Water geochemistry of hydrothermal systems, Wood River District, Idaho

. . .

6600889

•••

• • • •

Jon Zeisloft Duncan Foley Robert Blackett

ESL Open File Report

ID/WR/ES-1

August, 1983

Table of Contents

·

-

	Page
Introduction	.1
Geochemistry of Waters	.3
Acknowledgement	19
References Cited	20

List of Figures

Figure	1.	Index map, Wood River district2
Figure	2.	Water sample sites, Wood River district and vicinity5
Figure	3.	Water sample sites, Magic Reservoir area6
Figure	4.	Water sample sites, Hailey Hot Springs area7
Figure	5.	Water sample sites, Clarendon Hot Springs area
Figure	6.	Water sample sites, Warfield Hot Springs area
Figure	7.	Water sample sites, Atlanta area10
Figure	8.	Trilinear diagram, Wood River district waters

Table

Table 1. Chemistry of Wood River district water samples.....12

Introduction

Hydrothermal systems of the Wood River District, central Idaho (Figure 1), have been studied by geologic mapping of thermal spring areas and geochemical investigations of thermal and non-thermal waters. This report summarizes the new geochemical data gathered during the study. Previous studies in the area include those of Mitchell (1976), Mitchell and others (1980), Blackett (1981), Struhsacker and others (1982), and Foley and others (1983).

Bedrock in the Wood River district is composed of the Paleozoic Wood River and Milligen Formations, the Mesozoic Idaho Batholith, and the Cenozoic Challis volcanics. Structural relations of the units include extensive thrust faults in the Paleozoic units, which in turn have been intruded by batholith rocks, and are overlain by the volcanics. Tertiary and Quaternary(?) normal faults cut the rocks.

Integration of the results of geological and geochemical studies has led to development of a target model for hydrothermal resources on the margin of the Idaho Batholith. Warfield Hot Springs, with temperatures up to 58°C, flow from a major shear zone along the margin of an apophysis of the batholith. Hailey Hot Springs, with temperatures up to 60°C, occur in an area of multiple thrust faults and newly recognized, closely spaced normal faults in the Paleozoic Milligen and Wood River Formations, 2.5 km from a highly brecciated batholith contact. Other Wood River district hydrothermal systems also occur along the margins of batholith apophyses or in adjacent highly fractured Paleozoic rocks, where there are indications of batholith rocks at shallow depths (100-300 m) in water wells.

The Wood River district thermal waters are geochemically distinct from the local ground water. Thermal waters circulate through batholith rocks, with little or no equilibration with Paleozoic sedimentary or Tertiary volcanic rocks. The thermal waters are high F (11-19 ppm), low TDS (190-322 ppm) NaHCO₃-SO₄ waters, with up to half of the TDS as silica. The Magic Hot Springs system is higher TDS (about 1000 ppm) than the other sites. Geochemical thermometers for most systems are below 100°C; Magic Hot Springs is about 150°C. Thermal waters at the margin of the batholith are chemically similar to those in the interior of the batholith.

The location of thermal systems at the margin of small apophyses of the Idaho Batholith is similar to other thermal systems in the western U.S. The waters circulate deep in the batholith rocks, and surface in either the intrusive or intruded rocks (Blackett, 1981; Figure 4). Specific thermal systems are controlled by the most favorable fracture permeability for the circulation of water.

Geochemistry of waters

Samples of thermal and non-thermal water were collected from selected springs and wells during this study, and analyzed for major and trace element constituents. Table 1 presents the results of the analyses; sample locations are indicated on Figures 2 through 7.

Samples were collected following the procedures of Kroneman (1981). All analyses were performed at Earth Science Laboratory facilities. Cations were determined by Induction Coupled Plasma Spectrophotometry. Total dissolved solids were determined by gravimetric methods, SO_4 and Cl by Mohr titration, HCO_3 by titrimetric techniques, and F by specific ion electrode.

Figure 8 is trilinear plot of the geothermal data. This diagram illustrates the distinct nature of the thermal and cold waters, suggesting deeper circulation for the thermal systems, as would be expected. The high fluoride content of the thermal waters suggests equilibration with granitic rocks of the Idaho Batholith, rather than the overlying sedimentary or volcanic rocks.

The samples from the Magic Hot Springs area are distinct in both TDS levels and relative constituents, suggesting the possibility of partial equilibration with rock types other than granite. Geochemical thermometry also suggests that the waters of the Magic Hot Springs area are distinct, as they apparently equilibrated at higher temperatures (117-140°C for equilibration with quartz followed by conductive cooling; 130-157°C for Mg corrected cation geothermometer) than the other thermal systems.

տ

ii 1 . . .

FIGURE 3. WATER SAMPLE SITES, MAGIC RESERVOIR AREA

and the second second

FIGURE 4. WATER SAMPLE SITES, HAILEY HOT SPRINGS AREA

-----FIGURE 5.----WATER -SAMPLE-SITES,-CLARENDON HOT-SPRINGS-AREA-

FIGURE 7. WATER SAMPLE SITES, ATLANTA AREA

	CI	Table nemistry of Wood F Water Sam	1 River District ples			
Sample Number Site Name Location 0 Collection Date Collection Temp. (°C) Flow (1/m)	1 Magic Well 15 17E 23 AAB 15 Oct. 1981 74.5 57 ²	2 Magic Well 01S 17E 23 AAB 20 Jan. 1982 70 57 ²	3 Magic Well 01S 17E 23 AAB 13 July 1982 74 57 ²	4 Magic Seep 1 01S 17E 23 AAB 4 Nov. 1981 39 4 est.	5 Magic Seep 2 01S 17E 23 AAB 4 Nov. 1981 32 4 est.	
Na K Ca Mg Fe SiO ₂ B Li Sr W HCO ₃ SO ₄ Cl F TDS (meas.) pH (lab)	339 21 22 1 0.38 78 1.2 1.29 1.08 0.1 747 49 81 12 994 8.4	324 20 19 1 0.25 75 1.1 1.15 1.0 nd 766 48 80 11 984 8.6	387 20 20 1 0.16 105 1.2 0.97 1.09 0.3 764 51 82 14 980 7.6	352 20 22 2 3 nd ³ 76 1.5 1.42 1.49 nd 765 51 81 13 1026 7.1	340 18 22 2 nd 69 1.4 1.38 1.51 nd 782 49 83 12 1014 7.2	

Ż

ંત

	C	Table 1 (c hemistry of Wood 1 Water Sam	ont.) River District ples		х
Sample Number Site Name Location ¹ Collection Date Collection Temp. (°C) Flow (1/m)	6 Magic Reservoir 01S 17E 23 AAR 13 July 1982 20 	7 Hailey Hot Spr. O2N 18E 18 DBB 15 Oct. 1981 57 265 ²	8 Hailey Hot Spr. O2N 18E 18 DBB 17 July 1982 59 265 ²	9 Hailey Well 1 02N 18E 18 DBB 25 Sept. 1982 42 low	10 Hailey Well 2 02N 18E 18 DBB 25 Sept. 1982 55 10w
Na K Ca Mg Fe SiO ₂ B Li Sr W HCO ₃ SO ₄ C1 F TDS (meas.) pH (lab)	8.3 1.4 27 5 nd 12 nd nd nd 122 9 4 0.6 134 7.8	71 1.9 3 nd 0.04 67 0.1 0.12 0.08 nd 90 35 4 12.6 294 9.3	84 1.3 2 nd nd 107 nd 0.1 0.07 0.2 88 33 16.2 9.3	73 1.2 7.0 nd nd 101 nd 0.06 0.03 nd 95 31 10 11.5 210 9.2	73 1.4 2 nd 0.04 100 nd 0.07 0.06 nd 90 33 8 11.5 198 9.4

	Cł	Table 1 (co nemistry of Wood R Water Samp	ont.) iver District oles		
Sample Number Site Name Location ¹ Collection Date Collection Temp. (°C) Flow (1/m)	11 Hailey Well 3 02N 18E 18 DBB 25 Sept. 1982 60.5 190 est.	12 Lambs Gulch Spring 02N 18E 18 BBA 17 July 1982 9 55 est.	13 Clarendon Main Well 03N 17E DCB 15 Oct. 1981 52.5 40	14 Clarendon Main Well 03N 17E DCB 20 July 1982 53 40	15 Clarendon Warm Well 03N 17E 34 ABR 20 July 1982 26 25
Na K Ca Mg Fe SiO2 B Li Sr W HCO3 SO4 C1 F TDS (meas.) pH (lab)	72 1.3 3 nd nd 96 nd 0.06 0.05 nd 73 31 7 11.2 222 9.0	4.7 0.4 42 7 nd 19 nd nd 0.14 nd 156 19 5 0.3 190 7.6	86 2.1 4 nd 0.21 64 0.2 0.13 nd 0.1 93 38 5 17 304 9.6	98 1.6 2 nd nd 78 0.2 0.08 0.04 nd 92 37 7 16.1 302 9.5	97 1 2 nd nd 72 0.1 0.07 0.04 0.4 83 38 4 19 288 9.6

-

٠

4. j

ÿ

.

14

Table 1 (cont.) Chemistry of Wood River District Water Samples					
Sample Number Site Name Location ¹ Collection Date Collection Temp. (°C) Flow (1/m)	16 Clarendon Pool Well 03N 17E 34 BAD 20 July 1982 54 22	17 Warm Sprs. Creek O4N 16E 36 BDB 14 Oct. 1982 5.5 	18 Warfield Hot Spring (upstream) O4N 16E 36 AAC 16 July 1982 58 21	19 Warfield Bathhouse Hot Spring 04N 16E 36 AAD 14 Oct. 1981 41.5 40 est.	20 Warfield Cistern 1 04N 17E 31 BBC 25 Sept. 1982 49
Na K Ca Mg Fe SiO ₂ B Li Sr W HCO ₃ SU ₄ Cl F TDS (meas.) pH (lab)	99 1.6 2 nd nd 82 0.2 0.07 0.05 nd 97 38 8 19 310 9.5	3.5 0.8 32 4 0.29 14 nd nd 0.12 nd 98 9 2 0.2 138 9.8	85 1.8 2 nd nd 99 nd nd 0.09 nd 102 32 5 16.5 284 9.6	70 2.3 2 nd nd 72 nd 0.19 0.08 nd 104 36 8 13 290 9.6	72 1.6 3 nd nd 109 nd 0.12 0.06 nd 98 35 9 14 200 9.5

. . .

- - --

15

Sample Number Site Name	21 Warfield	22 Warfield Hot	23 Guyer Hot	24 Easley	25 Russian John
Location ¹ Collection Date	Cistern 2 04N 16E 36 AAD 25 Sept. 1982	Spring 04N 17E 31 BBC 25 Sept. 1982	Springs 04N 17E 15 AAC 14 Oct. 1981	Warm Springs 05N 16E 10 DRC 14 Oct. 1981	Warm Spring 06N 16E 33 CCA 14 Oct. 1982
Collection Temp. (°C)51 Flow (1/m)	51	51 10 est.	69 3785 ²	38 68 ²	33 ₂ 5 4 ²
Na	77	72	90	71	. 71
κ	1.6	1.6	2.4	0.8	0.8
Ca	3	2	4	3	2.0
Mg	nd	nd	nd	nd	nd
Fe	nd	nd	0.05	nd	0.08
Si0 ₂	109	110	67	47	47
B	nd	nd	0.3	0.2	0.2
Li	0.11	0.12	0.17	0.18	0.19
Sr	0.06	0.06	0.15	0.1	0.08
W	nd	nd	nd	nd	0.10
HCO3	96	94	90	84	81
SOZ	31	31	59	42	41
Cl	7	8	5	10	11
F	14	13.5	17	16	16
TDS (meas.)	190	206	322	236	240
pH (lab)	9.5	9.4	9.5	8.5	9.7

.7

Table 1 (cont.) Chemistry of Wood River District Water Samples

.

.....

~

Table 1 (cont.) Chemistry of Wood River District Water Samples

Sample Number	26	27	28	29	30
Site Name	Worswick	Lightfoot	Atlanta	Atlanta Warm Seep	Chattanooga
1	Hot Springs	Hot Spring	Hot Springs		Hot Spring
Location ¹	03N 14E 28 CAA	03N 13E 7 DCA	06N 11E 35 DAD	06N 11E 35 DAD	06N 11E 35 DBB
Collection Date	13 Oct. 1981	13 Oct. 1981	14 July 1982	14 July 1982	14 July 1982
Collection Temp. (°C)	79	62,	58	34	45
Flow (1/m)	17642	382			large
Na	74	80	79	57	77
κ	2.4	2.4	1.4	0.9	1.6
Ca	2	2	2.0	3	2.0
Mg	nd	· nd	nd	nd	nđ
Fe	nd	nd	nd	nd	nd
Si0 ₂	74	58	74	43	75
B	nd	0.1	nd	nd	nd
Li	nd	0.22	0.2	nd	0.21
Sr	80.0	0.13	0.1	0.16	0.13
W	nd	nd	nd	nd	nd
HCO3	111	126	87	62	83
SUA	31	26	33	27	34 ·
C1 '	· 8	16	2	8	7
F	16	13	18	11.2	18
TDS (meas.)	286	268	240	164	238
рН (]аb)	9.6	9.0	9.3	8.8	9.3

,

•

lable 1 (cont.)	
Chemistry of Wood River	District
Water Samples	

Sample Number Site Name Location ¹ Collection Date Collection Temp. (°C) Flow (1/m)	31 McCoy Mine (stream) 02N 18E 31 DBC 18 July 1982 10 12	32 Ohio Creek Spr. 03N 18E 16 ACC 18 July 1982 19.5 2	33 Seeps E. of Bellevue OIN 20E 5 CC 17 July 1982 13 low
Na K Ca Mg Fe SiO 2 B Li Sr W HCO 3 SO 4 CI F TDS (meas.) pH (lab)	3.5 1.4 26 6 nd 18 nd nd 0.11 nd 116 4 5 0.7 179 7.4	2.4 1.2 12 3 nd 30 nd nd 0.08 nd 40 4 6 0.2 134 7.2	3.5 0.8 32 8 nd 34 nd nd 0.27 nd 142 2 3 0.3 156 7.6

¹ See Mitchell and others, 1980, p. 4, for explanation of Idaho well- and spring-numbering system. ² Flow estimate from Mitchell and others, 1980. ³ Not Detected

A Margana a

This work was supported by the U.S. Department of Energy, contract DE-AC07-80ID12079.

se i s

. ..

1

". 19

References Cited

- Blackett, R. E., 1981, Preliminary investigation of the geology and geothermal resources at Guyer Hot Springs and vicinity, Blaine Co., ID: Earth Science Laboratory, University of Utah Research Institute Open File Report ID/GHS/ESL-1, 24 p.
- Foley, D., Zeisloft, J., and Blackett, R. E., 1983, Hydrothermal systems of the Wood River District, ID: Geol. Soc. Am., Abstr. with Progs., v. 15, p. 416.
- Kroneman, R. L., 1981, Guide to water sampling: Earth Science Laboratory, University of Utah Research Institute, 10 p.
- Mitchell, J. C., 1976, Geothermal investigations in Idaho, Part 7, Geochemistry and geologic setting of the thermal waters of the Camas Prairie area, Blaine and Camas Counties, Idaho: Idaho Dept. Water Resources, Water Inf. Bull. 30, 44 p.
- Mitchell, J. C., Johnson, L. L., and Anderson, J. E., 1980, Geothermal investigations in Idaho, Part 9, Potential for direct heat application of geothermal resources: Idaho Dept. Water Resources, Water Inf. Bull. 30, 396 p.
- Struhsacker, D. W., Jewell, P. W., Zeisloft, J., and Evans, S. H., Jr., 1982, The Geology and geothermal setting of the Magic Reservoir area, Blaine and Camas Counties, Idaho; in Bonnichsen, B. and Breckenridge, R. M., editors, Cenozoic Geology of Idaho: Idaho Bu. of Mines and Geology, Bull. 26 (in press).

ξ

FIGURE 4. WATER SAMPLE SITES, HAILEY HOT SPRINGS AREA