REPORT EVALUATION OF GEOTHERMAL POTENTIAL WHITE ARROW RANCH VICINITY BLISS, IDAHO: TASKS D, E AND F

AUGUST, 1981

HOWARD • DONLEY ASSOCIATES, INC.

CONSULTING ENGINEERS AND

CALIFORNIA

GL00821

IDAHO

WYOMING

HOWARD • DONLEY ASSOCIATES, INC.

Consulting Engineers and Geologists

Howard Donley, President, P.E. Terry R. Howard, Vice-President, P.E., P.G. Larry G. Clark, Manager, P.E. H. Robert Howard, Manager, P.E.

Redwood City, California Moscow, Idaho Casper, Wyoming Boise, Idaho

Boise, Idaho 83709 • (208) 376-8200 220 So. Cole Road •

Job No. 1029-05-02 August 6, 1981

University of Utah Research Institute 420 Chipeta Way Salt Lake City, Utah 84108

Attention: Mr. Jon Zeisloft

Re: REPORT Evaluation of Geothermal Potential White Arrow Ranch Vicinity Bliss, Idaho Tasks D, E and F

Dear Mr. Zeisloft:

Please find enclosed copies of our final report for the evaluation of geothermal potential in the White Arrow Ranch Vicinity, Bliss, Idaho. This final report covers Tasks D, E and F as were outlined in our proposal to you last year. The report also includes Appendix A, which is the report that we prepared in December of 1980 for Tasks A, B and C.

If you have questions concerning the contents of the report(s) or our work to date, please contact us. We have enjoyed working with UURI and DOE on this project and look forward to working with you again.

> Yours very truly, Howard · Donley Associates, Inc.

H. Robert Howard, P.E.

cc: Mr. Robert Erkins

Enclosures

HOWARD • DONLEY ASSOCIATES, INC.

Consulting Engineers and Geologists

Howard Donley, President, P.E. Terry R. Howard, Vice-President, P.E., P.G. Larry G. Clark, Manager, P.E. H. Robert Howard, Manager, P.E.

Redwood City, California Moscow, Idaho Casper, Wyoming Boise, Idaho

220 So. Cole Road • Boise, Idaho 83709 • (208) 376-8200

REPORT EVALUATION OF GEOTHERMAL POTENTIAL WHITE ARROW RANCH VICINITY BLISS, IDAHO: TASKS D, E AND F

bу

Howard • Donley Associates, Inc. (Dale R. Ralston, Principal Investigator)

> Moscow, Idaho August, 1981

TABLE OF CONTENTS

415. L

LIST OF FIGURES	:
LIST OF TABLES	
INTRODUCTION	
Statement of the Problem	
Purpose and Objectives	
Method of Study	
HYDROGEOLOGIC LOG OF THE TEST HOLE	
Location and Construction of the Test Hole	
Geologic Log of the Test Hole 6	
Hydrologic Log of the Test Hole	
GEOPHYSICAL LOGS OF THE TEST HOLE	
Description of the Logging Procedure	
Caliper Log	
Gamma Log	
Temperature Log	
HEAT FLOW ANALYSIS	
Introduction	
Thermal Conductivity	
Geothermal Gradient	
Heat Flow Calculations	
DISCUSSION OF RESULTS	
Geothermal Flow Model	
Isogeothermal Horizons	
CONCLUSIONS	
REFERENCES	
APPENDIX	

LIST OF FIGURES

ľ	age 2
Figure 1 - Location Map of White Arrow Hot Springs in Idano	
Figure 2 - Test Well Location and Structural Features	5
in the vicinity	24
Figure 3 - Temperature-Depth Fiot of Will	25
Figure 4 - Temperature-Depth Plot of Well 7N-421 1904	30
Figure 5 - Generalized Heat Flow Map of Southern Idano	
Figure 6 - Cross-section C-C ¹ Showing Isogeothermal Horizons and Heat-Flow Distribution	. 32

i

LIST OF TABLES

		D
Table	1 -	Geologic Log of White Arrow Test Hole
Table	2 -	Depth, Temperature and Geothermal Gradient Data From the White Arrow Test Well
Table	3 -	Bulk Thermal Conductivity Results
Table	4 -	Heat Flow Calculations for the White Arrow Test Well 29
Table	5 -	Depths to Isogeothermal Horizons Given K = 3.55 TCU and q = 2.7 HFU in a Conductive Geothermal System 34
Table	6 –	Depths to Isogeothermal Horizons Given $K = 3.55$ TCU and $q = 2.0$ HFU in a Conductive Geothermal System

i,i

INTRODUCTION

1

Statement of the Problem

The report is the second of two publications describing the geothermal resources in the vicinity of the White Arrow Ranch located in Gooding County in southern Idaho (Figure 1). The first report, entitled "Evaluation of Geothermal Potential, White Arrow Ranch Vicinity, Bliss, Idaho: Tasks A, B and C" (Ralston and Prager, 1980), described the hydrogeologic setting of the area and delineated a target site for a geothermal gradient test hole. This report presents the results of the test drilling and an analysis of the geothermal flow systems in the area.

The work described within this document was undertaken under funding from the U. S. Department of Energy administered through the University of Utah Research Institute. Although the research results are directed to the resource development at White Arrow Ranch, the results are applicable to geothermal development throughout the lower Clover Creek area.

Purpose and Objectives

The purpose of this project is to evaluate the geologic and the hydrologic controls and the extent of the shallow geothermal systems in the vicinity of the White Arrow Ranch near Bliss, Idaho. The project consists of geologic and hydrologic investigations including the construction of a shallow (less than 1,000-foot) geothermal gradient test hole.

Figure 1. Location map of White Arrow Hot Springs in Idaho.

The objectives of the work are listed as a series of six tasks. Task A - Summarize geologic knowledge and obtain field data

> where necessary to formulate a preliminary geologic framework for geothermal flow systems in the general study area.

- Task B Summarize hydrogeologic knowledge and obtain field data where necessary to formulate a preliminary conceptual model of the geothermal flow system in the general study area.
- Task C Utilize geologic and hydrologic interpretations, possibly supplemented by surface geophysical investigations to locate a target site for a 700-800-foot geothermal gradient test hole.
- Task D Construct a small diameter test hole to a target depth of 700-800 feet for the purpose of obtaining hydrogeologic and heat-flow data.
- Task E Utilize standard borehole geophysical techniques to obtain a temperature log of the test hole.
- Task F Administer the project and combine the results of investigations described in tasks A-E into a report of findings.

Method of Study

This report is presented as fulfillment of tasks D, E and F as noted in the previous section. As such, the method of study involved five steps. Supervise and monitor construction of a small diameter test hole.

2. Obtain selected geophysical logs of the test hole.

- Analyze the hydrogeologic and geophysical logs of the test hole to describe the geothermal flow systems.
- Use site specific and published data to estimate heat flow at the site.
- 5. Prepare a report of findings.

HYDROGEOLOGIC LOG OF THE TEST HOLE

Location and Construction of the Test Hole

A test hole location near the section corner of sections 19, 20, 29 and 30, T.4S., R.13E., B.M., was selected in consultation with individuals from U.U.R.I. (University of Utah Research Institute) (Figure 2). The site was selected away from known faults and at an elevation such that the well would not flow at land surface. The test well was constructed on public lands administered by the U. S. Bureau of Land Management. Considerable time and effort was required to obtain the required permits and approval of both state and federal agencies.

The drilling firm of Walker Water Systems, Inc. was contracted to construct the test well using an air rotary rig capable of conversion to mud circulation. Drilling was initiated on May 11, 1981, and stopped at a total depth of 805.5 feet on June 1, 1981. A 9-7/8-inch hole was drilled to 21 feet; eight-inch diameter casing was placed to 20 feet. The hole was completed to 250 feet at 7-7/8-inch diameter to allow placement of 6-3/8-inch casing to 248 feet. This length of casing was required

because of problems of lost circulation and no return of cuttings in the interval of 50-250 feet. The hole was drilled to 500 feet at six inches in diameter. A 5-7/8-inch tungston-carbide bit was used to complete the hole to 805.5 feet. Drilling was stopped at 805.5 feet because too much water was entering the hole to allow drilling by air. A suitable mud pump was not available. The hole was completed by installing three-inch plastic casing the full depth as recommended by U.U.R.I.

Geologic Log of the Test Hole

A geologic log of the hole was compiled by on-site geologists based upon analysis of drill cuttings. The field compiled log is presented as Table 1. Basalts (andesites?) of the Banbury formation predominated in the interval of 250-710 feet. Sands of the Banbury formation predominated from 710 feet to the bottom of the hole at 805.5 feet. Layering within the basalt-sand sequence is identified on the log.

The "no returns" interval from 50 to 250 feet probably has highly fractured zones in basalt. These zones could either represent depositional associated fracturing or later faulting. The basalt (andesite?) in the interval of 250 to 653 feet appeared to be mostly hard with limited fracturing. The basalt (andesite?) from 653 to 710 feet appeared to be more fractured than the sequence above. The quartz sand that predominates in the interval of 710 to 805 feet is fairly typical within the Banbury formation. The sand is probably partially cemented.

Consultant: Howard · Donley Associates, Inc. Driller: Walker Water Systems			t: Howard · Donley Associates, Inc. Walker Water Systems			Location: T.4S., R.13E., 30aa Elevation: 3560 Topo.?	
Depth (feet)	Lithology	Cuttings Size.and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
0-51	Sandy-silty clay -weathered and oxidized -50% clays, sand grains of potassium feldspar and quartz.	Cuttings range from clay size to 1/8". Grain size increases @5'	Fast and smooth		None		Started hole with 9-7/8" tri-cone
5 <u>1</u> -19	Sandy-gravel, grey to black basalts -some olivine basalts	1/8" to 2" size rounded cobbles	Jumpy and fast		None		
19-21	Clay, some cobbles of what	Clay size, cobbles are l" in diameter	Very fast		None		Hole caved in to 12' - we drilled out and set 20' of 8" casing
21-25	Sand, small amounts of gravels, basalts, feldspars, volcanics, greens, pinks and blacks	Rounded 1/16" to 1/8"	Fast		None	·	Switched to 7-7/8" tri-cone
25-39	Basalt, gravel, vesicular, gray to black	Angular chips 1/16" to 1/8"	Fast	·	None		
39-41	Basalt, vesicular gray to black, few white crystals of what	Angular chips 1/8" to 1/2"	Drilling has slowed		None		Appears to be a a competent flow
41-43	Clay -tan to brown -several basalt chip detected	Clay size	Fast		None		
43-47	Basalt, gray to black vesicular under 10X	Fine to medium	Slowed		None		· .
47-49	Clay -Appears baked? -Red, brown, green - ½ basalt chips	1/32" to 1/8"	Fast		None		
49-51	Clay, very soft		Very fast		None		

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
51-78	"No Returns" lost circulation. Rig ap- pears to be drilling through an extensive broken and fractured thieving zone	No returns	Very jumpy and jerky, 1.83 min/ft		Loss of circula- tion prevented the usual detection of air lifted ground water		@73' very jumpy
78-85	"No Returns", lost circulation, rock appears harder	No returns	Very slow	 	Loss of circula- tion prevented the usual detection of air lifted ground water		
85-119	"No Returns" lost circulation. It ap- pears we are drilling through a sequence of highly competent zones bedded with broken zones	No returns	Alternating fast and slow		Loss of circula- tion prevented the usual detection of air lifted ground water		090' drill steel dropped l ft., must be open fracture
119-214	"No Returns" lost circulation. Driller thinks we are drilling through clay	No returns	Fast		Loss of circula- tion prevented the usual detection of air lifted ground water		
214-242 1	"No Returns" lost circulation, broken zones or gravels?	. No returns	-Several spots rough drilling -very jumpy		Loss of circula- tion prevented the usual detection of air lifted ground water		
2421-250	"No Returns" lost circulation, appears to be hard rock	No returns	Drilled a little rough and then smoothed out		Loss of circula- tion prevented the usual detection of air lifted ground	SWL=220.67' depth=250' 5/11/81 17:35	
		-		Attempted down hole temperature - broken thermometer	water	SWL=120.35' depth=250' 5/12/81	Set 248' of 6-3/8" casing to seal off thieving zone

~

	Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
	250-291 1	Andesite? -light gray, vesicular -white specks of plagioclase -several quartz grain detected -several fragments of green clay - thinly laminated	Very small	Hard and smooth, appears nonfrac- tured, drilling rate is approx. 20 ft/hr		≈5-10 gpm, only water being blown is from rigs injec- tion of drilling fluids and foam		0260' green clay disappears
Vie	291±-308	"Same as above" -frequent layering of green-blue clay -50% clay, clay is nonplastic -clay exhibits no platey texture -concoidal fractures in clay when broken -clay laminated	<pre>@305'-308', clay and andesite chunks are l" in diameter @308', less clays, mostly andesites</pre>		23°C, drilling water supply is 19.5°C	"Same as above" @310 had driller blow hole to see if we are picking up water, essen- tially blowing none		
-le Cutti	308-328	"Same as above" -very little clay in this zone -thin clay zones in ½' interval at 322', 324' and 326'		Realslow 20-25 ft/hr	@318', 23.5°C	0310' and 320' blowing very little water		. · · ·
	328-335	"Same as above" -much more clay, 70%- 80%	1/16-1/4", seam @331.5, has 1" chunks	· · ·	@328', 25°C	0335', blew very little water water after recovery period		
	. 335-350	"Same as above", white crystals appear to be plagioclase. @343' - more green clay	Very fine to 1/8"	-Very hard drilling, 15 ft/hr -Possibly jumpy drilling results from breaking in and out of the clay lenses	Measurements taken @335', 345' and 350' were a consis- tent, 30°C	@350' -had driller blow hole for 20 min. maybe 1 gpm -Rock yielding no water	0350', could not measure, tape hung up at 170'. Water level must be below 170'	

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
350-453	"Same as above" -porphoritic -vesicular, white specks of plagioclaste are abundant -Abundant intervals of clay, laminated, non- plastic -Small black minerals are either pyronise or amphibole	Cuttings are all angular and ∞very fine to 1/8"	Drillings picked up, 25 ft/hr @400' rate slowed back to 20 ft/hr	Measurements taken @360', 370', 380', 400', 430' and 450', all ≈25°C	-No more than 1- 8 gpm. -Most fluid being blown is from rig -Rock still yield- ing little water		
453-500	"Same as above", small brownish-red specks observed, more clay in thin lenses. @461' brown specks pick up	Very fine to 1/16", cuttings get very fine from 490' to 500' -driller through bit may be worn. -tripped out and bit was in fair condi- tion, bearings appear worn	-Drilling action picks up and gets jumpy when- ever brown specks are larger. -drilling action slowed down from 490'-500', 27 to 30 ft/hr	23.5°C @480' and 500', at end of day we blew hole but there wasn't enough water to measure temperature with	Blew hole for 20 min. at end of day. No apparent water. Rock mass still yielding no water	Lowered probe to 450', could not detect water. Must have evacuated borehole of water, rock mass still yielding very little water	
NOTE: Dif	ferent Field Geologist for	remainder of hole.					
500-508	Basalt, dark grayish green, little or no quartz. Chlorite?, light softness of l, waxy	Medium to coarse (1/32"-1/8") angular, Large fragments up to 3/4" diameter, massive, subangular to subrounded				204-3/4' 5/18/81 a.m.	Changed to 5-7/8" tung- sten-carbide bit What type
508-517	Basalt, grayish-brown, some quartz	Medium to coarse (1/32" -1/8") angular					V
	Chlorite, light green, softness of l, waxy less cuttings than before	Fragments up to 1/2" diameter, massive, sub- angular to subrounded	· .			·	
517 - 518.	Basalt, dark gray, some quartz	Medium (1/32"-1/16") angular					
	Chlorite, grayish- green, only change	More smaller fragments (1/32"-1/2")					
							. 10

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level.	Comments	
518-522	Basalt, dark gray	Fine grain size ≺1/64", angular	Hard					
522-524	Basalt, dark gray to black, no quartz	1/32" ^{_1} /16", angular						
	Chlorite, greenish gray	1/16"-3/4"						
524-528	Basalt, dark gray to black, no quartz	<1/32", angular	Hard to drill	· .		۰.		
528-546	Basalt, grayish black to black, some sanidine? 542'-546'	1/32"-1/8", angular						
	Andesite or Diabase? brown w/plagioclase phenocrysts, 528'-542'	1/16"-1/8", angular						
546-558	Basalt, grayish black to black	1/32"-1/16", angular						
	Anesite or Diabase? gray with plagioclse phenocrysts	fragments to 1/2" diameter						
	Chlorite, grayish green, waxy, softness $pprox$ l	fragments to l" diameter						
558-563	Basalt, dark gray	<1/64", angular	Hard to drill	x				
563-653	Basalt, grayish black to black, reddish-brown fragments from 573' to 583', 633' to 643'	1/32"-1/8", angular	Steady rate ≈30 ft/hr, drilling rate increases to					
	Chlorite, 563' to 573'	1/8"~3/4"	40 ft/hr, 643' to 653'					
653-655	Chlorite, grayish green, waxy, softness ≈1	l/l6"-l", subang-> ular with rounded edges	Steady rate ∽30 ft/hr, drilling rate		30-50 gal/min	• . •		
	Basalt, light gray	1/32"-1/16", angular	increases to 40 ft/hr, 643' to 653'					-

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
655-665	Basalt, black 🗄	1/32"-1/16", angular	. !	@658' water temperature is ∽ 30°C	less, ∞10-20 gal/min		
665-685	Basalt, grayish black to black, dark reddish- brown specks 675'-685'	1/32"-1/16", angular		0670' water temperature is 33°C	less, ∽ 5 gal/ min @670'		
	Chlorite, grayish green, waxy, softness ≈1, 674' to 676' only	l/64"-l", subangular with rounded edges					
685-710	Basalt, grayish black with tinge of green, possibly enstatite?	1/64"-1/8", 685'-695', 1/32"-1/8", 695'-710' angular					Chlorite ∽ 1-2% of total cutting 685'-695'
	few quartz grains 695-710' only and a few chips of hard tran- parent yellow 705'-710'						Chlorite ∽ 5% of total cutting 695'-705'
	Chlorite, grayish green, waxy, softness ≈1, 685 to 705' only	1/32"-1/8", smaller chips than before, still subangular with rounded edges					
710-712	Sand, quartz, ortho- clase, plagioclase with some red and brown specks, represents 92-95% of total cuttings	1/32"-1/8", coarse, subangular to rounded		·			Sand made up of ∝5-8 different minerals
	Chlorite, grayish green, waxy, softness ∞ 1, represents 3-5% of total cuttings	l/l6"-l/4", smaller chips than before, still subangular with rounded edges					•
712-715	Sand, quartz, ortho- clase, plagioclase with some red and brown specks, represents 92-95% of total cuttings	1/64"-1/16", medium to coarse subangular to rounded grains		0715' water temperature is 39°C			Sand made up of ∽5-8 different minerals

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water ` Temperature	Amount of Water Being Blown	Water Level	Comments
715-720	Sand, same description except more reddish orange represents ≈5% of total cuttings	1/64"-1/16", medium to coarse, subangular to subrounded	Very slow, steady	0717½' water temperature is 40°C	@717≵' well is producing ∽50-70 gal/min	206' 9:00 a.m. 5/19/81	
	Chlorite, mostly small green chips, some tan, represents ≈95% of total cuttings	1/16"-1/8", same des- cription, chunks up to]" diameter 715-717½'		0718' water temperature is 43°C			
720-737	Chlorite, same descrip- tion, represents ≈70% of cutting 720'-721', 95% of cutting 721'- 723", 725'-737'	<pre>1/16"-1/8", same des- cription, up to 1" diameter 723'-725'</pre>	Very hard drilling especially when tan chlorite is encountered	0721' water temperature 44.5°C 0723' - 46°C 0728' - 46°C		350' 9:30 a.m. 5/26/81	No biotite or hornblende in sand samples
	Sand, quartz, orthclase, plagioclase, plus 2 or 3 other minerals, $\approx 30\%$ of total cuttings from 720'-721', 5% from 721'- 723", 10% from 723'-725'	l/l6"-l/8", subangular to subrounded, coarse to very coarse					
737-741	Sand, quartz with some pink and brown grains	1/16"-1/8", very coarse, angular to subangular	Very hard drilling, Fred W. thinks it could be hard sandstone				
741-753	Sand, same description, some reflective specks in very fine sand 746'-752' probably mica, sand represents \approx 95% of total cut- tings 741'-746', 75% from 746'-752', \approx 100% from 752'-753'	<pre>1/32"-1/16", coarse finer than above, angular to subangular 741'-746', very fine cuttings 746'-752' (coarse) angular to subrounded 752'-753'</pre>	Very hard drilling, Fred W. thinks it could be hard sandstone, easy drilling 745½' to 746', very hard drilling 746'-753' ≈1 ft/15 min	0748' soap foam, tem- perature is 46°C, 0751' foam temper- ature is 47°C, 0753' water temperature is 50°C	100-120 gal/min @753'		746'-753' most of cuttings are mixed in with soap, hard to obtain
	Chlorite, green and tan	1/32"-1/8", while drilling					

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
753-759]	Chlorite, same descrip- tion. \approx 95% of total cuttings 753'-755', greater ratio of tan/ green 755'-759', 100% of total cutting 755'- 759' green only, 95% of total 759'-759 $\frac{1}{2}$ '	1/32"-1/4", subangular with rounded edges, coarser cuttings 755'- 759'	Hard to drill 753'-755', easier drilling 755'- 759' (chlorite cutting only)	@753' water temperature 43°C, @755' - 41°C	Well produces 60+ gpm when tan chlorite is encountered (5- 10 gal/min, 753'- 755')	215' 9:00 a.m. 5/27/81 441-1/4' 3:50 p.m. (20 min after being blown) 5/27/81 295' 4:15 p.m. (45	Sand cutting very fine to silty - hard to identify
	Sand, same description, very fine, overall brown color	Very fine - being nearly silt, shape?		•		4:15 p.m. (45 min after being blown) 5/27/81 234' 4:30 p.m. (1 hr after being blown) 5/27/81	•
7591-770	Sand, silt, brown ≈95% of cuttings 759½'-770'	Very fine, shape?	Very hard drilling 3'-5'/hr	@764' water while drilling	5-15 gal/min while drilling		
	Chlorite, same descrip- tion, green only, २२५% of total cuttings						
770-771'	Chlorite, same descrip- tion, tan 러 80%, green 국20%	1/32"-1/16"		@771' water temperature is 40°C while drilling	Well producing more water ≈60+ gal/min while drilling		
<u>771-774</u> 1	Sand, quartz with some red, pink and brown grains	Fine, subangular to subrounded			less water, ∽10-15 gal/min @774'		
774 <u>1</u> -787	Sand, silt, brown, ≈95% of cuttings	Very fine, shape?	Very hard drilling ∽2-3 ft/hr	0779' - 49°C 0786'' - 48°C	≈ 30-50 gal/min 774½'-784½',		Hole is caving in 775'-779'
	Chlorite, same descrip- tion, tan and green	≈1/16"		(all while being blown	9570+ ga1/m1n 784½'-787.'		
@787	Sand, light brown, quartz, orthoclase, plagioclase garnets? spidite? A couple of larger fragments appear to be made of coarse quartz grains cemented by red-orange FeO	Very fine up to 1/8" diameter) larger fragments angular		• •	:	215' 11:00 a.m. 5/28/81	

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
787'-789'	Chlorite, dark green, harder than previously encountered, ≈ 3 hard- ness, $\approx 60\%$ of total cutting from 787'-789'	l/32"-1/8", more angular than before				212' a.m. 6/1/81	5-7/8 steel toothed bit has been installed
· .	Sand, mostly quartz, with some red, pink and black grains, ≈30% of cuttings	Fine, angular to subrounded				245' 5:30 p.m. 6/1/81 (water level probably not @ equilibri	um)
•	Basalt, gray chips with plagioclase phenocryst	∽1/8" diameter, angular					
·	Phlogopite?, brownish gold	This flakes to 1/2" diameter					•
789+800	Sand, quartz, with some pink, red, and brown grains, ≈95% of total cuttings, finer @797'-800'	Very coarse, angular to subrounded 789'- 797', coarse 797'-800'	drilling rate has been relatively fast until 797' when large volume of water was encountered	@789' - 49°C @797' - 49°C	Fred W. estimated ≫200+ gal/min 797'-800', well produced very little water 791'-797'		
	Chlorite, dark green, hardness of 3	1/16"-1/4", same description					
800-804	Basalt, light gray with plagioclase phenocrysts, very little quartz, $\approx 1\%$ represents $\approx 70\%$ of total cuttings	1/32"-1/8" angular [`]	drilling is slowed		· ·		•
	Chlorite, dark green to light green, 30% of cuttings	l/32"-1/4", chips, mostly flat	· .		. ·		

Depth (feet)	Lithology	Cuttings Size and Shape	Drilling Action and Rate	Water Temperature	Amount of Water Being Blown	Water Level	Comments
804-8051	Sand, quartz, with some pink, red, brown, tan and black grains. A couple of the larger chips appear to be orthoclase	Medium to coarse, subangular to sub- rounded	Very slow, very few cuttings	@804' - 50°C	Well producing ≈ 40 gal/min 804'-804½', ≈120+ gal/min 804½'-805½'		
	Chlorite, light green, some pieces fringed with tan, $\approx 90\%$ of total cuttings $804'-804\frac{1}{2}'$, $\approx 95\% 804\frac{1}{2}'-805\frac{1}{2}'$, tan 40%-50% of total from : $804\frac{1}{2}'-805\frac{1}{2}'$	1/16"-1"					
	Phlogopite?, brownish gold, ≈ 2%-3% of total cuttings from 804½'- 805½'	Thin flakes to ½" diameter				· · ·	

Hydrologic Log of the Test Hole

The basalt (andesite?) above 653 feet yielded very little water during construction of the test well. More water (@30 gallons per minute (gpm)) was reported in the interval of 653 to 655 feet. The sand interval near the bottom of the well appeared to produce considerable quantities of water (estimated 100 gpm at 753 feet and 200 gpm at 800 feet).

The static depth to water in the well did not vary widely during construction. The depth to water was reported at 205 feet when the hole was 500 feet deep, 206 feet at 715 feet hole depth, 215 feet at 753 feet hole depth and 212 feet at 787 feet hole depth. The geophysical log indicated a static depth to water of 208 feet. The greater depth-towater values noted on the geologic log were because of air pumpage of the well during drilling.

The elevation of the static water level in the test well is about 3,330 feet. This level is similar to the postulated water level elevation of 3360-3380 feet noted previously for the White Arrow-Tschanne system (Ralston and Prager, 1980, p. 17). Both water level evaluations are based upon extrapolation of land surface elevations from a topographic map with a 40-foot contour interval. The test well appears to penetrate the same flow system that feeds the hot springs.

GEOPHYSICAL LOGS OF THE TEST HOLE

Description of the Logging Procedure

The test well was logged on June 8, 1981, by Gene Thompson of EG & G Idaho. Temperature, caliper, and natural gamma logs were run in

the hole. Rough copies of the logs were mailed to the author on July 8, 1981. The geophysical logs were drafted and scaled by U.U.R.I. and mailed to the author on July 20, 1981. The logs are presented on Plate 1.

Caliper Log

The caliper log provides a record of the diameter of the drilled hole and is useful for formation evaluation. The caliper log presented on Plate 1 shows the extent of the 6-inch casing from 0 to 246 feet. The log has a drift to the left that is not representative of the hole; the casing diameter is shown smaller at 240 feet than at the surface. Cave zones are shown at 290 and 330 feet opposite logged contact zones in basalt (andesite?). A basalt-clay zone was logged at 330 feet. The next major cave zones are 512 and 538 feet. No particular reason for these zones is apparent from the geologic log. Major caving occurred throughout the sand zone from 710 feet to the bottom of the hole. Much of this caving was probably due to washing resulting from continued drilling. The sand zone apparently is not highly cemented.

<u>Gamma Log</u>

The gamma log provides a measure of the natural gamma radiation emitted from geologic materials penetrated by the test hole. It is useful to aid stratigraphic interpretation. The gamma logger was run twice in the hole. The tool was first lowered down the hole with the horizontal chart scale set at 50 mv/inch. This log is poor because the tool hung up within the hole at 330 and 550 feet. Unexplained scale shifts occurred

for Gamma ?!

at both depths. The gamma tool was then withdrawn from the hole with the horizontal chart scale set at 100 mv/inch. This log, shown on Plate 1, is of limited value because of the compressed horizontal scale. The sand zone from 710 feet to the bottom of the hole is clearly shown by a shift of the gamma log to the left. The zone from 330 to 710 feet is monotonously uniform. It is not known why the gamma log from the bottom of the casing at 246 feet to 330 feet is shifted to the left.

Temperature Log

The temperature log was the first log obtained and was run from top to bottom in the hole. The sensitivity of the logging instrument or the logging speed were not given. The temperature data were scaled from the log to 0.1°F. The temperature and geothermal gradient data for selected depths are presented in Table 2.

The temperature log on Plate 1 shows an increase in air temperature from $66^{\circ}F$ at land surface to $73^{\circ}F$ just above the water surface. The considerable heat loss from the water to the air is shown in the steep temperature gradient immediately below the water surface. The geothermal gradient gradually decreases from $16^{\circ}F/100$ feet ($300^{\circ}C/km$) at 260 feet to $10^{\circ}F/100$ feet ($180^{\circ}C/km$) at 325 feet. The gradient remains less than $10^{\circ}F/100$ ($180^{\circ}C/km$) from 325 feet through 720 feet. This zone correlates with the thick sequence of relatively uniform basalt (andesite?). The water temperature and geothermal gradient increase markedly throughout the sand interval of 710 to 805 feet. The large increase in temperature at the bottom of the hole probably indicates that drilling stopped in or just above a zone of higher hydraulic conductivity. The bottom hole

	Denth Temporature		Coothours] Coodiant		
Depth (meters)	Depth (feet)	°C	°F	Geothern °C/km	°F/100 ft
5	. 16	18.9	. 66.0	20	1.1
. 10	33	19.0	.66.2	20	1.1、
15	49	19.1	66.3	20	1.1
20	66	19.2	66.6	20	1.1
25	82	19.3	66.8	20	1.1
30	98	19.4	67.0	20	1.1
35	115	19.5	67.2	20	1.1
40	131	20.3	68.6	160	8.8
45	148	20.8	69.4	100	5.5
50	164	21.2	70.2	40	2.2
55	180	21.7	71.1	100	5.5
60	197	22.4	72.4	140	7.7
65	213	26.9	80.5	900	49.4
70	230	29.4	85.0	500	27.4
75	246	31.1	87.9	340	18.7
80	262	32.6	90.6	300	16.5
85	279	33.9	93.0	260	14.3
90	295	35.1	95.1	240	13.2
95	312	36.3	97.4	240	13.2
100	328	37.2	99.0	180	9.9
105	344	38.0	100.4	160	8.8
110	361	38.6	101.5	120	6.6
115	377	38.9	102.1	60	3.3
120	394	39.4	103.0	100	5.5
125	410	39.7	103.5	100	5.5
130	426	39.9	103.9	40	2.2
135	443	40.4	104.8	100	5.5
140	459	40.7	105.3	60	3.3
145	476	41.1	106.0	80	4.4

Table 2.	Depth,	temperature	and	geothermal	gradient	data	from
	the Whi	ite Arrow tes	st we	ell.	-		

Depth (meters)	Depth (feet)	Temper °C	rature °F	Geotherm °C/km	al Gradient °F/100 ft
150	492	41.6	106.8	100	5.5
155	508	41.7	107.1	20	1.1
160	525	42.0	107.6	60	3.3
165	541	42.2	107.9	40	2.2
170	558	42.4	108.3	40	2.2
175	574	42.7	108.8	60	3.3
180	590	42.8	109.0	20	1.1
185	607	43.0	109.4	40	2.2
190	623	43.3	110.0	60	3.3
195	640	43.6	110.5	60	3.3
200	656	44.0	111.2	80	4.4
205	672	44.5	112.1	100	5.5
210	689	45.1	113.1	120	6.6
215	705	45.6	114.1	· 1 00	5.5
220	722	46.2	115.1	120	6.6
225	738	47.2	116.9	200	11.0
230	754	48.2	118.8	200	11.0
235	771	49.4	121.0	240	13.2
240	787	51.1	124.0	340	18.7
245	804	54.7	132.5	720	39.5

temperature was noted as 132.5°F (55.8°C) at 804 feet. The maximum discharge temperature measured during drilling was 122°F (50°C).

HEAT FLOW ANALYSIS

Introduction

The following descriptions of heat flow analysis were taken from Brott, Blackwell and Mitchell (1976, pp. 3 and 11).

Heat is produced in the earth mainly from radioactive decay of potassium, uranium and thorium. The heat generated in this manner causes the temperature in the interior of the earth to be greater than the temperature on the surface. In order to obtain equilibrium, heat flows to the surface and is radiated into space. The flow of the heat to the surface may be by convection or conduction. Convection of heat is transfer of heat by mass movement (water, for example). Conduction of heat is transfer of heat through a solid by lattice vibrations.

A heat flow study measures the heat which originates within the earth and flows out of the surface of the earth. The units used for heat flow are quantities of heat (calories) per unit area (cm²) per unit time (second). The world-wide average heat flow is about 1.5 x 10⁻⁶ cal/cm²sec. Typical low values of heat flow are 0.5 - 1.0 x 10⁻⁶ cal/ cm²sec and typical high values of heat flow are 2-3 x 10⁻⁶ cal/cm²sec. Values higher than 3 x 10⁻⁶ cal/cm²sec are not usually found except in geothermal areas. To simplify reference to heat flow in this report the heat flow units (10⁻⁶ cal/cm²sec = microcal/cm²sec) will be referred to subsequently as HFU. Thus an average flow is 1.5 HFU.

To obtain a heat flow measurement the geothermal gradients and thermal conductivity of the underlying rocks must be known. The thermal conductivity is a property of the rocks which describes the ability of the rocks to conduct heat. Thermal conductivity measurements on core or cuttings samples from a well can be made in the laboratory. The laboratory technique used in this study is the divided bar measurement for core and cuttings samples (Birch, 1950; Sass, et al., 1971). The units used for thermal conductivity are TCU (millicalories/[cm-sec°C]).

The geothermal gradient is obtained by calculating the change of temperature over some given interval of depth. On a plot of temperature versus depth the slope of a straight line through the points is the geothermal gradient. The units used for the geothermal gradient are °C/km.

Heat flow is the product of the geothermal gradient and thermal conductivity. The units used for heat flow are HFU (microcalories/[cm²/sec]). for example, the heat flow in a well is 4.1 HFU which is the product of the geothermal gradient (63°C/km) and the thermal conductivity (6.57 TCU). The decimal place changes because of the units.

The temperature-depth curve shown in figure 3 represents an ideal case because the thermal conductivity is uniform throughout the depth of the hole and the geothermal gradient has no major disturbances. In general, the geothermal gradient may not be uniform and the causes of this nonuniformity must be understood in order to obtain accurate heat flow values.

The geothermal gradient varies with stratigraphy because of different rock units, but the heat flow remains constant if the rocks are horizontally layered. Figure 4 shows a case where the geothermal gradient varies because of thermal conductivity changes due to changes in stratigraphy. The upper stratigraphic unit is welded tuff with a measured thermal conductivity of 4.90 TCU. The lower stratigraphic unit is welded tuff with a measured thermal conductivity of 2. 4.90 TCU. The <u>lower</u> stratigraphic unit is a tuffaceous conglomerate with a measured thermal conductivity of The geothermal gradients are 91.3 and 2.33 TCU. 194.8°C/km, respectively. The heat flow, computed by the product of the geothermal gradient and thermal conductivity, is 4.5 HFU in both units in the well and so is constant with depth as is expected.

The major problems with heat flow analysis are disturbances to the geothermal gradient and complex geology. The most important factor that alters the geothermal gradient is vertical or horizontal circulation of ground water. This circulation can occur within the well such as flow

Figure 3. Temperature-depth plot of well 6N-2E-29ba. The plot shows a uniform geothermal gradient.

Figure 4. Temperature-depth plot of well 7N-42E-19dc. The plot shows a change in geothermal gradient due to a change in thermal conductivity (at 170 m).

from one aquifer to another and/or it can occur within the rock units penetrated by the well. Problems caused by geology include complex stratigraphy, lateral changes in thickness or thermal conductivities and structurally caused discontinuities.

The hydrogeologic setting of the White Arrow study area poses major problems for accurate heat flow analysis. The presence of the hot springs in the area indicate a major upward flow of water, probably along faults or geologic discontinuities. The stratigraphy of the Banbury formation is complex and is interupted by a series of westnorthwest trending normal faults. Much care must be exercised in varia calculating heat flow and predicting temperatures at depth within the study area.

Thermal Conductivity

Values of thermal conductivity have not yet been determined for cutting samples taken from the White Arrow test hole. The two best sources of thermal conductivity values applicable to the study area are the heat flow studies of the Snake Plain Region and Western Snake River Plain by Brott, Blackwell and Mitchell (1976) and Smith (1980), respectively. A compilation of the bulk and "in situ" thermal conductivity values from these studies is presented in Table 3. The mean calculated "in situ" values for basalt and for sand and clay are believed to be representative of the basalt and sand portions of the Banbury formation within the study area.

· · · ·			Rock Type		
Investigator	Basalt	Granite	Silicic Volcanics	Sand & Clay	Clay
1. Smith	3.7 ± 0.38*	6.67 ± 0.95	5.43 ± 0.90	5.10 ± 1.9	3.83 ± 1.11
2. Brott	4.5 ± 0.50	6.50 ± 0.30	4.83 ± 0.27	6.00 ± 8	3.60 ± 4.0
Change of 1. from 2.	18% less	18% more	12% more	15% more	6% more
Combined Average	4.03 ± 1.06	6.49 ± 1.57	4.83 ± 0.27	5.20 ± 1.84	3.78 ± 0.98
Assumed Porosity	10%	5%	5%	30%	30%
Calculated " <i>in situ</i> " Value	3.62 ± 0.85	6.01 ± 0.50	4.54 ± 0.24	3.49 ± 0.90	2.79 ± 0.51
Number of Samples			•		
Smith	45	9	9	138	46 .
Brott	16	24	16	15	15
Total	61	33	25	153	61

Table 3. Bulk thermal conductivity results (from Smith, 1980).

NOTE: $*4.83 \pm 0.27$ = mean \pm one standard deviation.

Units of Measurement = TCU Millicolorus/cm - sec ^OC)

Geothermal Gradient

The geothermal gradient data from the White Arrow test well, presented in Table 2, range from 900°C/km (49.4°F/100 ft) to 20°C/km (1.1°F/100 ft). The highest gradient values, 900°C/km and 720°C/km (49.4°F/100 ft and 39.5°F/100 ft) were near the water surface and at the bottom of the hole. The high gradient values near the water surface may be dismissed because they reflect heat loss to the air. Brott, Blackwell and Mitchell (1976) noted that gradient data taken in the 15-20 meters (45-60 feet) below the water table may be influenced by surface air temperatures. The high "stairstep" geothermal gradient near the bottom of the hole appears to reflect the existance of small hot water aquifers in the lower portion of the sand sequence. Smith (1980, p. 53) noted a similar feature in a deep well near Caldwell, Idaho.

The geothermal gradient data that appear to have most meaning are in the interval of 340 to 710 feet and 720-780 feet. The upper interval represents the basalt (andesite?) zone shown as generally montonous on the gamma and caliper logs. The lower zone represents the sand zone. The average geothermal gradient for the zone from 340 to 710 feet is 75° C/km (4.1°F/100 ft). The average geothermal gradient for the 720-780-foot zone is 213°C/km (11.7°F/100 ft).

Heat Flow Calculations

Heat flow in HFU is the product of the geothermal gradient in °C/km and the thermal conductivity in TCU divided by 100 to account for unit conversions. Two heat flow calculations are possible from data derived from the White Arrow test well. The first is for the basalts

(andesites?) in the interval of 340-710 feet. The second is for the sands in the interval of 720-780 feet. The heat flow values are shown in Table 4.

Material	Depth Interval (feet)	Mean Geothermal Gradient (°C/km)	Mean "In Situ" Thermal Conductivity (TCU)	Calculated Heat Flow (HFU)
Basalt	340-710	75	3.6	2.7
Sand	720-780	213	3.5	7.4

Table 4. Heat flow calculations for the White Arrow test well.

The two heat flow values shown in Table 4 are markedly different indicating either major errors in geothermal gradient and/or thermal conductivity data or the presence of convective heat transfer by ground water flow. The calculated heat flow value for basalt in the interval of 340 to 710 feet is believed to best represent the area because of the following reasons. 1) The test well yielded small to very small quantities of water during penetration of most of the basalt sequence. The low hydraulic conductivity of the basalt would limit ground water movement and thus convective heat transfer. The sand zone yielded much more water and showed the stairstep temperature log characteristic of small hot water aquifers. 2) The heat flow value calculated for the basalt is consistent with other values found in and near the Snake Plain. The regional pattern of heat flow in southern Idaho as found by Brott, Blackwell and Mitchell (1976, p. 26) is shown in Figure 5.

DISCUSSION OF RESULTS

Geothermal Flow Model

There is little doubt that the geothermal resource in the White Arrow area is dominated by convective heat transfer as water moves up along a fault system. The large discharge and high temperature (126 1/min and 65°C) of White Arrow Hot Spring indicate a major upward transfer of thermal energy. The heat flow measured in wells near the water bearing structural features will undoubtably be affected by the convective heat transfer.

Smith (1980) analyzed the heat flow characteristics of the Boise Front which is at least partially analogous to the White Arrow situation. His analysis was based upon models of Basin and Range-type convective geothermal systems as modeled by Blackwell and Chapman (1977). The cross-section prepared by Smith for the Boise area, presented in Figure 6, probably shows the general pattern of water temperature and heat flow that exists within the White Arrow study site. This basic model will be utilized as a basis for discussion of the geothermal potential of the study area.

Isogeothermal Horizons

Smith (1980, p. 39-43) outlined five steps in developing isogeothermal surfaces (lines of equal ground water temperature): 1) plot known lithology on cross sections, 2) plot temperatures recorded from well logs on the cross sections, 3) assign heat-flow values to each well from the heat-flow contour map, 4) calculate isogeothermal surfaces using the following equation

Figure 6. Cross-section C-C' showing isogeothermal horizons and heat-flow distribution.

Ref from

$$\Delta t = \frac{(\Delta d)(q)}{K}$$

where: $\Delta t = change in temperature (°C)$

q = heat flow (HFU)

K = thermal conductivity (TCU)

 Δd = change in depth (kilometers)

and 5) verify calculations by comparison with known temperatures in the wells. This full procedure is not possible in the White Arrow area because data are available on only one well. However, isogeotherms can be estimated if several assumptions are made.

If we assume that the heat flow value calculated for the basalt section (2.7 HFU) represents the regional pattern, then it is possible to calculate isogeotherms and speculate on the depth of circulation of the ground water flow system feeding the hot springs in the study area. The "in situ" thermal conductivity values for basalt and sand are similar (3.6 and 3.5 TCU). A mean value (3.55 TCU) may be used to represent the basalt-sediment sequence of the Banbury formation that underlies the site. The temperature-depth values are presented in Table 5. The data on Table 5 would indicate that the hot springs represent ground water flow to a depth of at least 720 meters (2400 feet). The chemical geothermometers reported by Mitchell, Johnson and Anderson (1980) for White Arrow Hot Springs indicated subsurface temperatures in the range of 108-135°C. According to the data on Table 5, these temperatures would indicate ground water flow to depths of 1300 to 1600 meters (4200 to 5400 feet).

The calculated heat flow of 2.7 HFU is much more likely to be a high estimate than a low estimate because of its proximity to the known

Water °C	Temperature °F	meters	Depth
60	140	660	2200
80	176	920	3000
100	212	1200	3900
120	248	1400	4600
140	284	1700	5600

Table 5. Depths to isogeothermal horizons given K = 3.55 TCU and q = 2.7 HFU in a conductive geothermal system.

Table 6. Depths to isogeothermal horizons given K = 3.55 TCU and q = 2.0 HFU in a conductive geothermal system.

Water Tem	peratune	Dept	th
°C	°F	meters	feet
60	140	890	2900
80	176	1200	4100
100	212	1600	5200
120	248	2000	6400
140	284	2300	7600

fault controlled hot water discharge (see Figure 6). A reasonable low estimate for regional heat flow is 2.0 HFU based upon the work of Brott, Blackwell and Anderson presented earlier. Table 6 presents depth-temperature relationships based upon this heat flow value. In this case, the ground water flow system feeding the hot spring extended to a depth between 1000 and 2200 meters (3200 and 7300 feet).

Both of the above assumed conditions would change with a change in rock type with depth. The thickness of the Banbury formation within the study area is not known. The underlying Idavada volcanics have a higher thermal conductivity.

CONCLUSIONS

- An 805-foot test well drilled in the study area penetrated basalt and sand of the Banbury formation. The basalt yielded little water while the sand was moderately productive.
- 2. The water temperature in the test well ranged from 27°C (80°F) at the water surface to 55°C (130°F) at the bottom. The geothermal gradient averaged 75°C/km (4.1°F/100 ft) in the basalt interval from 340 to 710 feet. The measured gradient was 213°C/km (11.7°F/100 ft) in the sand interval of 720 to 780 feet.
- 3. The best estimates of "in situ" thermal conductivity are 3.6 TCU for the basalt and 3.5 TCU for the sand.
- 4. The most representative heat flow value is 2.7 HFU for the basalt sequence from 340-710 feet.
- 5. Two calculations were presented representing the depth to isogeothermal horizons in the area. The calculations based upon a heat flow of

2.7 HFU are believed to be most nearly representative. Based upon this heat flow value, the depth of flow of ground water feeding the spring was estimated as 720 meters (2400 feet) based upon the discharge temperature. Chemical geothermometers indicate flow as deep as 1600 meters (5400 feet).

6. The results of this investigation must be considered in light of the complexity of the hydrogeologic system and the sparcity of data. The calculated depths to isogeothermal horizons are only approximations.

REFERENCES

Birch, F., 1950, Flow of Heat in the Front Range, Colorado: Bull. Geol. Soc. America., v. 61, p. 567-630.

Blackwell, D. D. and Chapman, D. S., 1977, Interpretation of Geothermal Gradient and Heat Flow Data for Basin and Range Geothermal Systems: Geothermal Systems: Geothermal Resources Council, Trans. 1, p. 19-20.

- Brott, C. A., Blackwell, D. D. and Mitchell, J. C., 1976, Heat Flow in the Snake River Plain, in Geothermal Investigations in Idaho: Idaho Dept. Water Resources, Water Infor. Bull. No. 30, Part 8, 195 p.
- Mitchell, J. C., Johnson, L. L. and Anderson, J. E., 1980, Potential for Direct Heat Application of Geothermal Resources, in Geothermal Investigations in Idaho: Idaho Dept. Water Resources, Water Infor. Bull. No. 30, Part 9, 396 p.
- Ralston D. R. and Prager, G. D., 1980, Evaluation of Geothermal Potential, White Arrow Ranch Vicinity, Bliss, Idaho: Tasks A, B and C: Consulting Report, Howard • Donley Associates, 21 p.
- Sass, J. H., Lachenbruch, A. H. and Monroe, R. J., 1971, Thermal Conductivity of Rocks from Measurements of Fragments and its Application to Heat Flow Deformations: Jour. Geophysical Res., v. 76, no. 14, p. 3391-3401.

Smith, R. N., 1980, Heat Flow of the Western Snake River Plain: unpublished Master's Thesis, Washington State University, 150 p. Report #1 -

Evaluation of Geothermal Potential

White Arrow Ranch Vicinity

Bliss, Idaho

Tasks A, B and C

Dated December 1980

HOWARD • DONLEY ASSOCIATES, INC.

Consulting Engineers and Geologists

Howard F. Donley, President RE C16961

. . Terry R. Howard, Vice-President CEG 794 Boise, Idaho Casper, Wyoming Moscow, Idaho Redwood City, California

Route 4 Box 399

Moscow, Idaho 83843

(208) 882-1006

•

EVALUATION OF GEOTHERMAL POTENTIAL WHITE ARROW RANCH VICINITY BLISS, IDAHO: TASKS A, B AND C

by

Dale R. Ralston and Gerald D. Prager

Moscow, Idaho December, 1980

INTRODUCTION

Statement of the Problem

Low temperature geothermal systems are evident at a number of sites along the margin of the Snake Plain in southern Idaho. The White Arrow Ranch property located in Gooding County is a prime example of the dominant type of geothermal resource that exists within the state (figure 1). The work described within this document was undertaken under funding from the U. S. Department of Energy administered through the University of Utah Research Institute. Although the research results are directed to the resource development at White Arrow Ranch, the results are applicable to geothermal development throughout the lower Clover Creek area.

Purpose and Objectives

The purpose of this project is to evaluate the geologic and the hydrologic controls and the extent of the shallow geothermal systems in the vicinity of the White Arrow Ranch near Bliss, Idaho. The project consists of geologic and hydrologic investigations including the construction of a shallow (less than 1,000-foot) geothermal gradient test hole.

The objectives of the work are listed as a series of six tasks. Task A - Summarize geologic knowledge and obtain field data where necessary to formulate a preliminary geologic framework for geothermal flow systems in the general study area.

- Task B Summarize hydrogeologic knowledge and obtain field data where necessary to formulate a preliminary conceptual model of the geothermal flow system in the general study area.
- Task C Utilize geologic and hydrologic interpretations, possibly supplemented by surface geophysical investigations to locate a target site for a 700-800 foot geothermal gradient test hole.
- Task D Construct a small diameter test hole to a target depth of 700-800 feet for the purpose of obtaining hydrogeologic and heat-flow data.

Task E - Utilize standard borehole geophysical techniques to obtain a temperature log of the test hole.

Task F - Administer the project and combine the results of investigations described in tasks A-E into a report of findings.

Method of Study

This report is presented as fulfillment of Tasks A, B, and C as noted in the previous section. As such, the method of study involved four steps.

- Collect and summarize available geologic, hydrologic and geothermal data on the area.
- Conduct a brief geologic investigation of the site to confirm mapped geology and obtain more detailed data on structural features in the area.

3. Conduct a brief hydrologic investigation of the site to confirm published spring and well locations and to obtain more data on shallow ground water flow patterns associated with the geothermal system.

4. Select a test well site based upon Steps 1, 2 and 3.

HYDROGEOLOGIC FRAMEWORK

Areal Geology

The regional geology of the part of the Snake River Plain occupied by the White Arrow Ranch consists primarily of a series of Tertiary and Quaternary basalt flows overlain in lower areas by Quaternary alluvium. The Tertiary basalts, locally of the Banbury formation, are divided into an upper and lower member with an intervening unit which is mostly sedimentary in nature. The latter unit is highly variable in thickness, pinching out altogether in many places, and is typified by sands and rounded felsic pebbles of various sizes that were washed in from the highlands to the north and west. This unit appears to contain some thin basalt flows from place to place. It tends to weather to a reddish color and its contrast to the basalts in color and lithology make it the most useful marker bed of the region.

The Quaternary basalts are highly vesicular and actually scoriaceous in places. They are neither as thick nor widespread as the Tertiary flows and tend to follow existing topography and fill in low plains. Source beds for these flows can be seen throughout the region; one of these, called Hot Sulfur Lake, is located only a mile east of White Arrow Ranch and was the source of the Quaternary basalts that flowed

over the ranch. Certain interesting features such as caves, tubes and natural bridges are found in these basalts.

The regional structural geology, according to a map by Malde, Powers and Marshall (1963) (updated by Rember and Bennett, 1977), consists primarily of a series of west-northwest trending normal faults south side down (figure 2). One of these is shown to cross White Arrow Ranch only perhaps 50 yards south of the primary hot spring location. It may be significant that six miles north of the ranch the trend of south dipping normal faults is mapped as north-northeast. These faults occurred subsequent to the Tertiary basalt flows and prior to any Quaternary deposition.

Local Structural Geology

Field work on the White Arrow Ranch and its vicinity indicates that the structure is more complex than that shown on figure 2 from previous mapping. In fact, the situation appears to be one of complex block faulting with several south-dipping, east-northeast trending normal faults branching off from the main north-northeast trending fault and crossing the small valley occupied by the hot spring (figure 3). This relationship is shown schematically on figure 4, a north-south cross section near the spring.

Notable features in the area include numerous white patches visible in the outcrops along road cuts and on the hillsides. These are lenticular in cross section and vary in size from several feet to about 100 yards across. Close examination shows them to consist of sand, chalky lumps, and white coated chunks of basalt and other rock.

Because of their form and sandy lithology, they are interpreted as being stream lain deposits, mainly channel sands. The white coatings found in the stream deposits are identical to that found over the rocks and pebbles lying in the stream from the modern hot spring at White Arrow Ranch. It is reasonable to infer that the white lenticular patches in the outcrops represent evidence of similar geothermal activity in the geologic past. Some support for this interpretation can be found in a remarkable outcrop in a roadcut on the route to Hill City, 0.85 miles north of its junction with the White Arrow Ranch access drive. Here, a 50-yard length of the Tertiary interbasaltic sedimentary material, red in color and with numerous round pebbles in a sandy matrix, is bounded to the north and south by high angle faults, south-dipping probably normal. Masses of Tertiary basalt occur across the faults, with that on the north differing sharply in appearance from that on the south. The attitude of the fault to the north was measured in one place as $N.80^{\circ}E.$, $65^{\circ}S.$, and that on the southern fault appears to be similar. White coated material occurs along the faults and is practically confined to them. The southern block of basalt appears to be the upper member of the Banbury formation and the northern block is the lower member with the intermediate sedimentary member juxtaposed between by the faulting. In style, spacing and attitude, the faulting at this outcrop is very similar to that inferred for the valley of the hot spring just over a half mile to the south-southwest.

Also significant is the presence of a large white-coated outcrop, nearly continuous and 100 yards long, located along the Hill City road about 0.4 miles north of the junction of White Arrow Ranch access drive.

This is on strike with the inferred trend of normal faulting as traced from the point of branching off, just under the rim of the west side of the hot spring valley at its southern end (figure 3). This is notable because these evidences of past geothermal activity appear to be closely linked spatially to faults. The main east-southeast trending fault is exposed in a small cut on the east side of the hot spring valley, south of the present hot spring.

Finally, a brief aerial reconnaissance of the area not only tended to confirm the foregoing interpretation but also indicated the preferential grouping of white patches in a number of small north-northeast trending valleys extending northward from the main fault. The valley which is occupied by the hot spring is an example of one of these small valleys. This seems to indicate a further contribution to the structural control of the hot spring distribution by a set of north-northeast trending fractures, probably large joints.

Summary

It appears that the primary structural control for the distribution of hot springs in this area is a set of east-southeast trending, southward dipping normal faults with east-northeast trending, southward dipping branches. A secondary control appears to be a widely spaced (about 2 miles) set of north-northeast trending features which also control some of the smaller surface drainage channels. The age of this faulting is middle Pliocene.

The hot spring which is the main subject of this study is located in a zone of small fault blocks formed by movement along normal faults

oriented approximately N.80°E., 70°S., branching off from a larger normal fault to the south that trends N.60° to 65°W. and also dips steeply to the south. Displacement along these faults is not great. The northernmost shows the greatest dip-slip along the branch faults; it is only 30 to 40 feet. The other branch faults show dip-slips at the surface of 5 to 10 feet. It is doubtful that displacements are significantly greater at depth, although the depths to which the faults extend is, of course, uncertain. There is a possibility that some strike-slip movement which may have occurred on the north-northeast trending branch faults may have occurred on the east-northeast trending branch faults, in which case a greater depth of faulting is possible. In general, however, depths greater than 5,000 to 10,000 feet should be considered unlikely. The main east-southeast trending fault does not seem to have undergone much greater displacement according to aerial map patterns. It appears that dip-slip movement was on the order of 50 to 60 feet and map patterns indicate that essentially all the displacement was dip-slip.

GEOTHERMAL SYSTEMS

Geothermal Occurrences

Most of the springs and wells in the vicinity of the White Arrow Ranch show the presence of the geothermal system. These may be roughly grouped into springs and wells that discharge hot water, warm water, or cold water. See table 1 and figure 5 for information and location of these sites.

Two springs and three wells have surface temperatures in excess of 40°C. Two of the Tschanne sites, well 4S/13E 21dcbl and spring

Table 1. Spring and Well Temperatures and Locations Near White Arrow Ranch, Idaho

Location	Owner's Name	Temp.	Well Depth	(feet)
	Well Data			
4S/12E 35cad1	Dave Archer	45°C ¹	551	•
4S/12E 36abc1	Dave Archer	slightly warm ⁴	620	
4S/13E 21dcb1	John Tschanne	53°C ¹	150	
4S/13E 22cac1	John Tschanne	warm ²	190	
4S/13E 22cac2	John Tschanne	warm ²	275	
4S/13E 28acd1	Sterling Bray	warm ³	@150	
4S/13E 28bdd1	Fran Wallace	warm ³	275	
4S/13E 28bdd2	Fran Wallace	warm ³	122	
4S/13E 28bdd3	Fran Wallace	warm ³	@ 90	
5S/12E 3aaal	Dave Archer	57°C	1070	
	Spring Data	•		
4S/12E 36acd1S		cold		
4S/13E 21dcc1S	Tschanne Spring	43°C ¹		
4S/13E 28aad1S	Seeps in Clover Creek	warm ²		
4S/13E 29add1S	Hot Sulfur Lake	27°C ¹		
4S/13E 30adb1S	White Arrow Hot Springs	63°C		

¹ Mitchell and others, 1980

 $^{\rm 2}$ Communication with John Tschanne, 11/12/80

- 3 Communication with Sterling Bray, 11/12/80
- $^{\rm 4}$ Communication with Vic Chenney, driller, 11/20/80

Figure 5. Location of Springs and Wells in the Vicinity of Whitearrow Ranch, Idaho.

4S/12E 2ldccl5, represent the same system. The well was drilled early in the century at the hot spring site. A log is not available. The spring at White Arrow Ranch (4S/13E 29addl5) is believed to be in the same system as the Tschanne sites. All of these geothermal occurrences lie along a fault system identified earlier in the report (see figures 3 and 5). The warm seeps along Clover Creek (4S/13E 28aadl5) are also believed to be associated with this system.

The two Dave Archer hot wells (4S/12E 35cadl and 5S/12E 3aaal) are believed to be associated with a hydrologically separate geothermal system associated with a west-northwest trending fault that lies south of the structure that controls the White Arrow-Tschanne sites. The strongest evidence for this separation is the slightly warm 620-foot well (4S/12E 36abcl) located in between the two systems. This well was test pumped at about 1,000 gallons per minute and yielded water that was only slightly warm to the touch (Vic Chenny, personal communication, November 20, 1980).

The narrow band-like nature of the White Arrow-Tschanne system is further delineated by examination of irrigation and domestic wells drilled both north and south of the fault structure. The Tschanne warm wells (4S/13E 22cacl,2) are located north of the fault. These wells yield up to 450 gallons per minute of water noted by John Tschanne as "warm" (personal communication 11/12/80). The 275-foot irrigation well drilled near the Fran Wallace residence (4S/13E 28bddl) also yielded only warm water. This is in sharp contrast to the 53°C water yielded by the 150-foot well (4S/13E 21dcbl) located on the fault system.

Table 2. Selected Drillers Logs for Sites Near White Arrow Hot Springs (depth in feet).

4S/12E_35cad1

0-31	clay some gravel
31-32	lava ledge
32-41	clay yellow and pink
41-51	lava green
51-55	clay ashes bed
55-64	lava pink
64-75	clay brown
75-93	clay yellow
93-97	lava grey
97-102	loose rock, sand and clay
102-119	clay yellow and blue
119-123	lava grev
123-126	clay, loose rock
126-137	lava grav
137-141	clav red
141-149	lava pink
149-156	clav pink
156-164	lava pink
164-173	clav borwn
173-185	clav blue
185-191	lava broken
191-201	lava
201-206	clav red sticky
206-210	lava broken
210-300	rock nink
300-306	clay sand redish black
500-500	ctuy sana rearsh black
306-324	lava nink
342-326	lavon bluo clav ovon
542-520	sand
226-269	sanu
320-300	clarse sand stricky
260 276	lava pink
276 204	alay pink and brown
3/0-394	clay pink and brown
394-412	Dive clay some sand
110 171	and rock pieces
412-4/1	rock blue black
4/1-486	rock pinkish grey
486-554	rock pinkish grey,
	water - flows 3/ gpm
Log from	I.D.W.R., Boise

4S/12E 36abcl

0-121	grey clay, water flowed
	180 gpm
121-138	rock, lava
138-168	sand, more water
168-228	grey clay
228-288	gravel, more water
288-368	clay
368-386	rock
386-486	clay
486-620	gravel and sand, more
	water, test pumped at
	1,000 gpm
Log from	Vic Cheney, Gooding

<u>4S/13E 22cac2</u>

0-1	00	sedin	nents	
100-2	75	rock		
Log f	rom	John	Tschenne,	Bliss

4S/13E 28bdd1

0-7	overburden	
7 - 22	grey clay	
22-53	clay and gravel	
53-70	grey lava	
70-75	brown clay	
75-78	block cinders	
78-80	grey hard basalt	
80-101	cinders, rock, clay	
101-165	grey clay and gravel -	
	warm water	
- hole la	ater depened to 275	
- no log	available	
Log from	Sterling Bray, Bliss	

l

- Addam

<u>55/12E 3aaal</u>

0-70	top soil
70-90	loose lava
90-115	solid lava
115-170	solid lava
170-190	granice, sand and small
190-276	blue clav, water
276	water started to flow
276-305	gray granite sand
305-325	brown sticky clay
325-335	gray granite sand
335-480	hard rock (lava, lots
	of fissures)
480-490	red and brown clay,
400 EEC	STICKY
490-556	shaley blue clay muddy yollow sand
220-200	(bailed)
560	tested: pumped approx. 65".
	Checked hole after test.
	Hole 360. Bailed back to
	530. Drilled out from
	530 to 560.
560-610	lava
610-665	basalt, hard, fissured
665-692	red cinders and quartz
710-724	ho log
724_749	brown shale
749-755	grev shale
755-780	grey rock
780-786	grey shale
786-804	grey rock
804-809	brown clay (sticky)
809-816	grey shale
816-826	brown rock
841-850	brown nock
850-889	brown shale
889-926	grev rock (basalt)
926-954	brown shale
954-963	grey basalt
963- 985	white quartz sand, water
985-1014	brown quartz sand
1014-1032	grey sand

1032-1053	brown shale with thin
	layers of grey sand
1053-1055	green clay
1055-1070	grey sand with layers
	of sticky clay

All of the well logs that are available indicate a variable sequence of basalt and sediments. Drillers data on these sites are presented in table 2. Generally, basalt makes up from 6 to 64 percent of the material penetrated. Both the basalt and coarse sediments are noted to yield water.

Many of the wells in the area flow at land surface. Based upon the estimated land surface elevation at the Tschanne hot well (4S/12E 2ldcbl), the White Arrow-Tschanne system has a water level elevation of about 3,360-3,380 feet. This is the minimum water level elevation that might be anticipated in a test well near White Arrow Hot Springs. The Dave Archer hot wells (4S/12E 35cadl, and 5S/12E 3aaal) both flow but are located at a considerably lower land surface elevation. Well 5S/12E 3aaal has a land surface elevation of about 3120 feet above mean sea level. The shut-in pressures of these wells are not known.

Chemistry of Geothermal Systems

The water chemistry at three sites in the study area is presented by Mitchell and others (1980). These sites are White Arrow Hot Spring (4S/13E 30adb15), the Tschanne hot well (4S/13E 21dcb1) and the deeper Dave Archer hot well (5S/12E 3aaal). The water chemistry data for these sites are presented in table 3. The waters from all three sites have similar chemistries. Calculated parameters such as estimated aquifer temperatures, atomic ratios and molar ratios from Mitchell and others (1980) are presented for the three sites in table 4. The estimated aquifer temperatures of the White Arrow-Tschanne sites are uniformly higher than the Archer well. These results support the hypothesis that the two systems are hydrologically isolated.

			11 Ce	I												•						Hard	11255					
Spring or Well Identification Number and Same	Lumple Collection Uate	Measured Surface Teaperature CC	keported wett Dup below Land Surts (maters)	Urscharge (1/nin)	silica (SiO ₂)	Calcium (Ca)	Maynesium (Mg)	5042 i um (148.)	Potassium (K)	isicarbonate (∺CU3)	Carbonate (CO3) ·	2011276 (රු)ද)	Phosphate (PO ₄)	Chioride (Ci)	Ftouride (F)	kitrate (NO ₃)	Бог о л (ピ)	Aramon i a (NH ₃)	Specific Conquctance (tiuld)	pet (field)	Total Dissolved Solids (TDS)	Curtionate -	Non-Carbonate	Aikalinity as CaCO3	fercent Sodium (\$Na)	Souium Absurption Ratio (SAV)	Cation-Anion Balance	lidta Käterence ^e
			• .										Goodin	ng Cour	nty													
J. SHANNON WELL 45 13E 28ABH1	6/21/72	47	49.	0.	92	9.8	1.20	100	5,90	278,	0.0	19,00	0.05	8.2	2.00	0.49	0.0	0.0	497	7.0	385	29.	0.	228.	85.5	8.0	-7.062	5.
WHITE ANROW H S 45 13E 30AD015	5/26/12	65	0.	3126.	97	1.2	0.0	91	1.60	141.	22.00	15.00	0.03	6.6	12.00	0.11	0.0	0.0	407	7.5	315	3.	0.	152.	97.5	22,9	-1.598	3
DAVE ARCHER WELL 55 12E SAAA1	6/19/72	57	211.	0.	62	1.6	0.10	90	0.80	83.	42.00	19.00	0.03	8,4 1	19.00	0.17	0.0	0.0	415	8.6	283	۱.	٥.	· 138.	97.5	18.7	-4.755	۰. د
				•																								

Estimated Aquifer Temperatures, Atomic and Molar Ratios of Selected Chemical Constituents, Free Energies of Formation of Selected Minerals, Partial Pressures of CO₂ Gas and R Values from Selected Thermal Springs and Wells in Idaho. Table 4.

						٨	tomic Ra	atios					Motar	Ratios			Free Fo	Energie rmation	s of of	*	
	د	Surtace ure (OC)	Aquiter Tomperatures and Percentage of Cold Water Estimated from Goochamical Thermometers (see footnotes)	Sodium Potassium	Sodium Calcium	Magnesium Calcium	Calcium Fluoride	Chiloride baron	Ch lor i de Fiuori de	Calcium Sodium	Calcium Bicarbonate	Chioride Carbonate 4 Bicarbonate	Ammonia Chioride	Ammonia Fluoride	Chloride Sulfate	-Calcium Sogium	Quartz	Chalcedony	Ámorphous Silice	Partial Pressure C OU2 Sas (atmospheres)	R= Magnasium Magnusium * * Catcium + Potassium
Spring/Well Iduntification Number 5 Name	Uischar (1/min.)	Measured Tenperat	T ₁ F ₂ T ₃ T ₄ T ₅ T ₆ T ₇ T ₈ T ₉ T ₁₀ T ₁₁ X ₉ X ₁₁	Ha K	Na Ca	Mg Ca	isa F	<u>C1</u> B	<u>çı</u> F	Ca Na	<u>Са</u> нСО ₅	CI CO3 + HCO3	NH4 CT	чн ₄ ТГ	C1 504	- <mark>√Ca</mark> N3	<u>.1 G</u> Quartz	<u>2 G</u> Chal- cedony	Anor- Anor- phous	PCO2	Mg ** MgrCark

							00001	ng cou	neg													
I. SHANNON WELL 45 13E 28ABB1 0.	47 132 129	12 105 98	98 129	97 243 161 224 85 83	28.8 17.79	0.20	0.37	0.0	0.39	0,06	0.05	0.05	0.0	0.0	1,17	5.59	1.26	ů.74	-0.J4	J_G4091	15.4	
NITE ARROW N S 45 ISE SOADUISSI26.	65 135 131	15 108 112	112 43	79 202 147 160 72 54	96.7 132.21	0.0	0.29	0.0	0.05	0.01	0.01	0.07	0.0	0.0	1.19	1.58	1.01	0.54	-0.26	Ú,00866	v.0	
DAVE ARCHER WELL 55 12E BAAAT O.	57 112 111	-5 83 70	70 9	70 152 127 110 67 57	191.3 98.06	0.10	0.24	0.0	0.04	0.01	0.03	0011	0.0	0.0	1.20	1.61	0.97	0.43	-0.55	0.00024	1.5	31

TEST WELL LOCATION AND DESIGN

Criteria for Location

The 700-800-foot test well included in this project is to be constructed to gain a better understanding of the hydrogeologic controls for the geothermal system and to gain information on heat flow characteristics of the region. As such, it is important to locate the test well near but not on the primary geologic structure controlling the geothermal system at a site where the well would not flow at land surface.

Well data from the area indicate that the hot water in the White Arrow-Tschanne area occurs in a narrow band following a fault structure. Wells drilled both north and south of the structural feature yield only warm water. It is thus important to drill the well near the structural feature to gain hydrogeologic data on the geothermal system.

The water level elevation at the Tschanne hot well (4S/13E 21dcb1) is in the range of 3,3600-3,380 feet elevation based upon interpretation of 40-foot contours on a U. S. G. S. topographic map. The well when drilled did not flow at land surface. A ditch was later constructed to the well to allow interception of hot water at a point about 10 feet below land surface. The well has been allowed to flow through this below ground pipe to heat several homes since early in the century. This diversion arrangement allows a fairly accurate assessment of the water level elevation in the White Arrow-Tschanne geothermal system. It is important to drill the test well at a land surface elevation greater than about 3,400 feet to minimize the potential of having water levels above land surface.

Location and Construction of the Test Well

A STAR A STA

It is recommended that the test well be constructed at a site approximately 200 feet north and 200 feet east of the White Arrow hot srpings immediately south of the north boundary of the White Arrow Ranch. This will place the well slightly north of the major fault at a land surface elevation greater than 3,400 feet. The site should be suitable for erection of the drilling rig and utilization of all required equipment. A small amount of site preparation may be necessary because of the gentle slope of the land. Access across the small stream formed by the hot spring will need to be provided.

Borehole Geophysical Program

Many of the wells in the immediate vicinity of the White Arrow hot springs are open and available for geophysical logging. This method of data collection is particularly important because of the poor information presently available on the geology of these sites. Listed below are the wells that should be logged in conjunction with logging of the completed test well.

<u>Well</u>	Depth (feet)	@_Temp.
4S/13E 21dcb1	@150	45°C
4S/13E 22cac2	@275	warm
4S/13E 28bdd1	@275	warm
4S/12E 36abc1	@620	slightly warm

REFERENCES CITED

Mitchell, J. C., Johnson, L. L. and Anderson, J. E., 1980, Geothermal Investigations in Idaho, part 9, Potential for Direct Heat Application of Geothermal Resources: Idaho Department of Water Resources, Water Inf. Bull. No. 30, 396 p.

La des des

.

Rember, W. C. and Bennett, E. H., 1979, Geologic Map of the Hailey Quadrangle, Idaho: Idaho Bureau of Mines and Geology, Moscow.