MEMORANDUM
January 7, 1981
TO: Max Dolenc
FROM: Jon Zeisloft
SUBJECT: UCCDP Pre-Negotiation Review--Proposal \#002 (Magic Hot Springs Landing, ID.)

The following is a summarization of comments made by the proposal review team from ESL, and should serve to refine the proposal for the negotiation process. In addition to the following comments, all general provisions for proposals as listed in 12-19-80 memo, J. Zeisloft to M. Dolenc, must be included.

Resource--We feel that the proposer is overly optimistic in their anticipated flow and temperature. We believe it is unlikely to encounter $300^{\circ} \mathrm{F}$ fluids at the target depth of 3000 ' and that it is equally unlikely to produce 675 g.p.m. fluid from a fracture reservoir from one well. It is essential that the proposer consider an alternative, smaller ethanol plant or the necessity of drilling more than one production well. These factors, of course, reflect on the cost share plan as it will be negotiated.

The proposers further state that 50 g.p.m. of $80^{\circ} \mathrm{F}$ water will be usable for cascading. As it stands, DOE could pay for an ethanol project failure and the proposers could proceed with a profitable development of the cascaded processes alone. Therefore, DOE should negotiate the project to "GO" if fluids are produced which will only provide for the non-ethanol, cascaded portions of the planned operation.

Exploration--The shortcomings of the proposal in this area are reasonably well summarized in the Proposal Evaluation Summary (PES) along with suggestions for improvement. The following applies also. Most of the lineaments and structures appear to be defined from aerial photos without ground checking. Many of the lineaments appear to be nothing more than vegetation differences on alluvium overlying subcropping layers of basalt.

In addition to PES suggestions, production, chemistry and thermal data of all local wells should be integrated with geological, geophysical and geochemical data to be collected and interpreted as part of this study.

In that limited outcrops of the Idaho batholith occur less than two miles east of the project site (at which location batholith rocks are overlain by Tertiary volcanic rocks) it can be speculated that Cretaceous granite of the batholith may be present at a relatively shallow depth beneath Magic Hot Springs. The proposer should consider what production flow rate could be expected from a hole into fractured granitic rock versus fractured volcanic rocks as seen at the surface. With this aspect in mind, an object of geophysical surveys should be to establish the presence and depth to granitic rocks. It is recommended that the dipole-dipole geophysical technique be used to detect thermal fluids instead of the EM method proposed.

The review team recommends 5-6 500'-600' temperature gradient holes rather than the 31000^{\prime} holes the proposal calls.for. We feel the shallower depth is adequate, and more holes than three are needed. The siting of the gradient holes will be determined upon review of all geological and geophysical data, and should cover a greater area than the limited MRI acreage. Additional structural data should be obtained by preparing very detailed, accurate lithologic logs of the gradient holes. A minerals industry logging company should be used to obtain a gamma ray-SP-dual induction log of each gradient hole.

The proposer should specify the area in which they intend to do detailed geologic mapping and not leave it a vague "several miles."

DOE should consider requiring a decision point and data review for the gradient hole siting, as well as for the siting of the proposed production hole.

Drilling--We feel the $4 \frac{2^{\prime \prime}}{}$ casing proposed for the gradient holes is clearly excessive. DOE should restrict that budget item to $1^{\prime \prime}$ or $2^{\prime \prime}$ black iron pipe as has been found completely adequate. in ESL and related studies in Idaho and Utah; The conductor pipe can be proportionately smaller.

Shallow aquifers and fracture zones must be tested as encountered in the production well to evaluate shallower resources and to provide data for possible later fluid injection needs.

In an area dominated by hard volcanic rocks (and maybe granite) straight rotary drilling is not likely to work as well as down-hole hammer drilling. The proposer should consider, as part of his drilling program, the use of a Mission or similar hammer tool. Evaluation of various tools and techniques could be accomplished during the drilling of the gradient holes.

A full suite of geophysical logs must be required in the production hole, not just the proposed IES and GRN logs.

Production casing must have centralizers approximately every 500' from TD to the surface to assure a good cement bond. In addition the overlap of different strings of casing must be $\geq 200^{\prime}$. After emplacement of $95 / 8^{\prime \prime}$ casing at 1000^{\prime}, we recommend that the proposer drill $83 / 4^{\prime \prime}$. hole to TD ($\pm 3000^{*}$).

Then, following logging and any preliminary testing, production liner should be hung from 800^{\prime} to just short of. TD, and cemented from above the productimon zone to 800', with perforations below the cemented interval.

The proposer needs to state how $\mathrm{H}_{2} \mathrm{~S}$ will be monitored and controlled during the drilling of the production well.

Testing--A more detailed testing program than that presented in the proposal must be provided to DOE's satisfaction prior to signing of the contract.

Cost Share--To begin with the proposal is inconsistent as to defining a successful well. The $280^{\circ} \mathrm{F}$ minimum fluid temperature seems unrealistically high for the process, and we feel that EG\&G engineers should substantiate the fluid requirements for the proposed size ethanol plant, as it weighs on the cost share scheme.

Secondly, and most importantly, if the geothermal fluid is cascaded after its use for ethanol production the cost share plan is unfair to DOE and that plan needs to be adjusted accordingly.

It seems the cost share plan as presented reflects on: what the Mri hopes to find and not on anything close to what is known to exist.

Institutional --At the pre-production well decision point MRI must show proof of ownership or lease rights to the appropriate land as well as rights to the water to be produced. All necessary permits (of access, rights to cold water for process use, evaporation ponds, etc.) must be to DOE's satisfaction prior to the signing of a contract. Is Lawson's letter (p. 140-Tech. volume) sufficient proof of geothermal resource ownership definition at this site?

Environmental--Can MRI dispose of their spent process fluids into Magic Reservoir? Can they show any evaluation of the affects? Is this acceptable to DOE? If not, will DOE require MRI guarantee funding on injection well? Are there any other waste products of their process(s) which could cause a delay (or termination) of the project due to environmental concerns?

Business--Predicted expenses are too high in many categories and should be closely scrutinized by DOE business advisors. Some of the more obvious excess are discussed here. DOE should require that project field and drilling work be done from a much closer town than the proposed Twin Falls to reduce rental car costs and to allow more manhours/day on actual project work. The amount of $\$ 2000$ for a drill site outhouse is very much out of line.

Proposer must clarify and substantiate pg. 134 (Tech. volume) to the DOE negotiator's satisfaction, as the alternate energy source, as it relates to the cost share scheme. DOE should check out all rates shown on form 60 , as they appear excessive.

Finally, we recommend that DOE require that the project be cost accounted to their satisfaction and that DOE NOT accept a "cost plus" contract.

Memo From
JON ZEISLOFT

MAGCRESOURCES EOPOSAL - UCCDP Review (ESLTEam)
Resoures -
Hiconsist ect flow ten β
$a+1 \cdot 1 \cdot 800$ ley
orpt|moze, challowa grad holes.
exp - anad holes of fer glolit gloplyy.
eip of on wiell's wichem.
decis.pt decision pts 600 soon offer dres
Too manttimpsched concurreatly:
Bus. Cocte fothat 4o sood. Cost Pus
it this abedge for manke ueeding inj ulll?
rus. Jostify $4 \frac{1}{2}$ cs
oxp : Sravitytiag tedetenune depth to batholith -

surild negsticte for project to "GO", if fust
cascade projects to be hult.
BOS Day Acurce amonth slonld be mixed.
xupect $5-6 \quad 500-600$ Rad holes
number to be gependenton geoltgeogeh dats
|uhorewill process avaler come fom
nust connutt to exthanol-plan(?) fo fail on ethanfl ineeds, \&then ou large pmit qo ahead is/caiscade cises.
$1+4$
Dersoure unet have dex led lithlog to acl a shud delectoi$\$$ ketter than mind log ger wioned do.
isG Tisty plan latles

$$
\text { Couflict } \delta \text { autered } \omega(G R U Y \text { Fed } ?
$$

exa.

Rec. | Donot do EM _ |
| :---: |
| Do dipote -dipoee |

Prig. viec nuerals rig-for prot'n hole.
Cel Decision et uhere todrill uat if to drell band posit to be verified prior to.
Enpelgeopluy + grad holes to bevon largen erea than MRI land

| |
| :--- | :--- | :--- | :--- |

 4 rememiduth orn

Ouestionsi) . what kind of flow rate can be expected from the Idaho Batholith?
exp
2. Is there a typical formation the overlaysthe batholith in this area?
3. Would Dipole-dipole resistivity be usetall? It would pickup conductive thermal fluids.
deus - $\left\lvert\, \begin{gathered}\text { 4. Ts 42" casing to the bottom of the } 1000^{\prime} \text { holes } \\ \text { needed? }\end{gathered}\right.$
Exploration:
A. Once the ESL report by zeisloty $\$$ Jewel is inclugled the literature review will be complete enough except for hydrologicic data such as: Area irregetion wells procluce what tit 9pm from what depth \& formation1. What production rates have be acfireved from the Idaho Batholith rocks,
B. 1 The mapping done by ESL could be extended.
12. The thermal gradient hole program should be expanded to more holes even if it means drilling 6 holes to only 600' to stay within cost limitations.
3. Accurate lithology logs of the holes should be prepared 4% improve the structural
interpretation. interpretation.
(

Ctai

002 :- Magir Hot Spuyjs detano

The necessary emments reganding the ceosuce evaluethai non explnation'are putz-cuell commauzied in the Poppaid liveluatinil $15 u m$ ay. H this prapoad represent the present underotanding If the syitern by mRI an the empetence of the giologic tean, we have nean to pucetroi botz SpeajicwlfEYPL (i) act of the liveament and atrectiew seen to haveSeun defuid fim ai pholos onf-anthent gand ckeck. -mpage 24 , the "livement" of the "ehear zone", when loreseat on phots an puabeg not. The seem to be due-to vegetanon diffeunco on alluvium overying

 not enphan-300"
$e^{x p}$
The deptho of gradieit holer ane not upecignied. This shodel be deternimed by checkigi n the dyptas in locel grandura Tignem. The Th. Mabe anoxed be dweles well wits the Wedral belaw there anallow blawheting agunfer
\qquad
\qquad
\qquad
\qquad

 3
 \ddot{y}
\qquad

Mágie Resource Investors (0oz)

$$
\begin{aligned}
& \text { Magcits s. udl } 466 \mathrm{gpm} \text { e- } 165^{\circ} \text { Fat sun (gestherms } \Rightarrow 239^{\circ}-300^{\circ} \mathrm{p} \text {) }
\end{aligned}
$$

Min negursement 1600 gpin a $20^{\circ} \mathrm{F}$

Cosits. Av- 83 gal fon feedotock
Alcohal Sals: $\$ 1,70-200 / \mathrm{gal}$.
t Goleof aminal feed
exp $\times \frac{p p l}{x}$
ieedmore than 3 grad. Koles
$\because \quad x$ Need more detals of glopinnics 70 be used.
preventreoph prosram to one decisin rt, on pue

pecis pers $\frac{\text { Decision pts iefueen each phase of explapnor }}{\text { fovach bout of drlg. }}$

Li evaluate shambuer Noownces
2. to provide data fr possible injection needs.

MGT-
$16 T$ MRF not adespazte forngt -DOE should seguine mgt duties to ber by expl'n onionten
Aroposer to develop lojging prog 2 am w/ DOE Telpy
brec. Drop persornuel sounit v good

cagizopue curvarses al al al 500 on prod

 preved xe nop sing iom

 crowion C - sne
 पु3 anno

Q Eoud rum ird inoumon oro LT

(ins iniw

TED
cii nuiv. \& 675 pre $0280^{\circ} \mathrm{F}$
P.132 oumunay sheet say 673 gh 2300%
surfore potential 66 gpom $165^{\circ} \mathrm{F}$ water. will $260136 \mathrm{mic}_{1} / 65$ 1,600-2500 nistex to $150^{\circ} \mathrm{C}+200^{\circ} \mathrm{C}$ ruverac (Miturelff

1. laud stotus
restovere
2. 3000^{\prime} exthing. Haiget too shallow for $300^{\circ} \mathrm{F}$ 3. nights to Hesurce?

Fi:- wetn nutibe for 2000 oso gpve elticiof

Bisiness inds. reiviluse. Euice a nconth - a proklin. cost stome
7. If coscaded or ofer use of wotec iv cutended, cost ohoue plan i. unfair to DOE... If ovely Dhewol Avduction - - ofonneld cost oluce "plaw noy lee ole. "Acosinghigity., ete 8. Do "Antesian Aty etudy" - \{local uillovineyp.
Ved (lXan
$12 / 29 / 80$ Exich. \square Expl.
9. swuaf shallow pradecith holes - 200 -600'. AFTER docing geology of gioplupios.

Technical
core sutere Table $14(1 / 33)$ a pg iii dopot agree on what constitutes a sucessful well
pl. geoth resorre" krown to exist" - thir cost shane dresn't reftect the known resource, it reflets what they hope to fing

T1 - heat sovre of bovied stak a sill (toocold too quedely?) - citing. Mitiell
expe. if- the wa a shghly faulted, why wen' tamy shown an the gel. Map
25- investig. dageneness as pat of peol. progiam (esp. if $T>200^{\circ} \mathrm{F}$ is sought)
26- bo opbom. on othle facta
what, of tee oll, is a nor-sessonal soviceof freedstore?
28. Slate 3-4 k^{\prime} well

Disposal 29-suntace dipposal way not wnk
use * 30 - undau on who is payng whan fo gertumal flids.
\therefore 31-dorwog antupated dwon tome, clese whey dumpedin doent- no po, since corld stre fu 5 days envir. $K 41$ - in t tre that only $H D$ MO au pracued?
odas from aesation pond.
Jnot.
47. reoning problems!
$*$ scueo. 71 decison ponts in ace the same time (?)
deckion 3, is. 1 we atter coupletion of produtim well (not enof. time to come to the mal quilib.?)

payum ag piraus supospmol sa $<$ ranoid

$$
\therefore \text { nomo } 10.589 \text { umop - osso lymabrana }
$$

 mpliagumberan

PROPOSAL EVALUATION SUMMARY NO. 002
Technical score - 188
Business score - 25
Magic Resource Investors (Profit)
Magic Hot Springs Landing User-Coupled Confirmation Orilling Project Magic Hot Springs Landing, Blaine County, Idaho

Jack T. Duree	$\$ 1,088,395$	DOE Cost
January		
14, 1981 (14 months)	$1,209,328$	Total Cost

Production Well

Percent Geothermal: 100\%
$\not \partial$ Utilization Factor: 40\%

Reject Temp.: $205^{\circ} \mathrm{F}$
$\$ / 10^{6} \mathrm{Btu}: \$ 1.90$
Btu/yr/DOE Funds 1.8×10^{5}
\$/Installed KW: \$181.00
Annual Equiv. \#2 Oil: $1.99 \times 10^{\circ} \mathrm{gal}$

Summary

This project is to provide heat requirements for an ethanol production plant. The project includes geologic surveys, unspecified geophysical surveys, analysis of pertinent data, and the drilling of three $1000-\mathrm{ft}$ thermal gradient holes, and a $3,000-\mathrm{ft}$ geothermal production well. An injection well is not included in the present cost-share plan; however, if one is deemed necessary, the cost-share plan will need to be adjusted. A successful project is defined as having a flow rate of greater than 675 gpm at $\geq 300^{\circ} \mathrm{F}$. Production is anticipated to be from fractured rock. The project team, managed by Magic Resource Investors, includes Charles Corwin (environment and institution) and Gruy Federal, Inc. (all other project tasks).

Technical Strengths

Resource. There are surface manifestations of resource temperatures of at Teast $165^{\circ} \mathrm{F}$, but a significantly reduced chance of a $300^{\circ} \mathrm{F}$ resource. There is a significant chance of a $230^{\circ} \mathrm{F}$ resource. The resource is expected to produce reasonable flows, but two wells will probably be needed to produce the required flow of 675 gpm .

Orilling. The preliminary drilling plan is thorough and quite adequate with respect to casing, cementing, fluid handing, support services, and wellhead hardware. It is detailed and technically correct, and feasible from a drilling standpoint except for the use of mud to control artesian flow. The plan to
gather temperature information and to record such hard drilling data as bit weight, etc., is good. The plan to case the well to 2000 ft should insure the integrity of the upper aquifers.

End-Use. The technical designs and economics of the end-use appear very good if resource expectations are satisfied for the process. The process conversion will involve demonstrated off-the-shelf process equipment.

Technical Weaknesses

Resource. The resource temperature at 3000 ft . is likely to fall short of proposed end-use requirements. Fluid flow rates from the fracture system will be somewhat limited, calling for either scaling down the size of the ethanol plant or drilling two wells. The planned use of the shallow warm water well may not be feasible, due to possible interference effects.

Exploration. The surface manifestations are promising for a structural reservoir at depth; success depends upon the development of a realistic reservoir model and drilling from a carefully selected drill site. The exploration is not now designed for the delineation of the critical structures. The program should contain the following elements:
A. A thorough review of available geoscience literature for the area.
B. Geology (designed to determine near-surface location of structures)

1. The scale of mapping is not specified, but should be at least as detailed as 1:24,000, with emphasis on geothermal features and structure.
2. Thermal gradient wells should be logged for lithology and alteration. Analysis of the hydrology should be performed for these wells.
C. Geochemistry
3. A soil Hg survey c an locate leakage zones along structures.
4. All springs and wells should be sampled and chemically logged for As and Hg .
5. Gradient hole cutting should be chemically logged for As and Hg .
D. Geophysics
6. More gradient holes should be drilled. The number proposed is probably not sufficient to model adequately the temperature configuration.
7. Proposers do not have a complete understanding of what electromagnetic surveys (EM) can do relative to resistivity. Dipoledipole resistivity, as well as EM, should be able to detect thermal fluids. There is need for a competent consultant in this area.

Drilling. The planned use of drilling mud to control artesian flow is not desirable. Geophysical well logging, chip analysis, and fluids sampling during drilling are not defined. A more detailed description of the drilling rig is required to determine its capability of drilling the production well.

Testing. Details of the testing phase are not given. Planned instrumentation appears inadequate. Details of reservoir enginering should be included.

End-Use. The proposed alcohol plant designs do not offer flexibility in accepting less than 600 gpm and $300^{\circ} \mathrm{F}$. Areview of the plant design is necessary to determine the feasibility of utilizing lower resource expectations, which might require scaling down the size of the plant. Possible cascaded uses of the $205^{\circ} \mathrm{F}$ rejected fluids are mentioned, but are not definitely planned and are not to be considered until after the ethanol plant is in operation.

Cost-Share. The cost-share formula requires reworking for lower resource expectations and révised plant designs. In general, the cost-share formula is not equitable, since DOE's cost-share increases too quickly for lower temperatures.

Personnel. The reservoir engineer shows ample computer modeling experience, but does not appear to have adequate field experience. There does not appear to be a hydrogeologist on the project team. There does not appear to be adequate environmental expertise on the project team. In general, personnel assignments to specific tasks are not clearly defined. The project team needs additional expertise in the areas of reservoir engineering, geophysics, exploration, and environmental/institutional issues. Gruy Federal appears to have limited experience in evaluating fracture-controlled hydrothermal reservoirs. There is a great potential for presumed conflict-of-interest in having Joel Renner on the project team because of his role in DOE's eastern Technical Assistance programs.

Permits. The proposer has not yet applied for permits for drilling, fluid disposal, etc., and does not indicate when they would be obtained. The legal rights to the geothermal fluids were not presented.

Institutional. The land, although it is owned by the proposers, is currently zoned for recreational use. Attempts at rezoning such land have met some opposition in the past and may present a hindrance to the project.

Environmental. Most environmental issues are dismissed in the proposal. No alternate plans are presented for fluid disposal in the event that the resource fluids are of lower quality than anticipated. The need of an injection well
is not discussed. The proposer's intent to obtain DOE approval of the environmental report in 10 days is ambitious. The proposer does not appear to familiar with recent NEPA regulations. Finally, the environmental report will need to address the National Historic Preservation Act, since local Indian tribes may have used the hot springs.

Conclusions
The TAC consensus was that there is significant potential for a resource of up to $230^{\circ} \mathrm{F}$ and 500 gpm , which are lower than the proposer's desired values. It is suggested that the proposer be requested to explore the technical and economical feasibility of using these resource parameters to meet his end-use requirements, e.g., by increasing heat exchanger sizes, scaling down plant size, etc. If no suitable end-use arrangement can be found, the TAC suggests that this proposal not be funded.

Score
Criterion 7
Criterion 8
Criterion 9

SUMMARY

This proposal is generally medium quality with the proposer relying entirely on a subcontractor for accomplishment of technical aspects of the project. Some cost elements are unresonable. Total project cost $\$ 1,209,328$.

BUSINESS STRENGTHS

1. A conservative 16% interest rate on borrowed captial is indicated.
2. A reasoned approach to project financing is demonstrated. However, there is no substance!
3. Cost controls are adequately addressed.
4. A sound organization structure exists.
5. Investors Wedum and Gorham are well capitalized relative to the financial requirements of the proposed project's front-end.
6. Gruy Federal is well-qualified to undertake the proposed project.
7. The proposer is financially secure.

BUSINESS WEAKNESSES

1. Lapsed time in the project is difficult to follow.
2. Travel costs $A \$ 41,635$ are unreasonable and unjustified (although they are more than adequately described.)
3. Gruy Federal's contract being of a cost-plus-fixed-fee nature may give rise to cost control problems.
4. Engineering labor at a weighted $\$ 21.34$ an hour (4,980 hours!) with 237.1% 6 1/2A and OlH application is unreasonable. DCAA audits have allegedly been conducted.
5. The project schedule in unclear.
6. There is no financial plan through the utilization point, i.e., an alcohol plant was provided.
7. Energy sales for raising revenue seem very naive and oversimplified.
8. No schedule detail is provided.
9. No specific role is defined covering the two wealthy investors identified.
10. The proposer is too reliant on the subcontractor. MRI's capability to manage a technical project of the magnitude proposed is highly suspect.
11. MRI is thinly capitalized; not very liquid--mostly land assets.
12. The claim to assets of the two wealthy investors is untreated.
13. No mention is made of pledged collateral possibilities.
