MAGIC RESOURCE INVESTORS

COST SHARE PROPOSAL TO DOE

USER-COUPLED CONFIRMATION DRILLING PROGRAM

MARCH, 1981

DOE/MRI COST SHARE STRATEGY

- Current strategy based on geothermal source temperature and flow rate
- Proposed strategy based on the value of the energy provided by the source for the defined end use

PROPOSED STRATEGY

- Define the cost of a conventional energy source (natural gas) as the baseline for an unsuccessful well
- Define the energy cost from the geothermal source necessary to attract an alcohol plant enterprise as a completely successful well
- Base the degree of success for the project on the final energy cost

DEFINE CONVENTIONAL ENERGY COST

- o Assumptions
 - Natural Gas Boiler Cost = \$120,000^a
 - Interest Rate = 18%^b
 - Finance Period = 10 years^b
 - Natural Gas Cost = $$4.00/10^6$ Btu^C
 - Boiler Efficiency = 82.5%^d
 - Alcohol Process Thermal Energy Requirements = 65,000 Btu^e
 - Alcohol Plant Capacity = 2 million gallons/year^b
- o Annual Energy Requirement for Alcohol Production = 130,000 million Btu/year
- o Amortized Capital Cost = \$26,700/year
- o Amortized Capital Cost/Annual Energy = \$0.21/million Btu
- o Natural Gas Cost = <u>4.85</u>/million Btu
- o Total Energy Cost = <u>\$5.06/million Btu</u>

^aRichardson Rapid System ^bClient ^CIntermountain Gas, LV-1 ^dChemical Engineering ^eBohler Brothers of America

DEFINE ATTRACTIVE ENERGY COST

- o Attractive Energy Cost = \$3.88/million Btu
- O Cost results in a DOE share of 40 percent at 260° F. and 600 GPM

DEGREE OF PROJECT SUCCESS (DOE Cost Share)

DOE Cost Share (%)

DERIVATION OF COST SHARE MATRIX

0	Assumptions
•	

- 260° F.
- 600 GPM
- 3000 Ft. Well (Assumed in all cases)
- 1. Assume an MRI Cost Share
 Let MRI Share = 60%
- 2. Calculate Total Capital Cost o Well Cost = (\$1,031,000)¹(.6) = \$ 618,600 o Ancillary Cost² = 290,000 o MTI Equipment Cost³ = <u>870,000</u> \$1,778,600
- 3. Calculate Annual Cost(3. Calculate Annual Cost)(3. 395,738)0 Amortized Capital Cost (18%, 10 Yr.)(3. 395,738)0 Maintenance Cost (5% MRI)(3. 500)0 Electricity Cost $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 5.025)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 8.72^3, 1 \text{ kw} = 130,000)$ \$4.22 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 100^3)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 100^3)$ 109,202 $(1.3 \times 10^{11} \text{ Btu}^4, \text{ COP} = 100^3)$ 109,202

¹Per DOE Proposal ²Per MRI ³See MTI Cost Chart

⁴See Conventional Energy Cost

MTI COST AND PERFORMANCE CHART

Temperature Equipment Cost COP \$2,360,000 210 3.68 220 1,960,000 3.94 230 1,840,000 4.29 1,510,000 240 4.65 1,290,000 5.13 250 1,030,000 5.71 260 270 980,000 6.36 880,000 7.17 280 290 875,000 8.18 500 GPM 1,835,000 210 4.20 220 1,510,000 4.59 1,290,000 230 5.06 1,285,000 5.63 240 6.26 250 980,000 7.25 260 880,000 270 875,000 8.29 280 870,000 9.66 490,000 11.92 290

400 GPM.

MTI COST AND PERFORMANCE CHART (continued)

ţ

	600 GPM	
Temperature	Equipment Cost	COP
210	\$1,295,000	4.68
220	1,290,000	5.16
230	985,000	5.75
240	980,000	6.50
250	875,000	7.46
260	870,000	8.72
270	865,000	10.23
280	455,000	12.82
290	445,000	16.92

DOE COST SHARE PLAN

		Flow	Rate,	Gallons	Per	Minute
		400		500		600
Geothermal Water Temperature	290	42		20		20
	280	46		38		20
	270	56		42		36
	260	63		46		40
	250	83		57		44
	240	90		78		55
	230	90		83		59
	220	90		90		83
	210	90		90		87