all the 'missing' iron and also react with the copper, calmium, etc.

Ammonium is partly lost to the steam in a distribution effect that is fairly well understood and dependent mainly on pH during flashing.

7

Behaviors of calcium and potassium are not clear. They are not suspected of deposition during flashing, so are expected to be good tracers. However, in this case, they appear to have increased significantly in concentration, but sources are not apparent, suggesting analytical problems. The apparent increases are substantial in terms of both relative percent of material and sigma units.

Net Concentrations

The reconstructed composition of the weirbox sample is shown in Table 3B, along with the flowline data repeated from Table 1E. Values for the weirbox sample represent what would have been contained in weirbox brine if no deposition had occurred. These are the proper compositions to compare directly with others. It is possible to make comparisons element by element, or with the sum of a set of elements, for example, the sum of all components. These values are useable as input to the steam flash model.

Flash Initiation Temperature

The most precise method for estimating the flash initiation temperature is to plot measured (downwell) temperatures and pressures versus one another. Below the flash initiation point (MP) in the wellbore both temperature and pressure change independently but linearly with depth; hence their mutual relationship is highly linear. Above the FIP, temperature and pressure change in non-linear ways, partly due to physical aspects) of boiling and partly due to the exsolving of non-H₂O gases. In a plot of temperature versus pressure, the FIP is indicated by where the plotted points diverge from a straight line indicted by data in the one-phase liquid zone. Figure 1 is such a plot and suggests flash initiation occured between 570 and 570.5°F. The temperature 570.2°F and 1360 psia are the flash initiation conditions. They correspond to a depth of 3160 feet for the flow conditions on June 5. Those values are used in the flash model.

Effective Flash Temperature

Although the temperature of flash initiation can be determined accurately, it does not completely serve the flash model. The computed amounts of steam cannot be realistically referenced to: the flash initiation temperature. Conductive heat loss from the wellbore and the surface piping causes the actual steam formation to be less than what may be computed according to the measured flash initiation temperature. This effect is modeled by using an 'effective' flash initiation temperature which is lower than the value determined graphically (Figure 1). The difference between actual and effective flash initiation temperatures corresponds to the heat losses up to the point of interest, especially the sampling locations. The 'effective' flash initiation temperature decreases down the fluid flow path. Consequently, its value at a specific point of interest is uncertain in proportion to the uncertainty of the cumulative heat losses up to that point.

As a practical matter, the heat losses through the wellbore and piping do not change greatly with a change in fluid mass flow rate. However, the consequences to effective flash temperature are almost directly proportional to fluid flow rate because the relatively constant rate of heat loss from the wellbore, etc., affects a variable mass of material.

Wellbore Heat Losses

In the lower part of the wellbore the heat loss can be estimated with rood accuracy from the temperature change in the zone of one phase liquid flow. Data and computed results are shown in Table 2B. The four downwell surveys, all reached a depth of 5000 feet and involved temperature measurements at 4000 and 5000 feet, as well as at other places. By inspection of graphed data, the flash initiation was always shallower than 4000 feet. Thus the records can be interpreted in a straightforward way. Table 2B is based on the downwell surveys which yield four estimates of the heat loss, at four different flow fates. All are in the vicinity of 565°F, at which point a brine of about 24 weight percent dissolved solids has a heat capacity near 0.825 Btu/lb·degF. The average enthalpy change and heat loss value of 354 Btu/hr ft from Table 2B refers to the section between 5000 and 4000 feet depth where the hole was drilled by a 12 1/4inch bit.

At shallower levels in the hole the heat loss per linear foot of wellbore is greater, depending on several factors of wellbore construction, rock type, and temperature gradients away from the wellbore axis. However, experience has shown that the relative rates of heat loss between two sections of wellbore that carry the same fluid are proportional to the drilled hole diameter. Using that principal, the measured heat loss rate for the 5000 to 4000 ft zone is used to estimate heat loss along the other sections of the wellbore.

Table 2C indicates the depths in the well versus bit size and shows the rates of heat loss. The value 1.90×10^6 Btu/hr applies to the section of wellbore above 3160 feet. A ^T value of 19.6° F is used for modeling the steam flash for

9

June 5, when the flow rate was 117,000 lb/hr. That is, the effective flash temperature of $570.2 - 19.6 = 550.6^{\circ}$ F, applies.

Heat Losses from the Surface Facility

Additional heat losses occur in the surface facility. These were estimated for pipe-like surfaces exposed to a 20-mph wind and a temperature differential of $415^{\circ}F$ (Appendix F). Integration over the estimated metal surface area of the facility indicated a heat loss of $1.14\times10^{\circ}$ Btu/hr. This value is severe, but reasonable for some nightime occasions. At lesser wind speeds the heat loss is almost linearly less.

At Tow wind speed a mechanism of natural convection becomes dominant, but provides a minimum rate of heat loss. A value of 265,000 Btu/hr has been estimated for this condition. That amount induces an additional 2.7° F impact on the effective flash temperature between wellhead and atmospheric separator when the total fluid flow rate is 117,000 lb/hr. Thus, the effective flash temperature at the weirbox is 570.2 - 19.6 - 2.7 = 547.9°F.

FLASH MODEL FOR THE BRINE

The main purpose of the steam flash model is to derive a steam fraction of flow at the brine sampling point. When accomplished, the measured brine compositions can be adjusted to a pre-flash, reservoir basis. Secondary purposes include reviewing the reasonableness of several numerical quantities that were estimated.

Results from the foregoing section are used as input to the calculational model for steam yield. The brine composition values work in the model in two ways. First, they provide an estimate for the salt effect on thermodynamic properties involved with flashing. Secondly, they serve as references for salt concentrations which are to be matched by the model at appropriate temperatures.

In principle, the pre-flash composition is obtained by iteration beginning with an estimated pre-flash salt content that is 'concentrated' according to calculated steam losses up to the sampling points. The correct selection of a pre-flash salt content is indicated by a match between the computed and measured concentrations from the flowline and/or the weirbox.

Thermodynamic Data for Heavy Brines

Computing steam yield from produced fluids is an elementary aspect in the geothermal industry. Steam tables list appropriate properties of pure water that are accurate for some geothermal resources. However, thermodynamic properties of the heavy brines of the Salton Sea resource are not adequately described by ordinary steam tables.

Thermodynamic data are available for pure NaCl brines for the temperature range of the Salton Sea resource. Tabular data are awkward to use because the limited number of tables de not provide a convenient way to track the continuously increasing salt content of a real flashing brine.

It is possible to use the tabular data to fit equations of a convenient form to provide a means for handling the flash relationships between any pair of temperatures. That is the approach used here. Equations for brine enthalpy, brine density, and enthalpy of vaporization are based on tabular data in Haas (1976) and incorporated into the computer model. Related equations for specific volume of steam and pressures due to $non-H_2O$ gases are derived from other sources (Ellis and Golding, 1963; Himmelblau, 1960; Wisenberg and Guinasso, 1979).

Use of NaCl thermodynamics for the Salton Sea geothermal brines remains an approximation. The mixed salt composition is far from simple NaCl. Specifically, sodium ions balance only about 55 percent of the electrical charge of the chloride. That is, the Salton Sea brines differ from a pure NaCl brine in the sense of having about 45 percent of the sodium replaced by other components. The magnitude of the thermodynamic effect due to this substitution has not been clearly reported from laboratory studies. One field experiment showed that the difference may be significant (Michels, 1986b). However, in this review, the thermodynamics for pure NaCl solutions are used for the steam flash model.

Modeling Gases

`ta .

In addition to the salt effects on temperature and vapor pressure of H_2O , the presence of dissolved gases is important to the brine and steam. Particularly, at flash initiation, the pressures of dissolved gases add to the vapor pressure of H_2O , increasing the measured pressure by hundreds of psi from pure water or simple NaCl brines.

No data on the gas content of fluids produced from the June 1988 testing are available at the time of this writing. Data are available from the December 1985 test, however (Michels, 1986a). Furthermore, the model may be used to test whether the gas contents observed in 1985 are approximately the same as in current production as well as to test for more appropriate estimates. With the model, computed pressures can be adjusted by selecting different gas contents to match the observed flash initiation pressure with the computed pressure. The model also computes the contribution of non-H₂O gases to total pressure at any point along the two-phase flow path.

Determining Pre-Flash TDS -- The Non-Adiabatic Model

After the flash initiation temperature and wellbore enthalpy losses have been identified, the model may be used to determine the pre-flash total dissolved solids (TDS), based on the TDS of the flowline sample. The model also gives a relevant estimate of flowline pressure that can be compared with measured values.

Table 4 is a computer output showing many physical properties of the brine and steam mixture at selected temperatures. All are referenced to an effective flash initiation temperature of 550.6°F, as discussed above. The pre-flash TDS, 246,729 mg/kg, was selected so that the computed TDS at 492°F (sampling temperature) matches the TDS value of 261,865 mg/kg in Table 3B for sample 173. The preflash TDS determined in this way is considered the best estimate. The pre-flash value, 246,729 mg/kg, is applied in other runs of the model that focus on other aspects of the fluid flow path.

The model also computes the partial pressures of all gases and the total pressure at any selected temperature along the flowpath, for example, at the near-wellhead sampling point, $(492^{\circ}F)$. These are shown in Table 4. Observed pressures at the wellhead on Type 5 ranged from 516 to 528 psia which may be compared with the computed pressure of 540 psia. The computed partial pressures of non-H₂O gases is 21.7 psi. The mismatch between computed and observed total pressure may be partly due to an improper assignment of gas content to the brine. The inaccuracy of the H₂O pressure computation is harder to estimate due to modeling the mixedsalt brine as NaCl brine. Pressures of non-H₂O gases are negligible at the atmospheric discharge point.

The flash initiation pressure indicated in Table 4 has no significant meaning beyond indicating the pressure that would exist if flash initiation occurred at 550° F. Note that the concept of 'effective' flash temperature has the actual flash initiation occur at the measured conditions, but by the time fluid arrives at the sample point, the amount of steam, etc., corresponds to a lower effective flash temperature.

Using the composition of the weirbox sample in the flash model has two applications. By assigning an appropriate heat loss, one can obtain an estimate of the preflash composition that is independent of the flowline sample. Using the temperature impact described earlier (570.2 - 19.6 - 2.7 = 547.9) and matching the reconstructed weirbox composition (Table 3B) yields a pre-flash TDS of 248055 mg/kg. This latter value appears also in Table 3C. It may be used with the 246,729 mg/kg to obtain an average, 247,392±956 mg/kg.

Alternatively, one may use the pre-flash TDS based on the flowline sample with the heat loss appropriate for the weirbox. This approach yields a computed weirbox TDS of 330,879 mg/kg (Table 5) which is smaller than the observed value of 332,474 mg/kg (Table 3B). The difference, 1595 mg/kg, represents the net effect of all errors involved in the analyses and in the model between the two reference temperatures (flowline and weirbox).

The size of that error may be expressed in several forms. For example, the observed difference in TDS between flowline and weirbox samples is 70,609 mg/kg (Table 3B samples 173 vs. 254). The computed contrast is 69,014 mg/kg. The values differ by 2.14 relative percent. This is equivalent to a mis-estimate of steam yield of 0.0045 percent on a total flow basis.

For comparison, steam writes measured with orifice meters are uncertain by about 5 relative percent, or 1.25 units for a steam yield of 25 weight percent. Thus, the FLAGASA computation is internally consistent to a precision much above what can be expected from direct measurements in the field.

The full compositions of the pro-flash brines are given in Table 3 clong with the composition obtained from the December 1985 flow test (Michels, 1986b). There are several minor differences that are beyond the scope of this report.

Results for an Adiabatic Model of Steam Flashing

An idealized case for modeling involves the adiabatic or no-heat-loss assumption. Table 6 has the same form as Tables 4 and 5 but uses the undegraded flash initiation temperature as a basis for computation. The apparent flash fractions are somewhat higher. The pre-flash TDS used for Table 6 is the value from Table 4; there is no merit in seeking a unique pre-flash TDS value for the adiabatic computation. Similarly, the mismatches between computed and observed TDS values at flowline and weirbox positions have no significant meaning.

One merit of the adiabatic computation is that it provides a basis for estimating gas contents of the fluid. The vapor pressure of H_2O over brine at $570.2^{O}F$ is not sufficient to account for the measured pressure. Accordingly, a gas content was introduced into the model which causes the computed pressure to match the measured value. Specifically, the model mixture of CO_2 , CH_4 , and N_2 conforms to the proportions observed in the flow test of December 1985. However, to match the June 5 flash pressure, a greater gas content was required, 3702 ppm of CO_2 versus 1660 ppm, with the other gases in the same proportions. The larger amount femains reasonable for the Salton Sea resource and may be accepted as a valid estimate until directly measured values become available.

No estimate for H₂S content is provided. In all reasonable cases for the Salton Sea resource, it would have a pressure component too small to discern among the other components of pressure.

Steam Yields from the Brine

An estimate of the maximum steam yield for a single stage process may be based on the adiabatic model. From Table 6, this is 27.4 weight percent at atmospheric pressure. The probable steam percentage obtainable for a commercial venture is less than that, depending on the actual heat losses encountered from the wellbore and surface equipment. There also is a need to make steam separation at higher than atmospheric pressure for engineering reasons, further reducing the amount available for commercial purposes.

On the other hand, the non-adial cic case described in Table 5 over-estimates the effect of heat losses on steam yield because the modeled flow rate is relatively low compared to a commercial rate. However, it does not incorporate surface heat losses nor a higher-than-atmospheric separation pressure that would be encountered in a commercial process.

Table 7 shows the results for assuming a brine production rate of 420,000 lb/hr and an enthalpy loss of 2.22x10⁶ Btu/hr between flash point and a low pressure steam separation point. These conditions represent a reasonable commercial application of State 2-14. The computed one-stage steam yield is 25.17 weight percent at 23 psia $(250^{\circ}F)$. Yields at other nearby pressures are given in Table 7. The nominal value of 25 weight percent is suggestive of what might be available for exploitation. Important complications exist, one involves the tendency of the brine to deposit NaCl at atmospheric flash conditions, described in the following section.

A two-stage steam separation plant might be practical for resource development. That option yields a slightly higher net percentage of steam recovered from the brine compared to a single stage flash over the same temperature range. Modeling related to evaluating such options is possible but was not pursued at this time.

Implications for NaCl Deposition

Deposition of NaCl at atmospheric flash conditions cannot be tolerated in a commercial situation. In later stages of the June flow test, canal water was added to the brine upstream the stmospheric flash. This prevented NaCl supersaturation and enabled the test to continue.

Alternatives to canal water addition are available. One (RGI 1985) involves well completions that tap two thermal resources, one dilute, so that the mixed production from the well does not deposit NaCl at the surface, even though the non-dilute member would cauge deposition if produced alone. Furthermore, partially flashed brine from the combined-fluid well could be blended with brine from saltier wells that feed the same surface facility. That would serve a similar function that canal water served in the flow test, but with no negative impact on enthalpy and steam yield.

Clearly, the one-stage steam yield quantified in this preliminary modeling is only a rough approximation for how State 2-14 might actually be developed.

Scale and Sludge Deposits

R

Deposition from the June 1988 test as significant. Scale fragments were recovered from the flowline after the test which had thicknesses of nominally 1/2 fich. They are not considered further in this report. In practice, deposited solids may occur as adherent scales to be periodically removed from pipelines, etc., or as suspended solids, grown in a crystallizer or reactor/clarifier-type device and recovered as a sludge. Either way, they constitute a solid waste, and the collection and disposal will represent significant plant features. Reconstruction of the composition of the weirbox sample gives a quantitative estimate for the amount of materials that will become solids. The amount may be estimated from the data given in Table 3A. Specifically, the apparent sludge-forming materials are iron, silica, lead, arsenic, cadmium, and copper. The listed mg/kg amounts are on a basis of flashed brine.

The silica deposit will incorporate chemically bound water to give an approximate relation of $SiO_2 \cdot 2H_2O$. Hence, the listed mg/kg amount of SiO_2 underestimates the expected weight of its solids. The other metals will also be associated in scale with items not listed in the reconstruction. Furthermore, a waste sludge will contain several percent of moisture, either as residual brine or as water used to displace the brine.

Collectively, the brine sample reconstruction indicates that about 930 mg/kg of materials (post-flash brine basis) will deposit. The recovered amounts of sludge, etc, will be more than that by a factor of about two. That corresponds to about 1400 mg/kg of solids, on a basis of preflash brine, that would require disposal.

That amount may be put in terms of power production by relating to it the energy recovered from associated steam. Nominally, for a 25 percent steam yield and 18,000 pounds of steam per megawatt hr, disposable solids will amount to about 100 pounds per megawatt hr.

P

CONCLUSIONS

A model that is internally and logically consistent with the observations is presented in this addendum. The bases for calibrating the model are described in detail, particularly in regard to identifying the fluid composition.

The model is used to compute some useful results that were not or could not be measured. Selected results are provided as computer printouts.

Brine from the State 2-14 well has a pre-flash TDS of about 247,000 mg/kg that may be produced with an effective flash temperature near 563°F. Under those conditions it would yield about 25 weight percent steam at 23 psia (250°F). The brine has a tendency to deposit NaCl at atmospheric flash conditions and eliminating such deposition may have an impaction steam yield. Other solids, mainly siliceous sludges with heavy metal accompaniments, will deposit at a rate of about 1400 mg/kg or approximately 100 pounds per megawatt-hour of electricity produced.

REFERENCES

13

- CRC, 1986, Handbook of chemistry and physics: CRC Press, 66th Ed., p. D-254.
- Ellis, A.J. and R.M. Golding, 1963, The solubility of carbon dioride above 100 C in water and in sodium chloride solutions: Amer. Jour. Sci., v. 261, p. 47-61.
- Haas, J.L., 1976, Thermodynamic properties of the coexisting phases and thermochemical properties of the NaCl and thermochemical properties of the NaCl component in boiling NaCl solutions: U.S. Geol. Surv. Bul., 1421E (revised), 71 pp.
- Himmelblau, D.., 1960, Solubilities of inert gases in water: Jour. of Chem and Engrg. Data, v. 5, p. 10-15.
- Michels, D.E., 198 A chemical method for measuring steam quality in two-phase flowlines: Geoth. Resources Coun. Trans., v. 10, p. 437-442.

-

- Michels, D.E., 1986b, SS P Fluid compositions at first flow test of State 2-14: Geoth. Resources Coun. Trans., v. 10, p.461-465. A
- Wissenberg, D.A., and N.L. Gunasso, Jr., 1979, Equilibrium solubilities of methane, darbon monoxide, and hydrogen in water and seawater: Jour. Ohgm. and Engrg. Data, V. 24, p. 356-360.
- RGI, 1985, Method for reducing scale in geothermal systems: U.S. Patent 4,513,818, assigned to Republic Geothermal, Inc. Santa Fe Springs, CA., 7 clains

R

18
•

TABLE 1: BRINE COMPOSITIONS

			_			-					_				1				
		Annives	A	•••		8-				; Domoiti] / Commun				50.	-	E	-	
Dav	6/3	Analyii 676	LOL DA	5 6/5	<u></u>	narye c	atancet	1		pensit	v comput	ation-			Appare	ים חד וח S ג/ג	TU LON	entrat:	0015
Time	1855	1646	1355	0730										ſ	ทัก	1055	1/4	1755	0670
Code	180	182	173	254	180	182	173	254	Density	180	182	173	254	U	88	180	192	173	256
Type	line	line	line	atmos		,		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	factor	line	line	line	atmo			tine	line	lina	275-4 200122
Temp (F)	494	492	492	225					100001		na Na pe	ar lite					1110	C 1170	el 2110-23
	m†	lligram	is per	liter	mil	liorans	per li	ter		-for	aual de	ensitva				mil]	iarams	ner kil	ogram-
Sodium	34062	31988	29100	69775	33238	31527	28820	67661	1.000	34062	31988		69775		Socium	56092	55830	55495	64135
Calcium	17238	16050	14575	39800	16821	15819	14435	38594	1.228	21168	19709	5898	48874		Calcium	28387	28013	27795	36583
Potassium	10640	9962	9131	24440	10383	9819	9043	23699	0.642	6831	6396	5862	15690		Potassium	17522	17387	17413	22465
Iron	1051	991	*** 898	2232	1026	977	889	2164	1.303	1369	-1291	1170	2908		Iron	1731	1730	1713	2052
Manganese	928	865	800	2096	906	853	792	2032	0.742	689	642	594	1555		Manganese	1528	1510	1526	1927
Zinc	320	299	276	723	312	295	273	701	1	70	299	276	723		Zinc	527	522	526	665
Silica	301	282	260	148	294	278	257	144	1	- (301	282	260	148		Silica	496	492	496	136
Strontium	254	240	220	579	248	237	218	561	0.5626	177	167	153	403		Strontium	418	419	420	532
Boron	252	236	217	567	246	233	215	550		252	236	217	567		Boron	415	412	414	521
Lithium	134	126	115	302	131	124	114	293		134	126	115	302		Lithium	221	220	219	278
Ammonium	246	238	212	536	240	235	210	520	\sim 1	246	238	212	536		Ammonium	405	415	404	493
Barium	67.7	66.2	69.0	176.0	66.1	65.2	68.3	12.7	0.873	59.1	57.8	60.2	153.6		Barium	111	116	132	162
Lead	60.0	58.3	53.0	130.0	58.5	57.5	52.5	120,1	1	60.0	58.3	55.0	130.0		Lead		102	101	119
Magnestum	28.1	25.4	25.7	61.8	21.4	25.0	25.5	59.9	1	28.1	25.4	25.7	61.8		Magnesium	40.5	44.5	43.2	56.8
Arsenic	9.57	8.65	8.30	17.80	9.34	8.21	8.48	17.20	1	У.О	8.0	8.0	17.8		Arsenic	12.8	13.1	10.5	10.4
Cadmium	1.49	1.20	1.19	1.03	1.40	1.20	1.18	1.00	1	1.49	1.20	1.19	1.00		Cacimium	1 45	2.23	2.21	1.52
Copper	1.00	1.11	1.10	1.30	0,000		01200	1.34	1	1.00	1.1	1.10	1.30		Copper	15/704	1.74	1550/3	102177
Chloride	94000	00900	01200	202000	94000	50	01300	202000	En No mali	45709	41527	54005	1/ 19/0		Browide	134790	102 102	105042	102073
Sim of nom	150455	150207	127216	2/2722	15804	1/0512	126777	220//22	Eq mol /1	2 857	2 475	2 / 25	6 147		Sim of pom	262013	262/06	261865	715051
adm or ppm	127032	134371	131310	343133	120,000	N47316	130111	JJ7446	a/ml	1 1088	1 1021	1 1033	1 2268		aon or ppn	6.96.713	1.01.470	201003	
Anion eng	2 652	2 508	2 204	5 700	652	2 508	2 294	5 700	97 m.	1.1000	1.1011		1.66.00						
Cation eqs.	2.718	2.545	2.316	5.878	2.652	2,508	2.294	5,700											
Chrg Balance	0.012	0.007	0.005	al dis	_000	.000	.000	.000			D								
diff/sum		01007	Ĩ			1000			D	ilutio	n Factor	Compu	tation-		-				
			<u> </u>						-		180	182	173	254					
E	Elements	at les	s than	detecti	on limits	:			Bottle We	ights									
									empty	•	11.136	11.107	11.189	11.35					
12 /	AL	5	Ce	2.5	Nî	2.5	Ti		w/acid		41.120	41.126	41.166	16.66					
1 /	٨g	0.5	Co	2.5	Sn	120	u		w/smpl		77.422	73.629	68.798	58.28					
21	Au	2.5	Cr	15 :	Sb	25	v		Diln fctr		1.826	1.924	2.085	1.128				•	
0.02 8	3e	2.5	La	30	Te	2.5	¥												
50 E	31	12	Мо	50 1	Th	2.5	Zr												
0.01 0	Cs	0.01	Rb																

.

٦

.

TABLE 2: DOWNWELL TEMPERATURES, PRESSURES, AND HEAT LOSS RATES

.

.

	A				B	C	C				
*****	Neasure	d Temperature	and Pressures	***	Heat Loss Computation	Heat Losses Along the Wel	lbore				
Depth	nationa Saaa	national 12a		iuma 20	Interval 5000 to 4000 feet	Nonth Rit Dig / 7	1**7				
feet	F psio	F nei	i F nsia	F psig	Date 2000-T4000 Rate	i boptil bit bit bit a	Btu/hr				
0	529.8	· • •		· Po.9	deg F lb/hr Btu	/hr ft 5000	Deay				
500	503.2	503.6	501.6	507.4		12.25 354 1485	525690				
1000	516.0	511.1 678.	3 512.8 657.3	520.0 659.4	5 2.6 117000	251 3515					
	1300 727.2			50	June 12 2.4 208000	412 17.5 506 2483	1255689				
1500	530.5	523.8	525.0	531.8	June 14 1.1 402000	365 1032					
1600	791.6	•		4	June 20 1.1 420000	381 26 751 882	662688				
1800	840.9	F74 0 070			•	150 77 4040 450	45/0/0				
2000	240.8 890.2	535.8 8/0.	2 555.7 852.1	545.7 857.U	Average .	352 36 1040 150	120049				
2600	914.1 540 5 1047 4	557 0	551 0	550 2	std. nev.	DI U					
3000	568 3 1268 0	559 7 1106	1 562 6 11 6	573 0 1121 0	C = 0.825 Btu/lb decF at 565F	Sim above 3515 ft:	2074426				
3500	571.0 1484.7	565.8	568.2	579.5	I = T*R*C/2 = Btu/hr ft		Btu/hr				
4000	572.5 1699.8	565.5 1625.	5 57 8d 1535.2	580.9 1540.3							
4500	573.6 1919.2	567.5	577	581.8							
5000	575.1 2140.2	568.9 2053	2 573.6 1974.9	582.0 1968.6		Don Michels Associates					
•		2				1 August 1988					
		577									
		n # 1									
	•										

TABLE 3: PRE-FLASH BRINE COMPOSITIONS

													1	0	
				-									(<u> </u>		
		onstitu	ite Som	nie 254				NET COL	ICENTDAT			DDE-EI			e
		Trial	°Ci ≓	10700				ALI COP	IGEN I AM	TORS -		inter inter	ASA LUNU 5 1099	Dec 30	3
		11 144					Code	180	182	173	254	- Hag Rag	ed on	1985	
	Apparent	Change	Resid	% Chg	Chg in		Type	line	Line	line	atmos	173	254	ava	% diff
	COMP	in X	X	in X	sigma		Temp	494	492	492	225	U			<i>7</i> 0 witti
	mg/kg	mg/kg	mg/kg		units		•	milli	igrams p	ber kild	ogram				
Socium	64135	-6567	Ō	8.6	-26.9		Socium	56092	55830	55495	70702	52287	52750	52661	0.2
Calcium	36583	1027	٥	-2.6	4.2	*	Calcium	28387	28013	27792	35556	26188	26528	26515	.0
Potassium	22465	369	0	-1.5	6.3	*	Potassium	17522	17387	17413	22096	16407	16485	16502	-0.1
Iron	2052	° -133	0	5.6	-15.9		Iron	1731	1730-		2185	1614	1630	1552	4.8
Manganese	1927	-1	0	.0	-0.1	**	Manganese	1528		1526	1928	1437	1438	1385	3.7
Zinc	665	-0.6	.0	0.1	-0.3	**	Zinc	527	7522	526	665	496	496	506	-2.0
Silica	136	-490	0.5	76.8	-291.7		Silica	496	<u>492</u>	496	626	467	467	>475	
Strontium	532	1.5	.0	-0.3	2.9	**	Strontium	S 418	419	420	531	395	396	405	-2.3
Boron	521	-2.8	.0	0.5	-2.2	**	Boron	25415	412	414	524	390	39 1	357	8.7
Lithium	278	-1.1	.0	0.4	-2.0	**	Lithium	221	220	219	279	207	208	190	8.6
Ammonium	493	-25	-0.4	4.5	-4.9		Annonium	405	415	404	518	381	386	336	13.0
Bartum	162	9.9	-0.4	-6.0	1.1	*	B <u>ar</u> ian	111	116	132	152	124	113	194	-71.2
Lead	119	-7.9	.0	5.7	-6.3		Lead	99	102	101	127	95	95	95	.0
Magnesium	57	-0.5	.0	0.8	-0.6	**	Magnesium	46	44	45	57	43	43	36	15.8
Arsenic	16	-3.5	.0	16.4	-6.8		Arsenic	15.8	15.1	16.3	20	15.4	15		
Cadmium	2	-1.4	.0	45.9	-14.5		Cadmium	2.5	2.2	2.3	2.9	2.1	2		
Copper	1	-1.1	.0	44.4	1.9)j	Copper	1.6	1.9	2.1	2.4	2.0	2		
Chloride	185673	-10700	0	5.0	-7094		Chloride	154796	155162	155042	196373	146080	146512	153668	-4.9
Bromide	134	4	.0	-2	2.2	w	Bromide	100	103	105	130	99	97		
Sum of ppm	315951	-16523	0	4 5 6	J 38.3		Sum of ppm	262913	262496	261865	332474	246729	248055	254877	-2.8

Flash Fraction

.

.

.

** Best tracers * Other elements not lost of flashing

Don Michels Associates 1 August 1988

0.0578 0.2539

					TABLE 4	COMPL	ITATIO	i of co for fla	MPOSITION SHING GEO	i and pi Dthermai	HYSICAL FLUIDS	PROPERTI	ES			Ū			
	 2 1	FLAGASA S STATE 2-1 BASED ON and BR FLOW RATE	TEAN FLA 4 (Kenne WELLBORE INE DATA : 117.00	SH MODE Cott) DATA H FOR JU	EL FOR JUNE JNE 5, 1 r. total	5, 198 1988 fluid	38	EFFECT	IVE FLASH PRE-FLASH Enthalpy	TEMP: TDS CO2 CH4 N2	550.6 246729 3701.8 44.6 78.05	F INIT ppm ppm ppm ppm	IAL VAI H2O CO2 CH4 H2	POR PRES 882.4 291.5 14.4 24.0	SUJES	This co confo Heat lo to th NaCl th Temp lo	mputat erms to sses e weir ermody ss ≈ 1	ion : box namics 9.6 F	
	STFAN		,	VAPOR	,	WEIG	IT FRAI	Equiv.	wt % Ste	an M OF G	0.00		Total	: 1214	psia	Salinit at fl at we	y mism owline eirbox	atch -574	mg/kg mg/kg
DEG F	MASS FRACTION	BRINE SP VOL	NET SP VOL	VOLUME	TDS ppm	REMAINI CO2	ING IN CH4	LIQUID N2		VAPOR	PHASE N2	PA CO2	RTIAL CH4	PRESSUR N2	RES H20	TOT PSIA	'AL KPA	DEG C	
550.6 493 492 491 407 406 226 225	0.0000 0.0570 0.0578 0.0587 0.1295 0.1302 0.2544 0.2566	0.01630 0.01587 0.01586 0.01585 0.01527 0.01527 0.01526 0.01413 0.01413	0.0163 0.0581 0.0591 0.0602 0.2459 0.2496 5.3945 5.3945	0.000 0.743 0.747 0.752 0.946 0.947 0.998 0.998	246729 261656 261865 262119 283446 283656 330910 331900	1.000 0.060 0.059 0.057 0.010 0.010 .000 .000	1.000 0.031 0.030 0.030 0.004 0.004 0.004	1.000 0.019 0.019 0.019 0.002 0.002 .000 .000	56111 27513 27385 14337 14215	0 757 748 737 343 341 175 174	0 1340 1323 1304 601 598 307 304	293.5 19.9 19.5 19.0 3.8 3.8 0.2 0.2	14.4 0.7 0.6 0.1 0.1 .0	24.0 0.7 0.7 0.7 0.1 0.1 .0	882.4 522.9 518.0 513.0 211.1 208.7 15.1 14.8	1214 544 539 533 215 213 15	8370 3751 3714 3676 1483 1466 105 103	288.1 256.1 255.6 255.0 208.3 207.8 107.8 107.8	

•

~

Don Michels Associates 13 Nov 1988

.

					TABLE !	5: Comp	IOI TATL	I OF CO	MPOSITION SHING GEO	AND PE	HYSICAL FLUIDS	PROPERTI	ES		c	הו			
		FLAGASA S STATE 2-1 BASED ON and BR	TEAM FLA 4 (Kenne WELLBORE INE DATA	SH MODE cott) DATA I FOR JU	EL FOR JUNI JNE 5, 1	E 5, 19 1988	B8	EFFECT	IVE FLASH	TEMP: TDS CO2 CH4 N2	547.9 246729 3701.8 44.6 78.05	F INIT ppm ppm ppm ppm	IAL VAI H2O CO2 CH4	POR PRES 862.6 293.9 14.7 24.4	SURES	This co confo Heat lo to th NaCl th	mputat rms to sses e weir ermody	ion box	
		FLUM KAIE	: 117,00	JU LD/T	r, tota	i riuia		Equiv.	wt % Ste	am	0.00		Total	1196	psia	Salinit	ss = 2 y mism	atch	
	STEAN			VAPOR		WEIG OF	HT FRAG	TION GAS	pp	m OF G/						at fi at we	irbox	- 15 95	mg/kg mg/kg
DEG	MASS	BRÍNE	NET	VOLUME	TDS	REMAIN	ING IN	LIQUID	IN CO2	VAPOR	2HASE	PA	RTIAL	PRESSUR	ES	TOT	AL	DEC C	
£	TANGLION	or for	96. AOF	TRAG	hhuit.	LUC,	614	R£,		7	R£.	<i>CU2.</i>	6114	AL.	120	FOIN	лгл	bra c	
547.9	0.0000	0.01628	0.0163	0.000	246729	1.000	1.000	1.000	- <u>-0</u>	0	0	293.9	14.7	24.4	862.6	1196	8241	286.6	
493	0.0551	0.01586	0.0571	0.733	260910	0.061	0.032	0.020	1000	793	1405	20.7	0.7	0.7	518 3	540 540	3722	255 6	
491	0.0560	0.01585	0.0581	0.743	261376	0.060	0.031	0.0191	58476	771	1365	19.8	0.7	0.7	513.3	534	3684	255.0	
407	0.1271	0.01527	0.2414	0.945	282639	0.010	0.004	0.002	28030	350	613	3.9	0.1	0.1	211.2	215	1484	208.3	
406	0.1277	0.01526	0.2451	0.946	282849	0.010	0.000	0.002	27896	348	609	3.8	0.1	0.1	208.8	213	1467	207.8	
226	0.2521	0.01413	5.3462	0.998	329905	.000	,009		14465	177	309	0.2	.0	.0	15.1	15	105	107.8	
223 224	0.2550	0.01413	5.6024	0.998	331169	.000	.000	.000	14341 14305	175	306	0.1	.0	.0	14.8	15	103	107.2	

O

.

.

.

.

Don Michels Associates 13 Nov 1988

.

ADDENDUM E BRINE DATA AND STEAM FLASH MODELING SALTON SEA SCIENTIFIC DRILLING PROJECT

TABLE 6: COMPUTATION OF COMPOSITION AND PHYSICAL PROPERTIES FOR FLASHING GEOTHERMAL FLUIDS

															c ' >	<u> </u>			
		FLAGASA S STATE 2-1 BASED ON and BR FLOW RATE	TEAH FL/ 4 (Kenne WELLBORI 1NE DAT/ 117,00	ASH HOD BCOTT) E DATA A FOR J DO Lb/h	EL FOR JUNI UNE 5, [°] r, tota	E 5, 19 1988 L fluid	88	EFFECT	IVE FLASH PRE-FLASH Enthalpy	TEMP: TDS CO2 CH4 N2	570.2 246729 3701.8 44.6 78.05 0	F INIT ppm ppm ppm ppm	IAL VA H2O CO2 CH4 NZ	POR PRE 1036.5 200.5 12.5 20.8 1360	ssures psia	This co confo Heat lo to th NaCl th Heat lo Selipit	mputat rms to sses e weir ermody ss = n y mism	ion : box namics one	
											5	2			pord	at flo	wline:	5528	mg/kg
		د ر				WEIG	HT FRA	CTION				5				at wei	r box:	7065	mg/kg
	STEAM			VAPOR		OF	INITIA	GAS	PP	m of gi	ASES								
DEG	MASS	BRÍNE	NET	VOLUME	TDS	REMAIN	ING IN	LIQUID	IN IN	VAPOR	PHAGE	PA	RTIAL	PRESSU	RES	TOT	AL		
F	FRACTION	SP VOL	SP VOL	FRAC	'ppm	C02	CH4	N2	CO2	CH4	N2	CO2	CH4	N2	H20	PSIA	KPA	DEG C	
					11				E	7									
570.2	0.0000	0.01645	0.0165	0.000	246729	1.000	1.000	1.000	04	د 🗠	0	290.5	12.5	20.8	1036.5	1360	9377	299.0	
493	0.0767	0.01587	0.0727	0.799	267220	0.045	0.023	0.014	44 084	568	1002	15.3	0.5	0.5	520.7	537	3702	256.1	
492	0.0773	0.01586	0.0737	0.801	267393	0.044	0.023	0.014	2703	564	995	15.1	0.5	0.5	515.8	532	3666	255.6	
401	0 0782	0.01585	0.0749	0 805	267652	0.043	0.022	0.00	43356	558	984	14.8	0.5	0.5	510.8	527	3630	255.0	
607	0 1676	0 01527	0.0793	0.053	280463	0.000	0 003	0.00	26256	301	527	3 4	0 1	0.1	210 1	214	1473	208 3	
401	0.14/07	0.01261	0.2703	0.773	200475	0.007	0.000		24620	200	201	7.4			207 7	244	4154	202.2	
405	0.1485	0.01920	0.2823	0.924	209013	u.uuy	0.000	U.UUZ	24128	200	222	3.4	0.1	0.1	207.7	211	1430	207.0	
226	0.2710	0.01413	5.7472	0.998	338432	.000	.000	.000	13475	165	288	0.1	.0	.0	15.0	15	104	107.8	
225	0.2733	0.01413	5.9014	0.998	339539	.000	.000	.000	13357	163	285	0.1	.0	.0	14.7	15	102	107.2	
224	0.2740	0.01412	6.0218	0.998	339845	.000	.000	.000	13326	163	285	0.1	.0	.0	14.4	15	100	106.7	

.

.

-

Don Michels Associates 13 Nov 1988

.

Don Michels Associates 13 Nov 1988

BRINE DATA AND STEAM FLASH MODELING SALTON SEA SCIENTIFIC DRILLING PROJECT FIGURE 1 70 FLASH INITIATION CONDITIONS]] KENNECOTT STATE 2-14 m JUNE 5 1988 ~600 WATER VAPOR PRESSURE REFERENCE ONLY) FDR 590 17.30 Z 580 Þ DOWN HOLE P/T SURVEY 20 5000 1 4500 570 4000 * TEMPERATURE (deg F) 3500 ' 3000 1 2500 560 FLASH INITIATION 1360 psia, 570.2 deg F at 3160 ft 550 2000 540 Τ.) 1000 1100 PRESSURE (psia) 1400 1500 1600 1700 1800 1900 2000 2100 2200 800 1100 1200 1300 900

APPENDIX E

ADDENDUM F

MISCELLANEOUS SUPPORTING CALCULATIONS

- A. Effect of Scale Buildup on Brine Orifice Plates
 - 1. Effect of bore diameter reduction

.

Flow rate through a clean orifice =

$$m = \left(\frac{r}{4} \frac{d^{2}}{4}\right) \left(\frac{C}{\sqrt{1-B^{4}}}\right) \sqrt{2g_{c} \rho(p_{1}-p_{2})}$$
(ASME, 1971, eqn No. I-5-29)
Where:

$$m = mass rate of flow, lbm/sec
d = diameter of orifice bore, feet
D = inside diameter of pipe, feet
Fa = thermal expansion factor
C = difice discharge coefficient
B = d/D
g_{c} = 32 74 lbm-ft/lbf-sec^{2}$$

p1 = upstream pressure, lbf/ft²
p2 = downsuream pressure, lbf/ft²
p2 = downsuream pressure, lbf/ft²
p2 = fluid density, lbm/ft
Rearranging the equation,

$$m = \frac{\pi F_{a} \times C \times \left(\frac{1}{d^{4}} - \frac{1}{D}\right)^{-1/2} \times (2g_{c}\rho \Delta p)^{1/2}$$

$$\frac{\Delta m}{m} = 2 \left(\frac{1}{d^{4}} - \frac{1}{D^{4}}\right)^{-1} \times d^{-5} \times \Delta d$$

$$\frac{For Leg A:}{D} d = 4.8 in.$$

$$D = 12 in.$$

$$\Delta d = -0.25 in.$$
Effect of rounded edge on orifice

2. Effect of rounded edge on orifice

From Marks, 1958, page 3-64, the effect of rounding the upstream edge is described by:

$$\frac{\Delta m}{m} = 3.1 \times \frac{r}{d}$$

Where r = radius of rounding, inches

For Leg A:
$$r = 0.188$$
 in. $\Delta m = 3.1 \times 0.188 = 0.121$
d = 4.80 in. m 4.8

r = 0.125 in. $\Delta m = 3.1 \times 0.125 = 0.054$ d = 7.1464 in. m = 7.1464For Leg B: 3. Combined effect $\frac{\Delta m}{m} = \underline{\Delta m} \text{ (for rounding)} + \underline{\Delta m} \text{ (for diameter reduction)}$ For Leg A: $\Delta m = 0.121 - 0.160 = -0.039 = -3.9$ % For Lego B: $\Delta m = 0.054 - 0.080 = -0.026 = -2.6$ % B. Estimates of Heat Loss From Flowline 1. Forced convection Estimated worst case (greatest heat loss) conditions: Ambient temperature $(T_{1}) = 75^{\circ}F$ Wind velocity (V) = 29.33 ft/sec (20 mph) perpendicular to pipe Temperature at outer surface of pipe $(T_s) = 490^{\circ}F$ Pipe O.D. $(D_s) = 10.75$ in. = 0.896 ft Flowline length (L) = 200 ft Properties of air at approximate mean temperature (300°F), taken from Kreith, 1958: Thermal conductivity (k) $\sqrt[9]{0.0193}$ Btu/hr-ft-⁰F Kinematic Viscosity (v) = 0.000306 sq. ft/sec From Kreith, 1958, eqn #9-3: Nu = 0.0239 x $R_D^{0.805}$ for 40,000 < R_D < 400,000 where, R R_D = Reynolds number Nu = Nusselt number = $\frac{h_c D_o}{k}$ $h_c = convective heat transfer coefficient_$ $R_{D} = \frac{VD_{O}}{v} = \frac{29.33 \text{ ft/sec } x \text{ 0.896 ft}}{0.000306 \text{ sq. ft/sec}} = 85,900$ $Nu = 0.0239 \times R_{D}^{0.805} = 224$ $h_{c} = \frac{Nu \ k}{D_{o}} = \frac{224 \ x \ 0.0193 \ Btu/hr-ft-^{O}F}{0.896 \ ft}$ = 4.826 Btu/hr-sq ft- $^{\circ}$ F

Rate of heat loss = $q = h_c A \Delta T = h_c \pi D_o L(T_s - T_a)$ = 4.826 <u>Btu</u> <u>hr-sq ft</u> F $\pi \pi x 0.896$ ft x 200 ft x (490-75°F) = 1.13 x 10⁶ Btu/hr

2. Free convection

Estimated conditions for least heat loss:

$$T_a = 100^{\circ}F$$

 $V = 0$
 $T_s = 490^{\circ}F$
 $D_o = 10425$ in. = 0.896 ft
 $L = 200$ f

Properties of at approximate mean temperature (300°F), taken from Kreith, 1958:

K = 0.0193 Btu/hr-ft-^oF
Prandtl number (Pr) = 0.71

$$\frac{gBo^2}{\mu^2}$$
 = 0.444 x 10⁶ A^oF- cu ft
(part of Grashof number)

From Kreith, 1958, eqn #7-28: Nu = 0.53 (Gr Pr)^{0.25} where Gr = Grashof number. Nu = 0.53 x (1.245)^{0.25} = 56.0 $h_c = \frac{Nu \ k}{D_o} = \frac{56 \times 0.0193 \ Btu/hr-ft-^{\circ}F}{0.896 \ ft}$ = 1.206 Btu/hr-ft-[°]F

$$q = h_{c} \pi D_{o}L (\dot{T}_{s} - T_{a})$$

= 1.206 x \ x 0.896 x 200 x (490-100)
= 264,700 Btu/hr

3. Estimate average heat loss from flowline = 500,000 Btu/hr.

NOTES REGARDING DOWNHOLE SURVEYS

- 1. All temperature data are in units of degrees Fahrenheit.
- 2. For the static survey on November 18, 1987, the depth reference datum is ground level and all pressure data are in units of psig.
- 3. For all surveys in June, 1988, the depth reference datum is K.B. 29 feet above ground level, and pressure data are in units of psia.

R

N A R , È.

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY, BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE_TEMPERATURE_SURVEY

.

· · ·

CO. KENNED	COTT GEOT	HERMAL	RUN Ø1 FI	ELD SALTON	SEA	WELL 2-14	STATE
EFF DEPTH			WELL STAT	STATIC	TO	OL HUNG	
CASING			CASING PR	RESS	ON	BOTTOM	
LINER	P		TUBING PR	RESS	OF	- BOTTOM	
DATE	871118		ELEMENT R	ANGE 56 -	661 ZE	RO POINT GI	RD
ELEVATION	R		ZONE		SH	JT-IN	
MAX TEMP	L L		PICK-UP	67541	DN	-PROD	
PERF	lí J		CAL SER N	10. 28339	MP	D	
TUBING	Ļ						
UNITS	ENGLISH	n	PURPOSE	STATIC	TEMPERATI	JRE	
		L					
		1	SURVEY	DATA			
		ł					
CD. KENNED	COTT GEDT	HERMAL	RUN Ø1 FI	ELD SALTON	SEA	WELL 2-14	STATE
TIME	DEPTH	P/T	GRAD	TIME	DEPTH	P/T	GRAD
1:00	500	120.5	_n 0.000	1:00	3500	475.2	0.000
1:00	600	157.2	0.000	1:00	3600	480.7	0.000
1:00	700	175.4	ଡ.ୁଡଡ଼ଡ	1:00	3700	485.4	0.000
1:00	800	195.8	0.100	1:00	3800	490.1	0.000
1:00	900	212.0	0.000	1:00	3900	494.2	0.000
1:00	1000	232.7	0.009 <u>()</u>	1:00	4000	500.6	0.000
1:00	1100	241.0	0.000	1:00	4100	502.8	0.000
1:00	1200	252.4	0.000	⊇ 1:00	4200	504.8	0.000
1:00	1300	264.4	0.000 ^U	1:00	4300	506.8	0.000
1:00	1400	276.3	0.000	V 1:00	4400	509.7	0.000
1:00	1500	287.3	0.000	Y 1:00	4500	511.1	0.000
1:00	1600	298.3	0.000	1:00	4500	514.7	0.000
1:00	1700	310.4	0.000	1:00	4700	517.0	0.000
1:00	1800	323.0	0.000	1:00	4800	519.4	0.000
1:00	1900	335.4	0.000	1 : 1	4900	522.7	0.000
1:00	2000	349 .8	0.000	1:00	5000	526.7	0.000
1:00	2100	357.9	0.000	1:00	F 5100	530.2	0.000
1:00	2200	369.4	0.000	1:00	5200	535.0	0.000
1:00	2300	380.4	0.000	1:00	<u> 1</u> 500	538.6	0.000
1:00	2400	390.5	0.000	1:00	<i>"5400</i>	541.2	0.000
1:00	2500	400.7	0.000	1:00	5490	542.9	0.000
1:00	2600	409.2	0.000	1:00	5480	546.4	0.000
1:00	2700	417.7	0.000	1:00	55007	546.4	0.000
1:00	2800	427.8	000	1:00	5540	546.0	0.000
1:00	2900	437.0	0.000	1:00	5600	546.4	0.000
1:00	3000	446.5	0.000	1:00	5660	545.7	0.000
1:00	3100	452.4	0.000	1:00	5700	547.4	0.000
1:00	3200	457.9	0.000	1:00	5800	548.1	0.000
1:00	3300	464.3	0.000	1:00	5900	549.5	0.000
1:00	3400	470.6	0.000	1:00	6000	549.9	0.000

.

PAGE 1

÷

Ţ.

.

PAGE 2

SURVEY_DATA

CO.	. KENNE	COTT GEC	THERMAL	RUN 01 FIELD	SALTON	SEA	WELL 2-14	STATE
	TIME	DEPTH	P/T	GRAD	TIME	DEPTH	P/T	GRAD
	1:00	6020	550.6	0.000	1:00	6340	551.6	0.000
	1:00	6060	549.5	0.000	1:00	6400	552.7	0.000
	1:00	6100	545.3	0.000	1:00	6500	551.6	୦. ଉପଡ
	1:00	6140	538.9	0.000	1:00	66 00	553.4	0.0 00
	1:00	6150	536.0	0.000	1:00	6640	554.2	0.000
	1:00	6180	535.6	0.000	1:00	6680	560.5	0.000
	1:00	6200_	537.9	0.000	1:00	6700	565.5	ଡ. ଡଡଡ
	1:00	624	540.9	0.000	1:00	6720	568.2	0.000
	1:00	62 80 °	543.6	0.000	1:00	6754	571.1	ଡ. ଡଡଡ
	1:00	6300	548.1	0.000	0:00	Ø	0.0	0.000

N

A

R

Ļ.

R.

BY C. WEAVER

ين. 1. -

·· · · · · ·

4

.

ł

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY, BAKERSFIELD CA. 93312 (805) 589-2768

TELD COLTON CEO

R

SUB-SURFACE_PRESSURE_SURVEY

LU. REINNEL	JUII BEU.	INERPHE	KON IN FIELD	SHETUN SE		WELL E-14	SIAIC
EFF DEPTH			WELL STAT	STATIC	TO	JL HUNG	
CASING		-	CASING PRESS		DN	BOTTOM	
ITNER	D		THETNE PRESS		OF	BOTTOM	
	07110		ELEMENT RONG	- 0 - 700	:0'' 7E1	אטייוטע איזאימי מכ	on.
DHIE	9111 <u>9</u>		ELEMENI KHNG	2 0 - 390	57 <u>2</u> EI		(D
ELEVATION	ĸ		ZONE		SHL	JT-IN	
MAX TEMP	. u		PICK-UP	67541	DN-	-PROD	
PERF		E	CAL SER NO.	22335-4A	MPI	כ	
TUBING							
UNITS	ENGLISH	n	PURPOSE	STATIC PR	RESSURE		
		L				•	
			SUBVEY DO	гь			
	OTT GEDI			SOL TON SP	-0	WELL 2-14	STATE
TIME	NEBTH		GPON	TIME	NEDTU		GROD
1195	FOO			1 1 110	ACCC	· · · · · · ·	
1:00	200	56.3	4 000	1:00	4000	1/11.2	.456
1:00	1000	310.3	487	1:00	5000	2160.6	.449
1:00	2000	785.3	475	1:00	6000	2597.1	436
1:00	3000	1255.3		1:00	6754	2935.3	. 449
		•			·		•
BY C. WEAVE	ER						
					,		

PAGE 1

栩

PAGE 1

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY, BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE TEMPERATURE SURVEY

CD. KENNECDTT GEOTHERMAL	RUN Ø1 FIELD	SALTON SEA	WELL 2-14 ST	'ATE
	COSTNE DESS		N PRTTOM	
	THEING DEESS		EE BOTTON	
	FLEMENT RONG		FRA DAINT 291	
	ZONE	5	HUT-IN	
MAX TEMP	PICK-UP	N/A 0	N-PROD	
	CAL SER NO.	28739A M	PP	
TUBING -				•
UNITS ENGLISH	PURPOSE	FLOWING TEMPER	ATURE	
	SURVEY_DA	IB		
•			_	
CO. KENNECOTT GEOTHERMAL	FUN Ø1 FIELD	SALTON SEA	WELL 2-14 ST	ATE
TIME DEPTH P/T	GRAD	TIME DEPTH		GRAD -
1:00 500 503.2	0 000	1:00 3000	555.3	.010
	4 1025	1.00 4000	J/1.0 570 5	. 600
1:00 1000 030.0		1:00 4000	072.0 577.5	. 223 002
1.00 2500 540.0	- 40-00 0 - 00	1.00 4000	575 (002
	A	7 5 6 7 6 7 6 6		
BY C. WEAVER	F	•		
		Д		
	•			
· · ·				
		e u a		
		а — 🤷 —		
			_	
	need and the second sec	e C		

, con

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY.BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE_PRESSURE_SURVEY

Texter and

3.

PAGE 1

鬥

- 90

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY, BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE_TEMPERATURE_SURVEY

PAGE 1

.

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY, BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE_PRESSURE_SURVEY

PAGE 1

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY. BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE TEMPERATURE SURVEY

BY C. WEAVER

PAGE 1

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY, BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE_PRESSURE_SURVEY

PAGE :

PAGE 1

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY,BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE_TEMPERATURE_SURVEY

and the second of the second second second second second second second second second second second second second

PAGE 1

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY, BAKERSFIELD CA. 93312 (805) 589-2768

SUB-SURFACE_PRESSURE_SURVEY

.

PAGE 1

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY. BAKERSFIELD, CA. 93312 (805) 589-2768

COMPANY : KENNECOTT GEOTHERMAL START : 06/12/1988 12:40:00 : 06/13/1988 08:42:31 FIELD : SALTON SEA FND WELL NUMBER : 2-14 FILENAME : 01SA2-14.SUR RUN NUMBER : 01 NUMBER OF REFENINGS : 522 FRESSURE READINGS ARE TAKEN IN PSIA TIME IS MEASURED IN HOURS SURVEY DATA WELL NAME 2-14 RUN Ø1 FIELD SALTON SEA COMPANY KENNECOTT TIME DE DTIME TIME PRES DF DTIME PRES 06-12-1988 13:07:30 2053.49 1.01 -.0361 1.43 1.46 13:07:35 2054.05 1.57 -. 0847 12:40:00 2053.91 -.5444 -.5277 13:07:40 2054.28 -.0833 12:41:00 2053.94 1.80 . 1 -.5111 13:07:45 2054.43 1.95 -.08:2 12:42:00 2053.46 . els 13:07:50 2054.06 1.58 -.0801 12:43:00 2053.35 -.4944 12:44:00 2053.46 . 98 -. 4777 13:07:55 2053.53 1.05 -.0791 12:45:00 2053.67 -.4611 13:08:00 2053.44 .95 -.0777 1.19 4444 .79 13:08:05 2054.09 1.61 -.0763 12:46:00 2053.27 13:08:10 2054.32 1.84 -.0750 12:47:00 2053.67 1.13 -. 4111 -. 7444 -. 3777 12:48:00 2054.43 . 1.95 13:08:15 2054.53 2.05 -.0738 13:08:20 2054.25 1.77 -.0722 12:49:00 2054.35 1.87 12:50:00 2053.77 1.29 13:08:25 2053.86 1.38 -.0708 -. 35 🗖 -. 19294 1.03 13:08:30 2053.84 1.38 12:51:00 2053.51 .91 -. 3444 13:08:35 2054.23 1.75 -.0660 12:52:00 2053.39 ₩3:08:40 2054.34 -.3277 -. Ø565 12:53:00 2053.52 1.04 1.85 43:08:45 2054.44 12:54:00 2053.86 1.38 -.3111 1.96 -. ØESE 12:55:00 2054.08 1.60 -.2944 13:08:50 2054.11 1.63 -.0638 1.27 12:56:00 2053.74 1.26 -.2777 13:08:55 2053.75 -.0625 13:09,00 2053.66 12:57:00 2053.76 1.28 -.2611 1.18 -.0611 13:09 5 2054.00 12:58:00 2054.23 1.75 -.2444 1.52 -. 0597 13:09:10 2054.16 13:09:15 3054.33 12:59:00 2054.05 1.57 -.2277 1.68 -.0283 13:00:00 2053.96 1.48 -.2111 1.85 -.0569 13:09:20 2053.91 -.0355 13:01:00 2053.65 1.17 -.1944 1.43 -.1777 13:02:00 2053.68 13:09:25 2002.52 1.04 -.0541 1.40 13:09:30 2053.39 13:03:00 2053.68 1.20 -.1511 .91 -.0527 -.1444 13:09:35 2053 13:04:00 2053.57 1.03 1.38 -.0513 .84 13:09:40 2054.02 -.0500 13:05:00 2053.32 -.1277 1.54 13:06:00 2053.65 1.17 -. 1111 13:09:45 2053.80 1.35 -.0486 13:09:50 2053.34 -.0472 13:06:30 2053.61 1.13 -.1027 . 88 13:06:35 2054.12 1.64 -.1013 13:09:55 2053.19 .71 -.0458 -. 0444 1.70 13:10:00 2053.24 13:06:40 2054.18 -. 1000 .76 13:06:45 2054.20 1.72 -. 0986 13:10:05 2053.75 1.27 -.0430 13:06:50 2053.85 1.37 -.0972 13:10:10 2053.87 1.39 -.0413 13:06:55 2053.64 1.16 -.0358 13:10:15 2053.81 1.33 -.0402 13:07:00 2053.72 1.24 .93 -.0944 13:10:20 2053.41 -.0383 13:07:05 2054.20 1.72 -.0930 13:10:25 2052.95 .47 -.0375 1.76 13:07:10 2054.24 -.0916 13:10:30 2053.04 .56 -.0381 13:07:15 2054.21 1.73 -.0902 13:10:35 2053.60 1.12 -.0347 1.27 13:07:20 2053.75 13:10:40 2053.47 -. 0888 .99 -.0333 .96 13:07:25 2053.44 -.0875 13:10:45 2053.52 1.04 -.0319
PAGE E

SURVEY DATA

COMPANY H	KENNECOTT	RUN	Ø1 FIELD	SALTON SEA	WELL	NAME 2-14	
TIME	PRES	DP	DTIME	TIME	PRES	DF	DTIME
13:10:50	2053.19	.71	0305	13:15:10	2023.96	-28.52	.0417
13:10:55	2052.80	.32	~.0291	13:15:15	2022.39	-30.09	.0431
13:11:00	2053.07	.59	0E77	13:15:20	2021.15	-31.33	.0445
13:11:05	2053.34	.85	0363	13:15:25	2019.51	-32.97	. 2483
13:11:10	2058 57	1.05	~.0250	13:15:30	2018.20	-34.25	.0473
13:11:15	2053.43	.95	0236	13:15:35	2016.60	-22.38	.0457
13:11:20	2053.88	.78	0222	13:15:40	2015.29	-37.19	. 6500
13:11:25	2053.23	.77	0208	13:15:45	2013.92	-38.58	.ØE14
13:11:30	2053.21 7	.73	0194	13:15:50	2012.67	-39.81	.0528
13:11:35	20153.43	.95	0130	13:15:55	2011.31	-41.17	.0841
13:11:40	2053.42	n .94	0166	13:16:00	2009.98	-42.50	. ಅದಲ್ಲ
13:11:45	2053.40	.92	0152	13:16:05	2008.72	-43.78	.0570
13:11:50	2053.13	_65	~.0138	13:16:10	2007.39	-45.09	.0584
13:11:55	2053.17	69	0125	13:16:15	2006.13	-46,35	.0393
13:12:00	2053.22	.74	0111	13:16:20	2004.84	-47.54	.0512
13:12:05	2053.41		0097	13:16:25	2003.55	-48.92	.0681
13:12:10	2053.13		0083	13:16:30	2002.27	-30.21	.0639
13:12:15	2052.90	.42	0069	13:16:35	2001.18	-51.30	.0633
13:12:20	2052.53	ີຄຣີ	- 0055	13:16:40	2000.04	-52.44	.0667
13:12:25	2052.58	. 107	A-H. 02141	13:16:45	1958.89	-53.59	.068:
13:12:30	2052.67	. 19	N 0027	13:16:50	1997.62	-54.85	.0695
13:12:35	2053.67	. 19	- 1881.3	13:16:55	1995.19	-55.29	.0705
13:12:40	2052.48	. 00	Anga	13:17:00	1995.33	-57.15	.0723
13:12:45	2052.11	37	.0014	13:17:05	1994.02	-58.45	.0737
13:18:50	9051.74	74	028	13:17:10	1993.13	-59.35	.0750
13-12-55	2051.60	- 88	. 0042	13:17:15	1991.95	-68.53	. 19764
13.13.00	2051.56	- 90	0056	M3:17:50	1990.48	-52.00	.0778
12-12-05	205:10	-1 28	• ここ こ ののフロ	13.17.25	19913 00	-22.02	(175)
12.12.10	2050.67	-1 81	0084	13-17-20	1988.78	-63.70	- PS:25
1 - 1 - 1	2050.01	-0.00	.000-	13-17-35	1987.99	-44.49	- 06-10
12.12.20	2049.70	-2.78	.0050	13.17 100	1985.77	-65.71	0834
12.17.04	2049.70	 	0105	13.145	1985 72	-65 75	.0004
13:13:30	2048.64	-2.84	0120	12:17:50	NGA4.74	-67.74	.08.22
13-13-34	2047.74	-4 74	.0152	13.17.55	THAT AT	-68.65	.0675
13:13:40	2046.97	-5 51	.0167	12:18:00	1982.71	-69.77	1333
13:13:45	2046.33	-6.15	.0181	13:18:05	1991.99	-70.49	.0923
13:13:50	2045.49	-6.99	0195	12:18:10	1980.89	-71.59	.0917
13:13:55	2044.23	-8.19	. 0209	13:18:15	197994	-72.54	.0931
13:14:20	2042.90	-9.58	. 0223	13:18:20	1979.11	-73.37	.0945
13:14:05	2041.92	-10.55	. 0220	13:18:25	1978.36	-74.18	. 14959
12:14:10	20140.94	-11.54	.0250	13:18:30	1977.44	-74.99	.0973
13:14:15	2039.63	-12.85	.0250	13:18:35	1976.65	-75.63	. 498.7
13-14-20	2028.57	-12 91	21278	13:18:40	1975.89	-76.55	121217
13.14.25	2037.31	-15 17	0270	13:18:45	1975.07	-77 41	11714
12.14.30	2075 63	-16 85	0306	13:18:50	1974 30	-78 18	101-9
13:14:25	2034,20	-18.28	.0000 .0700	13.14.55	1977 55	-78.43	· 742
13:14:40	2032 72	-19 76	・ しつこく (オママム	7,3 • 1 G • MM	1070 71	-74 77	1054
13:14-45	2021.41	-91 (N7	.0334 0740	13-19-134	1072 DE	-80 43	1070
12:14.50			0376°	13+19+10	1971 99	100.42 101.02	• 100 C
12.14.55	DADA DA		. UJEE M7775	12-10-15	1970 55	-91-20	1004
12.15.00	2020.23 2027 00	27.2J 295.72	.vo/0	12.10.00	1969 79	-01.52 	م کلا ہے ت⊂: ب م م ⊂
12.15.05	20125 40		. USOS 01407	12:10:05	1969 19	-06.55	7 7
ະພະສະພະແບ	8	£1.00	. ഗഎംഗാ	19113123	1202.13		• • • • • • •

.

SURVEY DATA

10.00

COMPANY KENNECOTT	RUN	Ø1 FIELD	SALTON SEA	A WEL	L NAME 2-14	
TIME PRES	DF	DTIME	TIME	PRES	ĎF	DTIME
13:19:30 1968.58	-83.90	.1139	13:24:09	1950.87	-101.61	.1914
13:19:35 1967.94	-84.54	.1153	13:24:19	1950.72	-101.75	.1942
13:19:40 1967.27	-85.21	.1157	13:24:29	1950.47	-102.01	.1970
13:19:45 1965.60	-85.38	.1181	13:24:39	1930.33	-102.15	.1998
13:19:50 1966005	-85.43	.1195	13:24:49	1950.02	-102.46	.2025
.13:19:35 1965.58	-85.90	.1209	13:24:59	1949.95	-102.53	.2053
13:20:00 1965.04	-57.47	.1223	13:25:09	1949.68	-102.80	.2081
13:20:05 1964.49	-87.99	.1237	13:25:19	1949.57	-102.91	.2103
13:20:10 1953.84	-88.84	.1250	13:25:29	1949.49	-102.99	.2137
13:20:15 1963.44	=-as.04	.1284	13:25:39	1949.18	-103.30	.2164
13:20:20 1962.91	-85.57	.1278	13:25:49	1949.10	-103.38	.2192
13:20:25 1962.53	- B e. es	.1292	13:25:59	1948.95	-103.53	. 2220
13:20:30 1961.95	-90.53	.1306	13:26:09	1948.80	-103.66	.2248
13:20:35 1961.62	-90.66	.1320	13:25:19	1948.79	-103.69	.2275
13:20:40 1961.08	-91.40	.1334	13:26:29	1948.70	-103.78	. 2303
13:20:45 1960.81	-91.6 27 6	.1345	13:26:39	1948.60	-103.88	.2331
13:20:50 1960.25		1368	13:25:49	1948.65	-103.83	2350
13:20:55 1959.99	-92.49	1375	13:26:59	1949.45	-1014.02	. 2387
13-91-00 1959 64	-92 84	1369	13:27:09	1948.57	-103.91	2414
13.01.05 1950 01	?7	- 1483	13:27:19	1948.47	-104.05	2442
13.01.10 1950 72		N 1417	13.27.29	1948.53	- 77 95	. 2470
10.01.14 1050 47	-GA 011	1431	12.07.20	1948 60	-107 88	949A
17.01.00 1950 00	-94 99		13.27.49	1949 43	-104 05	ಂದ್ರಂಥ :
17.01.04 1957 88	-94 60		12.07.50	1948 74	-104 19	• -
13.21.20 1957 47	-Q5 (h1		12-28-09	1948.73	-104 15	•2000 ⊙≪A+
13.01.25 1957 19	-as 35		17.08.19	1948 49	-104 05	- <u>-</u>
17.21.40 1955 81	-95,00	15.010	10.00.00	1949 69	-102 85	
13:21:40 1530.01	-50.07 -05 G0	1514	17.20.44	1940.02	-100.00	
13:21:40 1906,05	-33.30		13:20:44	1040.04	-103.34	- 2070 07720
13:21:00 1505.27		.1020	17.00.44	19/9 51	-103.23	- 2702 : 0546
	- 25. 40	. 1042 1552	12:22:44	1945.01		
	-50.70	1570	13.30	1950 00	-101 53	ം പയകയ നൽഡോയം
13:22:00 1900.07	-20.21	.1370		1950.90		- 3812 C
13:22:10 1900.36	-97.123	.1084	17.71.44		-101.22	.3050 5.70
13:22:13 1933.00		.1358	13:31:44		-100.94	.3178 තැකුළහ
13:22:20 1504.04		- 101C 100E	13:32:14		-100.83	.3203. Nove
17.00.70 1954 05		- 1023 1279	12-22-14		-100.35	.3349 7479
13:22:30 1904.20	-30.22 -02 50	1257	13:33:14	10506.14	-100.34	- 3460 7540
13:22:30 1903.98%	-98.30	.1555	13:33:44		-100.13	. 3012 7405
13:22:40 1533,73	-90.97	.1667	13:34:14	1050 Tem		- 3050 NATO
13:22:40 1999.00 - 17.99.50 1997 // / / / / / / / / / / / / / / / / /		.1681	13:34:44	1502.37	-100.11	.3078 7740
13:22:00 1903.43	-35.00 **	1050	13:33:14	1502.40	-100.00	.370C
13:22:33 1533,18	-33.32	.1703	13:33:44	1902.00		.3343
13:23:00 1953.12	-33.36	.1/23	13:36:14	1902.62		.3528
	-33.71	.1/3/	13:35:44	1952.61	-99.87	.4012 .4005
13:23:10 1952.69	-99.79	.1754	13:37:14	1952.79	-33.63	.4093
13:23:13 1932.42	-100.05	.1/64	13:37:44	1902.49	-99.99	.4:/3
13:23:20 1922.36	-100.12	.1778	13:38:14	1952.40	-100.03	4252
13:23:25 1952.08	-100.40	.1792	13:38:44	1952.50	-99.58	- 434回
13:23:30 1952.11	-100.37	.1806	13:33:14	1952.89	-99.59	4428
13:23:35 1951.79	-100.69	.1820	13:39:44	1953.10	-99.38	.4512
13:23:49 1951.46	-101.02	.1859	13:40:14	1953.01	-99.47	.4585
13:23:59 1951.17	-101.31	.1887	13:40:44	1953.05	-99.42	.4878

.

SURVEY DATA

COMPANY H	KENNECOTT	RUN	01	FIELD	SALTON SEA	A WELI	NAME 2-14	
TIME	PRES	DP		DTIME	TIME	FRES	DF	DTIME
13:41:14	1952.95	-99.53		.4762	17:32:31	1944.70	-107.78	4.3309
13:41:45	1953.16	-99.32		.4843	17:37:31	1944.65	-107.83	4.4142
13:42:45	1953.58	-98.90		.5014	17:42:31	1944.59	-107.89	4.4975
13:43:45	1953.45	-99.03		.5181	17:47:31	1944.75	-107.73	4.5809
13:44:45	195070	-98.78		.5348	17:52:31	1945.28	-107.20	4.6642
13:45:45	1954.18	-98.30		.5514	17:57:31	1945.10	-107.38	4.7475
13:46:45	1954.20	-98.44		.5681	18:02:31	1945.38	-107.10	4.5303
13:47:31	1954.	-98.29		. 5809	18:07:31	1945.51	-106.97	4.9142
13:52:31	1954.40	-98.08		.6642	18:12:31	1945.51	-106.97	4.9973
13:57:31	1955.20	5-97.38		.7475	18:17:31	1945.55	-106.93	5.0209
14:08:31	1955.29	-67.19		.8309	18:22:31	1945.85	-105.60	0.164E
14:07:31	1941.75	-110.72		.9142	18:27:31	1945.82	-105.55	5.2475
14:12:31	1937. AS	-114.52		9975	18:32:31	1946.32	-106.16	5.3309
14:17:31	1938.03	-114-45		1.0309	18:37:31	1945.31	-107.17	5.4:45
14.20.31	1936.38	-114.10		1.1642	18:42:31	1945.32	-107.16	5.4975
14-27-21	1938.00	-117 4		1 2475	18:47:31	1945.66	-126.82	5.5609
14.79.71	1938 15	-114 33		1.3309	18:52:31	1945.83	-106.65	5.5542
14.27.21	1978 75	-114 19	n i	1 4142	18.57.31	1945.95	-105.52	5. 7475
14.49.71	1920.00	-112 07		1 4975	10.02.21	1045 84	-105.52	
14.47.21	1979 85	-117 69	R		19.02.31	1945 55	-105 93	5 9 49
14.50.71	1929.00	-117 25	- (f)	NEEDE	19.19.21	1945 02	-106 45	5 9975
14.57.71	1939.63		-	1 7075	19.17.31	1945 71	-106.77	
15.00.21	1939.40	-112 95			10.00.71	1945 57	-106 91	E 1642
10:02:31	1939.03	-112.85	•	1 0140	19.07.21	1945.07	-105 61	5 0475 5 0475
15.10.31	1939.64	-112.04			19.22.21	1946.07	-102 27	
10:12:01	1535.01	-112.07		⊥.⊐ <u>⊐</u> [[] ⊃ ത¤ത¤	19:32:31	1340.11	-100.07	C. 3365 C 4145
10:1/:31	1939.80	-112.50		2. UOU7		1946.42	-100.00	6.4.4 <u></u>
10:22:31	1940.04	-112.44	•	2,304C 7,704C	10-47-31	1946.25	102 00	5.4570 5.5000
10:27:31	1940.30	-112.10	•	2.24/J	19:47:31	1945.60	-103.00	6.0809
10122131	1340.33			5.3303 7.440	19:02:31	1346.66	-100.82	5.554C
10:37:31	1940.62	-111.06	1	2.4142 7.4075	19:07:31	1946.55	-100.02	6.7473
10:42:31	1940.00	-111.33		2.4373 5.5000		1946.06	-105.42	6.8303
15:47:31	1940.60	-111.03		2.3803	20:07731	1943./3	-105,70	6.9143
10:52:31	1941.33	-111.15	1	2.0042 7.7075	20:12:31		- 105.53	E.9970
10:07:31	1941.40	-111.03	•	1,747D	20:17:31	1943.34	-105.34	7.0803
10:02:31	1941.09	-110-05		0303 - 01/0	20:22:31			
10:07:31	1942.12	-110.35		2,3142 2,007=	2012/131	19/19/100	-100.02	7.2473
10:12:31	1942.12	-110.35		2.3373	20:32:31		-106.30	7.2303
16:17:31	1942.19	-110.23		3.0803	20:37:31		-105.17	7.4195
16:22:31	1942.64		•	3.1042 7 0475	20:42:31	1946.00	-105.40 107 or	7.4970
16:27:31	1942.99	-103.43	•	3.2470	20:47:31	1946.24	-105.20	7.5809
16:32:31	1942.88	-109.60		5.5509	20:52:31	1946.49	-100.99	7.0042
16:37:31	1943.13	-109.30	•	5.4142	20:37:31	1945.04	-105.44	7.7473
16:42:31	1943.16	-109.32		3.49/5	21:02:31	1946.38	-106.10	7.8363
16:47:31	1943.04	-109.44	•	3.5809	21:07:31	1945.94	-106.54	7.9142
16:52:31	1943.70	-108.78	•	3.6642	21:12:31	1946.57	-105.91	7.9975
16:57:31	1944.01	-108.47		3.7475	21:17:31	1946.80	-105.68	8.0803
17:02:31	1944.26	-108.22		3.8309	21:22:31	1946.53	-105.95	8.1642
17:07:31	1944.60	-107.88		3.9142	21:27:31	1947.12	-105.36	8.2475
17:12:31	1944.33	-108.15		3.9975	21:32:31	1947.06	-105.42	8.3309
17:17:31	1944.37	-108.11	4	4.0809	21:37:31	1945.52	-105.93	8.4142
17:22:31	1944.44	-108.04	4	4.1642	21:42:31	1946.14	-105.34	8.4975
17:27:31	1944.22	-108.26		4.2475	21:47:31	1946.12	-106.38	8.5609

.

: . .

:

SURVEY DATA

COMPANY KENNE		Ø1 FIELD	SALTON SEA	A WEL	L NAME 2-14	
TIME. P	RES DP	DTIME	TIME	PRES	DP	DTIME
21:52:31 1946	.47 -106.01	8.8642	02:07:31	1943.17	-109.31	12.9142
21:57:31 1946	.63 -105.80	8.7475	02:12:31	1943.24	-109.24	12.9975
22:02:31 1946	.35 -106.13	8.8309	02:17:31	1943.33	-105.15	13.0809
22:07:31 1946	.72 -105.76	8.9142	02:22:31	1943.37	-109.11	13.1642
22:12:31 194	PE0 -105.85	8.9975	02:27:31	1943.45	-109.03	13.2475
22:17:31 1946	.17 -106.31	9.0809	02:32:31	1943.44	-109.04	13.3309
22:22:31 1948	. 🛱 -106.34	9.1642	02:37:31	1943.73	-103.75	13.4142
22:27:31 1946	-105.41	9.2475	02:42:31	1943.38	-109.10	13.4975
22:32:31 1946	41 = 106.07	9.3309	02:47:31	1943.63	-:08.83	13.5809
22:37:31 1946	32 -105 15	9.4142	02:52:31	1943.60	-108.88	13.6642
22:42:31 1947	.08 -105.40	9.4975	02:57:31	1244.44	-108.04	13.7475
22:47:31 1947	02 -145.46	9,5809	03:02:31	1944.16	-108.32	13.8303
22:52:31 1946	.99 -105.49	9.6642	03:07:31	1944.65	-107.83	13.9142
PP:57:31 1947	.61 -104.87	9.7475	03:12:31	1944.70	-107.78	13.9970
23:02:31 1947	70 -104.78	9.8309	03:17:31	1944.68	-107.80	14.0809
23:07:31 1947	40 -105 0	9,9142	03:22:31	1944.83	-107.65	14.1542
23:12:31 1947	24 -105.24	9,9975	03:27:31	1944.87	-107.61	14.2475
23.17.3: 1947	14 -105.34	1 10, 0302	03:39:31	1945.00	-107.46	14.33219
97.99.71 1945	- 54 - 105 54	10.1648	03:37:31	1945.01	-107.47	14.4:43
	10 -105 35		03-42:31	1945.02	-197.45	4.4975
03.30.71 1047	11 -105 37		02:47:31	1944.75	-107.72	14.5809
97.77.71 1947	70 -105 18	10 4842	07.50.31	1945 04	-107 47	14 E542
27.42.71 1946	.00 _105.55		02.57.71	1944 65	-107 83	14 7479
23:42:33 1946	57 -105.00 57 -108	10 590-	00.07.01	1944 60	-:07 00	14.4709
			04-07-31	1944 98	-108 P0	14 9149
27.57.7: 1946	00 -105 54	10 7475	04.07.01	1944 57	-107 91	14 0075
06-17-1989			4.17.71	1944 85	-107 53	15 0200
00.00.71 1967	04 -105 44	10 8709	04.99.71	1944 59	-107 - 20	15.1649
00.02.01 1947	00 -105 5A	10.0000	04.27.21	1944.33	-108 10	15 9475
00.07.01 1940	02 -105 45	10 9975	04.27.01	1944 55	-107 99	15 3309
00.12.01 1947	05 -105 42	11 0809	04 77 C	1944 94	-107 54	15.0005
00.00.7.01 1945	87 -106 61	11 1549	74.4-	1944.25	-108 23	15 4975
00122.31 1940	109 - 04-	11 0475	04.42.01		-107 97	10.4570
00.27.01 1942		11 33039	04.52.31	7944 83	-107 55	15.56001 15 6449
20.37.31 1942	12 -109536	11.4142	04:57:31	19444.59	-107.96	15.7475
09:42:31 1943	97 -108 55	11.4975	05-02-31	194 05	-108.43	15.8309
00:47:31 1943	-108.77	11.5809	05:07:31	1944-48	-108.00	15.9142
00:52:31 1943	95 -108.53	11,5542	05:12:31	1944 39	-107.83	15.9975
00:57:31 1944	. 34 -108.14	* 11.7475	05:17:31	1944.69	-107.79	16.0809
01:02:31 1944	.73 -107.75	11.8309	05:22:31	1944.59	-107.89	16.1542
01:07:31 1944	.96 -107.52	11.9142	05:27:31	1944.35	-108.13	18.2475
01:12:31 1944	.71 -107.77	11.9975	05:32:31	1944.60	-107.88	18.3309
01:17:31 1944	.85 -107.63	12.0809	05:37:31	1944.75	-107.73	18.4142
01:22:31 1944	.95 -107.52	12, 1542	Ø5:42:31	1944.59	-107.89	16.4975
01:27:31 1945	44 -107.04	12.2475	05:47:31	1944.41	-108.07	15.5809
01;32:31 1945	.67 -106.81	12.3309	05:52:31	1944.62	-107.86	16.5542
01:37:31 1945	.39 -107.09	12.4142	05:57:31	1944.65	-107.83	16.7475
01:42:31 1944	.79 -107.69	12,4975	05:02:31	1944.70	-107.78	16.8309
01:47:31 1943	.73 -108.75	12.5809	06:07:31	1945.83	-107.25	18.9148
01:52:31 1943	.38 -103.10	12.5542	05:12:31	1944.78	-107.70	16.9978
01:57:31 1943	.17 -109.31	12.7475	06:17:31	1944.58	-107.90	17.0803
02:02:31 1943	.12 -109.36	12.8309	05:22:31	1944.87	-107.51	17.1642

÷.,

١

SURVEY DATA

12.2

£

COMPANY H	KENNECOLT	RUN	01 FIELD	SALTON SEA	WELL	NAME 2-14	
TIME	PRES	DP	DTIME	TIME	FRES	DF	DTIME
06:27:31	1944.81	-107.67	17.2473	07:37:31	1945.70	-105.78	18.4142
06:32:31	1945.33	-107.15	17.3309	07:42:31	1945.23	-106.25	18.4975
06:37:31	1944.81	-107.67	17.4142	07:47:31	1948.33	-106.15	18.5809
06:42:31	1944.93	-107.55	17.4975	07:52:31	1945.54	-105.94	18.5542
06:47:31	194Д 47	-107.01	17.5809	07:57:31	1945.77	-105.71	18.7478
06:52:31	1945.41	-107.07	17.6542	08:02:31	1948.57	-105.91	18.5303
06:57:31	1945. 편	-107.00	17.7475	08:07:31	1946.69	-105.79	18,9142
07:02:31	1945.77	-106.77	17.8309	Ø8:12:31	1946.58	-105.80	18.9978
07:07:31	1945.72	2 106.76	17.9142	08:17:31	1946.51	-105.97	19.0803
07:12:31	1945.81	G 105.57	17.9975	08:22:31	1947.11	-105.37	19.1642
07:17:31	1945.55	-1 0 6.93	18.0805	08:27:31	1947.29	-105.19	19,2475
07:22:31	1945.38	-127.12	18.1642	08:32:31	1947.44	-105.04	19.3309
07:27:31	1945.59	-106.69	18.2475	08:37:31	1947.14	-105.34	19.4142
07:32:31	1945.37	-107.11	18.3309	08:42:31	1947.51	-104.87	19.4975

M

N

A

R

D

R

ſ

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY. BAKERSFIELD, CA. 93312 (805) 589-2768

COMPANY : KENNECOTT GEOTHERMAL FIELD : SALTON SEA WELL NUMBER : 2-14 RUN NUMBER : 02 NUMBER OF READINGS : 442 PRESSURE READINGS ARE TAKEN IN PSIA TIME IS MEASURED IN HOURS

.

. ..

. . .

START : 06/14/1988 18:18:00 END : 06/15/1988 10:01:30 FILENAME : 02SA2-14.SUR

SURVEY DATA

CUMPANY KENNEC		VE FIELD	SALIUN SEA	A WELL	NAME 2-14	
TIME PR	ES DP	DTIME	TIME	FRES	DP	DTIME
06-14-1988			19:23:13	1949.59	. 56	3154
18:18:00 1950.	07 2.44	-1.4034	19:24:13	1948.77	.74	2998
18:20:00 1950.	02 1.99	-1.3700	19:25:13	1948.80	.77	2831
18:22:00 1949.	90 1.8	-1.3367	19:26:13	1948.59	.66	2664
18:24:00 1949.	83 1.8	-1.3034	19:27:13	1948.77	.74	2498
18:26:00 1949.	72 1.69	n-1.2700	19:28:13	1948.77	.74	2331
18:28:00 1949.	86 1.83	1.2367	19:29:13	1948.81	.78	2164
18:30:00 1949.	66 1.63	-1.2034	19:30:13	1948.88	.85	- 1998
18:32:00 1949.	59 1.55	- 1700	19:31:13	1948.74	. 71	1831
18:34:00 1949.	44 1.41	-1.1367	19:32:13	1948.89	.86	1664
18:36:00 1949.	24 1.21	-1.1 🍂 4	19:33:13	1948.95	.92	1498
18:38:00 1949.	29 1.26	-1.0700	19:34:13	1948.83	.80	1331
18:40:00 1949.	29 1.26	-1.036 []	19:35:13	1948.91	.88	1154
18:42:00 1949.	11 1.08	-1.0034	19:36:13	1948.74	.71	0998
18:44:00 1948.	95 .92	- . 9700	N#:37:13	1948.63	.60	0831
18:46:00 1948.	71 .68	9367	1 9:38:13	1948.51	. 48	0664
18:48:00 1948.	85 .82	9034	19:39:13	1948.58	.53	0498
18:50:00 1948.	74 .71	8700	19:40:13	1948.67	.54	0331
18:52:00 1948.	81 .78	8367	19:40:42	1948.72	.69	0 250
18:54:00 1948.	.84	8034	19:40:4	1948.65	.62	0236
18:56:00 1948.	85 .82 4%	7700	19:40:52	<u>1</u> 948.63	.50	0223
18:58:00 1946.	67 .64	7367	19:40:57	2948.58	.58	0209
19:00:00 1948.	53 .60	7034	19:41:02	1948.53	.50	0195
19:02:00 1948.	68 65	6700	19:41:07	194 61	.58	0181
19:04:00 1948.	44 .41	. 6367	19:41:12	1948 65	.63	0167
19:06:00 1948.	49 .46	5034	19:41:17	1948 🔁	. 49	0153
19:08:00 1948.	54 .51	5700	19:41:22	1948 54	.51	0139
19:10:00 1948	47 . 44	j 5367	19:41:27	1948.59	.56	0125
19:12:00 1948.	55 .52 💡	: 5034	19:41:32	1948.57	.54	0111
19:14:00 1948.0	66 .63 👘	4700	19:41:37	1948.54	.51	0098
19:16:00 1948.	46 .43 😽	4367	19:41:42	1948.61	.58	0084
19:18:00 1948.	51.48 🍈	4034	19:41:47	1948.54	.51	0070
19:20:00 1948.	73.70	- 3700	19:41:52	1948.47	. 44	0056
19:21:31 1948.	66 . 63 [·]	3448	19:41:57	1948.43	. 40	004E
19:21:35 1948.0	62 .59 ·	3434	19:42:02	1948.27	• <u>2</u> 4	0038
19:21:41 1948.0	65 .62	3420	19:42:07	1948.19	. 16	0014
19:21:46 1948.	66 .63	3406	19:42:12	1948.03	. 00	. ᲢᲢᲢᲢ
19:21:51 1948.0	62 .59	3 39 2	19:42:17	1947.70	33	.0014
19:21:56 1948.0	66 .63	3378	19:42:22	1947.39	64	.0027
19:22:13 1948.0	63 .60	3331	19:42:27	1946.90	-1.13	.0041

PAGE 🚊

SURVEY DATA

COMPANY H	KENNECOTT	RUN	Ø3	FIELD	SALTON SE	A WELL	NAME	2-14	ł
TIME	PRES	DP		DTIME	TIME	PRES		DΡ	DTIME
19:42:32	1946.17	-1.86		.0055	19:46:52	1869.72	-78.	31	.0777
19:42:37	1945.29	-2.74		.0069	19:46:57	1869.22	-78.	81	.0791
19:42:42	1944.29	-3.74		.0083	19:47:02	1868.77	-79.	26	.0805
19:42:47	1943.06	-4.97		.0097	19:47:07	1868.41	-79.	62	.0819
19:42:52	1941-66	-6.37		.0111	19:47:12	1868.00	-80.	ØЗ	.0833
19:42:57	1940.03	-3.00		0125	19:47:17	1857.59	-80.	44	.0347
19:43:02	1938.26	-9.77		.0139	19:47:22	1867.27	-80	76	.0851
19:43:07	1936 3	-11.71		.0152	19:47:27	1865, 92	-81.	11	.0875
19:43:12	1934.33	-13.70		. 0166	19:47:32	1866.57	-81-	46.	.0889
19:43:17	1932.08			0180	19:47:37	1866-24	-81	79	. 0302
19.43.99	1000.00			(1194	19.47.49	1865 BE		17	0914.
19.43.27	1007 57	a		01244	19.47.47	1955.50			10700°
19.43:27	1005 17			. 0200	19.47.50	1955.00		02	1794A
19:42:32	1000 75	-22.50 		.0222	10.47.57	1000.17	-oc.	15	• 0 544 0040
19:43:37	1922.73			.0235	15147137	1054.00	- 63. 07	1.3	.0338
10.47.47	1920.37	-27.00 70 00 0		. 0230 0324	19:40:02	1004.37		44	.0372
19:43:47	1917.99	-34. 21		· 2264	19:48:07	1854.32	-83.		. 4965
19:43:52	1915.63	-32.44044		. 2277	19:48:12	1864.09	-83.	34	. 1000
19:43:57	1913.35	-34.58	1	.0291	19:49:17	1853.88	84.	15	. 1414
19:44:02	1911.11	-36.92	U	. 4343	19:48:22	1863.64	-84.	చివి	.1027
19:44:07	1908.90	-39.13		A14319	19:48:27	1863.43	-84.	60	. 1041
19:44:12	1906.75	-41.28		N N N S S S	19:48:32	1863.23	-84.	80	.1055
19:44:17	1904.64	-43.39		. 0347	19:48:37	1853.03	-85.	ØØ	.1069
19:44:22	1902.66	-45.37		. 4451	19:48:42	1862.86	-85.	17	.1083
19:44:27	1900.73	-47.30		.0375	19:48:47	1862.68	-85.	35	.1097
19:44:32	1898.89	-49.14		. 038 2	19:48:52	1862.50	-85.	53	. 1111
19:44:37	1896.97	-51.06		.0402	19:48:57	1862.35	-85.	58	.1125
19:44:42	1895.27	-52.76		.0416	X#:49:02	1862.18	-85.	85	.1139
19:44:47	1893.60	-54.43		.0430	19:49:07	1861.94	-86.	Ø9	.1152
19:44:52	1892.00	-36.03		.0444	19:49:12	1861.77	-86.	26	.1166
19:44:57	1890.48	-57.55		.0458	19:49:17	1861.56	-86.	47	.1180
19:45:02	1889.02	-59.01		.0472	19:49:22	1861.34	-86.	69	.1194
19:45:07	1887.60	-60.43		.0486	19:49	1861.05	-85.	38	.1208
19:45:12	1866.22	-61.81		.0500	19:49:32	1860.76	-87.	25	.1222
19:45:17	1884.92	-63.11		.0514	19:49:37	AB50.54	-87.	49	.1236
19:45:22	1883.68	-64.35		.0527	19:49:42	1860.25	-87.	78	.1250
19:45:27	1882.47	-65,56		.0541	19:49:47	1854.95	-88.	08	.1264
19:45:32	1881.33	-66.70		.0555	19:49:52	1855.58	-88.	45	.1277
19:45:37	1880.24	-57.79		. 0569	19:49:57	1859 23	-88.	811	. 1291
19:45:42	1679.21	-68.82		.0583	19:50:02	1858.76	-83.	27	.1305
19:45:47	1878.23	-69.80		. 0597	19:50:07	1858.287	-89	75	. 1319
19:45:52	1877.39	-70.64		.0611	19:50:12	1857.84	-90.	19	1333
19:45:57	1876.68	-71.35		. 0625	19:50:17	1857.29		74	1347
19:46:02	1875-86	-72.17		0639	19.50.22	1856.73	_01	<u>র</u> নে	1361
19:46:07	1875 03	-73 00		0652	19.50.27	1856 19		34	1275
19:46:12	1874 27	-73 76		06666	19.50.72	1955 59		45	1250
19:46:17	1877 60	-74 42		00000 01000	19.50.57	1854 05			1400
19:46.00	1872 01	-7.70 -75 00		0000 0000	10.50.40	1057.70	ానతం దా	27	* 1985 * 197
19.46.07	1979 30	-75 77		,0054 0700	10.00142	1007.40		ರತ ಾಗ್	1410
19:46:22	1072.30	-76 90		. w/wd	13:30:47	1033.70	- 34.	ここ	· 1436
19.46.27	1071.70	-76.20		. W/22	13:30:32	1033.10	- 34.	81	. 1444
10.40107	1070 00	-/0.83		.W/35	13:20:27	1021.23	-95.	44	.1458
10.40.47	1070 01	-//. JD		.0/50	19:01:02	1851.96	-96.	<u>v</u> i /	.1472
17:40:4/	10/0.21	-//.82		.0764	19:51:07	1821.32	-96.	28	.1485

į

SURVEY DATA

TTAKE

COMPANY KENNECOT	T RUN	02 FIELD	SALTON SEA	WELL	NAME 2-1	4
TIME PRES	- DP	DTIME	TIME	FRES	ידמ	DTIME
19:51:12 1850.79	-97.24	.1500	19:58:40	1835.49	-112.54	.2744
19:51:17 1850.17	-97.85	.1514	19:58:50	1835.32	-112.71	.2772
19:51:22 1849.57	-98.46	.1527	19:59:00	1835.17	-112.88	.2800
19:51:27 1849.08	-98.95	1541	19:59:10	1834.93	-113.04	.2827
19:51:32 1848-51	-99.52	.1555	19:59:20	1834.82	-113.21	.2855
19:51:37 184796	-100.07	. 1569	19:59:30	1834.63	-113.40	.2883
19:51:42 1847.49	-100.54	. 1583	19:59:40	1834.46	-113.57	.2911
19:51:47 1846.	-101.05	.1597	19:59:50	1834.31	-113.72	.2939
19:51:52 1846.48	-101.55	. 1611	20:00:00	1834.16	-113.87	.2966
19:51:57 1846.00	5102.03	. 1625	20:00:10	1834.02	-114.01	2334
19:58:08 1845.48	5108.55	. 1639	20:00:20	1833.88	-114.15	.3022
19:52:07 1844.96	-103.07	. 1652	20:00:30	1833.72	-114.31	. 3050
13:52:12 1844.50	-188.53	. 1666	20:00:40	1833.54	-114.49	.3077
19:52:17 1844.05	-102.98	. 1580	20:00:50	1833.40	-114.63	.3105
19:52:32 1843.60	-104.3	. 1694	20:01:00	1833.26	-114.77	.3133
19:52:37 1843.20	-104.88.0	.1708	20:01:10	1833.14	-114.83	.3151
19:52:32 1842.81	-105.24	1722	20:01:20	1833.00	-115.03	.3185
19:52:50 1841 98	-105 05	1772	20:01:30	1832.87	-115-16	.3215
19:53:00 1841.53	-106.50	. 1800	20:01:40	1832.75	-115.28	. 3244
19:53:10 1841.06	-105.97	. 1827	20101158	1832.53	-115.50	.2254
19-57:30 1840 88	-107 35		20.02.28	1832.58	-115.45	3377
19-53-30 1940 27	-107.75		20.02.58	1837 77	-114 26	3451
19.53.40 1979 91	-107.70	1 6 1	20.02.00	1635 18	-112 85	2544
19-52-50 1979 64	-103.12		20.03.59	1836 65	-111 38	- 3077 7507
19-54-00 1979 36	-100.00	1946	20.00.00	1878 11	-100 00	
	-108.87	1200	20.04.50	1979 45	-103.52	3796
	-100.50	-155 -1 -2010-2	• 20:04:30	1835.43	-107 25	.3734 7977
19-94-20 1830.87		.2022 0050		1040.07		2011
	-103.33		10:00:00	1041.00	-105.23	.376i 4044
10,54,50 1020 00		.2077	20:00:20	1042.71	-100.32	. 40.44
19:55.00 1838.23	-103.80	-2103	20:00:00	1943.31	-107.00	.4127
19:55:00 1838.02	-110.01	. 2133		1044.10	-103.38	. 4611 ADCA
		.2161		1844.76	100.27	· 42.24
19:55:20 1837.77		.2189	20:00:28		-102.84	- 4 3 7 7 A A 7 4
13:00:00 1807.62		.2216	20:00:00		-102.43	.4401 /5//
19:55.50 1937 61		· • • • • • • • • • • • • • • • • • • •	20:05:20		-102.12	· 4044
13:33:30 1337.41	-110.025		20:07:00	104.22		·4827
19:56:10 1037 10	-110.05	2300	20:10:20			· 47 - 1 1794
10.54.00 1037 04	-110.60	. 2327 9755	20:10:33			.4/34
19.56.30 1936.05	-110.57	.2333	20:11:20	1046272		.4877
19:55.40 1035 93	-111.00	383	20:11:00	1045. 34	-101.70	
19:50:50 1036.03	-111.20 -		20112124	1045.730	-101.30	. 2033 Eges
19:30:30 1036.60	-111.30	. 2439	20:17:24	1043.20	-70.00	. 3666
		.2466	20:22:24	1846.33	-33.44	. 5700
	-111.34	.2494	20:27:24	1847.66	-100.37	.7888
17:37:20 1836.36	-111.67	.2022	20:32:24	1000.07	-37.35	. 7388
17:37:30 1836.27	-111.76	. 2550	20:37:24	1048.05		. 3200
13:37:40 1836.20	-111.83	.25/7	20142124	1830.40	-37.63	1.0033
19:07:00 1836.10	-111.93	.2645	20:47:24	1033.16		1.9855
19:00:00 1836.01	-112.02	.2633	20:52:24	1859.33	-88.70	1.1700
19:58:10 1835.89	-112.14	.2561	20:37:24	1860.40	-87.53	1.2533
19:38:20 1835.77	-112.26	.2689	21:02:24	1862.88	-85.15	1.0066
19:58:30 1835.64	-112.39	.2716	21:07:24	1853.59	-34.44	1.4202

COMPANY I	KENNECOTT	RUN	ØB	FIELD	SALTON SEA	A WELL	NAME	2-14		
TIME	PRES	DP		DTIME	TIME	PRES		ידמ	ľ)TIME
21:12:24	1865.39	-82.64		1.5033	01:27:24	1570.70	-77.	33	J.	7533
21:17:24	1865.49	-82.54		1.5835	01:32:24	1871.32	-76.	71	5.	8366
21:22:24	1867.61	-80.42		1.6700	01:37:24	1970.32	-77.	71	S.	9200
21:27:24	1868.65	-79.38		1.7533	Ø1:42:24	1359.33	-73.	72	ε.	0033
21:32:24	1870-69	-77.34		1.8366	01:47:24	1869.02	-79.	01	5.	0856
21:37:24	137 42	-75.51		1.9200	01:52:24	1858.30	-79.	33	6.	1700
21:42:24	1872.03	-76.00		2.0033	01:57:24	1868.76	-79.	97	÷.	2533
21:47:24	1871. 🖽	-76.12		2.0866	02:02:24	1858.78	-79.	25	5.	3368
21:52:24	1871.17	-76.86		2.1700	02:07:24	1868.70	-79.	33	5.	4200
21:57:24	1870.85	-77.18		2.2533	02:12:24	1868.68	-79.	35	6.	5033
22:02:24	1870.85	-77.18		2.3366	02:17:24	1868.66	-79.	37	6.	5856
22:07:24	1872.51	-\$7.52		2.4200	02:22:24	1853.04	-78.	99	б.	6700
22:12:24	1870.02	-78.01		2.5033	02:27:24	1859.36	-78.	67	6.	7533
22:17:24	1870.10	-77.93		2.5866	02:32:24	1869.49	-78.	54	б.	8366
22:22:24	1870.13	-77.00		2.6700	02:37:24	1869.39	-78.	64	ε.	9200
22:27:24	1859.77	-75.26 0		2.7533	02:42:24	1859.40	-78-	63	7.	Ø.3.3.3.
22:32:24	1869.73	-78.3		2.8366	02:47:24	1869.60	-78-	43	7.	MASS
22:37:24	1870.03	-77.94	•	2.9200	02:52:24	1870.83	-77.	20	7.	1700
22:42:24	1869.60	-78, 23		3.0033	02:57:24	1871.59	-76.	44	7.	2477
22.47.24	1870 48	-77.55	u	3 0956	02:02:24	1871 74	-75.	20	7.	2366
22.52.24	1870.59	-77.44		N 1700	03:07:24	1871.77	-76.	26	7.	4200
	1870.59	-77.45			03-12:24	1972.68	-75.	75	-7	5077
23.02.24	1870 42	-77 61		7 7 ALE	03:17:24	1872.83	-75	20	7.	5366
23.07.94	1271 20	-76 37		2 1900	07.00.24	1872.00	-75	2.27	7	5700
23.12.24	1671 41	-74 40		2 50 3 m	00.22.24	1072.70	-74	- <u>-</u>	-7	7577
	1971 35	-76 57		7 5045	00.20.20	1070 50	-75	<u>_</u> 0	7	0755
07.00.04	167: 46			3.3833	SCAR - 27 - 24	1072.02	,		· •	0000
27.27.24	1971 10	-75 07		3.3700	97.42.24	1072.74			· •	00777
07.70.04		-75.07		3.7333	03:42:24	1073.04	- 7 - 4 -	55	с. 5	00000
27.27.24	1071.10	-75.00		3.0300	03:47:24	1073.05	- 74	74	о. с	1700
23:37:24	1071.70	-75.13		3.3200 / 00377	03:02:24	10/3.24	-74.	75	с. с	1722
97.47.94	1972 96			4.0033 A 00055	04.00	1073 00	-74	70	ວ. ປ	2222
27.52.34	1072.00			4.4000	04:02	1073.20	-74.	000 007	о. о	2303 7000
23:32:24	1073.02	-75.01		4.1700	04:07:24	\mathbf{D}_{2}	-70.	ాగ	о. с	4200
04-15-100	10/2.00			4.2000	04:12:24		-/3.	4	ت. م	3033 5777
00-13-150	בה בריםו	-75 00		1 7755	04117124 04.00.00	1072.04	-/3.	- 35 - 人フ	а. п	2300
00,02,24	1073.03	-73.00		4.3335 6 6 6 6 6 6 6	04:22:24		-75		6. C	-6700
00.07.24	1073.05	-74.54		4.4200	04:27:24	107073	-73.	(こ ()で	о. ч	1033
00:12:24	10/3.33	-74.30		4.3033	04:32:24	1072120	-75.	17	J.	0000
00:17:24	1073.04	-73 01		4.0000	04:37:24		-70.	10		3200
00:22:24	1075 57	-70 EA /		4.6700	04:42:24	1071.00	-76.	20	· ·	00000
00:27:24	1075 00	-72.30		4.7033	04:47:24	1071.90	- 15.	100		1700
00.32,24	1070.20	-75.00		4.0300	04:02:24	10/1.71	-70.	1 E 4 0		1700
00:37:24	10/2.00	-73.30		4. 5200	04:07:64	1072.00	/u. 	45		2000
00:42:24	1003.15	-78.84		2.0033	05:02:24	1872.71	/J.	<u>ت</u> د.	5.	3355 4500
00:47:24	1869.09	-78.54		J. 0555	05:07:24	1872.87	-/3.	14	· · ·	4200
00:32:24	1020.00	-/3.3/		3.1/00	05:12:24	1872.85	-/5.	17		2033
01.00.01	1969.25			J. 2333 B. 3365	00:17:24	18/3.20	-/4.	53 77	' - .	2066
01:02:24	1000.33	-/3.04		J. 3350	03:22:24	1873.30	-74.	13	÷.	6.444
w1:07:24	1993.51	-78.82		5.4200	03:27:24	1873.16	-74.	87	5.	1233
01:12:24	1869.34	-/8.69		3.5033	Ø5:32:24	1873.03	-75.	លព្	<u> </u>	8365
01:1/:24	1869.07	-/8.96		5.5866	05:37:24	1872.92	-73.			9200
01:22:24	1359.48	-78.55		5.5700	05:42:24	1872.92	-7E.	11	10.	0033

SURVEY DATA

COMPANY H	KENNECOTT	RUN	Ø2 FIELD	SALTON SEP	NELL	NAME 2-14	
TIME	PRES	DO	DTIME	TIME	PRES	DP	DTIME
05:47:24	1872.75	-75.28	10.0866	07:57:24	1876.72	-71.31	12.2533
05:52:24	1872.82	-75.21	10.1700	08:02:24	1876.88	-71.15	12.3366
05:57:24	1873.00	-73.03	10.2533	08:07:24	1877.30	-70.73	12.4200
06:02:24	1872.23	-75.80	10.3356	08:12:24	1877.37	-70.65	12.5033
06:07:24	187212	-75.91	10.4200	08:17:24	1877.36	-70.67	12.5866
05:12:24	187 17	-75.96	10.5033	08:22:24	1877.32	-70.87	12.6703
06:17:24	187Ž.22	-75.81	10.5866	08:27:24	1877.89	-70.14	12.7533
08:22:24	1873.48	-75.55	10.5700	08:32:24	1877.71	-70.32	12.8366
Ø6:27:24	1872.66	-73.37	10.7533	08:37:24	1877.73	-70.20	12.5200
06:32:24	1872.95	5-75.08	10.8355	08:42:24	1877.80	-70.23	13.0033
06:37:24	1873.09	تعـ74.94	10.9200	05:47:24	1877.93	-70.10	13.0888
06:42:24	1873.28	-74.73	11.0033	08:52:24	1877.83	-70.18	13.1700
Ø5:47:24	1873.50	-44.53	11.0866	08:57:24	1877.88	-70.15	13.2533
05:32:24	1873.55	-74. 6 8	11.1700	09:02:24	1877.46	-70.37	13.3368
Ø5:57:24	1873.67	-74.06	11.2533	03:07:24	1877.35	-70.68	13.4200
07:02:24	1873.82	-74. 21 A	11.3366	09:12:24	1875.02	-72.01	13.5033
07:07:24	1874.27	-73.7	11.4200	09:17:24	1874.88	-73.15	13.5865
07:12:24	1874.76	-73.27	, 11.5033	09:22:24	1873.91	-74.12	13.6700
07:17:24	1875.17	-72.86	11.5866	09:27:24	1873.61	-74.42	13.7533
07:22:24	1875.30	-72.73	11.5700	09:32:24	1873.63	-74.40	13.8365
07:27:24	1875.50	-72.53	1 7533	09:37:24	1873.69	-74.34	13.9200
07:32:24	1875.76	-72.27	11.8366	09:42:24	1874.07	-73.96	14.0033
07:37:24	1875.86	-72.17	11.900	09:47:24	1874.36	-73.67	14.0855
07:42:24	1376.17	-71.86	12.0033	09:52:24	1874.36	-73.47	14.1708
07:47:24	1876.27	-71.76	12.0846	09:57:24	1874.74	-73.29	14.2533
07:52:24	1876.44	-71.59	12.1700	10:01:30	1874.34	-73.19	14.3216

Y

D

R

PRUETT INDUSTRIES INC. 8915 ROSEDALE HWY. BAKERSFIELD. CA. 93312 (805) 589-2768

COMPANY : KENNECOTT GEDTHERMAL FIELD : SALTON SEA WELL NUMBER : 2-14 RUN NUMBER : 24 03 NUMBER OF READINGS : 602 PRESSURE READINGS ARE TAKEN IN PSIA TIME IS MEASURED IN HOURS

and the second second second second second second second second second second second second second second second

.

START : 06/20/1988 17:06:37 END : 06/22/1988 14:28:57 FILENAME : 34SA2-14.DAT

.

SURVEY DATA

		2 2		ç		(n i n)			
COMPANY H		a	RUN	34	A FIELD	SALTON SEA	NELL	NAME 2-14	
TIME	PRES	1	DP		DTIME	TIME	PRES	DF	DTIME
06-20-198	36	للحه				17:44:4E	1955.35	57	2794
17:06:37	1965.77		. 5		9153	17:45:53	1965.41	51	2808
17:08:37	1965.52	-	. 40		8319	17:45:03	1965.41	51	2530
17:10:37	1965.42	-			8486	17:46:46	1965.28	36	2461
17:12:37	1965.66	-	. 2 .		8153	17:46:56	1955.50	3E	2433
17:14:37	1965.45	-	. 47	N	7819	17:47:01	1965.74	18	2419
17:16:37	1965.49	-	.43	U	7486	17:47:05	1955.30	JE	24Ø5
17:18:37	1965.91		. Ø1		Nn7153	17:47:23	1965.81	11	2353
17:20:37	1965.65	-	.27		6819	17:47:52	1965.77	15	2276
17:22:37	1965.47	, —,	.45		6486	17:48:0)	1965.68	 24	2253
17:24:37	1965.29	-	.63		= / A\$3	17:48:10	1965.71	E1	2238
17:26:37	1965.46	-	. 46		5819	17:48:20	1965.63	29	ESØØ
17:28:37	1965.40		. 52		549	17:48:30	1965.61	31	217E
17:30:37	1965.55	-	.37		515 ⁴ 34	17:48:40	1965.55	37	E144
17:32:37	1965.54	-	.38		4819	1:48:50	1965.53	34	E117
17:34:37	1965.29		.63		4486	17:49:00	1965.58	34	2089
17:36:37	1965.38		. 54		4153	17:49:10	1965.59	33	2061
17:38:37	1965.46		. 46		3819	17:49:20	1965.60	32	2033
17:40:37	1965.11		.19		3485	17:49	1965.57	35	2005
17:42:37	1965.44		. 48		3153	17:43 49	1965.62	30	1978
17:43:01	1965.46		.46		3085	17:49:50	1965.57	35	1950
17:43:06	1965.48	·····	. 44		3072	17:50:00	1 965.55	37	1922
17:43:11	1965.50		42		3058	17:50:10	1955.49	43	1894
17:43:16	1965, <u>48</u>	,	. 44		3044	17:50:20	1944.48	44	1667
17:43:21	1955.42	···· ,	.50		3030	17:50:30	1955.57	35	1833
17:43:26	1965.42	*****	.50		3017	17:50:40	1965	40	1811
17:43:31	1965.47		. 45		3003	17:50:50	1965461	31	1753
17:43:36	1965.43		.49		2989	17:51:00	1965.6	32	1755
17:43:41	1965.49	·····	.43	•	2975	17:51:10	1965.68	26	:723
17:43:46	1965.54	***** (.38		2961	17:51:20	1965.63	29	1700
17:43:51	1965.53	÷.,	, 39		~.2947	17:51:30	1965.64	28	1672
17:43:56	1965.56	·····	.36		2533	17:51:40	1965.67	25	1644
17:44:01	1965.65	~~ (.27		2919	17:51:51	1965.69	23	1614
17:44:06	1965.63		. 29		2905	17:52:01	1965.66	26	1586
17:44:11	1765.58	-	.34		2892	17:52:11	1965.54	36	1558
17:44:16	1965.51		. 41		2878	17:52:21	1965.44	49	1530
17:44:21	1965.42		. 50		~.2864	17:52:31	1955.43	49	1503
17:44:26	1965.39		.53		2850	17:52:41	1965.42	50	1475
1/:44:31	1965.39	-	. 53		2836	17:52:51	1965.44	48	1447
1/:44:36	1765.36		56		2822	17:53:01	1965.38	54	1415

.

SURVEY DATA

COMPANY KENNECOTT	RUN	34 F1ELD	SALTON SEA	A WELL	NAME 2-14	ł
TIME PRES	DP	DTIME	TIME	PRES	DF	DTIME
17:53:11 1965.52	40	1392	18:01:52	1966.11	.19	.0056
17:53:21 1965.50	42	1364	13:02:02	1955.29	.37	. 0983
17:53:31 1965.46	46	1336	18:02:12	1966.67	.75	.0111
17:53:41 1965.43	49	1308	18:02:22	1957.16	1.24	.0139
17:53:51 1965-45	-,47	1280	18:02:32	1967.77	1.63	.0167
17:54:01 1965.47	45	1253	18:02:44	1968.56	2.64	. 0200
17:54:11 1965.45	47	1225	18:02:55	1970.04	4.12	.0231
17:54:21 1965.4	46	1197	18:03:04	1971.75	5.83	.0256
17:54:31 1965.42	50	1169	18:03:14	1974.15	8.23	.0283
17:54:41 1955.45	- 45	114E	18:03:23	1977.42	11.50	.0308
17:54:51 1965.51	<u> </u>	1114	18:03:32	1981.30	15.38	.0333
17:55:01 1965.56	135	1085	18:03:41	1985.73	19.81	.0355
17:55:11 1965.60	L_ 32	1058	18:03:51	1990.88	24.96	.0388
17:55:21 1965.60	12	1030	18:04:00	1996.33	30.41	.0411
17:55:31 1965.55	7	1003	18:04:09	2002.39	36.47	.0436
17:55:41 1985.45	- 46 0	0975	13:04:19	2008.61	42.59	.0454
17:55:51 1965.49	- 4	0547	18:04:28	2012.10	49.18	.0483
17:56:01 1963.44	- 48	n - 0919	18:04:37	2021.51	55.69	.0514
17:56:11 1965.45	47	- 0892	18:04:47	2028.51	62.59	.0542
17.52.00 1924 44	- 47		18:04:55	2025.25	55,34	.0567
17.52.32 1945 50	- 417	NREE	18-05-05	2041.75	75.83	0552
17.55.40 1955 54	- 38	- DAUS	18:05:15	2047.95	A2. 04	. 05.20
17.54.50 1945 50	- 42		18:05:54	20153.87	87.95	- 0543
17.57.02 1945 45	- 47	- 47-0	18.05.33		93.97	.0879
17.57.10 1945 40		- 07:ED	18.05.47	2005.05		0697
17.57.90 1945 75	- 57		18.05.50	2000.00	104 33	0799 0799
17.57.70 1945 79	.u.	- 0647	NA 06 01	2075 BC	104217	10747
17.57.62 1965.65	- 45	- 0539	19.05.10	2075 65	113 75	10772 10772
17.57.50 1045 54	- 76	- 0611	16.06.20	-07 .0 0	118 07	172010 172010
17.59.00 1965 46	- 44	- 0567	10.00.00	2002.30	10:00	10000 10000
17:00:02 1900.40	-, 44 - 44	- 0555	10:00:25	2007.04	105 70	00110 00110
17:00:12 1960.40	-, 49	- 0500	10.05	2031.31 20004 25	100 67	.0000 0072
17:00:22 1962.43		- 3530	10:00:00	2034:33	171 55	5,00,0 5,00,0
17:50:32 1753.49	43	0000	10:00:07	\square aa $+r$	131.33	. ഗ്ടോല്പ് തുതാരം
17.50.50 1065 84	~ 70		10:07:00	- 100- 77	134.24	, 0525 Mate
17.50.00 1065 65		- 0444	10:07:10		138.83	194555 194561
17:50:10 1065 50	30	- 0789	10:07:20	2102.35	141 11	1000C
17.59.99 1965 47	- 45	- 0751	10.07.04	2100100	147 01	10000
17.55.70 1965 46		- 0777	10:07:44	2100.63	143.01	105
17.59.40 1965 40	_ 50	- 03335	10.00.000	2112 018-	145 17	. 1000 18197
17.50.50 1065 //	- 46	~.0303 ~_0275	10:00:00	2112.05	147 54	1163
	- 47	,0278 - 0050	10:00:11	2113.400	147.04	1174
	43	0200	10:00:21	2114.00	140.70	
18:00:12 1965.49	43	0222	18:08:30	2113.77	149.00	
18:00:22 1963.30	42	0194	18:08:35	2116.71	150.75	.1105
18:00:32 1965.63	27	0167	18:08:48	2117.53	151.61	.1211
18:00:42 1955.65	27	0139	18:08:58	2118.19	152.27	.1239
18:00:52 1965.71	21	0111	18:09:07	2118.74	152.82	.1254
18:01:02 1965.72	20	0083	18:09:16	2119.32	153.49	.1289
18:01:12 1965.76	16	0055	18:09:25	2119.85	153.93	.1314
18:01:22 1965.76	16	0028	18:09:35	2120.37	154.45	.1342
18:01:32 1965.92	.00	.0000	18:09:44	2120.79	154.57	.1367
18:01:42 1966.04	.12	.0028	18:09:54	2121.14	155.23	.1395

. .

COMPANY H	KENNECOTT	R	JN I	Ξ4	FIELD	SALTON SE	A WELL	NAME 2-14	
TIME	PRES	DF			DTIME	TIME	PRES	DF	DTIME
18:10:03	2121.50	155.38			.1420	18:18:08	2126.74	160.83	.2757
18:10:12	2121.85	155.93			.1445	18:18:17	2126.75	160.83	.2792
18:10:21	2122.15	156.23			.1470	18:18:26	2126.76	160.84	.2517
18:10:31	9199.43	155.51			. 1497	18:18:48	2125.64	150.7£	. 2878
18:10:40	2122.72	156.80			1522	18:19:48	2126.91	160.39	.2045
18:10:49	pippa	157.07			1547	18:20:48	21.27.25	161.33	
18-10-58	212 4 .22	157 29			1972	15.91:45	2127 35	151.44	N378
10.11.00		157 49			1500	18.22.46	2127.28	181 49	7-45
10.11.00		157 54			1655	19.27.48	2127.00	161 65	
10.11.95	0.02 62	T157 71			1450	18.24.48	2127 47	141 7	7475
10.11.20	$\sim_1 \sim_2 = 0$				1670	10.25.40	2127 60	121 20	.0070 ABAS
10:11:30	5.00 5.07 MT				.1070	10.20.40	2127.00 0107 79	15- 54	- 44 4 U
	2123.23	100.01			.1703	10:20:40	C107 75		• 11 E L L 2 5 7 8
	2124.07	188.13			. 1/20	18:27:48			-4378 /=/E
18:12:04	2124.19	108.17			.1/35	18:28:48	2127.88	151.95	- 4242
19:12:13	2124.35	108.84			.1781	18:23:48	2128.07	162.10	. 4/11
18:12:22	2124.03	156.54	A		.1805	18:30:48	2128.15	162.24	. 4878
15:12:31	2124.63	156.70	14		.1831	18:31:48	2128.20	162.28	.5043
18:12:41	2124.79	158.87	ſ	1	.1858	18:32:49	2128.17	162.25	.521.
18:12:50	2124.92	159.00	L		.1863	18:33:48	2126.33	162.41	.8378
18:12:59	2125.07	155.15		n	1908	18:34:48	2128.29	162.37	.5545
18:13:08	2125.14	139.22			ESE 1	18:35:46	2128.47	162.55	.5711
18:13:18	2125.17	159.25			1951	18:35:48	2128.50	162.58	.5378
18:13:27	2125.19	159.27			1/265	18:37:45	2128.59	162.67	.2045
18:13:35	2125.21	159,29			. 2011	18:38:48	2128.54	162.62	.6311
18:13:46	2125.24	159.32			. 20 3D)	16:39:46	2128.77	162.83	.8378
18:13:55	2125.32	159.40			. 203QU	18:40:48	2128.77	162.85	.2045
18:14:04	2125.38	159.46			.2089	16:41:48	2128.73	162.81	.6711
18:14:13	2125.47	159.55			.2114	¥8:42:48	2128.71	152.75	.6878
18:14:23	2125.55	159.63			.2142	18:43:48	2128.58	162.88	.7040
18:14:32	2122.55	159.67			.2157	18:44:48	2128.42	162.50	.7211
18:14:42	2:25.70	159.78			.2195	18:45:46	2128.32	162.40	.7378
15:14:51	2125.74	159.82			.2220	13:46 48	2128.34	162.4E	. 7045
16:15:00	2125.62	159,90			. 2245	18:47:48	2128.28	162.36	.7711
18:15:09	2125.90	159.98			.2270	19:48:48	2128.25	162.33	.7378
18:15:20	2125.98	160.06			.2300	18:49:48	2128.29	162.37	. 8045
18:15:29	2125.05	152.14			. 2325	18:50:48	212.36	162.44	.8211
18:15:38	2125.17	160.25			.2350	18:51:48	2168.45	162.33	.5378
18:15:47	2125.28	160.36			2375	18:52:48	2123748	162.56	.3545
18:15:57	2126.36	160.44			.2403	18:53:48	2128 48	162.56	.8711
18:16:06	2125.39	150.47			2428	18:54:48	2128.54	162.39	.8975
18:16:15	2126.75	160 43	4		2493	18.55.48	2128.54	162.52	9045
18.12.24	5155.33 5155.65	167 41			2478	18:55:48	2128.58	162.65	9211
18.16.74	2126 28	160 75			2505	18.57.48	2128 58	162.68	9272
10.10.07	2105 27	160.30			2500	12.52.40	CICO.00	160 7-	- 2070 9576
10:10:43	2120.27	100.00			.2J31 9552	10:00:40	2120.03	162.7.	. 3040
10:10:02	2120.29	100.37			.2006	18:35:48	2120.00	162.76	. 5731
	2120.30	100.43			. 2083	13:00:48	2120.70	102.00 100 00	. 55/5
1011/111	2120.04	150.42			. 2003		2128./Z	162.00	
10:17:20	2120.40	150.48			.జాధరర	13:02:45	2128.70	102.03	1.0211
18:17:34	2126.49	160.57			.2661	19:03:48	2128.82	162.90	1.0379
18:17:33	2128.58	160.65			.2535	19:04:48	2128.89	162.97	1.0248
16:17:48	2126.65	160.73			.2711	19:05:48	2128.89	162.97	1.0711
18:17:57	2126.70	160.78			.2736	19:08:48	2129.03	163.11	1.0872

COMPANY H	KENNECOTT	RUN	34 FIELD	SALTON SEA	WELL	NAME 2-14	
TIME	PRÉS	DP	DTIME	TIME	PRES	"DFI	DTIME
19:07:48	2128.89	162.97	1.1045	21:59:16	2127.43	161.51	3.9682
19:08:48	2128.87	162.95	1.1211	22:04:15	2127.51	161.59	4.0435
19:09:46	2128.68	:62.96	1.1378	22:09:16	2127.41	161.49	4.1289
19:10:48	2128.82	162.90	1.1545	22:14:16	2127.33	161.41	4.212E
19:11:48	2126-88	162.96	1.1711	22:19:16	2127.32	161.40	4.2936
19:12:48	2125.90	162.98	1.1873	22:24:15	2127.19	161.27	4.3769
19:13:48	2128.20	162.98	1.2045	22:29:16	2127.12	161.20	4.4623
19:14:48	2128.07	162.95	1.2211	22:34:15	2127.24	151.32	4.0455
19:15:48	2128.57	162.99	1.2378	22:39:16	2127.21	161.29	4,5255
19:16:48	2128.79	-163.87	1.2545	22:44:16	2127.09	151.17	4.7122
19:17:48	2128.79	162.87	1.2711	22:49:16	2127.01	161.09	4,7533
19:18:48	2126.83	163.91	1.2873	22:54:16	2125.94	161.02	4.3789
19:19:48	2128.80	152.88	1.3045	22:09:16	2126.94	161.08	4.9622
19:20:48	2123.86	162.04	1.3211	23:04:16	2125.97	161.02	5.0456
19:21:48	2125.96	163.04	1.3378	23:09:16	2127.01	161.09	C.:289
19:22:48	2128.93	153.201.4	1.3545	23:14:16	2127.02	151.10	5.2123
19:23:48	2128.94	163.0	1.3711	23:19:16	2127.07	161.15	0.2956
19:24:48	2128.95	163.04	1.3378	23:24:16	2125.87	160.95	5.3789
13:25:48	2128.96	163.04	1.4045	23:29:16	2127.00	161.08	5.4622
19:25:48	2128.95	163.03	.1.4211	23:34:16	2126.98	161.06	5.5456
19.27.48	2129.01	163.03	N 4378	23:39:16	2126.92	16. 00	5.4.233
19:28:48	2128.91	162.99	1,4545	23:44:16	2126.83	160.95	5.7123
19:29:16	2128.91	162.99	1.4423	23:49:16	2125.84	160.98	5.7956
19.24.16	2128.38	162.95		23:54:15	2126.79	160.37	5.6789
19.39.16	2128.85	162.93	1.6243	23:59:16	2126.76	160.84	0.9522
19.44.15	0108.83	169.91	1 71	06-21-158	A	100101	0. 9000
19.49.16	9196 L1	102.01	1 7956	NOT 014 • 16	0 2198 71	160 79	S 18456
19.54.16	0100 50	162.65	1 8789	Ma. ac. 15	0105 58	160.75	6.0100 A 1050
10,50,16	2126 70	162.00	1 95.23	00.14.16	2126.60 2136.65	150.73	5 2-22
20.04.16	2120.70	162.70	1. JULL 0 01/54	00.19.16	0105 E1	160.50	E oness
20.07.10	2120.07	162.60	2.0700 2.1020	00.10.10	2106 55	160 47	2 7725
20:00:14	0.00 E0	160 60	0 0100	00.29	2102 EG		6.0705
20.19.16	2128.00	160 51		00.74.16	2125 46	100.00 160 SC	4 7474
20:15:16	2120.43	162 50	2.2300	00.37.10		160.00	5.5755 E EROS
20:24:10	2100.92	102.00	2.3703	00.35.10	125.45		
20123116	2120.34	102.72	2.4022 0 5452	00.44.10	212 5. 45	1513 40	2.7a-z
20.34.10	2120.20	162.30	2.0400 0 2020	(40) - 54 - 15	0162 40	100.00	- E70-
20:35:10	2128.30	166.50	0 7100	00.59.16	こまこち。 マインSIF書 (A	150.00	5 6599
201-49-10	2106 15	104.40	2. / 12C	00.07.10	0105 70	150.47	7 0156
20.54.10	2120 014	160 10	- 0700	01.07.10	0105 7 7		7 1 204
20:04:16	2120.04	100.10	2.0703	01:05:15	2120.37	160.40	7 2.202
21.04.10	2122 01	102.10.5	2 0 A 5 5	01:14:10	CICC.34	160.43	7.2422
21.00.16	2120.01	162.03	3.0400	01:10:10	2120.00 0196 70	160.43	7.2900
21.14.16	2127 01	162.00	3.1203	01.00.10	CICO. 3C	100.40	7.3733
21:14:16	2127.91	101.33	3.2122	01:27:16	2120.30	160.30	7.4622
	2127.00	101.30	3.2725	01:34:16	CIED. 60	100.35	7 2 2 2 2 2
21.00.10	212/./3	101.01	3.3703 7.205		2125.25 3156.55	100.34	7.0203
C	2127.80	101.68	ತ.46ರರ ೧೯೯೯	W1:44:16	<i>-125.2</i> 3	160.33	1.1.22
21:34:10	2127.78	101.00	3.3435	01.5/ 15	2120.23 3.35 53	100.31	7.7338
E1137116	2127.80	101.00	3.6283	01:54:16		160.28	7.8/85
21:44:16	212/.68	161.76	J./122	W1:57:16	2126.18	160.22	7. 9022 0. 00000
21:49:16	2127.25	161.63	3.7906	42:44:16	2126.15	160.23	5.0455
21:54:15	2127.50	161.58	8789.ك	WZ:03:15	2126.13	160.21	8.1285

COMPANY KE	NNECOTT	RUN	34 FIELD	SALTON SEA	A WELL	NAME 2-14	
TIME	FRES	DP	DTIME	TIME	FRES	DF	DTIME
Ø2:14:16 2	126.11	160.19	8.2122	06:34:16	2125.03	155.11	12.2456
02:19:16 2	126.09	150.17	8.2956	06:39:16	2125.00	159.03	12.6265
02:24:16 2	126.07	160.15	8.3789	06:44:16	2124.99	159.07	12.7122
02:29:16 2	:36.05	160.14	8.4522	05:49:15	2125.07	159.13	12.7956
02:34:16 2	126-03	168.11	A. 5455	ØE:54:16	2125.07	189.15	12.8789
02.29.16 2	1 - 211	160 09	8.5283	Ø5:59:16	2125.1Z	159.91	19.9892
02:44:16 2	195 00	160.00	8 7122	07:04:16	2125.15	150, 22	17.0455
00.49.15 0		150 04	6 7055	07-00-15		159 20	
00.54.16 0	105.07	1 5 6 13 1	6 8789	107.14.16	2123.14	103.20 (50 00	
00.50.10 0	100.00		a gapp	07.19.15	0105 1A		
02:03:15 2	122.53 - -ve eu V		6.9022 C 0452	07122110	2122 .	199.22 199.22	-7 7725
03:04:16 2	105 07	185.78 1850 OF	5.0400	07:07:10		1	
23:23:16 2	123.67		9.1209	07:25:18	2120.17	143.EU .eo ar	10.4022
03:14:16 2	123.83	1899.53	5.5.5 5.50	07:34716	2120.18	123.28	1312408
03:19:15 2	125.83	123.01	9.2306	W7:39:15	2120.17	125.20	- 3. D203
03:24:16 2	125.60	159.68	9.3789	07:44:16	2125.20	159.28	13.7322
03:29:16 2	125.81	159.954	9.4522	07:49:15	2125.17	159.25	13.7955
03:34:16 2	125.75	159. apr i	9.5456	07:54:16	2122.30	159.38	13.6783
03:39:16 2	125.77	159.85	n 9.6289	07:59:16	2125.17	155.28	13.9622
03:44:16 2	125.74	159.82	9.7122	08:04:16	2125.17	169.25	14.0455
03:49:16 2	122.72	153.80	ີ ູອ, 7955	08:09:15	2125.18	153.26	14.1285
03:54:16 E	125.64	159.72	5785	08:14:16	2125.00	129.08	14.2122
03:59:16 2	135.63	159.75	"9". 9822	08:19:16	2125.23	159.31	14.2956
04:04:16 E	125.65	159.73	10.0456	08:24:16	2125.17	159.25	14.3783
04:09:16 2	125.82	159.70	10. 1383	08:29:16	2125.16	159.24	14.4822
04:14:16 2	125.61	159.69	10.21	08:34:16	2125.06	159.14	14.5456
04:19:16 2	125.15	159.23	10.2950	Ø8:39:16	2:25.22	159.30	14.6259
04:24:16 21	125.63	159.71	10.3789	08:44:16	2125.12	139.20	14.7122
04:29:15 2	125.40	159.48	10.4622	108:43:16	2125.08	159.15	14,7956
04:34:16 8	125.36	153.44	10.5456	08:54:16	2125.00	159.08	14.8783
04:39:16 2	195.34	155.46	10.5289	08:59:16	2125.10	159.15	14.95.75
Ø4:44:16 E	125.37	159.45	10.7122	09:04:16	2125.05	159.14	15.0456
174 · 49 · 16 ·	100.01	155 47	10 7954	AD ACRE	2125 05	196 .7	15.1000
04.54.16 C	- ve 70	· 55 AM	10 6789	09.14.16	5105 MG	150.17	
04,04,10	100.00		10,0200	03.14.10 00.10.10		185 15	
04.00110 2.	123,33	100.41	11 01455	03113113		195.10	10.2300
00.04.10 2.	128 27	100.07 100 70	11 1000	03.24,15	2124127	కటువంళులు శళువోదు	
04.14.16 2	105 20	103:00	11 21205	09:29:10		100.34	10.40 15 5452
		105.01	11 00000	05:34:13		100.33 .RC 05	
NULLELE E. MELOKIK ON	120.23	122.31	11.2303	03:47:00		105.60	10.7070 10.707
20124:16 2	162.61	155.25	11.3/53	09:47:43		125.80	12./59/
N2:29:16 2:	125.27	158.35	11.4522	10:02:43	2125.95	160.04	15.0197
05:34:16 23	125.27	159.35	11.5456	10:17:43	2123.58	155.67	15.255/
Ø5:39:16 2:	125.26	155.34	11.5289	10:32:43	2125.50	159.58	16.8197
05:44:16 2:	125.23	159.31	11.7122	10:47:43	2125.45	159.53	15.7657
05:49:16 2:	125.25	159.33	11.7956	10:57:11	2125.79	159.67	18.9275
05:54:16 2:	125.27	159.35	11.6789	10:57:16	2125.75	159.83	16.9283
Ø5:59:16 2:	125.25	159.33	11.9522	10:57:21	2125.75	159.83	16.5303
06:04:16 2:	125.18	159.26	12.0456	10:57:26	2125.76	159.54	15.9317
06:09:16 2:	125.23	159.31	12.1239	10:57:42	2125.85	159.93	16.9321
Ø6:14:16 E:	125.17	159.25	12.2122	11:12:42	2125.68	159.76	17.1551
06:19:16 2:	125.18	159.26	12.2956	11:27:42	2125.62	155.70	17.4361
06:24:16 2:	125.14	159.22	12.3789	11:42:42	2125.66	159.74	17.686:
06:29:16 2:	125.01	159.09	12.4622	11:57:42	2125.75	159.83	17.9381

COMPANY I	KENNECOTT	RUN	34 FIELD	SALTON SEA	A WELL	NAME 2-14	
TIME	PRES	DF	DTIME	TIME	PRES	Т р г-	DTIME
12:12:42	2125.61	159.69	15.1861	00:57:42	2123.78	157.85	30.9361
12:27:42	2123.34	159.42	18.4351	01:12:42	2123.76	157.64	31.1351
12:42:42	2125.47	159.55	18.6861	01:27:42	2123.79	157.87	31.436:
12:57:42	2125.45	159.53	18,9361	01:42:42	2123.74	157.82	31.6861
13.12.42	9125_46	155.54	19, 1861	01:57:42	2123.21	157.89	31.9361
12.07.42	STOP65	159 74	19,4351	Ø2:12:42	2123.77	157.85	32.1851
17.42.42	2125 67	150 75	19 6861	02.22.12	2127.75	157.83	RE: 4361
12.57.40		150 50	15 9761	02.42.42	2122.70	157 78	20 6861
14.10.40		150 50	20. 1941	02.57.42	0107 57	197175	70 0761
14:12:42	-1		20.J001 00 4751	02.10.40	0107 50		77 . 56.
14327142	2123.47		20.4351	03:12:42		157 70	22.1001
14:42:42	2123.43	103.01	20.6651	03:27:42	CIES.DE		33.435.
14:57:42	2125.23	103.31	.20.3351	43:43:43	2123.00	157.64	23.5851
15:12:42	2125.46	188.24	21.1861	03:57:42	2123.23	157.61	
15:27:42	2125.35	155.44	21.4351	04:12:42	2123.52	157.60	24.1861
15:42:42	2125.19	159.E7	21.6861	04:27:42	2123.45	157.54	34.4351
15:57:42	2125.12	155.304	21.9351	04:42:42	2123.46	157.54	34.6881
16:12:42	2125.23	159.3 0 /	22.1861	04:57:42	2123.45	157.53	34.9361
15.27:42	2125.10	159.18	n 22.4351	05:12:42	2123.44	157.52	35.1861
16:42:42	2125.12	155.20	22.5551	05:27:42	2123.41	137.49	35.4351
16:57:42	2124.91	158.99	22, 9361	05:42:42	2123.41	157.49	35.6561
17:12:42	2125.04	159.12	1661	03:37:42	2123.43	157.31	35.9381
17:27:42	2125.00	159.08	23.4361	05:12:42	2123.43	157.51	35.1861
17:42:42	2124.90	158.98	23.6/61	06:27:42	2123.44	157.52	35.4351
17:57:42	2125.08	159.16	23. 9361	05:42:42	2123.49	157.57	35.6851
18:12:42	2124.99	159.07	24.1550	06:27:42	2123.49	127.37	35.9351
18:27:42	2124.84	153,93	24.43	07:12:42	2123.45	157.53	37.1351
18.42.42	2124.77	156. AS	24.5851	N007:27:42	2123.4t	157.49	37.4341
18.57.42	2124 22	150.00	24 9361	7.42.42	0102 47	157 51	37 6551
16.12.42	0194 AQ	156 70	24.JOUI	07.57.40	2427 AA	157 50	27 9321
10.07.40	2124.02	153 74	20.1001	07.07.42	0107 AS	157 54	70 1051
10.40.40	2124.00	100.74	2J.435. OF 6821	00:12:42	2123.40	10/204	30,1051
13142142	2104.35	100.47	22.0001	00:27	E1E3.43	107.01	22.4381
19:37:42	2124-31	130.23	20.9351	200:42	2123.44	137.32	30.888.
20:12:42	2124.28	126.35	20.1001	06:27:42	2123.47		30.3351
20:27:42	2124.27	100,00	25.4351	WE:12:42	123.40	137.33	33,1851
20:42:42	2124.22	128.30	25.6861	VIE:27:42	2123.32	157.40	23.4351
20:57:42	2124.12	158.20	26.9351	09:42:42	214.50	157.58	32.6881
21:12:42	2124.06	158.14	27.1861	09:57:42	2123.70	157.75	35.5351
21:27:42	2124.00	158.08	27.4361	10:12:42	2123 1	157.49	49.1881
21:42:42	2124.00	158.08	27.5861	10:27:42	2123444	157.52	40.4361
21:57:42	2123.95	158.03	27.9361	10:42:42	2123.42	157.50	40.5881
22:12:42	2123,96	198.06 ;	28.1861	10:57:42	2123.65	157.73	40.9361
22:27:42	2124.05	155.16	28.4351	11:12:42	2123.74	157.83	41.1851
22:42:42	2123.94	158.02	28.6651	11:27:42	2123.65	157.73	41.4361
22:57:42	2123.90	157.98	28.9361	11:42:42	2123.59	157.67	41.5861
23:12:42	2123.88	157.95	29.1661	11:57:42	2123.33	187.41	41.5361
23:27:42	2123.86	157.94	29.4351	12:12:42	2123.75	157.83	42.1851
23:42:42	2123.83	157.91	29.8881	12:27:42	2123.72	157.80	48.4351
23:57:42	2123.78	157.86	29.9351	12:42:42	2123.69	157.77	42.6351
Ø6-22-19F	88			18:57:48	2123.78	157.86	42.9361
00:12:42	2123.77	157.85	30.1351	13:12:42	2123.73	157.8:	43.1860
00:27:42	2123.74	157.82	30.4361	13:27:42	2123.99	158.07	43.4361
00.42.42	2123.78	157.84	30.6861	13:42.42	2123.53	157.51	43.555
ա արդի քնաս մ՝՝քնաս	and as the last of the last	awre ww		a w/# Time # Time			
			•				

į

1

SURVEY DATA

COMPANY KENNECOTT	RUN	34 FIELD	SALTON SEA	WELL	NAME 2-14	
TIME PRES	DF	DTIME	TIME	PRES	DE	DTIME
13:57:42 2123.95	158.03	43.936j	14:28:28	2122.37	156.45	44.4489
14:12:42 2123.47	157.55	44.1851	14:28:57	2122.33	135.41	44.4570
14:27:42 2122.40	136.48	44.4361				

P

.

R

RECEIVED

Glen E. Tinsley & Associates

AUG 19 1988

August 16, 1988

IMPERIAL, CA Geothermal Well Testing

1

Production

Operations

To: Mr. Jake Rudisill Geysers Geothermal Co. 1160 N. Dutton, Ste.200 Santa Rosa, CA 95406-1279

Sir:

P

Below is a summary of the attempts to run a caliper log on State 2-14 well on August 8, 1988:

All tools were zeroed at 48 inches above ground level as determined by the cement edge of the cellar. Wellhead pressure = 14 PSIG.

Ø950 RIH 64 Aim Caliper Arm Tool (7 1/4" OD) stuck at 5
feet below Ø, approximately 26" into the 9 5/8" casing.
POOH with 2600# and tool weight (240#) to unstick.
1350 RIH 3 1/2" Minimum ID Tool (OD 3 1/2") stuck at
approximately 5 feet below Ø, approximately 26" into the 9
5/8" casing.
POOH with 2400# plus adol weight (100#) to unstick

On August 15 a short TV camera run was made on the well to visually inspect the obstruction. An attempt was made to hydroblast the obstruction, however the equipment failed and it is unknown if this was effective. A copy of the log is enclosed. It is on VCR format. Following is an account of the effort :

The tool was zeroed at 48" above the cement edge of the cellar. Wellhead pressure = 50 PSIG.

Ø9ØØ RIH with 2 1/8" TV camera (well flowing approximately 50 GPM). Observed a whitish scale beginning at about 6.1 feet in the 9 5/8" casing. Ran to 10 Diffeet then POOH (fluid temperature is the limiting factor and had risen to 120 degrees F.). Ø945 RIH with 11,000 PSI hydrobalster to approximately the center of MCV 1. Downhole rod failed (bend. POOH. 1110 RIH with 2 1/8" TV camera (well dead, PSI = 00). Fluid too turbid for visibility. POOH. Shut in and secured well.

Careful inspection of the log tape shows that scale buildup at around 6 feet with a well defined buildup around 8 feet.

Enclosed are a copy of Figure 3.4 of the Salton Sea Deep Well Scientific Drilling Program, (State 2-14) Test Report showing the configuration of the wellhead stack and Table 3-2 (pg 3-10), describing the stack. There appears to be a discrepancy between the depth of the 9 5/8" casing in all of the logging runs and the as-builts as indicated by Figure 3-4. I talked to Joel Barbour of Bourber Well Surveys, the owner of the camera equipment and found that during the zeroing process the operator had not punched in "negative" and therefore zero on the tape is eight feet above ground level. This coincides with the as-builts and the Dialog runs

Below is a table indicating significant depths in the log: Log Depth Actual Depth Event 1.7 feet: 6.3 feet above GL Top of MCV-l gate 6 feet 2 feet above GL Top of scale 10.9 feet 2.9 feet below GL End of run

The second W run begins at 5.40 on the counter and has no significant information in it.

If I can be of any assistance to you please call me at (619) 726-1990.

N

Repectfully submitted,

Glen E. Tinsley

Figure 3-4 Weilhead Design see Table 3-2 for Weilhead Equipment List

500/Salton Sea/1/A13/Lise1/12-30-86

* *

• •

1.50

A Paris is

Table 3-2

WELLHEAD EQUIPMENT LIST

		•
(Fig. 3-4)	r Quantity	Description
1	1	Casing head $13-5/8$ in. API 3000 x $13-3/8$ in. SOW with two $3-1/8$ in. API 3000 flange outlets
2		Bull plug 3 in. LP threads, plain
3	R 2	Companion flange 3-1/8 in. API 3000 with 3 in. LP threads
4	<mark>ت 2</mark>	Gate valve 3-1/8 in. API 3000
5	ų.	Bull plug 3 in. LP threads with 1/2 in. NPT
б	1	Needle valve 1/2 in. NPT, angle
. 7	o M	Not installed, see item 15
*	4	Hing gasket R-31 (3-1/8 in. API 3000)
*	32	Study 7/8 in. x 6 in. ASTM A193 Grade B7, HRC22 maximum hardness, with two nuts per stud
*	1	Ring gasaet R-57 (13-5/8 in. API 3000)
*	20	Studs 1-373 in. x 10-1/4 in. ASTM A193 Grade B7, HRC22 maximum hardness, with two nuts per stud
8	. 1	Annular seal and centralizer, nominal $13-5/8$ in. x $9-5/8$ in. casing
· 9	. 1	Expansion spool 13-12 in. API 3000 x 11 in.
		outlets, 41 in. overall hength with 18 in. of expansion on 9-5/8 in. production casing. Top of spool bored to accommodate a 7 in. hang down liner donut assembly
10	1	Bull plug 3 in. LP threads, extra heavy plain
11	2	Companion flange 3-1/8 in. API 5000 with 3 in. LP threads

* Not shown in Figure 3-4

۰.

RR:4779r as:Rev.8

.

ŧ

.

*

3-10

÷

-

