6200866

· ~

. . M-X/RES PROJECT BRIEFINGS

23-24 SEPTEMBER 1980

· · ·

· · --

M-X/RES PROJECT BRIEFINGS/DISCUSSIONS

TUESDAY, 23 SEPTEMBER 1980

0900 Hours - Insolation and Wind Resources Assessment Briefing

1300 Hours - Geothermal Briefing and Discussions

1500 Hours - M-X/RES Data Base Content/Schedule Discussions

WEDNESDAY, 24 SEPTEMBER 1980

0900 Hours - Evaluation Criteria and Methodology Briefing 1430 Hours - Storage Discussions

THRUSDAY, 25 SEPTEMBER 1980

0900 Hours - Project Office Briefing

1430 Hours - General Discussions

- Systems Integration Contract Draft
- Proposal Evaluation Criteria
- System Development Contracts Schedule of Events
- Development Hardware

M-X/RES INSOLATION AND WIND RESOURCES ASSESSMENT PROGRAM

BRIEFING TO M-X/RES PROJECT OFFICE

ON

23 SEPTEMBER 1980

	BRIEFING FORMAT		
•••			
		AEROSPACE	<u></u>
	PROGRAM OVERVIEW	AEROSPACE	
	• INSOLATION ASSESSMENT	SERI	

M-X/RES JOINT INSOLATION AND WIND RESOURCES ASSESSMENT PROGRAM

WIND ASSESSMENT

MEASUREMENT STATIONS

SUMMARY

AEROSPACE

PNL

PNL

M-X/RES JOINT INSOLATION AND WIND RESOURCES ASSESSMENT PROGRAM

ACCOMPLISHMENTS TO DATE

		O MANAGEMENT PLAN	
		- OBJECTIVES	
		- ROLES AND RESPONSIBILITIES	
		- POINTS OF CONTACT	
		– SCHEDULES	
• • •		o FY80 and FY81 FUNDING	
	۲	DEFINED METEOROLOGICAL STATIONS	
		o CONFIGURATIONS	
· * • •		- RATIONALE	
		- COST ESTIMATES	
		- DATA RECOVERY/ANALYSIS	
		o DEPLOYMENT	
		o SCHEDULES	· · ·
		O RFP PREPARATION	

.

BENEFITS OF AN M-X/RES JOINT INSOLATION AND

WIND RESOURCES ASSESSMENT PROGRAM

CORRELATION OF INSOLATION AND WIND MEASUREMENTS FACILITATED

COMMON DATA FORMAT AND PROCESSING YIELDS IMPROVED ACCURACY

- QUANTITY BUYS OF EQUIPMENT AT REDUCED UNIT COST
- DUPLICATE MEASUREMENT STATION INSTALLATION, MAINTENANCE, AND OPERATING COSTS ELIMINATED
- DUPLICATE TM GROUND STATIONS, DATA PROCESSING AND SECURITY SYSTEMS ELIMINATED
- FEWER CONTRACTS LESS LIKELIHOOD OF A PROCUREMENT DELAY

M-X/RES JOINT INSOLATION AND WIND RESOURCES ASSESSMENT PROGRAM

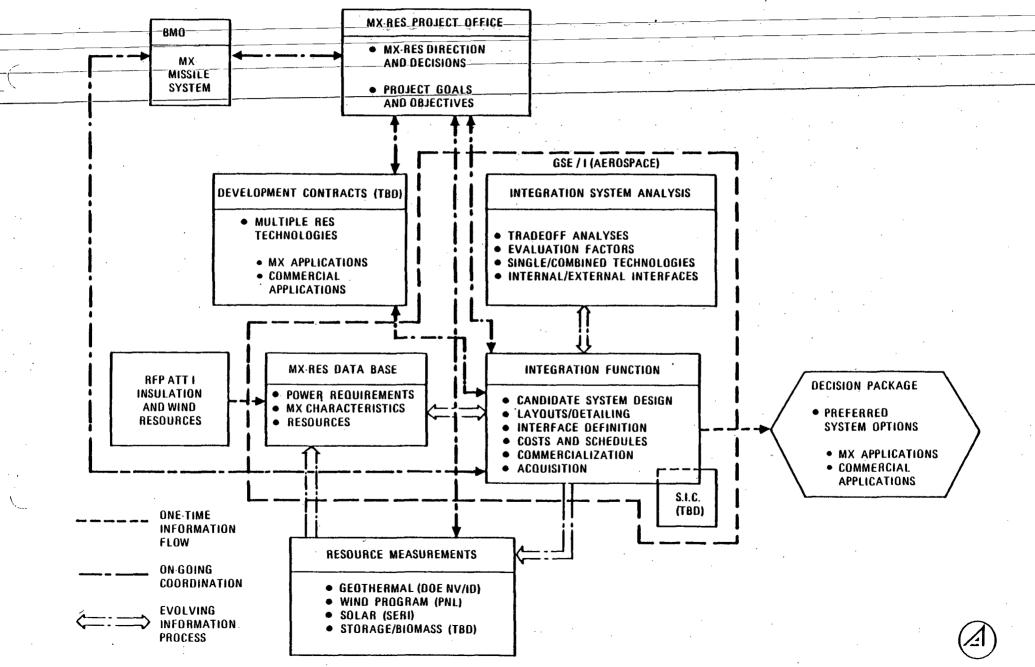
		· · · · · · · · · · · · · · · · · · ·
,	OD TROMTURO	
	OBJECTIVES	
		· · · · · · · · · · · · · · · · · · ·
(a second s
<u> </u>		

• CHARACTERIZE INSOLATION AND WIND RESOURCES IN THE M-X DEPLOYMENT REGION

- **o** SUPPORT RES DESIGN EFFORTS
- o ENHANCE COMMERCIALIZATION IN REGION
- DETERMINE THE VIABILITY OF WIND AS A POWER SOURCE FOR THE INTEGRATED M-X RENEWABLE ENERGY SYSTEM

MEASUREMENT ACTIVITIES

• FOCUS ACTIVITIES TO DETERMINE THE


- O EXTENT OF INSOLATION AND WIND RESOURCES IN THE NEVADA/UTAH AREA
- o TEMPORAL (DIURNAL, SEASONAL) AND SPATIAL (SITE-TO-SITE) VARIABILITY
- O CORRELATION OF INSOLATION AND WIND RESOURCES MEASUREMENTS
- O LOCATION OF POTENTIAL SITES FOR WECS APPLICATION

• SCHEDULE

- o PHASE A JULY 1980 TO JUNE 1982 (DECISION PACKAGE DATE)
- O PHASE B JULY 1982 TO 1 OCTOBER 1983
- O PHASE C TBD

MX-RES Roles and Responsibilities

INTEGRATION RELATIONSHIPS

PACIFIC NORTHWEST LABORATORY'S

ROLE AND RESPONSIBILITIES

- PROCUREMENT, INSTALLATION, OPERATION, AND MAINTENANCE OF ALL METEOROLOGICAL STATIONS, EXCEPT FOR INSOLATION INSTRUMENTATION
- COLLECTING/TRANSMITTING, EDITING AND REPORTING DATA FROM ALL STATIONS
- ASSESSMENT AND INTERPRETATION OF ALL WIND RESOURCE DATA
- SITING OF THE TYPE I AND IIa STATIONS (SERI COORDINATION)

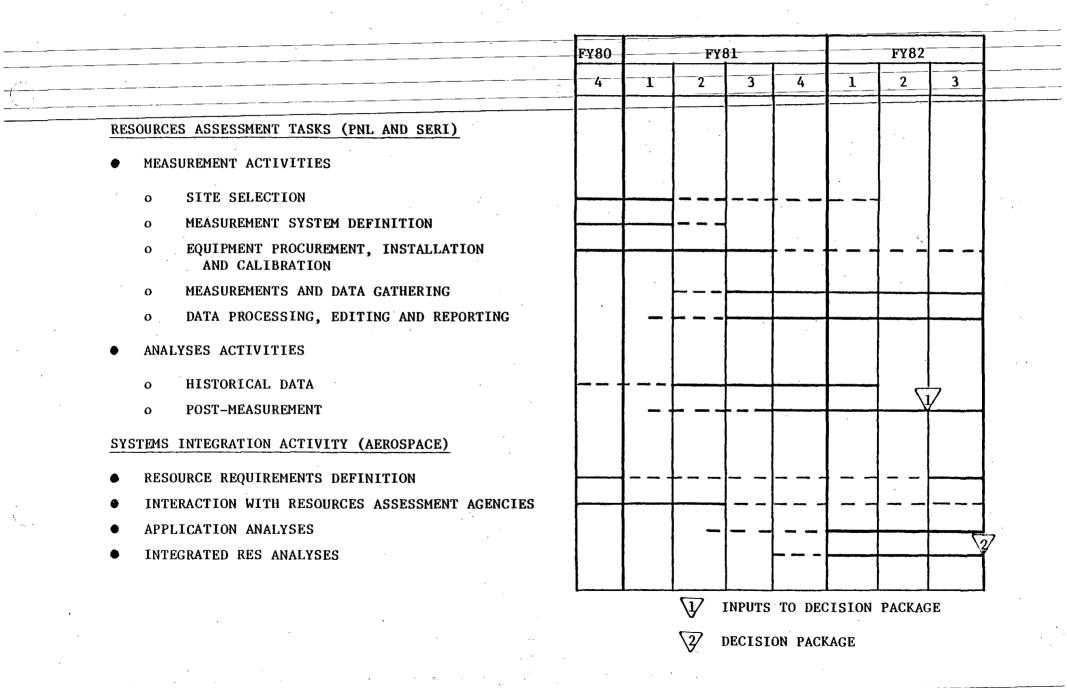
SOLAR ENERGY RESEARCH INSTITUTE'S

ROLE AND RESPONSIBILITIES

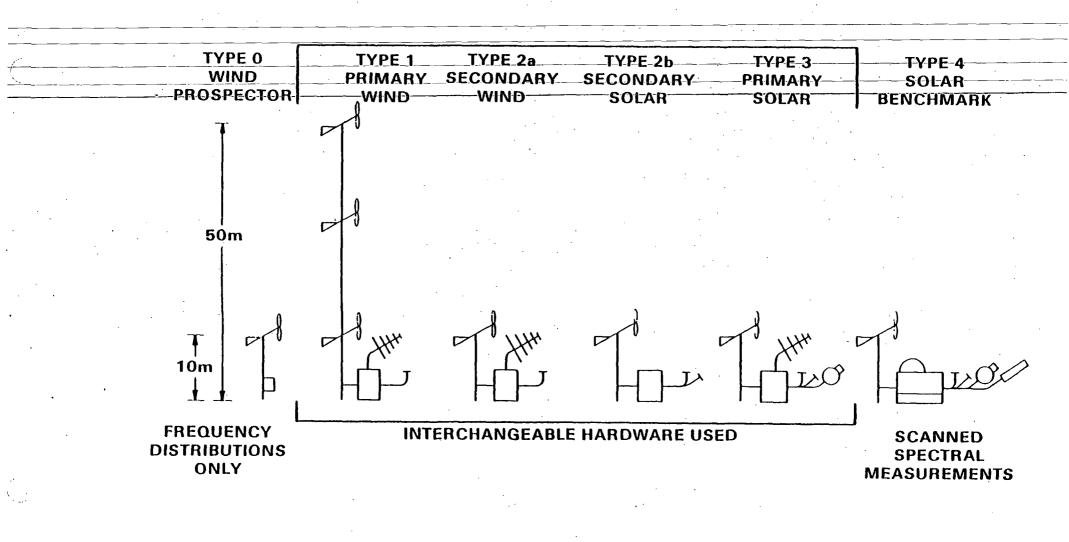
-PROCUREMENT OF PYRANOMETERS AND THEIR MOUNTINGS FOR ALL STATIONS

- PROCUREMENT, INSTALLATION, AND MAINTENANCE OF THE TRACKING PYRHELIOMETERS AND CIRCUMSOLAR TELESCOPE
- ASSESSMENT AND INTERPRETATION OF ALL INSOLATION RESOURCE DATA

SITING OF THE TYPE IIL, III AND IV STATIONS (PNL COORDINATION)


M-X/RES JOINT INSOLATION AND WINDS RESOURCES ASSESSMENT PROGRAM

KEY-POINTS OF CONTACT


٠	PACIFIC NORTHWEST LABORATORY	
	PRIMARY CONTACT: W. R. BARCHET ALTERNATE CONTACT: WILLIAM CLIFF (SITE SELECTION) PHILIP EKSTROM (MEASUREMENT PROGRAM)	(509) 376-4621 (509) 375-2024 (509) 376-7301
	SOLAR ENERGY RESEARCH INSTITUTE	
• .	PRIMARY CONTACT: ROLAND HULSTROM ALTERNATE CONTACT: ROBERT RADER	(303) 231–1220 (303) 231–1815
۲	THE AEROSPACE CORPORATION	
	PRIMARY CONTACT: CHARLES HOULT ALTERNATE CONTACT: FRANK AUGUSTINE (WINDS) CHARLES RANDALL (INSOLATION)	(213) 648-7366 (213) 648-5331 (213) 648-5997
۲	FUGRO NATIONAL, INC.	
	PRIMARY CONTACT: JAMES R. MILLER ALTERNATE CONTACT: KENNETH L. WILSON	(213) 595-6611 (213) 595-6611

M-X/RES JOINT INSOLATION AND WIND RESOURCE ASSESSMENT PROGRAM

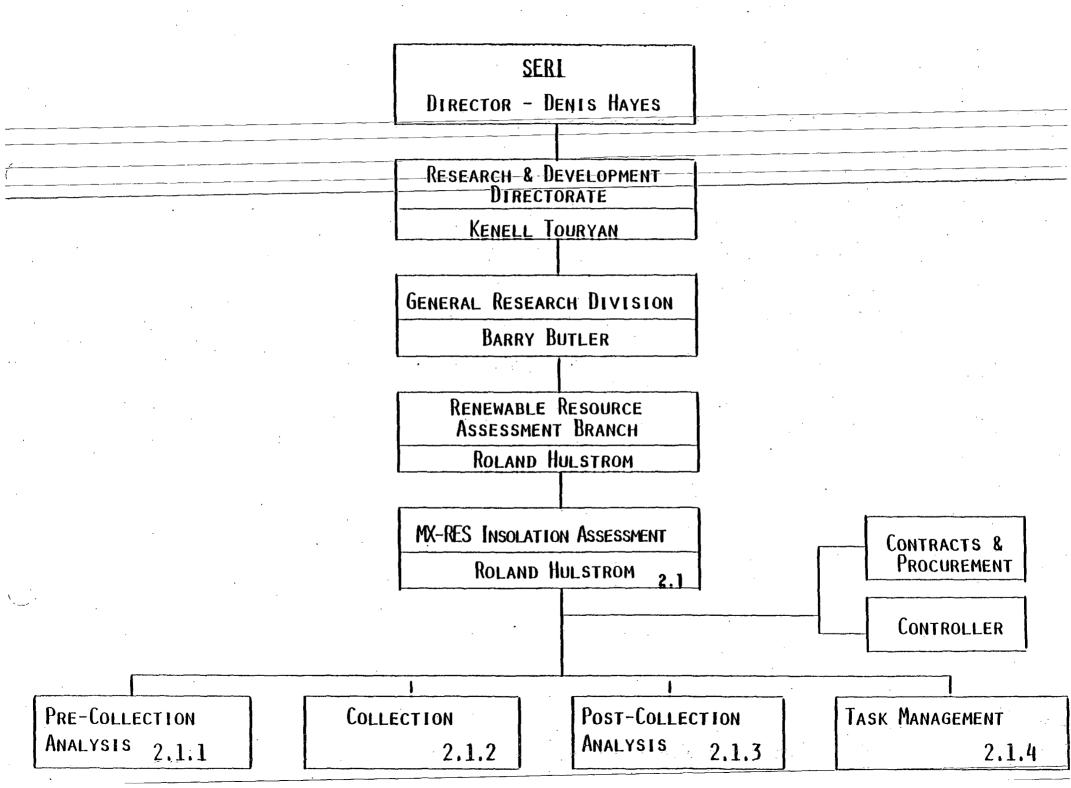
SCHEDULE

MEASUREMENT STATIONS

PHASE A WIND DATA NEEDS TO MEET PROGRAM OBJECTIVES

OBJECTIVE		STA	TION	TYPES	-MEF	FING N	EED.		·
· · · · · · · · · · · · · · · · · · ·		0-	_I_	IIa	HID	- 111	TV-		
WECS SITE SELECTION	o Cumulative_Wind_Speed Distribution_ Function	X	<u> </u>	X	X		X		· · · · · · · · · · · · · · · · · · ·
	o Wind Rose	X `	X	x	X	X	X		
	o Temperature (synoptic climatology)	,	Х	X	X	X	X		
	o Global Insolation (Synoptic climatology)		X	X	X	X	Х		· .
WECS SELECTION	o Cumulative Wind Speed Distribution Function	X	x	X	X	X	х		
	o Wind Speed vs Height		X				· ·		
• DEFINITION OF OPERATING ENVIRONMENT	o Icing		х			х	x	•	
	o Temperature	х	х	х	Х	х	Х		
	o Humidity	ų	X .			X	X		
• INTEGRATION OF WECS INTO SYSTEM	o Diurnal Wind Speed and Direction Variation		x	X	x	X	x		
	o Monthly/Seasonal Wind Speed Variation		x	X	х	X	X		
· · · · · · · · · · · · · · · · · · ·	o Correlation of Wind Speed with Other Sites and Modes		X	Х	X	X	X .		
	o Duration of Calms		x	X .	X	X .	x		

. :


.

.

PHASE A INSOLATION DATA NEEDS TO MEET PROGRAM OBJECTIVES

OBJECTIVE	DATA NEEDED	•	STATION	TYPES	MEETIN	<u>Ġ NEED</u>	
	· ·	0	I	IIa	IIb	III	IV
	AIC o Horizontal Global Insolation		X	X	X	X	X
SYSTEM SELECTION	o Tilted Surface Insolation				X	X	Х
	o-Spectral-Data-&-Solar-Aureole-				·		X
•CONCENTRATING_PHOTO	o-Horizontal-Global-Insolation		X	x	X	X	X
VOLTAIC SYSTEM	o Tilted Surface Insolation				Χ.	X	X
SELECTION	o Direct Insolation					X	X
	o Spectral Data & Solar Aureole		•			•	X
• SOLAR THERMAL SYSTEM	o Horizontal Global Insolation	•	X	X	х	X	x
SELECTION	o Tilted Surface Insolation				Х	Х	Х
	o Direct Insolation					X	X
	o Spectral Data and Solar Aureole	2				•	Х
·	o Wind Speed	X	X	X	Х	Х	Х
	o Temperature	X	x	X	X	X	X
• SOLAR HEATING AND	o Horizontal Global Insolation		X	x	X	X	х
COOLING OF BUILDINGS	o Tilted Surface Insolation		*k	41	x	X	X
	o Wind Speed	х	X	X	X	X	X
	o Temperature	x		X	x	x	x
	o Humidity		x		••• ·	X	x
• DEFINITION OF OPERATI	ING o Icing		x			X	x
ENVIRONMENT	o Temperature	Х	X	Х	Х	X	Х
	o Humidity		x	. •		X	X
• INTEGRATION OF SOLAR	o Seasonal Variations		х	x	x	x	х
DEVICES INTO SYSTEM	o Correlation of Insolation with Other Sites & Modes		X	X	X	X	X
	o Duration of Sunny Periods		x	X	X	X	X

M-X7RES INSOLATION RESOURCE ASSESSMENT PROJECT MANAGEMENT

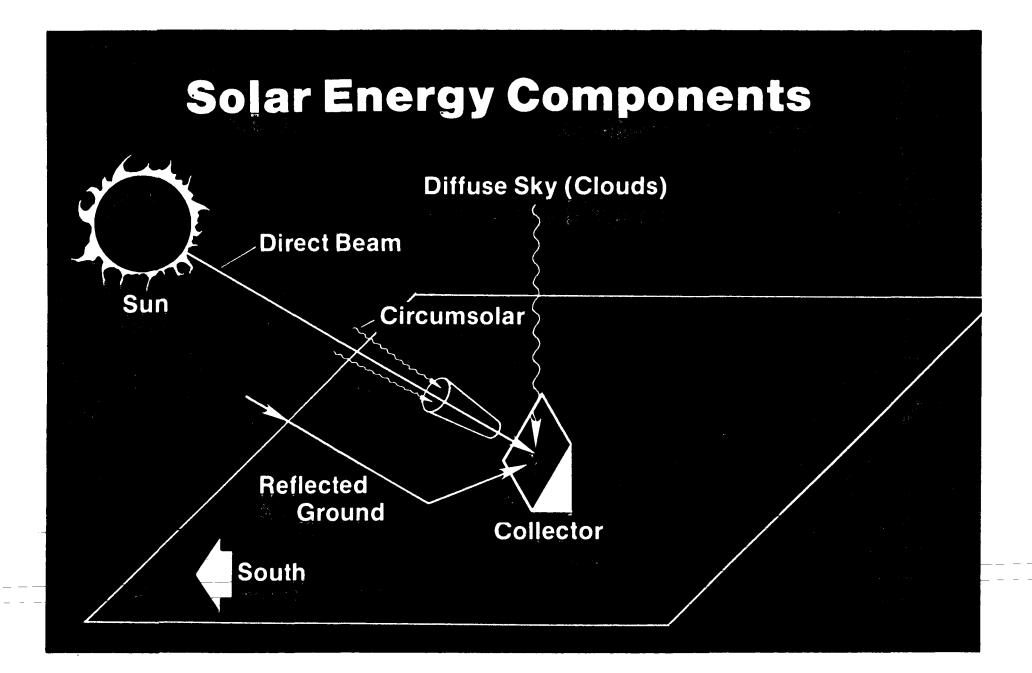
OBJECTIVES OF M-X/RES INSOLATION RESOURCE MEASUREMENTS

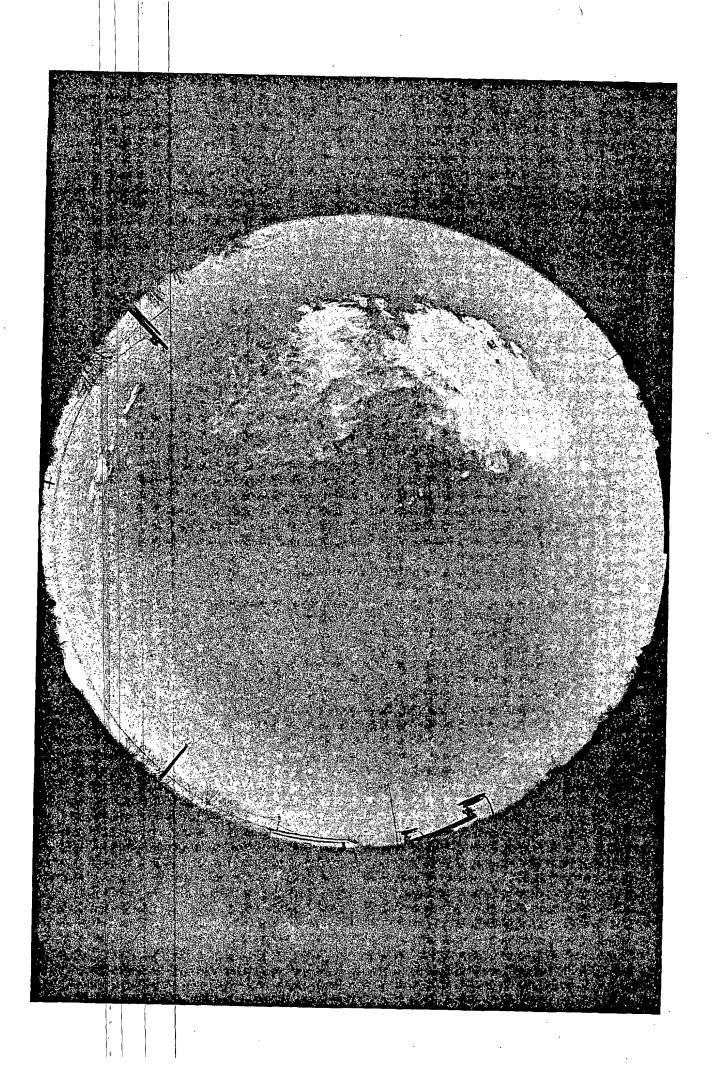
OBTAIN DATA TO DETERMINE THE AMOUNT OF SOLAR ENERGY FOR USE BY M-X/RES
 EVALUATE BASELINE INSOLATION DATA ASSUMPTIONS
 DETERMINE VARIABILITY OVER THE M-X DEPLOYMENT REGION
 ASSESS INSOLATION-WIND CORRELATIONS
 PROVIDE DESIGN DATA TO SUPPORT SYSTEM DESIGN
 ADVANCE THE STATE-OF-THE-ART OF

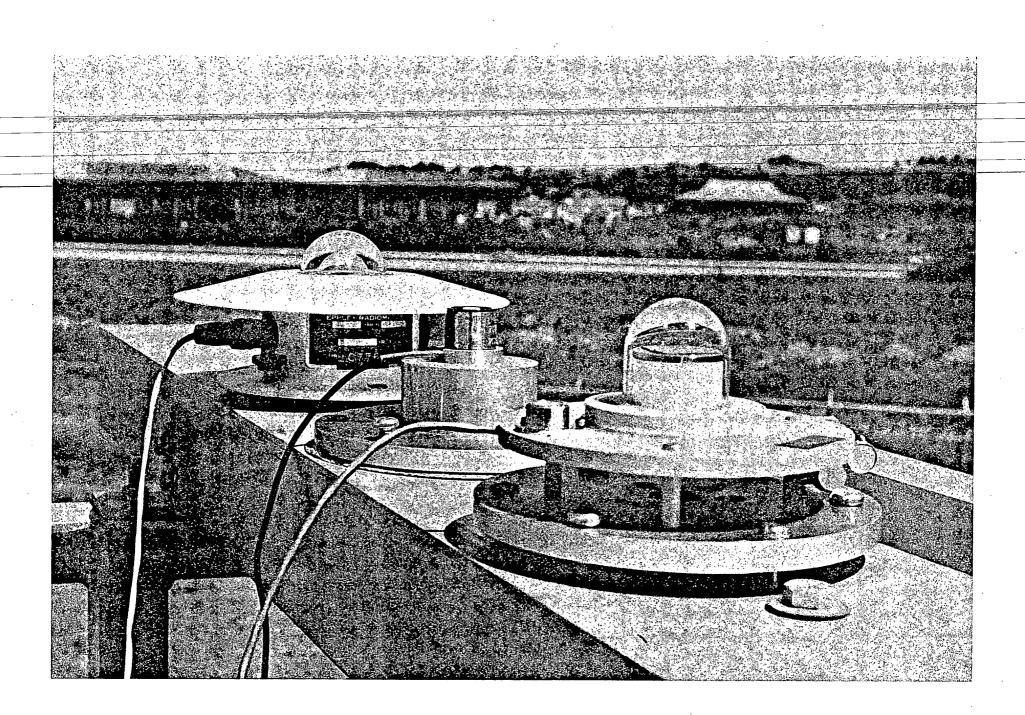
• TILTED SURFACE ALGORITHMS

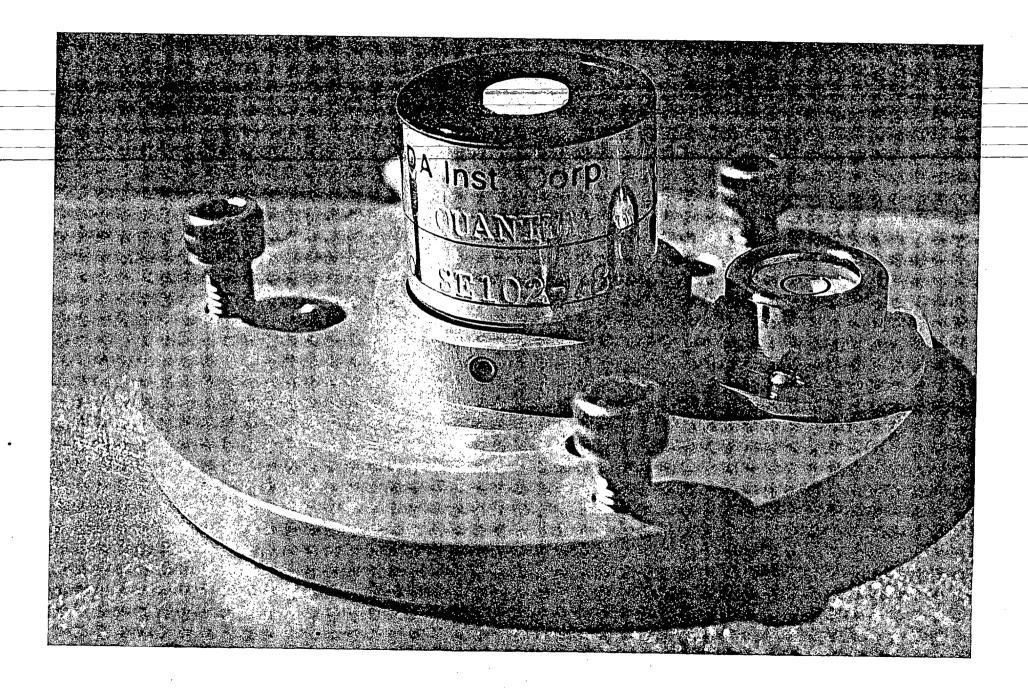
o AUTOMATIC DIRECT INSOLATION MEASUREMENT

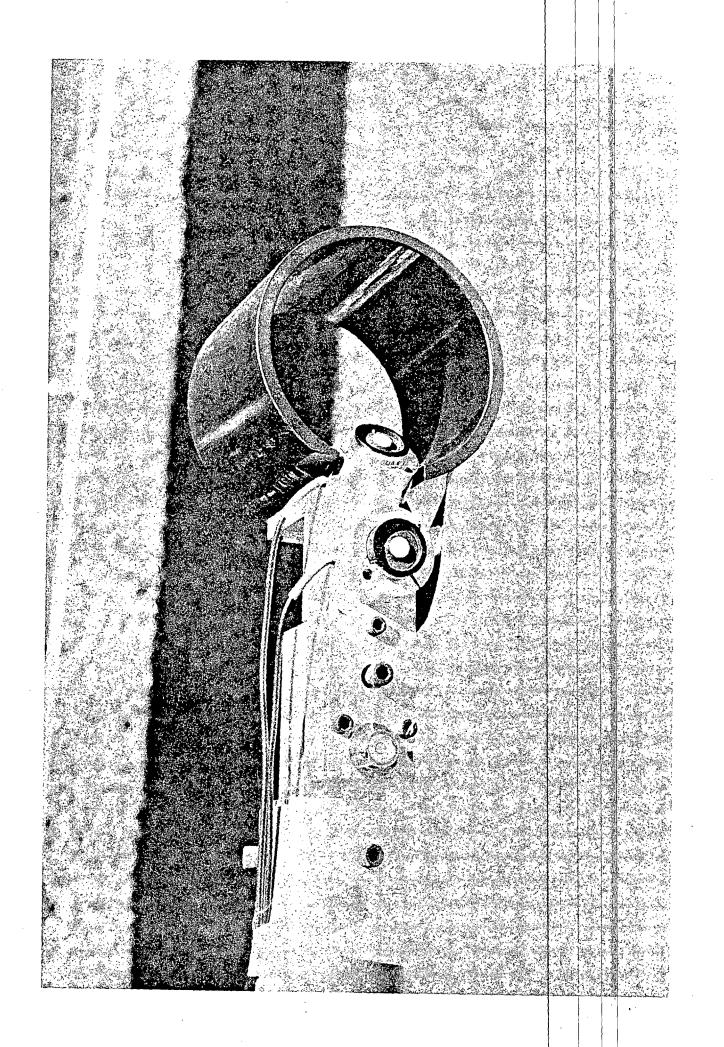
• INSOLATION DATA BASE

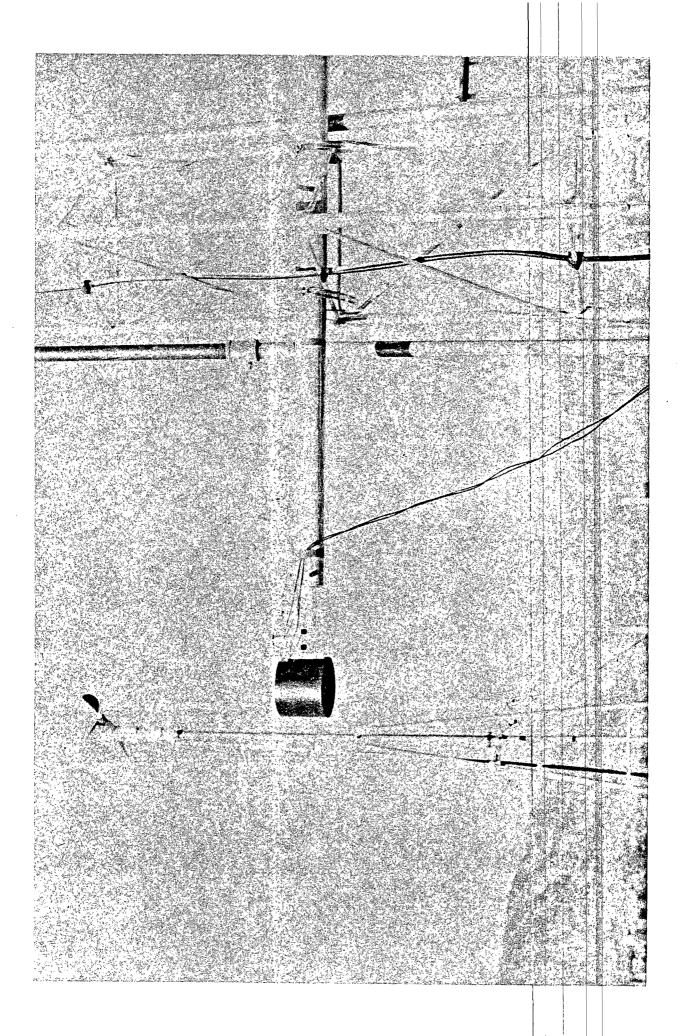

SERI M-X/RES INSOLATION RESOURCE ASSESSMENT PROJECT

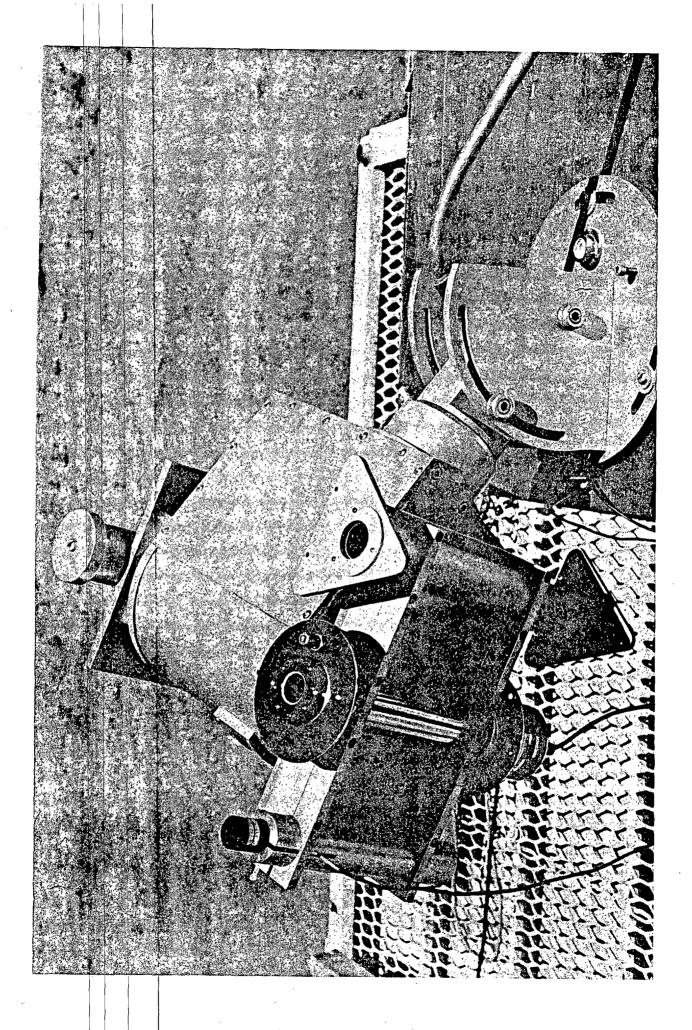

	ITEM	<u>DATE</u>
1	. HULSTROM-TO-HAYES MEMO-MX REQUEST FOR SERI INVOLVEMENT	JANUARY 31, 1980
2	. DOWTY (HAYES, SERI POLICY COUNCIL)-TO-HULSTROM MEMO-APPROVAL OF MX INVOLVEMENT	MARCH 19, 1980
3	. FY80 PROJECT PLAN SUBMITTED TO PROJECT OFFICE	JULY 8, 1980
4	FY80 WPA SUBMITTED TO PROJECT OFFICE	JULY 11, 1980
5	PROJECT OFFICE APPROVAL (UNOFFICIAL) OF FY80 WPA, AT \$50,000	JULY 15, 1980
6	1 ST AREOSPACE/SERI MEETING (AT SERI)	JULY 23, 1980
7	1 ST AEROSPACE/SERI/PNL MEETING (AT AEROSPACE)	AUGUST 6-7, 1980
. 8	REVISED PROJECT OFFICE APPROVAL (OFFICIAL) OF SERI WPA, AT \$50,000	AUGUST 12, 1980
9	PROJECT OFFICE EXTENSION OF SERI WPA TO \$75,000 AND DECEMBER 31, 1980. FY81 GUIDANCE OF \$500,000 FOR DECEMBER 31, 1980 TO SEPTEMBER 30, 1981	AUGUST 13, 1980

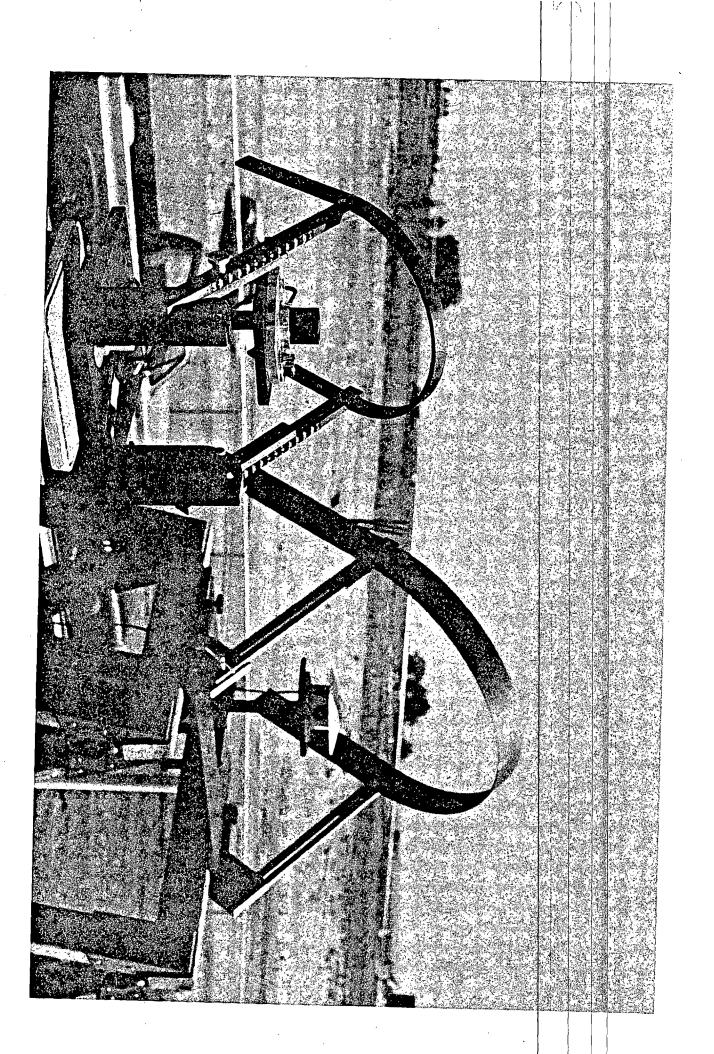

SERI M-X/RES INSOLATION RESOURCE ASSESSMENT PROJECT

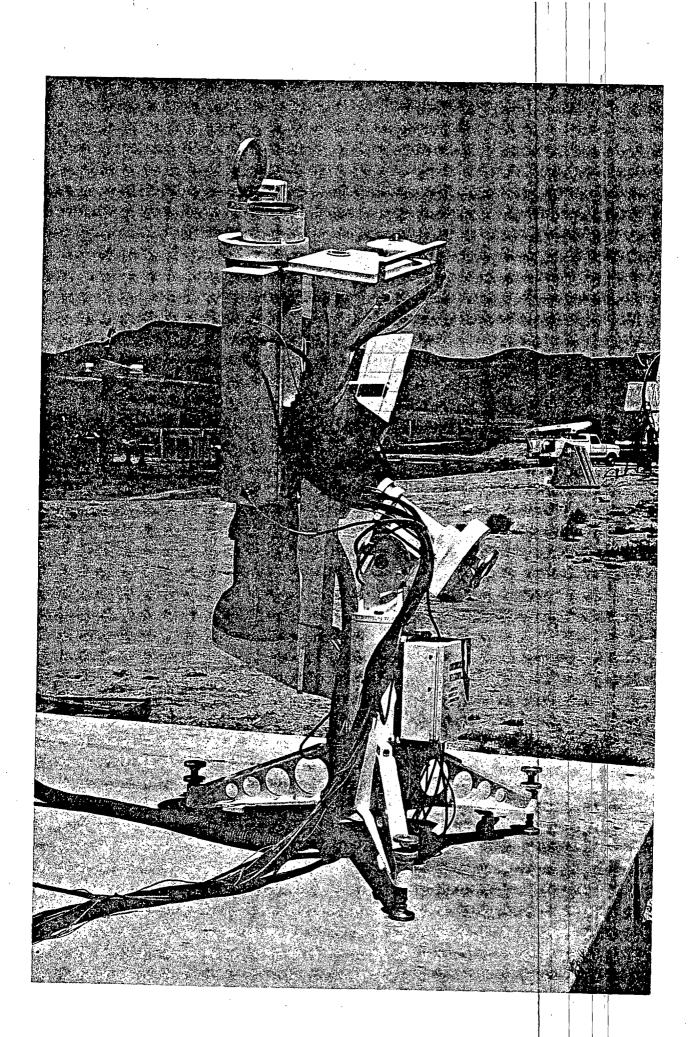

• MA	NAGEMENT SCHEDULE – MILESTONES: FY80 (CONTINUED)	
	<u>ITEM</u>	DATE
10	. 2 ND AEROSPACE/SERI/PNL MEETING (AT SERI)	AUGUST 28, 1980
11	. DOE SITE OFFICE-SERI OFFICIAL TURN-ON OF	SEPTEMBER 3, 1980
	TASK NUMBER/CHARGES	(ORIGINALLY ANTI- CIPATED 7/25/80)
12	M-X/RES INSOLATION RESOURCE ASSESSMENT FY80/ FY81 PROJECT SCHEDULE	SEPTEMBER 10, 1980
13	. 3 RD AEROSPACE/SERI/PNL MEETING (AT AEROSPACE)	SEPTEMBER 11, 1980
14	1 ST PROJECT OFFICE/SERI/AEROSPACE/PNL PROGRAM REVIEW, AT WASHINGTON, DC	SEPTEMBER 23, 1980
15.	FY81 PROJECT PLAN W.P.A. TO PROJECT OFFICE	SEPTEMBER 30, 1980

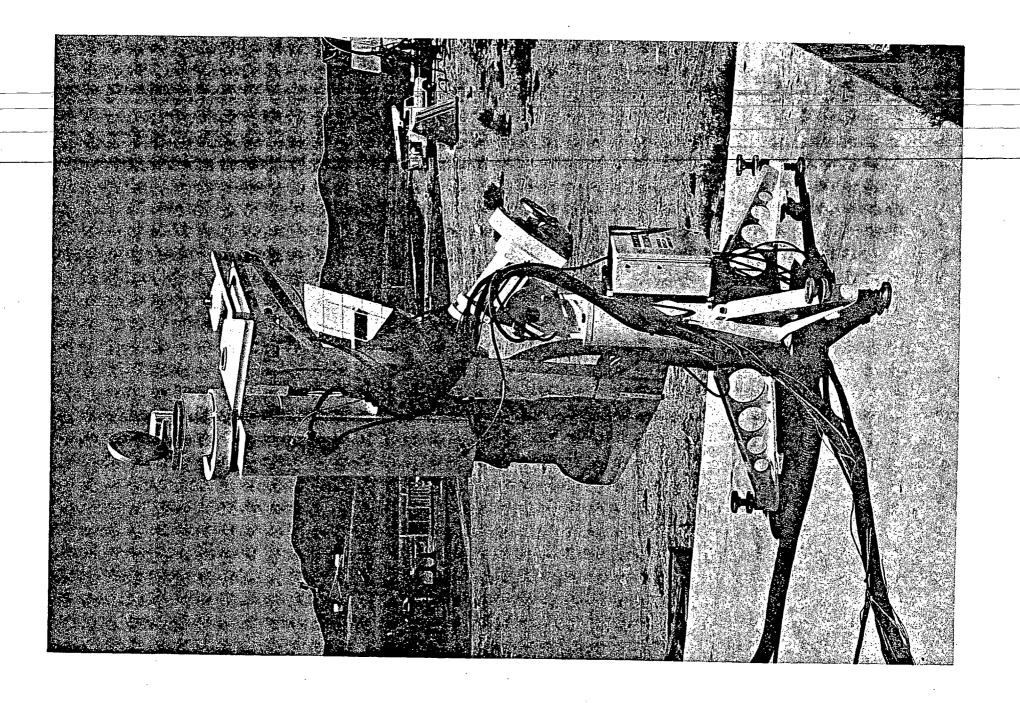

(ORIGINAL-WPA-9/15/80)











INSOLATION MEASUREMENTS AND SITING - IDEAL

PURPOSE

O TOTALLY CHARACTERIZE ALL INSOLATION COMPONENTS (DIRECT, GLOBAL, DIFFUSE), PERTINENT TO RESOURCE ASSESSMENT AND SYSTEM DESIGN, ON A TEMPORAL AND SPATIAL BASIS SUCH THAT ALL VARIATIONS ARE ESTABLISHED.

• TYPES OF MEASUREMENTS

- o DETERMINED BY SOLAR CONVERSION METHODS/SYSTEMS USED
 - CONCENTRATORS DIRECT BEAM AND CIRCUMSOLAR
 - FLAT PLATE GLOBAL (DIRECT & DIFFUSE) ON TILTED SURFACES
 - PASSIVE GLOBAL ON VERTICAL WALLS
 - PHOTOVOLTAIC SPECTRAL DATA FOR DIRECT, CIRCUMSOLAR, DIFFUSE, AND GLOBAL ON TILTED SURFACES.

• TEMPORAL

- O DETERMINED BY SOLAR CONVERSION METHODS/SYSTEMS USED AND CHARACTERISITC CLIMATE OF SPECIFIC GEOGRAPHICAL AREA OF INTEREST
 - SYSTEM TRANSIENTS (CLOUDS) 1 MINUTE (OR LESS)
 - ASSESSMENT OF POWER ABOVE THRESHOLDS 5 MINUTES (OR LESS)
 - DIURNAL VARIATIONS, LOAD 1 HOUR (OR LESS) (MATCHING, STORAGE, COLLECTOR ORIENTATION, SYSTEM SIZING AND DETAILED DESIGN)

INSOLATION MEASUREMENTS AND SITING - IDEAL (CONTINUED)

 WEATHER (CLEAR DAYS, CLOUDY DAYS) PERSISTENCE, - DAILY (STORAGE, LOAD MATCHING, SPATIAL VARIATIONS) SEASONAL-VARIATIONS - MONTHLY, YEARLY (1 YEAR MINIMUM, 5 YEARS NOMINAL)
- CLIMATIC VARIATIONS - 30 YEARS OR LONGER (TYPICAL DESIGN YEAR)
• SPATIAL
O DETERMINED BY SIZE OF GEOGRAPHICAL AREA OF INTEREST AND METEOROLOGICAL VARIATIONS WITHIN THAT AREA
- MICROSCALE: (MINIMAL CLOUD COVER AND INSOLATION VARIATION)
. HORIZONTAL - 100 METERS OR LESS
. VERTICAL - LESS THAN 10 METERS
. TIME5 TO 5 MINUTES
- * MESOSCALE: (SIGNIFICANT CLOUD COVER AND INSOLATION VARIATIONS)
. HORIZONTAL - 10 TO 100 KM
. VERTICAL - 1 TO 10 KM
. TIME - 1 TO 10 HOURS

- *MACROSCALE: (SYNOPTIC PERTURBATIONS)
 - . HORIZONTAL 500 TO 2,000 KM
 - . VERTICAL 10 KM
 - . TIME 7 DAYS

* SIGNIFICANT TO INSOLATION ASSESSMENT

MX-RES INSOLATION SITING STRATEGY

•	SITE	AND	AREA	SPECIFIC	STATIONS
•		*****	*******		O + UT + O UD

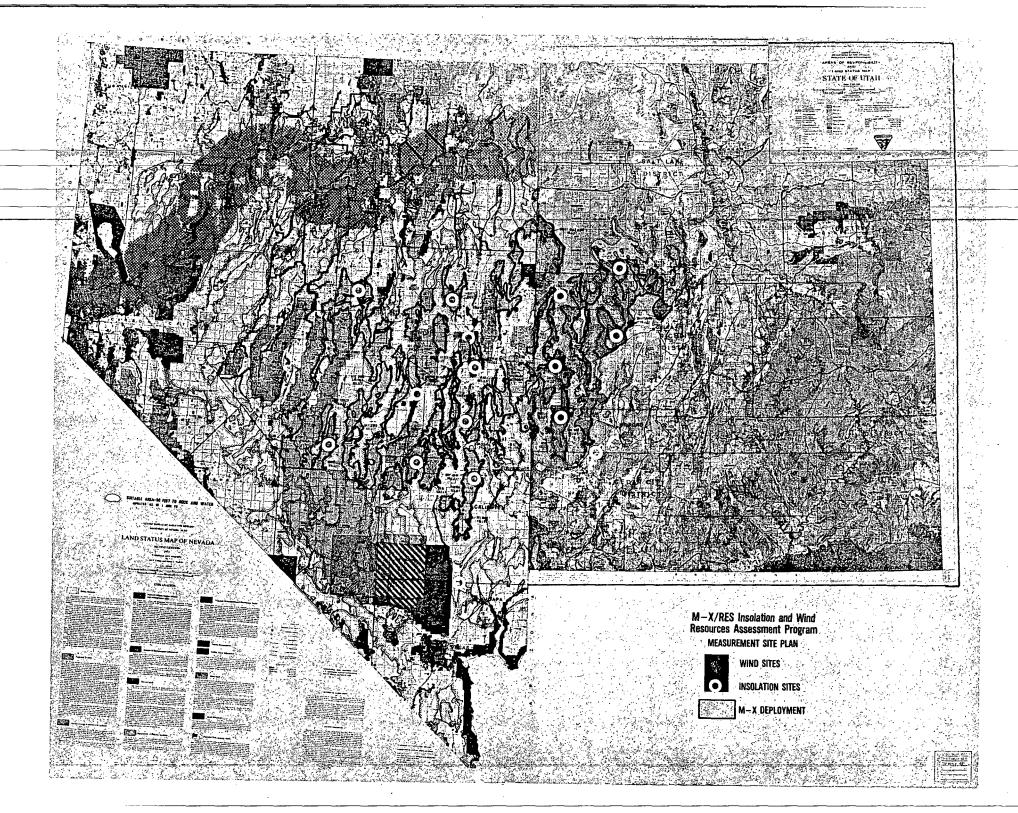
- <u>o UTILIZE EXISTING_DEPLOYMENT_MAPS_OF_MX_SHELTERS, GLUSTERS, AND-OPERATING-BASES_TO_DETERMINE</u> MOST PROBABLE SITES/AREAS OF SOLAR SYSTEM DEPLOYMENT.
- O UTILIZE FULL COMPLEMENT OF MEASUREMENTS/SENSORS AT MOST PROBABLE SITES.
- SELECT LOCATIONS TO BE REPRESENTATIVE OF MESOSCALE OF DEPLOYMENT SITES (SHELTERS, CLUSTERS, OPERATING BASES).
- MESOSCALE VARIATIONS/SOLAR PROSPECTING
 - o UTILIZE SATELLITE (GOES) INSOLATION MAPPING, 5 x 5 KM
 - UTILIZE SIMPLE, ECONOMICAL, GLOBAL HORIZONTAL INSOLATION SENSORS ON ALL INSOLATION AND WIND MONITORING STATIONS

• BENCHMARK STATION

O UTILIZE A FULL COMPLEMENT STATION AT ELY, NEVADA, TO RELATE NEW DATA TO LONG TERM AVERAGE (SOLMET & ERSATZ)

MX-RES INSOLATION MEASUREMENT/SENSOR STRATEGY

	GENERAL MEASUREMENTS
	OSOLAR_CONCENTRATING_SYSTEMS
	- DIRECT SOLAR BEAM, FIRST CHOICE
	- GLOBAL HORIZONTAL (AND MODEL), SECOND CHOICE
	- CIRCUMSOLAR RADIATION, THIRD CHOICE
	- SPECTRAL DATA, FOURTH CHOICE
	O FLAT PLATE SYSTEM
	- GLOBAL ON TILTED (AT LATITUDE) SURFACE, FIRST CHOICE
	- DIRECT BEAM & GLOBAL HORIZONTAL, SECOND CHOICE
• .	- GLOBAL HORIZONTAL, THIRD CHOICE
	O ACCURACY GOAL
	$ \pm$ 5 % HOURLY TOTALS
	CENERAL CENSOR
	GENERAL SENSORS
	O DIRECT SOLAR BEAM
	- THERMOPILE PYRHELIOMETER, 5.7° F.O.V., ± 1 % ACCURACY
	O GLOBAL (TILTED SURFACE AND HORIZONTAL)
	 SI CELL PYRANOMETER, 180° F.O.V., + 5 % ACCURACY, HAS SIMILAR RESPONSE TO PHOTOVOLTAIC SOLAR SYSTEMS


MX-RES INSOLATION MEASUREMENT/SENSOR STRATEGY (CONTINUED)

0	COSTS
 	- USE SI CELL SENSORS/PYRANOMETERS AS APPOSED TO THERMOPILES (\$200.00_EACH_VS_\$1200.00_EACH
	- MINIMIZE DIRECT BEAM MEASUREMENTS/SENSORS BECAUSE OF TRACKER COSTS (\$14,400.00)
	- MAXIMIZE SAMPLING/AVERAGING TIME BECAUSE OF DATA LOGGING AND PROCESSING EXPENSES.
0	SAMPLING TIME
	 UTILIZE 5 MINUTE AVERAGE BECAUSE OF REQUIREMENTS FOR DETERMINING POWER ABOVE GIVEN INSOLATION THRESHOLDS, AND OTHER DESIGN REQUIREMENTS
	- 5 MINUTE AVERAGE IS COMMENSURATE WITH 10 MINUTE REQUIREMENTS FOR WIND MEASUREMENTS

M-X/RES INSOLATION MEASUREMENT SENSORS

APPROACH

SENSOR/MEASUREMENT		TYPE OF STATION					
	SENSOR/ FIEASUREMEN I		I	IIA .	IIB	III	IV
1.	HORIZONTAL SI CELL PYRANOMETER		х	x	X	x	X
2.	TILTED SURFACE SI CELL PYRANOMETER				X	X	X
3.	DIRECT BEAM THERMOPILE PYRHELIOMETER AND SOLAR TRACKER					х	Х
4.	MOBILE AUTOMATIC SCANNING PHOTO- METER (MASP)						X

MX-RES INSOLATION ASSESSMENT FY81, 82, 83 SCHEDULE/PLAN/BUDGET

		1	CY80		I	CY81		CY82	C	783
	、 、	J	A J	Q	J	AJ.Q	JA	J (₽ J A	JO
	ACTIVITY	_12	3	4	12	34	-1-2-	34	1 2	3 4
	<u>2.1.1 PRE-COLLECTION</u>				<u>\$309к</u>					
								· · · · ·		
<u> </u>										
	c. DEVELOP MODELS & ALGORITHMS									
	d. MODELED SPECTRAL DATA									
	e. CIRCUMSOLAR DATA BASE	• .		` 						
	f. ANALYSES OF RECENT DATA			. -			······			
					\$180K	<u> 2</u>	\$550K		\$305K	
	2.1.2 DATA COLLECTION			·]	,			,		-
	a. SITE SELECTION					· <u></u>				
	b. MEASUREMENT SYSTEM DEFINITION									
	c. PROCUREMENT, INSTALLATION,	•						<u> </u>		
•	AND CALIBRATION d. DATA GATHERING								(
	e. DATA PROCESSING, EDITING,	t I								
	REPORTING									
	f. SATELLITE DATA									
	g. CIRCUMSOLAR DATA AT ELY									
	3					405				
	2.1.3 POST-COLLECTION ANALYSES				- ·	\$25K	\$250K		<u>\$145K</u>	
	a. DATA BASE UPDATES									
	VALIDATION									
	b. SATELLITE DATA MAPPING AND								······	
	DATA BASE									l l l l l l l l l l l l l l l l l l l
	2.1.4 TASK MANAGEMENT				\$86K		\$125K		\$75K	· · · · ·
1	a. MONTHLY REPORTS					1				1
	b. FY PROJECT PLANS			1						
	c. R.F.P.'s AND CONTRACTS									•
	d. CONTRACTOR REVIEWS	F	780		FY8	1	FY82	<u> </u>	FY83	
	BUDGET	\$65K	(75)*		\$600K	(500)	\$925K	(1,000)	<u>\$525K (50</u>)0)
	1. DAT	A BASE I	FOR DECIS	ION P.	ACKAGE			TOTAI	L = \$2.12M	(2.08)
		· .								
	2. STA	ATA DATA	GATHERIN	G						

* MX-RES PROJECT PLAN (JULY 28, 1980)

SERI MX-RES INSOLATION RESOURCE ASSESSMENT - FY81 BUDGET

ITEM

DOLLARS (\$1,000)

309

180

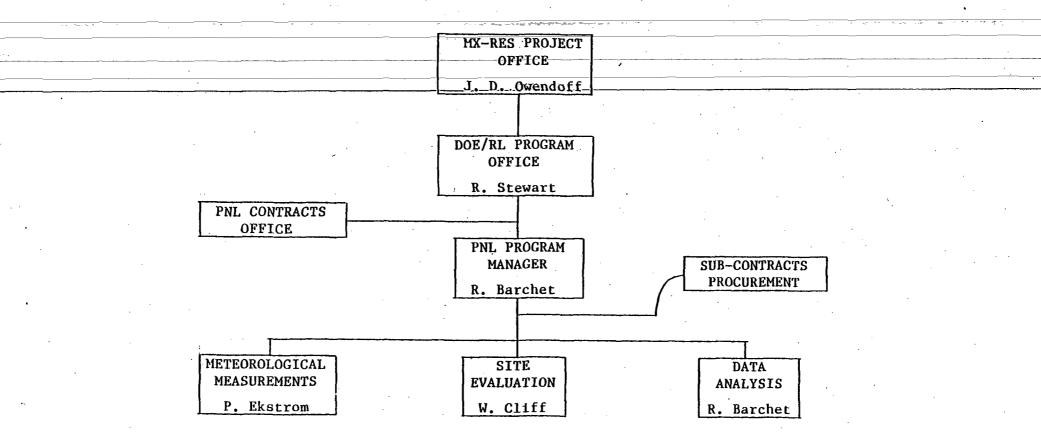
- 2.1.1 PRE-COLLECTION
 - a. HISTORICAL DATA ANALYSES (80)
 - b. SATELLITE ASSESSMENT (75)
 - c.___DEVELOP_MODELS_&_ALGORITHMS-(50)
 - d. MODEL SPECTRAL DATA (20)
 - e. CIRCUMSOLAR DATA BASE (50)
 - f. RECENT DATA (34)

2.1.2 DATA COLLECTION

- a. SITE SELECTION (10)
- b. MEASUREMENT SYSTEM DEFINITION (5)
- c. PROCUREMENT, INSTALLATION, CALIBRATION (135)
- d. DATA GATHERING (10)
- e. DATA PROCESSING, EDITING, REPORTING (10)
- f. SATELLITE DATA (10)
- g. CIRCUMSOLAR DATA AT ELY (0)

2.1.3 POST-COLLECTION ANALYSES

- a. DATA BASE UPDATES & VALIDATION
- b. SATELLITE DATA MAPPING & DATA BASE


2.1.4 TASK MANAGMENT

- a. MONTHLY REPORTS
- b. FY PROJECT PLANS
- c. RFP's & CONTRACTS
- d. CONTRACTOR REVIEWS

86

<u>25</u>

MANAGEMENT FLOW

MANAGEMENT FLOW

OBJECTIVES OF MX-RES WIND RESOURCE ASSESSMENT

• OBTAIN-DATA-TO-DETERMINE-THE-VIABILITY-OF-WIND-AS-AN-MX-RES-ENERGY-SOURCE

- EVALUATE BASELINE WIND DATA ASSUMPTIONS
- DETERMINE GEOGRAPHIC VARIABILITY OF RESOURCE
- PROVIDE DATA FOR RES SYSTEM, SELECTION
- PROVIDE DATA FOR RES SYSTEM INTEGRATION
- IDENTIFY PROSPECTIVE WIND ENERGY SYSTEM SITES

ADVANCE THE STATE-OF-THE-ART OF

- WIND ENERGY PROSPECTING STRATEGIES
- WIND RESOURCE DATA BASES
- WIND ENERGY SYSTEM SITE EVALUATION

MANAGEMENT FLOW

-PNL-MANAGEMENT AND SCHEDULE MILESTONES TO DATE

		Item	Date
	1.	PRELIMINARY WIND RESOURCE ASSESSMENT DOCUMENT	January 10, 1980
	2.	INITIAL CONTACT WITH THE AEROSPACE CORPORATION	April 22, 1980
	3.	FY-80 PROGRAM PLAN SUBMITTED TO DOE	June 11, 1980
<i>.</i>	4.	PROJECT OFFICE APPROVAL OF FY80 PLAN (\$105,000)	June 24, 1980
	5.	AEROSPACE/PNL MEETING (AT AEROSPACE)	July 16, 1980
	6.	AEROSPACE/PNL/SERI MEETING (AT AEROSPACE)	August 6-7, 1980
•	7.	PROJECT OFFICE REVISION OF FY80 FUNDING LEVEL TO \$145,000	August 13, 1980
	8.	AEROSPACE/PNL MEETING	August 15, 1980
	9.	AEROSPACE/PNL/SERI MEETING AT SERI	August 27, 1980
•	10.	AEROSPACE/PNL/SERI MEETING AT AEROSPACE	September 11, 1980
	11.	DRAFT OF RFP SUBMITTED FOR REVIEW	September 19, 1980

SCHEDULE AND MILESTONES, FY-81, 82, and 83

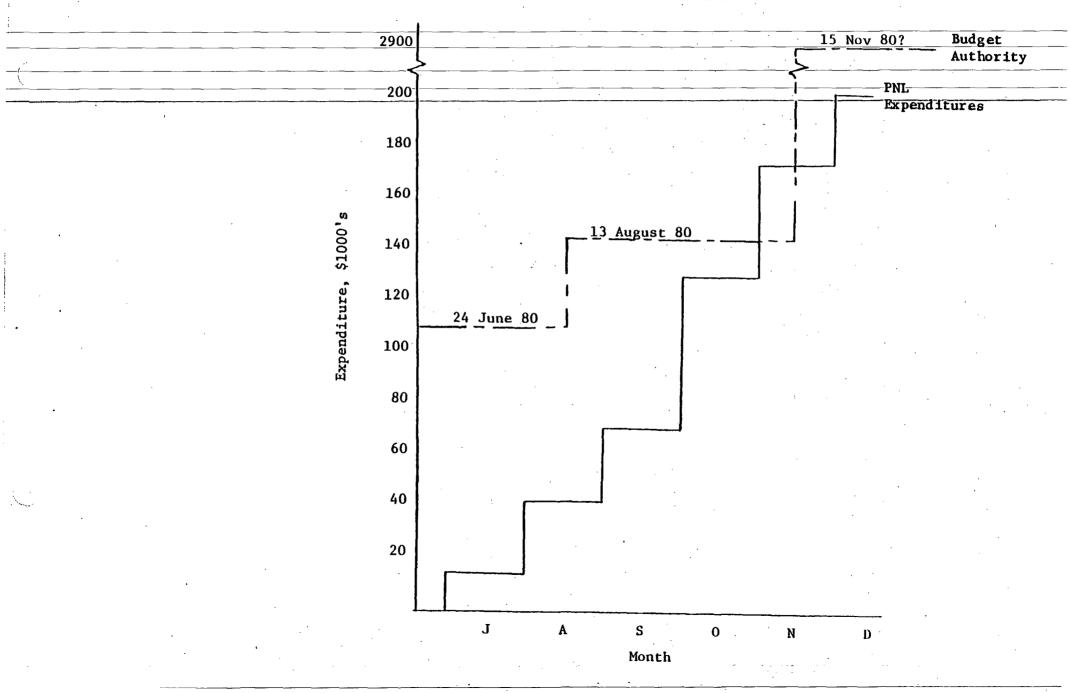
•			СҮ-81			СҮ-82				CY-83		
			FY-81			FY-8	2			-FY=8	3	<u> </u>
ASK	0	J	A J	0	J	A	J	0	J	Α	J .	0
	<u>1</u>	2	3		4				4			
Measurements	<u>V</u>	<u> </u>	₹		V				V			}
. Site Evaluation	5 V	6 V	78910 VV VV			11	12 V			13 V	1	4
-	· ·	15	16 16 16 17		16	16 18	 16	16	16	16	16 19	······································
. Data Analysis _		⊽` 20	<u> </u>		V	 24	2	v	<u> </u>	v		;-
. Management		V		_ .		<u>V</u>		1			<u>v</u>	

SCHEDULE AND MILESTONES, FY-81, 82, and 83

MILESTONES for FY-81, 82, and 83

	-1.	RFPRelease	- 10.	Second set Type I's and Type IIa's	19.	Areal distribution
	2.	Measurement system subcontract		Installed		completed, performance
		starts	_11		<u>-</u>	simulation in progress
		Measurement system operational	12.	Additional Type I's and Type II's installed	20.	Joint insolation/wind statistics defined
	4.	Subcontract reviewed/revised/ renewed	13.	Site turbulence and shear studies	21.	Subcontractor management and QA plans approved
	5.	Oth order site ranking Type O's deployed	14.	completed Array analyses in progress	22.	PNL/SERI data reporting format defined
•••		First order site ranking		TMY reanalysis	23.	PNL/SERI site recycle PNL-FY-82 program plan
•	8.	Initial Type I's, II's, and III's deployed		MX-RES data base book review/update. Synoptic climatology completed	24.	PNL/SERI/Aerospace coordi- nation on DPD input
	9.	Second order site ranking	18.	Wind resource mapped	25.	PNL FY-83 program plan
	•				26.	PNL FY-84 program plan

FY-80-FY-81 TRANSITION EXPENDITURE PLAN


TASK			MONTH		······································		TOTAL
	J	A	S	0	N	D	
1. Meteorological_Measurements	14.1	18.4	22.9		29.0	-23-0	121.4
2. Site Evaluation	1.0	2.6	5.2	43.0	.8.0	2.0	61.8
3. Data Analysis					5.0	4.0	9.0
4. Management	1.9	1.9	2.0	1.6	1.6	1.6	10.6
Monthly Totals	17.0	22.9	30.1	58.6	43.6	30.6	202.8
Cumulative Total	17.0	39.9	70.0	128.6	172.2	202.8	
Budget Authorizations							
24 June 80	105	}					
13 August 80		145 —			}		

15 November 80?

2900 ------

MX-RES WIND RESOURCE ASSESSMENT

FY-80-FY-81 TRANSITION EXPENDITURE PLAN

PNL FY-81 BUDGET (\$1,000's)--\$2900

	l	METEOROLOGICAL-MEASUREMENTS			÷		2390		
		Subcontractor Selection		20				· ·	
		Measurements Subcontract		430_+1	-790*		·		·
	·	Subcontractor Monitoring	<u> </u>	80					
		Data Base Management		75		· · ·	•		-, · · · ·
		Wind Prospector		135		•			· · · ·
	2.	SITE EVALUATION					150	•	
		Site Ranking and Evaluation		40		•		·	
•		Site Use Permits	•	20	•		· · .		
•		Model Simulations	· · ·	50					
		Wind Erosion		40		•	-	·	
	3.	DATA ANALYSIS		• •			_205		
		MX-RES Data Base BookWind	•	25					
		Correlation/Regression Analysis		50				· •	
		Statistical Needs Analysis		10	_				•
		Synoptic Climatology		80					
		Wind Resource Mapping		10					
		TMY Reanalysis		30	`				
	4.	MANAGEMENT					155		
		Planning		60			· · · · · · · · · · · · · · · · · · ·		
		Quality Assurance		40					
		Liaison		35					
		Reporting	• •.	20					

* 140K of SERI furnished instrumentation not included.

FY-82

FY-83

PNL PROPOSED BUDGETS (\$1,000's)--FY-82, \$4445; FY-83, \$3370

<u> </u>	METEOROLOGICAL MEASUREMENTS	a	3030	1860
· · · · · · · · · · · · · · · · · · ·	Subcontract Review/Renewal		50	60
	Subcontract_Monitor		100	110
····	Measurements Subcontractor		550 + 2,000	600 + 1,000
	Data Base Management	·	80	90
	Profiling System		250	•
2.	SITE EVALUATION		_ <u>840</u>	810
•	Site Ranking and Recycle		40	40
	Model Simulations		400	170
	Turbulence/Shear	·	400	500
	Array Analysis			100
3.	DATA ANALYSIS		375	<u> </u>
	MX-RES Data Base BookWind		25	25
	Correlation Regression		50	50
• •	Resource Mapping	• .	100	100
	Synoptic Climatology	н на страна с На страна стр	50	50
	Areal Distribution		50	50
	WECS Performance Simulation		100	200
4.	MANAGEMENT		_200	225
	Planning		80	90
	Quality Assurance		50	55
	Liaison		40	45
	Reporting		30	35

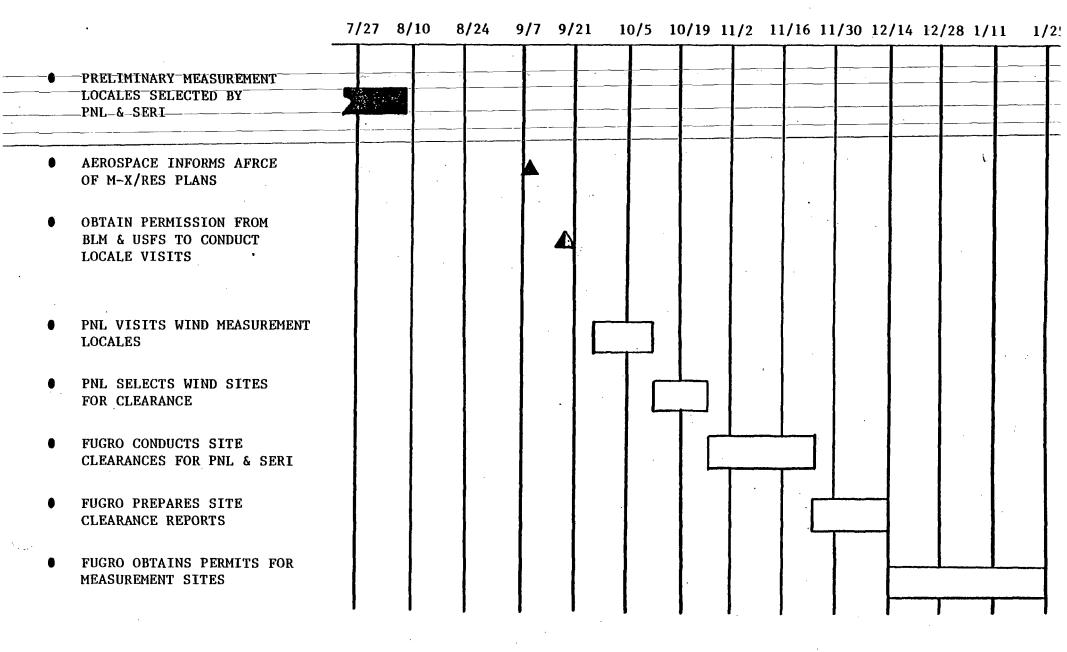
MANAGEMENT FLOW

IDEAL WIND ENERGY PROSPECTING SEQUENCE

ACTIVITY		TI	ME		
	Year 1	Year 2	Year 3	Year 4	1
INITIAL PROSPECTING					
Wind run anemometry Many sites					
SITE IDENTIFICATION			4		
Frequency distribution					
SITE EVALUATION					 -→
Time-series data					
Multi-level anemometry Turbulence measurements					
WECS INSTALLATION				·	 ↓ →
Performance monitoring					
SITE RANKING					
Initial selection Evaluate/rank/screen				:	

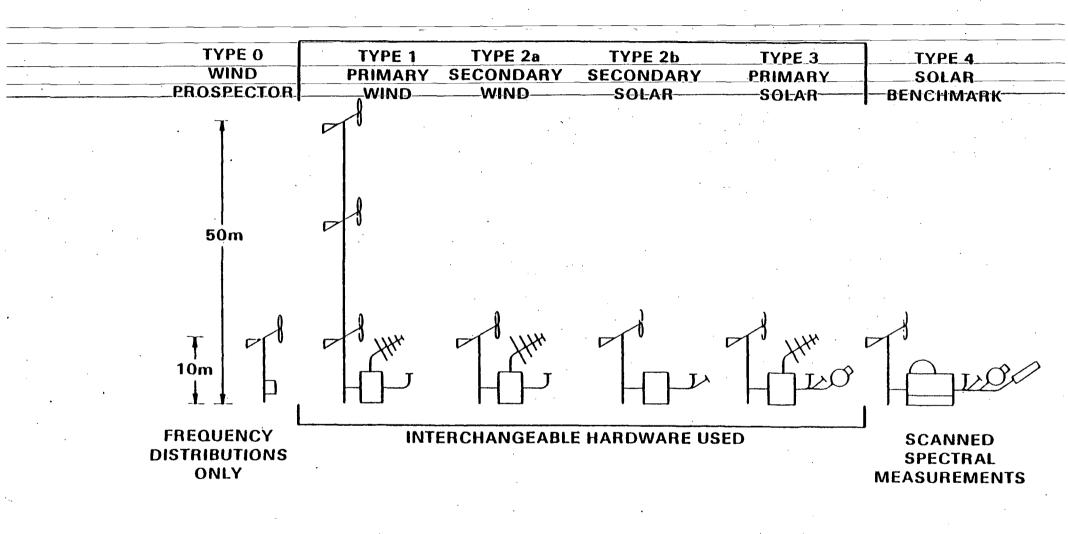
SITE PROSPECTING

Activity		FY-81			FY-8	2	FY-83
	СҮ-80		CY-81			CY-82	
Installation Window	_0J	A	- J		J	A J	0
		· · · ·					
INITIAL PROSPECTING		гесус	.le		recycle);	
SITE IDENTIFICATION		₽ 	¦ recycl	e in top local	.e <i>s</i>	recycle to cl	aracterize
Type II						top sil	
SITE EVALUATION Type I Type II		۱ ۲	top lo	cales	·	top sites	
SITE RANKING Order	⊽ 0	V 1	V 2			V 3	
SUPPORT ACTIVITIES Synoptic Climat Model Simulatic Wind Erosion							
· · ·				· ·		•	· · · · · · · · · · · · · · · · · · ·
						. ·	


SITE RANKING METHODOLOGY

 		· · ·
 0	0 TH ORDER: INITIAL SELECTION OF POTENTIAL LOCALES AND SITES	
 ·	•EXTANT_DATA,-CLIMATOLOGY, TOPOGRAPHY, SITE-VISIT-	
 	• TYPE O PROSPECTOR INSTALLATIONS	
0	1 ST ORDER: IDENTIFY INITIAL POTENTIAL LOCALES AND SITES	
	• O TH ORDER RANKING INFORMATION	
	• TYPE O DATA AND CORRELATIONS	
	• INITIAL TYPE I, TYPE II, AND TYPE III INSTALLATIONS	
	• RECYCLE TYPE O AS REQUIRED	
0	2 ^{MD} ORDER: IDENTIFY TOP LOCALES	
	• 0 ^{<u>TH</u>} AND 1 ^{<u>ST</u>} ORDER RANKING INFORMATION	· .
	• TYPE 0, INITIAL TYPE I, TYPE II, AND TYPE III DATA AND CORRELATIONS	
	• SYNOPTIC CLIMATOLOGY AND MODEL SIMULATIONS	
	• UPGRADE TOP TYPE IIa SITES TO TYPE I SITES	
	• RECYCLE TYPE 0 AND TYPE IIa AS REQUIRED	
0	3 RD ORDER: IDENTIFY TOP SITES FOR PROSPECTIVE TURBINE INSTALLATIONS	
	• $0^{\frac{\text{TH}}{\text{H}}}$, $1^{\frac{\text{ST}}{\text{H}}}$, $2^{\frac{\text{ND}}{\text{O}}}$ order ranking information	
	• UPDATED TYPE 0, TYPE I, TYPE II, AND TYPE III DATA AND CORRELATIONS	
	• UPDATED SYNOPTIC CLIMATOLOGY AND MODEL SIMULATIONS	•
	• INTERFACE AND ENVIRONMENTAL CONSTRAINTS IDENTIFIED	
	• BEGIN SITE CHARACTERIZATION BY CLUSTERING TYPE IIa AROUND TOP TYPE I	SITES, UPGRADE OTHER
	SITES, TOO	

• RECYCLE TYPE O AND TYPE IIA, AS REQUIRED


 $\overline{}$

SCHEDULE FOR M-X/RES MEASUREMENT SITES CLEARANCE AND USE PERMITS

.

MEASUREMENT STATIONS

MX-RES METEOROLOGICAL MEASUREMENTS

SYSTEM COMPONENT MATRIX

.

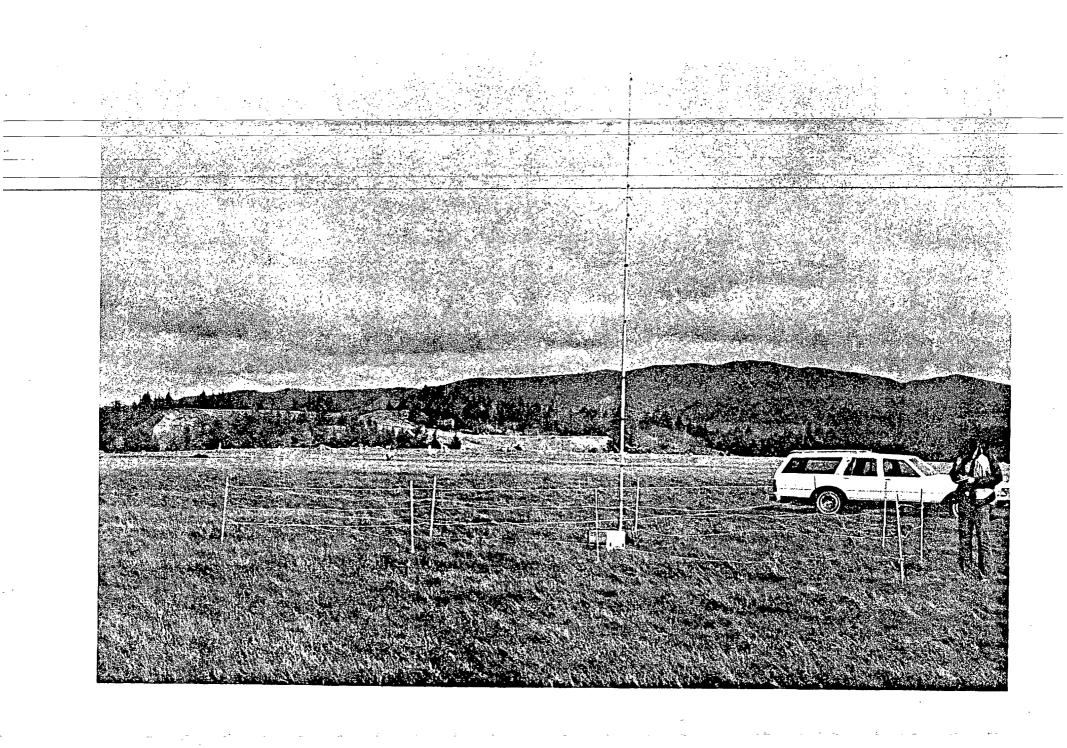
Item	Туре_О	Туре_1	Type_IIa	TypeI_Ib	ŤypeI-I-I	
µ Processor]	l	1		1	*
Tape Cassette	:	1	1	1	1	*
Telemetry		1	1	0	1	· ·
Wind Speed & Direction	1	3	ì.	1		· · · 1
Total Insolation		1	1	2	2	2
Direct Insolation		0	0	0	1	1
Temperature	1	2	1	1 .	1	1
Humidity		1	0	0	1	Q
Icing		1	0	0	1	0
10 m Tower	.I	0	1	1	1	1
50 m Tower/Elevators		1	0	0	0	0

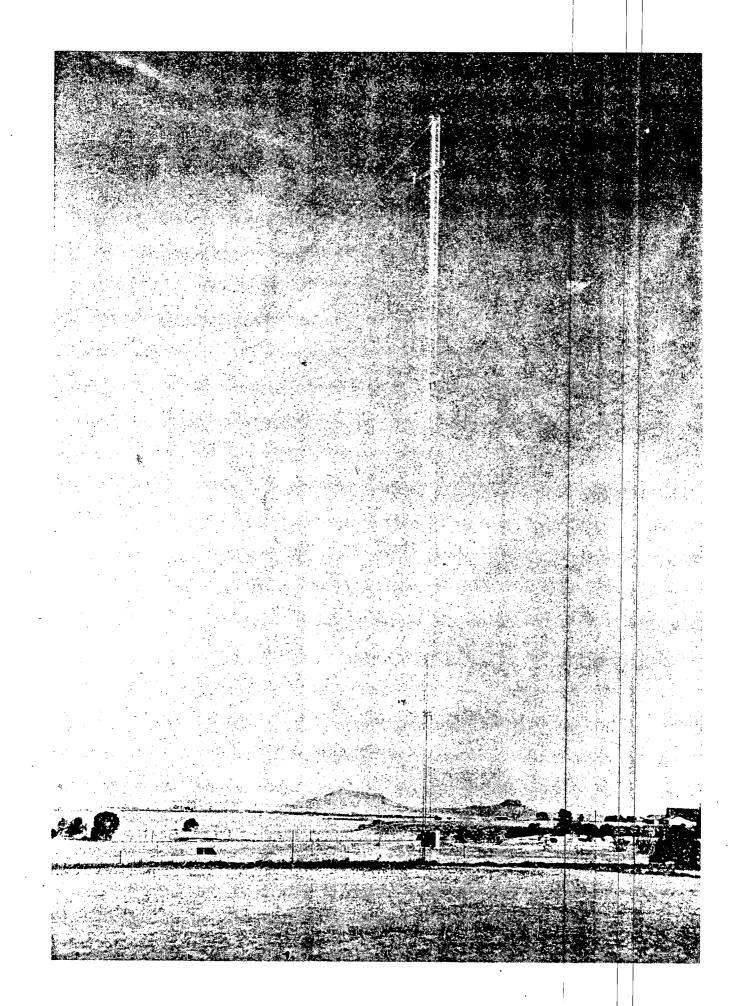
* Included with the PNL-MASP Installation

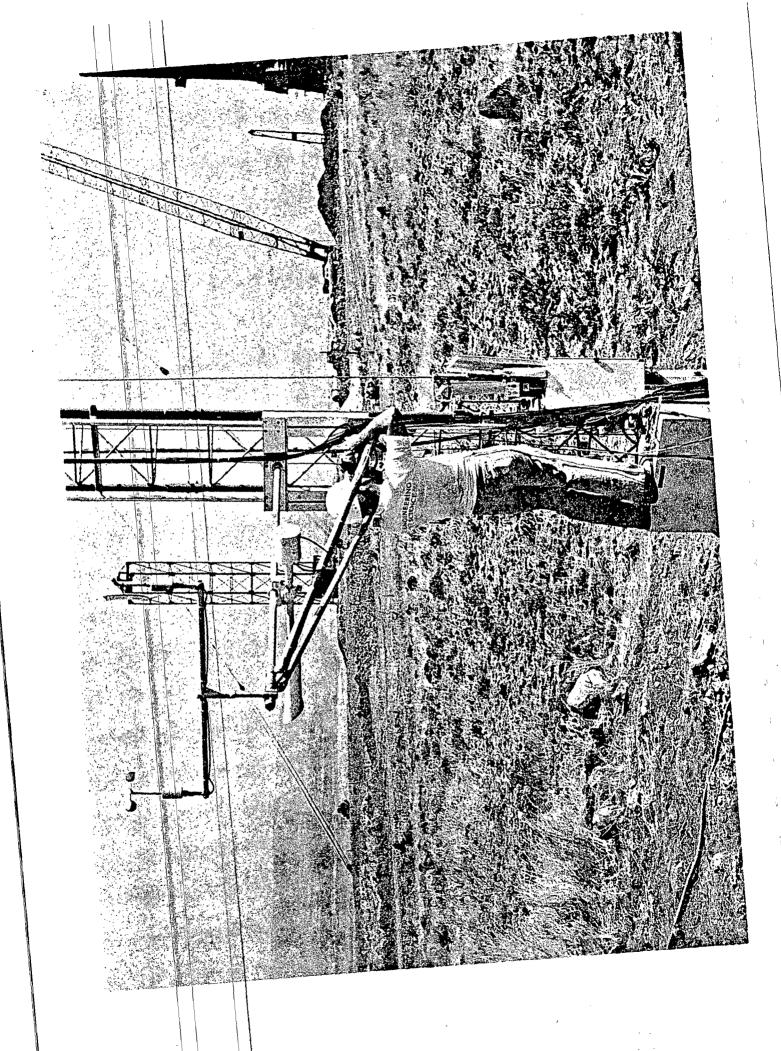
METEOROLOGICAL MEASUREMENT STATION CONFIGURATION

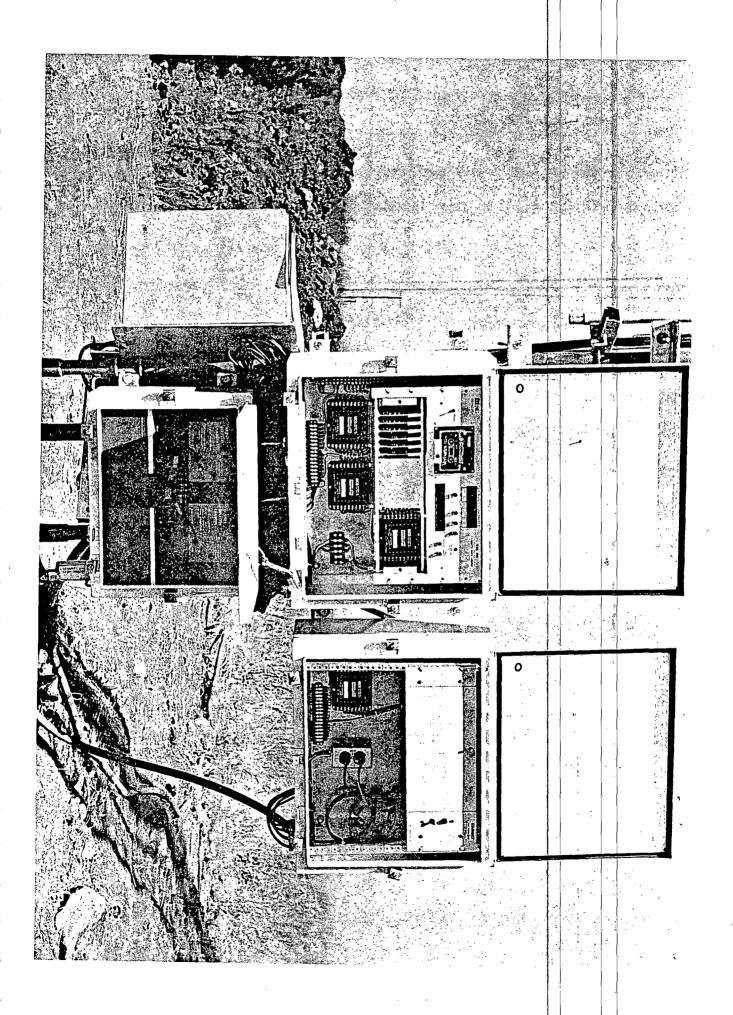
	Designator	Selected	Station Primary Use	Data Storage and Transmission	Security Provisions	Sensor Complements	
	Туре О	PNL	Initial Wind Pros- pecting	Processor Memory	None	Wind Speed and Direction at 30 ft Temperature at Ground Solar Panel Output	· · · · · · · · · · · · · · · · · · ·
	Туре І	PNI.	Rich_Wind_Resource	Telemetry	-Chain-Link-Fence		
			Site Characterization	Cassette Recorder	Door Monitor on TM	Temperature at 30 and 150 ft Humidity at 30 ft Icing at 150 ft Horizontal Global Insolation (SI Cell)	•
-	Туре IIа	PNL	Wind Site Prospecting and Satellites to Type I Station	Cassette Recorder Telemetry	Barbed Wire Fence	Wind Speed and Direction at 30 ft Temperature at 30 ft Horizontal Global Insolation . (SI Cell)	
	Type Ith	SER1	Satellites to Type lil Station	Cassette Recorder	Barbed Wire Fence Warning Norn	Wind Speed and Direction at 30 ft Temperature at 30 ft Norizontal Global Insolation Tilted Surface Global Insolation Direct Insolation	•
	Type Ill	SERI	Rich Solar Resource Site Characterization	Telemetry and Cassette Recorder	Chain Link Fence Door Monitor on TM	Wind Speed and Direction at 30 ft Humidity at 30 ft Icing at 30 ft Temperature at 30 ft Horizontal Global Insolation Tilted Surface Global Insolation Direct Insolation	
• • • •	Type LV	SER I	Benchmark Station	Consette Recorder	Locked Walk-In Shelter	Wind Speed and Direction at 30 ft Temperature at 30 ft Humidity at 30 ft Leing at 30 ft Horizontal Global Insolation Tilted Surface Global Direct Insolation Circumsolar Telescope	

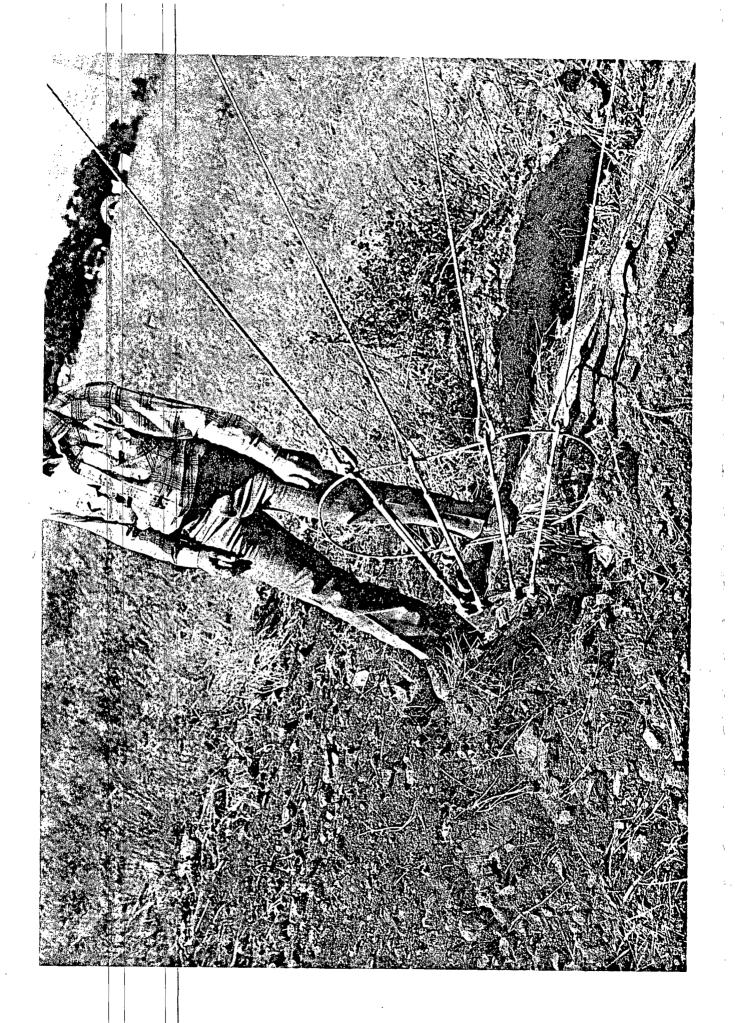
2) All stations have a microprocessor controlled data acquisition system.

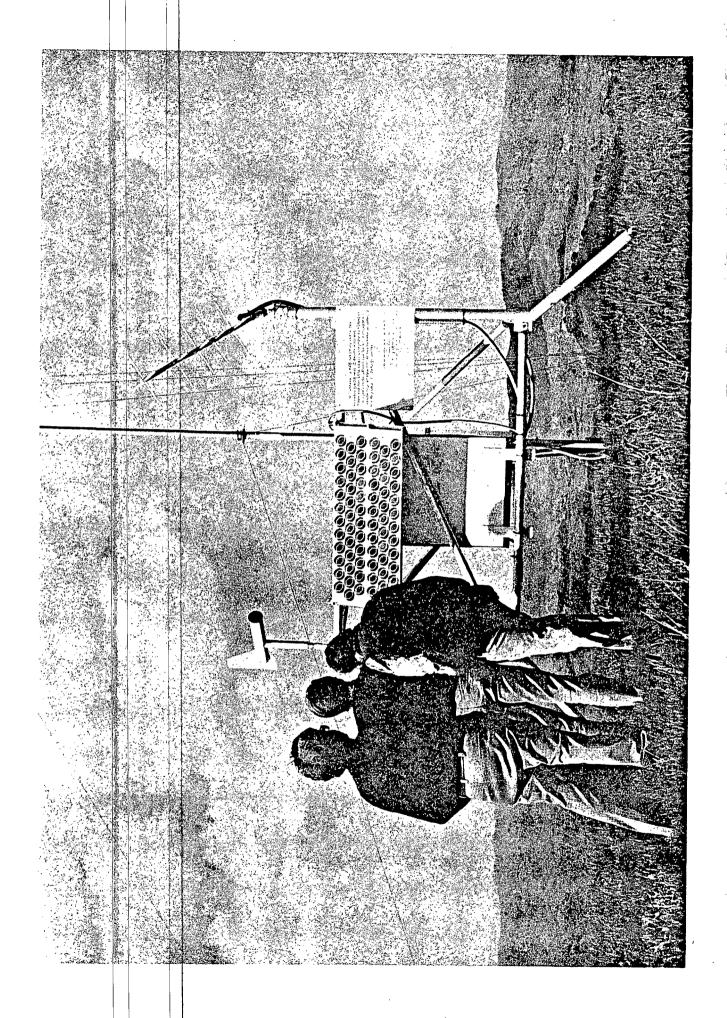

COMMONALITY OF STATION CONFIGURATIONS


- INTERMODAL CORRELATIONS FACILITATED BY JOINT INSOLATION AND WIND MEASUREMENTS
- DATA FOR SPATIAL VARIABILITY OF INSOLATION AND WIND RESOURCES GENERATED
- GREATER ACCURACY OBTAINED WITH COMMON DATA FORMAT AND PROCESSING
- WIND MEASUREMENT AT 30 FEET CONFORMS WITH NATIONAL WEATHER SERVICE PRACTICE
- MODULAR STATIONS EASILY RECONFIGURED


100 C 100


UNIQUE FEATURES OF STATION CONFIGURATIONS


	_	
	0	TYPE O (WIND):
	•	• JOINT FREQUENCY DISTRIBUTIONS ONLY
	0_	TYPE I (WIND):
		• WIND DATA AT MULTIPLE LEVELS FOR ACCURATE EXTRAPOLATION TO HUB HEIGHTS
		• WIND SENSORS AT SAME LEVELS AS IN DOE NATIONAL PROGRAM
	0	TYPE IIa (WIND):
. *		• SATELLITE TO TYPE I
· .		• PROSPECTOR FOR GOOD WIND SITES
	0	TYPE IIB (INSOLATION):
• •		• SUPPORTS TILTED SURFACE ALGORITHM FOR SOLAR ENERGY APPLICATIONS
		• TELEMETRY DEFERRED TO FY82
	0	TYPE III (INSOLATION):
		• SUPPORTS TILTED SURFACE ALGORITHM FOR SOLAR ENERGY APPLICATIONS
		• PROVIDES INFORMATION FOR CONCENTRATING SYSTEMS
	0	TYPE IV (INSOLATION):
		• SUPPORTS TILTED SURFACE ALGORITHM FOR SOLAR ENERGY APPLICATIONS
		• PROVIDES INFORMATION FOR CONCENTRATING SYSTEMS
		• CIRCUMSOLAR TELESCOPE PROVIDES
		- SOLAR AUREOLE DATA FOR ENTIRE M-X DEPLOYMENT AREA
		- SPECTRAL DATA
		- BENCHMARK FOR MEASUREMENT PROGRAM



MEASUREMENT PROGRAM PLANNING COSTS PER STATION

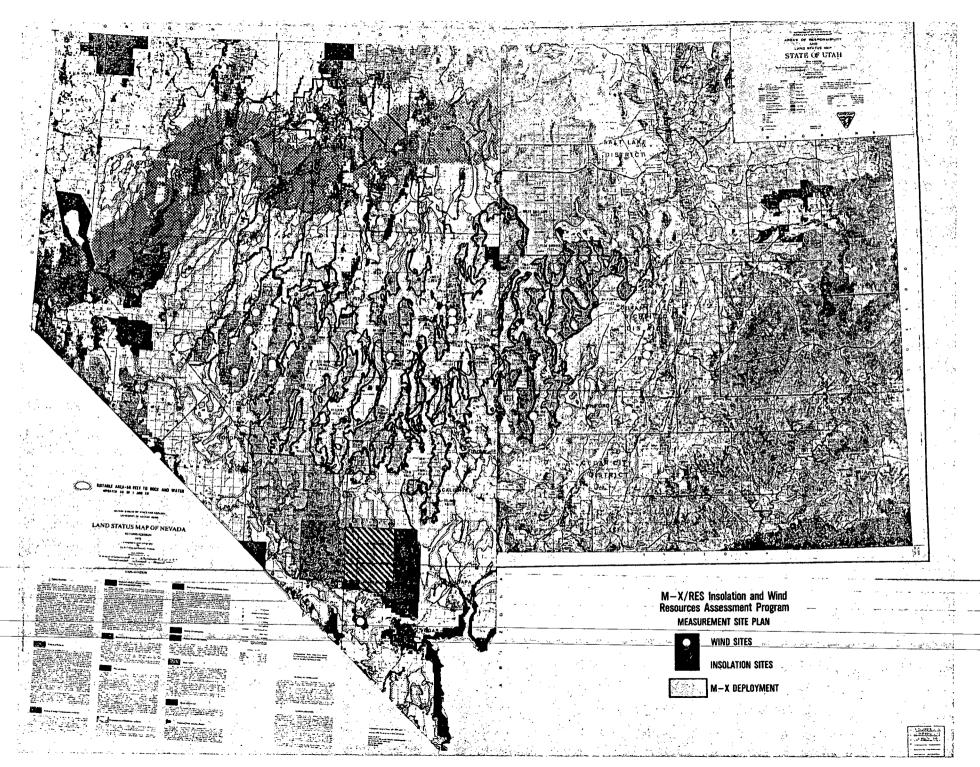
All Figures are in Thousands of Dollars

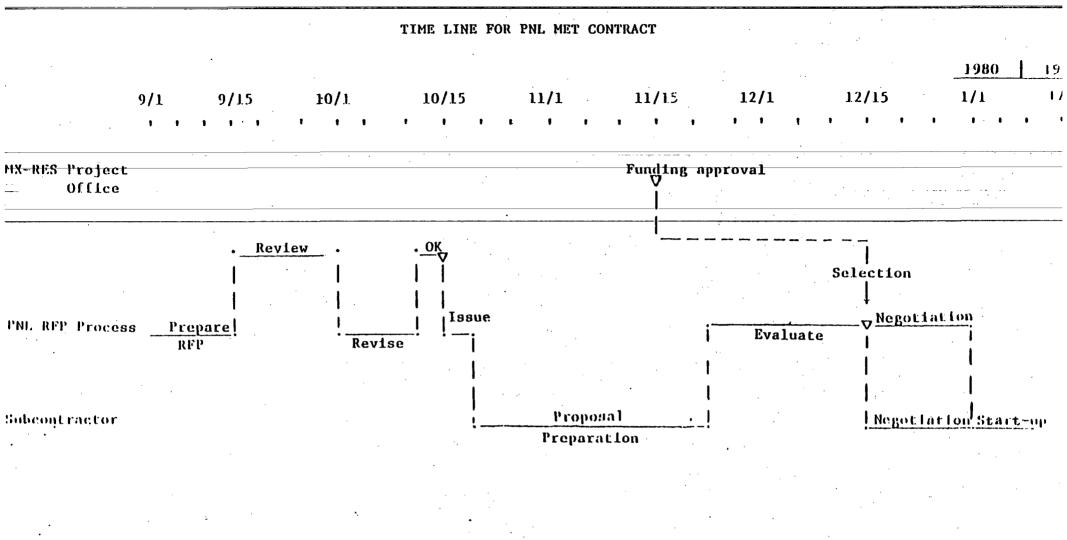
	Type O	<u>Type I</u>	Type IIa	<u>Type IIb</u>	<u>Type III</u>	Type IV	· · · · · · · · · · · · · · · · · · ·
 • HARDWARE							· .
SECURITY SYSTEM		1.1	0.5	0.6	1.2	Included in the MASP	
 DATA-LOGGER,-µ-PROCESSOR,					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
AND TELEMETRY XMTR	0.5	10.0	10.0	6.0 (No TM)	10.0	10.9*≭ (No TM)	
POWER SUPPLY	0.2	0.7	0.1	0.1	0.7	0.6	•
SENSORS/TOWERS/ELEVATORS/ SIGNAL CONDITIONING	0.6	19.4	4.7	5.3	22.4	25.7*	· ·
SPARES @ 10%	0.1	3.1	1.4	1.2	3.4	2.6	
SUBTOTAL	$\frac{0.1}{1.4}$	34.3	16.7	13.2	37.7	39.8	
• INSTALLATION							· .
PRE-INSTALLATION	0.2	1.9	0.2	0.2	1.9	3.7	
FIELD INSTALLATION/ CONSTRUCTION	1.8	35.5	4.0	2.0	2.4	9.4	
SUBTOTAL	2.0	37.4	4.2	2.2	4.3	13.1	
• OPERATION FOR FY-81		•					
MAINTENANCE AND DATA Retrieval (includes field Calibration)***	4.0	5.0	4.5	4.5	9.0	31.3	
COMPUTER TIME (DATA Processing)	<u>0.1</u>	0.3	0.1		0.2		· · · ·
SUBTOTAL	4.1	5.3	4.6	4.6	9.2	40.9	• .
TOTAL	7.5	77.0	25.5	20.0	51.2	93.8	
• RECYCLE				· · · · ·	x. ·		
REMOVAL	1.0 (R	11.5 Restoration Deferred)	3.1				
PRE-INSTALLATION	0.2	1.9	0.2				
FIELD INSTALLATION/ CONSTRUCTION	1.8	35.5	4.0	· · ·			
TOTAL	3.0	48.9	7.3		- -		

* Assumes that a circumsolar telescope will be available on a GFE basis. If a new circumsolar telescope must be bought, its cost will be about \$75,000.

** Includes expanded µ Processor and 9-track magnetic tape recorder.

*** Nine months' operations


MEASUREMENT PROGRAM PLANNING COSTS


ITEM		COST, \$K	
	· · ·		
• PNL FIXED COSTS		1088.0	
• SERI FIXED COSTS		465.0	
• ESTIMATED STATION COSTS			
(30) TYPE O's INSTALLED	•	225.0	
(20) TYPE O'S NOT INSTALLED	•	28.0	
(6) TYPE I's INSTALLED*		454.5	
(20) TYPE IIa's INSTALLED		510.0	•
(10) TYPE IID'S INSTALLED		200.0	·
(6) TYPE III'S INSTALLED		307.2	
(1) TYPE IV INSTALLED		93.8	· · ·
• CONTINGENCY AND RECYCLING	· .	128.5	· · · · · · · · · · · · · · · · · · ·

3500.0

• TOTAL FY 81 SPENDING

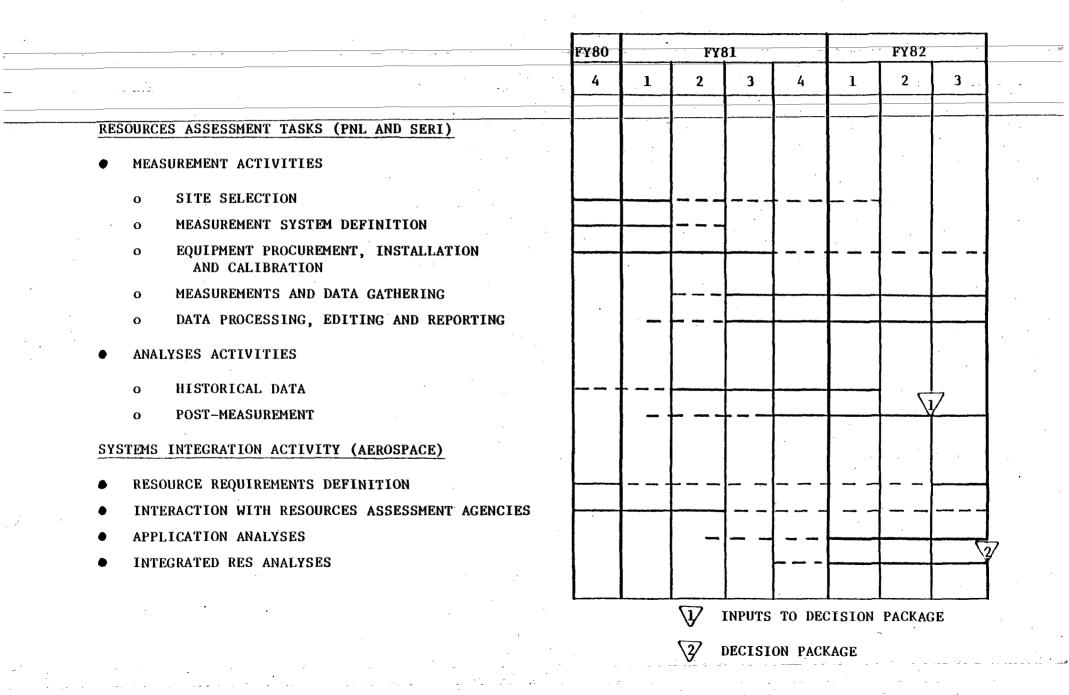
*LESS THAN 9 MONTH'S OPERATION

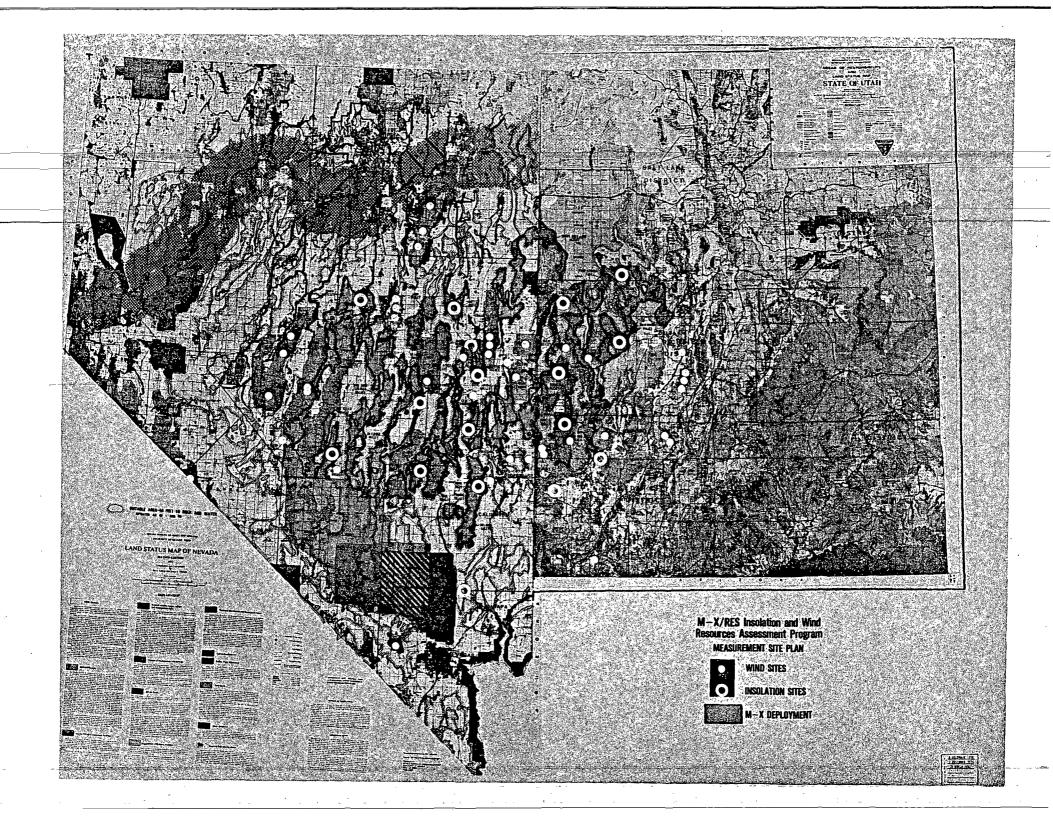
SUMMARY

• ACCOMPLISHMENTS

• -SCHEDULE

1.00


- JOINT SITING MAP
- KEY CONCERNS
- ACTION STATUS
- COMMENTS BY M-X/RES PROJECT OFFICE


ACCOMPLISHMENTS TO DATE

0	MANAGEMENT PLAN	•			• •				. ·
	- OBJECTIVES	•	·	•			· . ·		
	- ROLES AND RESPONSIBILITI	ES						•	
	POINTS OF CONTACTSCHEDULES				· · · ·	•		· · . · .	-
° o	FY80 and FY81 FUNDING	· · ·	•	•	*	· ·			
DE	FINED METEOROLOGICAL STATIONS			· .		•			
. 0	CONFIGURATIONS			• •		•			
	- RATIONALE								
	- COST ESTIMATES								·
	- DATA RECOVERY/ANALYSIS							-	
o	DEPLOYMENT						•		

- o SCHEDULES
- **o RFP PREPARATION**
- ESTABLISHED PLAN FOR MEASUREMENT SITES CLEARANCES/PERMITS
- PNL AND SERI AGREED TO CONTINUE SUPPORT OF M-X/RES DATA BASE PREPARATION

SCHEDULE

KEY CONCERNS

•____FUNDING-

- O PROCUREMENT OF METEOROLOGICAL STATIONS DELAYED
- O NUMBER OF STATIONS INITIALLY LIMITED
- O RELIABILITY OF DATA RECOVERY FROM TYPE IIb STATIONS

• SCHEDULE

- O MAY NOT HAVE FULL YEAR'S MEASUREMENTS BY DECISION PACKAGE DATE
 - SITE CLEARANCES
 - PROCUREMENT LEAD TIME
 - WINTER WEATHER

• TECHNICAL

- O CLIMATOLOGICAL CONSTRAINTS ON STATION INSTALLATION AND REPAIR
- **o** TRACKING PYRHELIOMETER DEVELOPMENT
- **o** AVAILABILITY OF CIRCUMSOLAR TELESCOPE
- **o RECYCLING STRATEGY**
- **o PLANNING FOR PHASE B**

ACTION STATUS

·	•	PNL TO FORWARD EXTANT UTAH DATA TO AEROSPACE	CLOSED	
	•	AEROSPACE TO PROVIDE PRELIMINARY SITE SELECTION DATA TO PNL	CLOSED	
	•	SERI WILL OBTAIN AND ESTIMATE AVERAGE ANNUAL PRECIPITATION IN MX DEPLOYMENT AREA	CLOSED	• •
	•	PNL AND SERI WILL ISSUE PURCHASE REQUESTS TO FUGRO FOR CLEARANCES/PERMITS FOR SITES OF INTEREST	OPEN	
	٠	SERI WILL DETERMINE IF A NEW CIRCUMSOLAR TELESCOPE MUST BE PURCHASED	OPEN	
· ·	•	AEROSPACE WILL ESTABLISH A MEETING WITH BLM AND NFS TO DISCUSS ACCESS TO AREAS OF INTEREST, I.E., POTENTIAL MEASUREMENT SITES	CLOSED (19 SEPT 80)	
	٠	SERI WILL SELECT TRACKING PYRHELIOMETERS FOR TYPE III AND IV STATIONS	CLOSED	

COMMENTS BY M-X/RES PROJECT OFFICE

• DOES THE PROGRAM AS OUTLINED MEET YOUR EXPECTATIONS?

• ARE THERE ADDITIONAL PROGRAM CONSTRAINTS WHICH COULD AFFECT THIS APPROACH?

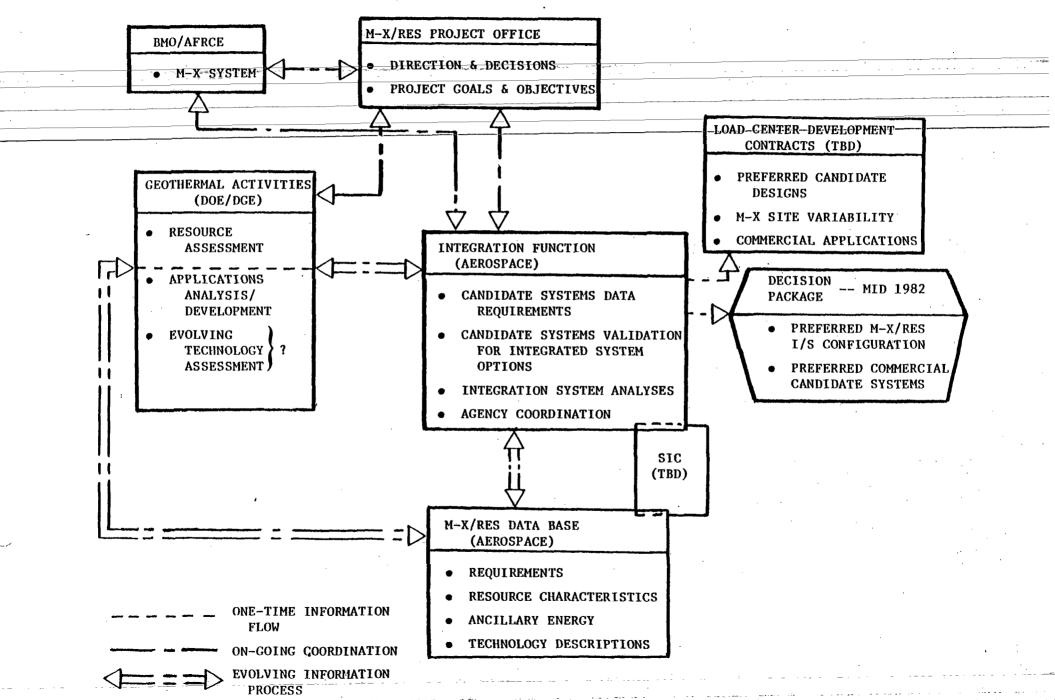
• SHOULD WE PROCEED AS IS?

M-X/RES GEOTHERMAL BRIEFING TOPICS

• PRELIMINARY DATA REQUIREMENTS

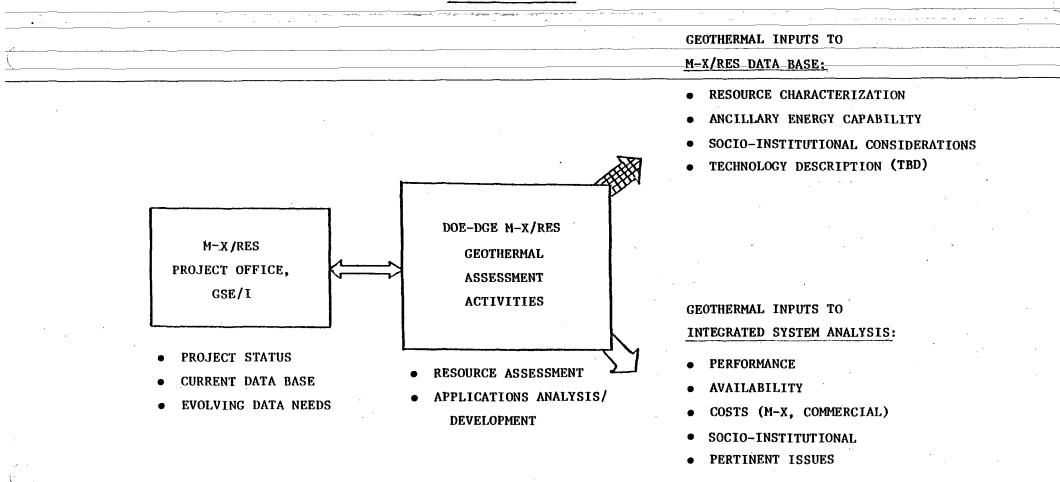
- INTEGRATION RELATIONSHIPS AND INFORMATION FLOW
- GEOTHERMAL INPUTS TO M-X/RES DATA BASE BOOK
- RESOURCE AND APPLICATIONS DATA FOR INTEGRATED SYSTEM ANALYSES
- SCHEDULE OF INFORMATION DELIVERABLES

• ACTIVITY STATUS


- MEETINGS AND COORDINATION TO DATE
- SIGNIFICANT RESOLUTIONS/FINDINGS
- SUMMARY OF DATA EXCHANGES

• CURRENT CONCERNS

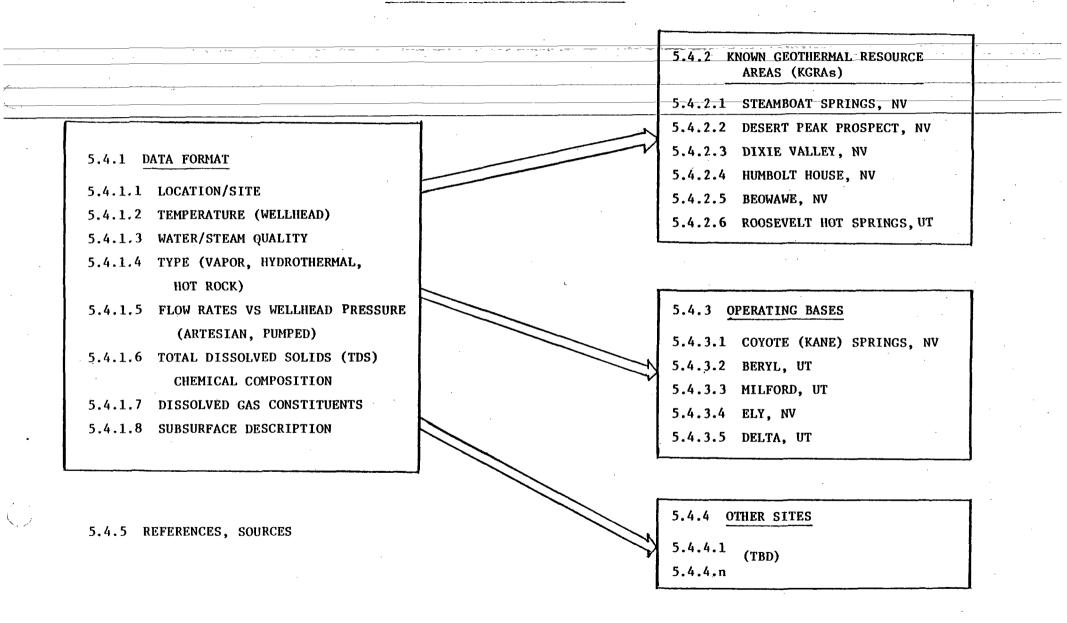
- SCHEDULE AND COMMUNICATION IMPLICATIONS
- PHILOSOPHY OF EMPHASIS ON RESOURCES/APPLICATIONS
- DATA BASE CONTENT
- DATA INCONSISTENCY
- MIL-STANDARD ROLE IN M-X/RES


• ANTICIPATED FOLLOW-UP (AEROSPACE)

M-X/RES GEOTHERMAL ACTIVITY - INTEGRATION RELATIONSHIPS

M-X/RES GEOTHERMAL ASSESSMENT

INFORMATION FLOW


GEOTHERMAL INPUTS TO M-X/RES DATA BASE BOOK

 WBS_ELEMENT	DATA BASE BOOK ELEMENT	
 SUPPORTED	LOCATION (TENTATIVE)	· .
2.3 GEOTHERMAL ASSESSMENT (RESOURCES)	5.0 RESOURCE DATA BASE 5.4 GEOTHERMAL	
3.1 GEOTHERMAL APPLICATIONS DEVELOPMENT	3.4 ANCILLARY ENERGY 3.4.1 GEOTHERMAL	
	 6.0 SOCIO-INSTITUTIONAL DATA 6.1 REGULATORY 6.2 LEGAL 6.3 ENVIRONMENTAL 	
3.3 EVOLVING TECHNOLOGY ASSESSMENT ?	7.0 TECHNOLOGY DESCRIPTIONS	· ·

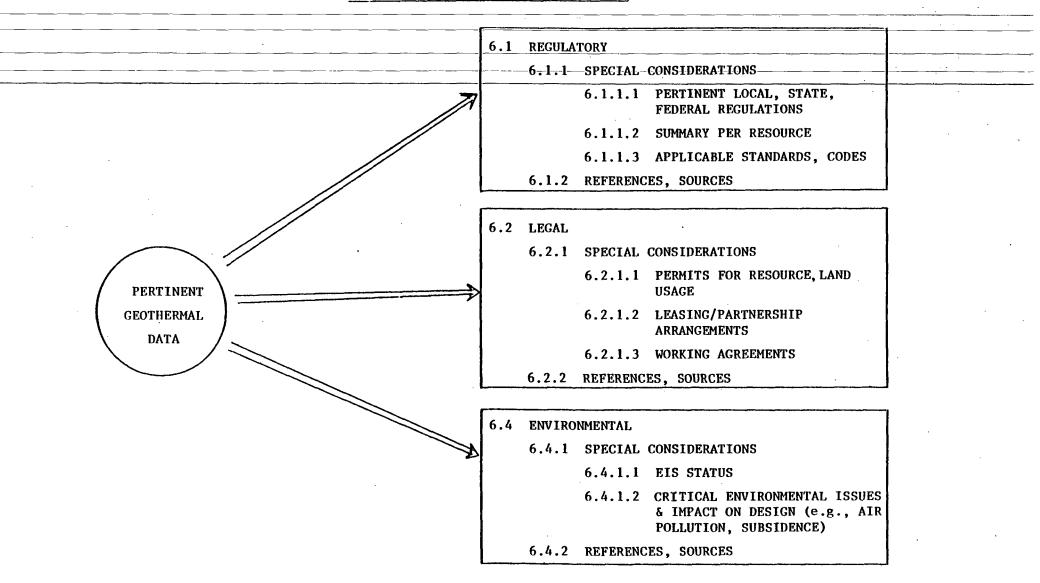
M-X/RES DATA BASE, SECTION 5.4 (TENTATIVE)

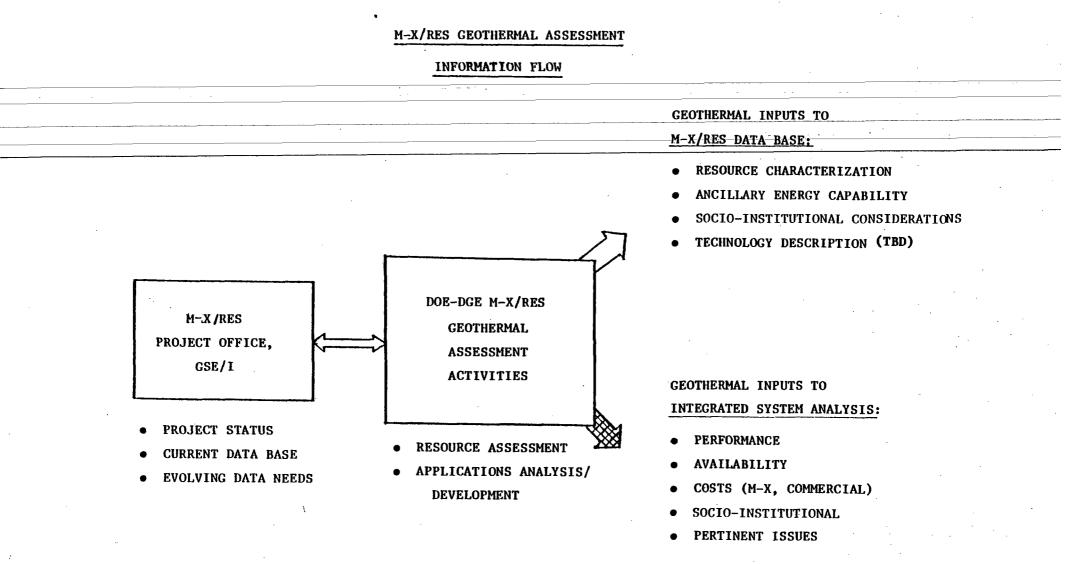
GEOTHERMAL RESOURCE ASSESSMENT

GEOTHERMAL RESOURCE CHARACTERIZATION DATA -- EXAMPLE

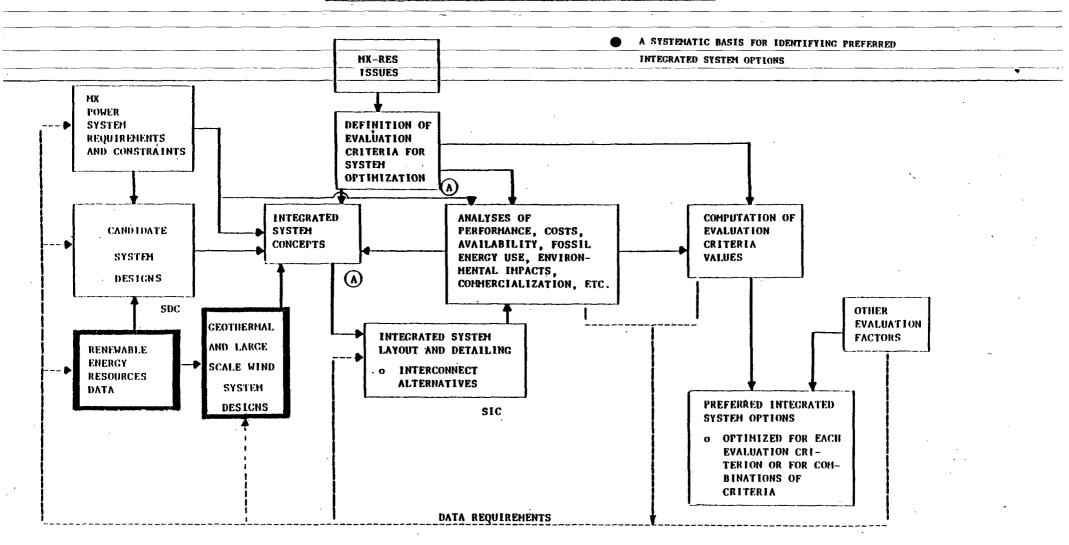
0	SITE DEPENDENT RESOURCE CHARACTERISTICS SITE LOCATION AND ACCESSIBILITY	·	· · · · · · · · · · · · · · · · · · ·	
	• SUBSURFACE DESCRIPTION OF GEOLOGIC FORMATION (PRODUCTION POROSITY, HYDROLOGY, TERRANE STRUCTURE, ETC.)	ZONE LOCATION,	PERMEABILITY/	
	• RESOURCE TYPE (VAPOR, HYDROTHERMAL, HOT ROCK)			• • •
. 0	PARAMETRICALLY DISTRIBUTED RESOURCE CHARACTERISTICS			
•.	• WELLHEAD TEMPERATURE (STEADY FLOW)			
	• WATER/STEAM QUALITY		. · · · ·	
	• FLOW RATES VS WELLHEAD PRESSURE (STEADY FLOW)			
	• TDS CONSTITUENTS MAKE-UP			
	• DISSOLVED GAS CONSTITUENTS	· · ·	· · · ·	
	• OTHERS			• • •
				· .
0	PARAMETERIZED RESOURCE DATA FORMAT		· .	
			·	•
	PROBABILITY OF RESOURCE,			
	P (R)	•	•	
		· · ·		
		RESOURCE, R		

M-X/RES DATA BASE, SECTION 3.4 (TENTATIVE)

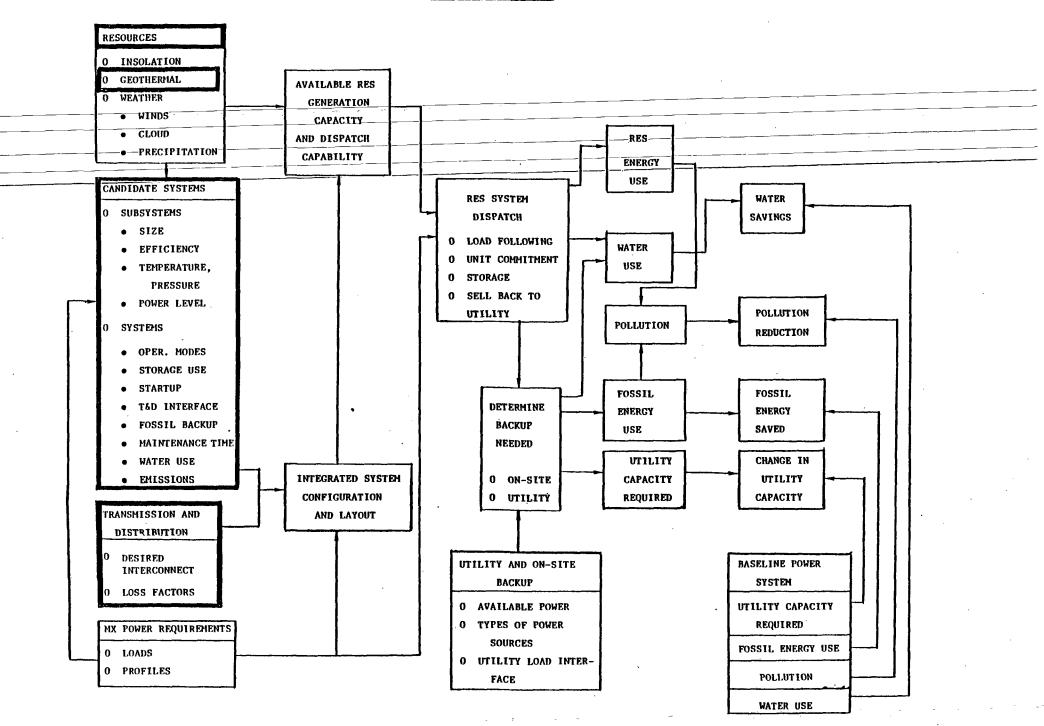

GEOTHERMAL "ANCILLARY ENERGY"


	· · · · · · · · · · · · · · · · · · ·
	BASIS - CLUSTER, OPERATING BASE SOWS (PARAGRAPH 2.7):
· · · · · · · · · · · · · · · · · · ·	"Geothermal and large-scale wind energy sources are being considered for incorpora- tion as part of an integrated MX-RES system. If these sources are included, then a portion of their generated energy may be made available, either continuously, during nightime or daytime only, or at random times. The Contractor shall indicate how his preferred RES design, as developed in Subtask 2.1, would be changed if this external RES energy were to be available. The Contractor shall also define associated cost and operational impacts. The amounts of such energy which might be available will be specified in the <u>MX-RES Data Base</u> ."
0	PROPOSED DATA BASE CONTENT, SECTION 3.4.1:
	3.4.1 DATA FORMAT (FOR BOTH ELECTRIC AND THERMAL POWER) 3.4.2 KGRAs 3.4.1.1 POWER PROFILE 3.4.1.2 AVAILABILITY 3.4.1.2 AVAILABILITY 3.4.3 OPERATING BASES 3.4.1.4 POWER SOURCE INTERFACE 3.4.1.5 WATER USAGE
	3.4.4 OTHER SITES

3.4.5 REFERENCES, SOURCES

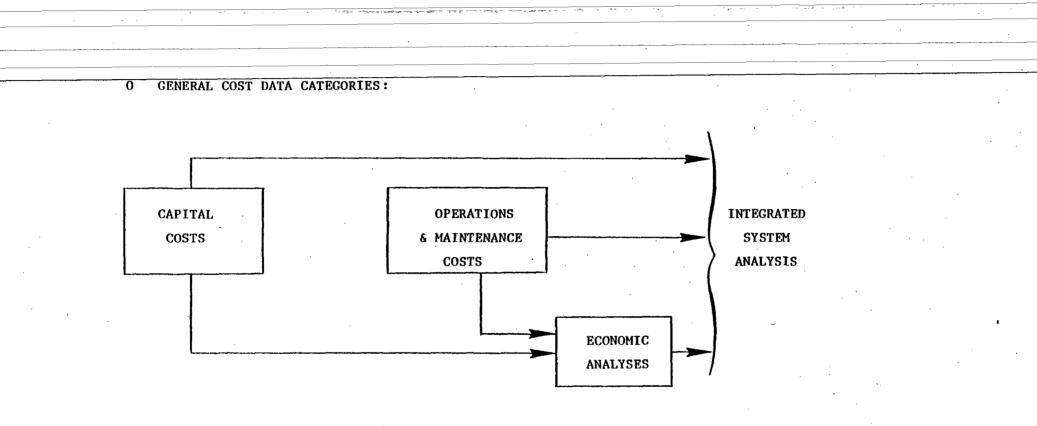

M-X/RES DATA BASE, SECTION 6.0 (TENTATIVE)

GEOTHERMAL SOCIO-INSTITUTIONAL DATA



HX-RES INTEGRATED SYSTEMS EVALUATION METHODOLOGY

.


PERFORMANCE ANALYSIS

.

M-X/RES INTEGRATED SYSTEM COST ANALYSIS

PRELIMINARY GEOTHERMAL DATA REQUIREMENTS

- **0** TWO SETS REQUIRED:
 - M-X APPLICATIONS
 - COMMERCIAL APPLICATIONS

M-X/RES GEOTHERMAL CAPITAL COST DATA

0	LAND	0	SITE PREPARATION/DEVELOPMENT	· · ·
0	-FAGILITIES-(CONSTRUCTION/INSTALLATION):	0	WELLS-AND-SURFACE-PIPING:	
	• OPERATIONAL		• CASINGS	
	• MAINTENANCE		• SEPARATORS/HEAT-EXCHANGERS	
0	CONVERSION SUBSYSTEMS:		• PUMPS/VALVES	
-	• TURBINE-GENERATORS		• INSTRUMENTATION	· · ·
	• COOLING		• HEADERS	
0.	EMISSION ABATEMENT	0	STORAGE SUBSYSTEMS	,
0	MASTER/SUBSYSTEM CONTROL		(IF APPLICABLE)	· .
0	MASIER/SUBSISIEM CONTROL	0	TRANSMISSION/DISTRIBUTION:	
0	SWITCHING/INTERCONNECT		• ELECTRIC	· .
0	PERMITS		• DIRECT THERMAL	· · · · · · · · · · · · · · · · · · ·
		0	"LEARNING CURVES"	

M-X/RES GEOTHERMAL OPERATIONS/MAINTENANCE COST DATA

0 OPERATING PERSONNEL:

- TRAINING
- LABOR

0 MAINTENANCE:

- MATERIALS
- SPARE PARTS
- LABOR

0 WATER USE

0 FUEL (IF APPLICABLE)

0 UTILITY POWER

M-X/RES GEOTHERMAL ECONOMIC ANALYSIS DATA

0	COST ANALYSIS:			· · · ·
	• LIFE-CYCLE-COSTS		·	
	• DISCOUNT RATES			· ·
	• FY 1980 DOLLARS (NPV)	н. 1		· .
	• ENVIRONMENTAL		· · ·	
	• HEALTH AND SAFETY		· · · · · · · · · · · · · · · · · · ·	
0	SYSTEM COST SENSITIVITIES:			
	• CUMULATIVE PRODUCTION			
	• PRODUCTION RATE		• .	
	• LENGTH OF CONSTRUCTION/PRODUCTION PERIODS			
	• VARIATIONS IN CONNECTED LOAD, RESOURCE/WATER AVAILABILITY			
	• SUBSYSTEM CAPACITIES			
	• PERFORMANCE PARAMETERS		1	
0	INCREMENTAL COSTS:			· · · ·
	• LOAD GROWTH POTENTIAL IMPLICATIONS FOR DESIGN,			•
	• FOSSIL FUEL COSTS PERFORMANCE, OPERATION, SITIN	NG		

M-X/RES PRELIMINARY GEOTHERMAL SYSTEM AVAILABILITY DATA

(CONSISTENT WITH SOW)

0 DEFINITION ≡ TIME POWER OF ACCEPTABLE QUALITY

TIME_REQUIRED_(1.e., CONTINUOUS)-

0 PRELIMINARY AVAILABILITY DATA:

- PROBABILITY OF SYSTEM/RESOURCE STATES
- SUBSYSTEM UNAVAILABILITY FRACTIONS:
 - MTBF, MTTR
 - BACKUP (IF APPLICABLE)
- SUBSYSTEM FAILURES DUE TO LARGE FLUCTUATIONS:
 - DEMAND

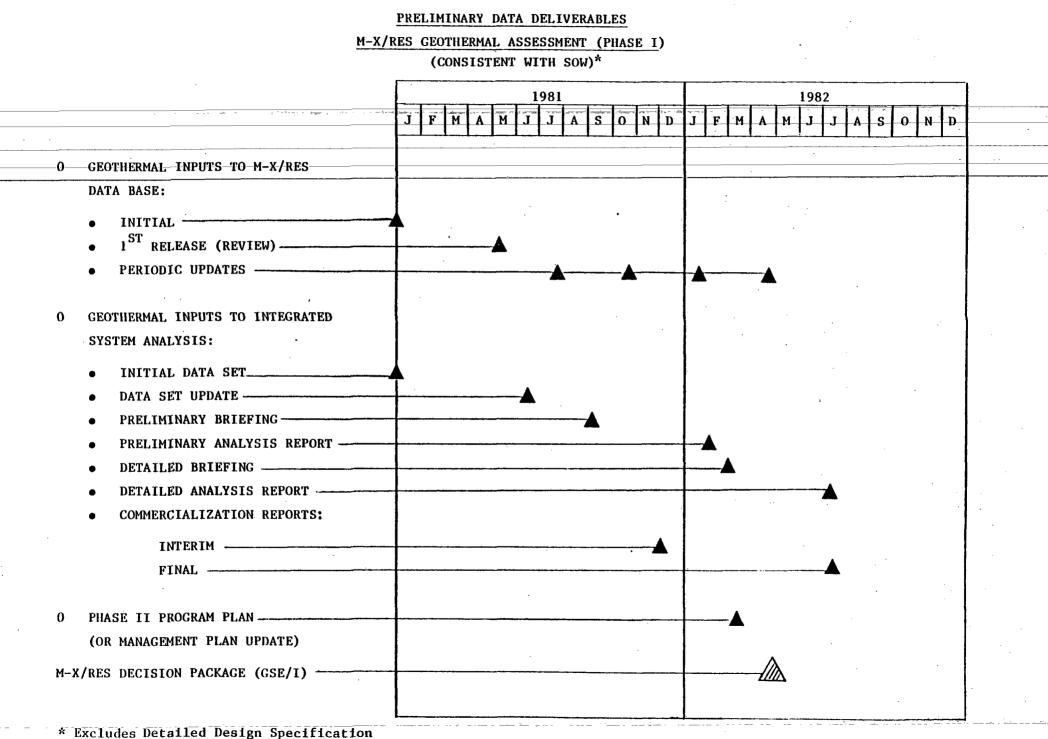
RESOURCE

SCHEDULED MAINTENANCE

SCHEDULED REPLACEMENT

WATER

- OPERATIONAL LIFETIME
- FMEA HIGHLIGHTS OF DESIGN EMPHASIS
- **0 DETAILED AVAILABILITY DATA:**
 - REFINED PRELIMINARY DATA
 - PARAMETER UNCERTAINTIES/RANGES
 - SUITABLE ENVIRONMENTAL REGIMES OF OPERATION
 - IMPACT OF REGIME EXCURSIONS ON SYSTEM RELIABILITY
 - PERFORMANCE DEGRADATION DUE TO LONG-TERM EXPOSURE


0 DETAILED INSTRUCTIONS FORTHCOMING PER M-X/RES PROJECT OFFICE

SUPPLEMENTAL M-X/RES GEOTHERMAL DATA REQUIREMENTS FOR

1

INTEGRATED SYSTEM ANALYSES

- 0 INTERPRETATIONS OF SOCIO-INSTITUTIONAL
 - PERMITS
 - LEASING ARRANGEMENTS
 - WATER RIGHTS
 - PUBLIC OPINION/SENSITIVITY
 - ENVIRONMENTAL (EMISSIONS, SUBSIDENCE, AESTHETICS)
- 0 IDENTIFICATION OF PERTINENT ISSUES, E.g.:
 - PLU PRESERVATION
 - SAFETY
 - VULNERABILITY
 - SCHEDULE RISKS
 - HUMAN FACTORS

M-X/RES GEOTHERMAL ACTIVITY STATUS

0-MEETINGS-AND-COORDINATION-TO-DATE: DOE=NV-INITIAL-CONTACT-MEETING • GEOTHERMAL WORKING GROUP MEETING FUGRO NATIONAL MEETING AFRCE BRIEFING INDUSTRY DISCUSSIONS AND TELECONS IMPERIAL VALLEY AND CERRO PRIETO TOUR SIGNIFICANT RESOLUTIONS/FINDINGS TO DATE: 0 GEOTHERMAL/LOAD-CENTER DATA CONSISTENCY . MANAGEMENT PLAN PREPARATIONS • **PROCUREMENT OPTION TRADEOFFS** • DATA REQUIREMENT RESPONSIBILITY **RESOURCE AND APPLICATIONS DEFINITIONS** APPLICABLE GEOPHYSICAL INVESTIGATIONS . M-X FEDERAL/STATE AGENCY COORDINATION DATA EXCHANGES TO DATE: 0 PROJECT INFORMATION SOWS AND ATTACHMENTS MAPS AND REPORTS MEETING SUMMARIES DELIVERIES OUTSTANDING

M-X/RES GEOTHERMAL KEY EVENTS TO DATE

ТҮРЕ	AGENCIES	LOCATION/DATE
	IN ATTENDANCE	(CY 80)
WORKING GROUP MEETING	M-X/RES P.O., DOE-DGE, DOE-ID, DOE-NV, ESL-UURI, AEROSPACE	DOE-NV/8-25
DATA AVAILABILITY MEETING	DOE-ID, DOE-NV, ESL-UURI, NBM, UGS, FUGRO NATIONAL, AEROSPACE	FUGRO NATIONAL/8-27
AFRCE COORDINATION BRIEFING	AFRCE, AEROSPACE	AFRCE/9-8
INITIAL INTER-AGENCY COORDINATION	DOE-NV, AEROSPACE	DOE-NV/8-11
GEOTHERMAL FACILITY TOURS	BMO/TRW, AEROSPACE	CERRO PRIETO, EAST MESA, BRAWLEY/5-14 TO 5-15

SIGNIFICANT RESOLUTIONS TO DATE

• GEOTHERMAL/LOAD CENTER DATA CONSISTENCY--APPLICATIONS AND RESOURCE CHARACTERIZATION IS TO BE CONSISTENT WITH CHARACTERIZATION REQUIREMENTS OF SHELTER, CLUSTER, BASE SOWS

• DOE GEOTHERMAL-MANAGEMENT_PLAN_(EARLY_OCTOBER, 1980):

- **RESOURCE ASSESSMENT APPROACH**
- •---APPLICATIONS-ANALYSIS-APPROACH--
- DELIVERABLES
- SEMANTICS
- PROCUREMENT OPTION TRADEOFFS FOR APPLICATIONS ANALYSIS:
 - UTILITY
 - FIELD DEVELOPER
 - A&E
- AEROSPACE RESPONSIBILITY FOR GEOTHERMAL DATA REQUIREMENTS:
 - M-X/RES DATA BASE BOOK
 - INTEGRATED SYSTEM ANALYSIS
- RESOURCE AND APPLICATIONS DEFINITIONS (PHASE I)
 - APPLICATIONS ANALYSIS ≡ INVESTIGATION ACTIVITY DOWNSTREAM OF THE WELLHEAD (ENERGY CONVERSION OR DIRECT USE)
 - RESOURCE ASSESSMENT = ACTIVITY RELATED TO BELOW THE WELLHEAD (EXPLORATION AND DRILLING)
- APPLICABLE GEOPHYSICAL INVESTIGATIONS
 - KGRAs
 - OB SITES
 - OTHER INTRA-DEPLOYMENT AREA SITES
- COORDINATION CHANNELS
 - FORMAL INFORMATION REQUESTS THROUGH DOE-DGE (INFORMALLY EXPEDITED)
 - AFRCE/FUGRO COORDINATION THROUGH AEROSPACE
 - FEDERAL/STATE AGENCY CONTACTS FOR M-X CAUTIONED

FINDINGS RESULTING FROM FUGRO NATIONAL EXPLORATIONS/INVESTIGATIONS (M-X DEPLOYMENT AREA)

DRILLING PROGRAM APPROXIMATELY 80% COMPLETE:

_LIMITED_TO_SURFACE_AND_SHALLOW_HOLE_INVESTIGATIONS_

• OPPORTUNITY EXISTS TO "LINE" AND INSTRUMENT NON-OPTIMALLY LOCATED HOLES AT OB SITES

• BALANCE OF PLANNED DRILLING RELATIVELY INFLEXIBLE AT "OTHER" INTRA-DEPLOYMENT AREA SITES

• DRILLING ACTIVITY FOR M-X NOT DESIGNED TO PROVIDE RESOURCE LOCATION ASSESSMENT INFORMATION:

- EXISTING BOREHOLE USEFULNESS UNDETERMINED
- ACTIVITY AT KGRAS AVOIDED PER BMO/AFRCE GROUNDRULE
- INTERPRETATION OF RAW DATA MAY BE USEFUL TO M-X?RES ACTIVITY

• OTHER ACTIVITIES IDENTIFIED FOR M-X/RES POTENTIAL:

- WATER RESOURCES INVESTIGATION MAY HELP SPECIFY CANDIDATE SYSTEM DESIGN CONSTRAINTS
- EXISTING RELATIONSHIPS BETWEEN FEDERAL/STATE AGENCIES MAY BE USEFUL TO M-X/RES ACTIVITY
- EXISTING PERMITS CAN BE EXTENDED

M-X/RES PROJECT

ORGANIZATION (NAME)	3 DRAFT	RFP	SIX	ESAAB	ESAAB	ESL-UURI	FEAS.
	SOWs	ATTACHS	MAPS	LETTER	BRIEFING	BRIEFING	TASK
	(1)*	<u>H,I,J (2)</u>	<u>0.B.s (3)</u>	(4)	(5)	(6)	<u>OBs (7)</u>
M-X/RES P.O. (Capt. J. Owendoff)	_	_	-	-	• _ ·	1	1
DOE-DGE (R. Gray)	1	1	1	1	1	1	1
DOE-NV (A. Roberts)	3	3	3	3	3	3	-
DOE-ID (L. Mink)	2	2	2	2	2	2	2
ESL-UURI (D. Nielson)	2	2	2	· 2	2	-	2
AEROSPACE (D. Rountree)		-	-	3	3	3.	3
THE FOLLOWING WERE DISTRIBUTED BY DOE-NV SUBSEQUENT TO THE MEETING:							
NEVADA BUREAU OF MINES AND							
GEOLOGY (D. Trexler)	1	1	1	-	-	-	_
UTAH GEOLOGIC SURVEY							
(P. Murphy)	1	1	1	-	-	-	- '
		(ABOVE	NUMBERS II	NDICATE (COPIES RECI	EIVED)	

GEOTHERMAL DOCUMENT DISTRIBUTION (8-25-80)

- (2) ATTACHMENTS SUPPORTING ABOVE RFPs: H, M-X AND M-X/RES POWER CHARACTERISTICS AND REQUIREMENTS; I, INSOLATION AND WIND RESOURCES; J, REGIONAL AND SITE CHARACTERIZATION DATA.
- (3) FUGRO NATIONAL OPERATING BASE LAYOUT OPTIONS FOR ESCALANTE DESERT, BERYL AREA: STEPTOE VALLEY, ELY AREA; COYOTE SPRINGS/KANE SPRINGS - ESCALANTE DESERT AREA; MILFORD AREA; SEVIER DESERT, DELTA AREA; AND SELECTION OF POSSIBLE LOCATIONS IN SEVIER DESERT, DELTA AREA.
- (4) ESAAB MEMORANDUM 1-80 TITLED: "ENERGY SYSTEMS ACQUISITION ADVISORY BOARD (ESAAB) MEETING NO. 80-8: M-X RENEWABLE ENERGY SYSTEMS, JULY 31, 1980," 15 AUGUST 1980.
- (5) BRIEFING CHARTS REGARDING M-X/RES PROJECT PRESENTED BY D. CAMPBELL AND LT. COL. L. MONTULLI TO ESAAB ON 31 JULY 1980.
- (6) ESL-UURI DOCUMENT: "BACKGROUND INFORMATION AND PLAN FOR MX MISSILE SYSTEM, GEOTHERMAL RESOURCE ASSESSMENT AND DEVELOPMENT, NEVADA AND UTAH," 25 AUGUST 1980.
- (7) DOE-NV HANDOUT: "FEASIBILITY STUDY TASK OBJECTIVES," UNDATED.
- .

OTHER M-X/RES GEOTHERMAL DATA EXCHANGES

~e...

DATA DELIVERIES:	<u> </u>	COMPLETED			OUTSTANDING					
FUGRO			COLOR	OB	TABULATED	FUGRO	FUGRO	UTAH		
RECIPIENT	M-X/RES	NBMG	DEPL.	SITE	BOREHOLE	MEETING	REPORT	GEO		
ORGANIZATIONS	REPORT	MAPS	MAPS	MAPS	DATA	VUGRAPHS	LISTS	MAP		
· · · · · · · · · · · · · · · · · · ·					· · · · /	· - ·	· · · · · · ·			
DOE-ID		-	-	-				-		
DOE-NV	3	-		- 1	1	1 '	1	_		
	-			1	1 - '	· · ·	—			
ESL-UURI	1	-	1	1	1 1	1 1	1	-		
				۱.		1 . '		ł		
NBMG	2	-	1	1			-	-		
UGS	1 1	-		1		1 '	1			
000			_		1 - 1	l - '	-			
AEROSPACE	1 _ 1	1	1 1	1*	1 1 1	1 1 1	2*	2		

(ABOVE NUMBERS INDICATE NUMBER OF COPIES)

*INDICATES DATA IS BEING PREPARED FOR DELIVERY

• MEETING AND TOUR SUMMARY REPORTS TRANSMITTED TO M-X/RES PROJECT OFFICE AND APPROPRIATE DISTRIBUTION

• TECHNICAL REPORTS/PAPERS FOR RAFT RIVER BINARY SYSTEM, DOE-ID TO AEROSPACE

AEROSPACE CONCERNS FOR ACCOMPLISHMENT OF

A-88 ---

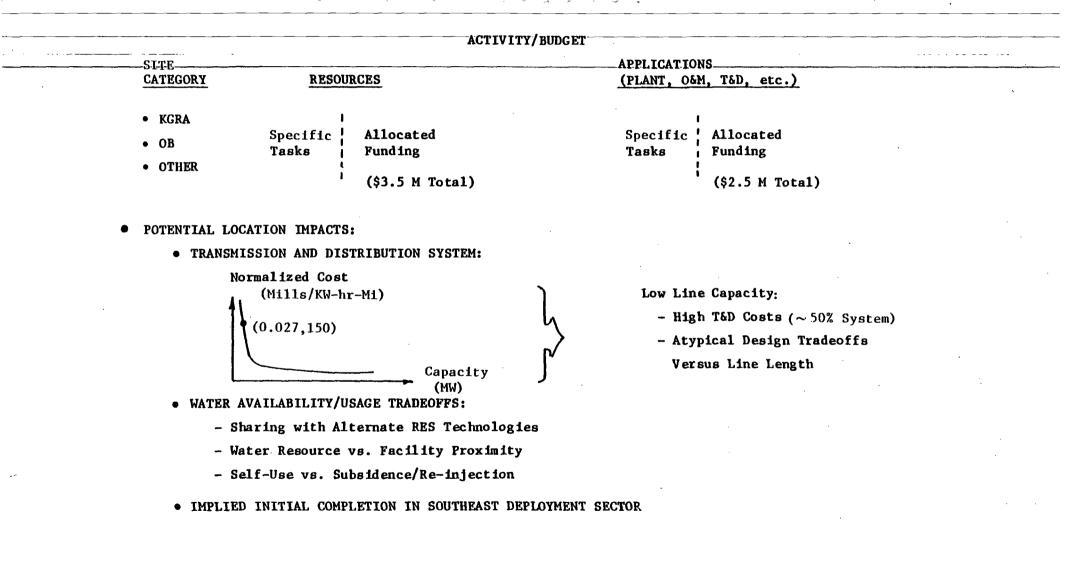
. . . .

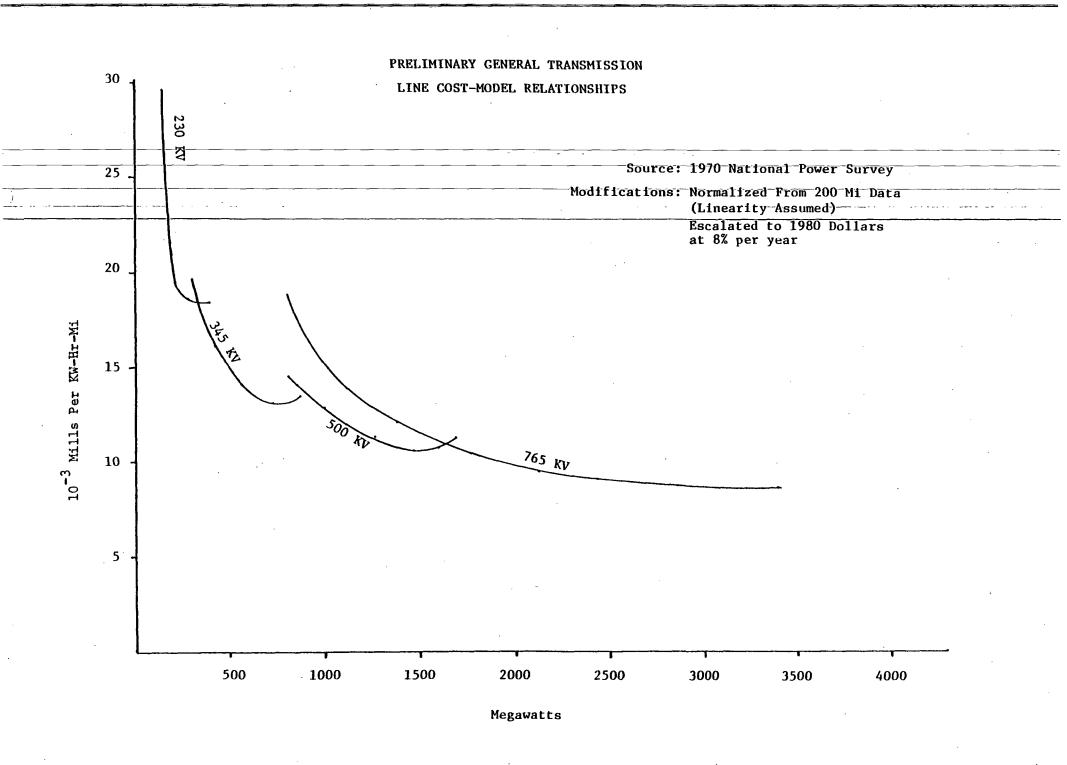
GEOTHERMAL ASSESSMENT OBJECTIVES

•-SCHEDULE-AND-COMMUNICATION-IMPLICATIONS-

- PHILOSOPHY OF EMPHASIS ON RESOURCES/APPLICATIONS
- M-X/RES DATA BASE BOOK CONTENT
- POTENTIAL DATA INCONSISTENCY: GEOTHERMAL vs. OTHER TECHNOLOGIES
- MIL-STANDARD ROLE IN M-X/RES

SCHEDULE AND COMMUNICATION IMPLICATIONS FOR


M-X/RES_GEOTHERMAL_ACTIVITIES_


- O IMPACTS DELIVERY OF HIGH-CONFIDENCE APPLICATIONS DATA FOR INTERIM AND DECISION PACKAGE MILESTONES
- 0 REQUIRES SHORTENED PROCUREMENT CYCLE DEFINITION/IMPLEMENTATION FOR CONTRACTED SERVICES
- 0 NEEDS TEAM EFFORT AND COMMUNICATION CHANNELS TO:
 - COORDINATE DATA DELIVERIES
 - OBTAIN PERMITTING

PHILOSOPHY OF EMPHASIS ON RESOURCES/APPLICATIONS

N. W. A.

• CONSIDERATIONS FOR DISTRIBUTION OF ACTIVITY EFFORTS AND FUNDS:

A 18 - 2-

M-X/RES DATA BASE BOOK CONTENT CONSIDERATIONS

ند وره

_____O AGREEMENT REQUIRED FOR DELIVERY OF RESOURCE AND SOCIO-INSTITUTIONAL FORMATTED ITEMS

- 0 AGREEMENT REQUIRED FOR ANCILLARY ENERGY IDENTIFIERS FOR LOAD-CENTER CONTRACTORS
 - POWER PROFILES
 - AVAILABILITY
 - BUSBAR COSTS

GENERIC vs. SITE SPECIFIC

- POWER SOURCE INTERFACE
- WATER USAGE

0 SHOULD DESCRIPTIONS BE INCLUDED FOR EVOLVING GEOTFERMAL TECHNOLOGIES?

- CATEGORIES
- 'FUNDING
- **RESPONSIBILITIES**

-POTENTIAL-M-X/RES_DATA_INCONSISTENCY:__GEOTHERMAL_vs_OTHER_TECHNOLOGIES

GEOTHERMAL APPLICATIONS

ESTABLISHED TECHNOLOGY •

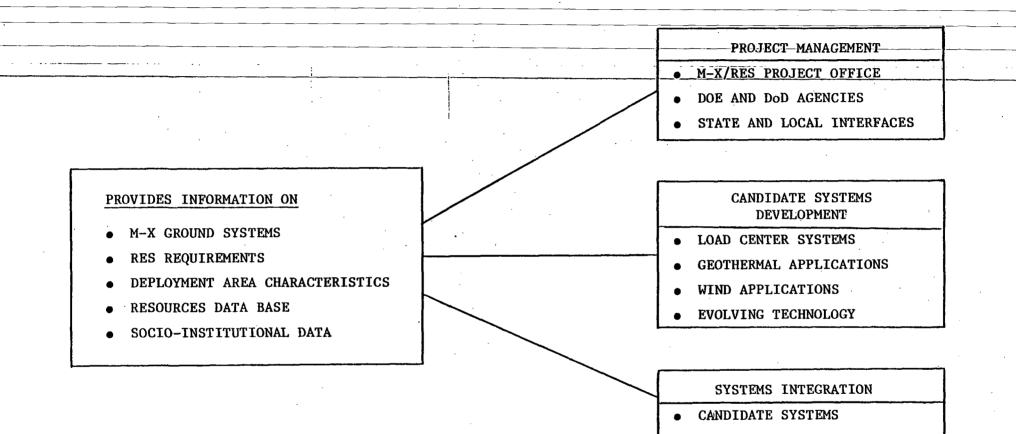
• DESIGN CONCEPTS

SPECIFICATION DELIVERABLE OMITTED

• DETAILED DESIGN SPECIFICATION

OTHER TECHNOLOGIES

TECHNOLOGY DEVELOPMENT STAGE

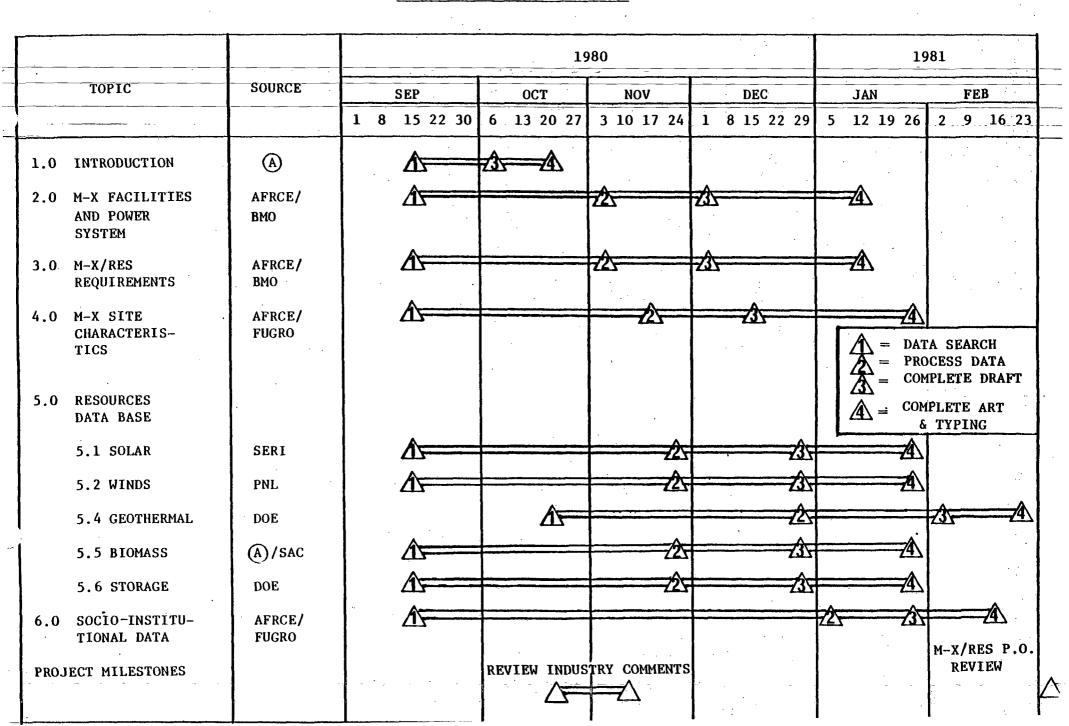

PRELIMINARY AND DETAILED DESIGNS

ANTICIPATED AEROSPACE FOLLOW-UP ACTIVITIES FOR

M=X/RES_GEOTHERMAL_ASSESSMENT

- 0 CONTINUE REFINING DATA REQUIREMENTS
 - (DATA BASE BOOK, INTEGRATED SYSTEM ANALYSES)
- 0 REVIEW DOE-DGE MANAGEMENT PLAN
- 0 CONTINUE COORDINATION WITH DOE, AFRCE, FUGRO NATIONAL, AND OTHERS AS APPROPRIATE
- 0 TOUR DOE RAFT RIVER PROJECT
- 0 OBTAIN AND FORWARD DATA OUTSTANDING

RATIONALE FOR M-X/RES DATA BASE BOOK



• SYSTEM EVALUATION

M-X/RES DATA BASE OUTLINE

 1.0	INTRODUCTION		5.0	RESOURCES DATA BASE
 	SCOPE			• INSOLATION
 2.0	• METHODOLOGY M-X FACILITIES AND POWER SYSTEM		<u></u>	WINDJOINT INSOLATION/WIND
2.0	 FACILITIES AND TOWER STOTEM FACILITIES BASELINE POWER SYSTEM LOCAL UTILITY INTERFACES IMPLEMENTATION SCHEDULE 		6.0	 GEOTHERMAL BIOMASS STORAGE SOCIO-INSTITUTIONAL DATA
3.0	 M-X/RES REQUIREMENTS SYSTEM POWER M-X SYSTEM/RES INTERFACES SYSTEM PERFORMANCE 			 REGULATORY LEGAL REGIONAL TRANSPORTATION REGIONAL COMMUNUCATIONS ENVIRONMENTAL
4.0	 M-X SITE CHARACTERISTICS DEPLOYMENT AREA DESIGN FACTORS 	· · · · · · · · · · · · · · · · · · ·	7.0	TECHNOLOGY DESCRIPTIONS
	• SPECIAL CONSIDERATIONS			

M-X/RES DATA BASE SCHEDULE

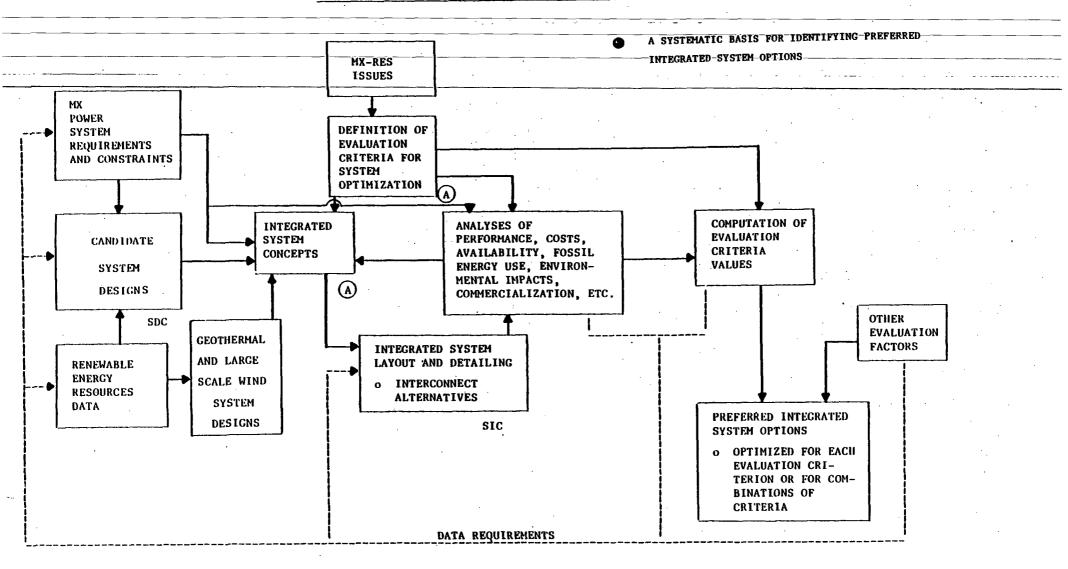
MX-RES INTEGRATED SYSTEMS

EVALUATION CRITERIA AND ANALYSIS METHODOLOGY

(A STATUS REPORT)

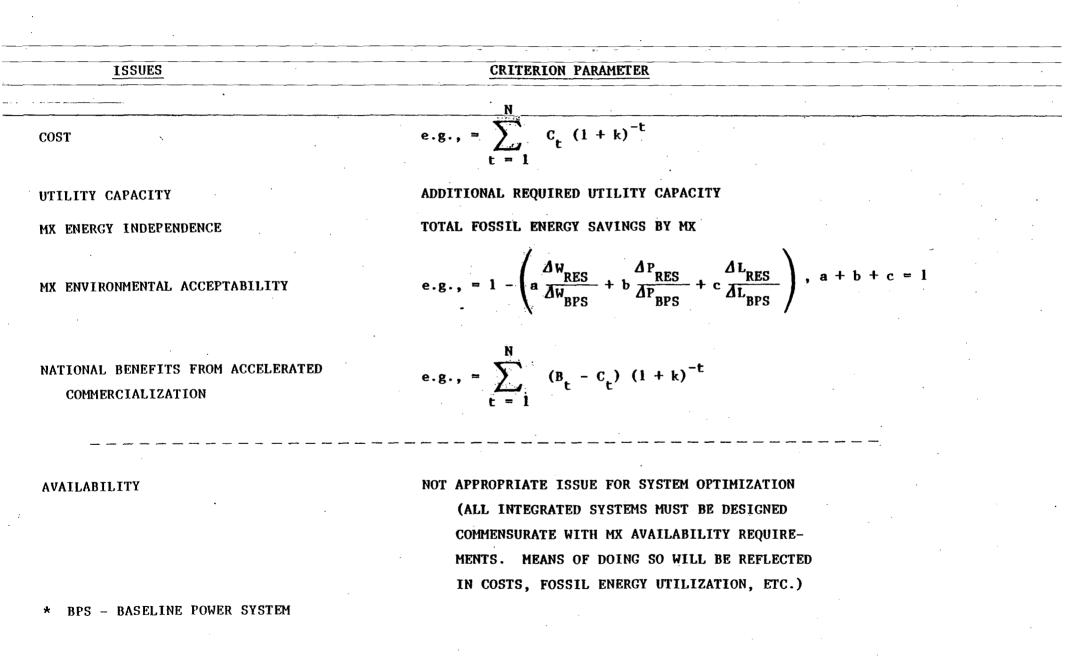
PRESENTED TO: MX-RES PROJECT OFFICE

SEPTEMBER 1980


THE AEROSPACE CORPORATION

DEFINITIONS

THE SDC'S TO SATISFY SHELTER, CLUSTER, AND OPERATING BASE POWER AND POWER


AVAILABILITY REQUIREMENTS, AS WELL AS GEOTHERMAL AND LARGE-SCALE WIND SYSTEMS

INTEGRATED SYSTEM (1/S) - COMBINATIONS OF CANDIDATE SYSTEMS SATISFYING LOAD REQUIREMENTS AND OTHER CONSTRAINTS FOR THE OVERALL MX SYSTEM MX-RES INTEGRATED SYSTEMS EVALUATION METHODOLOGY

,

INTEGRATED SYSTEM EVALUATION CRITERIA FOR SYSTEMS OPTIMIZATIONS

.

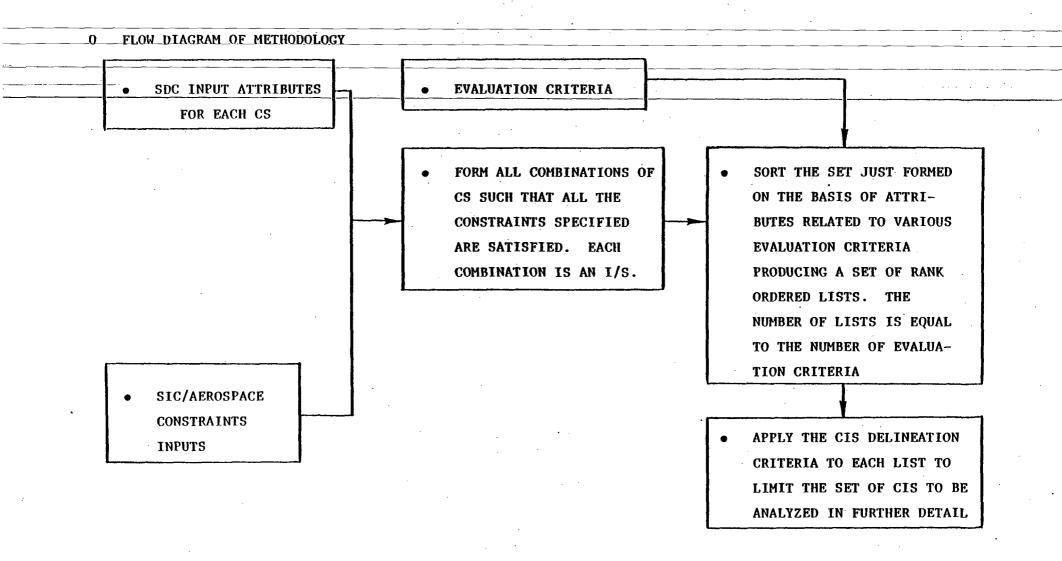
		· · ·	
CRITERION	DEFINITION	APPROACH	COMMENT
PLU PRESERVATION	ABILITY TO KEEP LOCATION OF MISSILE UNDETECTABLE	EACH I/S WILL BE EXAMINED BY TRW/BMO FOR COMPLIANCE WITH M X REQUIREMENTS	EACH I/S MUST SATISFY THIS REQUIREMENT OR BE ELIMINATED FROM CONSIDERATION
RESOURCE 	VARIATIONS FROM NOMINAL OF INSOLATION,_WINDS_AND_GEO THERMAL PROPERTIES	COST AND PERFORMANCE IMPLI- CATIONS OF RESOURCE UNCERTAINTY	JUDGMENTAL-FACTOR
COST UNCERTAINTY	SPREAD IN NOMINAL LIFE- CYCLE COST CALCULATION	RANGE IN COSTS OF ALL SYSTEM COMPONENTS, O&M AND ECONOMIC PARAMETERS	LARGE RANGE WOULD HAVE AN EFFECT ON RANK ORDERING WITH RESPECT TO COST
GROWTH POTENTIAL	ABILITY TO INCREASE POWER LEVELS TO MEET FUTURE DEMANDS	EXAMINE PRACTICALITY AND COST OF ACHIEVING INCREASED POWER LEVELS	JUDGMENTAL FACTOR
SAFETY	MECHANICAL, OPTICAL, THERMAL AND CHEMICAL HAZARDS	EXAMINE HAZARDS GLEANED FROM DESIGNS	JUDGMENTAL FACTOR
VULNERABILITY	DEGRADATION OF SYSTEM PER- FORMANCE DUE TO NATURAL HAZARDS, VANDALISM AND SABOTAGE	IDENTIFICATION OF VULNERABILITY DISPLAYED BY DESIGNS	JUDGMENTAL FACTOR
SCHEDULE RISK	UNCERTAINTY IN MEETING DEPLOYMENT DATES	ASSESS POSSIBLE SCHEDULE IMPACTS OF ALL RISK ITEMS FOR I/S AND ASSOCIATED CS	JUDGMENTAL FACTOR
IUMAN FACTORS	COMPLEXITY OF O&M AND PROCEDURES	EXAMINE - • NUMBER, SKILL LEVELS AND REQUIRED TRAINING OF PERSONNEL • COMPLEXITY OF MAN-MACHINE INTERFACE	JUDGMENTAL FACTOR
VISUAL ACCEPTABILITY		EXAMINE VISUAL DESIGN FEATURES OF I/S	JUDGEMENTAL FACTOR

PREFERRED SYSTEM SELECTIONS

	ENERGY INDEPENDENCE	COST	UTILITY CAPACITY	ENVIRONMENTAL ACCEPTABILITY	NATIONAL BENEFITS	COMBINED CRITERIA #1	COMBINED CRITERIA #2	· · · · · · · · · · · · · · · · · · ·
BEST								· · · ·
SYSTEM	SYSTEM #45	#23 -	#61	#55	#34	#43	#12	
	#34	#55 	#12	#12	# 6	#12	#55	
	#55	#10	<i>1</i> /55	#14	#55 	#55	#45	
	# 8	#39	18	#36	#12	#45	#36	:
	<u>#_2_</u>	∦78	•	#45	•	#78 		
LESS DESIRABLE SYSTEM	#47	•		•	•	•	:	
	• • •	•		•		•	•	

•

CANDIDATE INTEGRATED SYSTEM DELINEATION PROCESS


;

TO SELECT A MANAGEABLE SET OF I/S FOR DETAILED ANALYSIS WHICH HAVE DESIRABLE ATTRIBUTES WHITH RESPECT TO VARIOUS EVALUATION CRITERIA

CANDIDATE INTEGRATED SYSTEM DELINEATION PROCESS - INPUT, OUTPUT

	0	INP	JT	· · · · · · · · · · · · · · · · · · ·	
		•	-SDC-CS-ATTRIBUTES-(FOR-EACH_CS)		
		-	-/TYPE-OF-CS(E-:G,PHOTOVOLTAIC,WIND-TURBINE)	······	
			/ POWER LEVEL		
			/ LIFE CYCLE COST (TOTAL)		
			/ FOSSIL ENERGY USE		
			/ COST OF COMMERCIAL VERSIONS		
•			/ OTHERS		
		•	SIC/AEROSPACE		
	•		/ CONSTRAINTS		
			- LOADS TO BE SATISFIED		
			- DESIRED MIX OF RES TYPE		
			- MAXIMUM LIFE CYCLE COST TOTAL		
			– OTHERS		
;		•	EVALUATION CRITERIA		•
			/ MINIMUM LIFE CYCLE COST	· · · · · · · · · · · · · · · · · · ·	
			/ MINIMUM FOSSIL ENERGY USE		
•			/ OTHERS		

CANDIDATE INTEGRATED SYSTEM DELINEATION PROCESS - METHODOLOGY

N .

ANALYSIS METHODOLOGY OVERVIEW

CRITERIA ANALYSES	LIFECYCLE ——COST———	UTILITY ——CAPACITY——	MX ENERGY —INDEPENDENCE_	MX ENVIRONMENTAL ACCEPTABILITY	NATIONAL BENEFITS	·····
COST	V		X		V	
RELIABILITY/AVAILABILITY	x	V	x ·			-
PERFORMANCE	x	V	V	V	x	
MARKET PENETRATION					v	
COMPARISONS WITH BPS		x	V.	V		
DESIGN LAYOUTS	X			\mathbf{V}		
ECONOMICS	V			· · · ·	√	

V = PRIMARY COMPONENT

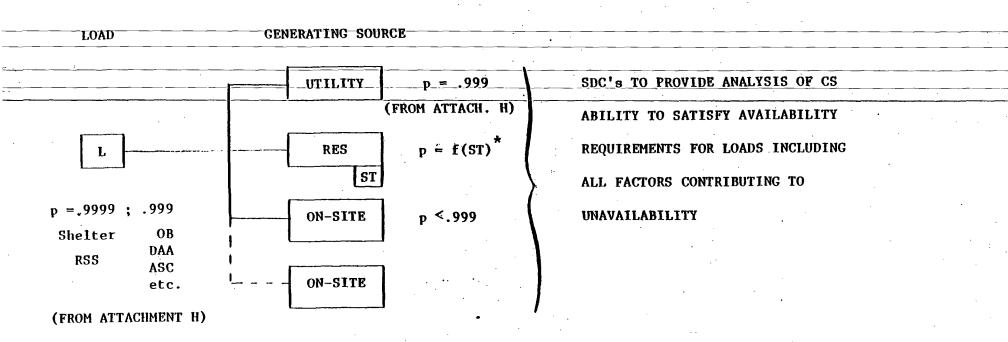
X = CONTRIBUTOR TO PRIMARY COMPONENT(S)

COST ANALYSIS

				_
	CAPITAL COSTS		OPERATING COSTS	•••••••
	0 LAND	SDC/SIC	OOPERATING PERSONNEL	
SIC	O SITE PREPARATION		• TRAINING	
· · ·	0 FACILITIES		• SALARIES	·
	MAINTENANCE	SDC/SIC		· · · · · · · · · · · · · · · · · · ·
	OPERATIONAL		• MATERIAL	
SDC	0 COLLECTION SUBSYSTEMS		• SPARES	
	HELIOSTATS		• LABOR	
	• TROUGHS		0 WATER	
	• CELLS	SDC/(A)	0 FUEL	
· · · ·	RECEIVERS		0 UTILITY POWER	
SDC	0 CONVERSION SUBSYSTEMS			
000	• TURBINES			TIME PROFILES
	HEAT ENGINES	· · ·	······································	OF COSTS
	 STEAM GENERATORS, ETC. 	•		SIC
SDC/SIC	0 STORAGE SUBSYSTEMS	•		510
30 0/310				
	BATTERIES	i i		
	THERMAL			N .
	• FUEL CELL, ETC.		· .	$\sum_{\mathbf{t}} c_{\mathbf{t}} (\mathbf{i} + \mathbf{k})^{-\mathbf{t}}$
SDC/SIC	O CONTROL SUBSYSTEMS			
	0 TRANSMISSION AND DISTRIBUTION			t = 1
SIC	0 SWITCHING AND INTERCONNECT			
	0 PERMITS	1		
SDC/SIC	O LEARNING CURVE DATA] .		
4				•

MX-RES INTEGRATED SYSTEM AVAILABILITY METHODOLOGY

INTRODUCTION

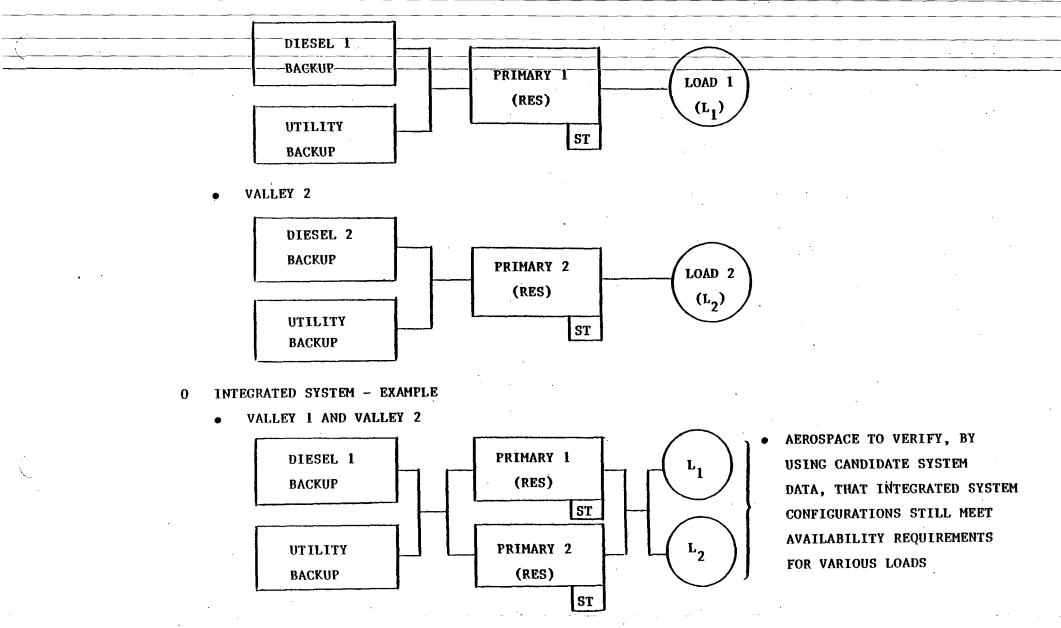

THE AVAILABILITY AND POWER OF THE CANDIDATE SYSTEMS, RESOURCES, AND

TRANSMISSION AND DISTRIBUTION SYSTEM

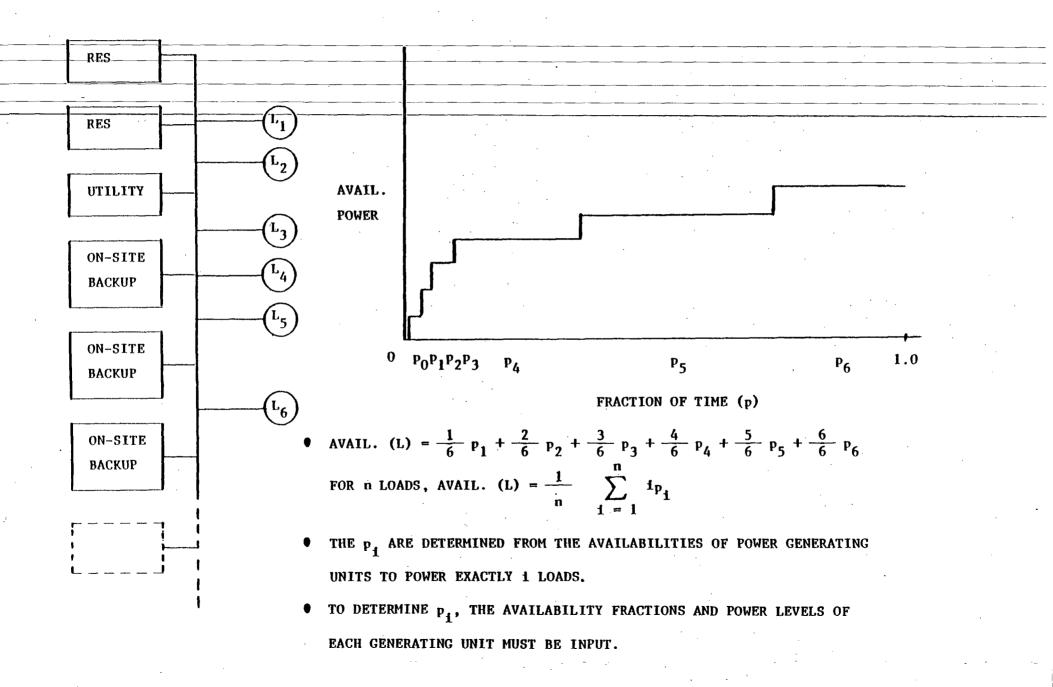
O AVAILABILITY

- DEFINITION THE RATIO OF ACTUAL OPERATING TIME TO TOTAL OPERATING TIME FOR A GIVEN LOAD
- **PROPERTIES**
 - / STOCHASTIC
 - / DEPENDENT ON LOAD, RESOURCE AVAILABILITY, GENERATING UNIT RELIABILITIES INCLUDING BACKUPS (TIME TO FAILURE, TIME TO REPAIR, ETC. FOR COMPONENTS), GENERATING UNIT CAPACITIES INCLUDING BACKUPS, TRANSMISSION AND DISTRIBUTION SYSTEM CHARACTERISTICS

CANDIDATE SYSTEM AVAILABILITY


AVAIL. OF POWER = $1 - \left(1 - \frac{\text{AVAIL}}{0.5. \# 1}\right) \left(1 - \frac{\text{AVAIL}}{0.5. \# 2}\right) \dots \left(1 - \frac{\text{AVAIL}}{0.5. \# n}\right)$

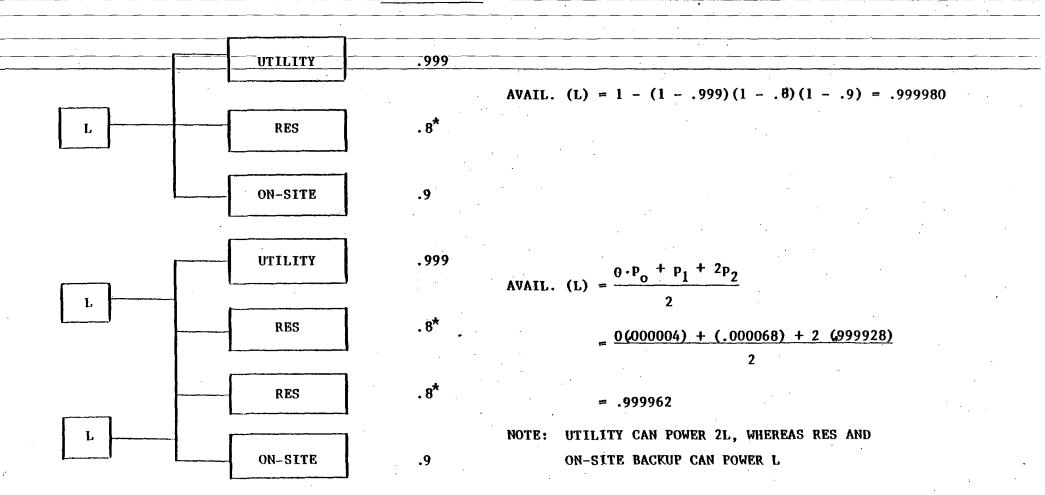
* EXTENT OF STORAGE DETERMINES FRACTION OF A DAY RES SYSTEM CAN DELIVER POWER (E.G., ~.2 FOR NO STORAGE UP TO 1.0 WITH STORAGE). THIS AVAILABILITY FRACTION MUST BE ADJUSTED DOWNWARD FOR UNAVAILABILITY DUE TO FAILURES, REPAIR TIMES AND CLIMATOLOGY.


INTEGRATION OF CANDIDATE SYSTEMS

0 CANDIDATE SYSTEMS - EXAMPLE

• VALLEY 1

INTEGRATED SYSTEM AVAILABILITY



MODELLING APPROACH FEATURES

 0	CAPABLE OF ANALYZING MEANINGFUL INTERCONNECT OPTIONS
 -0	- ALL ENERGY-LOSSES-ARE-IGNORED
0.	ALL SHELTERS HAVE THE SAME LOAD REQUIREMENT
0	EACH RES OR BACKUP MAY HAVE SINGLE OR MULTIPLE LOAD POWER CAPABILITY
0	EACH RES OR BACKUP MAY HAVE FULL AND PARTIAL POWER
0	SIMULTANEOUS UNAVAILABILITY OF RES UNITS AT "NIGHT" ARE TREATED AS SEPARATE CASES TO BE
	COMBINED WITH "DAYTIME" AVAILABILITY CALCULATIONS ON A TIME-WEIGHTED BASIS
0	AVAILABILITY FRACTIONS FOR POWER FROM EACH RES AND BACKUP CAN BE INPUTS BASED ON
	CANDIDATE SYSTEM STUDIES, T&D LAYOUTS

EXAMPLE CALCULATIONS

AVAILABILITY

WITH ROUND-THE-CLOCK STORAGE

.

EXAMPLES OF I/S AVAILABILITIES

 	· · ·					·					· · · · · ·		·	
 Case		p	p	P _{d1}		P	P_1	P	A	W	A	W		
										no st.		w/st		
1D	.999	.8	.8	0	0	. 00004	.00032	.99964	.99980	.2		.8		
1N	. 999	0	0	0	0	.001	0	.99900	.99900	.8	.99916	.2	.99964	
2D	. 999	. 8	.8	.9	0	.000004	.000068	.999928	.999962	.2		.8		
2N	.999	0	0	.9	Ö	.0001	.0009	.99900	.99945	.8	.99955	.2	.99990	
3D	. 999	.8	.8	.9	.9	.0000004	.0000104	.9999892	.99999	.2		.8		
3N	.999	0	0	.9	.9	.00001	.00018	.99981	.99990	.8	.99992	.2	.99998	

W = RATIO OF EFFECTIVE DATIME OR NIGHTIME HOURS (INCLUDING STORAGE) TO TOTAL HOURS

 $A_0 = AVAILABILITY WITH NO RES STORAGE$

 $A_{s} \approx AVAILABILITY WITH RES STORAGE$

SUMMARY

0 MODELLING APPROACH PROVIDES A VERSATILE MEANS FOR CALCULATING POWER AVAILABILITY TO ALL LOADS OF ANY GIVEN 1/S, INCLUDING THE EVALUATION OF ALTERNATE WAYS OF INTERCONNECT OF

GENERATING UNITS AND LOADS, THE EFFECTS OF STORAGE AND ON-SITE BACKUP SYSTEMS.

O RES WITH MINIMUM OR NO STORAGE DOES LITTLE TO REDUCE UTILITY CAPACITY REQUIREMENTS OR NEED FOR ON-SITE BACKUP.

0 SUFFICIENT STORAGE CAN:

• REDUCE UTILITY CAPACITY REQUIRED AND INCREASES SELL-BACK OPPORTUNITIES

• REDUCE NUMBER OF NEEDED ON-SITE BACKUP

MX-RES INTEGRATED SYSTEM

.

PERFORMANCE ANALYSIS METHODOLOGY

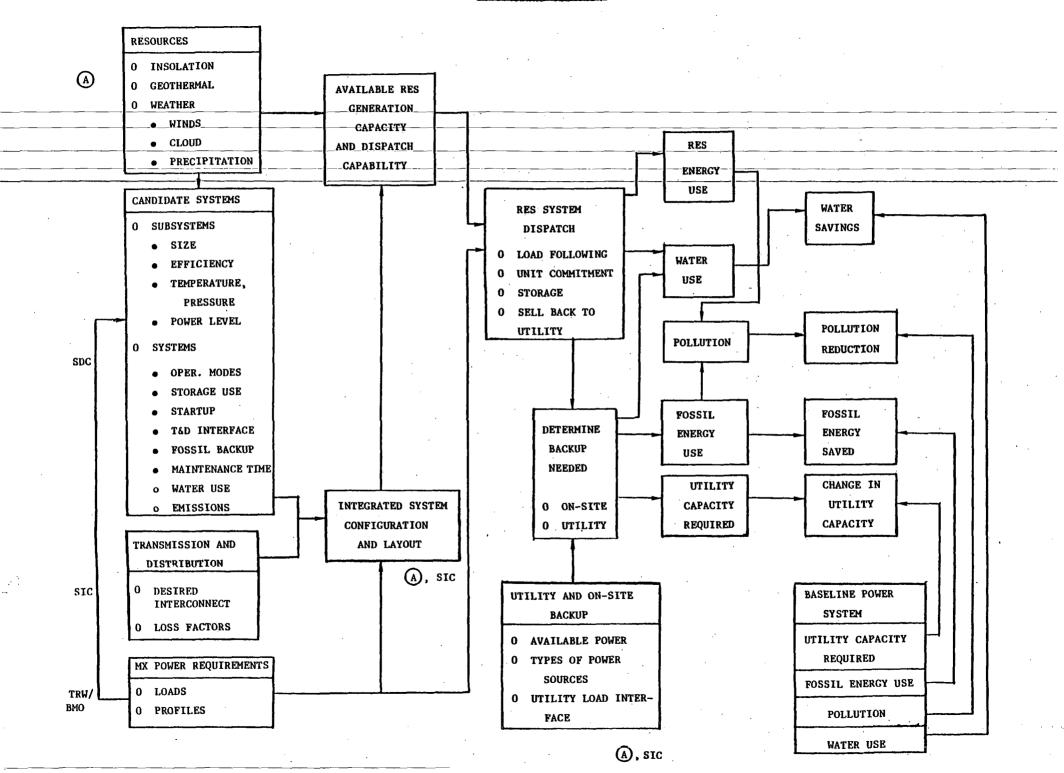
PRINCIPAL APPLICATIONS OF PERFORMANCE MODELLING

O PERFORMANCE ANALYSIS ENABLES COMPUTATION OF EVALUATION CRITERIA TO BE USED FOR:

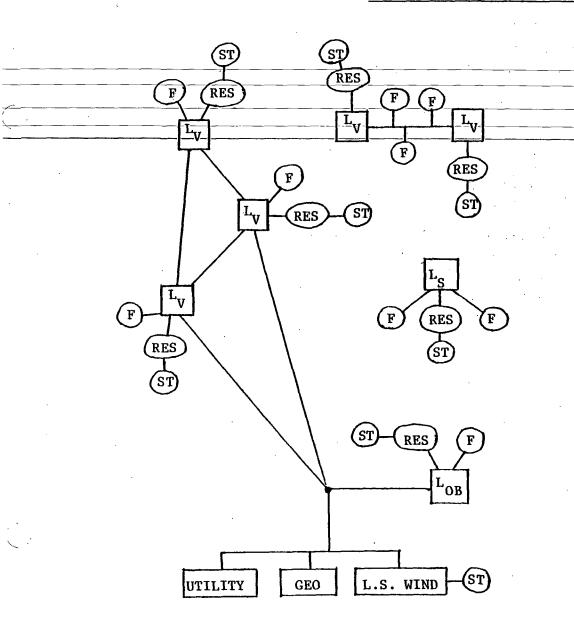
- DELINEATIONS OF INTEGRATED SYSTEM CONFIGURATIONS
- EVALUATION OF FINAL INTEGRATED SYSTEMS
- 0 CALCULATION OF SELECTED COMPONENTS OF EVALUATION CRITERIA

ISSUES

PERFORMANCE RELATED COMPONENTS OF ASSOCIATED CRITERION

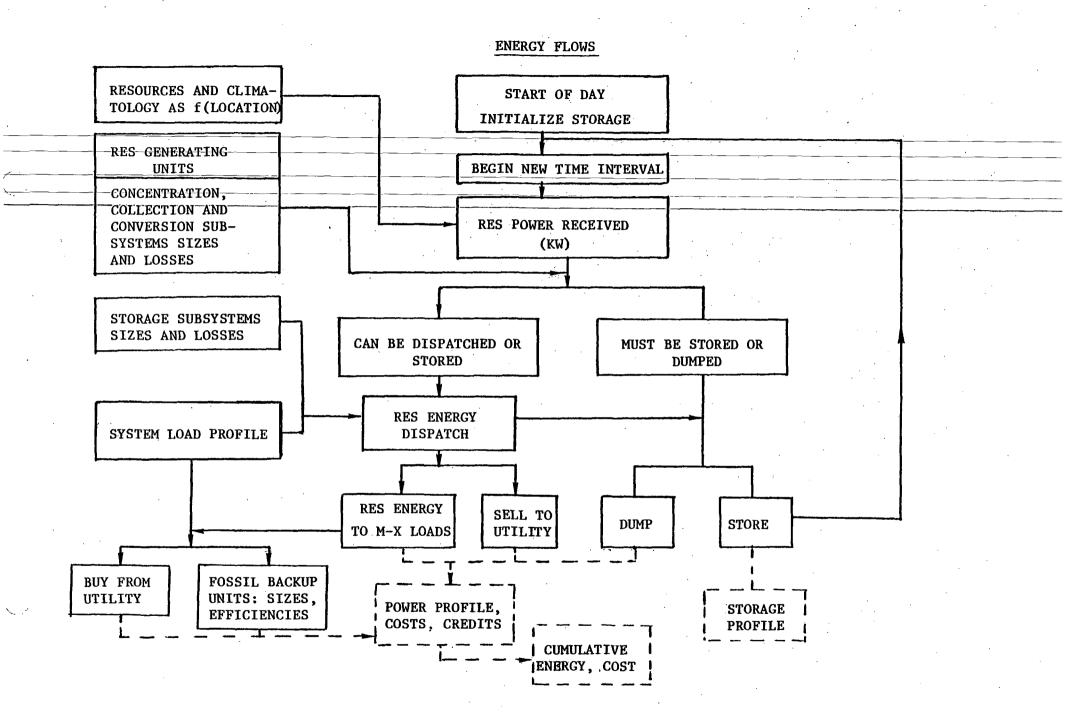

- ENERGY INDEPENDENCE
- ENVIRONMENTAL ACCEPTABILITY
- UTILITY CAPACITY

FOSSIL ENERGY SAVINGS

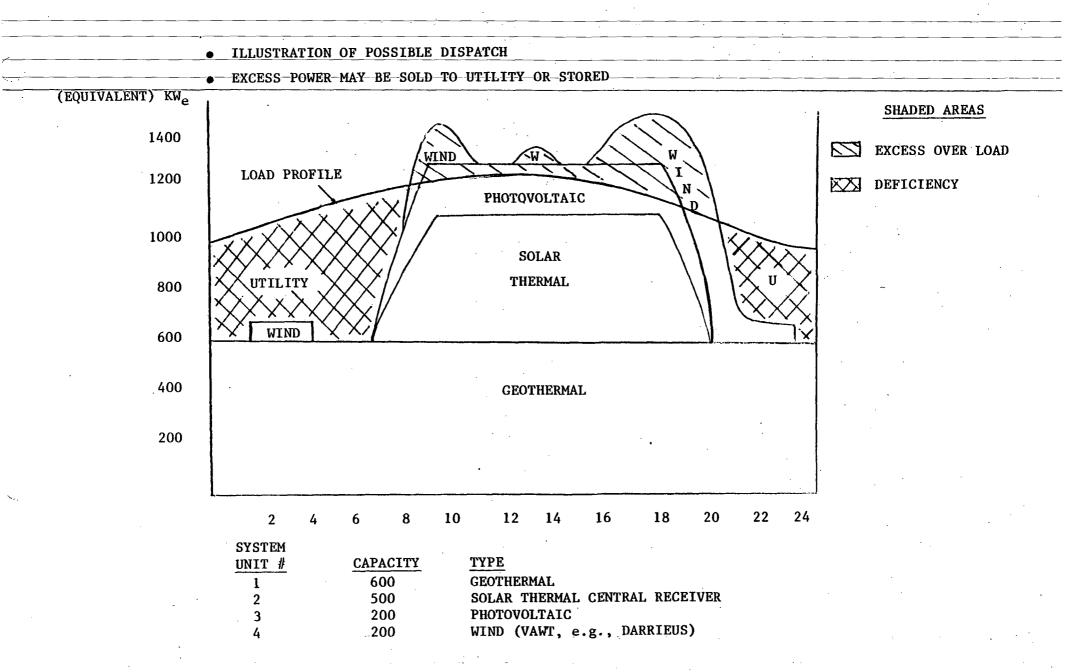

WATER SAVINGS, POLLUTION REDUCTION

CHANGE IN UTILITY POWER REQUIRED

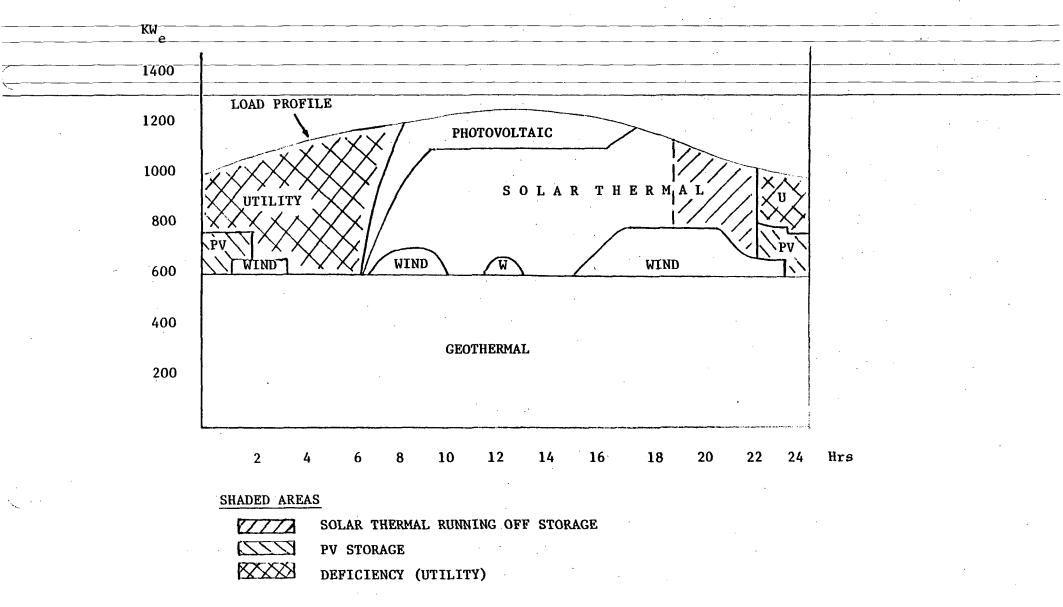
PERFORMANCE ANALYSIS


INTEGRATED SYSTEM PERFORMANCE SIMULATION

> (KEY PERIODS INCLUDE DAYS OF AVERAGE AND EXTREME RESOURCE AND DEMAND, PLUS DAYS CHARACTERISTIC OF THE TECHNOLOGIES EMPLOYED)

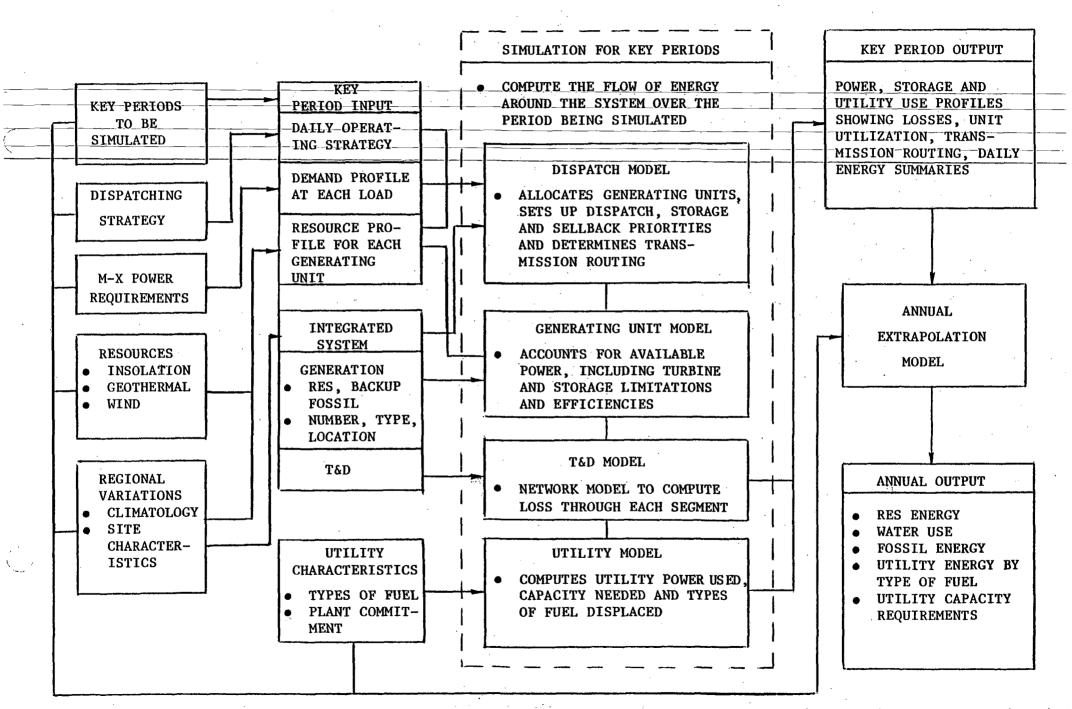

- SITE-SPECIFIC RESOURCE AND CLIMATOLOGY VARIATIONS
- DISPATCH, STORAGE, AND SELLBACK/BUY ENERGY ROUTING ANALYSIS

O ANNUAL ENERGY, WATER, FOSSIL FUEL AND UTILITY USE DATA EXTRAPOLATED FROM KEY PERIODS BASED ON DAILY RESOURCE AND DEMANDS LEVELS


KEY DAY PROFILE OF POWER

RECEIVED VS. LOAD FOR STRAWMAN SYSTEM

DISPATCHING SCENARIO


USING STORAGE TO DISPLACE UTILITY POWER

TOTAL_ DAILY ENERGY SYSTEM LOAD PROFILE RESOURCE PROFILE BACKUP ENERGY **RES ENERGY OUTPUT** ON KEY DAYS RES ENERGY FEB 14 AUG 12 NOV 21 TIME MAY 3

ENERGY EXTRAPOLATION

PERFORMANCE MODEL

. .

. .

ADDITIONAL APPLICATIONS OF I/S PERFORMANCE MODEL

0-COST-

VARIABLE OPERATING AND MAINTENANCE COSTS,

FUEL COSTS

0 AVAILABILITY/RELIABILITY

0 RESOURCE UNCERTAINTY

POWER LEVELS, OPERATING MODES AND DISPATCH

SENSITIVITY OF PERFORMANCE OUTPUTS TO

RESOURCE VARIATIONS

I/S PERFORMANCE MODELLING SUMMARY

	0	RELATIVELY SIMPLE MODEL
<u> </u>	0	GOOD_ACCURACY
	0	GOOD VISIBILITY INTO DATA, CRUCIAL TO ENGINEERING EFFORT
	0	INEXPENSIVE TO RUN
	0	ALLOWS PARAMETRIC STUDIES TO BE PERFORMED ON INTEGRATED SYSTEM CONFIGURATIONS
	0	ALLOWS VARIATION OF CONTRACTOR DATA FOR CANDIDATE SYSTEMS
	0	ALLOWS MODELLING OF COMBINATION AND INTERCONNECTION OF CANDIDATE SYSTEMS IN INTEGRATED SYSTEM
	0	ALLOWS ANALYSES OF DISPATCHING STRATEGY ALTERNATIVES
	0	PROVIDES DATA ESSENTIAL FOR STUDIES RELATIVE TO POWER TRANSFER AGREEMENTS
	0	PERMITS ADDITION OF MORE DETAILED MODELLING OF VARIOUS COMPONENTS OF INTEGRATED SYSTEM
		CONFIGURATIONS

NEAR TERM DEVELOPMENT PLANNED

MODEL_DEVELOPMENT_

0-

0 STUDY OF VARIOUS STORAGE/DISPATCHING STRATEGIES

0 TESTING OF STRAWMAN SYSTEM

ASSESSMENT OF

MX-RES NATIONAL BENEFITS

• COST

.

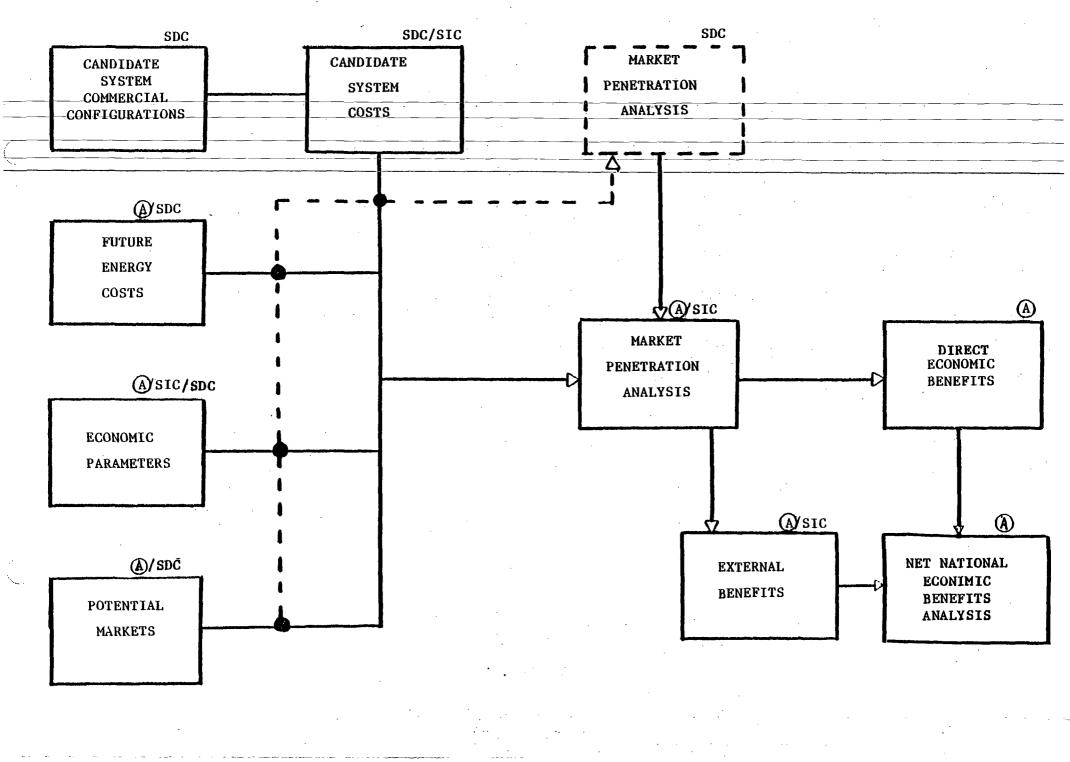
- MARKET PENETRATION
- ECONOMIC EVALUATION

ASSESSMENT OF POTENTIAL NATIONAL BENEFITS OF

ACCELERATED RENEWABLE ENERGY SYSTEMS DEVELOPMENT

• ESTABLISHMENT OF SCENARIOS FOR RENEWABLE ENERGY SYSTEM CONFIGURATIONS,

FUTURE ENERGY COSTS AND ECONOMIC CONDITIONS


• COSTS OF COMMERCIAL VERSIONS OF CANDIDATE SYSTEMS

• NATIONAL MARKET ASSESSMENT AND MARKET PENETRATION

• CALCULATION OF NET NATIONAL ECONOMIC BENEFITS OF ACCELERATED DEVELOPMENT

NET NATIONAL ECONOMIC BENEFITS

OF MX-RES COMMERCIALIZATION

ESTABLISHMENT OF SCENARIOS

RENEWABLE_ENERGY_SYSTEMS_CONFIGURATIONS_(COMMERCIAL VERSIONS)

- TYPE OF SYSTEM
- SIZE AND EFFICIENCY
- CONSTRUCTION COSTS
- OPERATION AND MAINTENANCE COSTS

IDENTIFICATION OF APPLICABLE MARKETS AND FUTURE ENERGY COSTS

- **REGION**
- SECTOR
- ENERGY CATEGORY

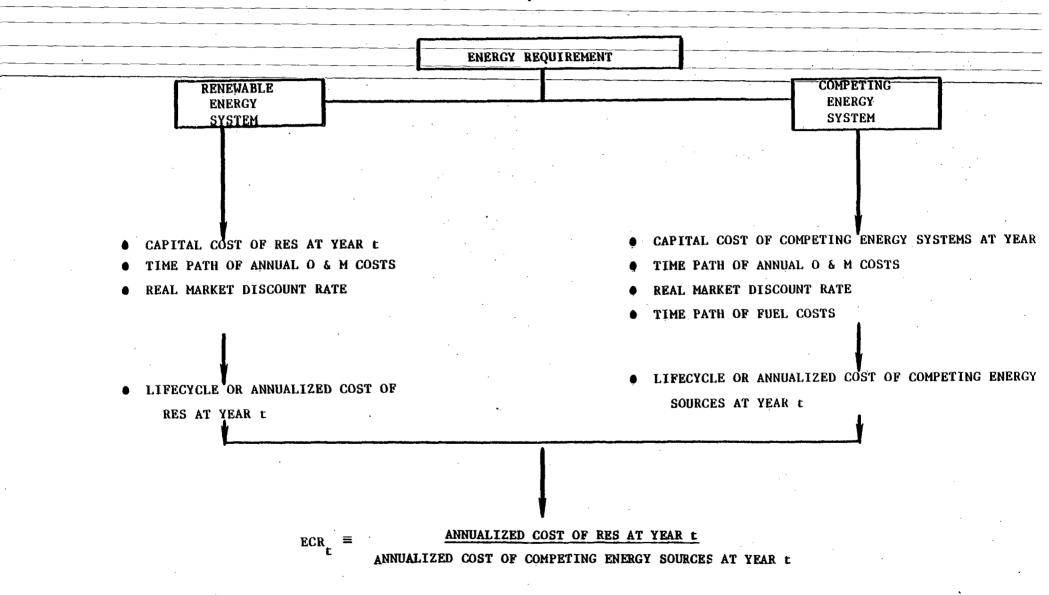
FINANCIAL PARAMETERS FOR EVALUATION

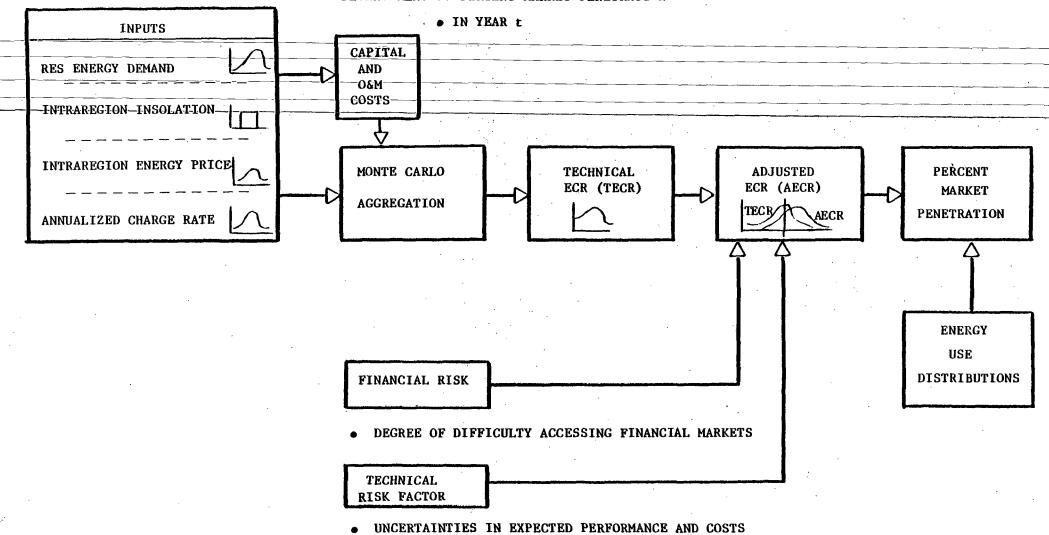
- DISCOUNT RATE
- INFLATION RATE
- TAX RATES
- INCENTIVES

MARKET PENETRATION MODEL

DESIRABLE FEATURES

• ABILITY TO ESTIMATE MARKET SHARE AS INFLUENCED BY INDIVIDUAL CAUSUAL PARAMETERS


• MARKET PENETRATION BASED ON RELATIVE ECONOMIC MERIT TO USER

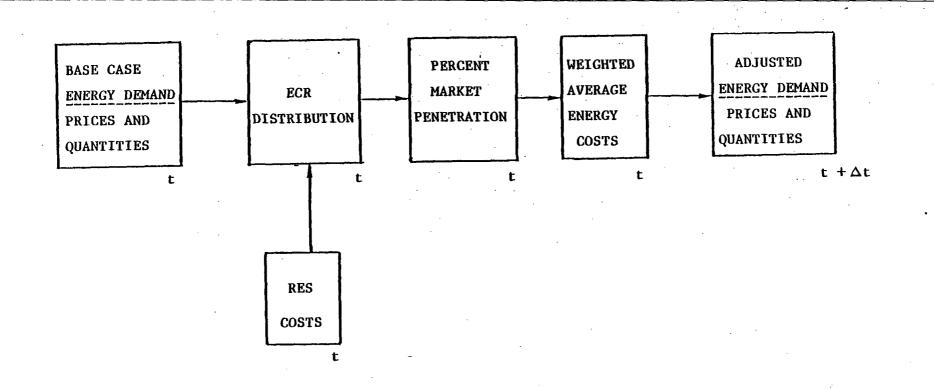

• PATTERN OF MARKET PENETRATION OVER TIME NOT ARBITRARILY PRE-SELECTED (.E.G., S-CURVE)

• ULTIMATE PENETRATION OF THE MARKET TO BE AN OUTPUT OF ANALYSIS

AEROSPACE SELECTED A VALUE-ORIENTED MODEL WHICH FORECASTS ANNUAL MARKET PENETRATION AS A FUNCTION OF THE APPROPRIATE EQUIVA-LENT COST RATIOS AND THEIR DISTRIBUTIONS

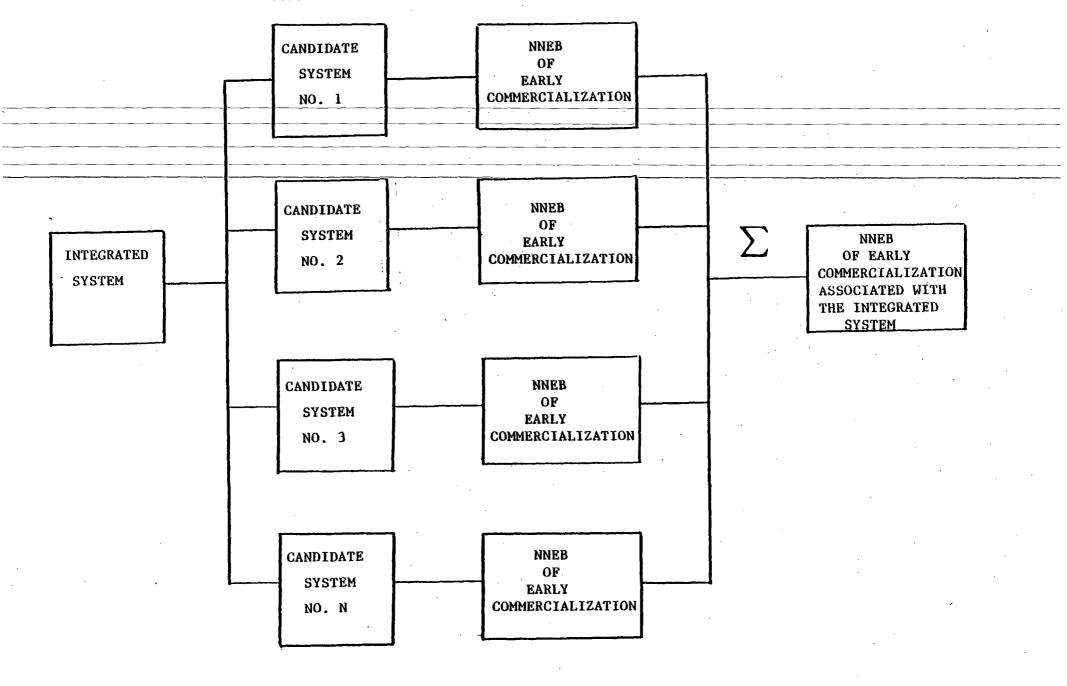
DETERMINATION OF EQUIVALENT COST RATIO

DEVELOPMENT OF PERCENT MARKET PENETRATION


NATIONAL MARKET ASSESSMENT

BASE CASE TOTAL DEMAND

● CALCULATION OF CURRENT ENERGY CONSUMPTION


- IDENTIFY NUMBER OF USER UNITS IN EACH STATE (PLANTS, APARTMENT HOUSES, ETC.)
- DETERMINE AVERAGE ENERGY CONSUMPTION PER END USER UNIT
- CALCULATE ENERGY CONSUMPTION BY END USER GROUP BY STATE BY FUEL TYPE
- PROJECTIONS OF FUTURE ENERGY USE DISTRIBUTIONS
 - PROJECT GROWTH RATES OF END USER GROUPS
 - ESTIMATE CHANGES IN ENERGY CONSUMPTION PATTERNS OF END USER GROUPS (RESULTING FROM HIGHER ENERGY PRICES, CONSERVATION EFFORTS, ETC.)
 - IDENTIFY DIFFERENCES IN MARKET GROWTH RATES BY GEOGRAPHIC REGIONS AND SUBCATEGORIES OF END USER GROUPS
 - COMPUTE TOTAL ANNUAL MARKET POTENTIALS BY END USE GROUP BY STATE BY TYPE OF FUEL

FLOW OF MARKET PENETRATION CALCULATION

RELATIONSHIP OF ECR AND MARKET PENETRATION

TF-THE-DISTRIBUTION OF ANNUALIZED COST FOR A COMPETING ENERGY SYSTEM IS GIVEN AND IF A DETERMINISTIC COST OF AN RES TECHNOLOGY IS SPECIFIED, THEN A FUNCTIONAL RELATIONSHIP CAN BE DETERMINED WHICH RELATES THE PERCENT OF MARKET PENETRATION TO THE MEAN OF THE ECR DISTRIBUTION. THEREFORE, ONLY A SINGLE MONTE CARLO AGGREGATION IS REQUIRED FOR EACH MARKET AREA BECAUSE THE SHAPE OF THE ECR DISTRIBUTION (ALTHOUGH NOT ITS MEAN VALUE) IS INDEPENDENT OF A SPECIFIC RES TECHNOLOGY. THIS WILL SIMPLIFY CALCULATION BECAUSE THE PENETRATION CAN BE USED REPEATEDLY AS CANDIDATE SYSTEM COSTS ARE FURTHER REFINED. OVERVIEW OF NET NATIONAL ECONOMIC BENEFITS CALCULATION

.

MARKET_PENETRATION MODEL

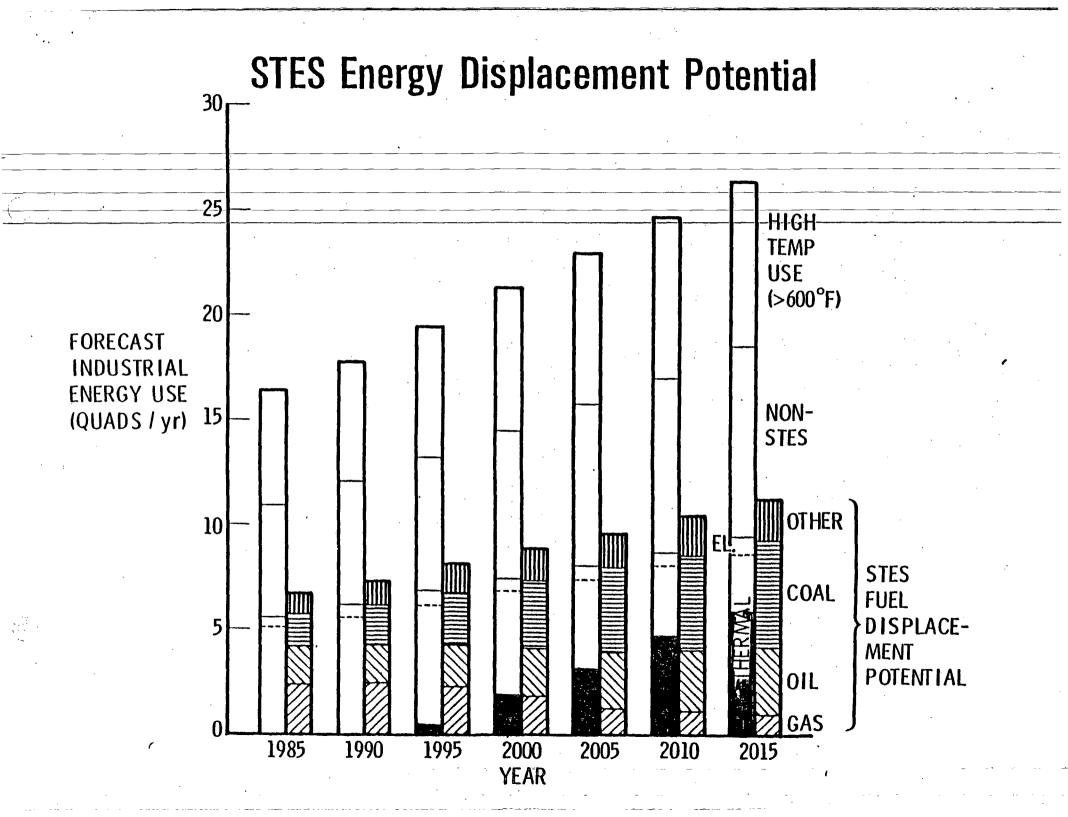
APPLICATION OF MPM

TO SOLAR TOTAL

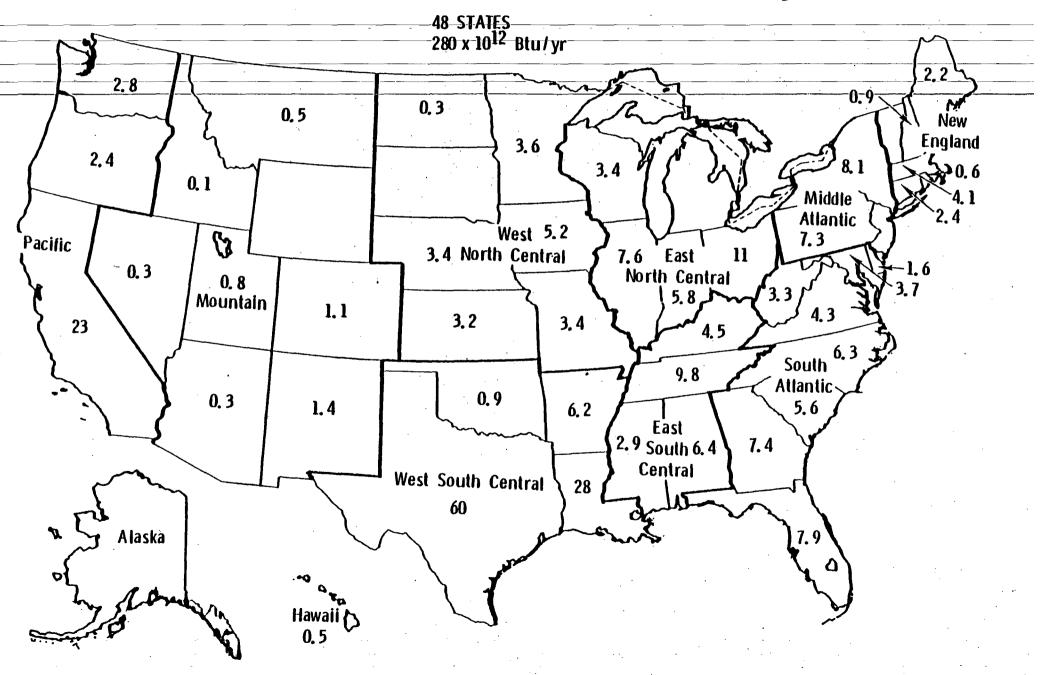
ENERGY SYSTEMS

(STES)

STES MISSION ANALYSIS


ACCOMPLISHMENTS

•	STES-	-APPLICATIONS	-MODEL-(SAM)-	EXERCISED-	-TO-DEVE	LOP:
			•				


- EQUIVALENT COST RATIOS (ECRS) AND FUEL DISPLACEMENT FOR 1,934 INDUSTRY/STATE COMBINATIONS, FORECAST IN FIVE-YEAR INTERVALS FROM 1985 THROUGH 2015
- AGGREGATE STES ENERGY DISPLACEMENT POTENTIAL BY STATE, INDUSTRY AND FUEL TYPE
- REGIONAL AND INDUSTRY DISTRIBUTION OF APPLICATIONS WITH POTENTIAL FOR EARLY ECONOMIC VIABILITY (ECRs ≤ 1)
- MARKET PENETRATION MODEL (MPM) CHECKED OUT AND USED TO DEVELOP:
 - FORECASTS OF STES MARKET PENETRATION (NON-RETROFIT) AND NATIONAL ENERGY DISPLACE-MENT BY FUEL TYPE
 - DETAILED MARKET PENETRATION FORECASTS BY STATE AND INDUSTRY
 - SENSITIVITY OF FORECASTS TO INCENTIVES AND DATA INPUT PARAMETERS

• FULL DOCUMENTATION PROVIDED TO DOE:

- COMPLETE PRINTOUTS OF SAM AND MPM PROGRAMS
- DETAILED FORECASTS OF ENERGY USE AND PRICES BY USER CATEGORY, STATE AND FUEL TYPE, INCLUDING ASSUMPTIONS AND METHODOLOGY USED IN THEIR DERIVATION

Yr 2000 - STES Market Penetration Rates by State

NATIONAL BENEFIT-COST ANALYSIS

NET NATIONAL ECONOMIC BENEFITS

C⁺

 $\sum_{k=1}^{n} (B_{t} - C_{t}) (1 + k)$

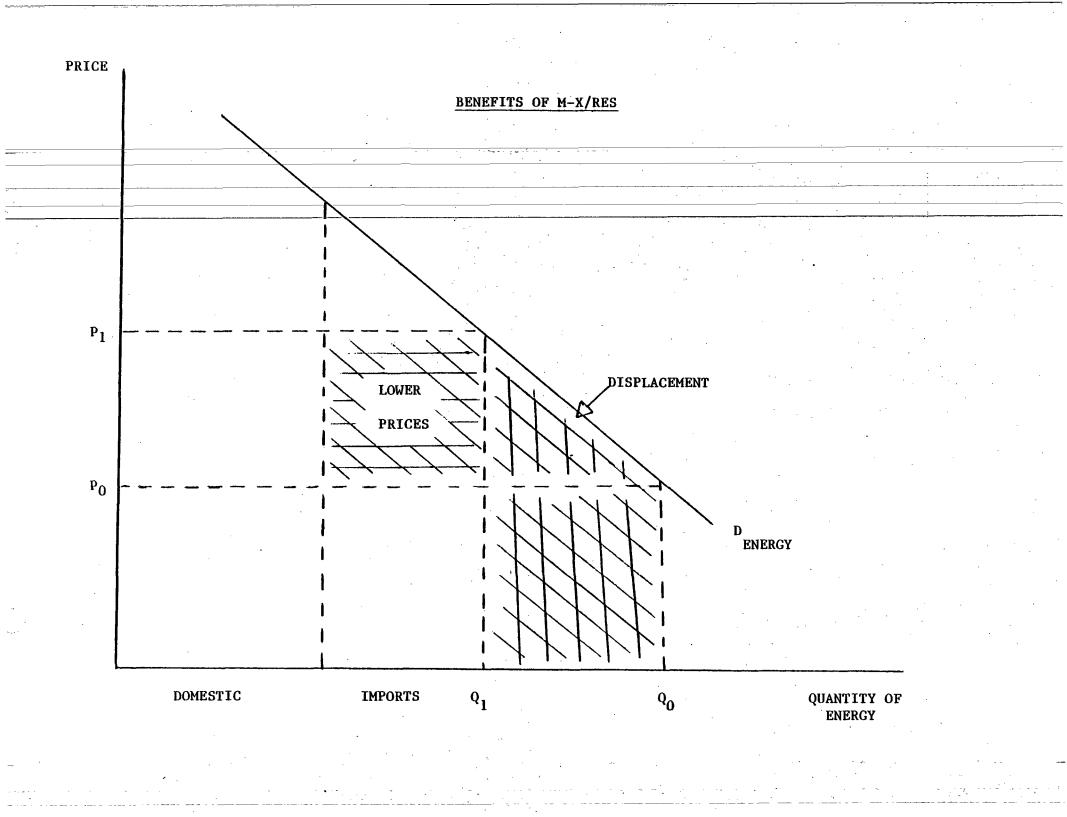
 B_{t} = economic benefits to the nation in year t.

t=o

= value of the conventional sources of energy which are displaced

+ benefits of lowering U.S. average price of energy

+ benefits of potential reduction in needed SPR size


+ benefits of mitigation of environmental externalities arising from use of conventional energy sources

= economic costs to the nation in year t

= annualized capital cost of RES

+ operation and maintenance costs

+ costs of environmental externalities generated by RES

BENEFITS OF POTENTIAL REDUCTION IN SPR SIZE

AS_A_RESULT_OF_RES_MARKET_PENETRATION, A_LOWER_REQUIREMENT_FOR_CRUDE_OIL_STORAGE_IN_THE_SPR

MAY BE INDICATED TO ACHIEVE THE SAME LEVEL OF PROTECTION.

QUANTIFICATION

- DECLINE IN IMPORTED INSECURE CRUDE OIL
- REDUCED SPR SIZE
- ANNUALIZED COST OF CRUDE OIL AND FACILITIES NOT NEEDED

ENVIRONMENTAL EXTERNALITIES

PROBLEM _____MARKET_PRICES_OF_RETAIL_ENERGY_DO_NOT_ADEQUATELY_REFLECT_THE-

OPPORTUNITY COSTS OF ENVIRONMENTAL_RESOURCE_USE_

• EXAMPLES RELEVANT TO RES/CONVENTIONAL ENERGY SOURCES TRADEOFFS

• AIR QUALITY PROBLEMS

- PARTICULATES
- ~ SO₂
- HYDROCARBONS
- WATER QUALITY PROBLEMS
 - - THERMAL POLLUTION
 - DISRUPTION OF ACQUIFERS
 - RUNOFF FROM MINE TAILINGS
- LAND QUALITY
 - PRECLUSION OF ALTERNATIVE PUBLIC USE
 - DESTRUCTION OF UNIQUE FORMATIONS
 - DUMPING OF MINE TAILINGS
- FLORA AND FAUNA HABITAT DISRUPTION
 - IMPACTS UPON ENDANGERED SPECIES
 - IMPAIRMENT OF SPORT HUNTING AND FISHING

TECHNIQUES FOR ENVIRONMENTAL EXTERNALITIES VALUATION

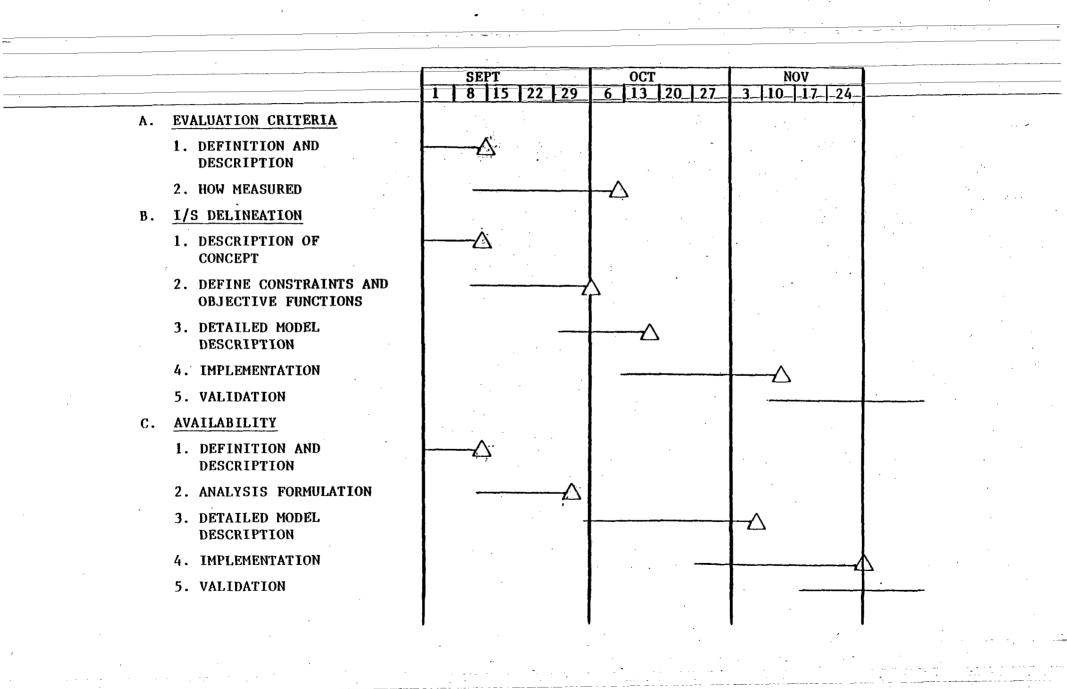
• ALTERNATIVE COST - DETERMINATION OF COSTS OF MITIGATION

---LAND-QUALITY-EXAMPLE---RECLAMATION-COSTS-

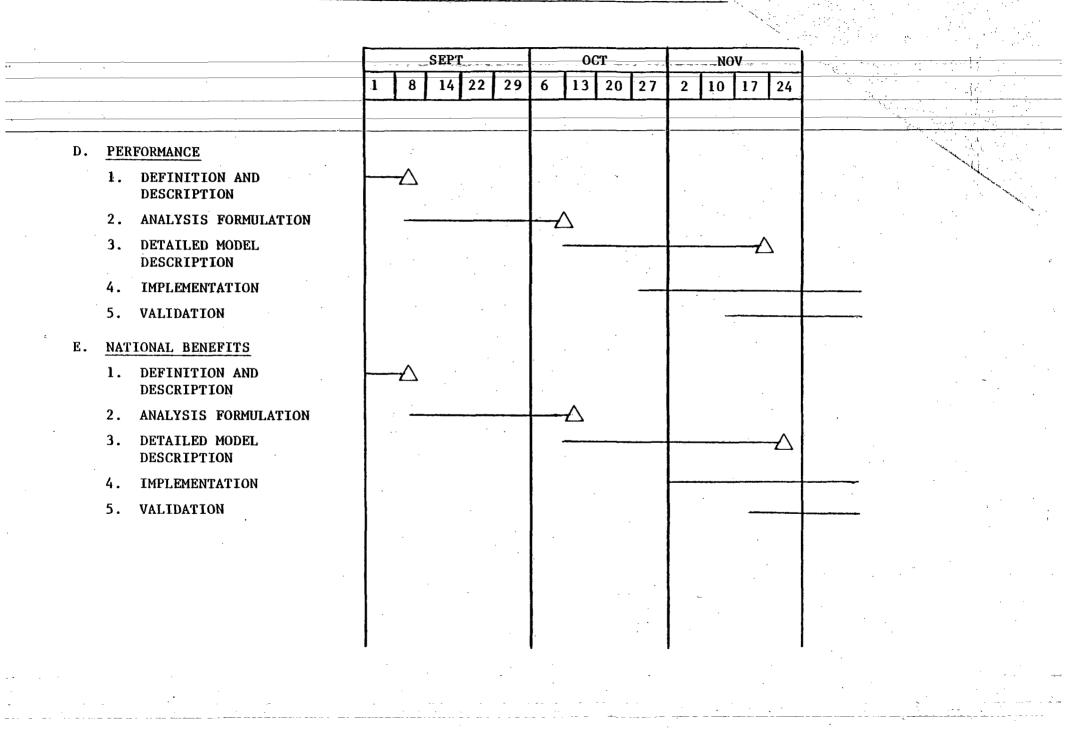
 LOSS AVOIDANCE - DETERMINATION OF OBSERVABLE LOSSES RESULTING FROM EXTERNALITY

- AIR QUAITY EXAMPLE - HEALTH COSTS OF BREATHING AIR BORNE HYDROCARBON

INFERRED PRICES - DETERMINATION OF IMPLIED WILLINGNESS TO PAY FOR MITIGATION THROUGH OBSERVATION OF PRICES OF ASSOCIATED GOODS


- AIR QUALITY EXAMPLE - PORTION OF HOUSING PRICE ASSOCIATED WITH AIR QUALITY IN THE NEIGHBORHOOD

WILLINGNESS TO PAY - DIRECT ELICITATION OF VALUES THROUGH SURVEYS AND QUESTIONNAIRES


- WATER QUALITY EXAMPLE - WILLINGNESS TO PAY FOR VARIOUS

LEVELS OF TURBIDITY REDUCTION

ANALYSIS METHODOLOGY DEVELOPMENT SCHEDULE

ANALYSIS METHODOLOGY DEVELOPMENT SCHEDULE (CONT)

