GEOLOGIC EVALUATION OF LIMESTONE RESOURCES IN THE DEVIL'S SLIDE AREA, UTAH

Prepared for

Ideal Basic Industries Devil's Slide Plant Morgan, Utah

by

Bruce S. Sibbett

Earth Science Laboratory

University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, Utah 84108 (801) 524-3422

October, 1984

i!

l II

And Wester Sugar Andrews

GEOLOGIC EVALUATION OF LIMESTONE RESOURCES IN THE DEVIL'S SLIDE AREA, UTAH

> Prepared for Ideal Basic Industries Devil's Slide Plant Morgan, Utah

> > bу

Bruce S. Sibbett

University of Utah Research Institute Earth Science Laboratory 391 Chipeta Way, Suite A Salt Lake City, Utah 84108 (801) 524-3422

October, 1984

TABLE OF CONTENTS

	Page
EXECUTIVE SUMMARY	1
INTRODUCTION	3
GEOGRAPHY	3
POWDER HOLLOW	5
Geology. Measured Stratigraphic Sections	5
Rock Quality (or Analytical Results)	.13
Drilling Program Design	.17
KATHRYN CLAIMS AREA	.20
Measured Stratigraphic Sections	.25
Humbug Formation	.25
Rock Quality	.27
Humbug Formation	. 27
Reserve Estimates	.29
Humbug Formation	.29
Doughnut Formation	.29
	• 50
METZ HOLLOW	.33
TAGGARTS AREA	.34
ANALYTICAL PRECISION	.35
REFERENCES CITED	. 38
APPENDIX (Sample Analyses)	.39

LIST OF FIGURES

		Page
Figure 1	L. Location map	4
Figure 2	2. Geologic map of the Powder Hollow area	6
Figure 3	 Stratigraphic columns from measured sections of the Twin Creek Formation 	9
Figure 4	4. Cross section along measured section 2	.10
Figure 5	5. Cross section along measured section 3	.11
Figure 6	5. Cross section along measured section 4	.12
Figure 7	7. Recommended drill hole sites in Powder Hollow	.18
Figure 8	3. Geologic map of the Kathryn Claims area	.21
Figure 9	9. Cross section A of the Humbug Formation	.23
Figure 1	0. Cross section B of the Doughnut Formation	.24
Figure 1	11. Cross section C of the Doughnut Formation	.26
Figure 1	2. Recommended drill hole sites in the Kathryn Claims area	.31

I

EXECUTIVE SUMMARY

This report discusses a geologic evaluation of limestone reserves from several areas in the vicinity of Ideal Basic Industries' Devil's Slide Plant near Morgan, Utah. Geologic mapping and chemical analyses have been used to define the quality and quantity in the Powder Hollow, Kathryn Claims, Metz Hollow, and Taggarts areas.

Geologic mapping and chemical analyses have confirmed the continuation of the Twin Creek Limestone, currently mined at the Devil's Slide plant, to the south in Powder Hollow. The main production zone (Watton Canyon Member) thickens to 400 feet and the Devil's Slide bed thickens to 100 feet in the Powder Hollow area. Geologic reserves in the Watton Canyon Member are estimated to be 20.6 million tons of 42.6% CaO, within 100 to 150 feet of the surface and the Devil's Slide bed contains 1.2 million tons of 47.6% CaO within 50 feet of the surface. Seven drill holes are recommended in Powder Hollow to confirm the quality and quantity of rock, and determine rock characteristics controlling quarry design.

Geologic mapping and chemical analyses in the Kathryn Claims area have defined the quality of limestone in the Humbug Formation and the Doughnut Formation. Within one and one half miles of the freeway (about 7 miles from the plant) a total of about 24 million tons of limestone could be mined. The Humbug Formation within the Kathryn Claims themselves accounts for 3.7 million tons of 49.5% CaO rock. Additional reserves may be recovered from the Humbug Formation by blending or selective mining of limestone interbedded with dolomitic limestone. The Doughnut Formation contains 19 million tons of limestone at 50% CaO, half of which is on private land. Five to seven drill holes are recommended in the Kathryn Claims area to confirm the quality and quantity of limestone, and determine structural complications influencing

reserves. Although the Kathryn Claims area has the disadvantages of distance from the plant, ownership and legal access problems, it contains easily mineable high quality rock.

Analysis of two samples from the Lodgepole Limestone at Metz Hollow indicates high magnesium content. No limestone of significant thickness was found in the Taggarts area.

INTRODUCTION

Examination of four areas for possible cement-grade limestone along the Weber River Canyon was carried out to identify future resource rocks for the Devil's Slide plant. The four study areas are between the Devil's Slide plant and Morgan, Utah, seven miles to the west. Geologic mapping was carried out in two of the areas, Powder Hollow and the Kathryn Claims area (Fig. 1), and samples were collected and analyzed from several measured geologic sections. Reconnaissance examination and two samples were collected from the Metz Hollow and Taggarts areas. The data and conclusions derived from this study, along with recommendations for drilling to confirm the resources identified, are presented in this report. A fifth component of this program is a regional study for other possible resource rocks within twenty miles of the plant. The regional report will be presented under separate cover.

GEOGRAPHY

The Devil's Slide plant and the study areas are located within the Wasatch Mountains, which have over 1600 feet of relief along the Weber River. Paleozoic to Mesozoic formations strike near north-south and generally dip to the east. The semi-arid climate results in thin soil, brush and grass cover on the steep canyon walls.

U.S. Highway 80N passes through the Weber Canyon as does the Union Pacific railroad line (Fig. 1). These main arteries are excellent for eastwest travel but limit local access within the canyon. Freeway exits are present at the Devil's Slide, Taggarts, Round Valley and Morgan. Much of the land along the canyon is privately owned by local residents. Some land is owned by Utah State Division of Wildlife Resources. Mineral rights on the state land is divided between the state and the Union Pacific Railroad.

1

4[.]

POWDER HOLLOW

Geology

The Twin Creek Limestone, which forms the resource rock at the Devil's Slide plant, continues along strike into Powder Hollow to the south of Weber Canyon. In the existing quarry area, and to the south, the Twin Creek Limestone is repeated on the east by faulting (Mullens and Laraway, 1964). Current production comes primarily from the western belt of the repeated Twin Creek Limestone section. The western section is exposed on the west side of Powder Hollow (Fig. 2). The repeated section to the east thins and is covered by conglomerate one-half mile south of the Weber River and was not included in this study.

The Jurassic Twin Creek Limestone is exposed along strike for one and one-half miles on the west side of Powder Hollow (Fig. 2). The Nugget Sandstone, a thick, crossbedded Jurassic sandtone underlies the Twin Creek Limestone and forms the ridge crest west of Powder Hollow. The Jurassic Preuss sandstone overlies the Twin Creek Limestone but is not exposed in the area due to faulting and Cretaceous cover (Mullens and Laraway, 1964). Conglomerates of the Cretaceous Echo Canyon Conglomerate and the Tertiary Wasatch Formations unconformably overlap older rocks to the north, east and south.

In Powder Hollow, the Twin Creek Limestone trends N15°E and dips 64° to 84° east at the north and south ends of the area. In the central area the formation is overturned, dipping 52° to 67° west. The overturned beds are bounded by northwest-trending faults (Fig. 2). A northeast-trending fault offsets the limestone beds along the drainage in the SE 1/4 Section 25, T4N, R3E.

Figure 2 Geologic map of the Powder Hollow area

თ

POWDER HOLLOW

Description of Map Units Explanation for Figure 2

- Qal Alluvial deposits of the Weber River and tributaries.
- Qcl Colluvial deposits of quartzite boulders from the Echo Canyon Conglomerate and sandstone blocks from the Nugget Sandstone in a clay matrix covering slopes.
- Ke Echo Canyon Conglomerate, quartzite and sandstone boulders with a clay and sand matrix.
- Jt Twin Creek Limestone undivided.
- Jtl Leeds Creek Member of Twin Creek Limestone. Interbedded shale, sandstone and limestone, shaly limestone to shale dominant.
- Jtw Watton Canyon Member of Twin Creek Limestone. Micrite limestone, medium gray to olive brown, medium to thin bedded, 2-foot oolite at its base; 300 to 400 feet thick; averages 42.6% CaO, MgO averages 1.5%.
- Jtb Shale beds of the Boundary Ridge Member of the Twin Creek Limestone. Red, green or yellow siltstone to silty shale and thin limestone beds. Unit is 100 to 150 feet thick, east of the Devil's Slide limestone and 50 to 120 feet thick west of the Devil's Slide.
- Jtd Devil's Slide limestone unit of the Boundary Ridge Member. Brown oolite and gray micrite, 60 to 100 feet thick, averages 47.6% CaO and 1.24% MgO.
- Jtr Rich Member of Twin Creek Limestone, thick shaly limestone with shale unit at base, dark gray micrite. The limestone is 300 to 470 feet thick and averages 42.0% CaO, and 1.61% MgO.
- Jts Slide Rock Member of the Twin Creek Limestone, fossiliferous, medium to thin bedded, less than 100 feet thick.
- Jtg Gypsum Spring Member of the Twin Creek Limestone, red beds, siltstone and shale.
- Jn Nugget Sandstone cross-bedded, medium-grained sandstone.

Ras Ankareh Formation, siltstone and claystone.

Measured Stratigraphic Sections

Four stratigraphic sections of the Twin Creek Limestone were measured in Powder Hollow to determine the thickness and continuity of limestone beds. The locations of the measured sections are indicated on Figure 2, and they are presented in Figure 3 with member names and correlation of beds between sections. Cross sections were drawn along three of the measured sections and are presented as Figures 4, 5 and 6. From base to top, or west to east on Figure 2, the Twin Creek Limestone members are the Gypsum Spring siltstone and shale, Side Rock limestone, Rich limestone, Boundary Ridge limestone and shale beds, Watton Canyon limestone, and Leeds Creek shale and sandstone (Imlay, 1967). The Gypsum Spring Member and the Slide Rock Member were mapped but not included in the measured sections.

The Rich Member is a shaly micrite limestone grading to shale near the base. This limestone bed is exposed west of the Devil's Slide on the south side of Weber Canyon but is absent due to faulting north of the canyon in the quarry area. An exposed thickness of 474 feet in stratigraphic section 2, and 300 feet in stratigraphic section 3 was measured with the lower contact covered at both locations.

The Boundary Ridge Member consists of limestone and siltstone to shale beds (Imlay, 1967). The main limestone bed within the member forms the Devil's Slide. Two thickly bedded, resistant oolite beds with a less resistant micrite compose the slide. A second micrite unit overlays the oolite to the east (Figs. 3 and 4) and is mapped with the Devil's Slide unit on Figure 2. The Boundary Ridge Member varies from 235 to 400 feet thick in Powder Hollow. The Devil's Slide unit is in the middle of that member and is 57 to 113 feet thick. The measured beds are shown at true thickness in the stratigraphic columns (Fig. 3).

POWDER HOLLOW AREA - CROSS SECTION 2

Figure 4 Cross section drawn from measured stratigraphic section starting approximately 500 feet east of the old powder house and extending N77°W up the hill. See Figure 2 for location. Weighted averages shown for limestone units.

10

.

Figure 5 Cross section drawn from measured stratigraphic section from the access road 2000 feet southwest of the old powder house. See Figure 2 for location.

. į

н---1----1----

Figure 6 Cross section drawn from measured stratigraphic section approximately 4000 feet south-southwest from the powder house. See Figure 2 for location.

The Watton Canyon Member is the main production unit in the quarry. This medium-bedded micrite is 308 to 403 feet thick. A calcareous sandstone bed 18 to 26 feet thick is present in the middle of the Watton Canyon limestone (Figs. 3, 4 and 5). This sandstone parting is present at Birch Creek in Rich County and Burr Fork in Salt Lake County (Imlay, 1967). It therefore continues to the south in Powder Hollow to where section 4 was measured but was not seen due to poor exposure.

The Leeds Creek Member stratigraphically overlies the Watton Canyon Member but is exposed lower on the hill in the overturned section. The Leeds Creek consists mainly of shaly limestone (Imlay, 1967), however, the exposed base in Powder Hollow contains interbedded limestone, standstone and shale to siltstone (Fig. 3). Most of the member is covered by colluvium in Powder Hollow.

Rock Quality

A total of 31 chip samples were collected along sample traverses in Powder Hollow. The sampled intervals and CaO content of the samples are shown on Figures 4, 5, and 6. The analyses are tabulated in Table 1 and the complete 37-element analyses appear in the Appendix. Seventeen of these were taken from the Watton Canyon Member of the Twin Creek Limestone which is the unit currently being mined at the Devil's Slide quarry. As discussed above, the Watton Canyon Member is divided in half by a sandstone parting (Figs. 4 and 5). Seven samples taken from the stratigraphic upper half, which crops out lower on the hill in the overturned section, average 42.0% CaO. The lower half of the Watton Canyon Member averages 45.0% CaO for the 8 samples collected. The entire Watton Canyon averages 42.6% CaO and 1.5% MgO when the sandstone bed with 27.5% CaO, which composes 6% of the thickness, is included

(Fig. 4). The resource could be upgraded to 44% CaO if the sandstone parting and an adjacent twenty foot thick low grade zone are split out as waste. The averages given are arithmetic means, except for weighting the sandstone's composition relative to its 6% of the total thickness. A weighted average was calculated by multiplying each sample value by the fraction of the total measured thickness represented by that sample and summing the products. Each sample represents the thickness from the mid point between it and the next sample on one side to the mid point between it and the sample on the other side (Parks, 1957). Weighted averages based on the stratigraphic thickness represented by each sample were calculated for the analyses of samples along cross section 2 (Fig. 4). The weighted averages are only slightly different from the arithmetic averages for this traverse.

The Devil's Slide unit averages 47.6% CaO and 1.24% MgO for 5 samples (Table 1). The oolite bed is about 49% CaO but the lower quality of the micrite bed reduces the average.

The Rich Member of the Twin Creek Formation averages 42.0% CaO and 1.61% MgO for the seven samples analyzed (Table 1). Although its quality may be marginal, the CaO content is equal to that of the upper half of the Watton Canyon Member and the MgO average of 1.61% is less than the 1.76% MgO in the upper Watton Canyon Member. Also, the thickness of the Rich Member, 300 to 474 feet exposed, makes the unit of interest for additional reserves in Powder Hollow.

Reserve Estimates

The reserve estimates given here are geologic reserves rather than minable reserves. To calculate minable reserves, a quarry design would be needed, which would require rock competency testing to determine what slope

			IABLE	T		
ICP	ANALYSIS	0F	SAMPLES	FROM	POWDER	HOLLOW
	40		(Percen	t)		

Sample #	CaO	MgO	A12 ⁰ 3	Fe203	к ₂ 0	Na ₂ 0	Si02
(leeds Creek Member)							
IB-S2 2-1	40.52	1.82	3.78	1.54	1.12	0.197	
IB-S2 5-1	37.85	1.61	3.63	1.81	1.20	0.156	
(Watton Canvon-Pr	oduction	Unit)					
IB-S2 7-1	41.92	1.36	2.40	1.11	0.821	0.065	9.51
IB-S2 7-2	42.91	1.31	2.53	1.04	0.742	0.121	10.3
IB-S2 7-3	43.82	1.51	2.12	0.822	0.637	0.119	
IB-S2 7-4	38.97	1.68	4.20	1.60	1.28	0.280	17.6
IB-S5 2-1	40.91	1.74	3.20	1.14	1.05	0.171	
IB-S5 2-2	45.47	1.48	2.13	0.822	0.627	0.131	
IB-S5 2-3	40.04	3.24	2.81	1.19	0.915	0.147	
IB-S2 8-1	26,22	2.01	6.18	2.09	1.49	0.737	32.6
IB-S5 3	28,70	2.48	5.61	1.64	1.32	0.580	
IB-S2 9-1	44.26	1.20	2.13	0.720	0.551	0.349	
IB-S2 9-2	46.05	0.768	1.47	0.637	0.387	0.203	
IB-S2 9-3	43.57	1.65	2.35	0.849	0.651	0.196	
IB-S2 9-4	45.88	1.18	1.82	0.904	0.556	0.077	
IB-S5 4-1	45.46	0.965	1.96	0.824	0.587	0.040	
IB-S5 4-2	48.72	1.39	1.09	0.529	0.319	0.079	
IB-S6 5-1	42.25	1.41	2.06	0.788	0.661	0.194	
IB-S6 5-2	43.92	1.33	1.78	0.789	0.504	0.125	
(Devil's Slide Ur	nit)						
IB-S2 13-1	47.50	1.41	1.65	0.633	0.400	0.184	
IB-S2 14-1	48.83	1.06	0.682	0.486	0.164	0.094	2.81
IB-S5 6	48.83	1.07	0.645	0.358	0.166	0.055	
IB-S6 2	48.97	1.19	0.592	0.440	0.155	0.051	
IB-S6 3	43.94	1.47	1.90	0.532	0.366	0.362	
(Rich Member)							
IB-S2 18-1	42.49	1.94	3.36	1.40	0.768	0.247	11.9
IB-S2 18-2	40.56	1.45	4.22	1.82	1.07	0.081	
IB-S2 18-3	43.22	1.35	2.91	1.32	0.699	0.090	
IB-S2 18-4	40.32	1.70	3.88	1.61	0.983	0.163	13.7
IB-S5 8-1	42.43	1.75	3.05	1.38	0.748	0.129	
IB-S5 8-2	39.97	1.74	4.00	1.57	0.946	0.200	
IB-S5 8-3	45.33	1.32	2.28	1.08	0.545	0.098	

angle could be used on the high wall. For purposes of estimating geologic reserves, it was assumed that the Watton Canyon Member (the main production zone) could be mined an average of 100 feet down dip from the outcrop in the north block between the powder house and the northeast-trending fault in the SE 1/4 of Section 25 (Fig. 2). The northern limit of this block is 600 feet south of the northeast corner of Section 25. The rock north of this is considered unavailable because mining would be visible above the Devil's Slide from the highway, and, therefore, environmentally objectionable. The Watton Canyon Member is 403 feet thick at stratigraphic section 2 where best exposed. The limestone is slightly thinner at stratigraphic section 3 but this is due to cover and a minor fault.

A mining depth of 100 feet, a bed thickness of 403 feet and a strike length of 2900 feet were assumed, yielding 4.3 million cubic yards, or 9.9 million tons of rock (2.3 tons per yd^3). The average composition, as reported above, is 42.6% CaO.

For the Devil's Slide unit, which averages 100 feet thick in the north block, it was assumed that rock could be mined 50 feet down dip along the 2900 feet of outcrop for 537,000 yd^3 or 1.2 million tons of 47.6% CaO rock. The tonnage is small, but the higher quality of the rock makes it noteworthy. The two small, fault-bounded blocks of Devil's Slide limestone in the SE 1/4 of Section 25 were not included in the reserve estimate.

The south block contains the Watton Canyon Member from the wash in the SE 1/4 of Section 25 to the southern end of exposure in the NE 1/4 of Section 36 (Fig. 2). The Watton Member is about 300 feet thick in this 2800-foot long block and dips 64° to 84° east (Figs. 2 and 6). Because of the more favorable dip, it was assumed that this block could be quarried to a depth of 150 feet recovering 4.7 million yd³ or 10.7 million tons.

No reserves are added for the Devil's Slide unit in the south block because of an exposed thickness of only 57 feet. If it could be mined to a depth of 90 feet, a million tons could be recovered, however.

Estimated reserves for Powder Hollow total 21.8 million tons based on the measured thickness and assuming mining down dip 100 to 150 feet as explained above. The actual production grade would probably be the same as currently produced at the Devil's Slide quarry except for the higher quality rock from the Devil's Slide unit. The Rich Member could provide significant additional reserves if it met quality requirements.

Drilling Program Design

The rock quality and reserve estimates discussed above are sufficient to recommend drilling to confirm and better define the resource. Core drilling is also needed to determine rock properties for pit design. Drill holes oriented normal to the bedding are preferable as the most efficient way to evaluate a bedded resource. However, in Powder Hollow the steep dip into the hill would require holes inclined 25° to 35°, nearly parallel to the slope of the hillside. Holes drilled at angles lower than about 35° require a "QU" pump-in system which is more costly for HQ size core drilling. It is, therefore, recommended that beds which dip 52° to 66° to the west in the northern half of Powder Hollow be drilled from the top with holes inclined 40° to 45° to the east (Fig. 7). Locating each hole just up hill from the unit to be tested will minimize the depth required. At least one deep hole, number 3 or 4, should be drilled through the Devil's Slide unit, Watton Canyon Member and the waste rock on both sides of the Devil's Slide unit to determine rock properties for quarry design. This deep hole would also test the main production bed (Watton Canyon Member) deeper in the hill side. At least one

FIGURE 7 Recommended drill hole sites in Power Hollow

hole is recommended to test the Rich Member to determine if this thick unit is of acceptable quality and to test the mechanical character of waste rock between Rich and Devil's Slide beds. Also, the Devil's Slide unit in the south half of Powder Hollow should be drilled because of the high quality of the unit and the uncertainty of its thickness due to cover at both contacts. The following drill holes are therefore recommended for Powder Hollow.

Hole #	<u>Depth</u> (ft)	Inclination	Unit Tested	
1 2 3	450 400 700	40° east 45° east 40° east	Watton Canyon Watton Canyon Devil's Slide and Watt	ton
4 5 6	160 400 400	45° east 40° east 35° west	Canyon Devil's Slide Rich Member Watton Canyon	
7	120	35° west	Devil's Slide	
Total	2630			

The drill hole depths are estimates and each hole should be drilled to the base of the unit to be tested. Analysis of traverse samples indicates that the chemical quality of beds is fairly uniform along strike. Therefore, analysis of two holes per bed may be sufficient to confirm resource quality. All the recommended holes are needed to determine resource quantity, geometry and structural character of the resource beds.

KATHRYN CLAIMS AREA

Geology

Mississippian and Pennsylvanian rocks dip to the east in the Kathryn Claims area (Fig. 8). Two possible resource limestone formations are present, the Upper Humbug Formation and the Upper Doughnut Formation. The Lower Member of the Humbug Formation (Mh1) consists of sandstone with thin limestone and dolomite interbeds (Mullens and Laraway, 1973). The Upper Member of the Humbug Formation is divided into a lower unit (Mhm) and an upper unit (Mhc) on Figure 8. The lower unit is about 215 feet thick and consists of interbedded limestone and dolomitic limestone (Fig. 9). The upper unit is about 100 feet thick and consists of limestone with one thin dolomitic bed. All of the Upper Member consists of one- to four-foot thick micrite beds. Brachiopod and rugosa coral fossils are present in upper unit (Mhc).

The Lower Member of the Doughnut Formation overlies the Humbug Formation and consists of siltstone, shale and limestone (Mullens and Laraway, 1973). This formation is incompetent and poorly exposed in the map area.

The Upper Member of the Doughnut Formation is a dark gray micrite limestone containing chert nodules and is 236 feet thick (Fig. 10). Brachiopod and rugosa horn coral are abundant in the medium- to thick-bedded limestone.

The Round Valley Limestone overlies the Doughnut Formation and consists of chert-rich limestone, shale, and conglomerate. This formation was examined closely for possible high quality limestone but the abundant tan chert, shale partings and lack of thick, pure limestone units makes the formation unfavorable.

Beds in the Kathryn Claims area strike northeast and generally dip about 45° east. Much steeper dips occur near the northwest-trending faults, which

Figure 8 Geologic map of the Kathryn Claims area.

KATHRYN CLAIMS AREA

Description of Map Units Explanation for Figure 8

- Qal Alluvial deposits of the Weber River.
- Qcl Colluvial and alluvial fan deposits, containing quartzite boulders of the Wasatch Formation and other materials.
- Qls Landslide, mostly shale and siltstone.
- Tw Wasatch Formation, rounded quartzite boulders with a reddish sand to clay matrix.
- Pm Morgan Formation, reddish brown sandstone to siltstone.
- Pr Round Valley Limestone, chert rich limestone, shale, limestone and chert conglomerate.
- Mdu Doughnut Formation, Upper Member, 236-foot thick limestone, medium to thick bedded, dark-gray, micrite containing black chert nodules in some beds, brachipods and rugosa horn coral. Averages 50.0% CaO and 0.64% MgO.
- Mdl Doughnut Formation, Lower Member, siltstone, shale and minor limestone beds, poor exposure.
- Mhc Humbug Formation, upper limestone beds, 90 to 120 feet thick, dark to medium-gray micrite in 1- to 4-foot thick beds containing brachiopods and rugosa coral. Averages 49.5% CaO and 0.94% MgO.
- Mhm Humbug Formation, limestone and dolomitic limestone, light to dark gray micrite, 1- to 3-foot thick beds. Averages 46.5% CaO and 2.85% MgO for 6 samples, MgO varies from 0.66 to 5.78%.
- Mhl Humbug Formation, Lower Member, fine-grained sandstone and minor limestone and dolomite beds.

Figure 9 Cross section drawn from measured stratigraphic section trending N77°W across the Upper Humbug Formation. See Figure 8 for location of section.

Figure 10 Cross section drawn from measured stratigraphic section of the Doughnut Formation, Upper member. See Figure 8 for location of section.

offset and rotate beds (Fig. 8). North- to north-northeast-trending faults dipping 64° to 85° west are exposed along the I-80N road cut. Because this trend is parallel to the outcrop of beds, the faults cannot be easily mapped on natural exposures. These faults may affect apparent thickness of formations in the study area.

Measured Stratigraphic Sections

Humbug Formation

Stratigraphic section A (see Fig. 8) was measured across the Upper Member of the Humbug Formation and used to draw cross section A (Fig. 9). The oneto four-foot thick light- to dark-gray micrite beds are uniform in physical character. Based on examination of the formation along the freeway cut, limestone beds continue under the covered part of the measured section. Field tests suggest that the dolomitic beds are lighter gray than the more pure limestone. The contact between the upper limestone unit (Mhc) and the dolomitic unit (Mhm) was selected on the basis of sample analysis and mapped on the aerial photographs.

Doughnut Formation

Stratigraphic section B (see Fig. 8) was measured across the Upper Member of the Doughnut Formation and used to draw cross-section B (Fig. 10). The Upper Doughnut Formation (Mdu) consists of 1- to 6-foot thick beds of dark gray micrite. Some beds contain nodules of black chert (Fig. 10). A second cross section (Fig. 11) was drawn across the Upper Doughnut Formation 1500 feet north of Section B (see Fig. 8) to facilitate calculation of reserves.

KATHRYN CLAIMS AREA - CROSS SECTION C

Figure 11 Cross section drawn from geologic map along boundary between sections 20 and 29, T4N, R3E. See Figure 8 for exact location.

Rock Quality

Humbug Formation

Eleven chip samples were collected from 20-foot sample intervals along measured Section A (Fig. 9) and analyses of these samples are tabulated in Table 2. The complete 37-element analyses of the samples are included in the Appendix. About the upper 100 feet of the formation is high-quality limestone with a weighted average of 49.5% of CaO and 0.94% MgO. Sample analyses were weighted relative to the stratigraphic thickness each represented for calculation of the average. The results are in close agreement with an average of 49.2% obtained from analyses of two core holes drilled into the formation by Ideal Basic Industries (Stienmier, 1979).

The lower unit (Mhm) consists of high-quality limestone (48.9 to 50.7% CaO) interbedded with dolomitic beds (Fig. 9). Although some chip samples contained up to 5.8% MgO, the weighted average for the 215-foot thick unit is 46.5% CaO and 2.85% MgO. This suggests, based on these few samples, that if the entire Upper Member of the Humbug Formation was quarried and blended, the resource would average 2.25 to 1.84% MgO, depending on whether an average computed by weighting each sample by the thickness represented (from mid point to mid point between samples) or an arithmetic average is used.

Doughnut Formation

Eight chip samples were collected across the Upper Member of the Doughnut Formation along stratigraphic Section B (Fig. 10) and analyses of these samples are tabulated in Table 2. The complete 37-element analyses of the samples are included in the Appendix. The sample traverse indicates highquality rock for the entire thickness of 235 feet, with a weighted average of 50% CaO and 0.64% MgO. Each sample analysis was weighted relative to the thickness of the rock represented by the sample.

TABLE 2 ICP ANALYSIS OF SAMPLES FROM KATHRYN AREA, METZ HOLLOW AND TAGGARTS AREA (Percent)

Sample #	CaO	Mg0	A1 2 ⁰ 3	Fe203	к ₂ 0	Na ₂ 0	Si O2
Kathryn - Humbug	Fm						
IB-S3 1-1	47.01	0.819	0,581	0,244	0.132	0.007	
IB-S3 1-2	48.52	1.21	0.546	0.246	0.186	0.007	
IB-S3 1-3	49.97	0.560	0.389	0.159	0.160	0.007	
IB-S3 1-4	50.30	0.594	0.528	0,193	0,216	0.007	
IB-S3 1-5	50,55	1.10	0.188	0.120	0.076	0.007	
IB-S3 1-6	44.45	5.78	0.476	0.268	0.194	0.014	
IB-S3 1-7	48.89	0.828	0.911	0.330	0.352	0.011	
IB-S3 3-1	41.70	5.04	0.881	0.411	0.368	0.017	
IB-S3 3-2	49,60	0.660	0.479	0.166	0.217	0.009	
IB-S3 3-3	50.68	0.843	0.193	0.129	0.087	0.007	
IB-S3 3-4	47.60	2.79	0.399	0.206	0.183	0.007	
Kathryn - Doughnu	ıt Fm						
IB-S4 1	48,90	0.488	0.461	0.371	0.062	0.017	
IB-S4 3-1	47.52	0.658	0.241	0.380	0.024	0.015	9.65
IB-S4 3-2	51.38	0.635	0.176	0.136	0.014	0.008	
IB-S4 4-1	49.11	1.31	0.114	0.105	0.007	0.015	2.51
IB-S4 4-2	51.10	0.554	0.126	0.107	0.008	0.010	
IB-S4 4-3	49.38	0.541	0.138	0.107	0.016	0.010	
IB-S4 6	50.60	0.707	0.231	0.175	0.031	0.011	
IB-S4 12	49 , 39	0.445	0.335	0.146	0.028	0.013	2.68
Metz Hollow							
IB-M 1	45.18	3.22	0.209	0.232	0.062	0.014	
IB-M 2	31.08	18.01	0.604	0.365	0.196	0.036	
Taggarts							
IB-T1	21.21	15.67	1.22	1.28	0.348	0.073	
IB-T2	34.48	6.26	0.460	0.178	0.194	0.023	

Reserve Estimates

Humbug Formation

Reserves for the Humbug Formation were estimated only for the upper unit (Mhc) of low magnesium limestone. Assuming a thickness of 90 feet, mining 280 feet down dip over the 2000 feet of exposure between the wash near measured Section A, and the northwest-trending fault to the north, 1.5 million yd^3 or 3.4 million tons are present. Another 1.4 million tons could be recovered along the outcrop trace between the fault and the north end of the mapped exposure. For this part of the Humbug Formation, only 100 feet down dip was included in the estimate because of the lower dip and overburden.

The lower limestone and dolomitic unit (Mhm) contains significant beds of high calcium, low magnesium rock as discussed above. If this rock were blended or dolomitic beds stripped out as waste, significant additional reserves could be added.

Doughnut Formation

Reserves estimates for the Doughnut Formation were divided into reserves in Section 29 and Section 20. In addition to the greater thickness of high quality rock, the Doughnut Formation has a more favorable outcrop configuration than the Humbug Formation. The wide exposure north of measured Section B (Fig. 8) allows more rock to be quarried with little overburden (Fig. 11). Assuming that rock could be mined 100 feet into the outcrop in the narrow exposure area south of Section B and to a depth of 150 feet north of Section B, reserves of 4 million yd³ or 9.4 million tons are present in the NW 1/4 of Section 29. Another 9.7 million tons of Doughnut limestone are present in the SW 1/4 of Section 20.

In total, 23.9 million tons of resource rock are estimated to be present in the Kathryn Claims study area. The Humbug Formation accounts for 4.8

million tons of 49.5% CaO rock, 3.7 million tons of which is on the present Kathryn claims (Fig. 12). The 19 million tons of 50% CaO Doughnut Formation lies half in Section 29, which is owned by Scott Rees and family, and half in Section 20 to the north. Section 20 belongs to the State of Utah Division of Wildlife Resources. The state owns the mineral rights on some of its land in Weber Canyon, and Union Pacific Railroad owns the mineral rights on other state land. The state-owned mineral rights are withdrawn from mineral entry.

Drilling Program Design

The rock quality and reserve estimates discussed above are based on limited sampling and mapping. The data are sufficient to indicate the presence of resource rocks, but core drilling is necessary to confirm the resource and design a mining plan.

To confirm the quality and quantity of the resource, five core holes are recommended for the Doughnut Formation (Fig. 12). These holes would be drilled normal to the formation bedding and all but one are sited near the top of the formation. Hole inclination and expected depth to penetrate the base of the formation would be as follows:

<u>Hole #</u>	Depth (ft)	Inclination
1 2 3 4 5	200 300 250 250 150	65° west 52° west 56° west 40° west 50° west
Total	1150	

Five holes are needed to demonstrate resource quantity because of the faulting and variation in the dip of beds. Detailed chemical analyses of only two of these holes should be sufficient to determine rock quality and lateral

FIGURE 12. Recommended drill hole sites in the Kathryn Claims area

continuity of composition.

Two holes have been previously cored in the Humbug Formation (Stienmier, 1979), however these holes penetrated only the upper unit, Mhc. The sample traverse along Section A (Fig. 9) indicates the presence of significant zones of high-quality limestone in the lower unit, Mhm. The sampling is too sparse and sample intervals too large to define this possible resource.

Deep drill holes through the lower unit would be needed to determine if additional rock could be mined from between dolomitic beds or the entire unit blended to an acceptable resource. If Ideal Basic Industries is interested in defining additional reserves on the Kathryn Claims, drill holes 6 and 7 (Fig. 12) are recommended. Each hole would be inclined 40° and about 400 feet deep. A possible preliminary step, before drilling these holes, would be to complete detailed sampling along the freeway cut across the Humbug Formation to determine the distribution and thickness of dolomitic and high-quality limestone beds. If the results of this sample traverse were encouraging, drilling of holes 6 and 7, would be recommended.
METZ HOLLOW

Two samples were collected from the Metz Hollow area, which is located seven miles west of the Devil's Slide Plant (Fig. 1). The Lodgepole Limestone forms a long, north-trending ridge, north of the Weber River in the Metz Hollow area (Mullens and Laraway, 1973). An old quarry and kiln, where the pioneers made cement from the Lodgepole Limestone, are present near the highway. Sample M-1 was taken across the bedding of a thirty-foot thick exposure 1400 feet up Metz Hollow, and sample M-2 was taken across the beds exposed in the old quarry (Fig. 1). Analysis indicates high magnesium content in both samples (Table 2). In light of the better quality rock located in the Kathryn and Powder Hollow areas, no further work is recommended in the Metz Hollow area.

TAGGARTS AREA

The Taggarts area is located on the north side of the Weber River, three miles west of the cement plant. The Weber Quartzite underlies most of the Taggarts area (Mullens and Laraway, 1964), but a talus rock from the area had been analyzed as high quality limestone. A reconnaissance examination of the area found only a four-foot thick limestone bed and several calcareous chert units interbedded with thick quartzite near Taggarts. The Park City Formation is exposed about 2500 feet east of Taggarts (Mullens and Laraway, 1964). Samples T-1 and T-2 were collected across the middle and lower part, respectively, of the Park City Formation (Fig. 1). Analyses of these samples (Table 2) indicate an impure dolomite.

The examination of the Taggarts area shows that limestone of sufficient thickness and quality to be of interest is not present. No further study of the Taggarts area is recommended.

ANALYTICAL PRECISION

Two types of comparisons were made to document the reliability of analytical results presented in this report. Eight of the samples analyzed at the Earth Science Laboratory (ESL), University of Utah Research Institute (UURI) by Inductively Coupled Plasma (ICP) Spectrometry, were also analyzed using X-ray Fluorescence (XRF) by Ideal Basic Industries. Seven of the eight were samples collected as part of the study and one sample (1-1 on Table 3)was from the conveyor mill feed at the Devil's Slide Plant. Although some disagreement is evident between the two sets of analyses (Table 3), the average values for CaO by ICP and XRF are within 1.16%. The differences in MgO are somewhat greater but still comparable. There are considerable differences in SiO₂ values for seven of the eight samples. The ESL SiO_2 values were obtained by wet colorimetric analysis and should be fairly accurate. The high silica values in these eight samples are not representative of the formations studied. Samples S2-8-1, S2-18-1, S2-18-4 and S4-3-1 were analyzed for SiO₂ because high silica content was suspected. Samples S2-7-2, S2-14-1, S4-3-1 and S4-12, which average 6.4 percent SiO_2 , are probably typical of the resources studied. CO2 was analyzed in these eight samples and loss on ignition was also measured to obtain accurate analysis totals.

For a second comparison of analyses, six samples were analyzed by UURI for Ca by atomic absorption (AA) and these values compared to the numbers obtained by ICP and XRF (Table 4). The AA and ICP numbers are very similar and the XRF values differ slightly for some samples.

		TAI	BLE 3	3	
COMPARISON	0F	ESL	AND	IDEAL	ANALYSES*

	Sample #	Ca0	Mg0	A1 203	Fe_20_3	к ₂ 0	Na ₂ 0	P205	Si0 ₂	c0 ₂	LOI	Totalst
ESL Ideal	S2-7-2	42.91 41.13	1.31 1.26	2.53 5.09	1.04 1.25	0.742 0.87	0.121 <i>0.11</i>	0.045 0.07	10.3 17.45	36.0	37.87	97.00 101.14
	S2-8-1	26.22 26.16	2.01 1.57	6.18 <i>8.24</i>	2.09 2.88	1.49 1.30	0.737 0.42	0.163 0.13	32.6 33.3	23.5	25.5	97.34 96.38
	\$2-14-1	48.83 51.09	1.06 <i>0.99</i>	0.682 1.56	0.489 0.75	0.164 <i>0.13</i>	0.094 0.13	0.018 0.03	2.81 4.13	41.8	42.4	96.50 100.2
	S2-18-1	42.49 38.26	1.94 1.44	3.36 5.82	1.40 1.65	0.768 0.81	0.247 0.16	0.055 0.06	11.9 20.3	35.8	36.7	99.06 - 100.59
	S2-18-4	40.32 36.86	1.70 1.33	3.88 6.32	1.61 1.75	0.983 1.04	0.163 <i>0.09</i>	0.053 <i>0.06</i>	13.7 21.44	34.2	35.9	98.53 <i>99.6</i>
	S4-3-1	47.52 46.60	0.66 <i>0.80</i>	0.241 0.71	0.38 <i>0.91</i>	.024 <. <i>06</i>	.015 . <i>05</i>	0.034 0.04	9.65 15.84	39.0	39.7	98.25 102.5
	S4-12	49.39 5 <i>3.</i> 12	0.46 0.71	0.335 1.02	0.146 0.60	0.028 <0.06	0.013 0.10	0.030 0.04	2.68 4.22	41.4	43.1	96.23 102.35
	1-1	40.02 40.50	2.32 1.36	3.59 <i>3.53</i>	1.59 1.63	0.936 0.57	0.314 0.15	0.086 0.06	15.4 11.17	34.6	35.0	99.45 92.41
Average:	ESL Ideal	42.21 <i>41.72</i>	1.43 1.18						12.38 15.98			

- * ESL analyses are by Inductively Coupled Plasma Spectrometry (ICP). Ideal analyses are by X-ray Fluorescence (XRF). CaO-and MgO-values converted from carbonate using 0.560 (CaCO₃) = CaO value and 0.478 (MgCO₃) = MgO value.
- t Totals for ESL analysis include LOI (loss on ignition), which consists of CO_2 plus water and free carbon. Values for TiO, BaO and MnO are a small fraction of one percent, but appear on the 37 element analyses in the Appendix, and are included in the ESL totals.

TABLE 4COMPARISON OF Ca CONTENT BY AA, ICP AND XRF FOR SELECTED SAMPLES

Sample #	AA	ICP	XRF*
S2-7-1	29 . 3	29.96	
S2-8-1	19.0	18.73	18.70
S2-14-1	34.05	34.9	36.52
S2-18-1	29.2	30.4	27.35
S4-3-1	32.4	33.96	33.31
S4-12	34.5	35.30	37.97

* Ca values converted from $CaCO_3$ values using 0.4005 ($CaCO_3$) = Ca value.

REFERENCES CITED

- Imlay, R. W., 1967, Twin Creek Limestone (Jurassic) in the western interior of the United States: U. S. Geol. Survey Prof. Paper 540, 105 p.
- Mullins, T. E., and Laraway, W. H., 1964, Geology of the Devil's Slide quadrangle, Morgan and Summit Counties, Utah: U. S. Geol. Survey Map MF-290.

____, 1973, Geologic map of the Morgan 7 1/2-minute quadrangle, Morgan County, Utah: U. S. Geol. Survey Map. MF-318.

Parks, R. D., 1957, Examination and valuation of mineral property: Addison-Wesley Publishing, Reading, Mass., 507 p.

Stienmier, R. L., 1979, Exploration program, Kathryn Claims, Morgan County, Utah: Ideal Basic Industries, Exploration Department report, 6 p.

APPENDIX

Thirty-seven element ICP analyses of samples. Sample analyses are arranged in the same order as in Table 1 and Table 2.

LIMESTONES

ï

IB-S2 2-1

ELEMENT

CONCENTRATION

ŧ.

ť

.

ŧ.

L.

ŧ

NA	% OX.		0.197
K'	z ox.		1.12
r a	% OX.		40.52
	Z BX.		1.82
10 EE	2 0 X .		1.54
	χ ΩΧ.		3.78
нь. ст	7 DX.	<	3.21
51	ν οχ.		0.165
11	% ΩX• % ΩX•		0.075
F'	PPM		323
55	γ nx.		0.009
DH	PPM	<	500
	PPM		14
	*: 0Y		0.040
ทท	2 UA+ DDM	<	2.00
UU UU	F F FI	<	10.0
N I	P P P P P M	•	14
CU	E E FI DIDM	<	100
mu	E E EI DOM	<	20.0
PB	5771 100 M	•	79
ZN	67741 0004	<	10.0
CD	FFM 55M	<	4.00
AG	F'F'M DOM	<	16.0
AU	FFM DDM	<	50.0
AS	575 554	Ż	60.0
SB	F F F	~	200
BI	PPR DDM	~	5000
U	F'F'M		100
1E	FF FI		10.0
SN	FFM	~	2400
W	FFM SORK	 	15
	FFM ODX		1.00
BE	F'F'M	~	800
B	- FFM	*••	28
	PPD DDM	•	13
LA	Г°ГП Срем	<	20.0
CE.	Г'Г'П Срим		300
18	r'r 11	•	

TOTAL

LIMESTONES

IB-S2 5-1

ELEMENT

CONCENTRATION

(

٤

ſ

ί

ł

	•		
NA	% OX.		0.156
К	% OX+		1.20
Г.A	% 0X.		37.85
MG	2 0X.	•	1.61
510 FF	z 0×.		1.81
	z 0X.		3.63
C T	7 08.	<	3.21
а. тт	7 0X.		0.157
1 J.	γ ΟΧ.		0.061
F CD			335
510	Ψ ΩX.		0.011
вн		<	500
V	E E E	<	4.00
CR			0.076
MN		<	2,00
00	Fr'M	~	10.0
NI	F F M	**	36
CU	FFM DDA		100
MO	FFM FRV	·*•	575
PB	PPM DOV		2605
ZN	F'F'M		10.0
CD	P P M	~	4.00
AG	PPM	×.	14 0
AU	PPM	~	50.0
AS	FFM	· · · · · · · · · · · · · · · · · · ·	40.0
SB	FFM	·••	00+0
BI	F'F'M	•	200
U	FFM	<	5000
TE	PPM		100
SN	FFM	<pre></pre>	10+0
W	F'F'M	<	2400
LI	PPM .		1 00
BE	PPM	<pre> < ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</pre>	1+00
В	PPM	×.	800
ZR	PPM		10
LA	PPM ·		11
CE	PPM	<	20.0
тн	PPM	4.,	300

TOTAL

LIMESTONES

IB-S2 7-1

÷

ELEMENT

.

CONCENTRATION

NA	% OX₊		0.065
ĸ	z 0×.		0.821
CA	% OX.		41.92
MG	% OX.		1.36
FE	% OX.		1.11
AL.	% OX.		2.40
SI	% OX.	<	3.21
TI	% OX+		0.105
P	% OX.		0.043
SR	PPM		259
BA	% OX.		0,007
V	FFM	<	500
ĊR	PPM	<	4.00
MN	^ % OX.		0.027
CO	PPM	<	2.00
NТ	PPM	<	10.0
CÜ	PPM	<	10.0
MO	P P M	<	100
ΡB	FFM	<	20.0
ZN	PPM		34 .
CD	PPM	<	10.0
AG	PPM	<	4.00
AU	PPM	<	16.0
AS	́ РРМ	<	50.0
SB	PPM	<	60.0
Bİ	FFM		206
Ū	PPM	<	5000
TE	PPM	<	100
SN	PPM	<	10.0
W	PPM	<	2400
LI	PPM	<	4.00
BE	PPM	<	1.00
B	PPM	<	800
ZR	PPM	<	10.0
LA	PPM	<	10.0
CE	FFM	, (20.0
TH	PPM	<	300
•			

TOTAL

51.058

(

i,

(

IB-S2 7-2

ELEMENT

CONCENTRATION

I

ţ

C

ŧ.

ŧ

ŧ

i

	1
	С
	Μ
	F
	A
	9
	T
	F
	S
	B
	V
	С
	M
	C
	Ņ
	Ċ
	М
	F
	7

NA	% OX.		0.121
К	% 0X.		0.742
CA	% 0X.		42.91
MG	% OX.		1.31
FE	% OX.		1.04
AL	% 0X.		2,53
· S1	% OX.	<	3.21
TI	% 0X.		0,100
F	% OX.		0+045
SR	PPM		284
BA	% OX.		0.012
V	PPM	<	500
CR	PPM	<	4.00
MN	% OX.		0.023
CÜ	PPM	<	2.00
NI	PPM	<	10.0
сũ	PPM	<	10.0
MO	PPM		100
PB	PPM	<	20.0
ZN	PPM		23
CD	PPM	<	10.0
AĞ	FFM	<	4.00
AU	FFM	<	16.0
AS	P P M	<	50.0
SB	PPM	<	60.0
BI	PPM	<	200
U	PPM	<	5000
TE	F P M	<	100
SN	FFM	<	10.0
ω	P P M	<	2400
LI	PPM		7
BE	PPM	~:	1.00
в	P P M	<	800
ZR	PPM	<	10.0
LA	FFM	<	10.0
CE	PPM		20+0
ТН	PPM	<	300

TOTAL.

LIMESTONES

IB-S2 7-3

-

<

<

<

 \sim \sim \sim

<

<

<

<

.

<

< <

<

<

<

< ~

<

<

ELEMENT

ń

3

CE

ΤH

CONCENTRATION

0.119 0.637 43.82 1.51 0,822 2.12 3.21

> 0.082 0.038

0.011

4.00 0.021 2.00

10.0 10.0 100

> 20.0 12

10.0 4.00

16.0

50.0 60.0

10.0 2400

> 8 1.00

10.0 10.0

20.0

800

300

200

100

5000

(

l

٤

244

500

	NA	% OX.
	К	% OX+
	CA	% OX+
•	MG	% OX+
	FE	% OX.
	AL	% OX+
	ST	% OX.
	TT	% OX.
	p P	% OX.
	, S.S.	PPM
	RA	2 0ו
	U	PPM
	ČR	PPM
÷.	MN	% OX.
	CO	PPM
	NT	PPM
	CU	PPM
	<u>м</u> л	FFM
	FR	PPM
	7 N	PPM
É.	CD	PPM
	ΔG	PPM
		PPM
-		PPM
	ភូមិ ភូមិ	FFM
	BT	PPM
	11	PPM
	17 F	PPM
	SN	PPM
	Ш	PPM
	L T	PÉM
	BE	PPM
	B	PPM
	ZR	P P M
	LA	P P M
-	CE	FFM

PPM

TOTAL

LIMESTONES

IB-S2 7-4

ELEMENT

į.

CONCENTRATION

NA	% OX.		0.280
к	% OX.		1.28
CA	% OX.		38.97
MG	% OX.		1.68
FE	% OX.		1.60
AL.	% OX.		4.20
ST	% OX.	<	3.21
TT	% OX.		0.166
p	% 0X.		0.078
SR	PPM		263
BA	% 0×.		0.015
Ū	PPM	<	500
ĈR	PP M	<	4.00
MN	% OX.		0.029
CO	PPM	<	2.00
NT	PPM	<	10.0
CU	PPM	<	10.0
พัก	PPM	<	100
FB	PPM	<	20.0
ZN	PPM		49
CD	PPM	<	10.0
AG	PPM	<	4.00
AU	PPM	<	16.0
AS	PPM	<	50.0
SB	PPM	<	60.0
BI	PPM	<	200
U	FFM	<	5000
TE	PPM	<	100
SN	PPM	<	10.0
ω	F F M	<	2400
L. I	PPM		15
BE	PPM	<	1.00
B	PPM	< 1	800
ZR	PPM		16
LA	PPM		13
CE	PPM	<	20.0
тн	PPM -	<	300

TOTAL

51.505

C

€...

í,

Ę

Ę

ŝ,

1

. IB-85 2-1

ELEMENT

1

.....

CONCENTRATION

		·	۱.
NA	% OX.		0,171
К	% OX.		1.05
CA	% OX.		40.91
MG	% OX.		1.74
FE	% OX.		1.14
AL	% OX.		3.20
SI	% OX.	<	3.21
TI	% OX.		0.132
F'	% OX.		0.077
SR	PPM		268
BA	% OX.		0.011
V	PPM	*.	500
CR	PPM	<	4.00
MN	% OX.		0.029
CO	P P M	<	2.00
NI	PPM	\leq	10+0
CU	PPM	<	10.0
МО	PPM	<	100
FB	PPM	<	20.0
ZN	PPM		30
CD	P P M	<	10.0
AG	PPM	<	4.00
ÁU	P P M	\leq	16.0
AS	PPM	<	50.0
SB	PPM	. <	60.0
BI	FFM	<	200
U	ррм	<	5000
TE	P P M	<	100
SN	PPM	. <	10.0
ω	PPM	<	2400
LI	PPM		14
BE	PPM	<	1.00
B	FFM	<	800
ZR	PPM		23
LA	PPM	<	10.0
CE	PPM	<	20.0
ТH	· PPM	<	300

TOTAL

51.661

••,

2

IB-S5 2-2

ELEMENT

 \mathbf{j}

्रा

3

اھ

9

Ð

9

9

8

9

9

9

1 9

6

,

ê

9

Þ

2

CONCENTRATION

. .

3

 \mathcal{I}

)

)

Э

0

ê

9

9

61)

9

Ð

Ð

 \mathbf{O}

0

3

9

9

		-	
NA	% OX.		0.131
К	% OX.		0.627
CA	% OX.		45.47
MG	″ OX.		1,48
FE	% OX.		ò.822
AL.	% OX.		2.13
SI	% OX.	<	3 + 21
TI	% OX.		0.084
F.	% OX.		0.045
SR	FFM		244
BA	% OX.		0.009
V	FFM	- <	500
CR	PPM	<	4.00
MN	% OX.		0.023
CO	PPM	<	2,00
NI	PPM	<	10.0
CU	, PPM	<	10.0
МО	PPM	<	100
FB	PPM	· · · <	20.0
ZN	PPM		15
CD	PPM	<	10.0
AG	РРМ	<	4.00
AU	PPM	<	16.0
AS	PPM	<	50.0
SB	РРМ	<	60.0
BI ·	PPM	· <	200
ับ	рем	<	5000
TE	РРМ	<	100
SN	PPM	<	10.0
ω	PPM	<	2400
LI	PPM		14
BE	PPM	<	1.00
B	PP4	<	800
ZR	PPM		16
LA	rPFM	<	10.0
CE	РРМ	<	20.0
тн	PPM	<	300

TOTAL

ł

LIMESTOMES

3

10-85 2-3

.

ELEMENT

Ĩ,

)

٦ '

)

COMCENTRATION

Ф

		1		
NA	% OX.			0.147
ĸ	% OX.	1		0,915
CA	2 OX.			40.04
MG	· % 0X.	1.		3.24
FE	% OX•	,		1.19
AL.	% OX.	,		2.81
SI	% ÖX+	, ,		3.21
TI	2 OX+	-		0,125
F'	% OX.			0,061
SE	РРМ			310
ëΑ	% OX.			0.007
V ·	PPM	,	<	500
CR	PPM	,	<	4.00
MN	% OX•	1		0.035
C0	PPM			2
NI	PPH	•		10.0
CU	P P P	ţ		10+0
MO	PPH	:	<	100
FB	PPM			20.0
ZN	PPH	i		21
CD	PHM	1	<	10.0
AG	PPM	;	<	4.00
AU	PPM	1	\langle	16.0
AS	PPM	1	<	50.0
SB	PPH	T	<	60.0
BI	PPM	,	<	200
U	РРМ	1	<	5000
TE	PPM	;	\leq	100
SN	PPM	1	<	10.0
W	PPM		<	2400
L I	PPM			14
BE	PPM 1		<	1.00
в	PPM	!	<	800
ZR	PPM	:		20
LA	PPM	1	<	10,0
CE	PPM			20.0
TH	PPM		<	300

TOTAL

1B-S2 8-1

ELEMENT

D

D

CONCENTRATION

ා

 \bigcirc

NA	% OX.			0.737
ĸ	% OX.			1.49
CA	. % OX.			26.22
MG	% OX.			2.01
FΕ	% OX.			2.09
AL	% OX.			6.18
SI	% OX.		<	3.21
ΤI	% OX.			0.249
۴	% OX+			0.163
SR	FFM			168
BÀ	% OX.			0.064
V	FFM		<	500
CR	PPM			9
MN	% OX.	I		0.034
00	PPM			4
NI	PPM			11
CU	PPM	I		18
MO	PPM		<	100
PB	PPM		<	20.0
ZN	PPM			52
CD	PPM	,	<	10.0
AG	PPM		<	4.00
AU	PPM	,	<	16.0
AS	PPM	;	<	50.0
SB	PPM		<	60.0
BI	PPM		~	200
U	PPM		<	5000
TE	PPM	I.		100
SN	РРМ	1	~	10.0
ш	PPM	:		2400
L. I	PPM	1		34
BE	PPM	1	<	1.00
В	FFM		<	800
ZŔ	PPM	1		49
LA	PPM			30
CE	FFM		<	20.0
ТН	PPM	;	<	300

TOTAL

9

IB-S5 3

<

<

•

<

 \leq

<

<

<

~

<

<

<

<

 \leq

.

<

<

<

CONCENTRATION

0.580

1.32

2.48

1+64

5.61

3.21

0.217

0.143

0.084

4,00

0.026

186

500

4

11

15

100

10.0

20.0

10.0

16.0

50.0

60.0

10.0

1.00

200

100

2400

38

800

40

24

300

20.0

5000

4.00

28,70

8

6

6

6

6

C

0

େ

0

e

G

6

e

e

¢

e

5

e

ELEMENT

NA

ĸ

ĈA

MG

FE

AL.

SI

ΤI

P

SR

₿A

Ų.

ÛŔ

ΜŇ

00

NI

СU

МO

PB

ZN

CU

AΘ

AU

AS

SB

BI

U

TE

W

В

ΪH

3

17

9

Ð

9

% 0X. % 0X. % .OX+ % OX. % OX. % OX. % 0X. % OX. % OX. PPM % OX. PPM PPM % OX. PPM PPM 户户桥 PPM SN FFM PPM LI PPM BE PPM PPM ZR PPM LA PPM СE

TOTAL

PPM

8

IB-S2 9-1

ELEMENT

CONCENTRATION

12214

6

ŝ

(

Ę

ŧ.

Ĺ

i.

		\$	
NA	% 0X.	· 1 ·	0.349
К	% OX.	1	0.551
ÊÀ	% OX.	1	44.26
MG	% OX.	1	1.20
FF	% OX.		0.720
Ai	% 0X.		2.13
GT	% OX.	<	3.21
TT	% OX.	, i	0.086
P .	ž 0X.	,	0.044
с Б	PPM	,	191
RA	% 0X.	1	0.010
Ũ	PPM	E 📢	500
Ċ.Fr	PPM	<	4.00
MN	% OX.	1	0.019
CO	PPM	(2.00
NI	PPM	<	10.0
CU	PPM	<	10.0
MO	PPM	1 <	100
PB	PPM	· · · · · · · · · · · · · · · · · · ·	20.0
ZN	PPM	1	10
CD	PPM	· · · · · · · · · · · · · · · · · · ·	10.0
AG	PPM	<	4+00
AU	F'F'M	' <	16.0
AS	FFM	<	50.0
SB	FFM	· <	60.0
BI	PPM	1	200
U	PPM	<	5000
TE	PPM	e <	100
SN	PPM	<	10.0
W	PPM		2400
Ł.I	PPM	L	7
BE	P'P'M	\sim	1.00
в	PPM	' <	800
ZR	F'F'M	; <	10.0
LA	PPM		11
CE	PPM	<u> </u>	20.0
TH	PPM	$\langle \rangle$	300

TOTAL

9

1B-S2 9-2

ELEMENT

:

CONCENTRATION

Ł

					·
	NA	% OX.	1		0.203
	к	% OX.			0.387
	CA	% OX.			46.05
	MG	% OX.			0,768
	FE	% OX.			0,637
	AL.	% OX.	,		1.47
	SI	% OX.		<	3.21
	TI	% OX.			0.056
	F'	% OX.			0.031
	SR	PPM			168
	BA	% OX.			0+006
	V	PPM		<	500
	CR	PPM		<	4.00
	MN	% OX.			0.019
	CO	PPM		<	2,00
	NI	PPM			10.0
	CU	PPM		<	10.0
	MO	PPM		<	100
	FB	PPM		<	20.0
	ZN	PPM	1		259
	CD	PPM		<	10.0
	AG	PPM		<	4.00
	AU	PPM		\leq	16.0
	AS	PPM		<	50.0
	SB	PPM		<	60.0
	BI	PPM		<	200
	U	PPM		<	5000
	TE	PPM .	1	<	100
	SN	PPM		\leq	10.0
	ω	PPM	and the second sec	<	2400
	LI	PPM		<.	4.00
	BE	FFM		<	1.00
	В	PPM		<	800
	ZR	PPM	,	<	10.0
l.	LA	F FM	-		10.0
_	CE	PPM		<	20.0
	ТH	PPM		·.	300

TOTAL

10

IB-52 9-3

ELEMENT

CONCENTRATION

1

C

6

Ć

k.

Ć

£

í.

l

NA	% OX.				0.196
К	% OX.				0.651
CA	% OX.		,		43.57
MG	% OX.				1.65
FE	% OX.				0.849
AL	% OX.		,		2.35
SI	% OX.				3.21
TI	% OX.				0.087
P	% OX.				0.049
SR	PPM				201
BA	% OX.				0.007
V	PPM		, ·		500
CR	FPM			<	4.00
MN	% OX.				0.018
CO	PPM		· ·		2.00
NI	ዮዮ州			<	10.0
CU	PPM -			<	10.0
MO	PPM -	• •		<	100
P B	P'P'M				20.0
ZN	PPM				24
CD	PPM		•	<	10+0
AG	PPM				4.00
AU	PPM		•		16.0
AS	PPM	*	•	<	50.0
SB	PPM				60.0
BI	FFM		•		.200
U	PPM				5000
TE	PPM		· •,		100
SN	F'F'M		: *		10.0
ы	PPM		;		2400
LI	P P M				9
BE	PPM		•		1.00
B	PPM		•		800
ZR	FFM		•		10+0
LA	PPM				10
CE	FPM				20+0
TH	FFM		~		300

TOTAL

11

IB-S2 9-4

ELEMENT

 \tilde{c}

CONCENTRATION

1

(

C

Ć

(

ŧ,

6

Ć

(

(

ţ

(

i

NA	% OX.		0.077
К	% OX.		0.556
CA	% OX.		45.88
MG	% OX.		1.18
FE	% OX.		0.904
AL.	% OX.		1.82
SI	% OX.	<	3.21
TI	% OX.		0.080
F	% OX.		0.034
SR	PPM		176
BA	2 OX.		0.007
V	PP M	<	500
CR	F FM		5
MN	% OX.		0.022
CO	PPM	<	2.00
NI	PPM	<	10.0
CU	FFM	<	10.0
MÜ	FFM	<	100
FB	́ РРМ	<	20.0
ZN	PPM		100
CD	FFM	<	10.0
AG	PPM	<	4.00
AU	FFM	<	16.0
AS	PPM	<	50.0
SB	PPM	<	60.0
BI	FFM		224
U	PPM	<	5000
TE	PPM		100
SN	FPM)	29
W	FFM	<	2400
LI	PPM	<	4.00
BE	PPM	<	1.00
В	PPM	<	800
ZR	FFM	<	10.0
LA	PPM		13
CE	PPM	ς <	20.0
TH	F FM		300

TOTAL

LINESTONES

4

IB-S5 4-1

ELEMENT

2

3

.

0

0

•

0

ð

0

9

0

Ð

0

9

9

•

CONCERTRATION

ġ

Ċ

€

Ċ

6

9

Ð

0

Ð

9

0

0

9

Ô

\$

9

•

NA	% OX.		0.040	
К	% OX.		0,587	
CA	% OX.		45.46	
MG	% OX+		0.965	
FE	% OX.		0.824	
AL	% OX.		1.96	
SI	% OX.	 	3.21	
TI	% ÜX•		0,081	
۴	% ÜX.		0.036	
SR	PPM		1.61	
BA	% OX.		0₊007	
V	PPM	<	500	
CR	PPM	\leq	4.00	
MN	% OX.		0.029	
CO	PPM	<	2.00	
NI	FFM	<	10.0	
CU	PPM	<	10.0	
MO	PPM	<	100	
ΡB	PPM	<	20.0	
ZN	FFM		13	
CD	PPM	<	10.0	
AG	FFM	<	4.00	
AU	PPM	<	16.0	
AS	PPM	<	50.0	
SB	PPM	<	60.+0	
BI	PPM	<	200	
U	PPM	<	5000	
TE	FFM	<	100	
SN	PPM	<	10.0	
ω	PPM	< -	2400	
LI	FFM		8	
BE	P'P'M	<	1.00	
в	P P M	<	800	
ZR	PPM		18	
LA	PPM	<	10.0	
CE	P P M	<	20.0	
TH	PPM	\leq	300	

TOTAL

5

IB-S5 4-2

ELEMENT

CONCENTRATION

-

į

j

Ì

Ċ

С

٢

NA	% OX.			0.079
к	% OX.			0.319
CA	Ζ ΟΧ.			48.72
- MG	Ζ ΟΧ.			1.39
FF	z ox.	1		0.529
AL	Ζ ΠΧ.			1.09
ST	Ζ ΠΧ.	2	<	3.21
TT	χ ηχ.	`.		0.046
P	χ ηχ.			0.031
SR	PPM	•		164
BA	z nx.			0.010
U	PPM		<	500
C.F.	PPM		<	4.00
MN	z ox.	1		0.019
60	PPM		<	2.00
NT	PPM		<	10.0
CU	PPM		<	10.0
<u>ес</u> мп	PPM		<	100
P B	PPM		<	20.0
ZN	PPM			26
Cũ	PPM		<	10.0
AG	PPM		<	4.00
ALL	PPM		<	16.0
45	PPM	1	<	50.0
SB	PPM	1	<	60.0
BT	FFM		<	200
11	PPM		<	5000
TE	PPM		<	100
SN	PPM		<	10.0
ω. W	PPM		<	2400
LI	PPM	1		7
BE	PPM		<	1.00
B	PPM	:	<	800
ZR	PPM	1		14
LA	PPM		<	10.0
CE	PPM		<	20.0
TH	PPM		<	300

TOTAL

LINESTONES

12

IB-S6 5-1

ELEMENT

9

3

Э

3

Ð

9

9

Ð

9

9

əl

,

7

CONCENTRATION

 \bigcirc

:)

Ù

 \odot

O

С

0

C

6

Ċ

(i)

¢

Ē

С

·

0

8

Ċ

NA	% OX.			0,194
К	% OX.	r		0.661
CA	% OX.			42.25
MG	% OX.			1.41
FE	% OX.			0.788
AL.	% OX.			2.26
SI	% OX.		<	3.21
TI	% OX.			0.096
F	% OX.			0.060
SR	PPM			181
BA	% OX.			0.009
V	PPM		<	500
CR	PPM		<	4.00
MN	% OX+			0.023
С0	PPM			3
NI	PPM			10.0
CU	PPM		<	10.0
мO	PPM		4	100
FΒ	PPM	•	<	20.0
ZN	PPM			13
CD	FFM	;	<	10.0
AG	рри		<	4,00
AU	PPM		<	16.0
AS	PPM		<	50.0
SB	PPM		<	60.0
BI	PPM -		<	200
U	PPM		<	5000
ΤE	PPM		<	100
SN	PPM		<	10.0
ω	FPM	:	<	2400
LI	PPM			13
BE	PPM	:	4	1.00
B	PPH		<	800
ZR	PPH			19
LA	PPI	;		10
CE	PPM			20.0
ТH	PPM		<	300

TOTAL

13

IB-S6 5-2

ELEMENT

12

.

0

6

.

E

8

٩

1

CONCENTRATION

€

É

E.

6

€

E

G

C

€

С

C

C

e

e

6

E

¢

e

£

Ç

6

		·		
		•		
NA	% OX*	:		0 + 125
К	% (32.5	,		0,504
CA	% (UA -	t		43.92
MG	% OX.			1.33
FE	% 0X.			0.789
AL.	% OX.			1.78
ST	% OX.		<	3+21
ΤĪ	% OX.			0.072
P	% OX.			0.039
SR	PPM			210
ΒA	% OX.			0.011
V	PPM	1	<	500
CR	· PPM			8
ММ	% OX.			0,022
C0	PPM			3
NI	PPM			13
CU	PPM	1	<	10.0
MO	PPM		<	100
PB	PPM		<	20.0
ΖN	PPM			12
CD	PPM		<	10.0
AG	PPM		<	4.00
AU	PPM		<	16.0
AS	PPM		<	50.0
SB	PPM			60.0
ΒI	PPM	•		200
U	P P M			5000
TE	PPM			100
SN	PPM		<	10.0
Ы	PPM		~	2400
LI	PPM			12
BE	FFM		<	1.00
B	FFM	1	<	800
ZR	PPM	÷		13
LA	FFM		<	10.0
CE	PPM	1	<	20.0
TH	PPM		<	300

TOTAL

12

IB-S2 13-1

.

ELEMENT

CONCENTRATION

NA	% OX.		0.184
ĸ	% OX.		0,400
C.A	2 OX.		47.50
MC	% OX.		1.41
FF	% OX.		0.633
- ۱ ۱۵	χ οχ.		1.65
51	% OX.	<	3.21
T I	% OX.		0.076
P	% OX.		0.036
, 5F	PPM		193
R.	× 2 0X.		0.014
Ũ	PPM	<	500
ČE	PPM		4
MM	ί % ΟΧ.		0.021
 C(PPM	<	2.00
N.	PPM	<	10.0
CI	I PPM	<	10.0
M) PPM		100
FI	PPM	<	20.0
71	I PPM	<	10.0
Ē	PPM	1.1.1	10.0
A	PPM	<	4.00
AL	I PPM	<	16.0
A9	PPM	<	50.0
SI	PPM	<	60.0
B	PPM	<	200
Ū	PPM .	<	5000
TE	E PPM	<	100
Sł	FPM	<	10:0
W	.FFM	<	2400
L	PPM	1	. 5
BE	E PPM	· · · · · · · · · · · · · · · · · · ·	1.00
В	PPM	<	800
ZF	PPM	· <	10.0
Le	A PPM	1	11
CE	E PPM	*	20.0
Tł	I PPM		300

TOTAL

55.136

€

٢

Ċ

Ę

ł,

ŧ,

Ċ

13

IB-S2 14-1

.

ELEMENT

9

Ð

Ð

ð

9

3

9

9

9

)

9

a

CONCENTRATION

8

9

6

6

•

.

8

.

0

.

0

8

8

8

1

C

e.

8

NA	% OX.			0.094
К ^т	% OX.			0.164
CA ·	% OX.			48.83
MG	% OX.			1.06
FE	% OX.			0,486
AL	% OX.			0.682
SI	% OX.		<	3.21
ΤI	· % OX.	·		0.034
P	% OX.			0.018
SR	PPM			261
BA	% OX.			0,006
V	FFM		<	500
CR	PPM		<	4.00
MN	% OX.	1. Sec. 1. Sec		0.013
CO	PPM		<	2.00
NI	PPM	,	<	10.0
CU	PPM	1	<	10.0
МО	FFM	I	<	100.
PB	PPM		<	20.0
ZN	ዮዮਅ			41
CD	PPM		<	10.0
AG	PPM		<	4+00
AU	PPM		<	16.0
AS	PPM	i.	<	50.0
SB	PPM		<	60.0
BI	PPM			212
U	PPM		<	5000
TE	FFM		<	100
SN	PPM		<	10.0
Μ	PPM		<	2400
LI	PPM			5
BE	PPM		<	1.00
в	PPM		<	800
ZR	PPM	1		11
LA	PPM	:	<	10.0
CE	PPM	2	<	20.0
ТН	PPM		<	300

TOTAL

LINESTONES

1.4

IB-S5-6

ELEMENT

3

Ð

9

9

•

)

)

)

CONCENTRATION

1

þ

3

3

5

9

9

۲

•

O

8

Ø

0

9

9

Ð

۲

۰. پر

6

e

6

G

NA	% OX.		0.055
κ	% OX.		0.166
CA .	%.OX.	1	48.83
MG	% OX.		1.07
FE	% OX.		0,358
AL.	% OX.		0.545
SI	% OX.	<	3,21
TI	% OX+		0.032
F	% OX•		0.018
SR	PPM		272
BA	% OX+		0,007
V	PPM	· · · · · · · · · · · · · · · · · · ·	500 N
CR	PPM	<	4.00
MN	% OX.		0.012
00	PPM		2
NI	PPM	<	10.0
CU	PPM	<	10.0
мо	PPM	<	100
РB	PPM	*	20.0
ZN	PPM		49
CD	PPM	<	10.0
AG .	PPM	<	4.00
AU	PPM	<	1.6 + 0
AS	PPM	<	50.0
SB	PPM	<	60.0
BI	PPM	<	200
U	PPM	<	5000
TE	PPM	<	100
SN	PPM	<	10,0
L4	PPM	<	2400
LI	PPM		5
BE	FFM	<	1.00
В	PPM	<	800
ZR	PPM		12
LA	PPM	\leq	10.0
CE	FPM	<	20.0
тн	PPM		300

TOTAL

10

18-86 2

ELEMENT

9

Ì

3

8

9

9

9

9

Ð

Э

)

Ĵ

ე

9

9

Э

•

CONCENTRATION

5

3

ð

3

2

٢

ø

Ø

0

0

0

0

С

e

0

0

€

٩

9

6

0

NA	·% ΟΧ₊			0.051
К	% OX.			0.155
CA	% OX+			48.97
MG	% OX.			1.19
FE	% OX.			0.440
AL	% OX.			0.592
SI	% OX.		-	3.21
ΥI	% OX.			0.028
F'	% OX.			0.028
SR	PPM			236
BA	% OX.			0.006
V	₽₽M.		<	500
CR	P P M		<	4.00
MN	% OX+			0.015
C0	PPM			2
NI	PPM		<	10+0
CU	PPM			10.0
мо	PPM	·		100
FB	PPM		<	20.0
ZN	PPM			54
CD	PPM		<	10,0
AG	PPM		<	4.00
AU	PPM		<	16.0
AS	РРМ		<	50.0
SB	PPM		<	60.0
BI	РРМ		<	200
U	PPM			5000
TE	PPM		<	100
SN	PPM	i	<	10.0
·W	PPM	i.	<	2400
LI	PPM		<	4.00
BE	ዮዮሽ		<	1.00
в	PPM		<	800
ZR	ዮዮਅ		•	10
LA	PPM		<	10.0
CE	PPM		<	20.0
TH	PPM	·	<	300

TOTAL

11

IB-S6 3

ELEMENT

3

8

5

9

0

0

9

D

D

∍

₽

tita

5

CONCENTRATION

100

0

8

0

é

e

8

6

6

С

С

С

0

P

6

ø

ø

0

Ø

e

C

NA	% OX.			0.362
К	% OX•			0,366
CA	% OX₊			43.94
MG	% OX.	1		1.47
FE	% OX.		Ì	0.532
AL	% OX.	•		1.90
SI	% OX+		<	3.21
TI	% OX.			0.076
F	% OX+			0.043
SR	РРМ			165
BA	% OX*			0.011
V	PPM		<	500
CR	PPM	,	÷.	4.00
MN	% OX+			0.022
C0	편의의		<	2.00
NI	PPh	1		10.0
CU	PPH			10
MO	PPH		<	100
PB	PPM			20+0
ZN	PPM			25
CU	PPm		<	10.0
AG	PPM			4.00
AU	PPM			16.0
AS	PPM		<	50.0
SB	PPM		-	60+0
BI	PPM		<	200
U	PPM		<	5000
TE	PPM			100
SN	PPM	1	<	10.0
W	PPM		<	2400
LI	PPM	, -		11
BE	PPM			1.00
В	PPM	t		800
ZR	PPM			16
LA	PPM			10.0
CE	PPM		<	20.0
T k-i	E E M			300

TOTAL

LIMESTONES

IB-S2 18-1

ELEMENT

•

CONCENTRATION

NA	% OX.		0.247
К	% OX.	:	0.768
CA	% OX.		42.49
MG	% OX.		1.94
FE	% OX.		1.40
AL	% DX.		3.36
SI	% OX.	2 < 2	3.21
ΤT	% OX.		0,156
F	% OX.		0.055
SR	PPM		506
BA	% OX.		0.008
V	PPM	<	500
ĊR	PPM		20
MN	% OX.		0.033
CO	PPM	<	2,00
NI	PPM	÷ 🗧	10.0
CU	FFM	. <	10.0
MO	FFM	<	100
PB	PPM	<	20.0
ZN	PPM		14
CD	FPM	<	10.0
AG	PP M	<	4.00
AU	PPM	<	16.0
AS	PPM	<	50.0
SB	PPM	<	60.0
BI	PPM	×.	200
U	PPM	<	5000
TE	P P M	<	100
SN	PPM	<	10.0
Ŵ	PPM	<pre></pre>	2400
L: I	PPM		
BE	PPM .	<	1.00
В	PPM	<	800
ZR	FFM		12
LA	F'P'M		18
CE	PPM		20.0
TH	PPM		300

TOTAL

53.672

(r.

÷

ţ

ţ

Ĺ

¢

÷

LIMESTONES

IB-S2 18-2

ELEMENT

Í

. .

CONCENTRATION

۲

(

Ĺ

ŧ

l

ŧ

t,

NA	% OX.		0.081
К	% OX.		1.07
СА.	% OX.	•	40,56
MG	% OX.		1.45
FF	% OX.		1.82
AL	% OX.		4.22
ST	% OX.	<	3.21
TT	% OX.		0,186
P	2 OX.		0.055
SE SE	PPM		355
BA	% OX.		0.007
U	PPM	<	500
Č.R	PPM		18
MN	% OX.		0.038
CO	PPM	<	2.00
NT	PPM	<	10.0
CH	PPM		11
<u>ео</u> мп	PPM	<	100
E B	PPM	<	20.0
7 N	PPM		28
20 20	PPM	<	10.0
	PPM	<	4.00
AU	PPM	<	16.0
AS	PPM	<	50.0
SB	FFM	<	60.0
BT	PPM	<	200
ii ii	PPM	<	5000
ŤE	PPM	<	100
SN	PPM	<	10.0
W	PPM	·	2400
i. I	PPM		8
BE	PPM	<	1.00
B	E PPM	<	800
ZR	PPM		15
LA	PPM	·	19
CE	PPM	· · · · · · · · · · · · · · · · · · ·	20.0
TH	PPM	\sim $<$	300

TOTAL

LIMESTONES

IB-S2 18-3

ELEMENT

÷:-

CONCENTRATION

€*

£

Ć,

6

i

ć,

	NA	% OX.	I		0.090
	К	2 OX.			0.699
	CA	% OX •			43.22
	MG	% OX.			1.35
	FF	7 OX.			1.32
		% OX.			2.91
	GT .	z 0x.	,	<	3.21
	TT	z nx.	1		0.128
	E.	7 OX.	:		0.041
	- -	PPM	1		424
	ΨA	γ ΠX.			0.007
	11 11	PPM	0	<	500
	ү	PPM		•	11
	UN NN	Ψ Ο¥.			0.033
		2 UA+ PPM		<	2.00
		D D D M			10.0
		E E E E			10.0
	со мо	PPM	с. 1	<	100
	nu DD	DDM		<	20.0
	ר" בי ייצא	DDM		•	26
				<	10.0
		E E M		<	4.00
	AU AU	EEU DDM			16.0
	AU	669M			50.0
	A5 00			~	60.0
	5 <i>5</i> 57	rri) max			200
	81	E E 11 CODM			5000
	U	FFF DDM			100
		E E FI DIDM	1		10.0
	50	n n Hi Di Di Mi	1		2400
	W	P'F'FI DDM	(••	6 1
		ГГП ррм	1	•	1.00
	BE	EEN DEM			800
	21 27 Ex			Ż	10.0
		P P P DDM		•	17
	LH CC	PPM	1	<	20.0
I	СE TU	PPH DDM		<	300
	1 1 1	E 1 EI		•	

TOTAL.

17

IB-S2 18-4

÷

ELEMENT

CONCENTRATION

NA	% OX.		0.163
К	% OX.		0.983
CA	% 0X.	- · · · · ·	40.32
MG	% OX.	t	1.70
FE	% OX.		1.61
AL.	% OX.		3.88
SI	% OX.	<	3.21
ΤI	% OX.		0.178
P	% OX.		0.053
SR	PPM		376
BA	% OX.	•	0,009
V	P'P'M	<	500
CR	PPM .		42
MN	% OX.		0.034
CO	PPM	<	2.00
NI	PPM		19
CU	PPM		10
MO	FFM	<	100
P B	FFM	<	20+0
ZN	PPM		32
CD	PPM	<	10.0
AG	PPM	<	4+00
AU	PPM	<	16.0
AS	PPM	<	50.0
SB	PPM -	<	60.0
BI	PPM	<	200
U	PPM	<	5000
TE	PPM	<	100
SN	PPM	<	10.0
W	PPM		2400
LI	PPM	•	8
BE	PPM	. <	1.00
B	PPM		800
ZR	PPM	1	16
LA LA	PPM		21
CE	PPM	 	20.0
TH	FFM		300
		ł	

TOTAL

52.155

€∃

Ę.

6

ΡB

ZN

CD

A0

AU

AS

SB

ΒT

TE

SN

ω

LI

BE

B

ZR

LA

СE

TH

U

3

3

5

9

1

2

9

Ø

9

9

b

9

3

9

9

9

ð

18-55 8-1

<

CONCENTRATION

0.129

0.748 42.43 1.75

> 1+38 3.05 3.21

0.133

2

(ا

0

4

3

٩

0

9

0

9

0

0

0

0

 \bigcirc

6

0

3

1

9

0

ELEMENT		
NA	% OX.	
ĸ	% OX.	
CA	% OX.	
MG	ΧΟΧ.	
FE	2 OX.	
AL.	* / 000 v	
SI	$\mathbf{Z}_{-} \mathbf{O} \mathbf{X}_{+}$	
TI	% ()X «	
F'	% OX→	:
SR .	r r n	1
BA	% OX*	
V	PPM	
CR	PPH	
MN	% OX*	
CO	PPM	
NI	PPM	
CU	PPH	
MÜ	PPM	

PPM

PPM

PPM

PPM

PPM

PPM

PPM

PPM

PPM

0.054 411 0.007 500 < 4.00 0.034 2.00 < 10.0 < 10.0 100 . 20.0 2110.0 < ~: 4.00 < 16.0 . 50.0 $\land \land \land \land \land \land$ 60.0 200 5000 100

子户首 PPM < PPM PPM PPM < PPM < PPM < PPM < FFM PPM <

TOTAL

52,939

10.0

1.00

2400

11

800

300

22

10.0
LIMESTONES

7

IB-S5 8-2

ELEMENT

E

e

6

J

đ

9

9

9

9

CONCENTRATION

¢

ę

ę

ć

€

Ç

Č

Ę

(

¢

Ę

€

Ę

· . .

Ē

.

€

£

٤

NA	% OX.			0,200	
К	% 0X.			0,946	
CA	% OX.			39.97	
MG	% OX.	•		1.74	
FE	% OX.			1.57	•
AL	% OX.			4.00	
ST	% OX.		<	3,21	
TI	% OX.			0.178	
P	% OX.			0.066	
SR	PPM			325	
BA	% 0X+			0.017	
v	PPM		<	500	
ÊR	PPM		<	4.00	
MN	% OX.			0.034	
0.0	PPM			3	
NT	PPM		<	10.0	
CH.	PPM			10	
MO	PPM		<	100	
PB	PPM		<	20.0	
7 N	РРМ	,		16	
ch	PPM		<	10.0	
ÁG	PPM		<	4.00	
AU	PPM		~	16.0	
AS	PPM	1	<	50+0	
SB	PPM		<	60.0	
BI	PPM		<	200	
υ υ	PPM	:	<	5000	
75	PPM		<	100	
SN	PPM		<	10.0	
W	PPM	T	*	2400	
L.T	PPM	r i		16	
BE	PPM	P	<	1.00	Ţ.,
B	PPM		<	800	
ZR	PPM	:		30	
LA	PPM			15	
CE	FPM	r 1	<	20.0	
тн	PPM		<	300	

TOTAL

51,919

LIMESTONES

8

IB-S5 8-3

ELEMENT

Ĩ

Э

14 17

5724

Э

)

>

>

)

>

>

,

, l

,

,

) **||**

CONCENTRATION

Э

Ć

·:/

:)

. 3

Э

يديد ار. -

Ð

8

8

0

٩

8

e

8

Q

÷.,

NA	% OX.			0.098
К	% OX.			0.545
CA	% OX.			45.33
MG	% OX.			1.32
FE	% OX.			1.08
AL	% OX.			2.28
ST	χ ηχ.		<	3.21
TT	Ϊ ΟΧ.		•	0,106
P	Ζ ΠΧ.			0.039
ŚR	PPM			334
BA	ະ ຄະ.			0.007
· U	PPM	,	<	500 .
Č. P.	PPM		<	4.00
MN	τ. ΟΧ.		•	0.032
	PPM			.3
<u>ыт</u>	PPM			10.0
ГЦ ГЦ	PPM		<	10.0
80	D D M			100
- NU DD	E E D DECM			20 0
Г D 77 N	ГЕЦ		•••	17
	Г Г I'I тата ж			10 0
بلبا ۵.۵	r r m			10+0
AU	FFM BBA			4+00
AU	F.F.M		· ·	10+0
AS	. F'F'M		· · ·	0+U
SB	FFM DOM			80+0
BT	FFM DDV	ŀ		200
U	PPM			0000
1 E	PPM mmx	1	· · ·	100
218	F F M		· ·	10+0
W	FFM DDA			2400
	F.F.W			Υ
BE	PPM -		<.	1.00
B	FFM		<	800
ZR	PPM	,	-	20
LA	FFM	-		10.0
CE	PPM	:		20.0
TH	PPM	I		300

TOTAL

LIMESTONES

IB-S3 1-1

ELEMENT

CONCENTRATION

(

£

۰.

£,

t

(

Ċ

£

C

Ĺ

NA	% OX.	<	0.007
к	% OX.		0.132
CA	% OX.		47.01
MG	% OX.		0.819
FE	% OX•		0+244
AL	% OX•		0.581
SI	% OX.	<	3.21
TI	% OX.		0.030
P	% OX.	<	0.005
SR	PPM		324
BA	% OX.		0.005
V	PPM	<	500
ĊR	PPM	<	4.00
MN	% OX.		0.016
03	PPM	<	2.00
NI	PPM	<	10.0
CU	PPM	<	10.0
MO	P'P'M	<	100
F B	PPM	<	20.0
ZN	PPM	<	10.0
CD	FPM	<	10.0
AG	PPM	<	4.00
AU	PPM	<	16.0
AS	PPM	<	50.0
SB	PPM	<	60.0
BI	PPM		243
U	PPM	<	5000
TE	PPM	<	100
SN	PPM	·	10.0
ω	PPM	* * *	2400
LI	PPM	<	4.00
BE	PPM	*	1.00
B	eren ¹⁷ PPM	· · · · · · · · · · · · · · · · · · ·	800
ZR	FPM	<	10.0
LA	PPM		11
CE	PPM	<	20.0
тн	PPM	<	300

TOTAL

52,060

LIMESTONES

18

IB-S3 1-2

ELEMENT

CONCENTRATION

NA	% OX.	<	0.007
ĸ	% OX.		0.186
CA	% OX.		48.52
MG	% OX.		1.21
FE	% OX.		0.246
AL	% OX.		0.546
ST	% OX.		3.21
τī	% OX.		0.027
Р. Р	% OX.		0.006
SR	PPM		387
BA	% OX.		0.006
 V	PPM	<	500
ČE	P'F'M	<	4.00
MN	% OX.	1	0.009
CC	P.P.M	<	2.00
NT	PPM	<	10.0
CI.	PPM		10.0
Mr	PPM	<	100
PB	PPM	<	20.0
ZN	P P M		20
Cr	PPM	<	10.0
AG	PPM	<	4.00
AL	PPM	<	16.0
AC	PPM	<	50.0
SE	PPM	<	60.0
BT	PPM	<	200
	PPM	<	5000
ŤE	F'F'M	<	100
SN	F F M	<	10.0
Ŵ	PPM	<	2400
LI	PPM	<	4.00
BE	FPM		1.00
B	PPM	<	800
ZF	PPM	<	10.0
LA	PPM	<	10.0
CE	PPM .	<	20.0
TH	PPM	<	300

TOTAL

53,980

i

Ç :

Ę

ί

٤

(

ł,

í

```
LIMESTONES
```

IB-S3 1-3

ELEMENT

CONCENTRATION

Ċ

£

í

.

(_

C

Ē

Ę

Ę

Ę

(

Ć

NA	% OX.	<	0.007
ĸ	7 OX.		0.160
Г.А	% OX.		49.97
MG	Ζ ΠΧ.		0.560
FF	z ox.		0.159
	z 0x.		0.389
51	Ζ θΧ.	<	3.21
TT	χ ηχ.		0.023
P	χ ΟΧ.	<	0.005
י קרי	PPM		389
BA	τ ηχ.		0.007
11	PPM	<	500
CP.	PPM	•	8
	ν ηγ.		0,005
C (1)	PPM	<	2.00
60 MT	C C C C C C C C C C C C C C C C C C C		10.0
	рги ррж	~	10.0
60 80	E E E E E E E E E E E E E E E E E E E		100
MU DD	рги ром .	~	20.0
F B 71	E E E E E E E E E E E E E E E E E E E		12
ZN		***	10.0
CD	n n n n n n n n n n n n n n n n n n n	~	4 00
AU	6770 00M		16.0
AU	P P P		50.0
AS	rin m non M	>	40.0
SB	r'r'n DDX		200
BI	F F M		5000
<u>u</u>	FFN DDW		100
IE	rrn nnM		10 0
50	FFM		2404
ω	FFM DDM		2400 A 00
L. 1	67670 0004	<u> </u>	1 00
RF	PPM	· · · ·	000 1+VV
B	PPM DDK		40 0
ZR	F'F'M		10.0
LA			10+0 10+0
CE	HHM DDV		20+0
TH	F'F'M		300

TOTAL

```
LIMESTONES
```

IB S3 1-4

ELEMENT

CONCENTRATION

NA	% OX.		<	0.007
К	% OX.	~		0.216
CA	% OX.			50.30
MG	% OX.			0.594
FE	% OX.	2		0.193
· AL	% OX.			0.528
SI	% OX.		\leq	3.21
TT	% OX.			0.029
P	% OX.		<	0.005
SR	PPM			357
BA	% OX.			0.007
U	FFM		<	500
ČR.	FPM		<	4.00
MN	% 0X.	1		0,005
C0	FFM		<	2.00
NT	FFM		<	10.0
СЦ СЦ	FFM		<	10.0
<u>ж</u> п	FFM		<	100
PB	FFM		<	20.0
7N	PPM			14
- Cn	PPM		<	10.0
AG	PPM		<	4.00
Δ11	PPM		<	16.0
45	PPM		<	50.0
58	FFM		<	60.0
BT	PPM		<	200
11	PPM			5000
TF	PPM		<	100
SN	FFM		<	10.0
<u>ш</u>	PPM		<	2400
ĹΙ	PPM		<	4.00
BE	PPM		<	1.00
B	PPM	,	<	800
I ŽR	PPM	,		12
LA	F FM		<	10.0
CE	PPM	1	<	20.0
TH	PPM		<	300

TOTAL.

55.093

ξ.,

LIMESTONES

IB-S3 1-5

ELEMENT

CONCENTRATION

Ĺ

C :

£

ŧ

۰ŧ

ί

ŝ

NA	% OX.	<	0.007
К	% OX.		0.076
CA	% OX.	,	50.55
MG	* % OX.		1.10
FE	% OX.		0.120
AL	% OX.		0.188
SI	% OX.	<	3.21
TI	% OX.		0.013
F	% OX.	<	0.005
SR	PPM		301
BA	% OX.		0.006
V	PPM	<	500
CR	PPM		5
MM	% OX.		0.002
CO	P P M	<	2.00
NI	PPM	×.	10.0
CU	PPM	1	10.0
мо	PPM	<	100
FB	PPM	<	20.0
ZN	FFM	•	15
CD	PPM	<	10.0
AG	PPM	\langle	4.00
AU	PPM	<	16.0
AS	FFM	<	50.0
SB	PPM	<	60.0
BI	PPM	<	200
U U	PPM	<	5000
TE	PPM		100
SN	FFM	<	10.0
ы	FFM	<	2400
LI	PPM	<	4.00
BE	PPM	<	1.00
в	PPM		800
ZR	PPM		10
LA	PPM	<	10.0
CE	PPM	<	20.0
TH	PPM	<	300

TOTAL

LIMESTONES

IB-S3 1-6

ELEMENT

CONCENTRATION

NA	% OX.		0.014
К	% OX.		0.194
CA	% OX.		44.45
MG	% OX.		5,78
FE	% OX.		0.268
AL	% OX.		0.476
SI	% OX.	<	3.21
TI	% DX.		0.020
P	% OX.	<	0.005
SR	PPM		244
BA	% OX.		0.007
Ŭ	FEM	<	500
ČR.	FFM	<	4.00
MN	% OX.		0.004
CO	F'F'M	<	2.00
ы	FFM	<	10.0
CU	PPM	<	10.0
บัท	PPM	<	100
PB	PPM	<	20.0
ZN	PPM	<	10.0
CD	FF M	<	10.0
AG	PPM	<	4.00
AU	PPM	<	16.0
AS	PPM	<	50.0
SB	PPM	<	60.0
BI	PPM	· · · · ·	200
U	PPM	<	5000
TE.	FPM	<	100
SN	FFM	<	10.0
W	PPM	<	2400
LI	PPM	<	4,00
BE	PPM	<	1.00
В	ዮዮ州	<	800
ZR	PPM	<	10.0
LA	ዮዮ州	<	10.0
CE	P'P'M	<	20.0
TH	FPM	· · · · · · · · · · · · · · · · · · ·	300

TOTAL.

54.427

€

ŧ

í

ł,

Ļ

Ç

< l

LIMESTONES

24

IB-S3 1-7

ELEMENT

CONCENTRATION

NA	% OX.		0.011
К	% OX.		0.352
CA.	% OX.		48.89
MG	Ζ ΟΧ.	-	0.828
FF	% OX.		0.330
AL	% OX.		0,911
51	% ΟΧ.	<	3.21
TT	Ζ ΟΧ.		0.038
F'	Ζ ΟΧ.		0.010
SF	PPM		276
BA	z ox.		0.007
U	PPM	<	500
C.R.	PPM		4.00
MN	z nx.		0.007
rn rn	PPM	<	2.00
NT	PPM	<	10.0
CU	PPM	<	10.0
<u>жо</u>	PPM		100
FR	FFM	<	20.0
7 N	FFM	< label{eq:started_startes_started_started_startes	10.0
<u>с</u> п	PPM	<	10.0
ΔG	PPM	~	4.00
AU	PPM		16.0
AG	PPM	 	50.0
AD CR	JEEM		60.0
E T	PPM	<	200
11	FFM		5000
TF	PPM	<	100
SN	PPM	<	10.0
ш.	PPM	<	2400
ΪΪ	FFM	• • • • • • • • • • • • • • • • • • •	4.00
BE	F FM	<	1.00
B	PPM	<	800
ZR	PPM	I	11
LA	PPM	<	10.0
CE	PPM		20.0
TH	FFM	<	300

TOTAL

54.592

Ć

6

t

i

C

Ĺ

I.

Ċ

LIMESTONES

IB-S3 3-1

<

<

 $\stackrel{<}{<}$

 $\langle \rangle \langle \rangle$

<

<

 \leq

<

<

<

< <

< <

< <

< <

<

ELEMENT

CONCENTRATION

0.017 0.368 41.70 5.04 0.411 0.881 3.21

0.038

0.006

178

500

9 0.006 2.00

10.0

10.0 100 20.0

10.0

10.0 43

16.0

60.0

200

100 10.0

5000

2400

800

€÷

10

N	łA	%	OX.	
к		%	ΟX.	
C	λ A	%	OX.	
4	ថែ	%	OX.	,
F	E.	%	ΟX.	
F	۹L.	%	OX.	
ć	3 I	%	OX.	,
"	í I	%	ΟX.	•
F	2	%	OX.	,
5	3R	F	FM	
E	3A	%	0X.	•
Ļ	j –	F	FM	
C	1R	٩	FM	
4	1N	%	ox.	,
C	20	۴	'F'M	
ላ	4 I	F	'F'M	
C	ະບ	F	'F'M	
1	10	F	'F'M	
F	°B	F	FM	
Z	2N -	P	FM	
C	210	F	PM	
F	4G	F	FM	
4	4U	F	'F'M	
4	45	۴	'F'M	
ć	3B	F	'F'M	
E	31	F	PM	
L	J	F	'P'M	
T	E	۴	'F'M	
S	SN .	F	'F'M	
h)	F	'F'M	
L	_1	F	F'M	
E	3E	F	FM	
E	3	P	'F'M	
Ž	ZR .	P	'F'M	
L	A	۲ ۲	' F'M	
6	JE.	- F	' F'M	

TOTAL

F'F'M

ТΗ

51.675

4.00

1.00

10.010.0

20.0

300 -

LIMESTONES

IB-S3 3-2

<

<

<

< <

<

 \sim \sim \sim

<

<

<

<

 $\langle \cdot \rangle \langle \cdot \rangle$

<

<

<

<

<

ELEMENT

CONCENTRATION

0.009 0.217 49.60 0.660 0.166 0.479 3.21

0.027

0.005

0.006

0.004 2.00

255

500

11

10.0

10.0 14

16.0

50.0

60.0

10.0

4.00

1.00

10.0

20.0

200 5000 100

2400

800 11

300

Ć

6

Ļ

ί

t

t

10.0

100 20.0 10.0

NA	% OX.	
К	% OX.	
CA	% OX.	
MG	% OX.	
FE	% OX.	
AL	% OX.	
SI	% OX.	
TI	% OX.	
P	% OX.	
SR	PPM	
BA	% OX.	
V	PPM	
CR	FFM	
MN	% OX.	
CO	PPM	
NI	PPM	
CU	PPM	
MO	PPM	
FΒ	PPM	
ZN	PPM	
CD	FFM	
AG	PPM	
AU	PPM	
AS	PPM	
SB	PPM	
BI	PPM	
U	PPM	
TE	PPM	
SN	PPM	
μ	PPM	
LI	P'P'M	
BE	F'F'M	
B	FFM	
	r'r'M oew	
LA	r'r'M DDY	
した。	r'r'm riciw	
IH	rrm	

TOTAL

```
LIMESTONES
```

IB-S3 3-3

ELEMENT

CONCENTRATION

£

(

(

Ć

Ş,

NA	% OX.	<	0.007
ĸ	% 0X.		0,087
Г.А	% OX.	`	50,68
MG	Ζ ΟΧ.		0.843
FF	Ζ ΠΧ.		0.129
	2 0 X •		0,193
сī	Z 0X.	<	3.21
T T	χ ηχ.		0.013
P	ž 0X.	<	0.005
۱ ۵.۵۰	FPM		189
RA	z nx.		0.006
L CENT	PPM	<	500
C P	PPM		35
	Ϋ́ΩΥ.		0.003
60 60		<	2.00
60 NT	D D D M	·	28
CH CH	E E SS DEDM	<	10.0
	E E 13 EEEM	<	100
nu ran	E E FI		20.0
F.B 7.1	E E IV EXEMA	2	10.0
ZN	F F 13		10.0
	PPN DDM		4,00
AU	r'r'n rinw	~ ~	16.0
AU	P P D	~	50.0
AS	P'F'P'	~	60.0
I SB	r r i i DDM	<	200
BT	E E SI E E SA	~	5000
U		***	100
	F F B	<	10.0
50		~	2400
		~	4,00
	P P D A	~	1.00
RE	r r ri Dem	~	800
B	F F F	*•	10
	г'г'я 554		10.0
	ртр (П По по ма	· · · · ·	20.0
CE	577 M		300
TH TH	F'F'M	**.	200

TOTAL

LIMESTONES

IB-53 3-4

ELEMENT

CONCENTRATION

ŧ,

C

£...

t

			•	
	NA	% OX.	<	0.007
	ĸ	% OX+		0.183
	CA	% OX+		47.60
	MG	. % OX•		2.79
:	FE	% OX.		0.206
J	AL	% OX.		0.399
	SI	% OX+	<	3.21
	ΤI	% OX.		0.020
	F'	% OX.	<	0.005
	SR	PPM		165
	BA	% OX.		0.009
	V	F'F'M		500
	CR	F F M		11
1	MN	% OX+		0.005
	03	PPM .	<	2.00
	NI	F F M	<	10.0
	CU	P P M	<	10.0
ŀ	MO	FFM	<	100
)	F'B	PPM	<	20.0
	ZN	PPM	<	10.0
	CD	FPM	<	10.0
i i	AG	FFM	<	4.00
	AU	PPM	<	16.0
	AS	PPM	<	50.0
	SB	PPM	<	60.0
•	BI	PPM	<	200
	U	PPM	<	5000
	TE	PPM	<	100
J	SN	PPM	<	10.0
	μ.	PPM	<	2400
Í	LI	PPM	<	4.00
	BE	PPM	<	1.00
	B	PPM	<	800
	ZR	PPM	<	10.0
J	LA	F'F'M	<	10.0
	CE	PPM	<	20.0
_	тн	PPM	<	300

TOTAL

54.433

```
LIMESTONES
```

IB-S4 -1

<

<

 $\langle \cdot \rangle \langle \cdot \rangle$

 \times \times \times

~~~~~~~~~~~~~~~~~~

ELEMENT

CONCENTRATION

0.017 0.062 48.90 0.488 0.371 0.461 3.21

0.025

0.005

0.010 2.00

329

500

13

10.0 10.0 100 20.0 18 10.0

4.00

16.0

50.0

10.0 2400

> 10.0 20.0 300

4.00

1.00

200 5000 100

800

Ç

6

(

ŧ

ť

ţ

ί

| NA           | % OX.            |
|--------------|------------------|
| К            | % OX.            |
| CA           | % OX.            |
| НG           | % OX.            |
| FE           | % OX.            |
| AL           | % OX.            |
| ST ST        | % OX.            |
| С1<br>ТТ     | % OX.            |
| P P          | 7 OX.            |
| ,<br>SB      | PPM              |
| BA           | χ ηχ.            |
|              | PPM              |
| C.B.         | FFM              |
| MN MN        | Ψ OX.            |
| CD           | PPM              |
| NT           | PPM              |
|              | PPM              |
| <u>но</u>    | PPM              |
| PP           | PPM              |
| 7 N          | PPM              |
|              | DDM              |
|              | ГГИ<br>ФФЖ       |
|              | ГГР<br>Брм       |
|              | EFIL -           |
| H3<br>CD     | е е п<br>ром     |
| ים פ<br>דים  | DDM              |
| 10           | орм<br>1 - 1 - 1 |
| U<br>TE      | DDM              |
|              | PPM              |
| 1.5          | PPM              |
| i w          | PPM              |
|              | DDM              |
| DC<br>D      | PPM              |
| 76           | PPM              |
|              | E PPM            |
| , LM<br>CC   | E E E E          |
| ບແ<br>1 11 ມ | ЕГР<br>ФФЖ       |
| 1 1 1        | 11211            |

TOTAL.

53.569

LIMESTONES

### IB-S4 3-1

ELEMENT

CONCENTRATION

£,

€:

i,

Ć

(

C

| % OX.                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| % OX.                   | 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| % OX.                   | 47,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| % OX.                   | 0.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| % 0X.                   | 0,380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| % 0ו                    | 0,241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| % OX.                   | < 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| % OX.                   | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| % OX.                   | 0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>PPM</b>              | 314                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| % 0X.                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>PPM</b>              | < 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| FFM                     | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ζ ΟΧ.                   | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EEM                     | < 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PPM                     | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PPM                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| F'F'M                   | < 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| F F M                   | < 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PPM                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PPM                     | < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PPM                     | < 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PPM                     | < 16.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>PPM</b>              | < 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PPM                     | < 60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PPM                     | < 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PPM                     | < 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>PPM</b>              | < 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PPM                     | < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>FPM</b>              | < 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FFM                     | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FFM                     | < 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2007-24 17 <b>F'F'M</b> | < 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>F</b> FM             | < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| F F M                   | < 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PPM                     | < 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>FPM</b>              | < 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | <ul> <li>2 OX.</li> <li>2 PPM</li> <li>3 PPM</li> <li>3 PPM</li> <li>3 PPM</li> <li>4 PPM</li> &lt;</ul> |

TOTAL

52,101

LIMESTONES

### IB-S4 3-2

ELEMENT\_

CONCENTRATION

£.

Ć

ς.

Ç

**\$**....

ł

(

É

ŧ

ι

١.

| NA             | % OX.                  |   | 0.008 |
|----------------|------------------------|---|-------|
| к              | % OX.                  |   | 0.014 |
| CA             | % OX.                  |   | 51.38 |
| MG             | % OX.                  | • | 0.635 |
| FE             | % OX.                  |   | 0.136 |
| AL             | % OX.                  |   | 0.176 |
| SI             | % OX.                  | < | 3.21  |
| TI             | % OX.                  |   | 0.013 |
| F <sup>r</sup> | % OX.                  |   | 0.013 |
| SR             | PPM                    |   | 352   |
| BA             | % OX.                  |   | 0,005 |
| V              | PPM                    | < | 500   |
| ĊR             | FFM                    | - | 6     |
| MN             | % OX.                  |   | 0,005 |
| CÜ             | FFM                    | < | 2.00  |
| NI             | PPM                    | < | 10.0  |
| CU             | PPM                    | < | 10.0  |
| MO             | PPM                    | < | 100   |
| <b>PB</b>      | <b>P'P'M</b>           | < | 20.0  |
| ZN             | PPM                    |   | 19    |
| CD             | PPM                    | < | 10.0  |
| AG             | PPM                    | < | 4.00  |
| AU             | <b>PPM</b>             | < | 16.0  |
| AS             | <b>F</b> ' <b>F</b> 'M | < | 50.0  |
| SB             | PPM                    | < | 60.0  |
| BI             | PPM                    | < | 200   |
| U              | FFM                    | < | 5000  |
| TE             | PPM                    | < | 100   |
| SN             | <b>F</b> FM            | < | 10.0  |
| μ              | P'P'M                  | < | 2400  |
| L.I            | FFM                    | < | 4.00  |
| BE             | PPM .                  | < | 1.00  |
| B              | PPM                    | < | 800   |
| ZR             | PPM                    | < | 10.0  |
| LA             | P'P'M                  | < | 10.0  |
| CE             | PPM                    | < | 20+Ö  |
| тн             | PPM                    |   | 300   |

TOTAL

LIMESTONES

# IB-S4 4-1

ELEMENT

CONCENTRATION

(

ť

Ć

Ç

(

|   | NA  | % 0×+ |   | 0.015 |
|---|-----|-------|---|-------|
|   | К   | ζ ΟΧ. |   | 0.007 |
|   | CA  | Ζ ΟΧ. |   | 49.11 |
|   | MG  | Z 0X. |   | 1.31  |
|   | FF  | Z 0X. |   | 0.105 |
|   |     | Z 0X. |   | 0.114 |
|   | ST  | 7 0X. | < | 3.21  |
|   | TT  | 2 OX. |   | 0.009 |
| , | p.  | 2 OX. |   | 0.015 |
|   | SR  | PPM   |   | 295   |
|   | RA  | 2 OX+ |   | 0.006 |
|   | Ũ   | PPM   | < | 500   |
|   | ČR  | PPM   | < | 4.00  |
|   | MN  | % 0X. |   | 0.004 |
|   | co  | PPM   | < | 2.00  |
|   | NT  | PPM   | < | 10.0  |
|   | сî  | PPM   |   | 10.0  |
|   | พัก | PPM   | < | 100   |
|   | PB  | PPM . | < | 20.0  |
|   | ZN  | PPM   |   | 14    |
|   | C D | PPM   | < | 10.0  |
|   | AG  | PPM   | < | 4.00  |
|   | AU  | PPM   | < | 13.0  |
|   | AS  | PPM   | < | 50.0  |
|   | SB  | PPM   | < | 60.0  |
|   | 81  | PPM   | < | 200   |
|   |     | PPM   | < | 5000  |
|   | TE  | PPM   | < | 100   |
|   | SN  | PPM   | < | 10.0  |
|   | ω   | PPM   | < | 2400  |
|   | LI  | PPM   | < | 4.00  |
|   | BE  | PPM   | < | 1.00  |
|   | B   | PPM   | < | 800   |
|   | ZR  | F'F'M | < | 10.0  |
|   | LA  | FFM   | < | 10.0  |
| - | CE  | PPM   |   | 20.0  |
|   | тн  | PPM   | < | 300   |

TOTAL

53,904

LIMESTONES

# 1B-S4 4-2

ELEMENT

# CONCENTRATION

R.

t

(

C

(

C

€

ŕ

ť.

ŧ

(

(

¢.

4

ł

ţ

ł,

í,

C

(

| NA | % OX.                           | 0.010  |
|----|---------------------------------|--------|
| ĸ  | % OX.                           | 0.008  |
| CA | % OX.                           | 51.10  |
| MG | % OX.                           | 0.554  |
| FE | % OX.                           | 0.107  |
| AL | % OX.                           | 0.126  |
| SI | % OX.                           | < 3.21 |
| TI | % OX.                           | 0.011  |
| P  | % 0X.                           | 0.027  |
| SR | FFM                             | 319    |
| BA | % OX.                           | 0.005  |
| ν  | PPM                             | < 500  |
| CR | PPM                             | . 6    |
| MN | % OX.                           | 0.003  |
| 00 | PPM                             | < 2.00 |
| NT | PPM                             | < 10.0 |
| CÜ | PPM                             | < 10.0 |
| MO | PPM                             | < 100  |
| PB | P'F'M                           | < 20.0 |
| ZN | PPM                             | 34     |
| 03 | PPM                             | < 10.0 |
| AG | FFM                             | < 4.00 |
| AU | <b>PPM</b>                      | < 16.0 |
| AS | <b>FFM</b>                      | < 50.0 |
| SB | P P M                           | < 60.0 |
| BI | PPM                             | < 200  |
| U  | PPM                             | < 5000 |
| TE | F <sup>e</sup> F <sup>e</sup> M | < 100  |
| SN | F F M                           | < 10.0 |
| W  | PPM                             | < 2400 |
| Ĺ1 | FFM                             | < 4.00 |
| BE | FFM                             | < 1.00 |
| B  | FFM                             | < 800  |
| ZR | PPM                             | < 10.0 |
| LA | PPM                             | < 10.0 |
| CE | FFM                             | < 20.0 |
| ТН | PPM                             | < 300  |

TOTAL

LIMESTONES

# IB-S4 4-3

ELEMENT

#### CONCENTRATION

ł

Ċ

€

C

ľ

(

.

| NA | % OX.       |    | 0.010 |
|----|-------------|----|-------|
| К  | % OX.       |    | 0.016 |
| CA | % OX.       |    | 49.38 |
| MG | · % OX.     |    | 0.541 |
| FE | % OX.       |    | 0.107 |
| AL | % OX.       |    | 0.138 |
| SI | % OX.       | <  | 3.21  |
| TI | % 0X.       |    | 0.010 |
| P  | % OX.       |    | 0.011 |
| SR | FPM         |    | 414   |
| BA | % 0×.       |    | 0.005 |
| V  | PPM         | <  | 500   |
| CR | FFM         |    | 10    |
| MN | % OX.       |    | 0.004 |
| CO | FFM         | <  | 2.00  |
| NI | FFM         | <  | 10.0  |
| CU | PPM         | <  | 10.0  |
| MO | PPM .       | <  | 100   |
| FB | PPM         | <  | 20.0  |
| ZN | F'F'M       | <` | 10.0  |
| CD | <b>F</b> FM | <  | 10.0  |
| AG | FPM         | <  | 4.00  |
| AU | FFM         | <  | 16.0  |
| AS | PPM         | <  | 50.0  |
| SB | FFM         | <  | 60.0  |
| BI | FFM         | <  | 200   |
| U  | F'FM        | <  | 5000  |
| TE | <b>F</b> FM | <  | 100   |
| SN | FFM         | <  | 10.0  |
| ω  | ዮዮ州         | <  | 2400  |
| LI | PPM         | <  | 4.00  |
| BE | F P M       | <  | 1.00  |
| В  | PPM         | <  | 800   |
| ZR | PPM         | <  | 10.0  |
| LA | PPM         | <  | 10.0  |
| CE | PPM         | <  | 20.0  |
| TH | PPM         | <  | 300   |

TOTAL

53.430

÷

% OX.

% OX. P'P'M

% DX.

PPM

PPM

% OX.

PPM

PPM

**FFM** 

PPM

**F'F'M** 

**PPM** 

**P'F'M** 

PPM

PPM

PPM

ዮዮሐ

PPM

PPM

PPM

PPM

**PPM** 

**F**FM

F'F'M

PPM

PPM

PPM

PPM

FFM

#### IB-S4-6

<

<

ELEMENT

NA

ĸ

CONCENTRATION

0.011

0.031

0.707

0.175

0.231

3.21

0.014

0.015

0.006

0.007

2.00

10.0

20.0

10.0

16.0

50.0

60.0

10.0

4.00

1.00

10.0

10.0

20.0

4.00

438

500

21

50.60

(

Ć

ſ

6

€

i.

Ċ

| ΓA          |  |
|-------------|--|
| MC MC       |  |
| 110<br>55   |  |
| г с.<br>А ( |  |
| AL.         |  |
| 51          |  |
| TI          |  |
| P           |  |
| SR          |  |
| BA          |  |
| V           |  |
| CR          |  |
| MN          |  |
| CΟ          |  |
| NI          |  |
| CU          |  |
| MÖ          |  |
| FB          |  |
| 7 N         |  |
| сп<br>СП    |  |
| ΔG          |  |
|             |  |
| но<br>ХС    |  |
| сп<br>20    |  |
| 00<br>10 T  |  |
| Т.Т.        |  |
| U<br>7 m    |  |
|             |  |
| 21          |  |
| W           |  |
| LI          |  |
| BE          |  |
| p           |  |

ZR

L.A

СE

ΤН

| 0    |          |
|------|----------|
| 2    |          |
| 10   |          |
| 10   | <        |
| 100  | <        |
| 20   | <        |
| 35   |          |
| 10   | <        |
| 4    | 2        |
| + 4  |          |
| 50   | $\geq$   |
| 20   |          |
| 200  | <u> </u> |
| 200  | ~        |
| 5000 | <        |
| 100  | <        |
| 10   |          |
| 2400 | <        |
| 4    | <        |
| 1    | <        |
| 800  | <        |
| 10   | <        |
| 10   | <        |
| 20   | <        |
| 300  | ~        |

TOTAL.

55.003

LIMESTONES

### IB- S4 -12

ELEMENT

9

9

Ð

D

Ð

9

Э

3

2

9

9

**)** 

•

2

¥

 $\mathbf{D}_{\mathrm{h}}$ 

CONCENTRATION

J

3

9

0

0

0

0

0

8

0

8

e

C

6

6

| NA                  | % OX.      |   | 0.013 |
|---------------------|------------|---|-------|
| К                   | % OX+      |   | 0.028 |
| CA                  | % OX.      |   | 49,39 |
| MG                  | % OX.      |   | 0.445 |
| FE                  | % OX.      |   | 0.146 |
| AL                  | % OX.      |   | 0.335 |
| SI                  | % OX.      | < | 3,21  |
| ΤI                  | % OX.      |   | 0.022 |
| F'                  | % OX.      |   | 0.030 |
| SR                  | PPM        |   | 483   |
| BA                  | % OX.      |   | 0.006 |
| V                   | PPM        | < | 500   |
| CR                  | PPM        | < | 4.00  |
| MN                  | % OX.      |   | 0.015 |
| CO                  | PPM        | < | 2,00  |
| NI                  | PPM        | < | 10.0  |
| CU                  | PPM        | < | 10.0  |
| MÜ                  | PPM        | < | 100   |
| PB                  | PPM        | < | 20.0  |
| ZN                  | PPM        |   | 25    |
| CD                  | PPM        | < | 10.0  |
| AG                  | PPM        |   | 18    |
| AU                  | PPM        | < | 16.0  |
| AS                  | - PPM      | < | 50.0  |
| SB                  | PPM        | < | 60.0  |
| BI                  | PPM        | < | 200   |
| U                   | PPM        | < | 5000  |
| TE                  | PPM        | < | 100   |
| SN                  | <b>FFM</b> | < | 10.0  |
| W                   | PPM        | < | 2400  |
| LI                  | <b>FFM</b> | < | 4.00  |
| BE                  | <b>FFM</b> | < | 1.00  |
| ${\bf F} = {\bf F}$ | FPM        | < | 800   |
| ZR                  | PPM        |   | 11    |
| LA                  | PPM        | < | 10.0  |
| CE                  | PPM ·      | < | 20.0  |
| <b>Ϋ</b> Μ          | PPM        | < | 300   |

TOTAL

LIMESTONES

# IB-M-1

ELEMENT

:

•

CONCENTRATION

| NA            | % OX.                                 |                                         | 0.014 |
|---------------|---------------------------------------|-----------------------------------------|-------|
| ĸ             | % OX.                                 |                                         | 0.062 |
| CA            | % OX.                                 |                                         | 45,18 |
| MG            | 7 OX.                                 |                                         | 3.22  |
| FF            | Ζ ΟΧ.                                 |                                         | 0.232 |
|               | Ζ ΠΧ.                                 |                                         | 0.209 |
| 5 T           | Ζ ΟΧ.                                 | <                                       | 3.21  |
| тт<br>Тт      | ν οχ.                                 | -                                       | 0.009 |
| р<br>Д        |                                       |                                         | 0.018 |
| ,<br>60       | 24 U.V.+                              |                                         | 447   |
| 5A<br>12A     | <b>ν</b> ηΥ.                          |                                         | 0.006 |
| DH<br>U       | 24 U.A.+                              | <                                       | 500   |
|               | E E E E                               |                                         | 4.00  |
| ᄡ             | * OX.                                 |                                         | 0.002 |
|               |                                       | <                                       | 2.00  |
|               | D D D M                               | , i i i i i i i i i i i i i i i i i i i | 10.0  |
|               | PPM                                   |                                         | 10.0  |
| LU<br>X0      |                                       | ~                                       | 100   |
| 00<br>00      | DDM                                   |                                         | 20.0  |
| ר בס<br>יד או |                                       |                                         | 21    |
|               | E E D<br>E E M                        |                                         | 10.0  |
|               | E E E E E E E E E E E E E E E E E E E |                                         | 4.00  |
| AG            |                                       | · · ·                                   | 14 0  |
| AU            | FFR<br>COV                            |                                         | 50.0  |
| AS            | PPM                                   | ~                                       | 40 0  |
| SB            | PPN<br>DDM                            |                                         | 200   |
| BI            | FFM<br>DDX                            |                                         | 5000  |
| U             | F F M                                 | ~                                       | 100   |
| 1E            | - FFR<br>DDM                          | ~                                       | 10.0  |
| - NC          | F F F                                 |                                         | 2400  |
| W             |                                       | ~                                       | 2400  |
|               | F F 13                                |                                         | 1.00  |
| BE<br>E       | FFN<br>DDM                            |                                         | 900 ( |
| B<br>Dr.      | FFM<br>DDM                            | ~                                       | 10 0  |
|               |                                       |                                         | 10.0  |
| LA            | r'r'M<br>Brent                        |                                         | 20.0  |
| UE<br>TU      | F'F'M<br>DODY                         | · · · · · · · · · · · · · · · · · · ·   | 20+0  |
| 1 H           | F'F'M                                 | · · ·                                   | 300   |

TOTAL

# LIMESTONE SAMPLES

30

# IB-M-2

ELEMENT

Č

-- j

### CONCENTRATION

| NA   | % OX.   |   | 0.036 |
|------|---------|---|-------|
| ĸ    | % OX.   |   | 0.196 |
| CA   | % OX.   |   | 31.08 |
| MG   | % OX.   |   | 18.01 |
| FE   | % OX.   |   | 0,365 |
| AL.  | % OX.   |   | 0.604 |
| SI   | % OX.   | < | 3.21  |
| ΤI   | % OX+   |   | 0.024 |
| P    | % 0X₊ 1 | < | 0.005 |
| SR   | PPM     |   | 51    |
| BA   | % OX.   |   | 0.004 |
| V    | PPM     | < | 500   |
| CR   | PPM     |   | 22    |
| MN   | % OX.   |   | 0.004 |
| CO   | P P M   | < | 2.00  |
| NI   | РРМ     |   | 13    |
| CU   | PPM     | < | 10.0  |
| MO   | PPM     | < | 100   |
| ΡB   | PPM     | < | 20.0  |
| ΖN   | PPM     |   | 35    |
| CD   | P P M   | < | 10.0  |
| AG   | PPM     | < | 4.00  |
| AU   | P P M   | < | 16.0  |
| AS   | PPM     | < | 50.0  |
| SB   | PPM     | < | 60.0  |
| BI   | P P M   | < | 200   |
| U    | P'P'M   | < | 5000  |
| TE   | PPM     | < | 100   |
| SN   | ዮዮň     | < | 10.0  |
| W    | F F M   | < | 2400  |
| L. I | P'P'M   | < | 4.00  |
| BE   | PPM     | < | 1.00  |
| В    | PPM     | < | 800   |
| ZR   | PPM ·   | < | 10.0  |
| LA   | PPM     |   | 16    |
| CE   | P P M   | < | 20.0  |
| TH   | PPM     | < | 300   |

TOTAL

| 040.444       |             | JATOT         |            |
|---------------|-------------|---------------|------------|
| ٦             |             |               |            |
| 300           | >           | 백러러           | H.L        |
| 20.0          | >           | 서리의           | ЭO         |
| 56            |             | WHH           | 97         |
| 0.01          | >           | N d d         | ЯZ         |
| 008           | >           | Mala          | В          |
| 00 <b>•</b> I | >           | Wad           | ្នំអ       |
| S             |             | ਲਿਕਰ          | I T        |
| 5400          | >           | 전역적           | M          |
| 0*01          | >           | Wed           | NS         |
| 00 T          | >           | Mede          | ЭL         |
| 0009          | >           | Weid          | n          |
| 510           |             | Wele          | ΕI         |
| 0.08          | >           | 전학학           | ЯS         |
| 0*09          | <b>&gt;</b> | kal           | SA         |
| 0+91          | >           |               | UΑ         |
| 00 * tr       | >           | 4.4.4         | 9 V        |
| 0 * 0 I       | >           | te et et      | αD         |
| 64            |             | 생님님           | NZ         |
| 20.0          |             | hi et et      | a a        |
| 001           | >           | H.d.d         | 014        |
| 50            |             | to be the set | 00         |
| ΣT            |             | Haba          | ТМ         |
| Σ             |             | le d d        | 00         |
| ΣτΟ,Ο         |             | * ×0 - %      | NH .       |
| 85            |             | ਘਰਰ           | 80         |
| 009           | >           | 써.el el       | $\land$    |
| S00*0         |             | ~×0 %         | ∀a         |
| 67            |             | Mete          | ЯS         |
| 096*0         |             | 'X0 %         | -d         |
| 090*0         |             | °×0 % ·       | <u>I 1</u> |
| 3*51          | >           | *×0 %         | 18         |
| 1*55          |             | *×0 %         | ШA         |
| 1*58          |             | •×0 %         | E.E        |
| Z9*S1         |             | *X0 %         | 9W         |
| 21.21         |             | *X0 %         | A0         |
| 842.0         |             | *X0 %         | М          |
| \$Z0*0        |             | *X0 %         | θŅ         |

CONCENTRATION

ELEMENT

T-L-AT ST

LIMESTONES

 $1 \circ$ 

# 18-1-2

ELEMENT

9

3

ð

Ð

Э

9

9

9\_

Ð

Ð

Ð

9

Э

Ð

Ð

D

Э

3

CONCENTRATION

| NA   | % OX.      | 0+023  |   |
|------|------------|--------|---|
| ĸ    | % OX.      | 0.144  |   |
| CA   | % OX.      | 34.48  |   |
| MG   | % OX.      | 6+26   |   |
| FE   | % 0X.      | 0.178  |   |
| AL   | % OX₊      | 0.460  |   |
| SI   | % OX.      | < 3.21 |   |
| ΤI   | % OX.      | 0.029  |   |
| F'   | % OX.      | 0.284  |   |
| SR   | FFM        | 56     |   |
| BA   | % OX.      | 0.006  |   |
| Ŷ    | PPM        | < 500  |   |
| CR   | PPM        | 17     |   |
| MN   | % OX.      | 0.012  |   |
| 00   | <b>PPM</b> | < 2.00 |   |
| ИI   | PPM        | < 10.0 |   |
| CU   | рем        | < 10.0 | • |
| MO   | PPM        | < 100  |   |
| FB   | PPM        | < 20.0 |   |
| ZN   | PPM        | 23     |   |
| CD . | F'P'M      | < 10.0 |   |
| AG   | PPM        | < 4.00 |   |
| AU   | FFM        | < 16.0 |   |
| AS   | PPM        | < 50.0 |   |
| SB   | рем        | < 60.0 |   |
| BI   | PPM        | < 200  |   |
| U    | PPM        | < 5000 |   |
| TE   | PPM        | < 100  |   |
| SN   | PPM        | < 10.0 |   |
| W    | PPM .      | < 2400 |   |
| LI   | PPM        | < 4.00 |   |
| BE   | PPM        | < 1.00 |   |
| B    | PPM        | < 800  |   |
| ZR ' | PPM        | < 10.0 |   |
| LA   | PPM        | 21     |   |
| CE   | PPM        | < 20.0 |   |
| тн   | PPM        | < 300  |   |

TOTAL

45.092

59

Ģ

LIMESTONES

IB 1-1

ELEMENT

3

3

)

Þ

9

3

9

9

9

9

əl

9

9

) (

3

CONCENTRATION

8

| NA | % OX.         |   | 0.314 |
|----|---------------|---|-------|
| К  | % OX.         |   | 0.936 |
| CA | % OX.         |   | 40.02 |
| MG | % OX+         |   | 2,32  |
| FE | % OX.         |   | 1.59  |
| AL | % OX.         |   | 3.59  |
| SI | % OX.         | < | 3,21  |
| TI | % OX.         |   | 0.154 |
| P  | % OX.         |   | 0.083 |
| SR | PPM           |   | 193   |
| BA | % OX.         |   | 0.014 |
| Ų  | PPM           | < | 500   |
| CR | PPH           | < | 4.00  |
| MN | <b>%</b> OX.  |   | 0.028 |
| CO | PPM           |   | 3     |
| NI | PFh           | < | 10.0  |
| CU | <b>P</b> P科   |   | 17    |
| MÖ | <b>F</b> Seri | < | 100   |
| PB | <b>P</b> 答答   | < | 20.0  |
| ZN | <b>臣臣</b> 持   |   | 40    |
| CD | E-P-M         | < | 10.0  |
| AG | PPM           | < | 4.00  |
| AU | P P M         | < | 15.0  |
| AS | PDM           | < | 50.0  |
| SB | PPM           | < | 60.0  |
| BI | PPM           | < | 200   |
| U  | PPM           | < | 5000  |
| TE | PPM           | < | 100   |
| SN | PPM           | < | 10.0  |
| W  | PPM           | < | 2400  |
| LI | PPM           |   | 22    |
| BE | PPM           | < | 1.00  |
| B  | РРM           | < | 800   |
| ZR | PPM           |   | 28    |
| LA | PPM           |   | 10    |
| CE | PPM           | < | 20.0  |
| ТH | PPM           | < | 300   |

TOTAL

52.249

;

2000