MAGIC RESOURCE INVESTORS

COST SHARE PROPOSAL TO DOE

USER-COUPLED CONFIRMATION DRILLING PROGRAM

MARCH 13, 1981

DOE/MRI COST SHARE STRATEGY

- Current strategy based on geothermal source temperature and flow rate
- Proposed strategy based on the value of the energy provided by the source for the defined end use

PROPOSED STRATEGY

- Define the cost of a conventional energy source (natural gas) as the baseline for an unsuccessful well
- Define the energy cost from the geothermal source necessary to attract an alcohol plant enterprise as a completely successful well
- Base the degree of success for the project on the final energy cost

DEFINE CONVENTIONAL ENERGY COST = baseline for unsuccess ful well

Assumptions

* * *		Natural Gas Boiler Cost	= \$120,000 ^a
	-	Interest Rate	= 18% ^b
	-	Finance Period	= 10 years ^b
	-	Natural Gas Cost	= \$4.00/10 ⁶ Btu ^C
·	-	Boiler Efficiency	$= 82.5\%^{d}$
	-	Alcohol Process Thermal Energy Requirements	= 65,000 Btu ^e
	-	Alcohol Plant Capacity	= 2 million gallons/year ^b
ο.	Annu Alco	al Energy Requirement for hol Production	= 130,000 million Btu/year
0	Amor	(ررور سر) tized Capital Cost	= \$26,700/year
0	Amor	tized Capital Cost/Annual	Energy = \$0.21/million Btu
O	Natu	ral Gas Cost	= <u>4.85</u> /million Btu
0	Tota	l Energy Cost	= \$5.06/million Btu = Jotally unsuccessful
^a Ric ^b Cli	hards ent	on Rapid System	cost share
CInt	ermou	ntain Gas, LV-1	
dChe	mical	Engineering	
eBoh	ler B	rothers of America	

DEFINE ATTRACTIVE ENERGY COST

One-third reduction from conventional energy cost is necessary to attract an alcohol enterprise

\$3.37 per million Btu

0

0

DEGREE OF PROJECT SUCCESS (DOE Cost Share)

Energy Cost (\$/million Btu)

SENARIO I: ASSUMPTIONS

o 240°F

o 600 gpm

o 1,000 feet (assumed cost is linear)

o DOE cost share = 36%

SENARIO I: ECONOMIC CALCULATIONS

Total Investor Capital Cost 0

	- Well Cost = (\$400,000)(.64)	=	\$	256,000
	- Ancillary Cost	=		.290,000
	- MTI Equipment Cost	=		900,000
			\$1,	446,000
0	Amortized Cost (18%, 10 years)		\$	322,500
ο	O&M Cost (5% MTI Cost)			45,000
0	Electrical Energy (COP = 6.7 , 5.0	25/kW)	_	141,000
Tota	l Annual Investor Cost		\$	508,500
Cost	/Million Btu		\$	3.91

0

0

SENARIO II: ASSUMPTIONS

o 240°F

- o 600 gpm
- o 3,000 feet
- DOE cost share = 36%

SENARIO II: ECONOMIC CALCULATIONS

Total Investor Capital Cost 0

-	Well Cost = (\$1,200,000)(.64)	=	\$ 768,000
-	Ancillary Well Cost	=	290,000
-	MTI Equipment Cost	=	 900,000

\$1,958,000

o Amortized Cost (18%, 10 years)	\$436,600
0 0&M Cost (5%)	45,000
<pre>o Electrical Energy (COP 6.7, \$.025/kW)</pre>	141,000
Total Annual Investor Cost	\$622,600
Cost (Million Dtu	¢4 70

0 Cost/Million Btu

0

54.79

REVISED SENARIO I

o 240°F

o 600 gpm

o 1,000 feet

o DOE cost share = 40%

o Total Investor Cost = \$1,430,000
 o Cost/Million Btu = \$3.88

=

\$3.88

41% DOE cost share

REVISED SENARIO II

o 240°F

o 600 gpm

o 3,000 feet

o DOE cost share = 60%

o Total Investor Cost = \$1,770,000
o Cost/Million Btu = \$4.30

\$4.30

59% DOE cost share

275

260

970

ДЮ

÷

90%

9020

600gpm

fel

25%

40%

82%

90%