COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Room 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

Roy Romer Governor

James S. Lochhead Executive Director

Michael B. Long Division Director

Vicki Cowart State Geologist and Director

News Release

February 2, 1995 For Immediate Release News Contact:

Jim Cappa (303) 866-3293

GEOTHERMAL MAP OF COLORADO AND DIGITAL DATA RELEASED

The Colorado Geological Survey has released a updated review and electronic database of the geothermal sites in Colorado. In the late 1970s and early 1980s the U.S. Department of Energy supported an intensive study of the geothermal sites in Colorado. The current study, also funded by the Department of Energy, was conducted during 1992 and 1993 and is intended to update and enter into electronic databases all the known physical and chemical characteristics, the current activity and usage, and the location of the state's geothermal sites. Ten new chemical analyses were also completed at selected geothermal sites.

Geothermal waters are used in the state for a variety of purposes including raising tropical fish and alligators in the San Luis Valley, greenhouses, space heating, and in resort spas in such places as Glenwood Springs, Idaho Springs, Steamboat Springs, Ouray, Pagosa Springs and Hermosa. All of Colorado's geothermal sites are considered to be low temperature, that is, less than 90 degrees Celsius (195 degrees Fahrenheit).

The study includes 1:1,000,000 map showing the location of the all geothermal sites, a report with a discussion of the current activity and usage of the sites, and a 3.5-inch, high-density, DOS diskette that contains tables of the location, chemistry, and

(MORE)

information on each of the geothermal sites in Lotus, Dbase and ARC-Export formats.

Copies of "1992-1993 Low Temperature Geothermal Assessment Program, Colorado" by James A. Cappa and Harold T. Hemborg (Open File Report 95-1) are available over the counter for \$15 from the Colorado Geological Survey. The fee covers the map, written report, and diskette. Telephone and mail orders require an additional \$5 for shipping and handling. VISA and MasterCard are accepted. Orders should be submitted to: Orletta Fairchild, Publications Department, Colorado Geological Survey, 1313 Sherman St., Room 715, Denver, CO, 80203. The survey's telephone number is (303) 866-2611 and the FAX number is (303) 866-2461.

#

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

Roy Romer Governor

Ken Sələzər Executive Director

Michael B. Long Division Director

Vicki Lowart State Geologist and Director

MEMORANDUM

TO: Howard Ross, UURI

FROM: Jim Cappa, CGS

DATE: August 5, 1993

SUBJECT: Data for Phase 2 funding, low temperature geothermal project.

ITEM	1993 INVENTORY	1980 INVENTORY	% CHANGE
# THERNAL WELLS AND SPRINGS	+170	120	+42
# RESOURCE AREAS	96	56	+71
# AREAS DIRECT HEAT USE	28	28	0

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Shemian Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

Roy Romer Governor

Ken Salazan Executive Director

Michael B. Long Division Director

Vicki Cowart State Geologist and Director

MEMORANDUM

TO: Howard Ross, UURI

FROM: Jim Cappa, CGS

DATE: August 5, 1993

SUBJECT: Preliminary results of 1993 low temperature geothermal program.

The work on the Colorado portion of the low temperature geothermal research program consist of four main parts: 1) field investigations and sampling of known and new geothermal sources; 2) research of various geothermal and water quality data bases for analytical data on known and new geothermal sources; 3) research of the Colorado State Water Engineer and Colorado Oil and Gas Commission well permit files; and 4) entry of data into a GIS compatible data base and production of a 1:1,000,000 scale map and accompanying data bases.

The field investigation and sampling portion of the program is just about complete. CGS staff members have made 4 separate one week trips around selected areas of Colorado visiting known geothermal areas and discovering new ones in the process. We have collected water samples for chemical analysis at nine of the sites we have visited. The field investigations have allowed us to gain first hand information on the physical and chemical characteristics and current usage of the geothermal resources. We have also obtained a subjective measure of the quality and degree of development. Being at the geothermal site has allowed us to meet local people who have knowledge of other unreported geothermal sources and also are acquainted with the usages of the sources.

We have utilized several published data bases to gain further information on the location and geochemistry of the geothermal sources. Most of the information compiled in the present program came from two principal publications of the CGS on geothermal resources: CGS Bull. 39, 1978, <u>An Appraisal of Colorado's Geothermal Resources</u>, and Inform. Ser. 6, 1976, <u>Hvdrogcochemical Data of Thermal Springs and Wells in Colorado</u>.

& SPyc

& colditi

Both of these publications were the result of a DOE geothermal program of the late 1970's and early 1980's. WATSTOR, a U. S. Geological Survey water quality data base, was utilized and as a result 19 new geothermal sources of water $>20^\circ$ C were added to the data base. The GEOTHERM data base, another U. S. Geological Survey compilation, was also investigated but it contained information already entered into the data base from the CGS publications of 1978 and 1976. Other data sources included various literature references, technical articles, University theses, resource user chemical reports, and municipal governments.

The well permit files of the State Oil and Gas Commission and the State Water Engineer were investigated. One important geothermal source, the Deganahl well, was added as a result of this investigation.

The data bases of the current program have been designed and most of the data has been entered at this writing. Three geochemical analyses are still outstanding and a few days of field investigation are still pending.

The current program indicates that several areas in the state continue a long history of substantial utilization of their geothermal resources such as Glenwood Springs, Idaho Springs, Steamboat Springs, Pagosa Springs, Poncha Springs, Mount Princeton and Ouray. All of these areas, at the minimum, utilize their resources for swimming pools and spas. Some, such as Pagosa Springs, utilize geothermal heat for space heating in municipal and other buildings.

There are several other areas in the state that are on the fringe of development. That is, they have some development of geothermal resources; however, there are indications that geological and geophysical studies could be used to increase the area and pace of development. These include the following: Trimble Hot Springs north of Durango, in La Plata County; Orvis Hot Springs north of Ouray in Ouray County; a large area southeast of Pagosa Springs along the Archuleta Antiform in Archuleta County; the eastern San Luis Valley in Saguache and Alamosa Counties; the area around Rico and Dunton Hot Springs in Dolores County, and the Cottonwood Hot Springs in Chaffee County.

Other geothermal resources that are geologically significant but far from a center of significant population are: the Deganabl well in Routt County, the Brands Ranch well in Jackson County, the Craig warm water well in Moffatt County, and the Hartsel Hot Springs in Park County.

October 7, 1994

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Room 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

NATURAL

Roy Romer Governor

James S. Lochhead Executive Director

Michael B. Long Division Director

Vicki Cowart State Geologist and Director

Howard Ross University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, UT 84108-1295

Dear Howard:

I enjoyed the Geothermal Resources Council meeting and learned quite a bit about current activities in both the low and high temperature geothermal fields. I am grateful to the you and the UURI for the offer to pay for my travel expenses. The expenses for the trip and meeting are listed below:

Mileage personal car to & from Airport(54 miles x .20)	\$10.80
Airline ticket, Denver to Salt Lake City & return	\$143.00
Parking at Stapleton Airport	\$17.00
Meeting Registration (One Day)	\$150.00
Lodging, Little America Hotel, 10\3	\$93. 0 0
Meals 10\3-10\4	\$37.00

TOTAL

\$450.80

Please send the check to me at the letterhead address. Thanks again for your help on this presentation.

Sincerely,

ans

James A. Cappa // Chief, Minerals and Mineral Fuels Enclosure: Receipts

TOWN NAME	COUNTY	POPULATION, 1990	DISCH. TEMP.	DEPTH, FT.	FLOW, L/MIN.	TDS, MG/L	
CHROMO	ARCHULETA	5	70	526	284	101	DISTANCE 4 MILES, DU
GLENWOOD SPRINGS	GARFIELD	6561	51	SPRINGS	8565	21500	DISTANCE 1 MILE, FEA
HARTZEL	PARK	43	52	SPRING	204	2280	DISTANCE 1 MILE
HERMOSA	LA PLATA	NA	44	SPRING	38(?)	3240	DISTANCE 3 MILES, TR
IDAHO SPRINGS	CLEAR CREEK	1834	53	142	136	1900	GROUP OF THREE SPRIN
MAD CREEK	ROUTT	NA	62	SPRING	100-200	508-552	GROUP OF 5 UNUSED SP
MINERAL HOT SPRINGS	SAGUACHE	NA	60	SPRING	379	650	DISTANCE 6 MILES, SE
MT. PRINCETON HOT SPRINGS	CHAFFE	NA	56-83	SPRING	345	68-76	SEVERAL SPRINGS AND
OURAY	OURAY	644	69	SPRING	416	1650	POOL HOT SPRING, SEV
PAGOSA SPRINGS	ARCHULETA	1207	58	SPRING	908	3040	BIG SPRING, SEVERAL
PONCHA SPRINGS	CHAFFEE	244	71	SPRINGS	757	685	DISTANCE 1 MILE
REDSTONE	PITKIN	135	56	SPRING	38	2750	DISTANCE 5 MILES, GR
RICO	DOLORES	92	44	WELLS, DEPTH UNK.	53	2750	DISTANCE 1 MILE, WEL
RIDGEWAY	OURAY	423	52	SPRING	CLOSED, 1978	2300	DISTANCE 3 MILES, OR
ROCKWOOD	LA PLATA	NA	32	SPRING	180	3800	DISTANCE 3 MILES, PI
SALIDA	CHAFFEE	4737	71	SPRING	757	685	DISTANCE 6 MILES, PO
STEAMBOAT SPRINGS	ROUTT	6695	39	SPRINGS	37-450	6170	DISTANCE 1 MILE, RES
WAGON WHEEL GAP	MINERAL	NA	57	SPRING	186	1500	DISTANCE 2 MILES
WAUNITA HOT SPRINGS	GUNNISON	NA	80	SPRING	151	600	TWO GROUPS OF HOT SP

COLORADO CITIES WITH GEOTHERMAL RESOURCE POTENTIAL Resources (>50 deg. C) collocated less than 5 miles

------TOTAL 22620

REMARKS UTCH CROWLEY OIL WELL TEST ASIBILITY STUDY RIPP HOT SPRING, RES. TEMP. EST. 45-70 DEGREES INGS AND 1 WELL PRINGS EVERAL UNUSED SPRINGS WELLS IN THE CHALK CREEK AREA VERAL OTHERS IN THE AREA OTHER SPRINGS AND WELLS IN THE AREA RANGES HOT SPRING LLS MAY BE PLUGGED? RVIS HOT SPRING INKERTON HOT SPRINGS ONCHA HOT SPRINGS

S. TEMP. +70 DEG.

PRINGS

COLORADO CITIES WITH GEOTHERMAL RESOURCE POTENTIAL Resources (>50 deg. C) collocated less than 5 miles

TOWN NAME	COUNTY	POPULATION, 199	0 DISCH. TEMP.	DEPTH, FT.	FLOW, L/MIN.	TDS, MG/L	REMARKS
CHROMO	ARCHULETA	5	70	526	284	101	DISTANCE 4 MILES, DUTCH CROWLEY OIL WELL TEST
GLENWOOD SPRINGS	GARFIELD	6561	51	SPRINGS	8565	21500	DISTANCE 1 MILE, FEASIBILITY STUDY
HARTZBL	PARK	43	52	SPRING	204	2280	DISTANCE 1 MILE
HERMOSA	LA PLATA	NA	44	SPRING	38(?)	3240	DISTANCE 3 HILES, TRIPP HOT SPRING, RES. TEMP. EST. 45-70 DEGREES
IDAHO SPRINGS	CLEAR CREEK	1834	53	142	136	1900	GROUP OF THREE SPRINGS AND 1 WELL
MAD CREEK	ROUTT	" NA '	62	SPRING	100-200	508-552	GROUP OF 5 UNUSED SPRINGS
MINERAL HOT SPRINGS	SAGUACHE	NA	60	SPRING	379	650	DISTANCE 6 MILES, SEVERAL UNUSED SPRINGS
MT. PRINCETON HOT SPRINGS	CHAFFE	NA	56-83	SPRING	345	68-76	SEVERAL SPRINGS AND WELLS IN THE CHALK CREEK AREA
OURAY	OURAY	844	69	SPRING	418	1650	POOL HOT SPRING, SEVERAL OTHERS IN THE AREA
PAGOSA SPRINGS	ARCHULETA	1207	58	SPRING	908	3040	BIG SPRING, SEVERAL OTHER SPRINGS AND WELLS IN THE ABEA
PONCHA SPRINGS	CHAFFEE	244	71	SPRINGS	757	685	DISTANCE 1 HILE
REDSTONE	·····PITEIN·····	135	58	SPRING		-2750	DISTANCE 5 MILES, GRANGES HOT SPRING
RICO	DOLORES	92	44	WELLS, DEPTH UNK.	53	2750	DISTANCE 1 MILE, WELLS MAY BE PLUGGED?
RIDGEWAY	OURAY	423	52	SPRING	CLOSED, 1978	2300	DISTANCE 3 WILES, ORVIS HOT SPRING
ROCKWOOD	LA-PLATA	··· · · ··· ··· ··· ··· ··· ···	32	SPRING			DISTANCE 3 MILES, PINKERTON HOT-SPRINGS
SALIDA	CHAFFEE	4737	71	SPRING	757	685	DISTANCE 6 MILES, PONCHA HOT SPRINGS
STEAMBOAT SPRINGS	ROUTT	6695	39	SPRINGS	37-450	6170	DISTANCE 1 MILE, RES. TEMP. +70 DEG.
WAGON WHEEL GAP	MINERAL	NA	57	SPRING		1500	DISTANCE-2 MILES
WAUNITA HOT SPRINGS	GUNNISON	NA	80	SPRING	151	600	TWO GROUPS OF HOT SPRINGS

TOTAL

22620

COLORADO CITIES WITH GEOTHERMAL RESOURCE POTENTIAL Resources (>50 deg. C) collocated less than 5 miles

TOWN NAME	COUNTY	POPULATION, 1990	DISCH. TEMP.	DEPTH, FT.	FLOW, L/MIN.	TDS, MG/L	REMARKS
CHROMO	ARCHULETA	5	70	526	284	101	DISTANCE 4 MILES, DUTCH CROWLEY OIL WELL TEST
GLENWOOD SPRINGS	GARFIELD	6561	51	SPRINGS	8565	21500	DISTANCE 1 MILE, FRASIBILITY STUDY
HARTZEL	PARK ·····	43	52	SPRING	204	2280	DISTANCE 1 HILE
HERMOSA	LA PLATA	NA	44	SPRING	38(?)	3240	DISTANCE 3 MILES, TRIPP HOT SPRING, RES. TEMP. EST. 45-70 DEGREES
IDAHO SPRINGS	CLEAR CREEK	1834	53	142	136	1900	GROUP OF THREE SPRINGS AND 1 WELL
MAD CREEK	ROUTT	NA	62	SPRING	100-200	508-552	GROUP OF 5 UNUSED SPRINGS
MINERAL HOT SPRINGS	SAGUACHE	NA	60	SPRING	379	650	DISTANCE 6 MILES, SEVERAL UNUSED SPRINGS
T. PRINCETON HOT SPRINGS	CHAFFE	NA	56-83	SPRING	345	68-76	SEVERAL SPRINGS AND WELLS IN THE CHALK CREEK AREA
OURAY	OURAY	644	69	SPRING	416	1650	POOL-HOT SPRING, SEVERAL OTHERS IN THE AREA
PAGOSA SPRINGS	ARCHULETA	1207	58	SPRING	908	3040	BIG SPRING, SEVERAL OTHER SPRINGS AND WELLS IN THE AREA
PONCHA SPRINGS	CHAFFEE	244	71	SPRINGS	757	685	DISTANCE 1 HILE
	PITKIN	195	58	SPRING	38	2750	DISTANCE 5 MILES, GRANGES HOT SPRING
RICO	DOLORES	92	44	WELLS, DEPTH UNK.	53	2750	DISTANCE 1 MILE, WELLS MAY BE PLUGGED?
RIDGEWAY	OURAY	423	52	SPRING	CLOSED, 1978	2300	DISTANCE 3 MILES, ORVIS HOT SPRING
ROCKWOOD	- LA-PLATA	NA		SPRING	180	3800	DISTANCE 3 MILES, PINKERTON HOT SPRINGS
SALIDA	CHAFFEE	4737	71	SPRING	757	685	DISTANCE 6 MILES, PONCHA HOT SPRINGS
STEAMBOAT SPRINGS	ROUTT	6695	39	SPRINGS	37-450	6170	DISTANCE 1 MILE, RES. TEMP. +70 DEG.
WAGON WHEEL GAP	MINERAL	NA		SPRING		1500	DISTANCE 2 MILES
WAUNITA HOT SPRINGS	GUNNISON	NA	80	SPRING	151	600	TWO GROUPS OF HOT SPRINGS

TOTAL 22620

.

RESULTS OF THE 1992-1993 LOW-TEMPERATURE GEOTHERMAL ASSESSMENT PROGRAM IN COLORADO

James A. Cappa Colorado Geological Survey

Acknowledgements

This low-temperature geothermal assessment program was funded by the U. S. Department of Energy-Geothermal Division. The Colorado Geological Survey serves as a subcontractor to the Oregon Institute of Technology-Geo Heat Center for the purposes of fulfilling the terms of this contract within the State of Colorado.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe private property rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

Previous assessments of Colorado's low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid to late-1970s. The purpose of the 1992-1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U. S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources.

The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30° C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into databases.

For the purposes of this report a geothermal area is defined as a broad area, usually less than three square miles in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978.

Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

1. Introduction

Low-temperature geothermal resources are defined as those having a surface temperature of 20° to 100° C. Previous assessments of Colorado's low-temperature geothermal resources were completed by the Colorado Geological Survey (CGS) in 1920 and in the mid to late-1970s. The purpose of the 1992-1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado.

During 1992 and 1993 the staff of the CGS visited most of the known geothermal sources that were recorded as having temperatures greater than 30° C. Physical measurements of the conductivity, Ph, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites.

The earliest work describing the geothermal resources of Colorado was completed by R. D. George et al. (1920), <u>Mineral Waters of Colorado</u>, CGS Bulletin 11. In 1978, the CGS published Bulletin 39, <u>An Appraisal of Colorado's Geothermal Resources</u>, by Barrett and Pearl which contained descriptive information on the sites, including location, current usage, geological setting and an analysis of various geothermometers for each of the geothermal areas of the state.

New assessments of geothermal resources are necessary because utilization of geothermal resources changes over a period of years. In some cases flow rates and temperature of the geothermal sources have change because of various reasons, either natural or man-induced.

The data collected and compiled for this survey are recorded in four computer databases. Figure 1 shows the location of each of the geothermal areas determined from the 1992-1993 survey.

2. Data Sources

Data were compiled from a variety of sources including published and unpublished materials. The most important published source material includes: George et al., 1920, Colorado Geological Survey Bulletin 11; Barrett and Pearl, 1976, Colorado Geological Survey Information Series 6; and Barrett and Pearl, 1978, Colorado Geological Survey Bulletin 39. The most important unpublished sources were the Colorado Department of

Water Resources well permit files, the U. S. Geological Survey WATSTOR database, and analytical reports from private laboratories given to the principal investigator by geothermal source owners and operators. As part of the assessment program ten new geochemical analyses were completed.

All geochemical data which maintained a cation-anion charge balance of \pm 15% were entered into the databases. Geothermal sources with only one analysis were entered regardless of the charge balance.

3. Data Format

All the data describing the location, geochemical analyses, and general characteristics were compiled into databases. For purposes of this program a geothermal <u>area</u> is defined as a geologically cohesive land area that may or may not contain several geothermal wells or hot springs. Generally an <u>area</u> is less than approximately three square miles. A <u>site</u> is defined as an individual geothermal well or hot spring within an <u>area</u>. Each geothermal area within the database has a unique ID number. Different sites within a geothermal area have unique area-site numbers. All the tables list the ID number, Site number, and Geothermal Source (Name). Excerpts from the databases are shown below in the following tables.

Table 1 is a location database (GTHLOC); it describes the county, quadrangle map, section, township, range, latitude and longitude, and Universal Transverse Mercator grid references.

Table 2 contains the long form of the geochemical database(GTHCHEM1). All the geochemical and sample data collected during this survey is stored in this Table. There can be multiple entries of geochemical data for each site.

Table 3 is the short form of the geochemical database(GTHCHEM2). It contains an abbreviated element list and has only one entry per site. Where multiple chemical analyses were available all the results were averaged to make just a single entry.

Table 4 contains the general information database (GTHGEN). It has information such as temperature, flow rate, type, references, and current usage for each geothermal site.

4. Fluid Chemistry

Because of time constraints a lower limit of 30° C was set on any geothermal spring or well to be visited in the field. The temperature, pH, conductivity, flow rate and current usage for each site were recorded. The University of Utah Research Institute (UURI) provided 10 new geothermal water analyses as part of the low-temperature geothermal assessment program. Sites for a complete water analysis were selected on a subjective criteria of developmental significance and lack of recent or quality geochemical data. The 10 sites selected for new water analyses in Colorado are:

Craig Warm Water Well Desert Reef (Florence) Dotsero, South Mt. Princeton (Hortense Well) Ouray (Pool or Box Canyon Spring) Routt (aka Strawberry) Steamboat Springs (Heart Spring) Waunita Hot Springs Juniper Hot Springs Pagosa Hot Springs (Big Spring)

The results of the new samples are included in Table 2. There were no new results that had serious implications for the prior known geochemistry of the geothermal areas.

Other sources of geochemical information were utilized in compiling the database. The most significant source of geochemical data was the U. S. Department of Energy supported study performed by the CGS in the late 1970s (Barrett and Pearl, 1976). Any geochemical analysis that had a cation-anion balance error greater than 15% was discarded except for the case described below.

Geochemical data derived from the U. S. Geological Survey WATSTOR database was entered into the current database; unfortunately, most of those reports do not have an analysis for HCO_3^{-2} or CO_3^{-2} which causes severe errors in the cation-anion balance. As most of these analyses are the only one for that particular site they have been retained in the database even though they do not balance within the specified limits.

5. Discussion and Summary

The location of all the geothermal sites compiled during this assessment program is shown on Figure 1. A frequency plot of all the geothermal temperatures from each site is shown in Figure 2. The greatest number of temperature measurements fall in the 25° to 40° C categories. There is another peak in the 51° to 55° C range.

The 1992-1993 low-temperature geothermal assessment program added 10 new chemical analyses to the geochemical database of the state's geothermal waters. Other sources of geochemical data were reviewed and all good quality, that is less than 15% cation-anion balance error, geochemical analyses were entered into the long form geochemical database, Table 2. Certain areas with higher than 15% cation-anion balance were left in the database because they were the only analysis for an area or site. Usually the most significant errors in the cation-anion balance were found in the U. S. Geological Survey WATSTOR database and are due to a missing HCO_3 analysis.

Several corrections were made to locations and names of hot springs and wells described in the older literature. The CGS Information Series 6 (Barrett and Pearl, 1976) was updated during 1993 and the correct locations were entered into the revised publication. Corrections were also made to several location entries in the U. S. Geological Survey WATSTOR database.

A summary of the results of the 1992-1993 geothermal assessment and a comparison to the 1976-1978 geothermal assessment are shown in the following Table A:

ITEM	1993 ASSESSMENT	1976-78 ASSESSMENT	% CHANGE
GEOTHERMAL AREAS	93	56	+66%
GEOTHERMAL SITES	157	125	+26%
GEOCHEMICAL ANALYSES	382	236	+62%
SITES OF DIRECT HEAT UTILIZATION	64	64	0
SITES OF DISTRICT HEAT USE	20	?	
SITES OF GREENHOUSES, AQUACULTURE	4	?	

Table A: Summary of the results of the 1993 Low-Temperature Geothermal Assessment Program compared to the 1976-1978 geothermal assessment.

6. Recommendations

The current assessment indicates that several areas in the state continue a long history of substantial utilization of their geothermal resources. The prime areas include Glenwood Springs, Idaho Springs, Steamboat Springs, Pagosa Springs, Mount Princeton, and Ouray. All of these areas, at the minimum, utilize the geothermal resources for swimming pools and spas. Some areas such as Ouray and Pagosa Springs utilize geothermal heat for space heating in municipal and other private buildings.

There are other areas in the state that are collocated with or near population centers and are on the fringe of geothermal development. That is, they have had some development of their geothermal resources; however, there are indications that geological and geophysical studies may be used in a Second Phase geothermal assessment to increase the geothermal area and spur development in these areas. The geothermal areas that are candidates for a Second Phase are (not listed in any order of importance):

- 1) Trimble Hot Springs, La Plata County.
- 2) Orvis Hot Springs, Ouray County.
- 3) A large area southeast of Pagosa Springs along the Archuleta Antiform, Archuleta County.
- 4) Eastern San Luis Valley, Saguache and Alamosa Counties.
- 5) Rico and Dunton Hot Springs, Dolores County.
- 6) Cottonwood Hot Springs, Chaffee County.

Other areas that are geologically significant but far from a center of population are:

1) Deganahl well, Routt County.

- 2) Brands Ranch well, Jackson County.
- 3) Craig warm water well, Moffatt County.
- 4) Hartsel Hot Springs, Park County.

7. References

- Barrett, J. K., and Pearl, R. H., 1976, Hydrogeological data of thermal springs and wells in Colorado: Colorado Geological Survey Information Series 6, 124p.
- Barrett, J. K., and Pearl, R. H., 1978, An appraisal of Colorado's geothermal resources: Colorado Geological Survey Bulletin 39, 224p.
- George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K., and Yeo, J. B., 1920, Mineral waters of Colorado: Colorado Geological Survey Bulletin 11, 474p.

Figure 2: FREQUENCY DISTRIBUTION COLORADO GEOTHERMAL SOURCES

TABLE 1: LOCATION OF GEOTHERMAL SOURCES IN COLORADO

[Abbreviations: HS∓ Hot Spring; W= Well; Sec= Section; Qtr= Quarter; Twp≂Township, d≈direction; Rge= Range, d=direction; Merid= Meridian Lat/LonD= Latitute/Longitude Degrees, M= Minutes, S= Seconds, Dec= Decimal Degrees; Utm= Universal Tranverse Mercator Coordinates; Rel=Reliability, 1= within 100 feet, 2=within 660 feet, 3= within 1,320 feet, 4= within 2,640 feet, 5= within 5,280 feet, 6= greater than 5,280 feet]

1D	Site	Geothermal Source	Туре	Quadrangle	County	Sec	Qtr/Qtr	Twp	Twpd	Rge Rged	Merid.	LatD	LatM	LatS	LonD	LonM	LonS	X-Utm	Y-Utm	Rel
1	1	Antelope Warm Spring	HS	Workman Creek	Mineral	1	SWSE	40	N	2 W	NMPM	37	44	36	107	2	14	320502	4179086	1
2	1	Axial	w	Axial	Moffat	23	NESE	4	N	93 W	6TH	40	18	1	107	47	3	263367	4464596	2
3	1	Birdsie Warm Spring	HS	Workman Creek	Mineral	14	NWNE	40	N	2 W	NMPM	37	43	42	107	3	13	319021	4177454	3
4	1	Brands Ranch	w	Pitchpine Mountain	Jackson	31	SWSE	9	N	81 W	6TH	40	42	16	106	32	4	370371	4506869	1
5	1	Browns Canyon Warm Spring	HS	Nathrop	Chaffee	23	SESW	51	N	8 E	NMPM	38	39	13	106	3	11	408367	4278657	3
5	2	Browns Canyon (Chimney Hill)	w	Nathrop	Chaffee	28	SENE	51	N	8 E	NMPM	38	38	40	106	4	41	406180	4277665	2
5	3	Browns Grotto Warm Spring	HS	Nathrop	Chaffee	27	SWSW	51	N	8 E	NMPM	38	38	13	106	4	26	406533	4276829	3
6	1	Canon City Hot Springs	w	Royal Gorge	Fremont	31	SESW	18	S	70 W	6TH	38	25	56	105	15	41	477185	4253598	2
7	1	Carson #1 Well	w	Rules Hill	La Plata	36	NWSW	35	Ν	8 W	NMPM	37	15	25	107	41	57	260619	4126587	2

٠

.

1992-1993 LOW TEMPERATURE GEOTHERMAL PROJECT

TABLE 2: GEOCHEMICAL ANALYSES OF GEOTHERMAL SOURCES IN COLORADO (Long List) (Milligrams/Liter)

[Abbreviations: HS= Hot Spring; W= Well; E= Estimated; ND= Not detected]

References are listed at the end of the table.

ID	Site	Geothermal Source	Туре	Reference	Date Sampled	Temp C	Cond mm	pH	CaCO3	HCO3	PO4	Са	Mg	Na	К
<u></u>															
1	1	Antelope Warm Spring	HS	1	8/1975	32	180		90	110	ND	4.0	0.3	44.0	0.1
1	1	Antelope Warm Spring	HS	1	10/1975	32	160	8.9	95	77	0.03	1.7	0.6	43.0	0.3
1	1	Antelope Warm Spring	HS	3	6/1993	32	234	9.1							
2	1	Axial	w	4	6/1975	22	1,750	7.1	520	630	0.09	140.0	140.0	71.0	14.0
3	1	Birdsie Warm Spring	HS	1	?/1975	30	200	8.6							
3	1	Birdsie Warm Spring	HS	3	6/1993	30	218	9.2							
4	1	Brands Ranch	W	1	?/1975	30	405	6.0							
4	1	Brands Ranch	W	1	5/1993	39	524	6.4							
5	1	Browns Canyon Warm Spring	HS	1,7	?/1975	25	775	8.0				9.0		170.0	2.4
5	2	Browns Canyon (Chimney Hill)	W	7	?/1975	27						7.0		170.0	2.7
5	З	Browns Grotto Warm Spring	HS	1,7	?/1975	23	720	7.0				18.0		180.0	3.4
6	1	Canon City Hot Springs	HS	2	?/1920	35				804		169.4	53.6	160.8	33.2
6	1	Canon City Hot Springs	HS	1	9/1975	40	1,900	6.3	728	887	2.20	190.0	62.0	190.0	15.0
6	1	Canon City Hot Springs	HS	1	1/1976	40	2,010	6.2	728	888	0.03	190.0	55.0	180.0	16.0
6	1	Canon City Hot Springs	HS	1	4/1976	40	1,980	6.1	728	888	0.09	170.0	61.0	190.0	15.0
6	1	Canon City Hot Springs	HS	3	6/1993	40		6.1							
7	1	Carson #1 Well	w	4	9/1984	38	1,280	8.2	724			2.7	0.3	310.0	2.8

ŧ

REFERENCES

- 1 Barret, J. K. and Pearl, R. H., 1976, Hydrogeochemical data of thermal springs and wells in Colorado: Colorado Geological Survey, Inform. Ser. 6 (rev. 1993).
- 2 George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K., and Yeo, J. B., 1920, Mineral waters of Colorado: Colorado Geological Survey Bull. 11.
- 3 Colorado Geological Survey 1992-1993 sampling program
- 4 U. S. Geological Survey WATSTOR data base
- 5 Colorado State Department of Water Resources well files
- 6 Sharp, W. N., 1970, Extensive zeolitization associated with hot springs in central Colorado: U. S. Geological Survey Prof. Paper 700-B, p. b14-b20.
- 7 Dick, J. D., 1976, Geothermal reservoir temperatures in Chaffee County, Colorado: Northeastern Louisiana Univ., Unpubl. MS Thesis., 171p.
- 8 Bush, A. L., Bromfield, C. S., and Pierson, C. T., 1959, Areal geology of the Placerville quadrangle, San Miguel County, Colorado: U. S. Geological Survey Bulletin 1072-E
- 9 Other Sources

TABLE 3: GEOCHEMICAL ANALYSES OF GEOTHERMAL SOURCES IN COLORADO (Short list) (Milligrams/Liter)

[Abbreviations: HS= Hot Spring; W= Well; ND= Not Detected]

Brackets ([]) in the TDS column indicate Conductivity measurements; Conductivity * .58 is a good regional indicator of TDS

_ID	Site	Geothermal Source	Туре	рΗ	TDS	Na	K	Ca	Mg	Fe	SiO2	В	Li	НСОЗ	SO4	CI	F	Cation-Anion Balance, %
1	1	Antelope Warm Spring	HS		151	44.0	0.1	4.0	0.3	0.02	41		0.01	110	2	3	2.0	5.1
2	1	Axial	W	7.1	1,250	71.0	14.0	140.0	140.0	0.11	18			630	530	17	0.6	0.4
3	1	Birdsie Warm Spring	HS	9.2	[209]													
4	1	Brands Ranch	W	6.4	[465]													
5	1	Browns Canyon Warm Spring	HS	8.0	[775]	170.0	2.4	9.0			28							
5	2	Browns Canyon (Chimney Hill)	W			170.0	2.7	7.0			47							
5	3	Browns Grotto Warm Spring	HS	7.0	494	180.0	3.4	18.0			46							
6	1	Canon City Hot Springs	HS	6.2	1,220	180.2	19.8	179.9	57.9	0.03	23	0.20	0.23	867	123	186	1.5	0.1
7	1	Carson #1 Well	w	8.2	789	310.0	2.8	2.7	0.3	0.07	23	0.19			1	14	1.5	96.4

•

•

1992-1993 LOW TEMPERATURE GEOTHERMAL PROJECT TABLE 4: GENERAL INFORMATION OF GEOTHERMAL SOURCES IN COLORADO

Abbreviations

÷

[Type: HS= Hot Spring; W= well]

[Use: Bnd= bathing, not developed; Bd= bathing, developed; N= no use; MW= mineral water; AC= Aquaculture; ACs= Aquaculture, stock tank; A= Agricultural irrigation; SH= Space Heating; GH= Greenhouse; ?= Not Known]

ID	Site	Geothermal Source	Туре	Use	Temp C	Flow I/m	Well depth, m
1	1	Antelope Warm Spring	HS	N	32	11,46	
2	1	Axial	W	?	22		3.6
3	1	Birdsie Warm Spring	HS	Ν	30	53	
4	1	Brands Ranch	W	Bnd	34	304E	
5	1	Browns Canyon Warm Spring	HS	N	25	4	
5	2	Browns Canyon (Chimney Hill)	W	Ν	27		
5	3	Browns Grotto Warm Spring	HS	Ν	23	19	
6	1	Canon City Hot Springs	HS	Ν	39	4 to 19	
7	1	Carson #1 Well	W	?	38		744.8

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

Roy Romer Governor Ken Salazar Executive Director

Michael B. Long Division Director

Vicki Cowart State Geologist and Director

Howard Ross University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, UT 84108-1295

January 10, 1994

Dear Howard:

We've finished the GIS work on the geothermal areas and produced a 1:1,000,000 map of the the geothermal areas as per our contrct. A copy is enclosed for your comments.

Sincerely,

inst In

Vames A. Cappa // Chief, Minerals and Mineral Fuels

enclosure:

Paul Lienau -Please review and comment. KR

January 10, 1994

James A. Cappa Chief, Minerals and Mineral Fuels Colorado Geological Survey Department of Natural Resources 1313 Sherman Street, Rm. 715 Denver, CO 80203

Dear Jim:

Thanks for the opportunity to review your draft report for the low temperature geothermal assessment program. The report reads very well and seems to have everything we requested, while still being short and to the point. I especially enjoyed reading the Discussion section with writeups of the main thermal springs and wells. Good job, Jim!

In response to your question, I think it is useful to include both Table 2 (long form) and Table 3 (short form) for the geochemistry database. We anticipate that all the state teams would want to make the report and database available to the public and encourage you to do so. When the report is ready for distribution, you may wish to announce it in the Geothermal Resources Council Bulletin and other trade journals as well as the CGS publication list.

Jim, I noted a few typos and developed a few questions and comments while going through the report. These are attached. Please call me if you want to discuss any of the comments. I will FAX a copy of this letter to Paul Lienau for his information. He will -may also wish to see a draft copy of the report before you finalize it.

Sincerely,

Howard P. Ross Project Manager

encl.

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

Roy Romer Governor

Ken Salazar Executive Director

Michael B. Long Division Director

Vicki Cowart State Geologist and Director

December 27, 1993

Howard Ross University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, UT 84108-1295

Dear Howard:

I've enclosed a copy of the draft report for the low temperature geothermal assessment program for your review. Also included are printouts of the data bases for Colorado. You will note that Table 2 is quite comprehensive and contains much more data than is called for in this program. I believe that this geochemical information is useful and would like to leave it in the final report. I'd appreciate your thoughts on this. The 1:1,000,000 location map is complete but still requires a bit of computer-drafting juggling.

The CGS would like to make this information available on disc to the public through our open file report process. I don't see anything in the contract that mentions this so I assume it is OK. Is it? Thanks for your help.

Sincerely,

James A. Cappa Chief, Minerals and Mineral Fuels

enclosure:

ADDENDUM TO STANDARD CONTRACT AGREEMENT for STATE GEOTHERMAL ENERGY RESEARCH, DEVELOPMENT, AND DATABASE COMPILATION

between

THE OREGON STATE SYSTEM OF HIGHER EDUCATION OREGON INSTITUTE OF TECHNOLOGY

and

THE COLORADO GEOLOGICAL SURVEY

STATEMENT OF WORK

1.0 INTRODUCTION

The United States Department of Energy - Geothermal Division (DOE/GD) supports the development of indigenous and environmentally advantageous energy alternatives to the traditional fuels. There is a very large, nearly unused supply of low- and moderate-temperature geothermal resources in the United States that could be brought on line over the next decade. The increased use of Geothermal Heat Pumps (GHPs) could also reduce the need for traditional fossil fuel consumption for space heating and cooling.

The U.S. Congress has appropriated funds for a program of Low-Temperature Geothermal Resources and Technology Transfer and DOE/GD has funded EG&G, Idaho to establish contracts with the Oregon Institute of Technology - Geo-Heat Center (OIT-GHC), the Idaho Water Resources Research Institute (IWRRI) and the University of Utah Research Institute (UURI) to implement this program.

Important parts of this program are to bring the inventory of the nation's low- and moderatetemperature resources up to date, to complete a collocation study of these resources and communities and other potential users, and to collect and disseminate information necessary to expand the use of GHPs. OIT-GHC will have the lead role in the collocation study and will establish subcontracts with the state resource teams. UURI will work with the State Teams on gathering, documenting, and assembly of low- and moderate-temperature hydrothermal resource data and will assist in technical monitoring of the State Team efforts and publications. IWRRI will be responsible for establishing the hydrothermal resource data for Idaho and for performing geothermal reservoir evaluations throughout the western United States.

The technical tasks described herein may be considered Phase I of the Low-Temperature Geothermal Resources and Technology Transfer program. If Phase I proves successful, and additional funds are appropriated by Congress, the program may be expanded and continued. Phase II would likely include detailed resource evaluations of priority areas identified in Phase I.

Funding for the Low-Temperature Geothermal Resources and Technology Transfer Program is limited, and the success and continuation of the program is dependent upon a productive Phase I effort. Participating State Teams are encouraged to seek state or organization cost shares (in cost or in-kind) to enhance this contract effort.

2.0 TECHNICAL TASKS

The following technical tasks will be accomplished under this subcontract.

- 2.1 Complete an updated inventory of low- and moderate-temperature resources for the State of Colorado, current to June 1, 1992. Review drilling records and other information to identify new resources and verify temperatures and flow rates of springs and wells which may have changed substantially since the previous statewide geothermal resource inventory. Identify geological, geophysical, geochemical, and hydrologic studies which relate to these resources. The minimum temperature for a low-temperature resource is defined to be 10°C above the mean annual air temperature at the surface and should increase by 25°C/km. Occurrences to 150°C will be included.
- 2.2 Conduct a fluid geochemistry study of the more important resource areas for which existing data are questionable or unavailable. UURI will provide up to ten (10) quantitative fluid chemical analyses for each state in support of this study.
- 2.3 Complete a computer database listing compatible with Lotus 123 format tabulating for each occurrence: name, location (T,R,S), county, longitude, latitude, depth, flow, temperature, chemistry, and other data as appropriate and available.
- 2.4 Review OIT-GHC geothermal resource and demographic data for the State of Colorado for accuracy and completeness, as part of the collocation study.
- 2.5 Assist OIT-GHC, UURI, and IWRRI in studies to prioritize low- and moderatetemperature resource areas for new development. Develop conceptual geologic models and groundwater data for selected resources.

3.0 REPORTS, DATA, AND OTHER DELIVERABLES

- 3.1 A geothermal database listing in hardcopy and diskette form will be submitted to UURI. The listing will include all known low- and moderate- temperature spring and well occurrences in the State of Colorado. Principal facts will include location, depth (well), flow rate (if known), etc.
- 3.2 Letter reports and memoranda reviewing collocation data and priority rankings will be submitted to OIT-GHC and UURI.
- 3.3 A final summary report, not to exceed 50 pages, describing all tasks and their results, and documenting any new temperature, geologic, geochemical or geophysical data will be submitted to UURI, OIT-GHC, and IWRRI. This report may incorporate interim letter reports and memoranda as appendices. The report will include a geothermal resource occurrence map of the state, black and white, scale 1:1,000,000 or acceptable alternative.
- 3.4 Interim progress reports will be submitted to UURI and OIT quarterly.

4.0 SCHEDULE OF PERFORMANCE AND REPORTING

- 4.1 The period of performance for this agreement will terminate December 31, 1993, unless modified by letter agreement and signed by the Colorado Geological Survey, OIT-GHC, and UURI.
- 4.2 A review of the OIT-GHC collocation study will be completed and a letter report or memorandum of comment submitted to OIT-GHC and UURI within one month after receipt of the draft document from OIT-GHC.
- 4.3 A preliminary database listing of geothermal resource occurrences will be submitted to UURI within four months after the execution of this agreement.
- 4.4 A final database listing of geothermal resource occurrences will be submitted to UURI within twelve months after the execution of this agreement.
- 4.5 A final report documenting all new data and activities completed under this agreement will be submitted to UURI not later than December 31, 1993.

5.0 **RESPONSIBLE PARTIES**

- 5.1 The Principal Investigator for this agreement will be James A. Cappa, Colorado Geological Survey.
- 5.2 The Technical Project Managers for this agreement will be Howard P. Ross, UURI and Paul J. Lienau, OIT-GHC.
- 5.3 The Contracting Officer for this agreement will be Douglas Yates, OIT.

6.0 FUNDING

This contract agreement provides for funding not to exceed \$35,000.00 for the completion of all technical tasks and submittal of all required deliverables.

SALT LAKE CITY, UTAH 84108-1295 TELEPHONE 801-524-3422

MEMORANDUM

TO: Jim Cappa, Colorado Geological Survey

FROM: Howard Ross, UURI

SUBJECT: Initial thoughts on CGS draft geothermal database format

DATE: March 5, 1993

Jim, here are some thoughts, based in part on my review of other team databases. Perhaps some tables should be titled "Thermal Springs and Wells" since the information is more specific, as are the analyses and locations. Bob Blackett, Utah Geological Survey, uses Table 1 for location information (answers "where is it?" right away). The UGS and other teams plan to code the entries with a reference number which is common to all tablesthis is similar to the old GEOTHERM record number.

Table 1 - General Information Identify if sample is hot spring or well (s or w). Express flow in L/m, rather than gpm. Indicate depth of sample (production zone) if well Identification (record or reference no.) Indicate code for current use (spa, heating) if any. T*F parameter is different, could indicate potential for use

Table 2 - Geochemical Analyses Identification or record number Hot Springs - Source is repeated Date Sampled - useful, but could be obtained from reference

You could reduce this table to "geothermal essentials" on one page, and include rarely reported chemistry on optional pages. It would be important to include pH, TDS, cations and ions used in geochem thermometers, isotope data; see example from Utah Geological Survey, Table 3.

Add a column for ion balance, to indicate analytical quality

Generally the chemical analyses are reported in milligrams per liter for most geothermal studies; this is true for the earlier file GEOTHERM and other geothermal publications. Many of the elements included in your table are not very important for geothermal considerations, would be present in small amounts (ug/l), or rarely reported, and could be relegated to an extra table (2A) for less frequent use.

Temperature and flow duplicate information in Table 1

Table 3 - Location

Could use a record no. to coordinate with other tables You may want to input Latitude and Longitude in decimal form A column of UTM coordinates may facilitate computer plotting Quadrangle - could be useful, but County, Township, Range, Section are probably more important and should come first.

Jim, I am enclosing copies of the first pages of the Utah Geological Survey tables developed by Bob Blackett. I think several of the other teams like this format and will follow it fairly closely, with some optional additions. I think Bob has boiled down lots of possible entries to the most essential items, and presents them quite well. You might want to discuss his choices with him. His phone number is (801) 467-7970, and he has welcomed call from the other state teams.

Please call me when you wish to discus the database format in more detail.

<u>با</u> ميا

UNIVERSITY OF UTAH RESEARCH INSTITUTE 391 Chipeta Way, Suite C Salt Lake City, Utah 84108-1295 Phone: (801) 584-4437 FAX: (801) 584-4453
DATE: December 27,1993 PAGE1 OF 2
DELIVER TO: James A. Cappa FAX: (303) 866-2461
COMPANY Colorado Geological Survey
FROM: Howard Ross
Jim: Here is a copy of the standard DOE Disclaimer statement for federally funded projects. Sorry for the delay. Best Regards,
Howard

. . Acknowledgement and disclaimer statements must be used within technical manuscripts (including extended abstracts) produced under Federal contracts and grants (and non-Federal manuscripts where appropriate). Each contract or grant should be reviewed for specific required statements. The following are example acknowledgement and disclaimer statements:

ACKNOWLEDGEMENT

This work was supported, in whole or in part, by the U.S. Department of Energy, Contract NO. DE-AC07-85ID12489. Such support does not constitute an endorsement by the U.S. Department of Energy of the views expressed in this publication.

The following disclaimer should appear on the inside front cover or on the title page of each report prepared under Federal sponsorship:

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

When manuscripts that are sponsored by a Federal agency are submitted to a copyright publication, and the publisher asks the author to complete a copyright transfer form before final acceptance, the author must include a statement on the copyright transfer form similar to the following example:

5

The submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC07-85ID12489. According, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

Roy Romer Governor Ken Salazar Executive Director Michael B. Long Division Director

Vicki Cowart State Geologist and Director

MEMORANDUM

TO: Howard Ross, UURI

FROM: Jim Cappa, CGS

DATE: August 5, 1993

SUBJECT: Preliminary results of 1993 low temperature geothermal program.

The work on the Colorado portion of the low temperature geothermal research program consist of four main parts: 1) field investigations and sampling of known and new geothermal sources; 2) research of various geothermal and water quality data bases for analytical data on known and new geothermal sources; 3) research of the Colorado State Water Engineer and Colorado Oil and Gas Commission well permit files; and 4) entry of data into a GIS compatible data base and production of a 1:1,000,000 scale map and accompanying data bases.

The field investigation and sampling portion of the program is just about complete. CGS staff members have made 4 separate one week trips around selected areas of Colorado visiting known geothermal areas and discovering new ones in the process. We have collected water samples for chemical analysis at nine of the sites we have visited. The field investigations have allowed us to gain first hand information on the physical and chemical characteristics and current usage of the geothermal resources. We have also obtained a subjective measure of the quality and degree of development. Being at the geothermal site has allowed us to meet local people who have knowledge of other unreported geothermal sources and also are acquainted with the usages of the sources.

We have utilized several published data bases to gain further information on the location and geochemistry of the geothermal sources. Most of the information compiled in the present program came from two principal publications of the CGS on geothermal resources: CGS Bull. 39, 1978, <u>An Appraisal of Colorado's Geothermal Resources</u>, and Inform. Ser. 6, 1976, <u>Hydrogeochemical Data of Thermal Springs and Wells in Colorado</u>.

Both of these publications were the result of a DOE geothermal program of the late 1970's and early 1980's. WATSTOR, a U. S. Geological Survey water quality data base, was utilized and as a result 19 new geothermal sources of water >20° C were added to the data base. The GEOTHERM data base, another U. S. Geological Survey compilation, was also investigated but it contained information already entered into the data base from the CGS publications of 1978 and 1976. Other data sources included various literature references, technical articles, University theses, resource user chemical reports, and municipal governments.

The well permit files of the State Oil and Gas Commission and the State Water Engineer were investigated. One important geothermal source, the Deganahl well, was added as a result of this investigation.

The data bases of the current program have been designed and most of the data has been entered at this writing. Three geochemical analyses are still outstanding and a few days of field investigation are still pending.

The current program indicates that several areas in the state continue a long history of substantial utilization of their geothermal resources such as Glenwood Springs, Idaho Springs, Steamboat Springs, Pagosa Springs, Poncha Springs, Mount Princeton and Ouray. All of these areas, at the minimum, utilize their resources for swimming pools and spas. Some, such as Pagosa Springs, utilize geothermal heat for space heating in municipal and other buildings.

There are several other areas in the state that are on the fringe of development. That is, they have some development of geothermal resources; however, there are indications that geological and geophysical studies could be used to increase the area and pace of development. These include the following: Trimble Hot Springs north of Durango, in La Plata County; Orvis Hot Springs north of Ouray in Ouray County; a large area southeast of Pagosa Springs along the Archuleta Antiform in Archuleta County; the eastern San Luis Valley in Saguache and Alamosa Counties; the area around Rico and Dunton Hot Springs in Dolores County, and the Cottonwood Hot Springs in Chaffee County.

Other geothermal resources that are geologically significant but far from a center of significant population are: the Deganahl well in Routt County, the Brands Ranch well in Jackson County, the Craig warm water well in Moffatt County, and the Hartsel Hot Springs in Park County.

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

.

Roy Romer Governor Ken Salazar Executive Director

Michael B. Long Division Director

Vicki Cowart State Geologist and Director

MEMORANDUM

TO: Howard Ross, UURI

FROM: Jim Cappa, CGS

DATE: August 5, 1993

SUBJECT: Data for Phase 2 funding, low temperature geothermal project.

ITEM	1993 INVENTORY	1980 INVENTORY	% CHANGE
# THERMAL WELLS AND SPRINGS	+170	120	+42
# RESOURCE AREAS	96	56	+71
# AREAS DIRECT HEAT USE	28	28	0

COLORADO GEOLOGICAL SURVEY Department of Natural Resources

1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2115

Roy Romer Governor

Ken Salazar Executive Director Wm. "Pat" Rogers

Acting Director & State Geologist

Howard Ross University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, UT 84108-1295

April 12, 1993

RE: Geothermal Project Quarterly report; First Quarter, 1993.

Dear Howard:

the construction of the second second

Activity on the geothermal project has been picking up over the past two weeks as other obligations have been completed or delegated to other staff members. A brief description of the First Quarter activities follows:

* Design preliminary data bases; three separate data bases are being used; location, general and geochemical.

the state and the set and the set

* Submit preliminary data bases to UURI in February.

* Implement changes to preliminary data bases following suggestions of UURI.

At the present time we are devoting considerable effort to the data bases. Current tasks are:

* Enter data into the location data base. We are finding a substantial amount of small errors in the older reports of geothermal locations in the reports completed in the late 70's and early 80's.

* A complete geochemical data base using all available geochemical information has been designed. Based upon your suggestions we will submit the short version to UURI at the end of the project.

* A search of the records of the State Water Engineer's files has revealed the presence of 141 new geothermal wells drilled since 1984. Some of these are probably shallow heat pump wells and are not true low temperature geothermal resources. All records going back to 1975 will be researched during the second quarter.
* A field trip is planned for the first week in May to investigate and sample geothermal resources in the northern and central parts of the state. Specific target areas include Brands Ranch in Jackson County, Hot Sulphur Springs in Grand County, Haystack Butte Near Boulder and the Dotsero Hot Springs in Eagle County.

Sincerely,

James A. Cappa Chief, Minerals and Mineral Fuels

October 15, 1992

Dr. Jim Cappa Chief, Minerals & Mineral Fuels Section Colorado Geological Survey 1313 Sherman St., Rm 715 Denver, CO 80203

Dear Jim:

It was good to hear from you and to know you are progressing with the Colorado geothermal project. After our conversation I decided to send a few items along which you may find of interest.

Enclosed is a copy of the Program for the 1992 Annual GRC meeting, to let you know what was presented. The papers are published in the GRC Transactions Volume 16, which is fairly expensive (\$50). If any papers are of particular interest to you we may be able to get reprints from the authors, or make copies from our volume of the Transactions. Please let me know if you have any interest in these.

Also enclosed is a just revised copy of our Guide to Water Sampling, by Ruth Kroneman, UURI's chief chemist. If you have any specific questions, please feel free to call Ruth at (801) 524-3434. I also suggest that you call Bob Blackett, the Utah Geological Survey geothermal P.I., for a general discussion of sampling procedures. Bob would be happy to share thoughts on field procedures, experience, equipment, etc. Bob can be reached at (801) 467-7970.

10/20/92

Please let me know if I can provide, or direct you to, any additional information.

Sincerely,

Howard

Howard P. Ross Section Head/Applied Geophysics

HR/mt Enclosure

I delayed mailing this until we had revised our water sampling report. Please feel free to call Bob Blackett of the CHah Geologic Survey.

- As of Norember 2 my telephone no. will be changed to 584-4444.

Regards Howard Rosa

TELEPHONE 801-524-3422

June 25, 1992

Mr. Paul J. Lienau Geo-Heat Center Uregon Institute of Technology 3201 Campus Drive Klamath falls, OR 97601

Dear Paul:

Enclosed is a letter from James Cappa, Chief, Mineral and Mineral Fuels section, Colorado Geological Survey, with supporting budget, audit, and resume information for the Colorado Low-Temperature subcontract. Jim will be the Principal Investigator for this subcontract.

If you have any questions regarding this subcontract please feel free to contact Jim Cappa directly, or call me if I can help.

Sincerely,

Howard

Howard P. Ross Project Manager

encl.

ROY R. ROMER GOVERNOR JOHN W. ROLD DIRECTOR

COLORADO GEOLOGICAL SURVEY DEPARTMENT OF NATURAL RESOURCES 715 STATE CENTENNIAL BUILDING – 1313 SHERMAN STREET DENVER, COLORADO 80203 PHONE (303) 866-2611

per 10/16/92

October 13, 1992

Howard P. Ross University of Utah Research Instit. Earth Science Laboratory 391 Chipewa Way, Suite C Salt Lake City, UT 84108-1295

Dear Howard:

I have reviewed and updated, where necessary, the preliminary geothermal resource and demographic data for the State of Colorado as requested in Task 2.4. I removed the "Northrop Reformatory" from the collocation data base as there is no such location in Colorado. My suspicion is that the "Northrop Reformatory" is an old name for the Buena Vista Correctional Center. The feasability of heating the Buena Vista center from the Mount Princeton Hot Springs was investigated during the 1970's. The project was not an economic venture at that time.

I have enclosed a paper printout of the data review. Also, a floppy disk is included which contains the data review on a Quattro Pro, version 4.0, file.

Sincerely,

James A. C

Chief, Mineral and Mineral Fuels Section

cc: Paul Lienau, OIT-GHC

COLORADO GEOTHERMAL PROJECT TABLE 1: GEOTHERMAL SOURCE LOCATION

. i

ID GRUTHERMAL SOURCE	TYPE	QUADNAME	COUNTY	SECTION	QTRQTR	TOWNSHIP	TD	RANGE	RD	MERIDIAN	LATDEG	HIN	SEC	LATDEC	LONGDEG	MIN	SEC	LONGDEC	X-UTM	Y-UTN	LOC REL	11
1 Antelope Warm Spring	HS	Workman Creek	Mineral	1	SWSE	40	 N	2	W	N.M.P.M.	37	44	36	37.7433	107	2	14	-107.0372	320502	4179087	1	13
2 Birdsie Warm Spring	HS	Workman Creek	Mineral	14	NWNE	40	N	2	W	N.M.P.M.	37	43	42	37.7283	107	3	13	-107.0536	319021	4177454	3	15
3 Brands Ranch	W	Pitchpine Mountain	Jackson	31	SWSE	9	N	81	W	SIXTH	40	42	16	40.7044	106	32	4	-106.5344	370370	4506869	1	17
4 Brown's Canon Warm Spring	HS	Nathrop	Chaffee	23	SESW	51	N	8	Ē	N.M.P.M.	38	39	13	38.6536	106	3	11	-106.0531	408368	4278657	3	18
5 Brown's Grotto Warm Spring	HS	Nathrop	Chaffee	27	SNSW	51	A	8	E	N.H.P.H.	38	38	13	38.6369	106	4	26	-106.0739	406533	4276829	3	19
6 Canyon City Hot Springs	W	Royal Gorge	Fremont	31	SWSE	18	S	70	W	SIXTH	38	25	57	38.4325	105	15	46	-105.2628	477064	4253630	2	21
7 Cebolla "A", (Powderhorn)	HS	Powder Horn	Gunnison	4	NWNB	46	N	2	W	N.M.P.M.	38	16	26	38.2739	107	5	54	-107.0983	316445	4238081	1	22
8 Cebolla "B", (Powderhorn)	HS	Powder Horn	Gunnison	4	NWNE	46	N	2	Ŵ	N.M.P.M.	38	16	26	38.2739	107	5	54	-107.0983	316445	4238081	1	23
9 Cebolla "C", (Powderhorn)	HS	Powder Horn	Gunnison	4	HWAS	46	N	2	Ň	N.H.P.M.	38	16	26	38.2739	107	5	54	-107.0983	316445	4238081	1	25
10 Cement Creek Warm Spring	HS	Cement Mountain	Gunnison		Unsurveyed						38	50	6	38.8350	106	49	34	-106.8261	341497	4299843	1	26
11 Clark Spring	¥	Northeast Pueblo	Pueblo	1	NENE	21	S	65	W	SIXTH	38	15	29	38.2581	104	36	35	-104.6097	534146	4234313	3	27
12 Colonel Chinn	W	Hotchkiss	Delta	14	CNE	14	S	92		SIXTH	38	50	22	38.8394	107	38	3	-107.6342	271365	4302050	3	29
13 Conundrum Hot Springs	HS	Maroon Bells	Pitkin		Unsurveyed						39	0	43	39.0119	106	53	27	-106.8908	336287	4319595	1	30
14 Cottonwood Hot Springs	HS	Buena Vista West	Chaffee		Unsurveyed						38	48	46	38.8128	106	13	35	-106.2264	393521	4296507	2	31
15 Cottonwood (Jump Steady)	HS	Buena Vista West	Chafee		Unsurveyed						38	48	46	38.8128	106	13	35	-106.2264	393521	4296507	2	32
16 Cottonwood (Merrifield well)	H	Buena Vista West	Chafee	28	NENE	14	S	79	W	SIXTH	38	48	35	38.8097	106	13	24	-106.2233	393782	4296165	2	34
17 Craig Warm Water	Ŵ	Castor Gulch	Moffat	9	SESE	6		91	W	SIXTH	40	29	11	40.4864	107	36	3	-107,6008	279559	4484783	1	135
18 Deganahl	W	Yanpa	Routt	18	SESE	2	N	85	W	SIXTH	40	8	9	40.1358	106	57	43	-106.9619	332851	4444468	2	37
19 Dexter Spring	N	Pikes Stockade	Conejos	8	NENE	35	N	11	B	N.M.P.M.	37	17	41	37.2947	105	47	6	-105.7850	430422	4127653	1	38
20 Don K Ranch	W	Wetmore	Pueblo	5	NENE	22	S	68	W	SIXTH	38	10	13	38.1703	105	0	48	-105.0133	498832	4224502	1	39
21 Dotsero	HS	Dotsero	Eagle	12	SENW	5	S	87	¥	SIXTH	39	37	56	39.6322	107	6	5	-107.1014	319655	4388840	2	40
22 Dotsero south	HS	Dotsero	Eagle	12	SENW	5	S	87	W	SIXTH	39	37	52	39.6311	107	5	58	-107.0994	319819	4388712	4	42
23 Dunton	HS	Dolores Peak	Dolores		Unsurveyed						37	46	17	37.7714	108	5	33	-108.0925	227606	4184751	4	43
24 Dutch Crowley	W	Chrono	Archuleta		Unsurveyed						37	1	1	37.0169	106	47	3	-106.7842	341276	4098037	· 1 ·	45
25 Eldorado Springs "A"	W	Eldorado	Boulder		Unsurveyed						39	55	56	39.9322	105	16	47	-105.2797	476099	4420062	2	46
26 Eldorado Springs "B"	HS	Bldorado	Boulder		Unsurveyed						39	55	56	39.9322	105	16	47	-105.2797	476099	4420062	2	47
27 Roff	H	Serviceberry Mountain	Archuleta	7	SESW	34	Ħ	1	W	N.M.P.M.	37	11	28	37.1911	106	59	43	-106.9953	322899	4117734	1	40
28 Florence	¥	Florence	Fremont	7	NEW	19	S	68	Ħ	SIXTH	38	24	53	38.4147	105	2	43	-105.0453	496047	4251625	2	50
29 Fremont Natatorium	W	Canon	Fremont	26	NWNW	18	S	70	W	SIXTH	38	27	37	38.4603	105	11	45	-105.1958	482914	4256697	2	51
30 Geyser	HS	Rico	Dolores		Unsurveyed					· · ·	37	44	48	37.7467	108	7	1	-108,1169	225361	4182078	3	53
31 Glenwood Springs (Big Spring)	HS	Glenwood Springs	Garfield	9	SENE	6	S	89	W	SIXTH	39	32	58	39.5494	107	19	18	-107.3217	300511	4380117	2	54
32 Glenwood Springs (Drinking Spring)	HS	Glenwood Springs	Garfield	9	SENE	6	S	89	W	SIXTH	39	32	58	39.5494	107	19	18	-107.3217	300511	4380117	2	55
33 Glenwood Springs (Vapor Cave)	HS	Glenwood Springs	Garfield	9	SENE	6	S	89	¥	SIXTH	39	33	3	39.5508	107	19	11	-107.3197	300682	4380267	2	50
34 Glenwood Springs (Graves Springs)	HS	Glenwood Springs	Garfield	9	NWNW	6	S	89	W	SIXTH	39	33	18	39.5550	107	20	7	-107.3353	299358	4380764	3	58
35 Glenwood Springs (Spring A)	HS	Glenwood Springs	Garfield	10	SWNW	6	S	89	W	SIXTH	39	32	58	39.5494	107	19	10	-107.3194	300702	4380112	2	59
36 Glenwood Springs (Spring B)	HS	Glenwood Springs	Garfield	10	SWNW	6	S	89	W	SIXTH	39	33	2	39.5506	107	19	4	-107.3178	300849	4380232	2	61
37 Glenwood Springs (Spring C)	HS	Glenwood Springs	Garfield	10	SWNW	6	S	89	W	SIXTH	39	33	4	39.5511	107	19	0	-107.3167	300946	4380291	2	62
38 Glenwood Springs (Spring D)	HS	Glenwood Springs	Garfield	10	SWNW	6	S	89	¥	SIXTH	39	33	4	39.5511	107	19	0	-107.3167	300946	4380291	2	63
39 Glenwood Springs (Railroad Spring)	HS	Glenwood Springs	Garfield	10	NENW	6	S	89	¥	SIXTH	39	33	16	39.5544	107	18	51	-107.3142	301170	4380655	- 4	65
40 Hartsel (Sping A)	HS	Hartsel	Park	8	NESE	12	S	75	¥	SIXTH	39	1	5	39.0181	105	47	40	-105.7944	431223	4318873	1	66
41 Hartsel (Spring B)	HS	Hartsel	Park	8	NESE	12	S	75	W	SIXTH	39	1	5	39.0181	105	47	40	-105.7944	431223	4318873	1	67
42 Haystack Butte	W	Niwot	Boulder	33	NWNE	2	N	70	W	SIXTH	40	6	1	40.1003	105	13	51	-105.2308	480325	4438703	3	69
43 Hot Sulphur Springs (Spring A)	HS	Hot Sulphur Springs	Grand	3	SWSK	1	N	78	W	SIXTH	40	4	33	40.0758	106	6	40	-106,1111	405257	4436555	2	70
44 Hot Sulphur Springs (Spring B)	HS	Hot Sulphur Springs	Grand	3	SWSE	-	N	78	¥	SIXTH	40	4	33	40.0758	106	6	41	-106.1114	405234	4436556	2	21
	na			-		-	•				**	-				-					-] /21

- -- _____

5

5

3													
4	nya manana ina ina pana na kana kana kana kana kana pana na pana na pana na kana na kana na kana na kana na kan				Propagation (1999) and the second seco							nan malayin inanya kesilini kerenden ber	
5													
6 46 Hot Sulphur Springs (Spring D) HS	6 Hot Sulphur Springs	Grand	3 SWSB	1 N	78	SIXTH	40 4	30 40.07	50 106	6	38 -106.1106	405304	4436462
7 47 Idaho Springs (Spring A) HS	Idaho Springs	Clear Creek	1 NERW	4 S	73 1	SIXTH	39 44	20 39.73	ig 105	30	43 -105.5119	456133	4398693
8 48 Idaho Springs (Spring B) HS	i Idaho Springs	Clear Creek	Unsurveyed				39 44	21 39.73	105	30	43 -105.5119	456134	4398724
9 49 Idaho Springs (Spring C) HS	5 Idaho Springs	Clear Creek	1 IRAN	4 S	73	SIXTH	39 44	19 39.73	105	30	44 -105.5122	456109	4398662
10 50 Idaho Springs (Lodge well) W	ldaho Springs	Clear Creek	Unsurveyed			SIXTH	39 44	22 39.73	4 105	30	43 -105.5119	456134	4398755
11 51 Juniper Hot Springs HS	Juniper Hot Springs	Moffat	16 NESW	6 N	94 1	1	40 28	1 40.46	39 107	57	10 -107.9528	249653	4483563
12 52 Lemon HS	Placerville	San Miguel	34 SESE	44 N	11	N.M.P.M.	38 0	55 38.01	53 108	3	11 -108.0531	231968	4211705
13 53 Helntyre HS	Pikes Stockade	Conejos	18 NWWW	35 N	11 1	N.H.P.H.	37 16	48 37.28	105	49	7 -105.8186	427429	4126045
14 54 Mineral Hot Springs (Spring A) W	Villa Grove	Saguache	7 SHAN	45 N	10 I	I N.M.P.M.	38 10	8 38.16	19 105	55	5 -105.9181	419580	4224748
15 55 Mineral Hot Springs (Spring B) HS	Villa Grove	Saguache	7 SWW	45 N	10 I	N.M.P.M.	38 10	8 38.16	105	55	6 -105.9183	419555	4224746
16 56 Mineral Hot Springs (Spring C) HS	Villa Grove	Saguache	12 SENE	45 N	9 I	N.M.P.M.	38 10	6 38.16	3 105	55	11 -105.9197	419433	4224686
17 57 Mineral Hot Springs (Spring D) HS	Villa Grove	Saguache	12 SENE	45 N	9 I	R N.M.P.M.	38 10	4 38.16	105 8	55	20 -105.9222	419213	4224626
18 58 Mt. Princeton Hot Springs (Spring A) HS	Mount Antero	Chaffee	19 SWNW	15 S	78	I SIXTH	38 43	58 38.73	28 106	9	41 -106.1614	399052	4287556
19 59 Mt. Princeton Hot Springs (Spring B) HS	Nount Antero	Chaffee	19 SWIN	15 S	78 1	SIXTH	38 43	58 38.73	8 106	9	41 -106.1614	399052	4287556
60 Mt. Princeton Hot Springs (Spring D) HS	Nount Antero	Chaffee	19 SWNW	15 S	78 K	SIXTH	38 43	58 38.73	28 106	9	41 -106.1614	399052	4287556
1 61 Mt. Princeton Hot Springs (Spring B) HS	Nount Antero	Chaffee	19 SWIW	15 S	78	SIXTH	38 43	58 38.73	8 106	9	41 -106.1614	399052	4287556
22 62 Mt. Princeton Hot Springs (Spring F) HS	Mount Antero	Chaffee	19 SWNW	15 S	78	SIXTH	38 43	58 38.732	8 106	9	41 -106.1614	399052	4287556
23 63 Mt. Princeton Hot Springs (Hortense) HS	Mount Antero	Chaffee	24 SENW	15 S	79 🕷	SIXTH	38 43	57 38.732	25 106	10	30 -106.1750	397869	4287540
64 Mt. Princeton Hot Springs (Hortense Well)	Mount Antero	Chaffee	24 SBNW	15 S	79	SIXTH	38 43	58 38.732	8 106	10	27 -106.1742	397941	4287570
5 65 Mt. Princeton Hot Springs (Woolmington well) W	Hount Antero	Chaffee	24 SESN	15 S	79 6	SIXTH	38 43	24 38.723	13 106	10	38 -106.1772	397662	4286526
65 66 Mt. Princeton Hot Springs (Wright well, east) W	Mount Antero	Chaffee	24 SENE	15 S	79 W	I SIXTH	38 43	56 38.732	2 106	9	58 -106,1661	398641	4287500
67 Mt. Princeton Hot Springs (Wright well, west) W	Mount Antero	Chaffee	24 SENW	15 S	79 W	SIXTH	38 43	56 38.732	2 106	10	30 -106.1750	397868	4287510
28 68 Mt. Princeton Hot Springs (Young Life well) W	Mount Antero	Chaffee	24 SENW	15 S	79 N	SIXTH	38 43	56 38.732	2 106	10	32 -106.1756	397820	4287510
29' 69 Orvis Hot Spring HS	Dallas	Ouray	22 CSW	45 N	8 W	N.M.P.M.	38 8	0 38.133	3 107	44	2 -107.7339	260379	4223934
30 70 Ouray (Wesbaden & Motel Spring A) HS	Ouray	Ouray	Unsurveyed				38 1	16 38.021	.1 107	40	3 -107.6675	265841	4211310
71 Ouray (Wesbaden & Motel Spring B) HS	Duray	Ouray	Unsurveyed				38 1	16 38.021	1 107	40	3 -107,6675	265841	4211310
72 Ouray (Wesbaden & Motel Spring C) HS	Ouray	Ouray	Unsurveyed				38 1	16 38.021	1 107	40	3 -107.6675	265841	4211310
¹³ 73 Ouray (Pool Spring) HS	Ouray	Ouray	Unsurveyed				38 1	6 38.018	3 107	40	41 -107.6781	264906	4211029
4 74 Ouray (Uncompangre Spring) HS	Ouray	Ouray	Unsurveyed	- Ang a second	a nagamena a nama ar na manadani kad		38 1	25 38.023	6 107	40	27 -107.6742	265264	4211605
75 Pagosa Springs (Big Spring) HS	Pagosa Springs	Archuleta	13 SESW	35 N	2 W	N.H.P.M.	37 15	52 37.264	4 107	0	37 -107.0103	321741	4125899
⁶ 76 Pagosa Springs (Courthouse well) W	Pagosa Springs	Archuleta	13 SWNB	35 N	2 W	N.M.P.M.	37 16	9 37.269	2 107	0	33 -107.0092	321850	4126421
7 77 Pagosa Springs (Spa Motel well) W	Pagosa Springs	Archuleta	13 INSE	35 N	2 1	N.H.P.H.	37 15	57 37.265	8 107	0	31 -107.0086	321892	4126050
8 78 Paradise Hot Spring W	Groundhog Mountain	Doleres	Unsurveyed		0		37 45	15 37.754	2 108	7	54 -108.1317	224091	4182954
9 79 Penny Hot Springs W	Redstone	Pitkin	4 NEWW	10 S	88 W	SIXTH	39 13	33 39.225	8 107	13	29 -107.2247	307957	4343988
 80 Penny Hot Springs (Granges Spring) W 	Redstone	Pitkin	33 SESW	9 S	88 W	SIXTH	39 13	50 39.230	6 107	13	34 -107.2261	307850	4344515
1 81 Pinkerton (Spring A) HS	Hernosa	La Plata	25 SWNE	37 N	9 W	N.M.P.M.	37 26	50 37.447	2 107	48	17 -107.8047	251884	4147976
2 82 Pinkerton (Spring B) HS	Hernosa	La Plata	25 NWNB	37 N	9 W	N.M.P.M.	37 26	54 37.448	3 107	48	18 -107.8050	251863	4148100
³ 83 Pinkerton (Hound Spring) HS	Hernosa	La Plata	25 NHR	37 N	9 W	N.H.P.H.	37 27	7 37.451	9 107	48	20 -107.8056	251826	4148502
4 84 Pinkerton (Little Mound Spring) HS	Hermosa	La Plata	25 NWNE	37 N	9 W	N.H.P.M.	37 27	9 37.452	5 107	48	21 -107.8058	251803	4148565
15 85 Poncha Springs (Spring A) HS	Poncha Pass	Chaffee	15 NVSW	38 N	8 B	N.H.P.M.	38 29	49 38.496	9 106	4	37 -106.0769	406085	4261297
6 86 Poncha Springs (Spring B) HS	Poncha Pass	Chaffee	15 NWSW	38 N	8 B	N.H.P.H.	38 29	49 38.496	9 106	4	37 -106.0769	406085	4261297
87 Poncha Springs (Spring C) HS	Poncha Pass	Chaffee	15 NWSW	38 N	8 B	N.M.P.M.	38 29	53 38. 498	1 106	4	34 -106.0761	406159	4261420
8 88 Poncha Springs (Spring D) HS	Poncha Pass	Chaffee	15 NWSW	38 N	8 B	N.H.P.H.	38 2 9	53 38.498	1 106	4	34 -106.0761	406159	4261420
• 89 Poncha Springs (Spring B) HS	Poncha Pass	Chaffee	15 MISH	38 N	8 K	N.H.P.H.	38 29	53 38.498	1 106	4	34 -106.0761	406159	4261420
90 Rainbow HS	South River Peak	Mineral	Unsurveyed		0		37 30	33 37.509	2 106	52	28 -106.8744	334326	4152804
91 Ranger HS	Cement Mountain	Gunnison	22 SWSE	14 S	85 W	SIXTH	38 48	47 38.813	1 106	52	28 -106.8744	337252	4297493
² 92 Rhodes HS	Fairplay West	Park	24 NWSW	10 S	78 W	SIXTH	38 9	49 38.163	6 106	3	54 -106.0650	406700	4224298
³ 93 Rico (Diamond drill hole) ₩	Rico	Dolores	Unsurveyed	• •			37 42	5 37.701	4 108	1	45 -108.0292	232934	4176799
4 94 Rico (Big Geyser Warn Spring) W	Rico	Dolores	Unsurveyed				37 42	0 37.700	0 108	1	44 -108.0289	232954	4176644
5 Qh Pion (Gavear Harm Spring)	Pico	Dolores	Incumunad				47 47	2 27 700	<u>6 108</u>		44 -108 0289	232956	A176706

Γ

		· ·····														1
3		nanalase se sue relación de primero asen a		dare de la compañía										<u></u>		4
5 96 Rico (Little Spring) W	Rico	Dolores	Unsurveyed				37	42 4	37.7011	108	1 4	44 -108.0289	232958	4176767	3	7
7 97 Routt [aka Strawberry] (Spring A) H	S Rocky Peak	Routt	18 SWSE	7	84	N SIXTE	40	33 34	40.5594	106	51	0 -106.8500	343372	4491287	1	9
8 Soutt Laka Strawberry (Spring B) H 0 99 Routt Laka Strawberry (Spring C) H	5 Kocky Peak 5 Pooky Peak	Routt	18 SWSE	7 1	84		40	33 34 99 94	40.5594	106	51	0 -106.8500	343372	4491287	1	10 11
10/100 Routt [aka Strauberry] (Spring D)	S Rocky Peak	Routt	18 SWSR	7 1	84	W SIXTH	40	$\frac{33}{33}$ 34	40.0094	106	51	0 -106.8500	343372	4491201	1	12
11 101 Sand Dune Pool W	Deadman Camp	Saguache	27 NENE	41 N	10	R N.M.P.M.	37	46 42	37.7783	105	51 2	-105.8556	424656	4181361	1	14
12 102 Shaws H	5 Twin Mountain SE	Saguache	33 SESE	41 N	6	R N.M.P.M.	37	45 1	37.7503	106	19	1 -106.3169	383979	4178720	1	15
13 103 South Canyon Hot Springs (Spring A)	5 Storn King Mountain S Storn King Mountain	Garfield	Z SISM 2 CROW	6 S	90	W SIXTH	39	33 11	39.5531	107	24 4		292836	4380720	3	17 18
15 105 Splashland	Alamosa Bast	Alamosa	2 3834 34 SKSK	038 N	90 10	R N.M.P.N	37 37	50 11 29 19	37 4886	107	44 4 51 3	IV -107.4111 N -105 8588	292030 474093	4300120	3	19
16 106 Steamboat Springs (Heart Spring) H	5 Steamboat Springs	Routt	17 SENE	6 1	84	W SIXTH	40	28 58	40.4828	106	49 3	37 -106.8269	345148	4482735	1	20 21
17 107 Steamboat Springs (Sulphur Cave Spring) H	Steamboat Springs	Routt	17 NWWW	6 N	84	W SIXTH	40	29 3	40.4842	106	50 2	2 -106.8394	344092	4482911	1	22
18 100 Steamboat Springs (Steamboat Spring)	5 Steamboat Springs	Koutt	8 SWSW	<u>6 N</u>	84	W SIXTH	40	29 20	40.4889	106	50 2	6 -106.8406	344009	4483438	1	23
20 110 Swissvale (Spring A)	5 Varomu 5 Wellsville	Archuleta Premont	UNBURVEYED 20 SPSN	49 N	10	R WNDN	38 38	Z 10 DR FA	37.0350	105	48 Z	28 -106.8078 28 -105 8008	339214 499999	4100080 4250305	1	25 26
21 111 Swissvale (Spring P)	S Wellsville	Frenont	20 SESN	49 N	10	R N.N.P.M.	38	28 50	38.4806	105	53 2	8 -105.8906	422322	4259305	2	27
22 112 Trinble	Hernosa	La Plata	15 NWW	36 N	9	W N.M.P.M.	37	23 27	37.3908	107	50 5	2 -107.8478	247885	4141833	3	29
²³ 113 Tripp H	Hermosa	La Plata	15 NWNW	36 N	9	W N.M.P.H.	37 2	23 28	37.3911	107	50 5	2 -107.8478	247886	4141863	3	30
25 115 Valley View (Urlent) Hot Springs (Spring A) Hi 25 115 Valley View (Arient) Hot Springs (Spring R) Hi	Valley View Hot Springs	Saguache	36 MASE	46 N	10	E N.M.P.M.	38	11 32	38.1922	105	48 4	9 -105.8136	428752	4227250	1	32
26 116 Valley View (Orient) Hot Springs (Spring D) H	Valley View Hot Springs	Saguache	36 NWSR	46 N	10	R R.N.P.N.	38 1	11 31	30.1919 38 1911	105	48 3		429140	4227123	1	33 34
27 117 Wagon Wheel Gap (4UR Ranch Spring) H	Lake Humphreys	Mineral	2 NWNE	40 N	1	R N.H.P.N.	37	14 55	37.7486	106	49 5	2 -106.8311	338675	4179297	4	35 36
²⁸ 118 Wagon Wheel Gap (CFI Spring) HS	Lake Humphreys	Mineral	2 NWNE	40 N	1	B N.H.P.M.	37 4	14 54	37.7483	106	49 5	0 -106.8306	338723	4179265	4	37
19 119 Naunita Hot Springs (Spring C) HS 30 120 Haunita Hot Springs (Spring D) HS	6 Pitkin 9 Ditkin	Gunnison	11 SWSW	49 N	4	E N.M.P.M.	38 3	30 50	38.5139	106	30 2	7 -106.5075	368568	4263705	2	38
31 121 Waunita Not Springs (Spring D)) Pitkin	Gunnison	11 SWSW	49 N 49 N	4	A A.O.P.O. P NHPH	38 4	SU DU RA 60	38.5139	106	<u>30 2</u> 30 9	7 -106.5075	368568	4263705	2	40
32 122 Waunita Hot Springs (Spring B)	Pitkin	Gunnison	11 SWSW	49 N	4	R N.H.P.H.	38 3	30 50	38.5139	106	30 2	7 -106.5075	368568	4263705	2	41
³³ 123 Lower Waunita Hot Springs (Spring A) HS	Pitkin	Gunnison	10 SWSR	49 N	4	E N.M.P.M.	38 3	31 1	38.5169	106	30 5	6 -106.5156	367871	4264055	3	43 44
34 124 Lower Waunita Hot Springs (Spring C) HS 35 125 Lower Waunita Hot Springs (Spring C) HS) Pitkin	Gunnison	10 SWSE	49 N	4	B N.H.P.H.	38 3	31 1	38.5169	106	30 5	5 -106.5153	367895	4264055	3	45
³⁶ 125 Lower Waunita Hot Springs (Spring D)) Pitkin Pitkin	Gunnison	10 SWSE 10 SWSE	49 N AQ N	4	5 N.H.P.D. 7 N.M.D.M	38 å 38 å		38.5167 38.5160	106	30 5	5 -106.5153 0 -106.5167	367895 367774	4264024 4264057	3	47
37 127 Wellsville	Wellsville	Frenont	18 SWW	49 N	10	R N.M.P.M.	38 2	$\frac{1}{29}$ 10	38,4861	100	54 4	5 -105.9125	420414	4259940	J 1 -	48
38															•	50
									·····							51
																53 54
42																55
43	na na manana na manana na manana na manana na n													·····		57
44														÷ .		58 59
45 46																60
47																62
48																63 64
49	n an	nonenen mon o compartendore a moralo	in a langen angkalinana pada disingkan disingkalangka di Sababahananan na ang di sa dising dising di			#F*#F#################################					**************************************		191 - Anii A. Anii T. Shakara ay ana			65
50									,							66 67
52							<u></u>			a annan tait tinn a ruan						68
53																70
54																71
55		an a lagar to tar na an Brand Bra	anna an ann an Arthur a' Arthur a' Shearanna sharanna an Arthur a' Arthur a' Arthur a' Arthur a' Arthur a' Arth													73 74
57																75
added 1 to old Perl Compilation							<u></u>	, 494-94-94 - 1940 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1					<u>.</u>		<u></u>	179

STATE OF COLORADO

COLORADO GEOLOGICAL SURVEY Department of Natural Resources

1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2115

Howard Ross University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, UT 84108-1295

April 30, 1993

RE: Geothermal project Location data base

Dear Howard:

We have been pretty busy this month entering data from all the existing sources into our Quattro data bases. The enclosed preliminary location data base is complete and ready for your review and recommendations. For our own purposes we have entered the section, township and range; the latitude and longitude, both in degrees, minutes, and seconds, and in decimals of degrees (for GIS plotting); and the UTM coordinates. The last column is a location reliability indicator, with 1 being the highest and 6 being the lowest. The criterion for each class is listed below:

1 located on map within a pencil width, approximately 100'.

2 within 660' or quarter\quarter\quarter of a section.

3 within 1320' or quarter\quarter of a section.

4 within 2640' or quarter of a section.

5 within 5280' or a section.

6 worse than a section.

We have found and corrected many location errors in the CGS publications describing the state's geothermal resources. We plan to have a final quality control review of all the data bases before the project is complete in December.

Sincerely,

in

James A. Cappa Chief, Minerals and Mineral Fuels

encl.

Roy Romer Governor

Ken Salazar Executive Director Wm. "Pat" Rogers Acting Director & State Geologist

1.13

									· ·		
GROTHERMAL PROJECT											
TABLE 3: LOCATION OF GEOTHERMAL RES	SOURCES, COLORADO										
HOT SPRINGS; SOURCE	QUADRANGLE	COUNTY	SECTION QTR-QTR	TOWNSHIP DIR	RANGE DIR	PRINC. MERID	LAT-DEG	MIN SEC	LON-DEG	MIN S	SEC
4-4-1 H C					******		*********				
Antelope warm opring											- 1
Birdsie warm opring									-		
pranus Kanch Well Provid Corpor Ware Coring											
Brown's Canton Warm Opring											
Comm City Hat Coming (mall)											
Cahalla "A" (Doudowhawa)						1					
Cahalla "B" (Pouderhorn)						1					
Cebolla "C" (Pouderhorn)				······							
Coment Creek											
Clark Spring well											
Colonel Chinn vell											-+
Conundrum						:					
Cottonwood											
Cottonwood (Jump Steady)											
Cottonwood (Merrifield well)											
Craig warm water well	Castor Gulch	Moffat	9 SESE	6 N	91 W	SIXTH	40	29	11 107	36	3
Dexter											-
Don K well											
Dotsero						13					
Dotsero south											
Dunton											
Dutch Crowley well											
Eldorado Springs "A"	ann an an ann ann ann ann ann ann ann a					i					
Eldorado Springs "B"											
Koff well					·						
Florence well											
Premont Natatorium											
Fullinwider	19 19 19 19 19 19 19 19 19 19 19 19 19 1										
Geyser											
Glenwood Springs (Big Spring)											
Glenwood Springs (Drinking Spring)		·····					·······				
Glenwood Springs (Vapor Cave)											
Glenwood Springs (Graves Springs)											
Glassed Carings (Spring A)	••••••••••••••••••••••••••••••••••••••			·····		·····					
Glenwood Springs (Spring D)						i					
Classond Springs (Spring D)						1					
Glanwood Springs (Railroad Spring)				····							
Hartsel (Sning 1)											
Hartsel (Spring R)											
Havstack Rutte uell						:		•		·	-
Hot Sulphur Springs (Spring A)						1					
Hot Sulphur Springs (Spring R)											
Hot Sulphur Springs (Spring C)						i			·		
Hot Sulphur Springs (Spring D)											
Idaho Springs (Spring A)											
Idaho Springs (Spring B)							·····				+
Idaho Springs (Spring C)											
Idaho Springs (Lodge well)											
Juniper Hot Springs	Juniper Hot Spring	s Moffat	16 NESW	6 N	94 W	SIXTH	40	28	1 107	57	10
											(

Т											,,,		+
:							1						
1	Lenon						•••••••••••••••••••••••••••••••••••••••		<u></u>				
;	DCIDLYFC Minemal Not Springs (Spring A)												
;	Mineral Hot Springs (Spring B)												
-+-	Mineral Hot Springs (Spring C)						· · · · · · · · · · · · · · · · · · ·						\mathbf{t}
1	Mineral Hot Springs (Spring D)												
1	Mt. Princeton Hot Springs (Spring A)												
0	Mt. Princeton Hot Springs (Spring B)												
1	Mt. Princeton Hot Springs (Spring D)												1
2	<u>Mt. Princeton Hot Springs (Spring K)</u>							······					
4	fit. Frinceton Hot Springs (Spring F)												
5	Mt Dringston Not Oprings (Nortense)												
6	Mt. Princeton Hot Springs (Monlaington well)	1)			···· ·····		······································						<u> </u>
7	Mt. Princeton Hot Springs (Wright well, ea	ist)											
8	Mt. Princeton Hot Springs (Wright well, we	est)											
9	Ht. Princeton Hot Springs (Young Life well	.)											
0	Orvis Hot Springs, (Ridgway)						-						
	Ouray (Wesbaden & Motel Spring A)				······								
3	Ouray (Wesbaden & Motel Spring B)												
4	Ouray (Wesbaden & notel Spring U)												
5	(heav (Hacompandere Spring)						:						
6	Pagosa Springs (Big Spring)						4 1						
7	Pagosa Springs (Courthouse well)												
8	Pagosa Springs (Spa Motel well)												
9	Paradi se Hot Spring												
-	Penny Hot Springs					a							
2	Penny Hot Springs (Granges Spring)												
з	Pinkerton (Spring A) Diskarton (Spring B)												
4	Dinkerton (Nound Spring)												
5	Pinkerton (Little Mound Spring)												
6	Poncha Springs (Spring A)												
7	Poncha Springs (Spring B)												
8	Poncha Springs (Spring C)						i						
-	Poncha Springs (Spring D)												
1	Poncha Springs (Spring K)												
2	Kaindow Pangen												
3	Rhodes						1						······
4	Rico (Diamond drill hole)												
5	Rico (Big Geyser Warn Spring)							······					
6	Rico (Geyser Warn Spring)												
2	Rico (Little Spring)		_										
	Routt [aka Strauberry] (Spring A)	Rocky Peak	Routt	18 SWSE	<u> </u>	<u>84 W</u>	SIXTH	40		34	106	51	0
0	Koult (aka Strawberry) (Spring B) Pontt (aka Strawberry) (Control B)	KOCKY Peak	Routt	18 SWSK 10 CHOP	7 N 7 N	84 ¥	SLATH	40	33 22	34 94	100	10	U Ser
τ	Route (and Derawberry) (Dpring U) Route (and Straphoney) (Spring D)	ROCKY PERK	Routt	10 0 805 18 Cucp	1 R 7 Y	04 W 84 M	diain Ciytu	4V . AA	33 99	04 34	1V0 108	5	v S
2	Sand Dunes Pool well	RVVAJ ICCA	AVUEL	10 9492	<u>/</u> .A	<u> </u>	UIAIN	<u>40</u>		<u>v1</u>	100		<u>v</u>
э	Shaws											1	
4	South Canyon Hot Springs (Spring A)												
5	South Canyon Hot Springs (Spring B)												
5	Splashland well		.		. -	A 4						1	
1	Steamboat Springs (Heart Spring)	Steamboat Springs	Koutt	17 SENE	<u>6 N</u>	84 W	SIXTH	40	28	58	106	H 3	i1 ::::::::::::::::::::::::::::::::::::
	necamonae shringo (sarbuni pase shring)	oreamonar ohlinga	ROULL	11 BRBR	0 8	04 7	JIAIN	40	72	J	100	1 4	.4

	,										
	· · · · · · · · · · · · · · · · · · ·						•••				
	Steamboat Springs (Steamboat Spring) Stinking Springs Suisenale (Sering A)	Steamboat Springs Routt	<u>8 SNSN</u>	<u> 6 N</u>	84 W SIXTH	. 4	0 29 20	106	50	_26	
	Swissvale (Spring A) Swissvale (Spring P) Trimble										
	Tripp Valley View (Orient) Hot Springs (Spring A) Valley View (Orient) Hot Spring (Spring B)	L				:					
2	Valley View (Orient) Hot Springs (Spring D) Valley View (Orient) Hot Springs (Spring D) Wagon Wheel Gap (4UR Ranch Spring)										
3	Wagon Wheel Gap (CFI Spring) Waunita Hot Springs (Spring C) Waunita Hot Springs (Spring D)										
3	Waunita Hot Springs (Spring A) Waunita Hot Springs (Spring B)			·····							
	Lower Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring C) Lower Waunita Hot Springs (Spring B)										
	Lower Waunita Hot Springs (Spring D) Wellsville					4 ·					
5					8 Aug 192					_	
; , 3	· ·					- - -				_	
,)											
2											
;										Τ	
, , ,			A				· .			1	
,							-				
: ; ;						5				-	
;						: .	. <u></u>			 	، .: <u>سن</u>
' ; ;					n and so and a second					-	
, 										· .	
								_			-
+				0,	- - - -						
1							·····				<u> </u>

1 2 3				<u> </u>			
4	GEOTHERMAL PROJECT TABLE 1: GEOTHERMAL RESOURCES IN COLORADO, GEN	IBRAL INFORM	ATION AN	D REFERE	NCBS		
6	y hot springs; source Type	TRHP. C PL	ow, gpn	<u>T+P</u>	BBBBBBCBS	· · · · · · · · · · · · · · · · · · ·	_
8 9	Antelope 🕺	32	3	96	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
10	Birdsie	30	15	450	Barrett and Pearl, 1976; Barrett and Pearl, 1978	······	
11	Brands Ranch well	42	80	3360	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
12	Browns Canon	25	1	25 	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
13	Brown & Grotto	23		113 190	Darrett and Pearl, 1970, Darrett and Pearl, 1970 Demost and Deaml 1076- Respect and Deaml 1078- County 1020		
14	Cahalla "1" (Papelarharn)	40	3	120	Reprett and Pearl, 1970, Darrett and Pearl, 1970, George, 1920	9	
15	Ceholla "R". (Powderhorn)			- 38	Rarrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
16	Cebolla "C". (Powderhorn)	40	1	40	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
18	Cement Creek	26	66	1716	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
19	Clark Spring well	25		300	Barrett and Pearl, 1976; Barrett and Pearl, 1978		+
30	Colonel Chinn well	42	20	840	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
21	Conundrum	38	50	1900	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
22	Cottonwood	38	10	380	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
23	Cottonwood (Jump Steady)	53	63	3339	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
24	Cottonwood (Merrifield well)	46	1	46	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
25	Craig well	39	24	936	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
26		20	00	1000	Barrett and Yearl, 1976; Barrett and Yearl, 1978		
27	DOB & Well	28	20 010	100	Barrett and Fearl, 1970; Barrett and Fearl, 1970	1997 - Anna Anna Anna Anna Anna Anna Anna An	
28	Dotsoro Dotsoro gonth	31 39	1000	32000	Darrett and Pearl, 1970; Darrett and Pearl, 1970; George, 1920 Darmett and Doaml 1076: Rammatt and Doaml 1078		
29	Dustro south	02 43	2000	1075	Darrett and Deam] 1976. Rammett and Deam] 1978		
30	Intel Company well			5250	Repret: and Dear 1 1976. Repret: and Dear 1978		
31	Ridorado Springs "A"	24	1	24	Rarrett and Pearl, 1976; Barrett and Pearl, 1978		
33	Eldorado Springs "B"	25	1	25	Barrett and Pearl. 1976: Barrett and Pearl. 1978		
34	Roff well			1950	Barrett and Pearl. 1976: Barrett and Pearl. 1978	<u></u>	+
35	Florence well	28	130	3640	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
36	Fremont Natatorium	35	19	665	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
37	Fullinvider			198	Barrett and Pearl, 1976; Barrett and Pearl, 1978		+
38	Geyser	28	140	3920	Barrett and Pearl, 1976; Barrett and Pearl, 1978		
39	Glenwood Springs (Big Spring)	50	2263	113150	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
10	Glenwood Springs (Drinking Spring)	50	150	7500	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
11	Glenwood Springs (Vapor Cave)	50	5	250	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
\$2	Glenwood Springs (Graves Springs)	46	5	230	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
13	Glenwood Springs (Spring A)	44 EA	5 00	132	Barrett and Pearl, 1976; Barrett and Pearl, 1976; George, 1920		
14	Glanuard Comings (Spring D)	00 40	য় ব	4000	Darrett and reari, 1970; Darrett and Pearl, 1970; George, 1920 Darrett and Dearl 1970; Darrett and Dearl 1979; George, 1990		
16	Glanuood Springs (Spring D)	40 		3700	Darress and Fearl, 1370, Darress and rearl, 1370, deorge, 1320 Rarratt and Pearl, 1976. Rarratt and Pearl, 1978. Counter, 1978	·. · ·	-
17	Glenwood Springs (Bailroad Spring)	50	75	3825	Rarrett and Pearl, 1976. Rarrett and Pearl, 1978. George, 1920		
48	Hartsel (Sping A)	52	1	52	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
19	Hartsel (Spring B)	41		2162	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		+
50	Haystack Butte well	28	4	112	Barrett and Pearl, 1976: Barrett and Pearl, 1978		
51	Hot Sulphur Springs (Spring A)	44	12	528	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
52	Hot Sulphur Springs (Spring B)	41	1	41	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		1
53	Hot Sulphur Springs (Spring C)	40	9	360	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		
54	Hot Sulphur Springs (Spring D)	40	23	920	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		1
55	Idaho Springs (Spring A)	41	21	861	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		1
56	Idaho Springs (Spring B)	24	1	24	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		1
57	Idaho Springs (Spring C)	20	1	20	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	and the second	1
	Idaho Springs (Lodge well)	46	30	1380	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920		1
	Juniper Hot Springs	36	16	576	barrett and Yearl, 1976; Barrett and Yearl, 1978; George, 1920		1

1723=51

•

	Lenon	32	10	320	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
5	McIntyre	14	5	70	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
;	Mineral Hot Springs (Spring A)	60	108	6480	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
, †	Mineral Hot Springs (Spring B)			-51	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
3	Mineral Hot Springs (Spring C)	60	1	60	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	1
,	Mineral Hot Springs (Spring D)	60	5	300	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
0	Ht. Princeton Hot Springs (Spring A)	-54		1080 -	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	-+
,	Mt. Princeton Hot Springs (Spring B)	54	10	540	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	1
2	Mt. Princeton Hot Springs (Spring D)	44	10	440	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
3	Ht. Princeton Hot Springs (Spring B)			500	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	+
آه	Mt. Princeton Hot Springs (Spring P)	49	12	588	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
5	Mt. Princeton Hot Springs (Hortense)	82	18	1476	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
6	Ht. Princeton Hot Springs (Hortense Well)	82	5	410	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	-+-
7	Mt. Princeton Hot Springs (Woolmington well)	39	5	195	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
8	Mt. Princeton Hot Springs (Wright well, east)	67	5	335	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
9	- Mt. Princeton Hot Springs (Wright well. west)	72	5	- 360	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	+
0	Mt. Princeton Hot Springs (Young Life well)	66	5	330	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
,	Orvis Hot Springs. (Ridgway)	52	1	52	Barrett and Pearl, 1976; Barrett and Pearl. 1978: George, 1920	
·	Ouray (Wesbaden & Motel Spring A)				Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	+-
3	Ouray (Wesbaden & Motel Spring R)	30	2	60	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
	Ouray (Wesbaden & Motel Spring C)	42	12	504	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	
	Ourav (Pool Spring)			8832	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George: 1920	
6	Ouray (Uncompanyre Spring)	49	5	245	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	1
°	Pagona Springs (Rig Spring)	56	248	13888	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	1
<u>'</u>	Parosa Springs (Constitutes unli)	58		1680	Barrett and Pearl, 1976; Barrett and Pearl, 1978; Genree, 1970	
	Pagnaa Smrings (Sna Motal vall)	53	1	53	Reprett and Pearl 1976: Reprett and Pearl 1978: George 1990	1
9	Paradise Hot Spring	42	30	1260	Repett and Poer 1976. Repett and Poer 1978	
0	Denny Ant Snringe		1A		Barpett and Poart 1976- Rappett and Poart 1978- General 1996	
1	Louny Hot Chrinde (Chandes Coming)	12 58	19 19	27V 879	Datiove and Icall, 1010, Datiove and Icall, 1010, Dourst, 1040 Reprett and Dearl 1076- Reprett and Dearl 1078	l
2	Dintenton (Coming A)	30 99	14 14	1790	Darrow and Forr, 1910, Darrow and Forr, 1910 Demott and Deam 1076, Demott and Deam 1078, Constr. 1090	
3	riunerwun (opring A)			1140	Darreus and reari, 1310, Darreus and reari, 1310, George, 1320	L
4	rinacrion (Jorring D) Dinkonton (Nound Coming)	00 90	۷۵ ۵	17A	Pariete and Fearl, 1970, Darrete and Fearl, 1970, George, 1920 Permett and Deaml, 1076, Remmett and Deaml, 1078, George, 1090	
5	rinkerion (nound opring) Dinkenton (little Kound Coming)	43 96	0 0	114 89	Darrews and rearis, 1370, Darrews and Pearl, 1370, George, 1320 Rements and Dearl, 1076, Rements and Dearl, 1070, Constr., 1090	
6	riumereou (Dicete nound Spring)	20 70	ک ممو		Derrett and Devel 1076. Dependent and Devel 1076. devel. 1000	
7	runcha oprings (opring a)	10	200	1000	Darrett and reari, 1310, Darrett and Devel 1570, George, 1320	
8	runcha oprings (opring D) Donoha Comings (Coming C)	6J 00	د د	100 100	Darress and rearly 1970, Darress and Pearl, 1970, General 1990	
9	runche oprings (opring U)	0J	ð	109	Darreut and reari, 1970, Darreut and Fearl, 1970; George, 1920	
0	roncha oprings (opring V) Donoba Saminga (Saming P)	00	2	112	Darrett and Deaml 1076, Demost and Peerl, 1970; George, 1920	
1	roncha oprings (opring L)	00	2	120	Darrett and Yeari, 1970; Barrett and Yeari, 1978; George, 1920	
2	Ad1000W	40	40 10r	1000	Darreul and Yeari, 1970; Barreul and Yeari, 1978	_
зŢ	ndiger Dhalaa	61 95	133	3203 2000	Darrett and Pearl, 1970, Darrett and Pearl, 1970	
4	RADACE Dian (Dianam) datil bala)	23 4 4	200	0000	barrett and reari, 19/0; barrett and Pearl, 19/0	
5	RICO (VIAMONG GTILI NOIC)	44	15	UDD	barrett and Yeari, 19/0; barrett and Yeari, 19/8	
6	KICO (BIG Geyser Marm Spring) Dian (Company Marm Contact)	20 20	IU	200	barrett and Yeari, 1970; Barrett and Yeari, 1970	
7	RICO (Geyser Warm Spring)	JÖ 20	14	53Z	barrett and Yeari, 1976; Barrett and Yeari, 1978	
8	RICO (Little Spring)	39	14	546	Barrett and Yeari, 1976; Barrett and Yeari, 1978	
9	Routt [aka Strawberry] (Spring A)	<u>04</u>		2304	Barrett and Pearl, 1970; Barrett and Pearl, 1978	
0	Koutt [aka Strawberry] (Spring B)	62	30	1860	Barrett and Yearl, 1976; Barrett and Pearl, 1978	
1	Koutt [aka Strauberry] (Spring C)	54	2	108	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
2	Koutt [aka Strawberry] (Spring D)	51	2	102	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
э	Sand Dunes Pool well	44	1	44	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
4	Shaws	30	40	1200	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
5	South Canyon Hot Springs (Spring A)	48	- 11-	528	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
6	South Canyon Hot Springs (Spring B)	48	1	48	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
7	Splashland well	40	1	40	Barrett and Pearl, 1976; Barrett and Pearl, 1978	
_Ł	Steamboat Springs (Heart Spring)	- 39	140	5460	Barrett and Pearl, 1976, Barrett and Pearl, 1978; George, 1920	<u></u>
	St eam boat Springs (Sulphur Cave Spring)	20	10	200	Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920	

. نحک

з Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Steamboat Springs (Steamboat Spring) Stinking Springs Barrett and Pearl, 1976; Barrett and Pearl, 1978 Swisswale (Spring A) Barrett and Pearl, 1976; Barrett and Pearl, 1978 Swisswale (Spring P) -20 Barrett and Pearl, 1976; Barrett and Pearl, 1978 Trimble Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Barrett and Pearl, 1976; Barrett and Pearl, 1978 Tripp Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Valley View (Orient) Hot Springs (Spring A) Valley View (Orient) Hot Springs (Spring B) Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Valley View (Orient) Hot Springs (Spring D) Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Wagon Wheel Gap (4UR Ranch Spring) Wagon Wheel Gap (CPI Spring) Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Waunita Hot Springs (Spring C) Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Waunita Hot Springs (Spring D) T Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Waunita Hot Springs (Spring A) Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Waunita Hot Springs (Spring B) 8 | Lower Waunita Hot Springs (Spring A) Barrett and Pearl, 1978; Barrett and Pearl, 1978; George, 1920 Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Lower Waunita Hot Springs (Spring C) Lower Waunita Hot Springs (Spring B) Barrett and Pearl. 1976: Barrett and Pearl. 1978: George, 1920 Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 Lower Waunita Hot Springs (Spring D) 6Ż !3 Wellsville Barrett and Pearl, 1976; Barrett and Pearl, 1978; George, 1920 :4 :7 <u>9</u> ıз ;0 ;З i4 7

HOT SPRINGS; SOURCE	HOT SPRINGS; SOURCE	Date Sampled	As,ug/l	B,ug/l	Cd, ug/l	Ca, n g/1	C1, mg/1	P, mg/1	fe, ug/l	Li,ug/l	lig, ng/l	Mn,ug/l	Hg, ug/l	N, mg/1
GEOTHERMAL PROJECT	GROTHERMAL PROJECT													
TABLE 2: GEOCHEMICAL ANALYSES OF GEOTHE	RMAL STABLE 2: GEOCHEMICAL ANALYSES OF GEOTHE	RMAL SOURCES, COLORA	IDO		· · · · ·	(
HOT SPRINGS; SOURCE	HOT SPRINGS; SOURCE	Date Sampled	As,ug/l	B,ug/l	Cd, ug/l	Ca, mg/l	Cl, mg/l	F, ng/l	₽e, ug/l	Li,ug/l	Mg, mg/l	Mn,ug/l	Hg, ug/l	N, mg/l
Antelope Warn Spring	Antelope Warm Spring	Aug., 1975	0	130	0	4	2.8	2	20	10	0.3	0	 0	0
Antelope Warm Spring	Antelope Warm Spring	Oct., 1975	0	130	0	1.7	3.5	1.6	60	8	0.6	0	0	0
Birdsie Warm Spring	Birdsie Warm Spring	?, 1975												
Brands Ranch well	Brands Ranch well	?, 1975												
Brown's Canon Warm Spring	Brown's Canon Warm Spring	?, 1975												
Brown's Grotto Warm Spring	Brown's Grotto Warm Spring	?, 1975												
Canon City Hot Spring	Canon City Hot Spring	?, 1920				169.4	184.1				53.58			
Canon City Hot Spring	Canon City Hot Spring	Sept., 1975	11	190	0	190	180	1.5	30	230	62	10	0	0.55
Canon City Hot Spring	Canon City Hot Spring	Jan., 1976		200		190	190	1.5	30		55	10		0.65
Canon City Hot Spring	Canon City Hot Spring													
Cebolla Hot Springs A	Cebolla Hot Springs A													
Cebolla Hot Springs B	Cebolla Hot Springs B													
Cebolla Hot Springs C	Cebolla Hot Springs C													
Clement Creek	Cement Creek													
Colonel Chinn well	Colonel Chinn pell													
Çonundrun	Çonundrum													
Gottonwood	Cottonwood													
enstannande (Jump Staady)	Cottonwood (Jump Steady)													
NAAANAANAA (ARFFITIRIA WATT)	Cottonwood (Merrifield well)													
Craig warm water well	Craig warm water well	Jan., 1976	ND	210	ND	5.8	4.1	3.1	60	ND	0.9	ND	ND	0.04
Craig warm water well	Craig warm water well	Nov., 1992		250	ND	4.31	4.9	3.03	ND	80	0.4	ND		
Dexter	Dexter													
Don K well	Don K well													
Dotsero	Dotsero													
Dotsero south	Dotsero south													
Dunton	Dunton													
Dutch Crowley well	Dutch Crowley well													
Eldorado Springs "A"	Bldorado Springs "A"													
Eldorado Springs "B"	Eldorado Springs "B"													
Koff well	Roff well													
Florence well	Florence well													
Fremont Natatorium	Fremont Natatorium													
Fullinwider	Fullinwider													
Geyser	Geyser													
Glenwood Springs (Big Spring)	Glenwood Springs (Big Spring)													
Glenwood Springs (Drinking Spring)	Glenwood Springs (Drinking Spring)													
Glenwood Springs (Vapor Cave)	Glenwood Springs (Vapor Cave)													
Glenwood Springs (Graves Springs)	Glenwood Springs (Graves Springs)													
Glenwood Springs (Spring A)	Glenwood Springs (Spring A)													
Glenwood Springs (Spring B)	Glenwood Springs (Spring B)													
Glenwood Springs (Spring C)	Glenwood Springs (Spring C)													
Glenwood Springs (Spring D)	Glenwood Springs (Spring D)													
Glenwood Springs (Kailroad Spring)	Glenwood Springa (Railroad Spring)													
Hartsel (Sping A)	Hartsel (Sping A)													
Hartsel (Spring B)	Hartsel (Spring B)													
Haystack Butte well	Haystack Butte well													
Hot Sulphur Springs (Spring A)	Hot Sulphur Springs (Spring A)													
Hot Sulphur Springs (Spring B)	Hot Sulphur Springs (Spring B)												•	
Hot Sulphur Springs (Spring C)	Hot Sulphur Springs (Spring C)													•

•

1.5

 2α

-:

HOT SPRING: SUMMEX HOT SPRING: SUMMEX Hot Salphar Springs (Spring D) Hot Sulphar Springs (Spring D) Hot Sulphar Springs (Spring D) Hot Sulphar Springs (Spring D) Idabo Springs (Spring A) Idabo Springs (Spring B) Idabo Springs (Spring B) Idabo Springs (Spring B) Idabo Springs (Spring B) Idabo Springs (Spring B) Idabo Springs (Spring B) Idabo Springs (Spring B) Juniper Rot Springs Juniper Hot Springs July, 1975 0 540 1 3.7 94 4 10 170 0.8 10 0.2 C Juniper Rot Springs Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs 0 2.9 93 3.1 10 250 0.4 10 0 Juniper Hot Springs Juniper Hot Springs Jan., 1976 ND 480 ND 3.9 93 3.3 10 ND 0.3 0 ND Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs ND 0.3 0 N	.05 .01).1 .01
hot Sulphor Springs (Spring U) hot Sulphor Springs (Spring U) Idaho Springs (Spring A) Idaho Springs (Spring B) Idaho Springs (Spring C) Idaho Springs (Spring C) Idaho Springs (Spring C) Idaho Springs (Spring C) Juniper Hot Springs Juniper Hot Springs Junip	.05 .01).1 .01
Idaho Springs (Spring A) Idaho Springs (Spring B) Idaho Spring (Spring B) Idaho Spring	.05 .01).1 .01
Idado Springs (Spring 1) Idado Springs (Spring 1) Idado Springs (Lodge well) Idado Springs (Lodge well) Juniper Hot Springs Juniper Hot Springs Oct., 1975 0 540 1 3.7 94 4 10 170 0.8 10 0.2 0 Juniper Hot Springs Juniper Hot Springs Oct., 1975 1 550 0 2.9 93 3.1 10 250 0.4 10 0	.05 .01 .1 .01
Idaho Springs (Jodge vell) Idaho Springs (Jodge vell) Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs Oct 1975 1 550 0 2.9 93 3.1 10 250 0.4 10 0 0 Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs Jan., 1976 ND 480 ND 3.9 83 3.1 10 2.0 0.4 10 0 0 0 Juniper Hot Springs Juniper Hot Springs Jan., 1976 ND 480 ND 3.9 83 3.3 10 ND 0.3 0 ND Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs Nov., 1992 ND 630 ND 2.56 79 2.73 70 150 ND ND ND ND Ideato Ideat	.05 .01).1 .01
Juniger Hot Springs Juniper Hot Springs July, 1975 0 540 1 3.7 94 4 10 170 0.8 10 0.2 (Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs 0 0.1 3.7 94 4 10 170 0.8 10 0.2 (Juniper Hot Springs	.05 .01 9.1 .01
Juniper Hot Springs Juniper Hot Springs Oct., 1975 1 550 0 2.9 93 3.1 10 250 0.4 10 0 (Juniper Hot Springs 0 1.975 1 550 0 2.9 93 3.1 10 250 0.4 10 0 (Juniper Hot Springs Juniper Hot Springs 0 1.975 1 550 0 2.9 93 3.1 10 250 0.4 10 0 (Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs 0 ND 0 ND 10 0 (Juniper Hot Springs 0 ND ND ND ND 10 0 ND 10 10 10 10 10 10 0	.01 D.1 .01
Juniper Hot SpringsJuniper Hot SpringsJan., 1975ND480ND3.9833.10ND0.30NDJuniper Hot SpringsJuniper Hot SpringsApril, 1976ND520ND3.3903.320ND0.30ND0Juniper Hot SpringsJuniper Hot SpringsApril, 1976ND520ND3.3903.320ND0.30ND0Juniper Hot SpringsJuniper Hot SpringsMov., 1992ND630ND2.56792.7370150NDNDLemonLemonMineral Hot Springs (Spring A)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring C)Hineral Hot Springs (Spring B)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring A)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring A)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)	0.1 .01
Juniper Hot Springs Juniper Hot Springs April, 1976 ND 100 ND 0.3 0 ND (1) Juniper Hot Springs Juniper Hot Springs Juniper Hot Springs April, 1976 ND 520 ND 3.3 90 3.3 20 ND 0.3 0 ND (1) Lemon Lemon Lemon Mineral Hot Springs Nov., 1992 ND 630 ND 2.56 79 2.73 70 150 ND ND (1) Mineral Hot Springs Spring A) Mineral Hot Springs (Spring A) Mineral Hot Springs (Spring B) Mineral Hot Springs (Spring C) Mineral Hot Springs (Spring C) Mineral Hot Springs (Spring D) Mineral Hot Springs (Spring A) Mineral Hot Springs (Spring B) Mineral Hot Springs (Spring A) Mineral Hot Springs (Spring B) Minerathot Springs (Spring B) Mineral Hot Springs (Spring	.01
Juniper Hot Springs Juniper Hot Springs<	
Unique libro springs Unique libro springs <td< td=""><td></td></td<>	
McIntyreMcIntyreMineral Hot Springs (Spring A)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring C)Mineral Hot Springs (Spring C)Mineral Hot Springs (Spring D)Mineral Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring A)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)	
Mineral Hot Springs (Spring A)Mineral Hot Springs (Spring A)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring C)Mineral Hot Springs (Spring C)Mineral Hot Springs (Spring D)Mineral Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)	
Mineral Hot Springs (opring R)Mineral Hot Springs (Spring B)Mineral Hot Springs (Spring C)Mineral Hot Springs (Spring C)Mineral Hot Springs (Spring D)Mineral Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring B)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)Mt. Princeton Hot Springs (Spring D)	
Mineral Hot Springs (opring 5) Mineral Hot Springs (opring 5) Mineral Hot Springs (Spring C) Mineral Hot Springs (Spring D) Mineral Hot Springs (Spring A) Mineral Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D)	
Mineral Hot Springs (Spring D) Mineral Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring A) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D)	
Mt. Princeton Hot Springs (Spring A) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D)	
Ht. Frinceton Hot Springs (opring R) Ht. Frinceton Hot Springs (Spring B) Ht. Princeton Hot Springs (Spring D) Ht. Princeton Hot Springs (Spring D) Ht. Princeton Hot Springs (Spring D) Ht. Princeton Hot Springs (Spring D)	
Mt. Princeton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D) Mt. Drinceton Hot Springs (Spring D) Mt. Princeton Hot Springs (Spring D)	
He frince on hot springs (spring b) ht frince on hot springs (spring b)	
Ht. Frinceton Hot Springs (Spring B) Ht. Dringston Hot Springs (Spring B)	
Ht. Frinceson Not Springs (Jpring F) Ht. Frinceson Not Springs (Jpring F)	
Ht. Frinceton not Springs (nortense) - Ht. Frinceton not Springs (Nortense) Mt. Definestan Nat Centerse Wall) - Mt. Definestan Nat Centerse Wall)	
Ht. Frinceton Not Springs (Nortense Weil) - Ht. Frinceton Not Springs (Nortense Weil) Mt. Deinesten Not Cominge (Weal-instan weil) - Ht. Deinesten Vet Comington veil)	
ns. rrindedon not Springs (woolmington weil) ns. rrindedon not Springs (woolmington weil) Mt. Deinesten Ust Cemingto (Weidst mell) seat Wt. Deinesten Ust Cemington (Weidst mell) seat)	
nt. Frinceton not Springs (Wright well, east/nt. Frinceton not Springs (Wright well, east) Mt. Deinesten Net Comings (Weight nol), mest/Wt. Deinesten Net Comings (Weight nol), mest)	
nt. frinceton not oprings (Mright Weil, Webc)nt. frinceton not oprings (Mright Weil, Webc) Mt. Dminastan Hat Comings (Voung Life goll) Mt. Dminastan Hat Comings (Voung Life goll)	
Orvis Hot Springs (Ridduay) Orvis Hot Springs (Ridduay)	
(hiray (Washadan & Motal Snring &) (hiray (Washadan & Motal Snring &)	
Ouray (Modulatin & Motol Spring R) Ouray (Modulatin & Motol Spring R)	
Ouray (Nobballin & Nobel Spring D) Ouray (Nobballin & Nobel Spring D)	
Ouray (Robbacen a Hotel Spring 5) Ouray (Robbacen a Hotel Spring 5)	
Ouray (Hocompahare Spring) Ouray (Hocompahare Spring)	
Padosa Sprinds (Bid Sprind) Padosa Sprinds (Rid Sprind)	
Padosa Snrinds (Courthouse upll) Padosa Snrinds (Courthouse upll)	
Pagesa Springs (Spa Hetel well) Pagesa Springs (Spa Hetel well)	
Paradise Hot. Spring Paradise Hot. Spring	
Penny Hot Springs Penny Hot Springs	
Penny Hot Springs (Granges Spring) Penny Hot Springs (Granges Spring)	
Pinkerton (Spring A) Pinkerton (Spring A)	
Pinkerton (Spring B) Pinkerton (Spring B)	
Pinkerton (Hound Spring) Pinkerton (Hound Spring)	
Pinkerton (Little Mound Spring) Pinkerton (Little Mound Spring)	
Poncha Springs (Spring A) Poncha Springs (Spring A)	
Poncha Springes (Spring B) Poncha Springes (Spring B)	
Poncha Springs (Spring C) Poncha Springs (Spring C)	
Poncha Springs (Spring D) Poncha Springs (Spring D)	
Poncha Springs (Spring E) Poncha Springs (Spring E)	
Rainbow	
Ranger	
Rhodes	
Rico (Diamond drill hole) Rico (Diamond drill hole)	
Rico (Big Geyser Warm Spring) Rico (Big Geyser Warm Spring)	
Rico (Geyser Warm Spring) Rico (Geyser Warm Spring)	
Rico (Little Spring) Rico (Little Spring)	

HOT SPRINGS; SOURCE Routt [aka Strawberry] (Spring A) Routt [aka Strawberry] (Spring B) Routt [aka Strawberry] (Spring C) Routt [aka Strawberry] (Spring D) Sand Dunes Pool well Shaws South Canyon Hot Springs (Spring A) South Canyon Hot Springs (Spring B) Splashland well	HOT SPRINCS; SOURCE Routt [aka Strawberry] (Spring A) Routt [aka Strawberry] (Spring B) Routt [aka Strawberry] (Spring C) Routt [aka Strawberry] (Spring D) Sand Dunes Pool well Shaws South Canyon Hot Springs (Spring A) South Canyon Hot Springs (Spring B) Splashland well	Date Sampled Nov., 1992	As,ug/l	B,ug/l ND	Cd, ug/l ND	Ca, mg/l 6.74	Cl, mg/1 114	F, mg/l 16.5	Fe, ug/l ND	Li,ug/1 270	Mg, mg/l ND	Mn,ug/l ND	Hg, ug/l	N, mg/l
Steamboat Springs (Heart Spring) Steamboat Springs (Sulphur Cave Spring)	Steamboat Springs (Heart Spring) Steamboat Springs (Sulphur Cave Spring)	Nov., 1992	ND	780	ND	16.01	312	8.7	ND	300	0.53	ND		
Steamboat Springs (Sulphur Cave Spring) Steamboat Springs (Steamboat Spring) Stinking Springs Swissvale (Spring A) Swissvale (Spring F) Trimble Tripp Valley View (Orient) Hot Springs (Spring A) Valley View (Orient) Hot Springs (Spring B) Valley View (Orient) Hot Springs (Spring D) Wagon Wheel Gap (4UR Ranch Spring) Wagon Wheel Gap (CFI Spring) Waunita Hot Springs (Spring C) Waunita Hot Springs (Spring D) Waunita Hot Springs (Spring A) Waunita Hot Springs (Spring A) Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring C)	Steamboat Springs (Sulphur Cave Spring) Steamboat Springs (Steamboat Spring) Stinking Springs Swissvale (Spring A) Swissvale (Spring F) Trimble Tripp Valley View (Orient) Hot Springs (Spring A) Valley View (Orient) Hot Springs (Spring B) Valley View (Orient) Hot Springs (Spring B) Valley View (Orient) Hot Springs (Spring D) Wagon Wheel Gap (CFI Spring) Wagon Wheel Gap (CFI Spring) Waunita Hot Springs (Spring D) Waunita Hot Springs (Spring D) Waunita Hot Springs (Spring A) Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring C)													
Lower Waunita Hot Springs (Spring B) Lower Waunita Hot Springs (Spring D) Wellsville	Lower Waunita Hot Springs (Spring B) Lower Waunita Hot Springs (Spring D) Wellsville													

Geochem 26

1																	
4	HOT SPRINGS; SOURCE GROTHERMAL PROJECT TABLE 2: GROCHEMICAL ANALYSES OF GROTHERMAL S	P04,mg/1	K, mg/1	Se, ∎g/l	Si02, ∎g/l	Na, ng/1	\$04, mg/1	Zn, ug/l Alkal	. CaCO3	Alkal. HCO3 Hard.	, ∎g/1-€	ond., mohs	TDS, mg/l	p H, field	Disc., gp	m Temp. deg.C Al, ppm	Sr,pp
7	HOT SPRINGS; SOURCE	P04,mg/1	I , ng/l	Se, ∎g/l	SiO2, mg/l	Na, mg/l	SO4, mg/l	Zn, ug/l Alkal	. CaCO3	Alkal. HCO3 Hard.	, mg/1 C	ond., mohs	TDS, mg/l	pH, field	Disc., gp	m Temp. deg.C Al, ppm	ı Sr,ppn
9	Antelope Warn Spring	0			41				90							3	
•	Antelope Warm Spring	0.02	0.3	Ő	39	43	3.2	0	95	11	7	160	150	8.9		3 32	
2	Birdsie Warm Spring											200		8.6	1	5 30	
3	Brands Ranch well											-405	·	6.0	4	2	
4	Brown's Canon Warm Spring											775		8.0		1 25	
5	Brown's Grotto Warm Spring											720		7.0		5 23	
6	Canon City Hot Spring	4 40	33.2	1	28.1	160.8		40		803.8		4000	4000			A 34.6	<u> </u>
7	Canon City Not Spring	1.40	13	1	22	190	130	10	728	887	730	1900	1230	5.3		5 40	
8	Canon City Not Spring	V.V4	10			100	100		120	000	100	2010	1220	0.2		1 40	
9	Cebolla Hot Springs A																:
	Cebolla Hot Springs B																
2	Cebolla Hot Springs C						· · · · · · · · · · · · · · · · · · ·						·····				
:3	Cement Creek																
:4	Clark Spring well																
5															·		
.6	Conundrum																
.7	Cottonwood (Iven Starle)																ŝ
8	Cottonwood (Jump Steady) Cottonwood (Newsifield nell)																
:9	Craig warm water well	0 16	≰ 1	ND	19	360	67	ND	819	909	18	1440	806	8 2	9	4 30	
.0. 	Craig warm water well				80.83						10			0.4 		4 35 0 <u>26 ND</u>	A 2
2	Dexter					•••••		100	42	565		1000	000	0.4	61		• • • • • •
3	Don K well									2 							
4	Dotsero									······································							· · · · · · · · · · · · · · · · · · ·
5	Dotsero south																
6	Dunton																
7	Place de Contes Well							· · · · · · · ·		······································							
8	Bidorado Springs "A" Bidorado Comingo "D"																
9	Bidorado Springs 5																
.0	Ployence pell																
1	Fremont Natatorium																
3	Fullinwider														•••••••••••••••••••••••••••••••••••••••		
4	Geyser																
5	Glenwood Springs (Big Spring)																
6	Glenwood Springs (Drinking Spring)							······································									
.7	Glenwood Springs (Vapor Cave)																
8	Glenwood Springs (Graves Springs)																
91	Classod Springs (Spring A)				an ann an Arthread an Arthread	are an entry and and	ant in the second		. /	an a		annan ann an sige ana					
¢	dienwood Springe (Spring D)																
1	Glengood Springs (Spring D)								ر ي يې پېرې مېشې و ي					Marca, Mar		-	
2	Glenwood Springs (Railroad Spring)																_
4	Hartsel (Sping A)																
5	Hartsel (Spring B)	- 1994 (1994) - 1. Jack and an and an and an and								······································							
6	Haystack Butte well																÷.,
7	Hot Sulphur Springs (Spring A)																:
	Hot Sulphur Springs (Spring B)									<u> </u>			. <u> </u>				?
	Hot Sulphur Springs (Spring C)																

.

2																		
5 5	HOT SPRINGS; SOURCE Hot Sulphur Springs (Spring D) Idaho Springs (Spring A)	P04,ag/1	I, ng/ 1	Se, mg/1 Si	102, ∎g/1	<u>Na, ∎g/1</u>	- S04, ∎g/1 -	Zn, ug/l All	al. CaCO3	Alkal. KCO3 Ha	rd., ∎g/1 Cc	ond., mohs	TDS, mg/l-p	ll, field Di	sc., gpu Teu	p. deg.C Al	, pp	Sr,pp
7	Idaho Springs (Spring B) Idaho Springs (Spring C) Idaho Springs (Lodge well)	,,																
0	Juniper Hot Springs	0.04	2.3	0	33	460	12		902	1100		1900	1150	7.8	13			
1	Juniper Hot Springs	0.04	2.2	U ND	29 31	400 470	8.3 20	ND	894 894	1090	9 11	1800	1160	8.2	14	33 37		
з	Juniper Hot Springs	0.12	2.1	WD	32 71 81	460 287 26		ND	902	1100	9			7.9			Wħ	0.91
4 5	Lemon	RU	2.0		11.01	001.20	11	100		Jur		1996	300	0.20	IJ	JI	89	V.41
6	McIntyre Minoral Hot Comings (Coming A)	<u> </u>						-		<u> </u>								
8	Mineral Hot Springs (Spring B)																	
9	Mineral Hot Springs (Spring C) Mineral Hot Springs (Spring D)																	
:1	At. Princeton Hot Springs (Spring A)																	
2	Ht. Princeton Hot Springs (Spring B) Mt. Princeton Hot Springs (Spring D)															<u> </u>		
:4	Mt. Princeton Hot Springs (Spring B)																	
:5	H. Princeton Hot Springs (Spring F) Mt. Princeton Hot Springs (Hortense)															an man an a		
:7	Mt. Princeton Hot Springs (Hortense Well)																	
:8	Mt. Princeton Hot Springs (Woolmington well) Mt. Princeton Hot Springs (Wright well, east)																	
10	Mt. Princeton Hot Springs (Wright well, west)																	
11	Rt. Princeton Hot Springs (Young Life well) Orvis Hot Springs, (Ridgwav)										······································							
13	Ouray (Wesbaden & Motel Spring A)																	
14 15	Ouray (Wesbaden & Motel Spring B) Ouray (Wesbaden & Motel Spring C)																	
16	Ouray (Pool Spring)					_												
17 18	Pagosa Springs (Big Spring)																	-
19	Pagosa Springs (Courthouse well)										·····							
10 11	Pagosa Springs (Spa notel Well) Paradise Hot Spring																	
12	Penny Hot Springs			and the product of the second state of the second		wayo ng sang ng ganara na sasalah kasara						······································						
13	Pinkerton (Spring A)																	1
15	Pinkerton (Spring B)	·																
17	Pinkerton (Little Mound Spring)																	
18	Poncha Springs (Spring A)					Navan maa 11 1 1 1 1 1		an co an one of an an an an an an an	and the second	1000 ap gapanese in the other of a second statement								
-0 •ai	Poncha Springs (Spring C)																	
51 p	Poncha Springs (Spring D) Poncha Springs (Spring R)					• · · · • • • • • • • • • • • • • • • •		-, and -market back to an an an area	nang san 1 - 11 Tan ang ang pang sa				and the same second second second			,		
ب در	Rainbow																	
54	Ranger Rhodes	n andre and the state of the st		tale international entry of the second statement of		The depoint stranger and a Table - R. Apple and a strange	- 1 Mile 12 day on the state of			an a suit a s				······································				
56	Rico (Diamond drill hole)																	
57	Rico (Big Geyser Warm Spring) Rico (Geyser Warm Spring)					·····										-,		
	Rico (Little Spring)																	

.

BY: SYLES: SOUCH Pot.ag/1 T, ag/1 Sr. g/1 St.	T											•				
Boot (Lak Strukery) (Gring 0) Sand Danes Pool woll Same Source Carson Dis Springs (Spring 4) Source Carson Dis Springs (Spring 4) Source Carson Disprings (Spring 4) Standback Springs (Standback Spring) Standback Springs (Standback Spring 4) Standback Spring (Standback Spring 4) Standback Spring (Standback Spring 4) Standback Spring (StandbackSpring 4) Standback S		HOT SPRINGS; SOURCE Routt [aka Strawberry] (Spring A) Routt [aka Strawberry] (Spring B)	PO4,mg/1 ND	K, mg/l 7.4	Se, mg/1 S102, mg/1 467.26	Na, mg/l 146.09	SO4, mg/l 41	Zn, ug/l Alkal. CaCO3 ND ND	Alkal. HCO3 Hard., mg/l 119	Cond., unchs 1 700	DS, mg/l j 446	H, field Disc 8.00	., gpm To 60	emp. deg.C Al 54	, ppm ND	Sr,ppm 0.24
bonk Caspon Bit Springs (Spring A) Sonk Caspon Bit Springs (Spring A) Shahatawe will wert Springs (Spring A) Steababt Springs (Shahar Caspon Spring) Steababt Springs (Spring A) Strikus Springs (Spring A) Strikus Springs (Spring A) Strikus Springs (Spring A) Thibe Trips Tible Trips Tible Trips Tible Trips Tible Springs (Spring A) Start Springs (Spring A) Strikus Springs (Spring A) Strikus Springs (Spring A) Strikus Springs (Spring A) Strikus Springs (Spring B) Kagen Maet Iday (TH Exact Spring) Kagen Maet Iday (TH Exact Spring) Kamita Bot Springs (Spring A) Strikus Springs (Spring A) Strikus Springs (Spring B) Kamita Bot Springs (Spring B) Kamita Bot Springs (Spring B) Strikus Spring (Spring B) Strikus Sprin		Routt [aka Strawberry] (Spring C) Routt [aka Strawberry] (Spring D) Sand Dunes Pool well														
Steamboat Springs (Sharer Spring) BD 6.36 125.98 278.09 141 BD 197 1460 872 8.2 75 36.4 HD 4 Steamboat Springs (Sharer Spring) Steamboat Springs (Sharer Spring) Steamboat Springs (String A) Stissawis (Spring A) Triable Tripp Tripp Tailey There (Trient) East Springs (Spring A) Tailey There (Trient) East Springs (Spring B) Tailey There (Trient) East Springs (Spring B) Harmita East Springs (Spring C) Teamta East Springs (Spring C) Lower Hamita East		South Canyon Hot Springs (Spring A) South Canyon Hot Springs (Spring B) Splashland well							<u></u>							
statking Springs (Spring A) Stisking Springs (Spring A) Friable Fripp Failey Fise (Orient) Hot Springs (Spring B) Failey Fise (Orient) Hot Springs (Spring B) Failey Fise (Orient) Hot Springs (Spring B) Failey Fise (Spring C) Hunta Hot Springs (Spring C) Kumita Hot Springs (Spring D) Kumita Hot Springs (Spring D) Kumita Hot Springs (Spring B) Lower Kumita Hot Springs (Spring A) Lower Kumita Hot Springs (Spring D) Kumita Hot Springs (Spring B) Lower Kumita Hot Springs (Spring D) Kumita Hot Springs (Spring D) Kumita Hot Springs (Spring B) Lower Kumita Hot Springs (Spring D) Kumita Hot Springs (Spring D) Kellerille	5	Steamboat Springs (Heart Spring) Steamboat Springs (Sulphur Cave Spring)	ND	6.36	125.98	278.09	141	ND	107	1450	872	8.2	75	36.4	ND	0.68
<pre>bissrals (Spring F) Trible Trible Trip Falley Yise (Orient) Hot Springs (Spring A) Valley Yise (Orient) Hot Springs (Spring B) Valley Yise (Orient) Hot Springs (Spring D) Negon Wheel Gap (VER Neurity) Neurita Hot Springs (Spring C) Neurita Hot Springs (Spring A) Neurita Hot Springs (Spring A) Neurita Hot Springs (Spring A) Lower Neurita Hot Springs (Spring B) Lower Neurita</pre>	3	Steamooat Springs Stinking Springs Swissvale (Spring A)														
Yalley Yiew (Orient) Bot Springs (Spring B) Yalley Yiew (Orient) Bot Springs (Spring D) Hagon Wheel Cap (UFI Spring) Magon Wheel Cap (UFI Spring) Manita Bot Springs (Spring C) Manita Bot Springs (Spring T) Manita Bot Springs (Spring B) Lower Maunita Bot Springs (Spring B) Lower Maunita Bot Springs (Spring C) Lower Maunita Bot Springs (Spring D) Welleville		Swiszvale (Spring P) Trimble Tripp												Ma ri I		······
Nagon Mheel Gap (400 Ranch Spring) Nagon Mheel Gap (201 Spring) Namita Hot Springs (Spring C) Namita Hot Springs (Spring A) Namita Hot Springs (Spring A) Lower Mamita Hot Springs (Spring C) Lower Mamita Hot Springs (Spring C) Lower Mamita Hot Springs (Spring B) Lower Mamita Hot Springs (Spring C) Lower Mamita Hot Springs (Spring B) Lower Mamita Hot Springs (Spring D) Meller Mamita Hot Springs (Spring D) Meler Mamita Hot Springs (Spring D)	2	Valley View (Orient) Hot Springs (Spring A) Valley View (Orient) Hot Springs (Spring B) Valley View (Orient) Hot Springs (Spring D)														
Wainta Not Springs (Spring C) Wainta Not Springs (Spring A) Waunita Hot Springs (Spring A) Lower Maunita Hot Springs (Spring A) Lower Maunita Hot Springs (Spring C) Lower Maunita Hot Springs (Spring B) Lower Maunita Hot Springs (Spring D) Weilsville	5	Wagon Wheel Gap (4UR Ranch Spring) Wagon Wheel Gap (CFI Spring) Wagon Wheel Gap (CFI Spring)					_ 									
Lower Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring B) Lower Waunita Hot Springs (Spring B) Lower Waunita Hot Springs (Spring D) Wellsville	3	Waunita Hot Springs (Spring C) Waunita Hot Springs (Spring D) Waunita Hot Springs (Spring A) Waunita Hot Springs (Spring B)														
Lower Waunita Hot Spring D) Wellsville	2	Lower Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring C) Lower Waunita Hot Springs (Spring B)							· · · · · · · · · · · · · · · · · · ·							
	5	Lower Waunita Hot Springs (Spring D) Wellsville														
	3											99999999999999999999999999999999999999				·
							ariana <u></u>									
	3						n - markaliller anlette, marken var i differene der ver									
	3		<u></u>							·	<u></u>					
	• 5 5					albiling analysis a the life and analysis of more de-				<u> </u>		an nin ku kulashariki sayang danadasa	**************************************			

HOT SPRINGS; SOURCE GEOTHERMAL PROJECT TABLE 2: GEOCHEMICAL ANALYSES OF GEOTHERMAL S	Åg, ppe	Au, ppm	Ba, pp a	Be, ppm	Bi, ppu	Ce, ppm	Co, ppm	Cr, ppm	Cu, ppm	Mo, pp	Ni, pp	a Pb, pps	Sn, pp	ı Sb, I	opm Te,	ppe Th,	pp n Ti, pp	a U, ppa	¥, ppm	W, ppm	Zr, ppu	
HOT SPRINGS; SOURCE	Ag, ppm	Au, ppm	Ba, p pa	Be, ppm	Bi, ppm	Ce, pp	Co, ppm	Cr, ppm	Cu, ppm	Mo, pp	n Ni, pp	ı Pb, ppı	Sn, pp	ı Sb, p	ppn Te,	ppn Th,	ppn Ti, pp	a U, ppa	V, ppm	W, ppm	Zr, ppm	
Antelope Warm Spring												• • • • • • • •				·····	-					
Antelope warm opring Birdsie Warm Spring																						
Brands Ranch well																						
Brown's Canon Warn Spring																						
Brown's Grotto Warm Spring																						
Canon City Hot Spring									·	a and the second second			e na concerna							··· ·		
Canon City Hot Spring																						
Canon City Hot Spring																						
Canon City Hot Spring																						
Cobolla Not Springs A																						
Ceballa Hot Springs S																						
Cement Creek																						
Clark Spring well																						
Colonel Chinn well																						
Conundrum																						
Cottonwood																						
Cottonwood (Jump Steady)																						
Craig yarm water wall																						
Craig warm water well	ND.	ND	ND	ND	ND	ND	ND	ND	NÐ) NI))	NÐ -	ND	ND NI) ND	ND	ND	ND	
Dexter	•••																					
Don K well																						
Dotsero						-						·										
Dotsero south																						
Junton																						
VUTCH LTOWIEY WELL Fldowado Cominge "A"																						
Fldorado Springs R Fldorado Springs "R"																						
Roff well														• • • •							÷	
Florence well																						
Fremont Natatorium																						
Fullinwider																						
Geyser Observed Castan (Die Castan)																						
Glenwood Springs (Big Spring)																						
Glenwood Springs (Vanor Cave)																						
Glenwood Springs (Vapor Save)																						
Glenwood Springs (Spring A)																						
Glenwood Springs (Spring B)																						
Glenwood Springs (Spring C)																						
Glenwood Springs (Spring D)																						
Glenwood Springs (Railroad Spring)																						
Narisel (Spring A)																						
Havstack Rutte well																						
Hot Sulphur Springs (Spring A)																						
Hot Sulphur Springs (Spring B)													••••									
Hot Sulphur Springs (Spring C)																						

in tem. 20

HOT SPRINGS; SOURCE Hot Sulphur Springs (Spring D) Idaho Springs (Spring A)	Âg, ppm	Åu, ppm	Ba, ppm	Be, ppm	Bi, ppm Ce	, ppm Co	, ppm Cr,	ppa C	u, ppn	Mo, ppm	fi, ppm F	b, ppm Sn	, ppm Sb	, ppm Te, j	ppm Th, ppm	Ti, ppe	U, ppm	∀, ppm W	, ppu 2r	, pp n	·
Idaho Springs (Spring C) Idaho Springs (Lodge well)																					
Juniper Hot Springs										A 1994					n ····		÷ · · ·			· · · · ·	
Juniper Hot Springs																					
Juniper Hot Springs																					
Juniper Hot Springs																					
Juniper Hot Springs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	
Lenon																					
Ecistyre																					
Mineral Not Springs (Spring A)																					
Hineral Not Springs (Spring D)																					
Mineral Not Springs (Spring D)																					
Mt. Princeton Hot Springs (Spring A)																					
Mt. Princeton Hot Springs (Spring B)							-			•											
Mt. Princeton Hot Springs (Spring D)																					
Mt. Princeton Hot Springs (Spring E)																					
Mt. Princeton Hot Springs (Spring F)																					
Mt. Princeton Hot Springs (Hortense)																					
Mt. Princeton Hot Springs (Hortense Well)																					
nt. Frinceton Not Springs (Woolmington well)																					
Mt Dringston Not Springs (Wright Well, east)																					
Ht Princeton Not Springs (Voung Life yell)	•																				
Orvis Hot Springs. (Ridgway)																					
Ouray (Wesbaden & Motel Spring A)																					
Ouray (Weshaden & Motel Spring B)									, .					÷ •							
Curay (Wesbaden & Motel Spring C)																					
Ouray (Pool Spring)																					
Ouray (Uncompangre Spring)																					
Pagosa Springs (Big Spring)																					
Pagosa Springs (Courtnouse well)																					
Paradise Hot Spring																					
Penny Hot Springs																					
Penny Hot Springs (Granges Spring)																					
Pinkerton (Spring A)																					
Pinkerton (Spring B)																					
Pinkerton (Hound Spring)																					- 1.00 A
Pinkerton (Little flound Spring)																					
Poncha Springs (Spring A) Densha Springs (Spring B)																					
Poncha Springs (Spring D) Poncha Springs (Spring C)																					
Poncha Springs (Spring D)																					
Poncha Springs (Spring I)																					
Rainbow																					
Ranger																					
Rhodes																					
Rico (Diamond drill hole)																					
Rico (Big Geyser Warm Spring)																					
kico (Geyser Warm Spring) Rico (Little Spring)																					

2----1

10

. .3 .4

÷.

.....

.

i i j j	HOT SPRINGS; SOURCE Routt [aka Strawberry] (Spring A) Routt [aka Strawberry] (Spring B) Routt [aka Strawberry] (Spring C) Routt [aka Strawberry] (Spring D)	Ag, ppm ND	Au, pp n ND	Ba, pp N	Be,	ppm 1 ND	Bi, ppm ND	Ce, p	ppm Co, ND	ppm ND	Cr, pp N	na Cu D	i, ppm ND	Mo, ppm ND	Nî, pp N	Pb, pi	me Sn,] ID	ppm St ND	, ppm ND	Te, ppm ND	Th, pp N	n Ti, ppn) NI	U, pi	pa V, ID	pp# ND	W, ppm ND	Zr, ppi N		
9 0	Sand Dunes Pool well Shaws South Canyon Hot Springs (Spring A) South Canyon Hot Springs (Spring B)					р. 19 6 и						•••••				vert tit – Lit name	.,				a ∕ange, e	1. 1 . 1. 1.							 or a r we wan, som sentitingen
А В В	Splashland well Steamboat Springs (Heart Spring) Steamboat Springs (Sulphur Cave Spring) Steamboat Springs (Steamboat Spring)	ND	ND	NI)	ND	ND		ND	ND	N	D	ND	ND) 0.8	2	ND	ND	ND	· · ·) NE	Ň	ID	ND	ND	N)	
У 8 1	Stinking Springs Swissvale (Spring A) Swissvale (Spring F) Trimble Taim																	····											
5 2 5 5	Valley View (Orient) Hot Springs (Spring Å) Valley View (Orient) Hot Springs (Spring B) Valley View (Orient) Hot Springs (Spring D) Wagon Wheel Gap (4UR Ranch Spring)																The state of the state of the state												
ia La Ratio Mult	Wagon Wheel Gap (CFI Spring) Waunita Hot Springs (Spring C) Waunita Hot Springs (Spring D) Waunita Hot Springs (Spring A)														. •				·· .										·
40 51 42 1 31 1	Waunita Hot Springs (Spring B) Lower Waunita Hot Springs (Spring A) Lower Waunita Hot Springs (Spring C) Lower Waunita Hot Springs (Spring B)														,	·	, transis	ne i											
52 51 52 57	Lower Waunita Hot Springs (Spring D) Wellsville					·										ст. т са Мар ила,	ц,,, шалан 1993 												
14 20 39 , 79													·			· · .				,,									
40 40 44 45																	· . ·	-		· .									
46 372																													
5																													• • • •
a Kul																													11000

.

•

·----,

£..' S.,

5. Ng taong ta

STATE OF COLORADO

COLORADO GEOLOGICAL SURVEY Department of Natural Resources

1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2115

Roy Romer Governor Ken Salazar

Executive Director Wm. "Pat" Rogers Acting Director &

State Geologist

Howard Ross University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, UT 84108-1295

February 23, 1993

RE: Update on Geothermal project

Dear Howard:

I've been pretty busy on oil and gas and mineral related issues and problems ever since early December. At last, I have a good stretch of time ahead of me to work on the geothermal project. This letter is to serve as an interim quarterly report to bring you up to date on our activities since November. I still plan to write an official quarterly report at the end of March.

During the first week in November, I visited some selected geothermal sites in the northwest part of the state including, Routt, Moffat, and Delta Counties. I sampled four sites for chemical analysis:

- 1) Strawberry Hot Springs (aka Routt Hot Springs), Routt Co.
- 2) Heart Springs, Steamboat Springs, Routt Co.
- 3) Juniper Hot Springs, Moffat Co.
- 4) Craig warm water well, Moffat Co.

These water samples were filtered, acidified, and submitted to the UURI lab as per Ruth Kroneman's instructions. The results have been received and are shown on the accompanying spreadsheets.

At all the sites visited during November I tried to obtain information concerning the current use of the geothermal resource. This information will be delivered in the final report at the end of the year. I am using a Hanna water tester to obtain site information on pH, temperature, oxidation reduction potential, and dissolved solids content.

Preliminary data bases were designed in December using the spreadsheet format in Quattro Pro 4. I have included three spreadsheets for your review. The three spreadsheets are; Table 1: General information and references; Table 2: Geochemical analyses of geothermal sources; and Table 3: Location of geothermal sources.

I have a few questions on the geochemical spreadsheet. Should we use one measurement system such as ppm, as opposed to ug/l and mg/l event though they are reported in those different ways? Should we include geothermometer model estimates for reservoir temperature? I have entered several generations of geochemical data, some going back to the 1920's, on these preliminary data sheets just to give you an indication of the wide variety of information that is available for Colorado.

I am be looking forward to your comments on these preliminary data sheets.

Sincerely,

James A. Cappa Chief, Minerals and Mineral Fuels

enclosures

EXAMPLE BUDGET FORMAT

LOW TEMPERATURE PROGRAM

Budget:				
Salaries:				
Professional	\$ xxxxx			
Support Staff	\$ XXXXX			
Research Assistant	5 \$ XXXXX			
Other Personnel Expense	5.			
Benefits (Prof. &	Support) @		\$ XXXXX	
Benefits (Research	Asst.) @	XX u X 1/2	<pre>\$ XXXXX</pre>	
Direct Costs:				
Subcontracts - (ty	pe)		\$ XXXXX	
Travel - (see deta	il)		\$ xxxxx	
Conferences			∲ xxxxx	
Supplies - Laborat	ory		Ф ххххх	
Supplies - field			\$ XXXXX	
Supplies - Compute	r		\$ XXXXX	
Reproductions			\$ XXXXX	
Indirect Costs @ xx%			\$ XXXXX	
G & A Costs @ xx%			≇ ×××××	
Fixed Fee @ xx% (if app	licable)		\$ XXXXX	
	Total		\$ XXXXX	
Distribution by Tasks				
	Hours	Salary	Travel	Total
Task 1 Becource Inventory	~~~~~			.,
Task i Resource inventory	~~~~~	~~~~~~	~~~~~	XXXXX
Task 3 Database Listing	~~~~~~	~~~~~~	~~~~~~	~~~~~
Task 4 Review Collocation	~~~~~	~~~~~	~~~~~	
Task 5 Prioritize Resource	AAAAAA Be yyyyy	~~~~~~	~~~~~	~~~~~
ւ առեղացել տար է է մենատեն մեն հայնաս է Նկարապեհամինեն հատ՝		MMMMM	NANAAA	~~~~~
Proposed Manpower				
Mon	ths (hours	;)		

	nonions
*****	XXX
*****	XXX
*****	XXX
******	XXX
Secretary	XXX
Drafting	XXX
Research Assistants	XXX

LOWTEMP. CO

ADDENDUM TO STANDARD CONTRACT AGREEMENT for STATE GEOTHERMAL ENERGY RESEARCH, DEVELOPMENT, AND DATABASE COMPILATION

thereges made June 25, 1992

contrac

Oregon

between

THE OREGON STATE SYSTEM OF HIGHER EDUCATION OREGON INSTITUTE OF TECHNOLOGY

and

THE COLORADO GEOLOGICAL SURVEY

STATEMENT OF WORK

1.0 INTRODUCTION

The United States Department of Energy - Geothermal Division (DOE/GD) supports the development of indigenous and environmentally advantageous energy alternatives to the traditional fuels. There is a very large, nearly unused supply of low- and moderate-temperature geothermal resources in the United States that could be brought on line over the next decade. The increased use of Geothermal Heat Pumps (GHPs) could also reduce the need for traditional fossil fuel consumption for space heating and cooling.

The U.S. Congress has appropriated funds for a program of Low-Temperature Geothermal Resources and Technology Transfer and DOE/GD has contracted with the Getterade Institute of Technology - Geo-Heat Center (OIT-GHC), the Idaho Water Resources Research Institute (IWRRI) and the University of Utah Research Institute (UURI) to implement this program.

Important parts of this program are to bring the inventory of the nation's low- and moderatetemperature resources up to date, to complete a collocation study of these resources and communities and other potential users, and to collect and disseminate information necessary to expand the use of GHPs. OIT-GHC will have the lead role in the collocation study and will establish subcontracts with the state resource teams. UURI will work with the State Teams on gathering, documenting, and assembly of low- and moderate-temperature hydrothermal resource data and will assist in technical monitoring of the State Team efforts and publications. IWRRI will be responsible for establishing the hydrothermal resource data for Idaho and for performing geothermal reservoir evaluations throughout the western United States.

The technical tasks described herein may be considered Phase I of the Low-Temperature Geothermal Resources and Technology Transfer program. If Phase I proves successful, and additional funds are appropriated by Congress, the program may be expanded and continued. Phase II would likely include detailed resource evaluations of priority areas identified in Phase I.

Funding for the Low-Temperature Geothermal Resources and Technology Transfer Program is limited, and the success and continuation of the program is dependent upon a productive Phase I effort. Participating State Teams are encouraged to seek state or organization cost shares (in cost or in-kind) to enhance this contract effort.

2.0 TECHNICAL TASKS

The following technical tasks will be accomplished under this subcontract.

- 2.1 Complete an updated inventory of low- and moderate-temperature resources for the State of Colorado, current to June 1, 1992. Review drilling records and other information to identify new resources and verify temperatures and flow rates of springs and wells which may have changed substantially since the previous statewide geothermal resource inventory. Identify geological, geophysical, geochemical, and hydrologic studies which relate to these resources. The minimum temperature for a low-temperature resource is defined to be 10°C above the mean annual air temperature at the surface and should increase by 25°C/km. Occurrences to 150°C will be included.
- 2.2 Conduct a fluid geochemistry study of the more important resource areas for which existing data are questionable or unavailable. UURI will provide up to ten (10) quantitative fluid chemical analyses for each state in support of this study.
- 2.3 Complete a computer database listing compatible with Lotus 123 format tabulating for each occurrence: name, location (T,R,S), county, longitude, latitude, depth, flow, temperature, chemistry, and other data as appropriate and available.
- 2.4 Review OIT-GHC geothermal resource and demographic data for the State of Colorado for accuracy and completeness, as part of the collocation study.
- 2.5 Assist OIT-GHC, UURI, and IWRRI in studies to prioritize low- and moderatetemperature resource areas for new development. Develop conceptual geologic models and groundwater data for selected resources.

3.0 REPORTS, DATA, AND OTHER DELIVERABLES

- 3.1 A geothermal database listing in hardcopy and diskette form will be submitted to UURI. The listing will include all known low- and moderate- temperature spring and well occurrences in the State of Colorado. Principal facts will include location, depth (well), flow rate (if known), etc.
- 3.2 Letter reports and memoranda reviewing collocation data and priority rankings will be submitted to OIT-GHC and UURI.
- 3.3 A final summary report, not to exceed 50 pages, describing all tasks and their results, and documenting any new temperature, geologic, geochemical or geophysical data will be submitted to UURI, OIT-GHC, and IWRRI. This report may incorporate interim letter reports and memoranda as appendices. The report will include a geothermal resource occurrence map of the state, black and white, scale 1:1,000,000 or acceptable alternative.

AND OFT

3.4 Interim progress reports will be submitted to UURI quarterly.

- 4.0 SCHEDULE OF PERFORMANCE AND REPORTING
- 4.1 The period of performance for this agreement will be 24 menths, unless modified by letter agreement and signed by the Colorado Geological Survey, OIT-GHC, and UURI.
- 4.2 A review of the OIT-GHC collocation study will be completed and a letter report or memorandum of comment submitted to OIT-GHC and UURI within one month after receipt of the draft document from OIT-GHC.
- 4.3 A preliminary database listing of geothermal resource occurrences will be submitted to UURI within three months after the execution of this agreement. $F_{\alpha\alpha\gamma}$
- 4.4 A final database listing of geothermal resource occurrences will be submitted to UURI within twelve months after the execution of this agreement.
- 4.5 A final report documenting all new data and activities completed under this agreement will be submitted to UURI within 24 months after the execution of this agreement.
- 5.0 **RESPONSIBLE PARTIES**

James A. Cappa

- 5.1 The Principal Investigator for this agreement will be John-W. Rold, Colorado Geological Survey.
- 5.2 The Technical Project Managers for this agreement, **representing DOE/CD**, will be Howard P. Ross, UURI and Paul J. Lienau, OIT-GHC.
- 5.3 The Contracting Officer for this agreement will be Douglas Yates, OIT.
- 6.0 FUNDING

This contract agreement provides for funding not to exceed \$35,000.00 for the completion of all technical tasks and submittal of all required deliverables.

HRECOM

JOHN W. ROLD DIRECTOR

COLORADO GEOLOGICAL SURVEY DEPARTMENT OF NATURAL RESOURCES 715 STATE CENTENNIAL BUILDING – 1313 SHERMAN STREET DENVER, COLORADO 80203 PHONE (303) 866-2611

June 23, 1992

Howard Ross University of Utah Research Institute Earth Science Laboratory 391 Chipeta Way, Suite C Salt Lake City, UT 84109-1295

Dear Howard:

ROY R. ROMER

GOVERNOR

The materials you had requested from the Colorado Geological Survey for the Colorado portion of the Statement of Work for the Low-Temperature Resources and Technology Transfer are enclosed. The material includes the following:

- 1) Geothermal Project Budget
- 2) Geothermal Project Task Plan
- 3) Geothermal Project Travel Events
- 4) Colorado Dept. of Natural Resources Indirect Cost Negotiation Agreement (the current fee of 8.05% is being negotiated and may possibly be lowered slightly in the near future)
- 5) State of Colorado Fiscal Rules on Travel
- 6) Resume of James A. Cappa, the new Principal Investigator on the project.

According to the Controller of the Department of Natural Resources, Rich Adamich, the Colorado Geological Survey has been audited once as part of an overall audit of the Department of Natural Resources. The audit was completed on August 30, 1989 by the Environmental Protection Agency in conjunction with CERCLA funds distributed to various state agencies within the Department of Natural Resources. The auditor was:

> Truman R. Beeler Office of the Inspector General for Audits Western Division, Environmental Protection Agency 211 Main St., Ste. 220 San Francisco, CA 94105 (415) 974-7084

I hope the included data meets all of your requirements, and I am looking forward to working with you on this geothermal project. If you do have any questions please don't hesitate to call me. Sincerely,

•

.

Tama Cl. Capp

James A. Cappa Chief, Mineral and Mineral Fuels Section

encl.

GEOTHERMAL PROJECT 92-93	BUDGET		
PERSONNEL	HOURS	RATE	TOTAL
PRINCIPAL INVESTIGATOR	500	\$22.62	\$11,310.00
PHYS. SCIENCE TECH.	415	\$10.89	\$4,519.35
CLERICAL	64	\$14.19	\$908.16
CLERICAL	40	\$7.73	\$309.20
PERSONNEL BENEFITS			
PRINCIPAL INVESTIGATOR	500	\$2.98	\$1,490.00
PHYS. SCIENCE TECH.	415	\$1.99	\$825.85
CLERICAL	64	\$1.55	\$99.20
CLERICAL	40	\$1.04	\$41.60
PERSONNEL TOTAL			\$19,503.36
PERSONNEL INDIRECT (.0805	j)		\$1,570.02
GRAND TOTAL PERSONNEL			\$21,073.38

•

.

TRAVEL	\$1,960.00
CONFERENCE	\$300.00
FIELD SUPPLIES/LITERATURE	\$151.00
OFFICE SUPPLIES	\$88.75
XEROX COPIES	\$40.00
PHONE/ LONG DISTANCE	\$175.00
GRAND TOTAL	\$23,788.13

GEOTHERMAL PROJECT 93-94	BUDGET		
PERSONNEL	HOURS	RATE	TOTAL
PRINCIPAL INVESTIGATOR	280	\$22.62	\$6,333.60
CLERICAL	80	\$14.19	\$1,135.20
PERSONNEL BENEFITS			
PRINCIPAL INVESTIGATOR	280	\$4.14	\$1,159.20
CLERICAL	80	\$1.55	\$124.00
PERSONNEL TOTAL			\$8,752.00
PERSONNEL INDIRECT (.0805	5)		\$704.54
GRAND TOTAL PERSONNEL			\$9,456.54

TRAVEL	\$1,420.00
FIELD SUPPLIES/LITERATURE	\$50.33
OFFICE SUPPLIES	\$80.00
XEROX COPIES	\$30.00
PHONE/ LONG DISTANCE	\$175.00
GRAND TOTAL	\$11,211.87

PROJECT GRAND TOTAL

\$35,000.00

GEOTHERMAL PROJECT FY 92-93 TASK PLAN TASKS INVENTORY GEOTH. RESOURC., REV. DRILL. RCDS DESIGN DATA BASE, COMPL. PRELIM. DATA BASE COND. FLUID GEOCHEMICAL SAMPLING PROG. COMPLETE LOTUS DATA BASE COMPLETE LOTUS DATA BASE	1st QUARTER, FY92 PI 160 HOURS PI 36 HOURS	2nd QUARTER, FY92 PI 164 HOURS CLERIC. 40 HOURS PI 40 HOURS PI 40 HOURS	3rd QUARTER, FY93 CLERIC. 64 HOURS PI 40 HOURS, SUPV. TECH 415 HOURS	4th QUARTER, PI 20 HOURS,	FY93 SUPV.
TRAVEL	A) IN STATE 5 DAYS B) OUT STATE 3 DAYS	C) IN STATE 5 DAYS	D) OUT STATE 5 DAYS		,
GEDTHERMAL PROJECT FY 93-94 TASK PLAN TASKS REV. OIT-GHC GEOTH. RES. AND DEMOG.DATA ASSIST OIT-GHC, ETC. IN PRIORITY STUD. COMPL. FINAL SUMMARY REPORT COMPL. FINAL SUMMARY REPORT	1st QUARTER, FY93 PI 80 HOURS	2nd QUARTER, FY93 PI 40 HOURS PI 160 Hours CLERIC. B0 HOURS			
TRAVEL		E) OUT STATE 3 DAYS			
PI = PRINCIPAL INVESTIGATOR TECH = PHYSICAL SCIENCE TECHNICIAN					

٠

CLERIC = CLERICAL STAFF

.

•

GEOTHERMAL	PROJECT TRAVEL	EVENTS				
EVENT	DEPARTURE	DESTINATION	TRAVELLERS	VEHICLE MILES	ND. DAYS	REASON
A	DENVER	PAGOSA SPRINGS	1	600	5	VISIT GEOTHERMAL AREAS
B	DENVER	SALT LAKE CITY	1	AIR CARRIER	3	CONFER WITH UURI, PLANNING
C	DENVER	GLENWOOD SPRINGS	1	800	5	SAMPLE NEW SPRINGS
D	DENVER	SAN FRANCISCO	1	AIR CARRIER	5	GRC CONFERENCE
E	DENVER	SALT LAKE CITY	1	AIR CARRIER	3	CONFER WITH UURI, PRIOR.STUDY

.

United States Department of the Interior

OFFICE OF INSPECTOR GENERAL

CENTRAL REGION 134 UNION BLVD., SUITE 510 LAKEWOOD, COLORADO 80228

September 11, 1991

Build of D

Office of Grant/Contract Financial Management U.S. Department of Health and Human Services ATTN: Edward Tracy 200 Independence Ave., S.W. H.H. Humphrey Bldg., Room 544G Washington, D.C. 20201

Subject: Colorado Dept. of Natural Resources

Dear Mr. Tracy:

Attached are two copies of the subject Indirect Cost Negotiation Agreement. These copies are being forwarded to you for reproduction and distribution in accordance with the FMC 74-4 (currently OMB Circular A-87) committee agreement.

Sincerely,

ichae

Delbert J. Fickas Audit Supervisor

Attachments (2)

Page 1 of 3

STATE AND LOCAL DEPARTMENT/AGENCY INDIRECT COST NEGOTIATION AGREEMENT

INSTITUTION:

DATE: September 11, 1991

Colorado Department of Natural Resources FILING REF: This replaces 1313 Sherman Street, Room 718 Negotiation Agreement Denver, CO. 80203 dated May 21, 1990. 91-P-1342

The indirect cost rate(s) contained herein are for use on grants and contracts with the Federal Government to which OMB Circular A-87 applies subject to the limitations contained in the circular and in Section II A below. The rate(s) were negotiated by the U.S. Department of the Interior, Office of Inspector General and the Colorado Department of Natural Resources in accordance with the authority contained in Attachment A, Section J.4.b. of the Circular.

Section I: Ra	ltes							
	Effective Period							
Type	From	To	<u>Rate*</u>	Locations	Applicable_to			
Fixed Carryforward	7-1-91	6-30-92	8.05%	A11	All Programs			

*Base: Total direct salaries and wages plus applicable fringe benefits.

Treatment of fringe benefits: Fringe benefits applicable to direct salaries and wages are treated as direct costs; fringe benefits applicable to indirect salaries and wages are treated as indirect costs.
Page 2 of 3

SECTION II: GENERAL

A. LIMITATIONS: Use of the rate(s) contained in this agreement is subject to any applicable statutory limitations. Acceptance of the rate(s) agreed to herein is predicated upon the conditions: (1) that no costs other that those incurred by the grantee/contractor were included in its indirect cost rate proposal and that such costs are legal obligations of the grantee/contractor, (2) that the same costs that have been treated as indirect costs have not been claimed as direct costs, and (3) that similar types of costs have been accorded consistent treatment.

B. AUDIT: Adjustments to amounts resulting from audit of the cost allocation plan of indirect cost rate proposal upon which the negotiation of this agreement was based will be compensated for in a subsequent negotiation.

C. CHANGES: If a fixed with carry-forward or predetermined rate(s) is contained in this agreement it is based on the organizational structure and the accounting system in effect at the time the proposal was submitted. Changes in the organizational structure or in the method of accounting for cost which affect the amount of reimbursement resulting from the use of the rate(s) in this agreement, require the prior approval of the authorized representative of the responsible negotiation agency. Failure to obtain such approval may result in subsequent---auditdisallowances.

D. THE FIXED WITH CARRY-FORWARD RATE(S): Contained in this agreement, if any, is based on an estimate of the cost which will be incurred during the period for which the rate applies. When that actual costs for such period have been determined an adjustment will be made in the negotiation following such determination to compensate for the difference between that cost used to establish the fixed rate and that which would have been used were the actual costs known at the time.

E. BILLING RATE: In accordance with the agreement allocating costs of central services provided by others, adjustments have been made to properly reflect costs of central services billed and also allocated to this department.

F. NOTIFICATION TO FEDERAL AGENCIES: Copies of this document may be provided to other Federal offices as a means of notifying them of the agreement contained herein.

Page 3 of 3

ACCEPTANCE

By the State Department/Agency:

s/

KEN AZAR JAL Name (Print or Type)

FRECHTINE DIRECTOR -Title (Print or Type) DEPT. NATURAL RESOLUTIES

AUGUST 30, 1991 Date (Print or Type)

_ .

.__

By the Responsible Agency for the Federal Government U.S. Department of Interior:

/s/

Delbert J. Fickas Name

Audit Supervisor Title

Department of Interior Office of Inspector General Agency

September 11, 1991

Date

. . . Ray Macv Negotiated by

Telephone: (303) 236-9243

EXHIBIT 1

		COLORADO DEPARTMENT OF	NATURAL RESOUR	CES	
		FY 1992 Indirect Co	<u>st Proposal</u>		
	alculation				
		For the Period July 1, 1991,	through June	30, 1992	
				· · ·	
	a 1	Fired Pate per Negotiation	FV 1990	FV 1992	
	"	Fixed Rate per Negotiation	· · · · ·	EI 1992	
		Agreement A/B computed as follows:	<u>6.0</u> %	8.05%	
A		Direct Cost Base (B)	<u>\$44,191,079</u>	<u>\$50,696,366</u>	
		Indirect Cost Pool: (A)			
т. Т		Indirect Costs Proposed	\$2,539,748	\$2,913,196	
		SWCAP	713,308	1,371,411	
		Carryforward	(603,862)	(202,100)	
		Total Indirect Cost Pool	\$2,649,194	\$4,082,507	
· · · · · · · · · · · · · · · · · · ·		Actual Costs Negotiated	·		
		Computed as follows:			••
		Actual Direct Cost Base	<u>\$49,948,574</u>		
		Actual Indirect Cost Pool:			
		Indirect Costs Allowed	\$2,685,368		
		SWCAP	713,308		
		Carryforward	(603,862)		
		Total Indirect Cost Pool	52,794,814		
	C)	Carry-forward Computation:			
		Amount Recovered:			
		(Actual Direct Costs x Fixed Rate)			
		49,948,57 x 6.0% (C)	\$2,996,914		
		Should have Recovered:			
		Actual Indirect Costs for FY 1990	\$2,794,814		
		Carry-Forward to FY 1992 (D-C)	(\$202.100)		
		(over-recovery)			

.

The Property of the second sec

EXHIBIT 2

COLORADO DEPARTMENT OF NATURAL RESOURCES FY 1992 INDIRECT COST PROPOSAL FY 1992 DIRECT COST BASE For the Period July 1, 1991 through June 30, 1992

PROGRAM PROPOSED / ACCEPTED Division of Wildlife \$29,169,608 Land Board 1,169,694 Water Conservation 1,354,075 Water Resources 8,853,957 Soil Conservation 249,487 Division of Mines 124,042 Oil & Gas Commission 920,716 Geological Survey 792,388 Division of Parks 5,844,760 Mined Land-Reclamation 1,941,658 DOW ADP Personnel 120,475 JRP 43,439 CERCLA 112,067

TOTAL DIRECT COST BASE

\$50,696,366

EXHIBIT 3

COLORADO DEPARTMENT OF NATURAL RESOURCES FY 1992 INDIRECT COST PROPOSAL FY 1992 INDIRECT COST POOL For the Period July 1, 1991 through June 30, 1992

LINE ITEM	PROPOSED/ACCEPTED		
Personnel Services	\$2,338,569	• •	
Health & Life	55,506		
Merit Increase	4,130		
Workman's Compensation	13,320		
Operating Expense	100,842		
Legal Services	2,748		
Automation Initiative	50,000		
ADP Equipment Maintenance	141,751		
GGCC Computer	63,645		
Audit Charges	40,000		
Equipment Use	68,023		
Capital Outlay	20,701		
-Short-term Disability	9,016		
Risk Management	4,945		

TOTAL INDIRECT COST POOL

. •

1: 3

ί

1970 av.

• •

<u>\$2,913,196</u>

CHRONOLOGICAL SUMMARY OF PROFESSIONAL EXPERIENCE

AUGUST, 1991 - PRESENT: Colorado Geological Survey, Denver, Colorado; Chief, Mineral and Mineral Fuels Section.

Advise the public and state agencies concerning mineral and mineral fuel resources. Conduct survey on possible drainage of oil and gas on state lands by adjacent production. Initiate and conduct study of the carbon dioxide resources of the Paradox Basin. Supervise staff project activities, 2 petroleum and 1 mineral geologist.

JUNE, 1991 - JULY, 1991: Nassau Ltd., Reno, Nevada; contract geologist

Conducted a reverse circulation drilling program on a precious metal prospect in Macedonia, Yugoslavia.

APRIL, 1981 - JANUARY, 1991: FMC Gold Co., Denver, Colorado; District Geologist Managed eastern USA gold exploration program. Designed, implemented and managed a \$1M gold exploration program in Turkey. Evaluated precious metal and industrial mineral opportunities in the Rocky Mountain region and various foreign countries.

Implemented and managed a \$3.5M trona exploration drilling program in Spain.

Investigated other worldwide trona occurrences. Evaluated several other industrial mineral opportunities, including kaolin, barite and lithium.

JANUARY, 1977 - APRIL, 1981: Houston International Minerals Corp., Denver, Colorado; Geologist.

Conducted uranium exploration in New Mexico and Canada. Explored for cobalt, nickel, tin and molybdenum in the eastern USA and several western states.

<u>SEPTEMBER, 1975 - JANUARY, 1977: AMOCO Oil Co., Denver, Colorado;; Geologist</u> Conducted oil and gas exploration in Wyoming and Cook Inlet region of Alaska.

MAY, 1974 - SEPTEMBER, 1974: Watts, Griffis and McQuat, Inc., Anchorage, Alaska: Assistant Project Geologist (summer job).

Conducted and partially managed a base metal, stream sediment exploration program in the Brooks Range of Alaska.

JANUARY, 1972 - JANUARY, 1973: US Forest Service, Goleta, California; Geologist. Conducted environmental geology studies on erosion risk. Mapped 60 square miles of the Coast Ranges in order to determine lithological parameters for erosion potential.

MARCH, 1969 - AUGUST, 1971: Anglo American Corp., Lusaka, Zambia; Staff Geologist. Conducted exploration for copper in the Zambian Copperbelt and in the Zambezi Escarpment region. Utilized geochemical prospecting, pit and trench mapping and sampling, and core drilling on favorable targets. <u>SEPTEMBER, 1967 - OCTOBER, 1968:</u> US Forest Service, Goleta, California; Geologist. Conducted erosion studies after wildfires. Conducted joint studies with soil scientists on effects of recreational vehicles on soil compaction and erosion. Sited and logged water wells.

PROFESSIONAL ASSOCIATIONS

Society of Economic Geologists, Fellow Geological Society of America, Member Society for Mining, Metallurgy, and Exploration, Member American Institute of Professional Geologists

ł

EDUCATION

University of California @ Santa Barbara, B.A. Geology, 1967. Santa Barbara, California.

New Mexico Institute of Mining and Technology, M.S. Geology, 1975. Socorro, New Mexico.

TITLE	TRAV	EL		···		
	.01	Departm	mental Busines	S		
		a. The inst	use is consis itution.	stent with	the polic	ies of th
		b. Use writ admi	of the Stat ing, by an inistrative he	e automobi academic ad of a nom	le is apy department hacademic	proved, i t head c unit.
	.02	Student	<u>Organization</u>	15		
		a. The inst	organization	is official	ly recogni	ized by th
		b. The mand	organization latory student	must be f fees.	inanced i	n part b
		c. The inst	use is consis itution.	stent with	the polic	ies of th
		d. Fund	ls must be on	deposit wit	th the ins	titution.
		e. The cont	organization rol and other	is subject institutio	to budget onal proce	ary dures.
		f. Reim Stat	abursement is	; made for nobiles.	r the us	e of th
		g. A fu acco the by t	all time State ompanies the institutional the governing	e classified students on area, unles board of th	d or exemp n any tri ss approved ne institu	ot employe ps outsic d otherwis tion.
		h. Stud the	lent use of St goals of each	ate automob n individua.	iles is in l organiza	n line wit tion.
	.03	<u>State-c</u>	wned Automobi	les May Not	<u>be Used</u>	
		a. For busi	political, p	ersonal, or gious purpo	non-stat	e employe
		b. For	personal bene	fit of any	person.	

•

)

STATE OF C	COLORADO	Issued by Accounts Date Issued Date Revised	s and Control 4/1/71 7/1/90	Chapter Section Page	1.00 1-12	
TITLE T	RAVEL		<u></u>			
1.28 <u>A</u> <u>V</u>	gency Liabil ehicles	ity for Damad	ge to Capit	col Compl	ex Motor Pool	
W m e a c i a o	henever a isconduct o egligence of nployee of ll costs ind ase of tota ncluding tr ccident, sha perator ther	vehicle is of the vehic or misconduct the agency e curred in the al loss, the avel and oth ll be charges eof.	damaged the termination of any mploying termoval a removal a replacement ner costs able to the	nrough n or, or other the vehic and repai ent of attribut agency	egligence or through the official or cle operator, r or, in the the vehicle, cable to the employing the	
1.29 <u>T</u>	ravel Incent	ives and Awar	<u>rds</u>			
I e S p	Incentive awards, coupons, or rebates received by employees for air flights, car rentals, lodging, or other State incurred business related expenditures become the property of the State.					
1.30 <u>R</u>	REIMBURSEMENTS					
1.31 <u>E</u> <u>A</u>	Expense Reimbursements Not to Exceed Meal Allowance Plus Actual Cost of Lodging					
•	01 <u>When Tra</u> traveler exceed t maximums would r individu	avel Extends may claim the the stated may plus the S hormally be al was in a t	Beyond One le actual c aximums, (State allow eaten du travel stat	e Calenda cost of 1 see Sect wance for wining th cus. No	ar Day - the odging not to ion 1.32 for meals which he time the reimbursement	
	may be c cost to obtained voucher Reimburs commerci not requ	claimed for m the traveler and submit when ement for al establish ired.	eals furni, Receipts ted with requestin lodging sl ments. Re	shed at a for lod the tr g rei hall be eccipts f	no additional ging shall be avel expense mbursement. limited to for meals are	
	02 <u>Travel</u> wholly w while a <u>allowed</u> . on offi remains official the wo: allowanc	wholly within vithin a sing way from the lif, howeve cial business away from his business re- rkday, the ce for brea	<u>le day, re</u> <u>le day, re</u> <u>le duty s</u> er, an empl s prior s home aft equires the agency he kfast and	day - imburseme station loyee lea to 5:00- ter 8:00 e employ ead may /or ding	If Travel is ent for lunch will not be aves his home -a.m. and/or p.m. and the ee to extend allow meal ner for the	

traveler.

1

	STATE (FISC	OF COLORADO C AL RULES	Issued by Accounts a Date Issued4/ Date Revised7/	nd Control Char 1/71 Sect 1/90 Page	oter ion1.00 1-13
ſ	TITLE	TRAVEL	<u> </u>		
		.03 <u>Travel</u> <u>spouse</u> , rate is trip fo will be The St employe State e Governo Convers	not solely for relative, or generated beca or personal rea applied to the ate shall not e's spouse or mployee on a bu r of the ely, the State	State busines friend - I: use a State e asons, the l business par reimburse other person siness trip (State, See shall not rec	ss or travel with a lower travel mployee extends a ower travel rate t of the trip. the cost of an accompanying the see exception for ction 1.21.02). eive benefit from
		a lower State employe Suffici portion the tra	employee or ot e on a business ent documentation of the busines vel reimburseme	esulting from ther person trip. on of the cost strip must nt voucher.	ost of the State be included with
	1.32	Lodging and	Per Diem Allowa	nces	
		Employees au be entitled period, gene days followi reimbursemen	thorized to tra to reimburseme rally considere .ng the submiss t voucher for t	vel on offici ent within a d no greater ion of a com he following:	al business shall reasonable time than thirty (30) rectly completed
		.01 <u>Domesti</u> travel States high co	<u>c Rates</u> The f destinations w including the st metropolitan	following sha ithin the Co District of areas under	ll apply for all ntinental United Columbia (except 1.32.02):
		a. Lodg acco \$60. auth desi to a	ing - Actu mmodations. 00 must be ority. Employ gnated lodging ssist the agenc	al cost Lodging cost approved by vees may be facilities i y in controll	of reasonable s in excess of the approving required to use n high cost areas ing the cost.
		b. Per and unde	Diem A per tip and incid r Section 1.38:	meal allowan ential expens	ce including tax ses not included
		<u>J</u>	uly 1, 1989	July	1, 1990
	Kigu Ra	ler Brea Lunc fes Dinn	kfast \$ 5.50 h 6.00 er <u>14.50</u> \$26.00	Breakfast Lunch Dinner	\$ 5.50 6.00 <u>14.50</u> \$26.00

.

STATE OF COLORADO FISCAL RULES TITLE TRAVEL	Issued by Accounts and Control Date Issued <u>4/1/71</u> Date Revised <u>7/1/90</u>	Chapter Section Page1-14
.02 <u>High Cos</u> Areas Ar	t <u>Metropolitan Areas</u> e as Follows:	High Cost Metropolitan
<u>State</u>	Key City ¹	County/Other ^{2,3} Location
California	Death Valley Los Angeles	Inyo, Los Angeles, Kern, Orange, Ventura, Edwards AFB, Naval Weapons Center and Ordinance Test Station, China Lake
•	Oakland Palm Springs Sacramento	Alameda, Contra Costa, Marin Riverside Sacramento
	San Diego San Francisco San Jose San Luis Obispo San Mateo Santa Barbara Santa Cruz South Lake Tahoe Tahoe City Yosemite National Park	San Diego San Francisco Santa Clara San Luis Obispo San Mateo Santa Barbara Santa Cruz El Dorado Placer Mariposa
Colorado	Aspen Boulder Denver Keystone/ Silverthorne Vail	Pitkin Boulder Denver, Adams, Araphaoe, Jeferson Summit Eagle
District o Columbia	f Washington, D.C.	
Florida	Key West Miami West Palm Beach	Monroe Dade Palm Beach

FISCAL RULES	Date Revised 7/1/90	Page1-15
<u>State</u>	Key City'	<u>County/Other</u> Location
Georgia	Atlanta	Clayton, DeKalb, Fulton, Cobb
Illinoi	s Chicago	DuPage, Cook, Lake
Louisia	na New Orleans	Jefferson, Orleans Plaquermines St. Bernard
Marylan	d Annapolis Baltimore	Anne-Ariundel Baltimore, Hartford
	Columbia Ocean City	Howard Worcester
Massach	usets Andover Boston Lowell Martha's Vineyard Nantucket Quincy	Essex Suffolk Middlesex d/ Dukes, Nantucket Norfolk
Michiga	n Detroit	Wayne
Nevada	Las Vegas	Clark, Nellis AFB
New Jer	sey Atlantic City Eatontown Edison Newark	Atlantic Monmouth, Fort Monmouth Middlesex Bergen, Essex, Hudson, Passaic Union
	Ocean City Princeton/Trento	Cape May n Mercer

ł

 $\widehat{\mathcal{T}}$

TITLE	TRAVEL		
	<u>State</u>	Key City ¹	County/Other ^{2,3} Location
	New York	Monticello New York City	Sullivan Bronx, Brooklyn, Manhattan, Queens, Staten Island
		Saratoga Springs White Plains	Nassau, Suffolk Saratoga Westchester
	Ohio	Cleveland	Cuyahoga
	Pennsylvan:	ia Chester King of Prussia Philadelphia Valley Forge	Delaware Montgomery Philadelphia Chester
	Rhode Isla	nd Newport	Newport
	So. Carolin	na Hilton Head	Beaufort
	Texas	Dallas/Ft. Worth Houston	Dallas/Tarrant Harris, L.B. Johnson Space Center, Ellington AFB
	Virginia	Williamsburg	Williamsburg
	Washington	Seattle	King
Unless of locations of the k those bou Localiti within, c city as independe and the l Military or not s city or	otherwise spectrum within, or of ey city, include andaries." es with count or entirely su well as the heat ent entities is listed counties installation pecifically no county bound	ecified, the localit entirely surrounded b cluding independent e ty definition shall arrounded by, the corp boundaries of the lis located within the bou es." hs of Government-rela named) that are locat lary shall include "	y is defined as "a y, the corporate limi entities located with include "all locatio borate limits of the k ted counties, includi undaries of the key ci ted facilities (wheth ed partially within t all locations that a

ì

•

•

,

STATE <u>FIS</u>	OF COLORADO Issued by Accounts and Control Date Issued <u>4/1/71</u> CAL RULES Date Revised <u>7/1/90</u> Page <u>1-17</u>			
TITLE	TRAVEL			
	a. Lodging - Actual cost of reasonable accommodations.			
	b. Per Diem - A per meal allowance, including tax and tip and incidental expenses not included in Section 1.38:			
Hig	h <u>July 1, 1989</u> <u>July 1, 1990</u>			
Ren Dis	F Breakfast \$ 7.50 Breakfast \$ 57.50 Lunch 8.00 Lunch 38.00 Dinner 18.50 Dinner 18.50 \$ 34.00 \$ 34.00 \$ 34.00			
	.03 <u>Required Receipts</u>			
	Receipts for lodging are to be furnished and attached to the travel reimbursement voucher.			
	Receipts are not required for meals.			
	.04 Reimbursement Claimed for Meal Allowance			
	In no case shall an employee be reimbursed more than the meal allowance provided by this section. However, an employee, at his discretion, may claim less than the per meal allowance provided by this section.			
	.05 See exceptions at Section 1.35 and 1.37.			
1.33	<u>Miscellaneous Allowance - Board or Commission Members</u>			
	Board or commission members who donate their services to the State are entitled to actual reasonable or necessary costs of travel expenses as provided by statute. The test for reasonable or necessary shall be the reimbursement rates contained in these fiscal rules. Costs in excess of these reimbursement rates are allowable if adequately documented and justified. Board or commission members may be reimbursed for child care services. The department executive director shall determine the need for child care reimbursement. Reimbursement may not be made to a family member and receipte must be furnished			

, **•**

•

.

:

STATE OF COLORADO

FISCAL RULES

Issued by Accounts and Control Date Issued <u>4/1/71</u> Date Revised <u>7/1/90</u>

Chapter	1	
Section .	1.00	
Page	1-18	
0		

TITLE TRAVEL

1.34 <u>Lodging and Per Diem Allowances for Travel Outside the</u> <u>Continental United States.</u>

The current per diem rate established by the Federal Government will be allowed for authorized travel outside the continental United States. These per diem rates apply upon departure from and until return to the United States. Current rates may be obtained from the Traffic and Travel Services Unit of the United States Government, General Services Administration, Denver, Colorado.

1.35 <u>Alternative Plan When Employees Furnish Their Own Lodging</u> and Meals

When an employee furnishes his or her own lodging and/or meals (such as cabin, travel trailer, or camping equipment owned by the employee; or furnishes own food for cooking) in conjunction with travel that extends beyond one calendar day, the following allowances shall be authorized:

.01 a. Food Allowance - employee furnishing own meals

<u>July 1,</u>	1989	<u>July 1, 1990</u>		
Breakfast Lunch Dinner	\$ 3.50 4.50 <u>9.50</u> \$17.50	Breakfast Lunch Dinner	\$ 3.50 4.50 <u>9.50</u> \$17.50	

- b. Food allowance if employee eats in a commercial establishment shall be the same as prescribed in Chapter 1, Section 1.32.
- .02 In lieu of lodging reimbursement, an employee will be given the following allowance to cover the costs of cooking, heating, laundry, and other utilities incidental to the use of a cabin, trailer, camper, or similar facility owned by the employee:

July 1, 1989 - \$15.00 per day July 1, 1990 - \$15.00 per day

Doot in a second	
Tost Fax Note 7671	Date of /-
	-1150 pages /
Coloring Koss	From T
LUURI	The span
Phona #	C65
801 584 4444	Phone #
ROI CON LINE	303 866 3293
H	305 PL 244
Howard its lands la	1441
	5 Dut swaften if Far your

JAMES A. CAPPA

EDUCATION

Bachelor of Arts degree in Geology from the University of California at Santa Barbara in 1967.

Master of Science degree in Geology from the New Mexico Institute of Mining and Technology in 1975.

EMPLOYMENT

Jim's first job was as an engineering geologist for the U.S. Forest Service in Santa Barbara, California.

In 1969, he took a position as an geologist on a copper exploration program for Anglo American Corporation in Zambia before returning to graduate school in 1973.

While a graduate student he spent a summer on a base metal exploration program for WGM, Inc. in the Brooks Range of Alaska. After leaving graduate school in 1975 Jim spent one year with Amoco

Production Company in Denver, Colorado as a petroleum geologist. Jim went to work for Houston International Minerals in early 1977 exploring for uranium, tin, and cobalt in the USA and Canada.

exploring for uranium, tin, and cobalt in the USA and Canada. In 1981, Jim went to work for FMC Corporation where he conducted and managed gold and industrial mineral exploration programs in the USA, and several overseas locations such as Spain, Brazil, Chile, Turkey, Greece, Italy, Yugoslavia, and Australia.

Since 1991, Jim has been with the Colorado Geological Survey where he is the head of the Mineral and Mineral Fuels Section.

1992-1993 LOW-TEMPERATURE GEOTHERMAL ASSESSMENT PROGRAM, COLORADO

James A. Cappa Colorado Geological Survey 1313 Sherman Street, Suite 715 Denver, CO 80202 (303) 866-2611 December 30, 1993

Acknowledgements

This low-temperature geothermal assessment program was funded by the U. S. Department of Energy-Geothermal Division. The Colorado Geological Survey serves as a subcontractor to the Oregon Institute of Technology-Geo Heat Center for the purposes of fulfilling the terms of this contract within the State of Colorado.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe private property rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

Previous assessments of Colorado's low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late- 1970's. The purpose of the 1992-1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U. S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources.

The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30° C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases.

For the purposes of this report a geothermal area is defined as a broad area, usually less than three square miles in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978.

Six geothermal areas are recommended for further investigation: Trimble Hot

Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

1. Introduction

The first assessment of the geothermal resources of the State of Colorado was completed in 1920 by the Colorado Geological Survey with the publication of Colorado Geological Survey Bulletin 11, <u>Mineral Waters of Colorado</u>. Bulletin 11 contains chemical analyses of the state's mineral waters including the known geothermal waters and, also, has a section describing the utilization of the mineral waters.

Low-temperature geothermal resources are defined as those having a surface temperature of 20° to 100° C. The first modern low-temperature geothermal assessment for the state of Colorado was completed during a period of time from about 1976 to 1983. That assessment was carried out by the Colorado Geological Survey through a funding program with the U. S. Department of Energy and the U. S. Geological Survey. The 1976 survey involved a sampling program conducted over an approximate 12 month period of 125 geothermal sources from 56 geothermal areas and resulted in the 1976 publication of Colorado Geological Survey Information Series 6, <u>Hydrogeochemical Data of Thermal Springs and Wells in Colorado (revised 1993)</u>.

In 1978, the Colorado Geological Survey published Bulletin 39, <u>An Appraisal of</u> <u>Colorado's Geothermal Resources</u>, which contained descriptive information on the sites, including location, current usage, geological setting and an analysis of various geothermometers for each of the 56 geothermal areas of the state. Bulletin 39 utilized the analytical geochemical information presented in Information Series 6.

Several other site-specific geological and geophysical studies were performed by the Colorado Geological Survey up to 1983. Economic evaluations regarding the utilization of geothermal heat and energy for various sites were also completed during this time. The U. S. Department of Energy was the primary funding agency. All the pertinent publications are listed in the Reference chapter of this report.

The need for a new geothermal assessment is evidenced by the results of the current 1992-1993 low-temperature geothermal assessment. In Bulletin 39 which was published in 1978, there are 56 geothermal areas and 125 geothermal sites. The 1992-1993 survey lists 93 geothermal areas and 157 geothermal sites throughout the state. Over 380 chemical analyses were compiled from various sources in the construction of the database. Utilization of geothermal resources has changed over years. In some cases flow rates and temperature of the geothermal sources have changed since prior assessments. Several errors in location and description of geothermal springs from both the above described Colorado Geological Survey publications and the U. S. Geological Survey WATSTOR database were corrected.

The data collected and compiled for this survey are recorded in four computer databases. A 1:1,000,000 scale map of the state (Plate 1) shows the location and ID number of each of the geothermal areas.

The 1992-1993 low-temperature geothermal assessment for Colorado was initiated in the fall of 1992 by the Colorado Geological Survey. The scheduled completion date is December, 1993. Funding for this survey was provided by the U. S. Department of Energy. The program was administered by the University of Utah Research Institute in Salt Lake City, Utah and the Geo Heat Center at the Oregon Institute of Technology, Klamath Falls, Oregon.

2. Data Sources

Data were compiled from a variety of sources including unpublished materials. The most important unpublished sources were the Colorado Department of Water Resources well permit files, the U. S. Geological Survey WATSTOR database, and analytical reports from private laboratories given to the principal investigator by geothermal source owners and operators.

The most important published source material includes: George et al., 1920, Colorado Geological Survey Bulletin 11; Barrett and Pearl, 1976, Colorado Geological Survey Information Series 6; and Barrett and Pearl, 1978, Colorado Geological Survey Bulletin 39.

The University of Utah Research Institute provided 10 new water analyses for each state for the current low-temperature geothermal assessment program. All 10 new analyses were completed for the Colorado portion of the program.

All geochemical data which maintained a cation-anion charge balance of $\pm 15\%$ were entered into the databases. Geothermal sources with only one analysis were entered regardless of the charge balance. All data entries, especially those with significant cationanion charge balance errors, were checked by two separate operators. References for each analysis are recorded in the GTHCHM1 database.

3. Data Format

The data collected during this assessment has been distributed into four Quattro Pro 4 spread sheets on the enclosed diskette. For purposes of this program a geothermal <u>area</u> is defined as a geologically cohesive land area that may or may not contain several geothermal wells or hot springs. Generally an <u>area</u> is less than approximately three square miles. A <u>site</u> is defined as an individual geothermal well or hot spring within an <u>area</u>.

Each geothermal area within the database has a unique ID number. Different sites within a geothermal area have unique area-site numbers. All the tables list the ID number, Site number, and Geothermal Source (Name).

Table 1 is a location database (GTHLOC); it describes the county, quadrangle map, section, township, range, latitude and longitude, and Universal Transverse Mercator grid references.

Table 2 contains the long form of the geochemical database(GTHCHEM1). All the geochemical and sample data collected during this survey is stored in this Table. There can be multiple entries of geochemical data for each site.

Table 3 is the short form of the geochemical database(GTHCHEM2). It contains an abbreviated element list and has only one entry per site. Where multiple chemical analyses were available all the results were averaged to make just a single entry.

Table 4 contains the general information database (GTHGEN). It has information such as temperature, flow rate, type, references, and current usage for each geothermal site.

All the data in the project databases were entered by hand. Much of the data resided in Colorado Geological Survey Bulletins and Information Series and had never been entered into a computerized database before. The only other computerized database used in this project was the WATSTOR database compiled by the U. S. Geological Survey; however, all of this data was entered manually.

The enclosed diskette contains all the database files in a Quattro Pro 4 format. These files can easily be transformed into Lotus 1-2-3 or other database manager files. The following table lists all the important computer database information for the databases.

TABLE	DATABASE NAME	INFORMATION	NO. OF FIELDS	NO. OF BYTES
Table 1	GTHLOC	Location	24	84,936
Table 2	GTHCHEM1	Chemistry, long list	59	385,444
Table 3	GTHCHEM2	Chemistry, short list	22	84,670
Table 4	GTHGEN	General information	8	29,316

Table A: List of pertinent computer file data for the low-temperature geothermal assessment databases. All databases are in Quattro Pro 4 format (WQ1 suffix).

4. Fluid Chemistry

The University of Utah Research Institute (UURI) provided 10 new water analyses for each state as part of the low-temperature geothermal assessment program. Because of time constraints a lower limit of 30° C was set on any geothermal spring or well to be visited in the field. Almost all of the geothermal sources greater than 30° C were visited. A few that would have required a full day to walk in to were not visited. The temperature, pH, conductivity, flow rate and current usage for each site were recorded. Sites for a complete water analysis were selected on a subjective criteria of developmental significance and lack of recent or quality geochemical data. The 10 sites selected for new water analyses in Colorado are:

> Craig Warm Water Well Desert Reef (Florence) Dotsero, South Mt. Princeton (Hortense Well) Ouray (Pool or Box Canyon Spring) Routt (aka Strawberry) Steamboat Springs (Heart Spring) Waunita Hot Springs Juniper Hot Springs

Pagosa Hot Springs (Big Spring)

The results of the new samples are included in Table 2 and have a reference number of 3. There were no new results that had serious implications for the prior known geochemistry of the geothermal areas.

Other sources of geochemical information were utilized in compiling the database. The most significant source of geochemical data was the DOE supported studies performed by the CGS in the late 1970's. The reference for each analysis is listed in Table 2. Any geochemical analysis that had a cation-anion balance error greater than 15% was discarded except for the case described below.

Geochemical data derived from the U. S. Geological Survey WATSTOR database was entered into the current database; unfortunately, most of those reports do not have an analysis for HCO_3^{-2} or CO_3^{-2} which causes severe errors in the cation-anion balance. As most of these analyses are the only one for that particular site they have been retained in the database even though they do not balance within the specified limits.

5. Discussion

The location of all the geothermal sites compiled during this assessment program is shown on Figure 1. The accompanying Plate 1 shows the location and geothermal area ID number. A frequency plot of all the geothermal temperatures from each site is shown in Figure 2. The greatest number of temperature measurements fall in the 25° to 40° C categories. There is another peak in the 51° to 55° C range.

The following section contains a brief discussion of the sites that were visited during the 1992-1993 geothermal assessment program. All the geothermometer estimates in the following section are derived from discussions and tables in Barrett and Pearl (1978).

Antelope Warm Spring, Mineral County

The Antelope Warm Spring was visited in June of 1993. The spring issues into a concrete-lined cistern approximately 6 feet by 4 feet at ground level and 5 feet deep. The spring is 20 feet north of wooden building shaped like a quonset hut. Inside this building is a 20 foot by 30 foot swimming pool. Water from the spring was used to fill the pool.

Mr. Larry (Sonny) Dickerson, longtime owner of the property around the spring, indicated the pool had not been used for several years. The pool was used by family and friends, never commercially. Currently, the swimming pool building is used for storage by Mr. Dickerson. The pool is covered by a tarp and is nearly empty. Water from the Antelope Warm Spring is diverted into the pasture surrounding the spring. A valve and pipe system (in an advanced state of disrepair) can still divert most of the spring flow into the swimming pool if desired.

Flow from the spring was measured at 50 liters per minute which was four (4) times the rate measured by Barrett and Pearl (1976) in 1975. Mr. Dickerson is of the opinion that during the last five years flow from the spring has noticeably increased.

The most reasonable estimate of the subsurface reservoir temperature from a

Colorado Geothermal Springs and Wells - Figure 1 ٠ ٠ • .. . ٠ ٠ ٠ -•• 2 ۰. • ٠. . . • : ٠ .• ۰ • . مر ••

combination of geothermometers is 35° to 52° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

Birdsie Warm Spring, Mineral County

There are five springs that issue from the toe of the slope just north of the road. All the flow enters a culvert and flows out to the Rio Grande. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 35° to 52° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

Brands Ranch Artesian Well, Jackson County

The Brands Ranch Artesian Well was visited in May, 1993. There is no longer any physical evidence of the well mentioned in Barrett and Pearl, 1978. The spring bubbles up into a 15 feet diameter, 2.5 foot deep pool. There are no facilities in this somewhat remote area. The pool appears to get some occasional use from hunters, campers, fisherman and local people.

The collapsed well that makes the hot spring is the Horton 2 Brands well drilled in 1953 to a total depth of 1,075 feet. The lowest formation penetrated is the Morrison Formation. The hot waters probably come from the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 42° to 55° C (Hail, 1965; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Browns Canyon Warm Springs, Chaffee County

An attempt to visit this site was made in July, 1993. Several minor seeps were noted in the area described by Dick (1976) and Barrett and Pearl (1978); however, these seeps had a temperature less than 20° C (Scott et al., 1975; Barrett and Pearl, 1976; Dick, 1976; Barrett and Pearl, 1978).

Canon City Hot Springs, Fremont County

Canon City Hot Springs emerges from a corroded casing in the northeast corner of the front yard of a house that faces the nearby Arkansas River. Nothing remains of the "classy" thirty-eight room Royal Gorge Hotel and Spa built adjacent to the Spring in the 1870's. Fifteen years ago the current owner of the property filled in the swimming pool supplied by the spring.

Water from the spring is now used to irrigate some of the owner's and a neighbor's front yard landscape shrubs. When the spring was visited in June of 1993 the temperature of the spring was 40° C. The flow varied from 9 to 142 liters per minute (George et al., 1920; Taylor et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Cebolla Hot Springs, Gunnison County

The Cebolla Hot Springs near the village of Powderhorn was visited in May, 1993. The cabins and bath houses appeared to be still in useable and working condition; however, there was no one around to give us any information about present day usage. There are still two bath houses (George et al., 1920; Hedlund and Olson, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Cement Creek Warm Springs, Gunnison County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60° C (Barrett and Pearl, 1978).

Clark Artesian Well, Pueblo County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 60° C (Barrett and Pearl, 1978).

Colonel Chinn Hot Water Well, Delta County

This well was visited in November, 1992. The well water is piped through a closed wellhead to a manifold and then to stock tanks about 200 feet away. An accurate indication of the temperature could not be obtained; however, the property owner indicated that the water flows all the year without freezing (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Hail, 1972).

Conundrum Hot Springs, Pitkin County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50° C (Barrett and Pearl, 1978)

Cottonwood Hot Springs, Chaffee County

At the time of our visit in May, 1993, the Jump Steady Resort was renamed to the Cottonwood Hot Springs Inn. The Inn has guest cabins and hot spring spas in a somewhat rustic environment. Hot water which is used for bathing, domestic heating, and drinking purposes comes from an enclosed cistern.

Another set of nearby springs and a well are used by the Merrifield family for a greenhouse complex, domestic heating and bathing, and drinking.

The Cottonwood Hot Springs is located at the contact of the Tertiary Mount Princeton Quartz Monzonite and Precambrian migmatitic gneisses to the south. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 150° to 200° C (George et al., 1920; Scott, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Craig Warm Water Well, Moffat County

The Craig Warm Water Well is mislocated in Colorado Geological Survey Bulletin 39. The correct location is shown in Table 1 of the current reinvestigation of the geothermal resources of Colorado. The Craig Warm Water Well was visited in November, 1992. At that time the wellhead was in poor condition with hot water leaking from various places. There was no evidence of any activity or recent use of the well. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 70° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Crowley Ranch Reserve Well, Archuleta County

The Crowley Ranch Reserve Well was drilled as an oil and gas test by the Phillips Oil Company in 1943. The well intersected the Dakota Formation at 240 feet, Morrison Formation at 520 feet, Todilto Limestone at 1,200 feet, Wingate Sandstone at 1,308 feet, Chinle Formation at 1,508 feet and Precambrian quartzite at 1,515 feet. The well is reported to have begin flowing hot water at 1,558 feet. The well was abandoned at 1,625 feet and deeded to the Crowley's for irrigation purposes.

There is no longer any physical evidence of the well. Water bubbles up into 8 foot in diameter, 5 foot deep pool. During a visit to the site by CGS personnel in June, 1993, all the water from the well was diverted to the east into an irrigation ditch. Three hundred feet from the well some of the water is taken from the ditch to fill a just constructed hot tub. The remainder of the water in the ditch is allowed to flow into the Jaw Bone Canyon.

From 1943 until within the last year the 48° C well water was used for pasture irrigation. Now, 534 acres of the Crowley family holdings around the well are in a just developed recreational community called the Crowley Ranch Reserve. The Reserve is made up of 19 one to three acre parcels on the 534 acres. Property owners are given common ownership of a great amount of the Reserve's land. One of the amenities touted by the developers of the property is the geothermal hot tub referred to in the above paragraph. Just on the market, only two lots have been sold and as yet no homes have been built.

Deganahl Warm Water Well, Routt County

The Deganahl warm water well was drilled as an oil test in Cretaceous rocks by Fullerton Leasing Company of California in October, 1967. Because the well encountered only warm water, the company turned the well over to the land owner, Mr. Deganahl. He completed the well at a total depth of 2,500 feet in January, 1968 as a warm water well. The original flow of the well was some 11,900 liters per minute at the time of drilling. Caving problems while installing the casing reduced the well flow to 4,800 liters per minute. The temperature of the water is 43° C and the well had a shut in pressure of 200 psi.

In 1981, the Colorado Division of Wildlife applied for a permit to drill a geothermal well at their Finger Rocks Trout Hatchery facility three miles east of the Deganahl well. The permit application was denied by the State Water Engineer. The analyses of the Deganahl well water included in Table 2 were performed as part of the Division of Wildlife's feasability study on the proposed project.

The Deganahl well was visited in May, 1993. The owners of the well make only occasional use of the well for bathing purposes. The hot water is flowing at approximately 1,500 liters per minute out of the wellhead and into Watson Creek. A second well is located at a bearing of S33E and a distance of 225 feet from the original well. The conductivity, pH, and temperature of the water from the second well are similar to the original well. There is no record of the depth or history of the second well, according to a member of the Deganahl family. The flow rate of the second well is only about 100 liters per minute.

The geothermal waters are accounted for by a normal geothermal gradient and probably issue from either the Dakota Sandstone or sandstones within the Frontier

Formation. The well was spudded into The Mancos Shale (Kucera, 1962).

Desert Reef (Florence), Fremont County

The Desert Reef Beach Club is a "Natural Outdoor Hot Springs". The facilities consist of a changing house and a 20 foot by 30 foot bathing pool fed by an old oil test well, the Conoco Huffman No. 1 well drilled in 1966. The well was drilled into Precambrian granite at 3,948 feet and has a total depth of 4,240 feet. Later the well was plugged back to 1,096 feet and produces 54° C water at a permitted flow of 1,100 liters per minute from the Morrison and Dakota sandstones.

Dexter Warm Springs, Conejos County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 20° to 50° C (Barrett and Pearl, 1978).

Dotsero Warm Springs, Eagle County

The Dotsero Warm Springs were visited in May, 1993. The springs and adjacent buildings described and pictured by Barrett and Pearl, 1978 on the northwest side of the Colorado River are no more. Construction activities on Interstate Highway 70 have destroyed the old buildings and the hot springs have been covered over by fill material for the new highway. There are some monitor wells in the area of the old springs at the river's edge; however, there was no sign of flow from these springs.

The springs on the south-east side of the river are still intact and flowing directly into the Colorado River at the base of a fill for the railroad tracks. The outflow quantity is impossible to measure; however, the waters were very saline to the taste. A sample of the water was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 32° to 45° C (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Dunton Hot Springs, Dolores County

Dunton Hot Springs is near the old mining town of Dunton. There are several old cabins around the Dunton Hot Springs. In the past few years a private group has tried to run a primitive resort around the Hot Springs. Unfortunately, they are no longer in business and all the cabins, lodge, and bathhouse are falling into disrepair. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 70° C (Bush and Bromfield, 1966; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Dutch Crowley Artesian Well, Archuleta County

The Dutch Crowley Artesian well was visited during June of 1993. The site's 70° C water is flowing from the top of surface casing which extends about 2 feet above ground level.

The well was spudded as an oil and gas test in July 1951 by a J. R. Butler from Houston Texas. The wildcat encountered two gas-and-water zones at approximately 800 and 1,200 feet in the Morrison Formation. The gas rate from the 800 foot sand and/or sands was

estimated by the well-site geologist (Mr. Walt Osterhoudt) to be about 300,000 cubic feet per day. The well intersected the Entrada Sandstone at 1,500 feet and flowed fresh water with a temperature of 48° C. The well was bottomed at 1,741 feet. The hole was deeded by the operator to the Crowleys for a water well.

Barrett and Pearl's narrative on how to get to the well in their 1978 CGS Bulletin 39 is not accurate. The correct instructions are to read; proceed 3.8 miles southeast from the Chromo Post Office on US Highway 49 to where a dirt road leads east. Turn left on this road and drive about 1/8 of a mile. The well is about 3/4 of a mile due east of this parking spot on the south side of a boggy meadow.

Mr. Donny Shayhan, a Crowley family son-in-law who lead this investigator (H. T. Hemborg) to the well, indicated that he is considering piping water from the well to his ranch house located $1 \frac{1}{4}$ miles west of the well. Up to now this well has only been used for pasture irrigation.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 80° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Osterhoudt, 1978).

Eldorado Springs, Boulder County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 26° to 40° C (Barrett and Pearl, 1978).

Eoff Artesian Well, Archuleta County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60° C (Barrett and Pearl, 1978).

Florence Artesian Well, Fremont County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 34° to 50° C (Barrett and Pearl, 1978).

Fremont Natatorium Well, Fremont County

The 70 by 150 foot swimming pool supplied by the warm water well is now used only by the owners. The pool and concrete decking is in disrepair. The owner indicated that he and his wife closed the pool for public bathing 30 years ago because they could not afford to be in compliance with newly enacted public swimming pool water standards for chlorination. When this site was visited during June of 1993 the owner was using a portion of the warm well water to irrigate a sizeable vegetable and berry garden.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50° C (Barrett and Pearl, 1976; Scott, 1977; Barrett and Pearl, 1978).

Geyser Warm Springs, Dolores County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 120° C (Barrett and Pearl, 1978).

Glenwood Springs area, Garfield County

The Glenwood Springs area is the state's premier bathing spa area. There are several hot springs in the area around Glenwood Springs but only those on the north side of the Colorado River have been developed. No new analyses were taken from the Glenwood Springs area during this study. The Vapor Caves Spa donated a copy of a private laboratory report on the chemistry of their waters (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The chemistry of the geothermal waters in the Glenwood Springs area is too complex for an accurate estimate of subsurface reservoir temperatures. The subsurface temperature is, probably, not much higher than the surface temperature of the hot springs, approximately 45° to 50° C (Barrett and Pearl, 1978).

Hartsel Hot Springs, Park County

The remains of the Hartsel Hot Springs were visited in May, 1993. The bath house that is pictured in Barrett and Pearl, 1978 is no longer standing, though some flow from the hot springs is still coming out of a pipe from the building's foundation. All the facilities of the Hartsel Hot Springs are unused and in a state of decay and disrepair. The flow was difficult to measure but it appears to be greater than 300 liters per minute.

There is a popular opinion based upon rumor and general tourist literature that the geothermal water from the Hartsel Hot Springs is highly radioactive (Cahill, 1983). This opinion appears to based upon an article (Howland, 1936) which describes a barite occurrence in the Pennsylvanian-Permian Maroon Formation about two miles southwest of Hartsel Hot Springs. The author states that there is an unusual blue-colored barite at this locality and he conjectures that the blue coloration was caused by radiation damage. As further evidence for his thesis, Howland states without providing any data or analysis that the Hartsel Hot Springs are highly radioactive based upon analyses done by the Colorado Geological Survey (George et al., 1920). The mean of 60 hot springs (>20° C) analyzed in the 1920 CGS study is 0.139 picocuries Ra per liter. The values range from a trace, 0.001, to 2.64 picocuries Ra per liter. The value for the Hartsel Hot Springs is 0.154 picocuries Ra per liter, only slightly above the mean.

A more recent study of the uranium concentration in natural waters of South Park (Sharp and Aamodt, 1976) indicates that the uranium concentration, as analyzed by fluorometric methods, in a filtered and acidified water sample from the Hartsel Hot Springs was 0.30 parts per billion (ppb) uranium. Two other analyses of the untreated sample were 0.98 and 0.10 ppb uranium. Samples from 16 springs in the South Platte drainage area within the South Park region which includes the Hartsel Hot Springs had values that ranged from 0.21 to 292 ppb uranium with an average of 22.6 ppb uranium. The average of 35 surface water samples in the same drainage area is 3.3 ppb uranium. The uranium concentrations of 0.3 ppb at the Hartsel Hot Springs is well below the regional average, 22.6

ppb, for the South Platte drainage in South Park.

It appears that the hot springs at Hartsel are associated with the South Park or Santa Maria Faults and or the contact of the Morrison Formation and Precambrian crystalline rocks. Precambrian granites in the region around Hartsel are known to possess anomalously high geothermal gradients. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 55° to 85° C (George et al., 1920; Ettinger, 1964; Barrett and Pearl, 1976; Barrett and Pearl, 1978; McCarthy et al., 1982[b]).

Haystack Butte Warm Water Well, Boulder County

This well and surrounding area was visited in May, 1993. Warm water is still flowing from the wellhead into a 25 foot diameter pool which at the present time is used mostly by game birds as a watering and bathing pool. The pool is undeveloped and a significant amount of discarded machinery and other junk surround it. The temperature of the well has declined from 28° C in 1976 (Barrett and Pearl, 1976) to 20° C in May, 1993. The source of the hot water is conjectural; however, the location of the well on the Haystack Mountain Anticline indicates that structures along the axis of the anticline probably helped in circulating waters through the underlying Pierre Shale to depths adequate enough for heating to the observed temperatures (Trimble, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The estimate of the subsurface reservoir temperature made by Barrett and Pearl (1978) from a variety of geothermometers was 50° C. The surface temperature of the spring has declined almost 30% since 1978. It may be reasonable to expect a similar decline in the subsurface reservoir temperature estimate to approximately 35° to 40° C.

Hooper Aquaculture Well, Alamosa County

Access to the Hooper Aquaculture Well is south from Hooper on Colorado Highway 17 for 2.7 miles to the intersection with Nine Mile Lane. Turn left (east) on this road and proceed for 0.2 miles to the site.

The subject well was drilled as an irrigation well by E. F. Lambert in 1963. Total depth of the well was 2,063 feet. A 12 3/4 inch casing was run from surface to 922 feet and 9 5/8 inch casing was run from 922 to 2,063 feet. The well casing is perforated from 1,242 feet to total depth. The driller's log indicates the perforated section is an interbedded mixture of sand, gravel and brown clay. The well according to State of Colorado Division of Water Resources records initially flowed 8,955 liters per minute.

About ten years ago Mr. Erwin Young of Alamosa bought 80 acres of land comprising the north half of the northwest quarter of Section 22, T40N, R10E. The Lambert (nee) Hooper Aquaculture well is located in the NW NW NW of this section was included in the purchase. After the purchase Mr. Young developed his acreage into a fish and alligator farm. The "geothermal" Hooper Aquaculture Well which now flows at about 2,600 liters per minute at a temperature between 30.2° to 31.3° C is about the perfect water temperature for the African perch or "Tilipia" that he is rearing at the site.

During our visit to the site in June of 1993, water leaking around the casing of the Hooper well was measured at 31.3° C. Currently, all the commercial fish growing ponds are

out of doors. Mr. Young, however, is in the middle of a project to enclose a number of tanks inside a metal shed to increase production in winter months. He also is developing an additional Tilipia rearing unit near Alamosa whose ponds will be supplied from a couple of (unknown) geothermal wells of a temperature nearly matching the Hooper Well.

Hot Sulphur Springs, Grand County

The Hot Sulphur Springs Resort is now only open during the summer and fall months. At the time of our visit in June, 1993 the resort complex was for sale. The springs appear to be controlled by a north-south trending fault in the Dakota Formation and the Middle Park Formation.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 150° C (George et al., 1920; Izett, 1968; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Idaho Hot Springs, Clear Creek County

This site was not visited during this program. The chemistry of the geothermal waters in the Idaho Springs area is too complex for an accurate estimate of subsurface reservoir temperatures.

Juniper Hot Springs, Moffatt County

Juniper Hot Springs was visited in November, 1992. At that time the buildings and other facilities associated with the resort were severely run down and in a general state of disrepair. Hunters who were camped there informed me that the resort was closed in 1989, more or less permanently, by the elderly owner who lives in nearby Craig. The source springs are enclosed in a locked building. A one-inch pipe carries hot water from the building for a distance of about eight feet and discharges into a pool. The sample for this study was taken at the discharge point.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 75° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Lemon Hot Springs, San Miguel County

The Lemon Hot Springs consists of a small, 20 foot diameter, pond at the mouth of an old adit. Several buildings having the appearance of private residences surround the pool and tunnel. The waters feeding the hot springs pool are draining from the tunnel. At the time of my visit in July, 1993, the pool was choked with weeds and algae. The owners of the hot springs could not be contacted concerning the status of the pool and springs (George et al., 1920; Bush et al., 1959; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Mineral Hot Springs, Saguache County

An attempt to visit this site was made in June, 1993; however, we were denied access to the area. According to the guard at the site the owner is planning on developing the area and is very secretive about his plans. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90° C (George et al.,

1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Mount Princeton Hot Springs, Chaffee County

Because of the presence of hot geothermal water, the area around Mount Princeton Hot Springs has been heavily developed since the turn of the century and has been the site of various resorts, hotels, homes, and youth camps. The springs around Mount Princeton are the hottest in the state. The Hortense Hot Spring which services the Silver Cliff Ranch, a Christian youth camp, has a temperature of 85° C. The water is used for bathing, domestic uses and drinking purposes. A resort, several residences, youth camps, and a greenhouse utilize the hot water from several springs and wells in the area. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 150° to 200° C.

The state Division of Wildlife has a trout rearing unit at the Chalk Cliffs hatchery some two miles east of the Mt. Princeton Hot Springs. This unit was purchased by the state in 1948 but has been in existence since the 1920's. The 18° C water in the Chalk Creek is used in the trout rearing unit to advantage. Growth times for rainbow trout from fingerlings to a stocking length of 10 inches are decreased from a normal 18 to 22 month period to 12 months because of the warm water (George et al., 1920; Scott et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Mullenville Warm Spring, Park County

The area around this spring, also known as Rhodes Warm Spring in the earlier literature, has been developed as a subdivision called "Warm Springs Ranch". Below the springs the outflow has been channelized by a boulder and cobble drain. The warm water goes to some fishing ponds on the subdivision. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 35° C (Tweto, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Orvis Hot Springs (Ridgeway), Ouray County

The Orvis Hot Springs resort utilizes geothermal water from a tufa mound just to the southeast of the resort buildings, from a well pit dug in 1991, and from springs which feed directly into a 35 foot diameter natural pool. The natural pool, used mostly for bathing in the 41° C water has a privacy fence and is surrounded with a wooden deck. The resort also has private rooms for bathing and massage and hydrotherapy sessions.

Part of the hot water from the tufa mound is being diverted to a greenhouse and aquaculture project about 1,000 feet to the south. The owner has ambitious plans to develop this project but at this writing, July, 1993, it is still under construction (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Ouray, Ouray County

The City of Ouray has taken an active role in developing the geothermal resources of the immediate vicinity. In 1989, the City drilled two shallow wells, OX-2 and OX-6, in the City Park just to the south of the City Swimming Pool (Formerly known as the Radium Hot Springs Pool). These two wells are 90 feet deep and produce 48° C water which goes

directly to the pool. At the time of my visit in July, 1993 one of the wells was temporarily shut-in. The pool still gets the bulk of its hot water via a pipeline from the Box Canyon Hot Springs.

Three motels in the City of Ouray are using geothermal waters from various sources for spas and space heating. The Twin Falls and Box Canyon motels are using geothermal waters from springs located at the motel sites, and the Manganese Mine at the mouth of Box Canyon, and from hot springs in Box Canyon. The Weisbaden Motel uses geothermal waters for its pool and space heating from a hot spring reservoir under the motel and from an underground Vapor Cave which has three natural hot springs issuing into it. The waste geothermal water from the Weisbaden Motel is used to heat the sidewalks and driveways of the City of Ouray municipal buildings about 200 feet down the hill.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90° C (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Pagosa Springs, Archuleta County

These springs were visited during June of 1993. The main spring, Great Pagosa, situated a few hundred feet southwest of the Spring Inn is enclosed by a fence and posted with "No Trespassing" signs. The City of Pagosa Springs has recently built a viewing area on the east side of the spring which provides a good place to observe and photograph the spring. The city has placed four poster boards in the viewing area which describe the: (1) History of the Great Pagosa Hot Springs, (2) Geologic Requirements for a Hot Spring, (3) The Stratigraphic Section at Pagosa Springs, and (4) Distribution of the Pagosa Springs Geothermal Heating System. The poster boards are of good graphic quality and the historical and scientific information is accurate and well written for lay person understanding.

The Spring Inn is in the final phase of a major alteration of their pool area. When finished they will have a cluster of seven soaking pools of different sizes and water temperature ranging from about 35° to 45° C. Individual pools will be able to comfortably accommodate from 8 to 30 bathers.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 80° to 150° C (George et al., 1920; Hail, 1971; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Paradise Hot Spring, Dolores County

This hot spring is located 2.5 miles south of the Dunton Hot Springs along the West Dolores River. At the time of my visit in July, 1993, the springs were not open to the public. The owner of the property uses the warm springs and bath house for his own purposes which is no change from the previous inventory in 1976 (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Penney Hot Springs, Pitkin County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 90° C (Barrett

and Pearl, 1978).

Pinkerton Hot Springs, La Plata County

The rerouting of the U. S. Highway 550 has destroyed two of the four hot springs that made up the Pinkerton Hot Springs. The two remaining springs, the Mound Spring and the Little Mound Spring, are located on the west side of the highway just a few feet from the pavement. The hot water from both springs is piped out to a drain along side of the highway and then to the natural drainage system. There has been some limonite-stained tufa build up at the site of the two remaining springs. The destruction of the two remaining springs has left the Colorado Timberline Academy (formerly the Golden Horseshoe Resort mentioned in Barrett and Pearl, 1978) without hot water for its pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 125°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Poncha Springs, Chaffee County

The Poncha Hot Springs were visited in May, 1993. The facilities around the springs are currently maintained by the City of Salida. Since 1938 most of the water from the springs is transported by pipeline to the municipal swimming pool in Salida. The inlet temperature of the pool is approximately 47 to 50° C. Currently, the Boy Scouts of America use the facility heavily in the summer months as a base camp. There is no longer any commercial usage of the facilities.

According to the caretaker at the site there are numerous springs which over the years have fallen into a state of disrepair. Currently, there are efforts to find and repair some of the old cisterns and pipelines in order to improve the quantity and temperature of the flow.

The Poncha Hot Springs area is marked by the presence of several fossil and a few active tufa mounds that are associated with the hot springs. There are significant aprons of travertine that occur downslope of the area of hot springs.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 115° to 145° C (George et al., 1920; Van Alstine, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Rainbow Hot Springs, Mineral County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50° C (Barrett and Pearl, 1978).

Ranger Warm Springs, Gunnison County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60° C (Barrett and Pearl, 1978).

Rico, Dolores County

Two of the four diamond drill holes noted by Barrett and Pearl, 1978 are still uncapped and flowing hot water. The Geyser Hot Water Well is flowing and bubbling with a slight geyser effect. It has built a substantial tufa mound, approximately 6 feet high, and an semi-circle shaped apron, approximately 25 feet in diameter, around the drill hole. Limonite staining is prominent in the tufa. The waters remain unused. The chemistry of the geothermal waters in the Rico area is too complex for an accurate estimate of subsurface reservoir temperatures (George et al., 1920; McKnight, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Routt [aka Strawberry] Hot Springs, Routt County

The Strawberry Hot Springs is in the process of development as a commercial enterprise. Don Johnson of Steamboat Springs has owned the property since 1982. In the ten years since Johnson has owned the property he has deepened four of the pools and imported sand for the bottoms, built wooden decks and walkways, built four rustic cabins, and hired a gardener. At the time of my visit in November, 1992, a massage house; a bath house with showers, toilets, and heat; and another cabin were under construction.

Recent geological mapping (Snyder, 1980) demonstrates that the Strawberry Hot Springs are hosted by an Proterozoic felsic gneiss and amphibolite. Younger granitic pegmatites are also found in the immediate area. A north-trending normal fault with an adjacent zone of pervasive epidote-chlorite alteration also occurs in the immediate area.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 125° to 175° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; Pearl et al., 1983).

Sand Dunes Pool Hot Water Well, Saguache County

Hot water for the swimming pool comes from a 4,400 foot deep well located just to the south of the pool. The pool is no longer open to the public; however, it is in good shape and is used by the family living on the premises. An experimental project for growing catfish using the geothermal water has been abandoned for many years (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Shaws Warm Spring, Saguache County

The site was visited during June of 1993. I could not gain access to spring. Sampling and measuring of water was achieved where the spring waters leave swimming pool. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60° C (Barrett and Pearl, 1976; Lipman, 1976; Barrett and Pearl, 1978; Bond, 1981).

South Canyon Hot Springs, Garfield County

These three undeveloped springs were visited in May, 1993. The hot springs have had several periods of usage and limited development followed by a closing of the primitive facilities by local governments. At the present time the hot springs are channeled into two pools dug into the dirt. There is obvious evidence of usage of the springs by bathers. The
hot waters are associated with the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 130° C (Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Splashland Hot Water Wells, Alamosa County

The Splashland Pool is served by two wells that are 40 feet apart and 2,800 feet deep just to the west of the pool. In the winter when the pool is closed, the flow of the wells is used for space heating and domestic hot water in the surrounding ranch buildings. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 100° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Steamboat Springs, Routt County

Although there are several springs in the vicinity of the town of Steamboat Springs, only the Heart Spring has been used as a commercial hot bathing spring. The other springs in this area, which include the famous Steamboat Spring, have temperatures which vary from 14° to 19° C, too low to be considered as a geothermal resource in this study.

The Heart Spring is currently used for bathing within the larger Steamboat Springs Health and Recreation Association facility, a modern well appointed health club which includes an olympic size lap pool, tennis courts, weight room and exercise areas. It is impossible to obtain a good temperature measurement at the spring outlet; however, the Heart Pool had a temperature of 36.4° C at the time of my visit in November, 1992. According to the Office Manager, Linda Johnson, the flow rate varies from about 300 to 750 liters per minute. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 125° to 130° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; McCarthy et al., 1982(a); Pearl et al., 1983).

Stinking Springs, Archuleta County

Stinking Springs was visited in June of 1993. Warm water emerges in several places in a 1,500 foot stretch along the south bank of the Navajo River and north of the graded dirt road that parallels the river from Chromo to the springs and beyond. This area is very marshy and individual flows from points of emergence is very small.

The spring with the largest flow is south of the road. Barrett and Pearl (1976) sampled the water from this "main" Stinking Spring source in 1975 and found the temperature to be 27° C with a flow of 106 liters per minute. Our visit in 1993 found the temperature to be 25.4° C with a flow rate of 132 liters per minute.

The main spring bubbles up into a 20 foot diameter by 3 foot deep pool. This "soaking pool" seems to be a recent development or alteration to the spring. The spring is on property is owned by a newly (1992) formed recreational housing development called Crowley Ranch Reserve. It is assumed that they are responsible for the pool construction at this previously undeveloped and unused spring. Based on the lack of trash and foot prints around this newly dug out soaking pool, usage so far is judged to minimal.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Swissvale Warm Spring, Fremont County

This site was visited during June of 1993. Barrett and Pearl (1978) described the springs as being unused in 1978 and that is still the case. Sometime in the interim between the two site visits a 25 foot x 15 foot x 4 foot deep soaking pool was dug about 50 feet from where Spring F issues at the surface. All the flow from this spring was diverted to the pool before running into the nearby Arkansas River. The pool is now filled with moss and algae. It would appear no one has used this pool for soaking recently. The spring is on private property and posted for no trespassing. No one currently resides on the property.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Trimble Hot Springs, La Plata County

The Trimble Hot Springs lies within the well developed Trimble Hot Springs resort complex. The actual springs now have only a meager flow of 8 to 12 liters per minute. The resort pools and spas are served by a well [mistakenly called the Tripp Hot Springs well in Barrett and Pearl (1978) and Barrett and Pearl (1976)] which is 150 feet deep and contains a submersible pump at 35 feet. The well is pumping at about 1,000 liters per minute. A new bath house complex was built in 1988. The grounds around the pools are well maintained. At the time of our visit in July, 1993 the resort had a good crowd.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 45° to 70° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Tripp Hot Springs, La Plata County

The Tripp Hot Spring was mistakenly located at a well site 200 feet north of the Trimble Hot Spring by Barrett and Pearl (1978). The actual Tripp Hot Spring is located about 3/4 mile north of Trimble, near the mouth of Tripp Gulch and consists of a small natural pool, 25 feet x 10 feet x 5 feet deep. It is in the backyard of a private residence and has not been used for many years. The water currently flows off the property into a culvert (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Valley View Hot Springs, Saguache County

This site was visited during June of 1993. The site characterization in Cahill (1983) essentially catches the ambiance of this site. The amenities are about as he described in 1982 with the added note that the shower and bathroom facilities are now completed and that the site now has telephone service. The springs serve five soaking pools and one swimming pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Cahill, 1983).

Wagon Wheel Gap Hot Springs, Mineral County

Barrett and Pearl (1978) lists the location of the Wagon Wheel Gap Hot Springs as being in the SESE of Section 35, T41N, R1E; Spar City 7.5' quadrangle map. In actuality,

the Wagon Wheel Gap 4UR Hot Spring is in the NWNE of Section 2, T40, R1E; Lake Humphreys 7.5' quadrangle map. The Wagon Wheel Gap CFI Hot Spring is in the SWNE of Section 2, T40, R1E; Lake Humphreys 7.5' quadrangle map.

During a site visit on June of 1993, the 4UR Dude and Guest Ranch ownership was building a new deck and swimming pool north of the old bath house which will utilize waters from the 4UR Hot Springs.

The CFI Spring is unused unless you count the old bath tub that is by the spring which guests or employees of the ranch can fill with a bucket. The 65° C spring water must be mixed with the icy water from the adjacent Goose Creek to achieve the right temperature for a soak.

The chemistry of the geothermal waters in the Wagon Wheel Gap area is too complex for an accurate estimate of subsurface reservoir temperatures (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Waunita Hot Springs, Gunnison County

The Waunita Hot Springs was visited in May, 1993. The upper Waunita Hot Springs is a well-developed and appealing guest ranch. Waunita Hot Springs has been a popular tourist attraction since the turn of the century and still is even to this day. The waters from the springs are used in the swimming pool, space heating for the ranch and guest cabins, and for drinking purposes. The waters at Waunita are among the hottest in the state with an immersed temperature of the spring "A" in the gazebo of 77° C. A sample of the water from the gazebo spring was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 175° to 225° C.

The lower Waunita Hot Springs are approximately a half mile from the upper Waunita Hot Springs. All the bath houses, gazebos, cisterns, and springs at the lower springs are unused and in a bad state of disrepair. There is only a foot path to the lower Waunita Hot Springs. The water temperature, apparent quality (conductivity), and flow are about the same as seen at the upper springs. The most reasonable estimate of the subsurface reservoir temperature of the lower Waunita Hot Springs is 110° to 160° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Zacharakis, 1981).

Wellsville Warm Spring, Fremont County

This spring was visited during June of 1993. The concrete ponds supplied by the Wellsville Warm Spring were used for the raising of tropical fish starting some time around the middle 60's. They are still in good condition and filled with warm spring water. However, the business was closed six years ago because of the failing health of the owner who had run the fish farm for some 20 years. This gentleman passed away about 5 years ago.

An elderly brother-in-law of the fish farmer now lives on the property. He indicated the only use now of ponds supplied by the spring was for bathing and swimming by his grandchildren and his sister's grandchildren.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

6. Summary

The 1992-1993 low-temperature geothermal assessment program added 10 new chemical analyses to the geochemical database of the state's geothermal waters. Other sources of geochemical data were reviewed and all good quality, that is less than 15% cation-anion balance error, geochemical analyses were entered into the long form geochemical database, Table 2. Certain areas with higher than 15% cation-anion balance were left in the database because they were the only analysis for an area or site. Usually the most significant errors in the cation-anion balance were found in the U. S. Geological Survey WATSTOR database and are due to a missing HCO_3 analysis.

Several corrections were made to locations and names of hot springs and wells described in the older literature. The Colorado Geological Survey Information Series 6 (1976) was updated during 1993 and the correct locations were entered into the revised publication and the database for this assessment. Corrections were also made to several location entries in the U. S. Geological Survey WATSTOR database.

A summary of the results of the 1992-1993 geothermal assessment and a comparison to the the 1976-1978 geothermal assessment are shown in the following table:

ITEM	1993 ASSESSMENT	1976-78 ASSESSMENT	% CHANGE
GEOTHERMAL AREAS	93	56	+66%
GEOTHERMAL SITES	157	125	+ 26%
GEOCHEMICAL ANALYSES	382	236	+62%
SITES OF DIRECT HEAT UTILIZATION	64	64	0
SITES OF DISTRICT HEAT USE	20	?	
SITES OF GREENHOUSES, AQUACULTURE	4	?	

 Table B: Summary of the results of the 1993 Low-Temperature Geothermal Assessment

 Program compared to the 1976-1978 geothermal assessment.

7. Recommendations

The current assessment indicates that several areas in the state continue a long history of substantial utilization of their geothermal resources. The prime areas include Glenwood Springs, Idaho Springs, Steamboat Springs, Pagosa Springs, Mount Princeton, and Ouray. All of these areas, at the minimum, utilize the geothermal resources for swimming pools and spas. Some areas such as Ouray and Pagosa Springs utilize geothermal heat for space heating in municipal and other private buildings.

There are other areas in the state that are collocated with or near population centers

and are on the fringe of geothermal development. That is, they have had some development of their geothermal resources; however, there are indications that geological and geophysical studies may be used in a Second Phase geothermal assessment to increase the geothermal area and spur development in these areas. The geothermal areas that are candidates for a Second Phase are (not listed in any order of importance):

- 1) Trimble Hot Springs, La Plata County.
- 2) Orvis Hot Springs, Ouray County.
- 3) A large area southeast of Pagosa Springs along the Archuleta Antiform, Archuleta County.
- 4) Eastern San Luis Valley, Saguache and Alamosa Counties.
- 5) Rico and Dunton Hot Springs, Dolores County.
- 6) Cottonwood Hot Springs, Chaffee County.

Other areas that are geologically significant but far from a center of population are:

- 1) Deganahl well, Routt County.
- 2) Brands Ranch well, Jackson County.
- 3) Craig warm water well, Moffatt County.
- 4) Hartsel Hot Springs, Park County.

8. References

- Barrett, J. K., and Pearl, R. H., 1976, Hydrogeological data of thermal springs and wells in Colorado: Colorado Geological Survey Information Series 6, 124p.
- Barrett, J. K., and Pearl, R. H., 1978, An appraisal of Colorado's geothermal resources: Colorado Geological Survey Bulletin 39, 224p.
- Bass, N. W., and Northrop, S. A., 1963, Geology of Glenwood Springs quadrangle and vicinity, northwestern Colorado: U. S. Geological Survey Bulletin 1142-J, 74p., map scale 1:31,680.
- Bond, M. A., 1981, An integrated geophysical study of the Shaw Warm Spring area, San Luis Valley, south-central Colorado: unpublished MS thesis, Colorado School of Mines, 162p.
- Bush, A. L., Bromfield, C. S., and Pierson, C. T., 1959, Areal geology of the Placerville quadrangle, San Miguel County, Colorado: U. S. Geological Survey Bulletin 1072-E, p. 299-384, map scale 1:24,000.
- Bush, A. L., and Bromfield, C. S., 1966, Geologic map of the Dolores Peak quadrangle, Dolores and San Miguel Counties, Colorado: U. S. Geological Survey Geological Quadrangle Map GQ-536, scale 1:24,000.
- Cahill, R., 1983, Colorado Hot Springs Guide: Pruett Publishing Co., Boulder, Colorado, 180p.
- Dick, J. D., 1976, Geothermal reservoir temperatures in Chaffee County, Colorado: unpublished MS thesis, Northeastern Louisiana University, Monroe, Louisiana, 171p.

- Ettinger, M., 1964, Geology of the Hartsel area, South Park, Park County, Colorado: The Mountain Geologist, Vol. 1, no. 3, p. 127-132.
- George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K., and Yeo, J. B., 1920, Mineral waters of Colorado: Colorado Geological Survey Bulletin 11, 474p.
- Hail, W. J., Jr., 1965, Geology of northwestern North Park, Colorado: U S. Geological Survey Bulletin 1188, 133p., map scale 1:24,000.
- Hail, W. J., Jr., 1971, Geological reconnaissance map of the Chris Mountain and Pagosa Springs quadrangle, Archuleta County, Colorado: U. S. Geological Survey Open File Report 71-142.
- Hail, W. J., Jr., 1972, Reconnaissance geological map of the Hotchkiss area, Delta and Montrose Counties, Colorado: U. S. Geological Survey Miscellaneous Geological Investigation Map I-698, scale 1:48,000.
- Hedlund, D. C., and Olson, J. C., 1975, Geologic map of the Powderhorn quadrangle, Gunnison and Saguache Counties, Colorado: U. S. Geological Survey Quadrangle Map GQ-1178, scale 1:24,000.
- Howland, A. M., 1936, An occurrence of barite in redbeds of Colorado: American Mineralogist, vol. 21, no. 9, p. 584-588.
- Izett, G. A., 1968, Geology of the Hot Sulphur Springs quadrangle, Grand County, Colorado: U. S. Geological Survey Professional Paper 586, 79p., map scale 1:62,500.
- Kucera, R. E., 1962, Geology of the Yampa district, Northwest Colorado: unpublished Phd. thesis, University of Colorado, Boulder, 675p, map scale 1:24,000.
- Lipman, P. W., 1976, Geologic map of the Del Norte area, Eastern San Juan Mountains, Colorado: U. S. Geological Survey Miscellaneous Investigations Map I-952, scale 1:62,500.
- Luedke, R. G., and Burbank, W. S., 1962, Geologic map of the Ouray quadrangle, Colorado: U. S. Geological Survey Geologic Map GQ-192, scale 1:62,500.
- McCarthy, K. P., Been J., Reimer, G. M., Bowles, C. G., and Murrey, D. G., 1982 (a), Helium and ground temperature surveys at Steamboat Springs, Colorado: Colorado Geological Survey Special Publication 21, 11p.
- McCarthy, K. P., Zacharakis, T. G., and Pearl, R. H., 1982 (b), Geothermal resource assessment of Hartsel, Colorado: Colorado Geological Survey Resource Series 18, 86p.
- McKnight, E. T., 1974, Geology and ore deposits of the Rico district, Colorado: U. S. Geological Survey Professional Paper 723, 100p., map scale 1:12,000.
- Osterhoudt, W., 1978, Chromo East, in Fassett, J. E.,(editor), Oil and Gas Fields of the Four Corners Area, Volume 1: Four Corners Geological Society, p. 113-115.
- Pearl, R. H., Zacharakis, T. G., and Ringrose, C. D., 1983, Geothermal resource assessment of the Steamboat-Routt Hot Springs area, Colorado: Colorado Geological Survey Resource Series 22, 86p.
- Scott, G. R., 1975, Reconnaissance geologic map of the Buena Vista quadrangle, Chaffee and Park Counties, Colorado: U. S. Geological Survey Miscellaneous Field Studies Map MF-657, scale 1:62,500.
- Scott, G. R., 1977, Reconnaissance geological map of the Canon City quadrangle, Fremont County, Colorado: U. S. Geological Survey Miscellaneous Field Studies Map MF-892, scale 1:24,000.

Scott, G. R., Van Alstine, Sharp, W. N., 1975, Geologic map of the Poncha Springs quadrangle: U. S. Geological Survey Miscellaneous Field Studies Map MF-658, scale 1:62,500.

Sharp, R. R. Jr., and Aamodt, P. L., 1976, Uranium concentrations in natural waters, South Park, Colorado: Los Alamos Scientific Laboratory, Informal Report LA-6400-MS, 49p.

Snyder, G. L., 1980, Geological map of the northernmost Gore Range and southernmost Park Range, Grand, Jackson, and Routt Counties, Colorado: U. S. Geological Survey Miscellaneous Investigation Series Map I-1114, scale 1:48,000.

Steven, T. A., and Ratte, J. C., 1973, Geological map of the Creede quadrangle: U. S. Geological Survey Geological Quadrangle Map GQ-1053, scale 1:62,500.

Taylor, R. B., Scott, G. R., Wobus, R. A., and Epis R. C., 1975, Reconnaissance geologic map of the Royal Gorge quadrangle, Fremont and Custer Counties, Colorado: U. S. Geological Survey Miscellaneous Geological Investigation Map I-869, 1:62,500.

Trimble, D. E., 1975, Geologic map of the Niwot quadrangle, Boulder County, Colorado: U. S. Geological Survey Geological Quadrangle Map GQ-1229, scale 1:24,000.

Tweto, O., 1974, Reconnaissance geological map of the Fairplay West, Mount Sherman, South Peak, and Jones Hill quadrangles, Park, Lake, and Chaffee Counties, Colorado: U. S. Geological Survey Miscellaneous Field Study Map MF-555, scale 1:62,500.

Van Alstine, R. E., 1975, Geologic map of the Bonanza NE quadrangle, Chaffee and Saguache Counties, Colorado: U. S. Geological Survey Open File Report 75-53, scale 1:62,500.

Zacharakis, T. G., 1981, Geothermal resource assessment of the Waunita Hot Springs, Colorado: Colorado Geological Survey Special Publication 16, 69 p. **Open File Report 95-1**

1992–1993 Low-Temperature Geothermal Assessment Program, Colorado

By James A. Cappa and H. Thomas Hemborg

Colorado Geological Survey Division of Minerals and Geology Department of Natural Resources Denver, Colorado 1995 **Open File Report 95-1**

1992–1993 Low-Temperature Geothermal Assessment Program, Colorado

By James A. Cappa and H. Thomas Hemborg

Colorado Geological Survey Division of Minerals and Geology Department of Natural Resources Denver, Colorado 1995

ACKNOWLEDGEMENTS

This low-temperature geothermal assessment program was funded by the U. S. Department of Energy-Geothermal Division. The Colorado Geological Survey serves as a subcontractor to the Oregon Institute of Technology-Geo Heat Center for the purposes of fulfilling the terms of this contract within the State of Colorado.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe private property rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

Abstract1
Introduction1
Data Sources2
Data Format2
Fluid Chemistry3
Discussion3
Antelope Warm Spring, Mineral County5
Birdsie Warm Spring, Mineral County6
Brands Ranch Artesian Well, Jackson County6
Browns Canyon Warm Springs, Chaffee County6
Canon City Hot Springs, Fremont County6
Cebolla Hot Springs, Gunnison County6
Cement Creek Warm Springs, Gunnison County6
Clark Artesian Well, Pueblo County6
Colonel Chinn Hot Water Well, Delta County6
Conundrum Hot Springs, Pitkin County7
Cottonwood Hot Springs, Chaffee County7
Craig Warm Water Well, Moffat County7
Crowley Ranch Reserve Well, Archuleta County7
Deganahl Warm Water Well, Routt County7
Desert Reef (Florence) Hot Springs, Fremont County8
Dexter Warm Springs, Conejos County8
Dotsero Warm Springs, Eagle County8
Dunton Hot Springs, Dolores County8
Dutch Crowley Artesian Well, Archuleta County8

Eldorado Springs, Boulder County9
Eoff Artesian Well, Archuleta County9
Florence Artesian Well, Fremont County9
Fremont Natatorium Well, Fremont County9
Geyser Warm Springs, Dolores County9
Glenwood Springs Area, Garfield County9
Hartsel Hot Springs, Park County9
Haystack Butte Warm Water Well, Boulder County10
Hooper Aquaculture Well, Alamosa County10
Hot Sulphur Springs, Grand County11
Idaho Hot Springs, Moffat County11
Juniper Hot Springs, Moffat County11
Lemon Hot Springs, San Miguel County11
Mineral Hot Springs, Saguache County11
Mount Princeton Hot Springs, Chaffee County12
Mullenville Warm Spring, Park County12
Orvis Hot Springs (Ridgeway) Ouray County12
Ouray Area, Ouray County12
Pagosa Springs, Archuleta County13
Paradise Hot Spring, Dolores County13
Penney Hot Springs, Pitkin County13
Pinkerton Hot Springs, La Plata County13
Poncha Springs, Chaffee County13
Rainbow Hot Springs, Mineral County14
Ranger Warm Springs, Gunnison County14
Rico Area, Dolores County14
Poult (Chronich annu) I at Cauta an Doutt
County14

Shaws Warm Spring, Saguache County14 South Canyon Hot Springs, Garfield County
Splashland Hot Water Wells, Alamosa County15
Steamboat Springs Area, Routt County15
Stinking Springs, Archuleta County15
Swissvale Warm Springs, Fremont County15
Trimble Hot Springs, La Plata County16
Tripp Hot Springs, La Plata County16
Valley View Hot Springs, Saguache County 16
Wagon Wheel Gap Hot Springs, Mineral County16
Waunita Hot Springs, Gunnison County16
Wellsville Warm Spring, Fremont County17
Summary17
Recommendations18
References18

TABLES

PLATE

1. Low temperature geothermal areas in Colorado, scale 1:1,000,000.in pocket

APPENDIX

Tables 1,3, and 4 printout of diskette database.

DISKETTE

Database on 3.5 in. HD DOS diskette.

- Table 1.Location of geothermal sources in
Colorado.
- Table 2.Geochemical analysis of geothermal
sources in Colorado (long list)
(milligrams/liter).
- Table 3.Geochemical analysis of geothermal
sources in Colorado (short list)
(milligrams/liter).
- Table 4.General information of geothermal
sources in Colorado.

FIGURES

ABSTRACT

Previous assessments of Colorado's low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992–1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U.S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30°C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases.

For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992–1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978.

Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

INTRODUCTION

The first assessment of the geothermal resources of the State of Colorado was completed in 1920

by the Colorado Geological Survey with the publication of Colorado Geological Survey Bulletin 11, *Mineral Waters of Colorado*. Bulletin 11 contains chemical analyses of the state's mineral waters including the known geothermal waters and, also, has a section describing the utilization of the mineral waters.

All of Colorado's geothermal resources are considered to be low-temerature, that is, less than 90°C. The lower temperature is defined by the U.S. Department of Energy as 10°C above the mean annual air temperture at the surface (Reed, 1983). For this report a lower limit of 20°C was selected. The first modern lowtemperature geothermal assessment for the state of Colorado was completed during a period of time from about 1976 to 1983. That assessment was carried out by the Colorado Geological Survey through a funding program with the U.S. Department of Energy and the U.S. Geological Survey. The 1976 survey involved a sampling program conducted over an approximate 12 month period of 125 geothermal sources from 56 geothermal areas and resulted in the 1976 publication of Colorado Geological Survey Information Series 6, Hydrogeochemical Data of Thermal Springs and Wells in Colorado (revised 1993).

In 1978, the Colorado Geological Survey published Bulletin 39, *An Appraisal of Colorado's Geothermal Resources*, which contained descriptive information on the sites, including location, current usage, geological setting and an analysis of various geothermometers for each of the 56 geothermal areas of the state. Bulletin 39 utilized the analytical geochemical information presented in Information Series 6.

Several other site-specific geological and geophysical studies were performed by the Colorado Geological Survey up to 1983. Economic evaluations regarding the utilization of geothermal heat and energy for various sites were also completed during this time. All the pertinent publications are listed in the Reference chapter of this report.

The need for a new geothermal assessment is evidenced by the results of the current 1992–1993 low-temperature geothermal assessment. In Bulletin 39 which was published in 1978, there are 56 geothermal areas and 125 geothermal sites. The 1992–1993 survey lists 93

1

geothermal areas and 157 geothermal sites throughout the state. Over 380 chemical analyses, up from the 236 reports in 1976, were compiled from various sources in the construction of the database. Utilization of geothermal resources has changed over years. In some cases flow rates and temperature of the geothermal sources have changed since prior assessments. Several errors in location and description of geothermal springs from both the above described Colorado Geological Survey publications and the U.S. Geological Survey WATSTOR database were corrected.

The data collected and compiled for this survey are listed in Tables 1 through 4 and are recorded in four computer databases. A 1:1,000,000 scale map of the state (Plate 1) shows the location and ID number of each of the geothermal areas.

The 1992–1993 low-temperature geothermal assessment for Colorado was initiated in the fall of 1992 by the Colorado Geological Survey. Funding for this survey was provided by the U.S. Department of Energy. The program was administered by the University of Utah Research Institute in Salt Lake City, Utah and the Geo Heat Center at the Oregon Institute of Technology, Klamath Falls, Oregon.

DATA SOURCES

Data were compiled from a variety of sources including unpublished materials. The most important unpublished sources were the Colorado Department of Water Resources well permit files, the U.S. Geological Survey WATSTOR database, and analytical reports from private laboratories given to the principal investigator by geothermal source owners and operators.

The most important published source material includes: George et al., 1920, Colorado Geological Survey Bulletin 11; Barrett and Pearl, 1976, Colorado Geological Survey Information Series 6; and Barrett and Pearl, 1978, Colorado Geological Survey Bulletin 39.

The University of Utah Research Institute provided 10 new water analyses for each state for the current low-temperature geothermal assessment program. All 10 new analyses were completed for the Colorado portion of the program.

All geochemical data which maintained a cation-anion charge balance of \pm 15% were entered into the databases. Geothermal sources with only one analysis were entered regardless of the charge balance. All data entries, especially those with significant cation-anion charge balance errors, were checked by two separate operators. References for each analysis are recorded in the GTHCHM1 database.

DATA FORMAT

The data collected and compiled during this assessment is recorded on the enclosed diskette in Lotus 1-2-3, Dbase, and Arc Export formats. For loading and other information refer to the Read Me file on the diskette. For purposes of this program a geothermal area is defined as a geologically cohesive land area that may or may not contain several geothermal wells or hot springs. Generally an area is less than approximately 3 sq mi. A site is defined as an individual geothermal well or hot spring within an area.

Each geothermal area within the database has a unique ID number. Different sites within a geothermal area have unique area-site numbers. All the tables list the ID number, Site number, and Geothermal Source (Name). (See Appendix.)

Table 1 is a location database (GTHLOC); it describes the county, quadrangle map, section, township, range, latitude and longitude, and Universal Transverse Mercator grid references.

Table 2 contains the long form of the geochemical database(GTHCHEM1). All the geochemical and sample data collected during this survey is stored in this Table. There can be multiple entries of geochemical data for each site. Table 2 is not included in the Appendix because of its size. It is only available on the enclosed diskette.

Table 3 is the short form of the geochemical database(GTHCHEM2). It contains an abbreviated element list and has only one entry per site. Where multiple chemical analyses were available all the results were averaged to make just a single entry.

Table 4 contains the general information database (GTHGEN). It has information such as temperature, flow rate, type, references, and current usage for each geothermal site.

All the data in the project databases were entered by hand. Much of the data resided in Colorado Geological Survey Bulletins and Information Series and had never been entered into a computerized database before. The only other computerized database used in this project was the WATSTOR database compiled by the U.S. Geological Survey; however, all of this data was entered manually.

The enclosed diskette contains all the database files in a various formats. These files can easily be exported to several database manager applications. The following table lists all the important computer database information for the databases.

Table A. List of pertinent computer file data for the low-temperature geothermal assessment databases.

Table	Data- base Name	Infor- mation	No. of Fields	No. of Bytes
1	GTHIOC	Location	- 24	84 936
2	GTHCHEM1	Chemistry,	59	385,444
3	GTHCHEM2	long list Chemistry,	22	84,670
-		short list	•	
4	GTHGEN	General information	8	29,316

FLUID CHEMISTRY

The University of Utah Research Institute (UURI) provided 10 new water analyses for each state as part of the low-temperature geothermal assessment program. Because of time constraints a lower limit of 30°C was set on any geothermal spring or well to be visited in the field. Almost all of the geothermal sources greater than 30°C were visited. The temperature, pH, conductivity, flow rate and current usage for each site were recorded. Sites for a complete water analysis were selected on a subjective criteria of developmental significance and lack of recent or quality geochemical data. The 10 sites selected for new water analyses in Colorado are:

- Craig Warm Water Well
- ▼ Desert Reef (Florence)
- Dotsero, South
- ▼ Mt. Princeton (Hortense Well)
- Ouray (Pool or Box Canyon Spring)
- Routt (Strawberry)
- Steamboat Springs (Heart Spring)
- Waunita Hot Springs
- Juniper Hot Springs
- Pagosa Hot Springs (Big Spring)

The results of the new samples are included in Table 2 and have a reference number of 3. There were no new results that had serious implications for the prior known geochemistry of the geothermal areas.

Geochemical data derived from the U.S. Geological Survey WATSTOR database was entered into the current database; unfortunately, most of those reports do not have an analysis for HCO_3^{-1} or CO_3^{-2} which causes severe errors in the cation-anion balance. As most of these analyses are the only one for that particular site they have been retained in the database even though they do not balance within the specified limits.

DISCUSSION

The location of all the geothermal sites compiled during this assessment program is shown on Figure 1. The accompanying Plate 1 shows the location and geothermal area ID number. A frequency plot of all the geothermal temperatures from each site is shown in Figure 2. The greatest number of temperature measurements fall in the 25° to 40°C categories. There is another peak in the 51° to 55°C range.

The following section contains a brief discussion of the sites that were visited during the 1992–1993 geothermal assessment program. All the geothermometer estimates in the following section are derived from discussions and tables

Figure 1. Geothermal springs and wells in Colorado.

4

Figure 2. Frequency distribution of Colorado geothermal sources.

in Barrett and Pearl (1978). Some modification of suspect geothermometer estimates was made using the methods described by Michael Adams of UURI (personal communication, 1993).

ANTELOPE WARM SPRING, MINERAL COUNTY

The Antelope Warm Spring was visited in June of 1993. The spring issues into a concretelined cistern approximately 6 ft by 4 ft at ground level and 5-ft deep. The spring is 20 ft north of wooden building shaped like a quonset hut. Inside this building is a 20 ft by 30 ft swimming pool. Water from the spring was used to fill the pool.

Mr. Larry (Sonny) Dickerson, longtime owner of the property around the spring, indicated the pool had not been used for several years. The pool was used by family and friends, never commercially. Currently, the swimming pool building is used for storage by Mr. Dickerson. The pool is covered by a tarp and is nearly empty. Water from the Antelope Warm Spring is diverted into the pasture surrounding the spring. A valve and pipe system (in an advanced state of disrepair) can still divert most of the spring flow into the swimming pool if desired.

Flow from the spring was measured at 50 liters per minute which was four (4) times the rate measured by Barrett and Pearl (1976) in 1975. Mr. Dickerson is of the opinion that during the last five years flow from the spring has noticeably increased.

The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 35° to 52°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

BIRDSIE WARM SPRING, MINERAL COUNTY

There are five springs that issue from the toe of the slope just north of the road. All the flow enters a culvert and flows out to the Rio Grande. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 35° to 52°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

BRANDS RANCH ARTESIAN WELL, JACKSON COUNTY

The Brands Ranch Artesian Well was visited in May, 1993. There is no longer any physical evidence of the well mentioned in Barrett and Pearl, 1978. The spring bubbles up into a 15-ft diameter, 2.5-ft deep pool. There are no facilities in this somewhat remote area. The pool appears to get some occasional use from hunters, campers, fisherman and local people.

The collapsed well that makes the hot spring is the Horton 2 Brands well drilled in 1953 to a total depth of 1,075 ft. The lowest formation penetrated is the Morrison Formation. The hot waters probably come from the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 42° to 55°C (Hail, 1965; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

BROWNS CANYON WARM SPRINGS, CHAFFEE COUNTY

An attempt to visit this site was made in July, 1993. Several minor seeps were noted in the area described by Dick (1976) and Barrett and Pearl (1978); however, these seeps had a temperature less than 20°C (Scott et al., 1975; Barrett and Pearl, 1976; Dick, 1976; Barrett and Pearl, 1978).

CANON CITY HOT SPRINGS, FREMONT COUNTY

Canon City Hot Springs emerges from a corroded casing in the northeast corner of the front yard of a house that faces the nearby Arkansas River. Nothing remains of the "classy" thirtyeight room Royal Gorge Hotel and Spa built adjacent to the Spring in the 1870s. Fifteen years ago the current owner of the property filled in the swimming pool supplied by the spring.

Water from the spring is now used to irrigate some of the owner's and a neighbor's front yard landscape shrubs. When the spring was visited in June of 1993 the temperature of the spring was 40° C. The flow varied from 9 to 142 liters per minute (George et al., 1920; Taylor et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CEBOLLA HOT SPRINGS, GUNNISON COUNTY

The Cebolla Hot Springs near the village of Powderhorn was visited in May 1993. The cabins and bath houses appeared to be still in useable and working condition; however, there was no one around to give us any information about present day usage. There are still two bath houses (George et al., 1920; Hedlund and Olson, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CEMENT CREEK WARM SPRINGS, GUNNISON COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60°C (Barrett and Pearl, 1978).

CLARK ARTESIAN WELL, PUEBLO COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 60°C (Barrett and Pearl, 1978).

COLONEL CHINN HOT WATER WELL, DELTA COUNTY

This well was visited in November, 1992. The well water is piped through a closed wellhead to a manifold and then to stock tanks about 200 ft away. An accurate indication of the temperature could not be obtained; however, the property owner indicated that the water flows all the year without freezing (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Hail, 1972).

CONUNDRUM HOT SPRINGS, PITKIN COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50°C (Barrett and Pearl, 1978)

COTTONWOOD HOT SPRINGS, CHAFFEE COUNTY

At the time of our visit in May 1993, the Jump Steady Resort was renamed to the Cottonwood Hot Springs Inn. The Inn has guest cabins and hot spring spas in a rustic environment. Hot water which is used for bathing, domestic heating, and drinking purposes comes from an enclosed cistern.

Another set of nearby springs and a well are used by the Merrifield family for a greenhouse complex, domestic heating and bathing, and drinking.

The Cottonwood Hot Springs is located at the contact of the Tertiary Mount Princeton Quartz Monzonite and Precambrian migmatitic gneisses to the south. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 110°C (George et al., 1920; Scott, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CRAIG WARM WATER WELL, MOFFAT COUNTY

The Craig Warm Water Well is mislocated in Colorado Geological Survey Bulletin 39. The correct location is shown on Plate 1 and listed in Table 1 of this report. The Craig Warm Water Well was visited in November 1992. At that time the wellhead was in poor condition with hot water leaking from various places. There was no evidence of any activity or recent use of the well. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is approximately 100°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

CROWLEY RANCH RESERVE WELL, ARCHULETA COUNTY

The Crowley Ranch Reserve Well was drilled as an oil and gas test by the Phillips Oil Company in 1943. The well intersected the Dakota Formation at 240 ft, Morrison Formation at 520 ft, Todilto Limestone at 1,200 ft, Wingate Sandstone at 1,308 ft, Chinle Formation at 1,508 ft and Precambrian quartzite at 1,515 ft. The well is reported to have begin flowing hot water at 1,558 ft. The well was abandoned at 1,625 ft and deeded to the Crowley's for irrigation purposes.

There is no longer any physical evidence of the well. Water bubbles up into an 8 ft diameter, 5-ft deep pool. During a visit to the site by CGS personnel in June, 1993, all the water from the well was diverted to the east into an irrigation ditch. Three hundred feet from the well some of the water is taken from the ditch to fill a just constructed hot tub. The remainder of the water in the ditch is allowed to flow into the Jaw Bone Canyon.

From 1943 until 1992 the 48°C well water was used for pasture irrigation. Now, 534 acres of the Crowley family holdings around the well are in a developed recreational community called the Crowley Ranch Reserve. Property owners are given common ownership of a proportion of the Reserve's land. One of the amenities touted by the developers of the property is the geothermal hot tub referred to in the above paragraph.

DEGANAHL WARM WATER WELL, ROUTT COUNTY

The Deganahl warm water well was drilled as an oil test in Cretaceous rocks by Fullerton Leasing Company of California in October, 1967. Because the well encountered only warm water, the company turned the well over to the land owner, Mr. Deganahl. He completed the well at a total depth of 2,500 ft in January, 1968 as a warm water well. The original flow of the well was some 11,900 liters per minute at the time of drilling . Caving problems while installing the casing reduced the well flow to 4,800 liters per minute. The temperature of the water is 43°C and the well had a shut in pressure of 200 psi. In 1981, the Colorado Division of Wildlife applied for a permit to drill a geothermal well at their Finger Rocks Trout Hatchery facility 3 mi east of the Deganahl well. The permit application was denied by the State Water Engineer. The analyses of the Deganahl well water included in Table 2 were performed as part of the Division of Wildlife's feasability study on the proposed project.

The Deganahl well was visited in May, 1993. The owners of the well make only occasional use of the well for bathing purposes. The hot water is flowing at approximately 1,500 liters per minute out of the wellhead and into Watson Creek. A second well is located at a bearing of S33E and a distance of 225 ft from the original well. The conductivity, pH, and temperature of the water from the second well are similar to the original well. There is no information on the depth or history of the second well. The flow rate of the second well is about 100 liters per minute.

The geothermal waters are accounted for by a normal geothermal gradient and probably issue from either the Dakota Sandstone or sandstones within the Frontier Formation. The well was spudded into the Mancos Shale (Kucera, 1962).

DESERT REEF (FLORENCE) HOT SPRINGS, FREMONT COUNTY

The Desert Reef Beach Club is a "Natural Outdoor Hot Springs". The facilities consist of a changing house and a 20 ft by 30 ft bathing pool fed by an old oil test well, the Conoco Huffman No. 1 well drilled in 1966. The well penetrated Precambrian granite at 3,948 ft and has a total depth of 4,240 ft. Later the well was plugged back to 1,096 ft and produces 54°C water at a permitted flow of 1,100 liters per minute from the Morrison and Dakota sandstones.

DEXTER WARM SPRINGS, CONEJOS COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 20° to 50°C (Barrett and Pearl, 1978).

DOTSERO WARM SPRINGS, EAGLE COUNTY

The Dotsero Warm Springs were visited in May, 1993. The springs and adjacent buildings described and pictured by Barrett and Pearl, 1978 on the northwest side of the Colorado River are no more. Construction activities on Interstate Highway 70 have destroyed the old buildings and the hot springs have been covered over by fill material for the new highway. There are some monitor wells in the area of the old springs at the river's edge; however, there was no sign of flow from these springs.

The springs on the south-east side of the river are still intact and flowing directly into the Colorado River at the base of a fill for the railroad tracks. The outflow quantity is impossible to measure; however, the waters were very saline to the taste. A sample of the water was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is approximately 100°C (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

DUNTON HOT SPRINGS, DOLORES COUNTY

Dunton Hot Springs is near the old mining town of Dunton. There are several old cabins around the Dunton Hot Springs. In the past few years a private group has tried to run a primitive resort around the Hot Springs. Unfortunately, they are no longer in business and all the cabins, lodge, and bathhouse are falling into disrepair. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 70°C (Bush and Bromfield, 1966; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

DUTCH CROWLEY ARTESIAN WELL, ARCHULETA COUNTY

The Dutch Crowley Artesian well was visited during June of 1993. The site's 70°C water is flowing from the top of surface casing which extends about 2 ft above ground level. The well was spudded as an oil and gas test in July 1951 by a J. R. Butler from Houston, Texas. The wildcat encountered two gas-and-water zones at approximately 800 and 1,200 ft in the Morrison Formation. The well intersected the Entrada Sandstone at 1,500 ft and flowed fresh water with a temperature of 48°C. The well was bottomed at 1,741 ft (Osterhoudt, 1978). The hole was deeded by the operator to the Crowleys for a water well.

Barrett and Pearl's narrative on how to get to the well in their 1978 CGS Bulletin 39 is not accurate. The correct instructions are to read; proceed 3.8 mi southeast from the Chromo Post Office on U.S. Highway 49 to where a dirt road leads east. Turn left on this road and drive about ¹/₈ of a mile. The well is about ³/₄ of a mile due east of this parking spot on the south side of a boggy meadow.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 80°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Osterhoudt, 1978).

ELDORADO SPRINGS, BOULDER COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 26° to 40°C (Barrett and Pearl, 1978).

EOFF ARTESIAN WELL, ARCHULETA COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60°C (Barrett and Pearl, 1978).

FLORENCE ARTESIAN WELL, FREMONT COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 34° to 50°C (Barrett and Pearl, 1978).

FREMONT NATATORIUM WELL, FREMONT COUNTY

The 70 by 150 ft swimming pool supplied by the warm water well is now used only by the

owners. The pool and concrete decking is in disrepair. The owner indicated that he and his wife closed the pool for public bathing 30 years ago because they could not afford to be in compliance with newly enacted public swimming pool water standards for chlorination. When this site was visited during June of 1993 the owner was using a portion of the warm well water to irrigate a sizeable vegetable and berry garden.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50°C (Barrett and Pearl, 1976; Scott, 1977; Barrett and Pearl, 1978).

GEYSER WARM SPRINGS, DOLORES COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 120°C (Barrett and Pearl, 1978).

GLENWOOD SPRINGS AREA, GARFIELD COUNTY

The Glenwood Springs area is the state's premier bathing spa area. There are several hot springs in the area around Glenwood Springs but only those on the north side of the Colorado River have been developed. No new analyses were taken from the Glenwood Springs area during this study. The Vapor Caves Spa donated a copy of a private laboratory report on the chemistry of their waters (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The chemistry of the geothermal waters in the Glenwood Springs area is too complex for an accurate estimate of subsurface reservoir temperatures. The subsurface temperature is, probably, not much higher than the surface temperature of the hot springs, approximately 45° to 50°C (Barrett and Pearl, 1978).

HARTSEL HOT SPRINGS, PARK COUNTY

The remains of the Hartsel Hot Springs were visited in May 1993. The bath house that is pictured in Barrett and Pearl, 1978 is no longer standing, though some flow from the hot springs is still coming out of a pipe from the building's foundation. All the facilities of the Hartsel Hot Springs are unused and in a state of decay and disrepair. The flow was difficult to measure but it appears to be greater than 300 liters per minute.

There is a popular opinion based upon rumor and general tourist literature that the geothermal water from the Hartsel Hot Springs is highly radioactive (Cahill, 1983). This opinion appears to based upon an article (Howland, 1936) which describes a barite occurrence in the Pennsylvanian-Permian Maroon Formation about 2 mi southwest of Hartsel Hot Springs. The author states that there is an unusual bluecolored barite at this locality and he conjectures that the blue coloration was caused by radiation damage. As further evidence for his thesis, Howland states without providing any data or analysis that the Hartsel Hot Springs are highly radioactive based upon analyses done by the Colorado Geological Survey (George et al., 1920). However, the mean of 60 hot springs analyzed in the 1920 CGS study is 0.139 picocuries radon per liter, ranging from a trace, 0.001, to 2.64 picocuries per liter. The value listed for the Hartsel Hot Springs is 0.154 picocuries radon per liter, only slightly above the mean.

A more recent study of the uranium concentration in natural waters of South Park (Sharp and Aamodt, 1976) indicates that the uranium concentration, as analyzed by fluorometric methods, in a filtered and acidified water sample from the Hartsel Hot Springs was 0.30 parts per billion (ppb) uranium. Two other analyses of the untreated sample were 0.98 and 0.10 ppb uranium. Samples from 16 springs in the South Platte drainage area within the South Park region which includes the Hartsel Hot Springs had values that ranged from 0.21 to 292 ppb uranium with an average of 22.6 ppb uranium. The average of 35 surface water samples in the same drainage area is 3.3 ppb uranium. The uranium concentration of 0.3 ppb at the Hartsel Hot Springs is well below the regional average of 22.6 ppb for the South Platte drainage in South Park.

It appears that the hot springs at Hartsel are associated with the South Park or Santa Maria Faults and/or the contact of the Morrison Formation and Precambrian crystalline rocks. Precambrian granites in the region around Hartsel are known to possess anomalously high geothermal gradients. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 55° to 85°C (George et al., 1920; Ettinger, 1964; Barrett and Pearl, 1976; Barrett and Pearl, 1978; McCarthy et al., 1982[b]).

HAYSTACK BUTTE WARM WATER WELL, BOULDER COUNTY

This well and surrounding area was visited in May, 1993. Warm water is still flowing from the wellhead into a 25-ft diameter pool which at the present time is used mostly by game birds as a watering and bathing pool. The pool is undeveloped and a significant amount of discarded machinery and other junk surround it. The temperature of the well has declined from 28°C in 1976 (Barrett and Pearl, 1976) to 20°C in May 1993. The source of the hot water is conjectural; however, the location of the well on the Haystack Mountain Anticline indicates that structures along the axis of the anticline probably helped in circulating waters through the underlying Pierre Shale to depths adequate enough for heating to the observed temperatures (Trimble, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The estimate of the subsurface reservoir temperature made by Barrett and Pearl (1978) from a variety of geothermometers was 50°C. The surface temperature of the spring has declined almost 30% since 1978. It may be reasonable to expect a similar decline in the subsurface reservoir temperature estimate to approximately 35° to 40°C.

HOOPER AQUACULTURE WELL, ALAMOSA COUNTY

Access to the Hooper Aquaculture Well is south from Hooper on Colorado Highway 17 for 2.7 mi to the intersection with Nine Mile Lane. Turn left (east) on this road and proceed for 0.2 mi to the site.

The subject well was drilled as an irrigation well by E. F. Lambert in 1963. Total depth of the well was 2,063 ft. A $12^{3}/4$ inch casing was run from surface to 922 ft and $9^{3}/8$ inch casing was run from 922 to 2,063 ft. The well casing is

perforated from 1,242 ft to total depth. The driller's log indicates the perforated section is an interbedded mixture of sand, gravel and brown clay. The well according to State of Colorado Division of Water Resources records initially flowed 8,955 liters per minute.

About ten years ago Mr. Erwin Young of Alamosa bought 80 acres of land comprising the north half of the northwest quarter of Section 22, T. 40 N., R. 10 E.. The Lambert (nee) Hooper Aquaculture well is located in the NW NW NW of this section was included in the purchase. After the purchase Mr. Young developed his acreage into a fish and alligator farm. The Hooper Aquaculture Well which now flows at about 2,600 liters per minute at a temperature between 30.2° to 31.3°C is about the perfect water temperature for the African perch or "Tilipia" that he is rearing at the site.

During our visit to the site in June of 1993, water leaking around the casing of the Hooper well was measured at 31.3°C. Currently, all the commercial fish growing ponds are out of doors. Mr. Young, however, is in the middle of a project to enclose a number of tanks inside a metal shed to increase production in winter months. He also is developing an additional Tilipia rearing unit near Alamosa whose ponds will be supplied from a couple of (unknown) geothermal wells of a temperature nearly matching the Hooper Well.

HOT SULPHUR SPRINGS, GRAND COUNTY

The Hot Sulphur Springs Resort is now only open during the summer and fall months. At the time of our visit in June 1993 the resort complex was for sale. The springs appear to be controlled by a north-south trending fault in the Dakota Formation and the Middle Park Formation.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 150°C (George et al., 1920; Izett, 1968; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

IDAHO HOT SPRINGS, CLEAR CREEK COUNTY

This site was not visited during this program.

The chemistry of the geothermal waters in the Idaho Springs area is too complex for an accurate estimate of subsurface reservoir temperatures.

JUNIPER HOT SPRINGS, MOFFATT COUNTY

Juniper Hot Springs was visited in November, 1992. At that time the buildings and other facilities associated with the resort were run down and in a general state of disrepair. Hunters who were camped there informed me that the resort was closed in 1989, more or less permanently, by the elderly owner who lives in nearby Craig. The source springs are enclosed in a locked building. A one-inch pipe carries hot water from the building for a distance of about 8 ft and discharges into a pool. The sample for this study was taken at the discharge point.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 75°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

LEMON HOT SPRINGS, SAN MIGUEL COUNTY

The Lemon Hot Springs consists of a 20-ft diameter pond at the mouth of an old adit. Several buildings having the appearance of private residences surround the pool and tunnel. The waters feeding the hot springs pool are draining from the tunnel. At the time of my visit in July 1993, the pool was choked with weeds and algae. The owners of the hot springs could not be contacted concerning the status of the pool and springs (George et al., 1920; Bush et al., 1959; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

MINERAL HOT SPRINGS, SAGUACHE COUNTY

An attempt to visit this site was made in June, 1993; however, we were denied access to the area. According to the guard at the site the owner is planning on developing the area and is very secretive about his plans. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

MOUNT PRINCETON HOT SPRINGS, CHAFFEE COUNTY

Because of the presence of hot geothermal water, the area around Mount Princeton Hot Springs has been heavily developed since the turn of the century and has been the site of various resorts, hotels, homes, and youth camps. The springs around Mount Princeton are the hottest in the state. The Hortense Hot Spring which services the Silver Cliff Ranch, a Christian youth camp, has a temperature of 85°C. The water is used for bathing, domestic uses and drinking purposes. A resort, several residences, youth camps, and a greenhouse utilize the hot water from several springs and wells in the area. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 130°C.

The state Division of Wildlife has a trout rearing unit at the Chalk Cliffs hatchery some 2 mi east of the Mt. Princeton Hot Springs. This unit was purchased by the state in 1948 but has been in existence since the 1920s. The 18°C water in the Chalk Creek is used in the trout rearing unit to advantage. Growth times for rainbow trout from fingerlings to a stocking length of 10 inches are decreased from a normal 18 to 22 month period to 12 months because of the warm water (George et al., 1920; Scott et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

MULLENVILLE WARM SPRING, PARK COUNTY

The area around this spring, also known as Rhodes Warm Spring in the earlier literature, has been developed as a subdivision called "Warm Springs Ranch". Below the springs the outflow has been channelized by a boulder and cobble drain. The warm water goes to some fishing ponds on the subdivision. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 35°C (Tweto, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

ORVIS HOT SPRINGS (RIDGEWAY), OURAY COUNTY

The Orvis Hot Springs resort utilizes geothermal water from a tufa mound just to the southeast of the resort buildings, from a well pit dug in 1991, and from springs which feed directly into a 35-ft diameter natural pool. The natural pool, used mostly for bathing in the 41°C water has a privacy fence and is surrounded with a wooden deck. The resort also has private rooms for bathing and massage and hydrotherapy sessions.

Part of the hot water from the tufa mound is being diverted to a greenhouse and aquaculture project about 1,000 ft to the south. The owner has ambitious plans to develop this project but at this writing, July 1993, it is still under construction (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

OURAY AREA, OURAY COUNTY

The City of Ouray has taken an active role in developing the geothermal resources of the immediate vicinity. In 1989, the City drilled two shallow wells, OX-2 and OX-6, in the City Park just to the south of the City Swimming Pool (Formerly known as the Radium Hot Springs Pool). These two wells are 90-ft deep and produce 48°C water which goes directly to the pool. At the time of my visit in July, 1993 one of the wells was temporarily shut-in. The pool still gets the bulk of its hot water via a pipeline from the Box Canyon Hot Springs.

Three motels in the City of Ouray are using geothermal waters from various sources for spas and space heating. The Twin Falls and Box Canyon motels are using geothermal waters from springs located at the motel sites, and the Manganese Mine at the mouth of Box Canyon, and from hot springs in Box Canyon. The Weisbaden Motel uses geothermal waters for its pool and space heating from a hot spring reservoir under the motel and from an underground Vapor Cave which has three natural hot springs issuing into it. The waste geothermal water from the Weisbaden Motel is used to heat the sidewalks and driveways of the City of Ouray municipal buildings about 200 ft down the hill. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90°C (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PAGOSA SPRINGS, ARCHULETA COUNTY

These springs were visited during June of 1993. The main spring, the Great Pagosa, situated a few hundred feet southwest of the Spring Inn is enclosed by a fence and posted with "No Trespassing" signs. The City of Pagosa Springs has recently built a viewing area on the east side of the spring which provides a good place to observe and photograph the spring. The city has placed four poster boards in the viewing area which describe the: (1) History of the Great Pagosa Hot Springs, (2) Geologic Requirements for a Hot Spring, (3) The Stratigraphic Section at Pagosa Springs, and (4) Distribution of the Pagosa Springs Geothermal Heating System. The poster boards are of good graphic quality and the historical and scientific information is accurate and well written for lay person understanding.

The Spring Inn is in the final phase of a major alteration of their pool area. When finished they will have a cluster of seven soaking pools of different sizes and water temperature ranging from about 35° to 45°C. Individual pools will be able to comfortably accommodate from 8 to 30 bathers.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 80° to 130°C (George et al., 1920; Hail, 1971; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PARADISE HOT SPRING, DOLORES COUNTY

This hot spring is located 2.5 mi south of the Dunton Hot Springs along the West Dolores River. At the time of my visit in July 1993, the springs were not open to the public. The owner of the property uses the warm springs and bath house for his own purposes which is no change from the previous inventory in 1976 (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PENNEY HOT SPRINGS, PITKIN COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 90°C (Barrett and Pearl, 1978).

PINKERTON HOT SPRINGS, LA PLATA COUNTY

The rerouting of the U.S. Highway 550 has destroyed two of the four hot springs that made up the Pinkerton Hot Springs. The two remaining springs, the Mound Spring and the Little Mound Spring, are located on the west side of the highway just a few feet from the pavement. The hot water from both springs is piped out to a drain along side of the highway and then to the natural drainage system. There has been some limonite-stained tufa build up at the site of the two remaining springs. The destruction of the two remaining springs has left the Colorado Timberline Academy (formerly the Golden Horseshoe Resort mentioned in Barrett and Pearl, 1978) without hot water for its pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 125°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

PONCHA SPRINGS, CHAFFEE COUNTY

The Poncha Hot Springs were visited in May, 1993. The facilities around the springs are currently maintained by the City of Salida. Since 1938 most of the water from the springs is transported by pipeline to the municipal swimming pool in Salida. The inlet temperature at the pool is 47 to 50°C. Currently, the Boy Scouts of America use the facility in the summer months as a base camp. There is no longer any commercial usage of the facilities.

According to the caretaker at the site there are numerous springs which over the years have fallen into a state of disrepair. Currently, there are efforts to find and repair some of the old cisterns and pipelines in order to improve the quantity and temperature of the flow. The Poncha Hot Springs area is marked by the presence of several fossil and a few active tufa mounds that are associated with the hot springs. There are significant aprons of travertine that occur downslope of the area of hot springs.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 115° to 145°C (George et al., 1920; Van Alstine, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

RAINBOW HOT SPRINGS, MINERAL COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50°C (Barrett and Pearl, 1978).

RANGER WARM SPRINGS, GUNNISON COUNTY

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60°C (Barrett and Pearl, 1978).

RICO, DOLORES COUNTY

Two of the four diamond drill holes noted by Barrett and Pearl, 1978 are still uncapped and flowing hot water. The Geyser Hot Water Well is flowing and bubbling with a slight geyser effect. It has built a substantial tufa mound, approximately 6-ft high, and an semi-circle shaped apron, approximately 25 ft in diameter, around the drill hole. Limonite staining is prominent in the tufa. The waters remain unused. The chemistry of the geothermal waters in the Rico area is too complex for an accurate estimate of subsurface reservoir temperatures (George et al., 1920; McKnight, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

ROUTT (STRAWBERRY) HOT SPRINGS, ROUTT COUNTY

The Strawberry Hot Springs is in the process of

development as a commercial enterprise. Don Johnson of Steamboat Springs has owned the property since 1982. In the ten years since Johnson has owned the property he has deepened four of the pools and imported sand for the bottoms, built wooden decks and walkways, built four rustic cabins, and hired a gardener. At the time of my visit in November 1992, a massage house; a bath house with showers, toilets, and heat; and another cabin were under construction.

Recent geological mapping (Snyder, 1980) demonstrates that the Strawberry Hot Springs are hosted by an Proterozoic felsic gneiss and amphibolite. Younger granitic pegmatites are also found in the immediate area. A northtrending normal fault with an adjacent zone of pervasive epidote-chlorite alteration also occurs in the immediate area.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 125° to 175°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; Pearl et al., 1983).

SAND DUNES POOL HOT WATER WELL, SAGUACHE COUNTY

Hot water for the swimming pool comes from a 4,400-ft deep well located just to the south of the pool. The pool is no longer open to the public; however, it is in good shape and is used by the family living on the premises. An experimental project for growing catfish using the geothermal water has been abandoned for many years (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SHAWS WARM SPRING, SAGUACHE COUNTY

The site was visited during June of 1993, however, access was not available. Sampling and measuring of water was achieved where the spring waters leave the swimming pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60°C (Barrett and Pearl, 1976; Lipman, 1976; Barrett and Pearl, 1978; Bond, 1981).

SOUTH CANYON HOT SPRINGS, GARFIELD COUNTY

These three undeveloped springs were visited in May, 1993. The hot springs have had several periods of usage and limited development followed by a closing of the primitive facilities by local governments. At the present time the hot springs are channeled into two pools dug into the dirt. There is obvious evidence of usage of the springs by bathers. The hot waters are associated with the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 130°C (Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SPLASHLAND HOT WATER WELLS, ALAMOSA COUNTY

The Splashland Pool is served by two wells that are 40 ft apart and 2,800 ft deep just to the west of the pool. In the winter when the pool is closed, the flow of the wells is used for space heating and domestic hot water in the surrounding ranch buildings. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 100°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

STEAMBOAT SPRINGS AREA, ROUTT COUNTY

Although there are several springs in the vicinity of the town of Steamboat Springs, only the Heart Spring has been used as a commercial hot bathing spring. The other springs in this area, which include the famous Steamboat Spring, have temperatures which vary from 14° to 19°C, too low to be considered as a geothermal resource in this study.

The Heart Spring is currently used for bathing within the Steamboat Springs Health and Recreation Association facility, a modern well-appointed, health club which includes an olympic size lap pool, tennis courts, weight room and exercise areas. It is difficult to obtain an accurate temperature measurement at the spring outlet; however, the Heart Pool had an estimated temperature of 36.4°C at the time of my visit in November, 1992. According to the Office Manager, Linda Johnson, the flow rate varies from about 300 to 750 liters per minute. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 140°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; McCarthy et al., 1982(a); Pearl et al., 1983).

STINKING SPRINGS, ARCHULETA COUNTY

Stinking Springs was visited in June of 1993. Warm water emerges in several places in a 1,500-ft stretch along the south bank of the Navajo River and north of the graded dirt road that parallels the river from Chromo to the springs and beyond. This area is very marshy and individual flows from points of emergence is very small.

The spring with the largest flow is south of the road. Barrett and Pearl (1976) sampled the water from this "main" Stinking Spring source in 1975 and found the temperature to be 27°C with a flow of 106 liters per minute. Our visit in 1993 found the temperature to be 25.4°C with a flow rate of 132 liters per minute.

The main spring bubbles up into a 20-ft diameter by 3-ft deep pool. This "soaking pool" seems to be a recent development or alteration to the spring. The spring is on property is owned by a newly (1992) formed recreational housing development called Crowley Ranch Reserve. It is assumed that they are responsible for the pool construction at this previously undeveloped and unused spring.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SWISSVALE WARM SPRING, FREMONT COUNTY

This site was visited during June of 1993. Barrett and Pearl (1978) described the springs as being unused in 1978 and that is still the case. Sometime in the interim between the two site visits, a 25 ft x 15 ft x 4-ft deep soaking pool was dug about 50 ft from where Spring F issues at the surface. All the flow from this spring was diverted to the pool before running into the nearby Arkansas River. The pool is now filled with moss and algae. It would appear no one has used this pool for soaking recently. The spring is on private property and posted for no trespassing. No one currently resides on the property.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

TRIMBLE HOT SPRINGS, LA PLATA COUNTY

The Trimble Hot Springs lies within the well developed Trimble Hot Springs Resort complex. The actual springs now have only a meager flow of 8 to 12 liters per minute. The resort pools and spas are served by a well [mistakenly called the Tripp Hot Springs well in Barrett and Pearl (1978) and Barrett and Pearl (1976)] which is 150-ft deep and contains a submersible pump at 35 ft. The well is pumping at about 1,000 liters per minute. A new bath house complex was built in 1988. The grounds around the pools are well maintained. At the time of our visit in July, 1993 the resort had a good crowd.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 45° to 70°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

TRIPP HOT SPRINGS, LA PLATA COUNTY

The Tripp Hot Spring was mistakenly located at a well site 200-ft north of the Trimble Hot Spring by Barrett and Pearl (1978). The actual Tripp Hot Spring is located about $^{3}/_{4}$ mi north of Trimble, near the mouth of Tripp Gulch and consists of a small natural pool, 25 ft x 10 ft x 5 ft deep. It is in the backyard of a private residence and has not been used for many years. The water currently flows off the property into a culvert (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

VALLEY VIEW HOT SPRINGS, SAGUACHE COUNTY

This site was visited during June of 1993. The site characterization in Cahill (1983) essentially

catches the ambiance of this site. The amenities are about as he described in 1982 with the added note that the shower and bathroom facilities are now completed and that the site now has telephone service. The springs serve five soaking pools and one swimming pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Cahill, 1983).

WAGON WHEEL GAP HOT SPRINGS, MINERAL COUNTY

Barrett and Pearl (1978) lists the location of the Wagon Wheel Gap Hot Springs as being in the SESE of Section 35, T. 41 N., R. 1 E.; Spar City 7.5 min. quadrangle map. In actuality, the Wagon Wheel Gap 4UR Hot Spring is in the NWNE of Section 2, T. 40 N., R. 1 E.; Lake Humphreys 7.5 min. quadrangle map. The Wagon Wheel Gap CFI Hot Spring is in the SWNE of Section 2, T. 40 N., R. 1 E.; Lake Humphreys 7.5 min. quadrangle map.

During a site visit on June of 1993, the 4UR Dude and Guest Ranch ownership was building a new deck and swimming pool north of the old bath house which will utilize waters from the 4UR Hot Springs.

The CFI Spring issues into an old bath tub that is by the spring which guests or employees of the ranch can fill with a bucket. The 65°C spring water must be mixed with the icy water from the adjacent Goose Creek to achieve the right temperature for a soak.

The chemistry of the geothermal waters in the Wagon Wheel Gap area is too complex for an accurate estimate of subsurface reservoir temperatures (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

WAUNITA HOT SPRINGS, GUNNISON COUNTY

The Waunita Hot Springs was visited in May 1993. The upper Waunita Hot Springs is a welldeveloped and appealing guest ranch. Waunita Hot Springs has been a popular tourist attraction since the turn of the century. The waters from the springs are used in the swimming pool for space heating the ranch and guest cabins, and for drinking purposes. The waters at Waunita are among the hottest in the state with an immersed temperature of the spring "A" in the gazebo of 77°C. A sample of the water from the gazebo spring was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 140° to 150°C.

The lower Waunita Hot Springs are approximately a half mile from the upper Waunita Hot Springs. All the bath houses, gazebos, cisterns, and springs at the lower springs are unused and in a state of disrepair. There is only a foot path to the lower Waunita Hot Springs. The water temperature, apparent quality (conductivity), and flow are about the same as seen at the upper springs. The most reasonable estimate of the subsurface reservoir temperature of the lower Waunita Hot Springs is approximately 130°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Zacharakis, 1981).

WELLSVILLE WARM SPRING, FREMONT COUNTY

This spring was visited during June of 1993. The concrete ponds supplied by the Wellsville Warm Spring were used for the raising of tropical fish starting some time around the middle 1960s. They are still in good condition and filled with warm spring water. However, the business was closed in 1987 because of the failing health of the owner who had run the fish farm for some 20 years.

The brother-in-law of the fish farmer now lives on the property. He indicated that the only use of the ponds supplied by the spring was for private bathing and swimming.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50°C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

SUMMARY

The 1992–1993 low-temperature geothermal assessment program added 10 new chemical

analyses to the geochemical database of the state's geothermal waters. Other sources of geochemical data were reviewed and all good quality, that is less than 15% cation-anion balance error, geochemical analyses were entered into the long form geochemical database, Table 2. Certain areas with higher than 15% cationanion balance were left in the database because they were the only analysis for an area or site. Usually the most significant errors in the cation-anion balance were found in the U.S. Geological Survey WATSTOR database and are due to a missing HCO₃ analysis.

Several corrections were made to locations and names of hot springs and wells described in the older literature. The Colorado Geological Survey Information Series 6 (1976) was updated during 1993 and the correct locations were entered into the revised publication and the database for this assessment. Corrections were also made to several location entries in the U.S. Geological Survey WATSTOR database.

A summary of the results of the 1992–1993 geothermal assessment and a comparison to the the 1976–1978 geothermal assessment are shown in the following table:

Table B. Summary of the results of the 1993 Low-Temperature Geothermal Assessment Program compared to the 1976–1978 goethermal assessment.

Item	1993 Assess.	1976–78 Assess.	% Change
Geothermal areas	93	56	+66
Geothermal sites	157	125	+26
Geochemical Analysis	382	236	+62
Sites of direct heat utilization	64	64	0
Sites of district heat use	20	?	
Sites of greenhouses, aquaculture	4	?	

RECOMMENDATIONS

The current assessment indicates that several areas in the state continue a long history of substantial utilization of their geothermal resources. The prime areas include Glenwood Springs, Idaho Springs, Steamboat Springs, Pagosa Springs, Mount Princeton, and Ouray. All of these areas, at the minimum, utilize the geothermal resources for swimming pools and spas. Some areas such as Ouray and Pagosa Springs utilize geothermal heat for space heating in municipal and other private buildings. There are other areas in the state that are collocated with or near population centers and are on the fringe of geothermal development. That is, they have had some development of their geothermal resources; however, there are indications that geological and geophysical studies may be used in a Second Phase geothermal assessment to increase the geothermal area and spur development in these areas. The geothermal areas that are candidates for a Second Phase are (not listed in any order of importance):

- 1) Trimble Hot Springs, La Plata County,
- 2) Orvis Hot Springs, Ouray County,
- A large area southeast of Pagosa Springs along the Archuleta Antiform, Archuleta County,
- 4) Eastern San Luis Valley, Saguache and Alamosa Counties,
- 5) Rico and Dunton Hot Springs, Dolores County,
- 6) Cottonwood Hot Springs, Chaffee County.

Other areas that are geologically significant but far from a center of population are:

- 1) Deganahl well, Routt County,
- 2) Brands Ranch well, Jackson County,
- 3) Craig warm water well, Moffatt County,
- 4) Hartsel Hot Springs, Park County.

REFERENCES

Barrett, J. K., and Pearl, R. H., 1976, Hydrogeological data of thermal springs and wells in Colorado: Colorado Geological Survey Information Series 6, 124 p.

- Barrett, J. K., and Pearl, R. H., 1978, An appraisal of Colorado's geothermal resources: Colorado Geological Survey Bulletin 39, 224 p.
- Bass, N. W., and Northrop, S. A., 1963, Geology of Glenwood Springs quadrangle and vicinity, northwestern Colorado: U.S. Geological Survey Bulletin 1142-J, 74 p., map scale 1:31,680.
- Bond, M. A., 1981, An integrated geophysical study of the Shaw Warm Spring area, San Luis Valley, south-central Colorado: unpublished MS thesis, Colorado School of Mines, 162 p.
- Bush, A. L., Bromfield, C. S., and Pierson, C. T., 1959, Areal geology of the Placerville quadrangle, San Miguel County, Colorado: U.S. Geological Survey Bulletin 1072-E, p. 299–384, scale 1:24,000.
- Bush, A. L., and Bromfield, C. S., 1966, Geologic map of the Dolores Peak quadrangle, Dolores and San Miguel Counties, Colorado: U.S. Geological Survey Geological Quadrangle Map GQ-536, scale 1:24,000.
- Cahill, R., 1983, Colorado Hot Springs Guide: Pruett Publishing Co., Boulder, Colorado, 180 p.
- Dick, J. D., 1976, Geothermal reservoir temperatures in Chaffee County, Colorado: unpublished MS thesis, Northeastern Louisiana University, Monroe, Louisiana, 171 p.
- Ettinger, M., 1964, Geology of the Hartsel area, South Park, Park County, Colorado: The Mountain Geologist, v. 1, no. 3, p. 127–132.
- George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K., and Yeo, J. B., 1920, Mineral waters of Colorado: Colorado Geological Survey Bulletin 11, 474 p.
- Hail, W. J., Jr., 1965, Geology of northwestern North Park, Colorado: U S. Geological Survey Bulletin 1188, 133 p., map scale 1:24,000.
- Hail, W. J., Jr., 1971, Geological reconnaissance map of the Chris Mountain and Pagosa Springs quadrangle, Archuleta County, Colorado: U.S. Geological Survey Open File Report 71-142.
- Hail, W. J., Jr., 1972, Reconnaissance geological map of the Hotchkiss area, Delta and Montrose Counties, Colorado: U.S. Geological Survey Miscellaneous Geological Investigation Map I-698, scale 1:48,000.
- Hedlund, D. C., and Olson, J. C., 1975, Geologic map of the Powderhorn quadrangle, Gunnison and Saguache Counties, Colorado: U.S. Geological Survey Quadrangle Map GQ-1178, scale 1:24,000.

Howland, A. M., 1936, An occurrence of barite in redbeds of Colorado: American Mineralogist, v. 21, no. 9, p. 584–588.

- Izett, G. A., 1968, Geology of the Hot Sulphur Springs quadrangle, Grand County, Colorado: U.S. Geological Survey Professional Paper 586, 79 p., scale 1:62,500.
- Kucera, R. E., 1962, Geology of the Yampa district, Northwest Colorado: unpublished PhD. thesis, University of Colorado, Boulder, 675 p., scale 1:24,000.
- Lipman, P. W., 1976, Geologic map of the Del Norte area, Eastern San Juan Mountains, Colorado: U.S. Geological Survey Miscellaneous Investigations Map I-952, scale 1:62,500.
- Luedke, R. G., and Burbank, W. S., 1962, Geologic map of the Ouray quadrangle, Colorado: U.S. Geological Survey Geologic Map GQ-192, scale 1:62,500.
- McCarthy, K. P., Been J., Reimer, G. M., Bowles, C. G., and Murrey, D. K., 1982 (a), Helium and ground temperature surveys at Steamboat Springs, Colorado: Colorado Geological Survey Special Publication 21, 11 p.
- McCarthy, K. P., Zacharakis, T. G., and Pearl, R. H., 1982 (b), Geothermal resource assessment of Hartsel, Colorado: Colorado Geological Survey Resource Series 18, 86 p.
- McKnight, E. T., 1974, Geology and ore deposits of the Rico district, Colorado: U.S. Geological Survey Professional Paper 723, 100 p., scale 1:12,000.
- Osterhoudt, W., 1978, Chromo East, in Fassett, J. E., ed., Oil and Gas Fields of the Four Corners Area, Volume 1: Four Corners Geological Society, p. 113–115.
- Pearl, R. H., Zacharakis, T. G., and Ringrose, C. D., 1983, Geothermal resource assessment of the Steamboat-Routt Hot Springs area, Colorado: Colorado Geological Survey Resource Series 22, 86 p.
- Reed, M.R., 1983, Assessment of low-temperature geothermal resources of the United States— 1985: U.S. Geological Survey Circular 892, 73 p.
- Scott, G. R., 1975, Reconnaissance geologic map of the Buena Vista quadrangle, Chaffee and Park Counties, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-657, scale 1:62,500.

- Scott, G. R., 1977, Reconnaissance geological map of the Canon City quadrangle, Fremont County, Colorado: U.S. Geological Survey Miscellaneous Field Studies Map MF-892, scale 1:24,000.
- Scott, G. R., Van Alstine, Sharp, W. N., 1975, Geologic map of the Poncha Springs quadrangle: U.S. Geological Survey Miscellaneous Field Studies Map MF-658, scale 1:62,500.
- Sharp, R. R. Jr., and Aamodt, P. L., 1976, Uranium concentrations in natural waters, South Park, Colorado: Los Alamos Scientific Laboratory, Informal Report LA-6400-MS, 49 p.
- Snyder, G. L., 1980, Geological map of the northernmost Gore Range and southernmost Park Range, Grand, Jackson, and Routt Counties, Colorado: U.S. Geological Survey Miscellaneous Investigation Series Map I-1114, scale 1:48,000.
- Steven, T. A., and Ratte, J. C., 1973, Geological map of the Creede quadrangle: U.S. Geological Survey Geological Quadrangle Map GQ-1053, scale 1:62,500.
- Taylor, R. B., Scott, G. R., Wobus, R. A., and Epis, R. C., 1975, Reconnaissance geologic map of the Royal Gorge quadrangle, Fremont and Custer Counties, Colorado: U.S. Geological Survey Miscellaneous Geological Investigation Map I-869, 1:62,500.
- Trimble, D. E., 1975, Geologic map of the Niwot quadrangle, Boulder County, Colorado: U.S. Geological Survey Geological Quadrangle Map GQ-1229, scale 1:24,000.
- Tweto, Ogden, 1974, Reconnaissance geological map of the Fairplay West, Mount Sherman, South Peak, and Jones Hill quadrangles, Park, Lake, and Chaffee Counties, Colorado: U.S. Geological Survey Miscellaneous Field Study Map MF-555, scale 1:62,500.
- Van Alstine, R. E., 1975, Geologic map of the Bonanza NE quadrangle, Chaffee and Saguache Counties, Colorado: U.S. Geological Survey Open File Report 75-53, scale 1:62,500.
- Zacharakis, T. G., 1981, Geothermal resource assessment of the Waunita Hot Springs, Colorado: Colorado Geological Survey Special Publication 16, 69 p.

19

APPENDIX

Table 1. Location of geothermal sources in Colorado.

ABBREVIATIONS: HS=Hot Spring; W=Well; Sec=Section; Qtr=Quarter; Twp=Township, Rge=Range, Merid=Meridian; Lat/LonD=Latitude/Longitude Degrees, M=Minutes, S=Seconds, Dec=Decimal Degrees; Utm=Universal Tranverse Mercator Coordinates; Rel=Reliability, 1=within 100 ft, 2=within 660 ft, 3=within 1,320 ft, 4=within 2,640 ft, 5=within 5,280 ft, 6=greater than 5,280 ft

DISCAIMER: Well and spring locations have been taken from many sources and not all locations have been field checked. There is no guarantee of the accuracy of any location.

ID	Site No.	Name		Guadrangia	County	Sec. Qtr/Qtr	Twp. Rae	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rel
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
1	1	Antelope Warm Spring	HS	Workman Creek	Mineral	1, SWSE	40 N, 2 W	NMPM	37	44	36	37.7433	107	2	14	-107.0372	320502	4179086	1
2	1		W	Axial	MOTIAL	23, NESE	4 N, 93 W		40	18	40	40.3003	107	4/	3	-107./842	203307	4404590	2
3	1	Birdsle Warm Spring	HS	Workman Creek	Mineral	14, INVAINE	40 N, 2 W		37	43.	42	37.7203	107	3	13	107.0530	319021	4177404	3
4	1	Brands Hanch	W	Pitchpine Mountain	Jackson	31, SWSE	9 N, 81 W		40	4Z 20	10	40.7044	100	32	4	100.0044	409267	4000009	'
5	1	Browns Canyon Warm Spring	HS	Nathrop	Chaffee	23, SESW	51 N, 8 E		30	39	13	38.0330	100	3	11	108.0531	406367	42/803/	3
5	2	Browns Canyon (Chimney Hill)	w	Nathrop	Challee	20, JEINE	51 N, 6 C	NINIP IVI	30	30	40	30.0444	100	4	41	+00.0701	406160	427/000	2
5	3	Browns Grotto Warm Spring	HS	Nathrop	Chanee	21, 344344	31 N, 0 E		30	30	13	30.0309	100	4	20	105 2814	4000000	42/0029	3
6	1	Canon City Hot Springs	WV.	Royal Gorge	Fremont	JI, JEOW	10 5, 70 W		30	20 4E	20	07.4022	103	10	41	103.2014	977100	4200090	2
7	1	Carson #1 Well	W		La Plata	JO, INVASVA	35 N, 6 W	NINIP IVI	37	10	20	37.2009	107	41	5/	107.0992	200019	4120007	4
8	1	Cebolla "A", (Powdernom)	HS	Powder Hom	Gunnison	4, INVAINE	40 N, 2 W	NIMP M	30	10	20	38.2739	107	5	54	107.0903	310445	4238081	1
8	2	Cebolla "B", (Powdernom)	HS	Powder Hom	Gunnison	4, INVVINE	40 N, 2 W		30	10	20	30.2/39	107	5	54	107,0903	310443	4230001	
8	3	Cebolla "C", (Powderhorn)	HS	Powder Hom	Gunnison	4, INVAINE	40 IN, 2 W	INIVIP IVI	30	10	20	38.2739	107	3	54	-107.0903	310443	4230001	1
9	1	Cement Creek Warm Spring	HS	Cement Mountain	Gunnison	0, Unsurveyed		OTU	30	50	0	38.0330	100	49	34	-100.0201	341498	4299843	1
10	1	Chinaman Canyon	HS	Madrid	Las Animas		32 5, 65 W		. 37	14	~	37.2333	104	43	20	-104./10/	525133	4120591	2
11	1	Clark Spring	W	Northeast Pueblo	Pueblo	1, NENE	21 S, 65 W	0111	38	15	29	38.2581	104	30	35	-104.6097	534140	4234314	3
12	1	Cokedale	HS	I rinidad west	Las Animas	25, NESE	33 5, 65 W		37	-0	23	37.1397	104	30	45	-104.0123	074005	4110239	1
13	1	Colonel Chinn	W	HOTCHKISS	Delta	14, ONE	14 S, 92 W	OTH	30	50	22	38.6394	107	30	3	-107.0342	2/1305	4302049	3
14	1	Conundrum Hot Springs	HS	Maroon Bells	Pitkin	U, Unsurveyed	0,0	A 11 473 A 4	39		43	39.0119	105	53	2/	-106.8908	336287	4319594	1
15	1	Cottonwood Spring	HS	Good Point	Delta	20, NWSE	51 N, 13 W	NMPM	38	40	8	38.6689	108	20	38	-108.3439	209058	4285135	1
16	1	Cottonwood Hot Springs	HS	Buena Vista West	Chaffee	0, Unsurveyed	0,0		38	48	46	38.8128	106	13	33	-106.2258	393570	4296507	2
16	2	Cottonwood (Jump Steady)	HS	Buena Vista West	Спапее	0, Unsurveyed	0,0	0711	38	48	46	38.8128	100	13	21	-100.2225	393859	4296503	2
16	3	Cottonwood (Merrifield Well)	W	Buena Vista West	Chattee	28, NENE	14 S, 79 W	61H	38	48	35	38.8097	106	13	21	-106.2225	393854	4296164	2
17	1	Craig Warm Water Well	W	Castor Gulch	Mottat	9, SESE	6 N, 91 W	61H	40	29	11	40.4864	107	36	3	-107.6008	279559	4484783	1
18	1	Crowley Ranch Reserve	W	Chromo	Archuleta	0, Unsurveyed	0,0	NMPM	37	1	10	37.0194	106	48	10	-106.8028	339625	4098345	1
19	1	Dallas Creek	W	Ridgway	Ouray	7, SWNE	45 N, 8 W	NMPM	38	10	0	38.1667	107	4/	0	-107.7833	256156	4227763	2
20	1	Deganahi (Yampa)	W	Yampa	Routt	18, SESE	2 N, 85 W	61H	40	8	9	40.1358	106	5/	43	-106.9619	332852	444468	1
20	2	Deganahl-Watson Creek(Yampa)	W	Yampa	Routt	17, NWSW	2 N, 85 W	61H	40	8	45	40.1458	106	57	20	-106.9556	333420	4445566	2
21	1	Desert Reef (Florence)	W	Florence SE	Fremont	30, SWNW	19 S, 68 W	61H	38	22	9	38.3692	105	2	55	-105.0486	495754	4246571	1
22	1	Dexter Spring	W	Pikes Stockade	Conejos	8, NENE	35 N, 11 E	NMPM	37	17	41	37.2947	105	4/	6	-105.7850	430422	4127652	1
23	1	Don K Ranch	W	Wetmore	Pueblo	5, NENE	22 S, 68 W	61H	38	10	13	38.1703	105	0	48	-105.0133	498832	4224502	1
24	1	Dotsero	HS	Dotsero	Eagle	12, SWNW	5 S, 87 W	61H	39	37	50	39.6306	107	6	5	-107.1014	319651	4388655	2
24	2	Dotsero South	HS	Dotsero	Eagle	12, SWSW	5 S, 87 W	61H	39	37	31	39.6253	107	5	58	-107.0994	319804	4388065	4
25	1	Dry Creek Well	W	Bayfield	La Plata	28, SESE	34 N, 7 W	NMPM	37	9	24	37.1567	107	36	31	-107.6086	268346	4115235	2
26	1	Dunton	HS	Dolores Peak	Dolores	0, Unsurveyed	0, 0		37	46	17	37.7714	108	5	33	-108.0925	227606	4184751	4
27	1	Dutch Crowley	W	Monero	Archuleta	0, Unsurveyed	0, 0	NMPM	36	59	56	36.9989	106	46	19	-106.7719	342327	4096014	1
28	1	East Willow Creek	w	Buli Fork	Garfield	4, NWNW	5 S, 97 W	6TH	39	38	50	39.6472	108	17	22	-108.2894	217738	4393567	2
29	1	Eldorado Springs "A"	W	Eldorado	Boulder	0, Unsurveyed	0, 0		39	55	56	39.9322	105	16	47	-105.2797	476099	4420062	2
29	2	Eldorado Springs "B"	HS	Eldorado	Boulder	0, Unsurveyed	0,0		39	55	56	39.9322	105	16	47	-105.2797	476099	4420062	2
30	1	Eoff	W	Serviceberry Mountain	Archuleta	7, SESW	34 N, 1 W	NMPM	37	11	28	37.1911	106	59	43	-106.9953	322899	4117734	1
31	1	Florence	W	Florence	Fremont	7, NENW	19 S, 68 W	6TH	38	24	53	38.4147	105	2	43	-105.0453	496047	4251625	2
Ø					•														
¥	,																		

Table 1. continued.

.

۱D	Site No.	Name		Quadrangle	County	Sec. Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rei
32	1	Fremont Natatorium	w	Canon	Fremont	26. NWNW	18 S. 70 W	6TH	38	27	37	38.4603	105	11	45	-105.1958	482914	4256698	2
33	1	Gevser	HS	Rico	Dolores	0. Unsurveyed	0.0		37	44	48	37.7467	108	7	1	-108.1169	225361	4182079	3
34	1	Glenwood Springs					•												
		(Big Spring)	HS	Glenwood Springs	Garfield	9. SENE	6 S. 89 W	6TH	39	32	58	39.5494	107	19	18	-107.3217	300511	4380117	2
34	2	Glenwood Springs		--			,			-,-									
•••	-	(Drinking Spring)	HS	Glenwood Springs	Garfield	9. SENE	6 S. 89 W	6TH	39	32	58	39.5494	107	19	18	-107.3217	300511	4380117	2
34	3	Gienwood Springs				-,	,												
•••	-	(Vapor Cave)	HS	Glenwood Springs	Garfield	9. SENE	6 S. 89 W	6TH	39	33	3	39.5508	107	19	11	-107.3197	300683	4380267	2
34	4	Glenwood Springs		anointeee opinige		01 00.10					-								-
•••	•	(Graves Springs)	HS	Glenwood Springs	Garfield	9 NWNW	6 S. 89 W	6TH	39	33	18	39.5550	107	20	7	-107.3353	299357	4380764	3
34	5	Gierwood Springs (Spring A)	HS	Glenwood Springs	Garfield	10. SWNW	6 S. 89 W	6TH	39	32	58	39.5494	107	19	10	-107.3194	300703	4380112	2
34	6	Glenwood Springs (Spring R)	HS	Glenwood Springs	Garfield	10 SWNW	6 S. 89 W	6TH	39	33	2	39.5506	107	19	4	-107.3178	300849	4380232	2
34	ž	Glenwood Springs (Spring C)	HS	Glenwood Springs	Garfield	10 SWNW	6 S 89 W	6TH	39	33	Ā	39 5511	107	19	ö	-107 3167	300945	4380291	2
34	Å	Glenwood Springs (opining C)	110	Cientiford Opinigo	Gaineia	10, 011111	00,0011	0111			•	00.0011			•		000040		-
04	v	Bailroad Spring)	це	Glenwood Springe	Garfield	10 NENW	W 08 2 8	6TH	30	33	16	30 5544	107	18	51	-107 3142	301170	4380655	4
36	+	Grassy Crook (Hayden)	10	Mount Llarria	Doutt	27 SWSE	6 N 87 W	ATH	40	26	33	40 4425	107	, e	1	-107 1336	310045	A478848	2
00		Hartrad (Carine A)	WW LIC		Deck	A NEGE	10 Q 7E M	eTL	20	20	55	20 01 81	107	47	40	105 7044	494000	4910070	4
30	2	Hartsel (Spring A)	110	Hartsel	Park	O, NEGE	12 3, 73 W		39		5	39.0101	105	47	40	-105.7944	431223	4010070	4
36	2	Hartsel (Spring B)	HS	Hartsel	Park	8, NESE	12 5, 75 W	61H	39	1	5	39.0181	105	4/	40	-105./944	431223	4310073	1
37	1	Haystack Butte	w	Niwot	Boulder	33, NENW	2 N, 70 W	61H	40	6	1	40.1003	105	14	20	-105.2389	479638	4438705	3
38	1	Hooper Aquaculture Well	w	Hooper East	Alamosa	22, NWNW	40 N, 10 E	NMPM	37	42	22	37.7061	105	52	20	-105.8722	423114	41/3361	1
39	1	Horse Mountain Spring	HS	Battle Rock	Montezuma	24, SWSW	35 N, 18 W	NMPM	37	16	10	37.2694	108	47	22	-108.7894	163950	4131294	2
40	1	Hot Sulphur Springs (Spring A)	HS	Hot Sulphur Springs	Grand	3, SWSE	1 N, 78 W	6TH	40	4	2 9	40.0747	106	6	41	-106.1114	405232	4436432	2
40	2	Hot Sulphur Springs (Spring B)	HS	Hot Sulphur Springs	Grand	3, SWSE	1 N, 78 W	6TH	40	4	29	40.0747	106	6	41	-106.1114	405232	4436432	2
40	3	Hot Sulphur Springs (Spring C)	HS	Hot Sulphur Springs	Grand	3, SWSE	1 N, 78 W	6TH	40	4	29	40.0747	106	6	40	-106.1111	405256	4436432	2
40	4	Hot Sulphur Springs (Spring D)	HS	Hot Sulphur Springs	Grand	3. SWSE	1 N. 78 W	6TH	40	4	28	40.0744	106	6	40	-106.1111	405256	4436401	3
41	4	Idaho Springs (Spring A)	HS	Idaho Springs	Clear Creek	1 NENW	4 S 73 W	6TH	39	44	20	39 7389	105	30	43	-105.5119	456134	4398693	2
41	5	Idaho Springe (Spring R)	ЦS	Idaho Springs	Clear Creek		0.0	•	39	44	21	30 7392	105	30	43	-105 51 19	456134	4398724	2
44	2	Idaha Springs (Spring D)	LIC	Idaho Springs	Clear Creek	1 NENIA	4 C 79 W	вты	30	44	10	30 7398	105	30	40	-105 5122	456110	4308662	2
44	3	Idaho Springs (Spring C)	110	Idaho Springs	Clear Creek	A Uneuround	43,75 1	eTH	30	44	22	30 7304	105	30	49	105.5122	456124	4000002	2
41	4	Idano Springs (Lodge Well)	VV LIC	Idano Springs		0, Unsurveyed	0,0		07	44	40	07 4044	105	30	40	-105.5119	430134	4350734	2
42	1	Jacks Mine	HS	Madrid	Las Animas	B, SESW	33 5, 05 W		37	11	40	37.1944	104	42	52	-104.7144	325344	4110277	4
43	1	Juniper Hot Springs	HS	Juniper Hot Springs	мопат	16, NESW	6 N, 94 W		40	28	1	40.4669	107	57	10	-107.9528	249653	4483563	1
44	1	Lake City Airstrip	w	Lake City	Hinsdale	11, SWSW	44 N, 4 W	61H	38	4	35	38.0764	107	17	50	-107.2972	298502	42165//	2
45	1	Lake San Cristobal	w	Lake San Cristobal	Hinsdale	15, NESW	43 N, 4 W	6TH	37	59	0	37.9833	107	17	40	-107.2944	298491	4206244	2
46	1	Lemon	HS	Placerville	San Miguel	34, SESE	44 N, 11 W	NMPM	38	0	55	38.0153	108	3	11	-108.0531	231968	4211705	2
47	1	Lost Creek (Bennett)	w	Bennett	Adams	25, SESE	2 S, 64 W	6TH	39	50	25	39.8403	104	29	21	-104.4892	543707	4409945	2
48	1	Marigold	w	Cripple Creek South	Teller	10, SWSW	16 S, 70 W	6TH	38	39	47	38.6631	105	13	7	-105.2186	480980	4279203	2
49	1	Maurer Ranch	w	Sugar City	Crowley	14. SWNE	22 S. 56 W	6TH	38	8	8	38,1356	103	38	41	-103.6447	618776	4221517	2
50	1	McIntire Warm Spring	HS	Pikes Stockade	Coneios	18. NWNW	35 N. 11 E	NMPM	37	16	50	37.2806	105	49	6	-105.8183	427454	4126107	1
51	1	MGP Well	w	Weston	Las Animas	32 NWNW	33 S. 66 W	6TH	37	R	1	37 1336	104	48	31	-104.8086	517000	4109508	1
52	i.	Mineral Hot Springs (Spring A)	Ŵ	Villa Grove	Sacuacha	7 SWNW	45 N 10 F	NMPM	38	10	Ŕ	38 1689	105	55	5	-105 9181	410570	4224746	3
52		Minoral Hot Springs (Spring R)	ue	Villa Grove	Saguacha	7 SWNW	45 N 10 E	NMPM	38	10	Ā	38 1689	105	55	ĕ	-105 9183	419556	4224746	ă
52	2	Mineral Hot Springs (Spring B)	10		Saguadie	AD DENE	45 N 0 E	NIKADAA	20	10	6	30.1003	105	55		-105.0107	410422	4224695	2
52	3	Mineral Hot Springs (Spring C)	15		Saguacite	12, SENE	43 N, 9 E		00	10	4	00.1000	105			105.8187	419433	4224000	3
52	4	Mineral Hot Springs (Spring D)	HS	Villa Grove	Saguache	12, SEIVE	45 N, 9 E	INIVIPINI OTLI	30	10	4	38.10/0	105	55	20	-105.9222	419214	4224027	3
53	1	Mottat	w	Monat South	Saguache	B, NWSW	43 N, 10 E	61H	37	59	2	37.9839	105	54	5	-105.9014	420840	4204205	Ž
54	1	Mosca West	w	Hooper West	Alamosa	6, NWNW	39 N, 10 W	61H	37	39	41	37.6614	105	55	38	-105.9272	418217	4168446	2
55	1	Mt. Princeton Hot Springs								_				_					-
		(Spring A)	HS	Mount Antero	Chaffee	19, SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
55	2	Mt. Princeton Hot Springs																	
		(Spring B)	HS	Mount Antero	Chaffee	19, SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
55	3	Mt. Princeton Hot Springs																	
		(Spring D)	HS	Mount Antero	Chaffee	19. SWNW	15 S, 78 W	6TH	38	43	58	38.7328	106	9	41	-106.1614	399052	4287556	2
55	4	Mt. Princeton Hot Springs							-	-									
	·	(Spring F)	HS	Mount Antero	Chaffee	19. SWNW	15 S. 78 W	6TH	38	43	58	38,7328	106	9	41	-106,1614	399052	4287556	2
55	5	Mt Princeton Hot Springe												~					-
55	X	(String E)	це	Mount Antern	Chaffee	10 SWNW	15 S 78 W	етн	38	43	58	38 7328	106	Q	41	-106 1614	399052	4287556	2
	8	(~Muu B L)	13		JI10100	10, 011111	100,704	5	50	-0		00.7020		5	-71	100.1014	COUL		-

-11

Table 1. continued.

ID	Site No.	Name	Туре	Quadrangie	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rei
55	6	Mt Princeton Hot Springs																	
55	U	(Hortense)	HS	Mount Antero	Chaffee	24. SENW	15 S. 79 W	6TH	38	43	57	38.7325	106	10	30	-106.1750	397869	4287540	1
55	7	Mt. Princeton Hot Springs				- • · · · · · · · · · · · · · · · · · ·													
		(Hortense Well)	w	Mount Antero	Chaffee	24, SENW	15 S, 79 W	6TH	38	43	58	38.7328	106	10	27	-106.1742	397941	4287571	3
55	8	Mt. Princeton Hot Springs									• •								-
	-	(Woolmington Well)	W	Mount Antero	Chaffee	24, SESW	15 S, 79 W	6TH	38	43	24	38.7233	106	10	38	-106.1772	397663	4286525	3
55	9	Mt. Princeton Hot Springs	14/		Chaffee	DA SENE	15 8 70 W	etu	20	42	50	20 7999	100	•	50	100 1001	200641	4007500	•
55	40	(Wright Well, east)	vv	Mount Antero	Chanee	24, SENE	15 5, 79 W		30	43	90	30.7322	100	Э	56	-100.1001	390041	428/500	3
55	10	(Wright Well west)	w	Mount Antero	Chaffee	24. SENW	15 S. 79 W	6TH	38	43	56	38.7322	106	10	30	-106.1750	397868	4287509	3
55	11	Mt. Princeton Hot Springs	••		Cildiloc										•••				•
		(Young Life Well)	w	Mount Antero	Chaffee	24, SENW	15 S, 79 W	6TH	38	43	56	38.7322	106	10	32	-106.1756	397820	4287510	3
56	1	Mullenville (Rhodes)																	
		Warm Spings	HS	Fairplay West	Park	24, NWSW	10 S, 78 W	6TH	39	9	49	39.1636	106	3	58	-106.0661	407893	4335266	1
57	1	Orchard Mesa (Grand Junction)	W	Grand Junction	Mesa	19, SWSE	1 S, 1 E	UIE	39	2	55	39.0486	108	31	12	-108.5200	195358	4327862	2
58 -	1	Orvis Hot Spring	HS	Dallas	Ouray	22, CSW	45 N, 8 W	NMPM	38	8	0	38.1333	107	44	2	-107.7339	260379	4223934	1
28	ſ	Motel Spring A)	не	Ouray	Ouray	hevernieni 0	0 0		38	1	16	38.0211	107	40	3	-107 6675	265841	4211310	2
59	2	Ouray (Wiesbaden &		ouruy	Guluy	0, 01100 100 jou	0,0			•					-			1211010	-
	-	Motel Spring B)	HS	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	16	38.0211	107	40	3	-107.6675	265841	4211310	2
59	3	Ouray (Wiesbaden &																	
		Motel Spring C)	HS	Ouray	Ouray	0, Unsurveyed	0,0		38	1	16	38.0211	107	40	3	-107.6675	265841	4211310	2
59	4	Ouray (Pool or Box		A	-	0 11	• •				~	00 0400	407			407 0704			•
	_	Canyon Spring)	HS	Ouray	Ouray	0, Unsurveyed	0,0		38	1	33	38.0183	107	40	41	-107.6781	264905	4211028	3
59	5	Ouray (Fellin Spring)	115	Ouray	Ouray		0,0		38	4	14	38.0220	107	39	37	-107.0000	200990	4211491	1
59	7	Ouray (Manganasa Mina)	пэ Це	Ouray	Ouray		0,0		38	-	4	38 0192	107	40	31	-107.6753	265152	4211250	4
50	Ŕ	Ouray (i Incompahore Spring)	HS	Ouray	Ouray	0. Unsurveyed	0,0		38	i	25	38.0236	107	40	27	-107.6742	265264	4211605	4
59	ğ	Ouray City Park OX-2	w	Ouray	Ourav	0. Unsurveyed	0.0		38	1	40	38.0278	107	40	15	-107.6708	265570	4212059	1
59	10	Ouray City Park OX-6	Ŵ	Ouray	Ouray	0, Unsurveyed	0, 0		38	1	43	38.0286	107	40	15	-107.6708	265573	4212151	1
60	1	Oxford Well	W	Gem Village	La Plata	26, NESE	34 N, 8 W	NMPM	37	9	33	37.1592	107	40	41	-107.6781	262185	4115685	2
61	1	Pagosa Springs (Big Spring)	HS	PagosaSprings	Archuleta	13, SESW	35 N, 2 W	NMPM	37	15	52	37.2644	107	0	37	-107.0103	321740	4125898	1
61	2	Pagosa Springs							•••										_
	-	(Courthouse well)	. W.	Pagosa Springs	Archuleta	13, SWNE	35 N, 2 W	NMPM	37	15	58	37.2661	107	0	38	-107.0106	321719	4126084	3
61	3	Pagosa Springs (Spa Motel Well	1) VV	Pagosa Springs	Archuleta	13, NWSE	35 N, 2 W	NMPM 6TU	37	15	22	37.2003	107	47	30	-107.0097	321/92 517606	4125991	4
62	1	Papelon well (Colorado Springs Paradina Hot Springs) VV VV	Groundhog Mountain	Dolores	0 Insurveyed	0.0		37	45	15	37 7542	104	7	54	-104.7901	224001	4303149	1
64	4	Penny Hot Spring	Ŵ	Redstone	Pitkin	4. NENW	10 S. 88 W	6ТН	39	13	33	39.2258	107	13	29	-107.2247	307957	4343988	1
64	i	Penny Hot Springs (Granges			1.2	.,													-
		Spring)	w	Redstone	Pitkin	33, SESW	9 S, 88 W	6TH	39	13	50	39.2306	107	13	34	-107.2261	307850	4344516	2
65	1	Pinkerton (Spring A)	HS	Hermosa	La Plata	25, SWNE	37 N, 9 W	NMPM	37	26	50	37.4472	107	48	17	-107.8047	251884	4147976	3
65	2	Pinkerton (Spring B)	HS	Hermosa	La Plata	25, NWNE	37 N, 9 W	NMPM	37	26	54	37.4483	107	48	18	-107.8050	251863	4148100	4
65	3	Pinkerton (Mound Spring)	HS	Hermosa	La Plata	25, NWNE	37 N, 9 W	NMPM	37	27	7	37.4519	107	48	20	-107.8056	251825	4148502	3
65	4	Pinkerton (Little Mound Spring)	HS	Hermosa Boocha Basa	La Plata	25, NWNE	37 N, 9 W		37	2/	40 	37.4525	107	48	21	-107.8058	251803	4148565	3
00 66	2	Poncha Springs (Spring A)	нз ЦS	Poncha Pass	Chaffee	15 NWSW	38 N 8 F	NMPM	38	29	49	38 4969	106	4	37	-106.0769	406086	4261297	í
66	3	Poncha Springs (Spring C)	HS	Poncha Pass	Chaffee	15. NWSW	38 N. 8 E	NMPM	38	29	53	38,4981	106	4	34	-106.0761	406159	4261420	2
66	4	Poncha Springs (Spring D)	HS	Poncha Pass	Chaffee	15, NWSW	38 N, 8 E	NMPM	38	29	53	38.4981	106	4	34	-106.0761	406159	4261420	2
66	5	Poncha Springs (Spring E)	HS	Poncha Pass	Chaffee	15, NWSW	38 N, 8 E	NMPM	38	29	53	38.4981	106	4	34	-106.0761	406159	4261420	2
67	1	Rainbow	HS	South River Peak	Mineral	0, Unsurveyed	0, 0		37	30	33	37.5092	106	52	28	-106.8744	334327	4152805	1
68	1	Ranger	HS	Cement Mountain	Gunnison	22, SWSE	14 S, 85 W	6TH	38	48	47	38.8131	106	52	28	-106.8744	337252	4297493	1
69	1	Rico (Diamond drill hole)	w	HICO	Dolores	0, Unsurveyed	0,0		37	42	5	37.7014	108	1	45	-108.0292	232934	4176799	3
69	2	HICO (Big Geyser Warm Spring)	WV W/	Rico	Dolores	0, Unsurveyed	0,0		37	42 A2	2	37,7000	108	4	44 AA	-108.0289	232934	4178704	3
09	3	nico (deyser warm Spring)	**	1100	POIOLAS	o, unaurveyed	v , v			-42	-	57.7000	100	,		100.0208	202030	-170700	

٠

•

. (L

.

٠

Table 1. continued.

٠

٠

D	Site No.	Name	Туре	Quadrangle	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	Lat D	Lat M	Lat S	Lat Dec	Lon D	Lon M	Lon S	Lon Dec	X-Utm	Y-Utm	Rel
69	4	Rico (Little Spring)	w	Bico	Dolores	0 Unsurveyed	0.0		37	42	4	37.7011	108	1	44	-108.0289	232958	4176767	3
70	1	Roatcan Creek	Ŵ	Grav Reservoir	Delta	15 NESE	13 S. 92 W	6TH	38	55	7	38,9186	107	38	57	-107.6492	270318	4310874	2
70	2	Roatcap Creek (Stevens Gulch)	Ŵ	Grav Reservoir	Delta	14 NENE	13 S. 92 W	6TH	38	55	39	38,9275	107	37	50	-107.6306	271960	4311814	2
71	1	Routt [aka Strawberry]												•••	••				-
		(Spring A)	HS	Rocky Peak	Routt	18. SWSE	7 N. 84 W	6TH	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	1
71	2	Routt Jaka Strawberryl						••••							•				•
		(Spring B)	HS	Rocky Peak	Routt	18. SWSE	7 N. 84 W	6TH	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	1
71	3	Routt (aka Strawberry)												•	-				
	-	(Spring C)	HS	Rocky Peak	Boutt	18 SWSF	7 N. 84 W	бТН	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	t
71	4	Routt [aka Strawberry]						••••						•••	•				•
		(Spring D)	HS	Rocky Peak	Routt	18. SWSE	7 N. 84 W	6TH	40	33	34	40.5594	106	51	0	-106.8500	343372	4491286	1
72	1	Sand Dune Pool	W	Deadman Camp	Saquache	27. NENE	41 N. 10 E	NMPM	37	46	42	37.7783	105	51	20	-105.8556	424656	4181360	1
73	1	Sarcillo Canvon Well	Ŵ	Weston	Las Animas	21. NWNE	33 S. 66 W	NMPM	37	9	40	37.1611	104	46	56	-104.7822	519337	4112564	2
74	1	Shaws	HS	TwinMountain SE	Sacuache	33. SESE	41 N. 6 E	NMPM	37	45	1	37.7503	106	19	1	-106.3169	383980	4178720	1
75	1	Smith Canvon Spring	HS	Weston	Las Animas	14. SENW	33 S. 66 W	6TH	37	10	20	37.1722	104	45	7	-104.7519	522022	4113803	2
76	1	South Canvon Hot Springs					•							-	-				_
		(Spring A)	HS	Storm King Mountain	Garfield	2. SESW	6 S. 90 W	6TH	39	33	11	39.5531	107	24	40	-107.4111	292836	4380721	3
76	2	South Canyon Hot Springs																	-
		(Spring B)	HS	Storm King Mountain	Garfield	2. SESW	6 S, 90 W	6TH	39	33	11	39.5531	107	24	40	-107.4111	292836	4380721	3
77	1	Splashland	W	Alamosa East	Alamosa	34. SESE	38 N. 10 E	NMPM	37	29	19	37,4886	105	51	31	-105.8586	424093	4149219	3
78	1	Steamboat Springs					•												
		(Heart Spring)	HS	Steamboat Springs	Routt	17. SENE	6 N. 84 W	6TH	40	28	58	40.4828	106	49	37	-106.8269	345149	4482735	1
78	2	Steamboat Springs				•													
		(Sulphur Cave Spring)	HS	Steamboat Springs	Routt	17, NWNW	6 N, 84 W	6TH	40	29	3	40.4842	106	50	22	-106.8394	344092	4482912	1
78	3	Steamboat Springs				,													
		(Steamboat Spring)	HS	Steamboat Springs	Routt	8, SWSW	6 N, 84 W	6TH	40	29	20	40.4889	106	50	26	-106.8406	344008	4483438	1
79	1	Stinking Springs	HS	Chromo	Archuleta	0, Unsurveyed	0,0		37	2	6	37.0350	106	48	28	-106.8078	339213	4100080	1
80	1	Swissvale (Spring A)	HS	Wellsville	Fremont	20, SESW	49 N, 10 E	NMPM	38	28	50	38.4806	105	53	26	-105.8906	422322	4259305	2
80	2	Swissvale (Spring F)	HS	Wellsville	Fremont	20, SESW	49 N, 10 E	NMPM	38	28	50	38.4806	105	53	26	-105.8906	422322	4259305	2
81	1	Sylvester Gulch Warm Spring	HS	Somerset	Gunnison	15, SESE	13 S, 90 W	6TH	38	54	48	38.9133	107	26	22	-107.4394	288488	4309780	2
82	1	Texas Camp (Rangely)	w	Rangely	Rio Blanco	32, NWNW	2 N, 102 W	6TH	40	6	14	40.1039	108	52	27	-108.8742	169752	4446276	2
83	1	Trimble Hot Springs	HS	Hermosa	La Piata	15, NWNW	36 N, 9 W	NMPM	37	23	27	37.3908	107	50	52	-107.8478	247885	4141832	3
84	1	Tripp	HS	Hermosa	La Plata	10, SWNW	36 N, 9 W	NMPM	37	24	10	37.4028	107	50	44	-107.8456	248121	4143152	3
85	1	Towaoc Spring	HS	Towaoc	Montezuma	18, SESE	33.5 N, 17 W	NMPM	37	11	7	37.1853	108	43	38	-108.7272	169102	4121733	2
86	1	Two Mile Road	W	Hooper SE	Alamosa	11, SWSE	38 N, 10 E	6TH	37	32	47	37.5464	105	50	53	-105.8481	425084	4155621	2
87	1	Uravan Well	W	Uravan	Montrose	34, NWNW	48 N, 17 W	NMPM	38	22	29	38.3747	108	44	21	-108.7392	173327	4253809	2
88	1	Valley View (Orient) Hot		Valley View															
		Springs (Spring A)	HS	Hot Springs	Saguache	36, NWSE	46 N, 10 E	NMPM	38	11	32	38.1922	105	48	49	-105.8136	428752	4227249	1
88	2	Valley View (Orient) Hot		Valley View															
		Springs (Spring B)	HS	Hot Springs	Saguache	36, NWSE	46 N, 10 E	NMPM	38	11	31	38.1919	105	48	50	-105.8139	428727	4227218	1
88	3	Valley View (Orient) Hot		Valley View															
		Springs (Spring D)	HS	Hot Springs	Saguache	36, NWSE	46 N, 10 E	NMPM	38	11	28	38.1911	105	48	33	-105.8092	429140	4227123	3
89	1	Wagon Wheel Gap (4UR Ranch		•															
	_	Spring)	HS	Lake Humphreys	Mineral	2, NWNE	40 N, 1 E	NMPM	37	44	55	37.7486	106	49	52	-106.8311	338675	4179297	4
89	2	Wagon Wheel Gap (CFI Spring)	HS	Lake Humphreys	Mineral	2, NWNE	40 N, 1 E	NMPM	37	44	54	37.7483	106	49	50	-106.8308	338723	4179265	4
90	1	Waunita Hot Springs (Spring C)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
90	2	Waunita Hot Springs (Spring D)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
90	3	Waunita Hot Springs (Spring A)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
90	4	waunita Hot Springs (Spring B)	HS	Pitkin	Gunnison	11, SWSW	49 N, 4 E	NMPM	38	30	50	38.5139	106	30	27	-106.5075	368568	4263705	2
91	1	Lower waunita Hot Springs		Distric	O ursel = = =		(0.N. (5	A 10 4 CO 4				00	40-			400 8484	00	1000000	~
0 4	2	(Spring A)	HS	Pitkin	Gunnison	10, SWSE	49 N, 4 E	NMPM	38	30	57	38.5158	106	30	56	-108.5156	367869	4263932	3
91	2	Lower waunita Hot Springs		Distri-	Cumpleon	to ower		NIA 4008.4	00	00	F 7	00 54 50	400	~~	50	100 5101	007004	4000000	•
01	2	(Spring C)	12	r ukin	Gunnison	IU, SWOL	49 N, 4 E	NWIM	38	30	5/	30.5158	106	30	58	-100.5161	30/821	4203932	3
31	3	Lower waunita Hot Springs	це	Ditkin	Gunnison	10 SWEE		NINADNA	20	20	57	29 51 50	106	20	50	108 5159	267860	4000000	2
		(opring b)	13	EBAID	Gunnison	IU, OWDE	49 IN, 4 E	INIVIT'IVI	30	30	57	30.3155	100	30	00	-100.3130	30/009	4203932	3

٠

.

Table 1. continued.		

• •

	Site				_				Lat	Lat	Lat	Lat	Lon	Lon	Lon	Lon			
ID	No.	Name	Туре	Quadrangle	County	Sec, Qtr/Qtr	Twp, Rge	Merid.	<u>D</u>	M	<u></u> S	Dec	<u>D</u>	M	S	Dec	X-Utm	Y-Utm	Rel
91	4	Lower Waunita Hot Springs																	
		(Spring D)	HS	Pitkin	Gunnison	10, SWSE	49 N, 4 E	NMPM	38	30	59	38.5164	106	31	0	-106.5167	367773	4263995	3
92	1	Wellsville	HS	Wellsville	Fremont	18, SWNW	49 N, 10 E	NMPM	38	29	10	38.4861	105	54	45	-105.9125	420414	4259940	1
93	1	Wet Canyon	HS	Vigil	Las Animas	28, NWNE	32 S, 67 W	6TH	37	14	5	37.2347	104	53	31	-104.8919	509585	4120713	2

• •

· ·
Table 3: Geochemical analysis of geothermal sources in Colorado (short list) (milligrams/liter).

.

٠

ABBREVIATIONS: HS= Hot Spring; W= Well; ND= Not Detected; Brackets ([]) in the TDS column indicate Conductivity measurements; Conductivity is a good regional indicator of TDS

DISCLAIMER: Geochemical analyses come from a variety of sources of variable quality. There is no guarantee of the accuracy of any analysis. Engineering decisions should be based upon complete new analyses.

																	_	Cation- Anion Balance,
ID	Site	Name	Туре	pH	TDS	Na	<u> </u>	Ca	Mg	Fe	SIO ₂	<u>B</u>	<u> </u>	HCO ₃	SO4	CI	<u> </u>	%
1	1	Antelope Warm Spring	HS		151	44.0	0.1	4.0	0.3	0.02	41		0.01	110	2	3	2.0	5.1
2	1	Axial	W	7.1	1,250	71.0	14.0	140.0	140.0	0.11	18			630	530	17	0.6	0.4
3	1	Birdsie Warm Spring	HS	9.2	[209]													
4	1	Brands Ranch	W	6.4	[465]													
5	1	Browns Canyon Warm Spring	HS	8.0	[775]	170.0	2.4	9.0			28							
5	2	Browns Canyon(Chimney Hill)	W			170.0	2.7	7.0			47							
5	3	Browns GrottoWarm Spring	HS	7.0	494	180.0	3.4	18.0			46							
6	1	Canon City Hot Springs	HS	6.2	1,220	180.2	19.8	179.9	57.9	0.03	23	0.20	0.23	867	123	186	1.5	0.1
7	1	Carson #1 Well	W	8.2	789	310.0	2.8	2.7	0.3	0.07	23	0.19			1	14	1.5	96.4
8	1	Cebolla "A", (Powderhorn)	HS	6.7	1,453	309.9	65.7	122.7	49.3	0.03	79	1.10	0.49	1,178	125	121	4.3	-0.5
8	2	Cebolla "B", (Powderhorn)	HS		1,460	310.0	64.0	120.0	50.0	0.05	77	1.10	0.72	1,180	130	120	5.8	-1.6
8	3	Cebolla "C", (Powderhorn)	HS		1,460	300.0	63.0	130.0	51.0	0.04	79	1.10	0.71	1,170	130	120	4.6	-0.3
9	1	Cement Creek Warm Spring	HS	7.1	393	38.3	6.1	71.3	19.5	0.01	18	0.07	0.09	305	76	11	1.7	0.2
10	1	Chinaman Canyon	HS	8.5	342	41.0	1.6	66.0	16.0	1.60	11	0.02			64	7	0.3	76.1
11	1	Clark Spring	W	6.8	1,210	250.0	18.0	75.0	45.0	2.70	11	0.10	0.22	323	620	28	1.4	-0.9
12	1	Cokedale	HS	8.4	884	190.0	7.1	68.0	29.0	0.62	12	0.06			390	16	0.5	39.6
13	1	Colonel Chinn	W	6.5	2,050	615.0	40.0	120.0	34.5	0.11	25	1.80		1,530	84	375	2.5	-2.6
14	1	Conundrum Hot Springs	HS		1,910	42.2	6.2	563.4	5.0	0.05	41	0.03	0.01	18	1,411	8	2.3	1.7
15	1	Cottonwood Spring	HS	9.0	166	6.4	1.7	35.0	13.0	ND	15			180	4	2	0.1	1.8
16	1	Cottonwood Hot Springs	HS	7.6	358	102.8	8.9	6.1	0.9	0.02	58	0.07	0.13	63	107	28	14.3	6.0
16	2	Cottonwood (Jump Steady)	HS	7.6	348	107.5	2.7	5.9	0.3	0.01	46	0.09	0.16	70	110	30	10.7	4.8
16	3	Cottonwood (Merrifield Well)	Ŵ	8.8	301	81.0	2.5	9.5	0.8	0.01	48	0.08	0.11	71	87	23	12.0	-2.7
17	1	Craig Warm Water Well	Ŵ	8.2	878	353.5	3.9	5.1	0.7	0.03	50	0.23	0.08	997	3	5	3.1	-5.7
18	1	Crowley Banch Reserve	Ŵ	6.8	[1,789]	•										-		
19	1	Dailas Creek	Ŵ	77	3,210	350.0	20.0	600.0	44.0	2.10	29				1.900	100		14.1
20	i	Deganabl (Yampa)	Ŵ	72	263	28.4	2.1	51.5	13.8	0.01	17	0.03		257	27	7	0.1	0.4
20	2	Deganahl-Watson Creek (Yamoa)	Ŵ	82	241	27.0	2.8	51.0	14.0	0.03	••				22	10		85.0
21	1	Desert Reef (Florence)	ŵ	6.5	1 398	281.4	30.4	159.4	70.3	0.06	33	0.17	0.22	1.155	228	128	1.1	-2.1
22	1	Dexter Spring	HS	79	1,000					0.00		•••••		.,				
23	ł	Don K Banch	w	6.5	1.710	400.0	50.0	160.0	66 0	1.10	40	0.56	0.52	1.580	64	150	1.9	2.0
24		Dotsero Warm Sorings	HS	71	10 1 70	3 451 3	160.8	252.3	68.3	0.02	16	0.21	0 10	452	449	5 544	0.6	-0.4
24	2	Dotsero Warm Springs South	HS	6.9	8 950	3 064 0	35.5	251.5	54 7	0.01	12	0.19	0.08	398	480	4 806	0.3	-0.6
25	1	Dry Creek Well	Ŵ	85	369	140.0	0.5	6.0	0.9	0.06	8	0.06	0.00	310	41	14	11	14
26	1	Dunton Hot Spring	HS	6.5	1 300	34.3	20.3	343.3	44.3	1 41	33	0.10	0.10	969	333	7	0.6	-0.8
20	1	Dutch Crowley	w	6.0	1 270	21 0	20.0	310.0	24 0	0.08	33	0.10	0,10	170	780	, 8	0.5	-3.6
28	-	East Willow Crook	Ŵ	70	972	390.0	11	50	63	0.05	11	3.30	0.33	880	,00	100	11.0	-11
20	1	Elderede Seriege "A"	147	6.0	101	60	3.0	15.0	0.3 / 0	0.00	16	0.00	0.00	63	20	100	0.0	2.6
23	•	Elouiado opiniga M	**	0.9	101	0.9	0.2	10.0	4.0	0.01	10	V.V2	0.01	00	20	•	0.2	2.0

.

מו	Site	Nama	Type	nH	TDS	: Na	ĸ	Ca	Μα	Fa	SIO	в	Li	HCO	SO.	CI	F	Cation- Anion Balance
											45							
29	2	Eldorado Springs B	HS	0.0	10 5001	9.3	2.1	11.1	3.4	0.01	15	0.02	0.01	40	24	2	0.3	-0.7
30	-	Elerence	VV \\/	7.0	1 / 90	270.0	320	190.0	78 0	0.50	21	0.16	0.24	1 200	210	08	1 1	A 1
31	1	Fromont Natatorium	W	6.0	1,400	203.0	201	145 3	673	0.00	22	0,10	0.24	615	546	33	0.5	4.1 0.1
32 33	1	Gener	<u>ие</u>	0.0	1,000	400.0	29.4	145.5	40.0	0.95	37	0.03	0.00	1 770	68	2	0.5	_1 0
34	1	Glopwood Springs (BigSpring)	ЦQ	63	20,400	7 083 3	25.0	456 7	40.0 02 N	0.02	33	0.12	0.20	657	1 131	11 008	23	-1.5
34	2	Glenwood Springs (Drinking	115	0.5	20,400	7,000.0	200.0	400.7	52.0	0.00		0.00	0.40		1,101	11,000	2.0	0.1
	_	Spring)	HS	6.4	19,950	6,596.0	619.4	505,4	/2.6	0.05	31	0,90	0.34	767	1,116	10,658	2.3	-0.8
34 34	3 4	Glenwood Springs (Vapor Cave) Glenwood Springs (Graves	HS	6.8	18,200	6,450.0	154.5	426.5	68.0	0.41	28	0.78	0.67	744	1,450	9,300	1.7	2.1
		Springs)	HS	7.0	21,500	7,000.0	180.0	770.0	150.0	0.07	32	1.00	0.69	744	2,000	11,000	2.9	-1.2
34	5	Glenwood Springs (Spring A)	HS	6.3	17,600	6,000.0	160.0	410,0	88.0	0.04	30	0.80	0.73	736	980	9,600	2.2	-3.6
34	6	Glenwood Springs (Spring B)	HS	6.8	18,050	6,375.0	172.5	447.5	81.8	0.03	28	0,82	0.83	749	1,023	9,675	2.2	1.4
34	8	Glenwood Springs (Railroad	ЦС	69	19 300	6 150 0	100.0	460.0	83.0	0.03	20	0.87		770	000	10.000	23	-4.4
25	1	Grassy Creek (Haydon)	W	7.5	1 050	31.0	130.0	200.0	77.0	0.00	14	0.07		560	420	21	2.3	-4.3
36	1	Hartsol (Spring A)	не	7.5	2 280	0 088	33.0	120.0	20.0	0.03	41	0.56	1.00	479	320	820	21	12
36	2	Hartsel (Spring R)	HS	67	2,200	662.6	31.2	113.8	21.8	0.49	38	0.50	0.67	458	323	808	20	0.2
37	1	Havetack Butto	w	8.0	1,200	510.0	1.3	2.5	0.7	0.05	29	0.00	0.07	1 250	8	30	2.0 A A	31
38	i.	Hooper Aquaculture well	Ŵ	8.8	[463]	010.0	1.0	2.0	0.7	0.00		V , I =	0.24	1,200	Ŭ		7.7	0.1
30	i	Horse Mountain Spring	HS	82	932	31.0	12	160.0	62.0	ND	10				540	6	04	20.9
40	1	Hot Sulphur Springs (Spring A)	HS	6.9	1 198	424 0	34.2	15.0	3.3	0.04	32	0 54	0 87	817	130	137	11.6	-0.7
40	2	Hot Sulphur Springs (Spring R)	HS	67	1 200	430.0	24.0	15.0	3.1	0.10	35	0.57	1.10	817	140	140	12.0	-2.0
40	3	Hot Sulphur Springs (Spring C)	HS	7.0	1,200	435.0	23.5	15.0	3.4	0.09	33	0.55	1.30	821	135	140	10.8	-0.2
40	4	Hot Sulphur Springs (Spring D)	HS	7.1	1,190	430.0	23.0	16.0	3.0	0.20	30	0.57	1.50	790	150	140	9.1	0.3
41	1	Idaho Springs (Spring A)	HS	6.8	2.005	518.6	62.2	139.0	37.1	0.05	66	0.37	0.51	1.465	397	67	4.2	-0.5
41	ż	Idaho Springs (Spring B)	HS		2.070	520.0	82.0	130.0	50.0	0.02	68	0.37	0.66	1.520	400	69	4.8	-0.1
41	3	Idaho Springs (Spring C)	HS		1.070	260.0	44.0	77.0	23.0	0.04	45	0.17	0.34	759	210	36	2.9	1.3
41	4	Idaho Springs (Lodge Well)	W	6.9	2,070	520.0	82.0	150.0	38.0	1.00	58	0.36	0.87	1,490	420	66	3.5	0.8
42	1	Jacks Mine	HS	9.2	1,870	720.0	7.0	7.6	9.8	8.00	3	1.50			390	21	1.4	73.3
43	1	Juniper Hot Springs	HS	8.0	1,120	430.8	10.2	3.6	1.2	0.02	39	0.54	0.10	1,025	16	87	3.3	-2.4
44	1	Lake City Airstrip	W	7.6	1,810	300.0	29.0	290.0	33.0	2.80	34				720	76		44.9
45	1	Lake San Cristobal	W	7.7	1,950	360.0	36.0	180.0	36.0	6.20	32				970	87		21.2
46	1	Lemon	HS	6.6	2,776	745.2	89.7	150.2	11.0	0.59	98	1.86	3.75	1,084	859	267	4.7	0.5
47	1	Lost Creek (Bennett)	W	7.8	329	110.0	1.6	8.3	1.4	0.02	10				84	9	1.4	61.4
48	1	Marigold	W	7.0	2,070	120.0	5.2	500.0	30.0	0.05	61				1,200	55		19.0
49	1	Maurer Ranch	W	7.2	1,430	430.0	10.0	25.0	18.0	0.05	12			310	750	32	1.5	0.0
50	1	McIntire Warm Springs	HS	8.2	159	11.0	4.1	20.0	2.7									
51	1	MGP Well	W	7.6	1,160	480.0	1.5	3.6	0.1	0.55	17	0.10			1	21	4.3	96.0
52	1	Mineral Hot Springs (Spring A)	W	6.8	651	137.5	14.3	58.3	13.3	0.22	47	0.38	0.31	343	168	39	4.0	-0.3
52	з	Mineral Hot Springs (Spring C)	HS		723	150.0	14.0	60.0	14.0	0.02	50	0.37	0.33	341	190	43	4.2	0.9
52	4	Mineral Hot Springs (Spring D)	HS	6.8	665	142.5	14.0	57.0	13.0	0.07	47	0.37	0.33	352	173	39	3.9	-1.4
53	1	Mosca West	W	8.8	238	62.0	2.1	2.8	0.2	0.12	70	0.38		110	36	8	2.5	0.2
54	1	Moffat	W	8.2	175	55.0	0.5	5. 9	0.1	0.03	27	0.11		120	18	4	3.0	3.7

• •

										_		_				-	_	Cation- Anion Balance,
ID	Site	Name	Туре	рН	TDS	Na	<u> </u>	Ca	Mg	Fe	SIO2	В		HCO3	SO4	CI	F	%
55	1	Mt. Princeton Hot Springs (Spring A)	HS	7.5	246	57.8	2.1	10.6	0.6	0.01	58	0.02	0.09	72	66	5	9.4	-0.7
55	5	Mt. Princeton Hot Springs (Spring F)	HS		229	50.0	1.9	12.0	0.5	0.01	57	0.01	0.08	73	58	4	8.3	-2.6
55	6	Mt. Princeton Hot Springs (Hortense)	HS	7.8	344	96.2	2.6	4.5	0.1	0.02	76	0.04	0.07	89	99	12	17.3	-6.1
55	7	Mt. Princeton Hot Springs (Hortense Well)	w		318	84.0	2.8	6.4	0.1	0.04	72	0.03	0.12	75	92	8	14.0	-1.1
55	8	Mt. Princeton Hot Springs (Woolmington)	W		143	40.0	1.7	11.0	0.6	0.03	1	0.02	0.06	75	47	4	0.1	2.8
55	9	Mt. Princeton Hot Springs (Wright Well,east)	W		234	61.0	2.1	8.3	0.3	0.05	53	0.02	0.10	68	60	5	10.0	4.2
55	11	Mt. Princeton Hot Springs (Young Life) Mulleguille (Dhadae) Werm	W		259	60.0	2.3	8.5	0.3	0.03	71	0.02	0.09	72	67	4	9.2	-1.2
50	1	Springs	HS	7.6	190	8.5	3.1	34.4	21.5	0.03	12 14	0.02	0.01	181	16 43	24	0.2	-1.2 86 8
57 58 59	1	Orvis Hot Springs-Pool (Ridgway)	HS	9.0 6.6	2,370	423.8	45.6	277.0	20.3	0.70	54	0.84	0.77	349	1,277	90	3.5	0.5
59	י פ	Spring A) Ouray (Wiesbaden & Motel	HS		1,580	120.0	11.0	350.0	8.0	0.09	40	0.15	2.40	213	910	31	2.7	2.1
59	3	Spring B) Ouray (Wiesbaden Well & Motel	HS		695	53.0	5.0	150.0	8.3	0.02	29	0.06	1.20	189	340	14	1.1	1.3
59	4	Spring C) Ouray (Pool or Box Canyon	W	6.9	1,433	112.8	9.3	326.3	10.1	0.01	43	0.24	3.20	191	836	35	3.0	4.5
50	5	Spring) Oursy (Fellin Spring)	HS HS	6.8 7 4	1,640 269	100.8	9.4 1 9	372.6 43.0	8.9 10.0	0.03 ND	49 21	0.21 0.24	1.76	129 185	975 12	42 6	3.2 0.1	1.8 14.8
59	6	Ouray (Vinegar Hill)	HS	7.4	331	14.0	1.9	70.0	5.0	ND	11	0.24		136	93	11	0.6	1.2
59	7	Ouray (Manganese Mine)	HS	7.2	1.463	138.0	9.2	381.5	11.5	0.16	52	0.33		122	1,069	50	3.0	1.6
59	8	Ouray (Uncompandere Spring)	HS	7.7	2,040	110.0	9.4	350.0	9.2	0.01	44	0.20		138	930	42	3.0	1.2
59	9	Ouray City Park (OX-2)	W	6.7	1,350	89.0	8.9	309.5	13.5	0.02	56	0.22		172	849	38	2.5	-5.0
60	1	Oxford Well	W	7.9	818	320.0	4.3	22.0	1.2	ND		0.05		660	26	2	2.4	24.2
61	1	Pagosa Springs (Big Spring)	HS	6.6	3,206	699.8	131.0	255.9	22.2	0.09	65	2.17	2.64	807	1,462	181	4.6	-0.5
61	2	Pagosa Springs (Courthouse Well)) W	6.5	3,300	780.0	89.0	250.0	25.0	0.02	52	1.80	2.80	858	1,500	170	4.5	1.6
61	З	Pagosa Springs (Spa Motel Well)	W	6.5	3,320	780.0	91.0	230.0	24.0	0.21	51	1.90	2.90	753	1,600	160	4.4	-0.6
62	1	Papeton	W	6.7	684	55.0	2.0	140.0	21.0	0.30	19	0.05		280	290	18	0.3	0.1
63 64	1	Paradise Hot Spring Roppy Hot Springs (Grandes	HS	6.8	6,260	1,867.0	370.0	190.0	28.3	0.14	167	4.90	9.60	670	130	3,167	3.8	0.6
04	•	Spring)	HS	7.2	3,698	759.3	120.5	360.0	46.8	1.19	118	1.72	9.60	607	1,008	979	3.3	1.1
65	1	Pinkerton (Spring A)	HS	6.3	3,880	720.0	116.7	533.3	73.3	4.30	28	2.93	2.50	1,590	613	1,000	2.6	0.4
65	2	Pinkerton (Spring B)	HS		[6,000]	720.0	120.0	530.0	71.0	4.40		3.00	2.80	1,640	610	990		-0.4
65	3	Pinkerton (Mound Spring)	HS	6.5	3,887	716.7	120.0	550.0	71.3	4.20	28	2.97	2.80	1,620	623	1,000	2.3	0.4
65	4	Pinkerton (Little Mound Spring)	HS	7.0	[5,500]					/						-		
66 66	1 2	Poncha Springs (Spring A) Poncha Springs (Spring B)	HS HS	7.7 7.5	674 655	195.0 190.0	8.3 7.8	17.8 18.0	0.4 0.5	0.01 0.05	82 83	0.07 0.07	0.19 0.18	214 214	203 190	50 48	12.0 12.0	-1.3 -0.2

.

.

• •

D Site Name Type pH TDS Na K Ca Mg Fe SNO2 B L1 HCO3 SO24 Cl F Mathematical 66 3 Poncha Spring (Spring C) HS 7.7 668 192.5 8.3 1.8 0.05 0.01 2.8 3.0 1.8 0.05 0.01 2.8 0.05 0.01 8.5 0.05 0.01 8.5 0.05 0.01 8.5 0.05 0.01 8.5 0.01 0.05 0.01 8.5 0.05 0.01 8.5 0.01 0.05 0.01 8.5 0.01 0.05 0.01 0.05 0.01													•						Balance
68 9 Proche Sorieg (Spring C) HS 7.7 666 19.2 8.1 9.9 0.05 0.09 0.19 2.16 19.3 5.0 11.2 0.4 66 1 Ranger HS 7.0 4.87 64.1 7.8 7.15 2.13 0.10 19 0.06 0.15 351 92 18 1.4 1.11 69 1 Rice (Big Gayear Warm Spring) W 6.8 2.745 7.55 18.8 65.0 101 0.06 0.25 1.739 920 4 1.8 -0.7 69 4 Rice (Big Gayear Warm Spring) W 6.8 2.745 75.5 18.8 65.0 101.0 1.00 0.25 1.775 920 4 1.8 -0.7 2.745 75.5 18.8 65.0 10.03 151 0.22 0.25 1.37 4.3 1.30 1.4 4.8 1.30 1.4 4.3 1.30 1.4 1.30	ID	Site	Name	Туре	рН	TDS	Na	K	Ca	Mg	Fe	SIO ₂	B	Li	HCO3	SO4	CI	F	Salarice,
67 1 Rainbow HS 161 45.0 0.2 2.1 0.2 0.06 0.07 0.07 0.05 0.01 85 30 1 2.2 3.1 66 1 Ranger HS 7.0 45.7 61.3 77.1 77.1 77.0 82.0 66.0 28.0 65.0 82.0 10.0 12.0 0.07 ND 1.120 B10 2 11.4 0.7 68 2 70 6.3 2.700 60.0 32.0 68.0 10.0 0.10 6.10 10.0 0.00 2.5 1.770 92.0 4 2.1 2.0 70 4.7 7.3 2.74 7.5 18.6 66.0 10.0 0.00 10.0 0.00 0.25 1.750 90.0 32.2 2.3 33 40.0 10.0 10.0 10.0 10.0 11.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 </td <td>66</td> <td>3</td> <td>Poncha Springs (Spring C)</td> <td>HS</td> <td>7.7</td> <td>668</td> <td>192.5</td> <td>8.3</td> <td>18.8</td> <td>0.5</td> <td>0.02</td> <td>80</td> <td>0.09</td> <td>0.19</td> <td>216</td> <td>193</td> <td>50</td> <td>11.2</td> <td>0.4</td>	66	3	Poncha Springs (Spring C)	HS	7.7	668	192.5	8.3	18.8	0.5	0.02	80	0.09	0.19	216	193	50	11.2	0.4
68 1 Parager HS 7.0 4.67 61.3 7.8 71.5 21.3 0.01 19 0.08 0.15 551 92 18 1.4 0.07 69 1 Rico (Big Geyer Warn Spring) W 6.3 2,760 80.0 95.0 95.5 0.00 6.40 125 0.08 0.25 1,730 92.0 4 1.1 1.0 68 4 Rico (Lutte Spring) HS 7.0 2,745 7.85 18.8 65.0 101.0 0.08 0.21 1.580 980.3 3.2 2.30 7 2 Rance Creek (Savers Cutter) HS 7.8 1.680 86.0 2.30 1.20 3.1 2.00 9 1.00 2.55 1.55 4.7 1.8 0.1 4.8 1.1 1.880 1.1 1.880 1.8 1.8 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.1 1.8 </td <td>67</td> <td>1</td> <td>Rainbow</td> <td>HS</td> <td></td> <td>161</td> <td>45.0</td> <td>0.2</td> <td>2.1</td> <td>0.2</td> <td>0.08</td> <td>39</td> <td>0.05</td> <td>0.01</td> <td>85</td> <td>30</td> <td>1</td> <td>2.2</td> <td>-3.1</td>	67	1	Rainbow	HS		161	45.0	0.2	2.1	0.2	0.08	39	0.05	0.01	85	30	1	2.2	-3.1
69 1 Rice (Diamond drill hole) W 7.0 2.25 68.0 2.80 68.0 2.80 68.0 2.50 68.0 1.20 0.07 ND 1.12 810 2 1.61 68 3 Rice (Geyeer Warm Spring) W 6.8 2.75 75.5 810 1.20 68.0 0.25 1.75 910 4 1.8 0.7 68 4 Rice (Clawser Warm Spring) W 6.8 2.75 75.6 18.8 65.0 1010 6.10 102 0.08 0.21 1.80 980 3.2 3.3 7 Ratcap Creak (StewnsGuch) W 7.5 3.19 1.800 80.0 3.2 0.0 3.1 2.400 10.0 1.120 0.11 1.10	68	1	Ranger	HS	7.0	467	61.3	7.8	71.5	21.3	0.01	19	0.08	0.15	351	92	18	1.4	-0.7
Bio Bio Disc [Big Geyser Warm Spring) W 6.8 2.746 7.2.5 30.5 685.0 95.5 8.40 125 0.08 0.25 1.767 910 4 1.8 0.7 8 Rico (Little Spring) H5 7.0 2.745 7.65 1.82 0.850 100 0.850 0.25 1.730 920 4 2.1 -2.0 10 Ractep Creek (StevensGuch) H5 7.10 1.75 3.160 650.0 23.0 1.00 1.1 1.80 1.9 0.06 1.1 1.80 1.9 0.06 1.1 1.80 1.9 0.06 1.1 1.80 1.7 2.1 0.5 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.01 1.0	69	1	Rico (Diamond drill hole)	W	7.0	2.250	66.0	28.0	590.0	82.0	0.03	120	0.07	ND	1,120	810	2	1.4	11.1
Ge Bio: (Caryer Warn Spring) W 6.3 2.790 80.0 32.0 880.0 100.0 8.50 110 0.06 0.25 17.30 920 4 2.1 2.20 60 4 Rio: (Little Spring) HS 7.0 1 180 190 3.3 3.3 10 1 180 190 3.3 3.3 70 Roatcap Creek W 7.5 3.190 1.300.0 13.0 9.0 3.2 5.40 16 2.00 .43 14.8 8.48 71 Roatcap Creek W 7.3 533 168.0 8.0 1.0 0.3 1.5 0.43 1.5 1.6 1.0 1.0 1.0 1.5 1.35 47 1.25 5.5 3.3 7 Sand Dunes Pool Well W 8.0 3.20 1.5 1.0 1.00 1.01 1.7 7.3 0.3 8.0 7.1 Sand Dunes Poing HS 7.3 <td>69</td> <td>2</td> <td>Rico (Big Geyser Warm Spring)</td> <td>Ŵ</td> <td>6.8</td> <td>2,745</td> <td>72.5</td> <td>30.5</td> <td>685.0</td> <td>95.5</td> <td>8.40</td> <td>125</td> <td>0.08</td> <td>0.25</td> <td>1,675</td> <td>910</td> <td>4</td> <td>1.8</td> <td>-0.7</td>	69	2	Rico (Big Geyser Warm Spring)	Ŵ	6.8	2,745	72.5	30.5	685.0	95.5	8.40	125	0.08	0.25	1,675	910	4	1.8	-0.7
66 File F	69	3	Rico (Geyser Warm Spring)	Ŵ	6.3	2,790	80.0	32.0	680.0	100.0	8.50	110	0.08	0.25	1.730	920	4	2.1	-2.0
70 1 Doatage Creek W 7.5 8.100 1.300.0 1300.0 1300.0 130 120 3.1 2.400 9 1.00 1.1 180 1.6 2.00 1.1 1.1 1.00 1.6 9.00 7.0 1.00 7.0 1.6 1.00 7.0 1.6 1.00 7.0 1.6 1.6 2.00 2.0 1.1 1.00 1.6 8.3 1.4 8.3 1.00 8.0 0.00 1.00	69	4	Rico (Little Spring)	HS	7.0	2,745	76.5	18.8	655.0	101.0	6.10	120	0.08	0.21	1.580	980	3	3.2	-3.3
70 2 Paster Creak (StevensGulch) W 8.3 1.690 120 3.1 24.00 9 1.00 4.3 130 1.4 84.8 71 1 Pout [aks Strewberny] (Sping A) 15 7.8 133 16.0 8.3 0.1 0.03 151 0.22 0.25 135 44 130 17.0 1.6 1 Sarcillo Canyon Well W 8.3 3.33 11.0 8.6 0.03 151 0.01 176 2.5 53 33.3 76 1 Sarcillo Canyon Well W 8.0 333.3 17 2.1 55.0 10.0 ND 11 0.01 176 2.5 33.3 10.0 12.5 7.0 70.07 0.01 100 0.01 100 0.02 211 46 73 0.8 80.2 33.0 19 54.0 20.0 0.06 10 0.02 211 0.0 0.0 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 14.4 93.0 14.4	70	i	Boatcap Creek	W	7.5	3,190	1.300.0	13.0	9.0	3.2	5.40	16	2.00	••••	.,	11	180	1.9	90.6
71 1 Routi faks Strawberry (Spring A) HS 7.8 7.8 7.8 6.3 0.1 0.03 151 0.22 0.25 135 47 128 Hcs 7.1 539 160.0 9.1 7.8 0.05 0.08 9.8 0.28 0.31 153 49 130 170 -1.6 7.1 Sand Duces Pool Well W 8.3 334 81.0 8.6 3.2 0.4 0.01 120 0.51 0.01 176 23 5 59 33.3 3 Sancello Carryon Moti Spring HS 9.0 424 130.0 1.5 2.7 0.7 0.01 100 0.12 211 46 7 3.0 18.8 7 15 South Carryon Hot Springs HS 7.5 320 33.0 1.9 54.0 2.00 0.06 10 0.02 2.8 0.11 101 198 3.7 1.3 0.3 0.62 2.26 0.15 2.94 10.0 1.30 3.0 1.3 1.3 1.3 1.3	70	2	Boatcap Creek (StevensGulch)	ŵ	8.3	1.690	650.0	23.0	12.0	3.1	24.00	9	1.00			43	130	1.4	84.8
71 2 Hout Jake Strawberry [Soring B] HS 7.1 530 1000 9.6 0.28 0.31 135 49 130 170 1.5 1 Sanci Dunes Pool Well W 8.0 334 81.0 8.6 2.2 0.4 0.01 120 0.51 0.01 176 23 5 5.9 3.3 7 Sanci Dunes Pool Well W 8.0 334 1.7 2.1 55.0 1.0 ND 100 0.01 120 0.01 176 23 5 5.9 3.3 76 1 Smith Caryon Hot Springs HS 7.3 787 275.0 8.2 7.6 1.4 0.02 10 0.02 37 1.3 0.3 9.9 2.2 0.26 0.15 304 101 198 3.7 -1.3 7 Spinshind Caryon Hot Springs HS 7.1 757 26.0 7.8 7.1 0.9 0.04 43 0.23 0.15 291 100 190 4.0 3.3 3.3 3.3	71	1	Boutt Jaka Strawberry (Spring A)	HS	78	513	158.0	8.9	83	0.1	0.03	151	0.22	0 25	135	47	129	16.3	-14
72 1 Sand Dunse Pool Wall W 8.3 34 610 8.6 3.2 0.4 0.01 120 0.51 0.01 176 2.3 5.5 3.3 73 1 Sancillo Canyon Well W 8.0 393 1.7 2.1 55.0 18.0 ND 11 0.01 100 0.12 2.11 46 7 3.0 8.2 1 Sancillo Canyon Kell HS 7.5 320 33.0 1.9 54.0 2.0 0.05 10 0.02 .15 3.0 10.3 80.2 1 South Canyon Hots Springs HS 7.3 7.8 7.75 8.2 7.6 1.4 0.02 4.2 0.15 3.04 101 198 3.7 -1.3 2 Steamboat Springs (Heart Spring) HS 7.1 7.7 260.0 7.8 7.1 0.9 0.04 43 0.02 100 100 0.01 110 0.40 3.5 0.4 1.4 0.15 2.9 1.00 1.00 1.0 0.24	71	2	Boutt [aka Strawberry] (Spring R)	HS	71	539	160.0	9.1	78	0.5	0.08	98	0.28	0.31	135	49	130	17.0	-1.6
1 Samula System W 8.0 333 1.7 2.1 55.0 180 ND 100 100 100 0.01 100 100 0.01 100 100 0.02 100 100 100 0.02 100 100 100 30 130 130 130 130 130 130 130 130 0.02 100 0.04 43 0.02 100 100 30 0.01 110 0.01 110 0.01 110 0.01 130 0.01 120 <th< td=""><td>72</td><td>1</td><td>Sand Dunes Pool Well</td><td>w</td><td>83</td><td>334</td><td>81.0</td><td>8.6</td><td>32</td><td>0.4</td><td>0.01</td><td>120</td><td>0.51</td><td>0.01</td><td>176</td><td>23</td><td>5</td><td>59</td><td>33</td></th<>	72	1	Sand Dunes Pool Well	w	83	334	81.0	8.6	32	0.4	0.01	120	0.51	0.01	176	23	5	59	33
1 Schwargen Holm HS 9.0 424 1300 1.5 2.7 0.7 0.01 100 0.02 211 142 7.5 180 1 Shaws HS 7.5 320 330 1.9 54.0 20.0 0.06 100 0.02 211 64.6 7.8 7.1 30.3 80.2 1 Sum Carryon Hot Spring HS 7.3 787 275.0 8.2 7.6 1.4 0.02 42 0.15 304 101 196 3.7 -1.3 2 South Carryon Hot Springs HS 7.1 757 260.0 7.8 7.1 0.9 0.04 43 0.23 0.15 291 100 190 4.0 3.9 7 1 Splashland W 8.3 311 7.0 9.0 2.0 0.04 74 0.74 0.22 103 144 319 5.3 0.3 8 Steemboat Springs (Suphur KS 6.7 6.70 2.00.0 10.0 31.0 0.01 21	72	i.	Sarcillo Canvon Well	Ŵ	8.0	393	17	21	55.0	18.0	ND	11	0.01	0.01		100	ă	0.5	45.6
Are Diamis Ho 5.0 100 10.0 <t< td=""><td>74</td><td>1</td><td>Showe</td><td>нs</td><td><u>a</u> n</td><td>424</td><td>130.0</td><td>1.5</td><td>27</td><td>0.7</td><td>0.01</td><td>100</td><td>0.12</td><td></td><td>211</td><td>46</td><td>7</td><td>3.0</td><td>10.0</td></t<>	74	1	Showe	нs	<u>a</u> n	424	130.0	1.5	27	0.7	0.01	100	0.12		211	46	7	3.0	10.0
1 Similar Signal Oping 10 1.0 10 1.0 0.0 1.0 0.0 <th0.0< th=""> <th0.0< th=""> <th0.0< th=""> 0.0</th0.0<></th0.0<></th0.0<>	74	1	Smith Canvon Spring	ЦQ	75	320	33.0	1.0	540	20.0	0.06	10	0.12		211	37	12	0.0	80.2
No South Caryon Hot Springs No	75	4	South Canyon Hot Springs	110	7.5	0L0	00.0	1.0	04.0	20.0	0.00	10	0.02			07	10	0.5	00.2
Trip Top Top <tht< td=""><td>10</td><td>•</td><td>(Soring A)</td><td>ЦС</td><td>72</td><td>797</td><td>275.0</td><td>82</td><td>76</td><td>1.4</td><td>0.02</td><td>40</td><td>0.26</td><td>0 15</td><td>204</td><td>101</td><td>109</td><td>37</td><td>1 2</td></tht<>	10	•	(Soring A)	ЦС	72	797	275.0	82	76	1.4	0.02	40	0.26	0 15	204	101	109	37	1 2
No 2 Solution for Spring B) HS 7.1 757 260.0 7.8 7.1 0.9 0.04 43 0.23 0.15 291 100 190 4.0 -3.9 77 1 Splashland W 8.3 311 72.0 9.9 4.1 0.4 0.02 110 0.34 0.01 151 29 6 4.2 4.0 8 2 Steamboat Springs (Heart Spring) HS 8.1 888 292.7 11.3 18.3 0.5 0.04 74 0.74 0.22 103 144 319 5.3 0.3 78 2 Steamboat Springs (Heart Spring) HS 6.7 6.170 2.000.0 140.0 110.0 31.0 0.01 21 3.00 2.420 490 1,000 3.0 1.3 79 1 Stinking Springs HS 7.0 180 12.0 210.0 27.0 0.14 24 0.06 3.09 2.420 19 1.00 3.0 1.2 1.3 1.2 7.1 7.2<	76	2	South Conven Hot Springe	110	7.5	/0/	275.0	0.2	7.0	1.4	0.02	46	0.20	0.15	004	101	190	5.7	-1.5
Top (sping) H3 F.1 F.0 F.1	10	2	South Canyon Hot Springs	Цe	71	757	260.0	79	71	00	0.04	40	0.22	0.15	201	100	100	4.0	20
7/7 1 Sphashindru W 6.3 311 72.0 9.9 4.1 0.4 0.02 110 0.34 0.01 131 29 6 4.2 4.0 78 1 Steamboat Springs (Sulphur CaveSpring) HS 6.5 4,530 16,00.0 110.0 90.0 24.0 0.06 18 2.90 3.00 2,420 490 1,000 3.0 1.3 78 2 Steamboat Springs (Steamboat HS 6.7 6,170 2,200.0 140.0 110.0 31.0 0.01 21 3.20 3.70 3,390 590 1,400 2.9 0.3 79 1 Stinking Springs HS 7.0 [820] 20.0 12.0 21.0 27.0 0.14 24 0.06 0.09 258 470 7 0.6 -2.6 80 1 Sylvester Gulch Warm Spring HS 7.0 [726] 1373 37.0 0.03 56 1.45 1.07 850 50 3 0.2 1.3 81			(Spring D) Selectional	10	1.1	211	200.0	7.0	4.1	0.5	0.04	110	0.23	0.15	291	20	190	4.0	-3.9
78 1 Steamboat Springs (Suphur CaveSpring) HS 6.1 686 292.7 11.3 15.3 0.3 0.34 74 0.74 0.22 103 144 319 5.3 0.3 2 Steamboat Springs (Suphur CaveSpring) HS 6.5 4.530 1,600.0 110.0 90.0 24.0 0.06 18 2.90 3.00 2,420 490 1,000 3.0 1.3 78 3 Steamboat Springs (Steamboat Spring) HS 6.7 6,170 2,200.0 140.0 110.0 31.0 0.01 21 3.20 3.70 3,390 590 1,400 2.9 0.3 79 1 Stinking Springs (Suphu HS 7.0 899 20.0 12.0 210.0 27.0 0.14 24 0.06 0.09 258 470 7 0.6 -2.6 80 2 Stivestre Guidoth Warm Spring HS 7.0 [726] 737 110.00 330.0 900.0 120.0 0.52 33 9.10 440 590 18,000 1.1	11	4	Splasnianu Steambact Scrippe (Veert Scripp)	VV VUO	0.3	000	72.0	9.9	4.1	0.4	0.02	74	0.34	0.01	101	144	210	4.2	4.0
78 2 Site and car Spring HS 6.5 4,530 1,600.0 110.0 90.0 24.0 0.06 18 2.90 3.00 2,420 490 1,000 3.0 1.3 78 3 Steamboat Springs HS 6.7 6,170 2,200.0 140.0 110.0 31.0 0.01 21 3.20 3.70 3,390 590 1,400 2.9 0.3 79 1 Stinking Springs HS 7.0 899 20.0 12.0 210.0 27.0 0.14 24 0.06 0.09 258 470 7 0.6 -2.6 80 1 Swissvale (Spring F) HS 7.0 [820] 110.00 330.0 90.00 120.0 0.52 33 9.10 440 550 1337 147 2.7 -2.3 81 1 Trimble Hot Springs W 6.4 31.20 140.0 35.3 437.3 37.0 0.03 56 1.45 1.71 1.4 1.2.7 -2.3 81 1 <	78		Steamboat Springs (Reart Spring)) пэ	0.1	000	292.1	11.5	18.5	0.5	0.04	/4	0.74	0.22	103	144	319	5.3	0.3
Cavespring/ Cavespring/ Cavespring/ Cavespring/ Cavespring/ Color 16.0 24.0 0.00 16 2.50 3.00 2.420 4.90 1,000 3.0 1.3 8 3< Steamboat	78	2	Steamboat Springs (Sulphur	ue	0 E	4 520	1 600 0	110.0	00.0	24.0	0.06	10	2 00	2 00	2 420	400	1 000	20	10
78 3 Steamboat Spring) HS 6.7 6.170 2.200.0 140.0 110.0 31.0 0.01 21 3.20 3.70 3.390 590 1,400 2.9 0.3 79 1 Stinking Springs HS 7.0 899 20.0 12.0 210.0 27.0 0.14 24 0.06 0.09 258 470 7 0.6 -2.6 80 1 Swissvale (Spring P) HS 7.0 [820] 1 120 210.0 27.0 0.14 24 0.06 0.09 258 470 7 0.6 -2.6 80 1 Sviesvale (Spring F) HS 7.0 [820] 1 11000 33.00 900.0 120.0 0.04 9 0.05 350 50 3 0.2 1.3 81 1 Trimble Hot Springs W 6.4 120.0 120.0 0.03 56 1.45 1.07 859 1.137 147 2.7 -2.3 84 1 Tripp HS 6		•	CaveSpring)	HS	0.0	4,530	1,600.0	110.0	90.0	24.0	0.06	10	2.90	3.00	2,420	490	1,000	3.0	1.3
Spring) HS 6.7 6.7/0 2.00 140.0 10.0 31.0 0.01 2.1 3.20 3.70 3.390 590 1,400 2.9 0.3 91 Stinking Springs HS 7.0 899 20.0 12.0 210.0 27.0 0.14 24 0.06 0.09 258 470 7 0.6 -2.6 80 1 Swissvale (Spring A) HS 7.0 [820] -	78	3	Steamboat Springs (Steamboat		~ 7	C 470	0 000 0	140.0	440.0	01.0	0.01	04	0.00	0.70	2 000	500	4 400		• •
79 1 Stinking Springs HS 7.0 899 2.0 12.0 210.0 27.0 0.14 24 0.06 0.09 258 47.0 7 0.6 -2.6 80 1 Swissvale (Spring F) HS 7.0 [820] 1 Swissvale (Spring S) W 7.4 31,200 11,000.0 330.0 900.0 120.0 0.52 33 9.10 440 590 18,000 1.1 2.7 -2.3 84 1 Tripp HS 6.2 [1,498] 396.0 165.0 558.0 42.0 19 340 300 20 0.2 -2.2 2.4 0.2 2.20 13.0 1.4 0.21 230 13 18 1.1 2.7 2.7 50	-		Spring)	HS	6.7	6,170	2,200.0	140.0	110.0	31.0	0.01	21	3.20	3.70	3,390	590	1,400	2.9	0.3
80 1 Swiissvale (Spring A) HS 7.0 [820] 80 2 Swiissvale (Spring A) HS 7.0 [726] 81 1 Sylvester Gulch Warm Spring HS 7.1 374 66.0 1.9 48.0 20.0 0.04 9 0.05 350 50 3 0.2 1.3 82 1 Texas Carmp (Rangely) W 7.4 31.200 11.00.0 330.0 900.0 120.0 0.52 33 9.10 440 590 18.000 1.1 2.7 2.3 83 1 Trimble Hot Springs W 6.4 3.290 349.0 35.3 437.3 37.0 0.03 56 1.45 1.07 859 1.137 147 2.7 -2.2 84 1 Tripp HS 6.2 [1,498] 396.0 150.0 558.0 42.0 97 1.60 1.21 1.312 2.54 0.2 85 1 Uravan Well W 7.5 [540] 130.0 3.7 6.2 0.6	/9	1	Stinking Springs	HS	7.0	899	20.0	12.0	210.0	27.0	0.14	24	0.06	0.09	258	470	/	0.6	-2.6
80 2 Swissale (Spring F) HS 7.0 [7/26] 81 1 Sylvester Gulch Warm Spring HS 7.1 374 66.0 1.9 48.0 20.0 0.04 9 0.05 350 50 3 0.2 1.3 82 1 Texas Camp (Rangely) W 7.4 31,200 11,000.0 330.0 900.0 120.0 0.52 33 9.10 440 590 18,000 1.1 2.7 -2.3 84 1 Tripp HS 6.2 [1,498] 396.0 165.0 55.8 42.0 97 1.60 1.121 1.312 254 0.2 2.2 86 1 Two Mile Road W 7.6 254 46.0 22.0 22.0 13.0 0.06 4 0.21 230 13 18 1.1 2.7 2.3 86 1 Uravan Well W 7.6 254 46.0 22.0 22.0 13.0 0.06 4 0.21 230 13 18 1.1 2.7 <td>80</td> <td>1</td> <td>Swissvale (Spring A)</td> <td>HS</td> <td>7.0</td> <td>[820]</td> <td></td>	80	1	Swissvale (Spring A)	HS	7.0	[820]													
81 1 Sylvester Guich Warr Spring HS 7.1 374 66.0 1.9 48.0 20.0 0.04 9 0.05 350 50 3 0.2 1.3 82 1 Texas Camp (Rangely) W 7.4 31,200 11,000.0 330.0 900.0 120.0 0.52 33 9.10 440 590 18,000 1.1 2.7 84 1 Tripp HS 6.2 [1,498] 396.0 165.0 558.0 42.0 97 1.60 1,121 1,312 254 0.2 85 1 Towacc Spring HS 7.37 110.0 78.0 42.0 19 340 300 20 0.2 -2.2 86 1 Walle Road W 7.5 [540] 130.0 3.7 6.2 0.6	80	2	Swissvale (Spring F)	HS	7.0	[726]	<u></u>			~~~~		•	0.05				-		
82 1 Texas Camp (Hangely) W 7.4 31,200 11,000,0 330,0 900,0 120,0 0.52 33 9,10 440 590 18,000 1,1 2.7 83 1 Trimble Hot Springs W 6.4 3,290 349,0 35.3 437.3 37.0 0.03 56 1.45 1.07 859 1,137 147 2.7 -2.3 84 1 Tripp HS 6.2 [1,498] 396.0 165.0 558.0 42.0 97 1.60 1,121 1,312 254 0.2 85 1 Towace Spring HS 737 110.0 78.0 42.0 19 340 300 20 0.2 -2.2 86 1 Uravan Well W 7.6 254 46.0 22.0 2.0 13.0 0.06 4 0.21 230 13 18 1.1 2.7 81 Valley View Hot Springs (Spring B) HS 7.1 232 3.5 2.3 47.5 13.0 0.02 <td>81</td> <td>1</td> <td>Sylvester Gulch Warm Spring</td> <td>HS</td> <td>7.1</td> <td>3/4</td> <td>66.0</td> <td>1.9</td> <td>48.0</td> <td>20.0</td> <td>0.04</td> <td>9</td> <td>0.05</td> <td></td> <td>350</td> <td>50</td> <td>3</td> <td>0.2</td> <td>1.3</td>	81	1	Sylvester Gulch Warm Spring	HS	7.1	3/4	66.0	1.9	48.0	20.0	0.04	9	0.05		350	50	3	0.2	1.3
83 1 Immble Hot Springs W 6.4 3.290 349.0 35.3 437.3 37.0 0.03 56 1.45 1.07 859 1,137 147 2.7 -2.3 84 1 Tripp HS 6.2 [1,498] 396.0 165.0 558.0 42.0 97 1.60 1,121 1,312 254 0.2 85 1 Towacc Spring HS 737 110.0 78.0 42.0 19 340 300 20 0.2 -2.2 86 1 Two Mile Road W 7.5 [540] 130.0 3.7 6.2 0.6	82	1	Texas Camp (Hangely)	W	7.4	31,200	11,000.0	330.0	900.0	120.0	0.52	33	9.10	4	440	590	18,000	1.1	2.7
84 1 Tripp HS 6.2 [1,498] 396.0 165.0 558.0 42.0 97 1.60 1,121 1,312 254 0.2 85 1 Towacc Spring HS 737 110.0 78.0 42.0 19 340 300 20 0.2 -2.2 86 1 Two Mile Road W 7.5 [540] 130.0 3.7 6.2 0.6	83	1	Trimble Hot Springs	W	6.4	3,290	349.0	35.3	437.3	37.0	0.03	56	1.45	1.07	859	1,137	147	2.7	-2.3
85 1 Towacc Spring HS 737 110.0 78.0 42.0 19 340 300 20 0.2 -2.2 86 1 Two Mile Road W 7.5 [540] 130.0 3.7 6.2 0.6 87 1 Uravan Well W 7.6 254 46.0 22.0 22.0 13.0 0.06 4 0.21 230 13 18 1.1 2.7 88 1 Valley View Hot Springs (Spring B) HS 7.2 245 3.6 2.7 50.3 14.3 0.01 20 0.08 0.01 123 90 1 0.5 -1.1 88 2 Valley View Hot Springs (Spring B) HS 7.1 232 3.5 2.3 47.5 13.0 0.02 18 0.01 0.01 125 82 2 0.4 -5.2 88 3 Valley View Hot Springs (Spring D) HS 7.3 235 3.5 2.7 50.5 13.0 0.04 18 0.12 125 83	84	1		HS	6.2	[1,498]	396.0	165.0	558.0	42.0		9/		1.60	1,121	1,312	254	• •	0.2
86 1 Iwo Mile Hoad W 7.5 [540] 130.0 3.7 6.2 0.6 87 1 Uravan Well W 7.6 254 46.0 22.0 22.0 13.0 0.06 4 0.21 230 13 18 1.1 2.7 88 1 Valley View Hot Springs	85	1	Towaoc Spring	HS		/37	110.0		78.0	42.0		19			340	300	20	0.2	-2.2
87 1 Uravan Well W 7.6 254 46.0 22.0 13.0 0.06 4 0.21 230 13 18 1.1 2.7 88 1 Valley View Hot Springs (Spring A) HS 7.2 245 3.6 2.7 50.3 14.3 0.01 20 0.08 0.01 123 90 1 0.5 -1.1 88 2 Valley View Hot Springs (Spring B) HS 7.1 232 3.5 2.3 47.5 13.0 0.02 18 0.01 0.01 125 82 2 0.4 -5.2 88 3 Valley View Hot Springs	86	1	Two Mile Road	W	7.5	[540]	130.0	3.7	6.2	0.6							4.0		
88 1 Valley View Hot Springs (Spring A) HS 7.2 245 3.6 2.7 50.3 14.3 0.01 20 0.08 0.01 123 90 1 0.5 -1.1 88 2 Valley View Hot Springs (Spring B) HS 7.1 232 3.5 2.3 47.5 13.0 0.02 18 0.01 0.01 125 82 2 0.4 -5.2 88 3 Valley View Hot Springs (Spring D) HS 7.3 235 3.5 2.7 50.5 13.0 0.04 18 0.12 125 83 2 0.3 -0.5 89 1 Wagon Wheel Gap (4UR Ranch Spring) HS 6.9 1,583 476.7 49.0 62.3 14.7 0.01 85 2.13 2.20 1,023 180 200 7.0 0.3 89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7	87	1	Uravan Well	w	7.6	254	46.0	22.0	22.0	13.0	0.06	4	0.21		230	13	18	1.1	2.7
(Spring A) HS 7.2 245 3.6 2.7 50.3 14.3 0.01 20 0.08 0.01 123 90 1 0.5 -1.1 88 2 Valley View Hot Springs (Spring B) HS 7.1 232 3.5 2.3 47.5 13.0 0.02 18 0.01 0.01 125 82 2 0.4 -5.2 88 3 Valley View Hot Springs (Spring D) HS 7.3 235 3.5 2.7 50.5 13.0 0.04 18 0.12 125 83 2 0.3 -0.5 89 1 Wagon Wheel Gap (4UR Ranch Spring) HS 6.9 1,583 476.7 49.0 62.3 14.7 0.01 85 2.13 2.20 1,023 180 200 7.0 0.3 89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7 90 1 W	88	1	Valley View Hot Springs																
88 2 Valley View Hot Springs (Spring B) HS 7.1 232 3.5 2.3 47.5 13.0 0.02 18 0.01 0.01 125 82 2 0.4 -5.2 88 3 Valley View Hot Springs (Spring D) HS 7.3 235 3.5 2.7 50.5 13.0 0.04 18 0.12 125 83 2 0.3 -0.5 89 1 Wagon Wheel Gap (4UR Ranch Spring) HS 6.9 1,583 476.7 49.0 62.3 14.7 0.01 85 2.13 2.20 1,023 180 200 7.0 0.3 89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7 90 1 Waunita Hot Springs (Spring C) HS 8.3 581 155.0 10.0 8.4 2.0 0.02 120 0.06 0.21 125 185 15 18.5 4.0 </td <td></td> <td></td> <td>(Spring A)</td> <td>HS</td> <td>7.2</td> <td>245</td> <td>3.6</td> <td>2.7</td> <td>50.3</td> <td>14.3</td> <td>0.01</td> <td>20</td> <td>0.08</td> <td>0.01</td> <td>123</td> <td>90</td> <td>1</td> <td>0.5</td> <td>-1.1</td>			(Spring A)	HS	7.2	245	3.6	2.7	50.3	14.3	0.01	20	0.08	0.01	123	90	1	0.5	-1.1
(Spring B) HS 7.1 232 3.5 2.3 47.5 13.0 0.02 18 0.01 0.01 125 82 2 0.4 -5.2 88 3 Valley View Hot Springs (Spring D) HS 7.3 235 3.5 2.7 50.5 13.0 0.04 18 0.12 125 83 2 0.3 -0.5 89 1 Wagon Wheel Gap (4UR Ranch Spring) HS 6.9 1,583 476.7 49.0 62.3 14.7 0.01 85 2.13 2.20 1,023 180 200 7.0 0.3 89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7 90 1 Waunita Hot Springs (Spring C) HS 8.3 581 155.0 10.0 8.4 2.0 0.02 120 0.06 0.21 125 185 15 18.5 4.0	88	2	Valley View Hot Springs																
88 3 Valley View Hot Springs (Spring D) HS 7.3 235 3.5 2.7 50.5 13.0 0.04 18 0.12 125 83 2 0.3 -0.5 89 1 Wagon Wheel Gap (4UR Ranch Spring) HS 6.9 1,583 476.7 49.0 62.3 14.7 0.01 85 2.13 2.20 1,023 180 200 7.0 0.3 89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7 90 1 Waunita Hot Springs (Spring C) HS 8.3 581 155.0 10.0 8.4 2.0 0.02 120 0.06 0.21 125 185 15 18.5 4.0			(Spring B)	HS	7.1	232	3.5	2.3	47.5	13.0	0.02	18	0.01	0.01	125	82	2	0.4	-5.2
(Spring D) HS 7.3 235 3.5 2.7 50.5 13.0 0.04 18 0.12 125 83 2 0.3 -0.5 89 1 Wagon Wheel Gap (4UR Ranch Spring) HS 6.9 1,583 476.7 49.0 62.3 14.7 0.01 85 2.13 2.20 1,023 180 200 7.0 0.3 89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7 90 1 Waunita Hot Springs (Spring C) HS 8.3 581 155.0 10.0 8.4 2.0 0.02 120 0.06 0.21 125 185 15 18.5 4.0	88	3	Valley View Hot Springs																
89 1 Wagon Wheel Gap (4UR Ranch Spring) HS 6.9 1,583 476.7 49.0 62.3 14.7 0.01 85 2.13 2.20 1,023 180 200 7.0 0.3 89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7 90 1 Waunita Hot Springs (Spring C) HS 8.3 581 155.0 10.0 8.4 2.0 0.02 120 0.06 0.21 125 185 15 18.5 4.0			(Spring D)	HS	7.3	235	3.5	2.7	50.5	13.0	0.04	18	0.12		125	83	2	0.3	-0.5
Spring)HS6.91,583476.749.062.314.70.01852.132.201,0231802007.00.3892Wagon Wheel Gap (CFI Spring)HS6.51,510447.546.867.315.30.19742.251.901,0231451987.2-0.7901Waunita Hot Springs (Spring C)HS8.3581155.010.08.42.00.021200.060.211251851518.54.0	89	1	Wagon Wheel Gap (4UR Ranch								_								
89 2 Wagon Wheel Gap (CFI Spring) HS 6.5 1,510 447.5 46.8 67.3 15.3 0.19 74 2.25 1.90 1,023 145 198 7.2 -0.7 90 1 Waunita Hot Springs (Spring C) HS 8.3 581 155.0 10.0 8.4 2.0 0.02 120 0.06 0.21 125 185 15 18.5 4.0			Spring)	HS	6.9	1,583	476.7	49.0	62.3	14.7	0.01	85	2.13	2.20	1,023	180	200	7.0	0.3
90 1 Waunita Hot Springs (Spring C) HS 8.3 581 155.0 10.0 8.4 2.0 0.02 120 0.06 0.21 125 185 15 18.5 4.0	89	2	Wagon Wheel Gap (CFI Spring)	HS	6.5	1,510	447.5	46.8	67.3	15.3	0.19	74	2.25	1.90	1,023	145	198	7.2	-0.7
	90	1	Waunita Hot Springs (Spring C)	HS	8.3	581	155.0	10.0	8.4	2.0	0.02	120	0.06	0.21	125	185	15	18.5	4.0

Cation-

• •

.

.

ID	Site	Name	Туре	рH	TDS	Na	к	Ca	Mg	Fe	SIO ₂	в	LI	нсо₃	SO4	CI	F	Balance %
90	2	Waupita Hot Springs (Spring D)	HS	83	594	160.0	10.0	6.0	ND	0.01	130	0.07	0.21	132	190	15	18.0	07
- 00	2	Weunite Hot Springs (Spring A)	HS	8.3	604	155 5	0.3	6.3	ND	ND	130	ND	0.17	131	180	31	17.0	-4.5
91	1	Lower Waunita Hot Springs	115	0.0	004	155.5	3.0	0.0	ND	ND	100	ND	0.17	101	100	01	17.0	4.0
		(Spring A)	HS	7.8	[1,029]													
91	2	Lower Waunita Hot Springs			• • •													
		(Spring C)	HS	7.8	[880]													
91	3	Lower Waunita Hot Springs			• •													
		(Spring B)	HS	7.9	540	153.3	10.0	8.3	0.7	0.07	84	0.06	0.20	161	173	15	16.0	-1.2
91	4	Lower Waunita Hot Springs																
		(Spring D)	HS	7.8	535	150.0	10.0	6.9	0.5	0.17	86	0.07	0.20	153	170	15	20.0	-4.5
92	1	Wellsville	HS	7.2	480	70.4	5.7	64.8	20.9	0.04	27	0.10	0.07	289	89	54	0.7	0.4
93	1	Wet Canyon	HS	8.2	543	52.0	2.2	99.0	23.0	2.80	11	0.03			200	12	0.5	51.0

.

Cation-

Table 4: General information of geothermal sources in Colorado.

ABBREVIATIONS: Type: HS=Hot Spring; W=well; Use: Bnd= bathing, not developed; Bd=bathing, developed; N=no use; MW=mineral water; AC=Aquaculture; ACs=Aquaculture, stock tank; A=Agricultural rrigation; SH=Space Heating; GH=Greenhouse; ?=Not Known; E=Estimated

DISCLAIMER: Information on the hot springs and wells comes from a variety of sources. There is no guarantee of the accuracy of any of the data in this table.

ID	Site	Name	Туре	Use	Temp °C	Flow 1/m	Well depth, m
1	1	Antelope Warm Spring	HS	N	32	11 to 46	
2	1	Axial	Ŵ	?	22		3.6
3	1	Birdsie Warm Spring	HS	Ň	30	53	
4	1	Brands Ranch	Ŵ	Bnd	34	304E	
5	1	Browns Canvon Warm Spring	HS	N	25	4	
5	2	Browns Canvon (Chimney Hill)	Ŵ	Ň	27		
5	3	Browns Grotto Warm Spring	HS	N	23	19	
6	1	Canon City Hot Springs	HS	Ν	39	4 to 19	
7	1	Carson #1 Well	W	?	38		744.8
8	1	Cebolla "A", (Powderhorn)	HS	Bd	38	11	
8	2	Cebolla "B", (Powderhorn)	HS	Bd	38		
8	3	Cebolla "C", (Powderhorn)	HS	Bd	40		
9	1	Cement Creek Warm Spring	HS	Bd	26	253	
10	1	Chinaman Canyon	HS	?	26	68	
11	1	Clark Spring	W	MW	25	46	432.0
12	1	Cokedale	HS	?	29	85	
13	1	Colonel Chinn	W	ACs	42	45	20.0
14	1	Conundrum Hot Springs	HS	Bnd	38	145	
15	1	Cottonwood Spring	HS	Ν	25	5,100	
16	1	Cottonwood Hot Springs	HS	Bd	54	475	
16	2	Cottonwood (Jump Steady)	HS	Bd	53	240	
16	3	Cottonwood (Merrifield Well)	W	SH,GH	54	990	34.8
17	1	Craig Warm Water Well	W	N	38	84	424.0
18	1	Crowley Ranch Reserve	W	N	44	380	
19	1	Dallas Creek	W	S	35		14.8
20	1	Deganahl (Yampa)	W	N	41	10,260	757.6
20	2	Deganahl-Watson Creek (Yampa)	W	N	37		666.6
21	1	Desert Reef (Florence)	W	Bd	55	330	332.1
22	1	Dexter Spring	HS	N	20	190E	
23	1	Don K Ranch	W	?	28	95	
24	1	Dotsero Warm Springs	HS	Ν	31	2,160	
24	2	Dotsero Warm Springs, South	HS	N	32	3,200	
25	1	Dry Creek Well	W	?	23		46.6
26	1	Dunton Hot Spring	HS	Bnd	42	96	

ID	Site	Nome	Type	lteo	Temp	Flow	Well depth_m
	Sne		Туре	036	U		deptil, m
27	1	Dutch Crowley	w	Α	60	350	521.2
28	1	East Willow Creek	W	?	22	23	6.6
29	1	Eldorado Springs "A"	W	Bd	24		
29	2	Eldorado Springs "B" (Pool spring)	HS	Bd	25	45	
30	1	Eoff	W	Ν	39	190E	908.0
31	1	Florence	W	N	28	494	?
32	1	Fremont Natatorium	W	Bnd,A	36	183	545.0
33	1	Gevser	HS	N	28	428E	
34	1	Glenwood Springs (Big Spring)	HS	Bd	51	5,060	
34	2	Glenwood Springs (Drinking Springs)	HS	Bd	51	445	
34	3	Glenwood Springs (Vapor Cave)	HS	Bď	50	19E	
34	4	Glenwood Springs (Graves Springs)	HS	N	46	19	
34	5	Glenwood Springs (Spring A)	HS	N	44	10E	
34	6	Glenwood Springs (Spring B)	HS	N	51	342	
34	7	Glenwood Springs (Spring C)	HS	N	46	10	
34	8	Glenwood Springs (Railroad Spring)	HS	Bnd	51	285	
35	1	Grassy Creek (Havden)	W	?	20		3.3
36	1	Hartsel (Spring A)	HS	Bnd	52		
36	2	Hartsel (Spring B)	HS	Bnd	48	181	
37	1	Havstack Butte	W	N	24	15E	888.5
38	1	Hooper Aquaculture Well	Ŵ	AC	31		625.2
39	1	Horse Mountain Spring	HS	N	23		
40	1	Hot Sulphur Springs (Spring A)	HS	Bd	44	42	
40	2	Hot Sulphur Springs (Spring B)	HS	Bd	42	6	
40	3	Hot Sulphur Springs (Spring C)	HS	Bd	40	36	
40	4	Hot Sulphur Springs (Spring D)	HS	Bd	38	57	
41	1	Idaho Springs (Spring A)	HS	Bd	45	80	
41	2	Idaho Springs (Spring B)	HS	Bd	24		
41	3	Idaho Springs (Spring C)	HS	Bd	20	4	
41	4	Idaho Springs (Lodge Well)	W	Bd	46	114	
42	1	Jacks Mine	HS	N	27		
43	1	Juniper Hot Springs	HS	Bd	36	63	
44	1	Lake City Airstrip	W	?	24		5.1
45	1	t ake San Cristobal	Ŵ	?	24		8.2
46	i	Lemon (Gevser)	HS	N	33	36	
47	i	Lost Creek (Bennett)	Ŵ	?	27		60.6
48	1	Marigold	Ŵ	?	24		17.9
49	1	Maurer Banch	Ŵ	?	23		424.2
50	1	McIntire Warm Springs	HS	N	21		
51	1	MGP Well	W	N	26	3,060	439.1

.

					Temp	Flow	Well
_ID	<u>Site</u>	Name	Туре	Use	. °C	l/m	depth, m
52	1	Mineral Hot Springs (Spring A)	W	Ν	60	410	?
52	2	Mineral Hot Springs (Spring B)	HS	N	51	Small	
52	3	Mineral Hot Springs (Spring C)	HS	N	60		
52	4	Mineral Hot Springs (Spring D)	HS	N	60	19	
53	1	Mosca West	W	?	30		603.3
54	1	Moffat	W	?	20		75.8
55	1	Mt. Princeton Hot Springs (Spring A)	HS	Bd,SH	54	77	
55	2	Mt. Princeton Hot Springs (Spring B)	HS	Bd,SH	54	Large	
55	3	Mt. Princeton Hot Springs (Spring D)	HS	Bd,SH	44	•	
55	4	Mt. Princeton Hot Springs (Spring E)	HS	Bd,SH	50		
55	5	Mt. Princeton Hot Springs (Spring F)	HS	Bd,SH	49	46	
55	6	Mt. Princeton Hot Springs (Hortense)	HS	Bd,SH	83	74	
55	7	Mt. Princeton Hot Springs (Hortense Well)	W	Bd,SH	82		54.5
55	8	Mt. Princeton Hot Springs (Woolmington)	W	N	39		
55	9	Mt. Princeton Hot Springs (Wright Well, east)	W	Bd,SH,GH	67		
55	11	Mt. Princeton Hot Springs (Young Life)	W	Bd,SH	66		
56	1	Mullenville (Rhodes) Warm Springs	HS	N	26	880	
57	1	Orchard Mesa (Grand Junction)	W	?	26		418.2
58	1	Orvis Hot Springs, (Ridgway)	HS	Bd	50	60 to 2,100	
59	1	Ouray (Wiesbaden & Motel Spring A)	HS	Bd,SH	53	·	
59	2	Ouray (Wiesbaden & Motel Spring B)	HS	Bd,SH	30	7E	
59	3	Ouray (Wiesbaden & Motel Spring C)	HS	Bd,SH	47	4 to 114	
59	4	Ouray (Pool or Box Canyon Spring)	HS	Bd	66	375	
59	5	Ouray (Fellin Spring)	HS	Ν	29	25	
59	6	Ouray (Vinegar Hill)	HS	N	25	2,272	
59	7	Ouray (Manganese Mine)	HS	Bd	67	205	
59	8	Ouray (Uncompangre Spring)	HS	Bd	49	19	
59	9	Ouray City Park (OX-2)	W	Bd	49	1500	27.3
60	1	Oxford Well	W	?	27		35.2
61	1	Pagosa Springs (Big Spring)	HS	Bd,SH	57	1,286	
61	2	Pagosa Springs (Courthouse Well)	W	SH	56	114	
61	3	Pagosa Springs (Spa Motel Well)	W	Bd,SH	53		151.5
62	1	Papeton	W	?	22		13.9
63	1	Paradise Hot Spring	HS	Bnd	43	114	
64	1	Penny Hot Springs	HS	Bnd	47	40	
65	1	Pinkerton (Spring A)	HS	N	32	205	
65	2	Pinkerton (Spring B)	HS	N	33	76	
65	3	Pinkerton (Mound Spring)	HS	N	29	23	
65	4	Pinkerton (Little Mound Spring)	HS	N	26	8E	
66	1	Poncha Springs (Spring A)	HS	Bd	70	760	

•

ID Site Name Type Use °C I/m depti 66 2 Poncha Springs (Spring B) HS Bd 65 87 66 3 Poncha Springs (Spring C) HS Bd 62 8 66 4 Poncha Springs (Spring D) HS Bd 56 7E 66 5 Poncha Springs (Spring E) HS Bd 60 2E 67 1 Rainbow HS N 40 171 68 1 Rico (Diamond drill hole) W N 44 57 69 1 Rico (Big Geyser Warm Spring) W N 35 38 69 3 Rico (Little Spring) HS N 38 53 70 1 Roatcap Creek (Stevens Gulch) W N 22 27 70 2 Roatcap Creek (Stevens Gulch) W N 22 27 70 2 Roatc	th, m
66 2 Poncha Springs (Spring B) HS Bd 65 87 66 3 Poncha Springs (Spring D) HS Bd 62 8 66 4 Poncha Springs (Spring D) HS Bd 56 7E 66 5 Poncha Springs (Spring E) HS Bd 60 2E 67 1 Rainbow HS N 40 171 68 1 Ranger HS ? 27 743 69 1 Rico (Diamond drill hole) W N 44 57 69 2 Rico (Big Geyser Warm Spring) W N 35 38 69 3 Rico (Ceyser Warm Spring) W N 40 46 69 4 Rico (Little Spring) HS N 38 53 70 1 Roatcap Creek W N 27 40 71 1 Routt [aka Strawberry] (Spring A) HS Bd 64 154 71 1 Routt [aka Strawberry] (Spr	
66 3 Poncha Springs (Spring C) HS Bd 62 8 66 4 Poncha Springs (Spring D) HS Bd 56 7E 66 4 Poncha Springs (Spring D) HS Bd 60 2E 67 1 Rainbow HS N 40 171 68 1 Ranger HS ? 27 743 69 1 Rico (Diamond drill hole) W N 44 57 69 2 Rico (Big Geyser Warm Spring) W N 35 38 69 3 Rico (Geyser Warm Spring) W N 46 66 69 4 Rico (Cittle Spring) HS N 38 53 70 1 Roatcap Creek W N 22 27 70 2 Roatcap Creek (Stevens Gulch) W N 27 40 71 1 Routt [aka Strawberry] (Spring B) HS Bd 64 154 71 2 Roatcap Creek (Stevens Gu	
66 4 Poncha Springs (Spring D) HS Bd 56 7E 66 4 Poncha Springs (Spring E) HS Bd 60 2E 67 1 Rainbow HS N 40 171 68 1 Ranger HS ? 27 743 69 1 Rico (Diamond drill hole) W N 44 57 69 2 Rico (Big Geyser Warm Spring) W N 44 57 69 2 Rico (Little Spring) W N 35 38 69 3 Rico (Little Spring) HS N 38 53 70 1 Roatcap Creek W N 22 27 70 2 Roatcap Creek (Stevens Gulch) W N 22 27 71 1 Routt [aka Strawberry] (Spring A) HS Bd 64 154 71 2 Routt [aka Strawberry] (Spring C) HS Bd 51 8E 72 1 Sand Dunes Pool Weil<	
66 5 Poncha Springs (Spring E) HS Bd 60 2E 67 1 Rainbow HS N 40 171 68 1 Ranger HS N 40 171 69 1 Rico (Diamond drill hole) W N 44 57 69 2 Rico (Big Geyser Warm Spring) W N 35 38 69 3 Rico (Geyser Warm Spring) W N 40 46 69 4 Rico (Little Spring) HS N 38 53 70 1 Roatcap Creek W N 22 27 70 2 Roatcap Creek (Stevens Gulch) W N 27 40 71 1 Routt [aka Strawberry] (Spring A) HS Bd 64 154 71 1 Routt [aka Strawberry] (Spring C) HS Bd 54 8E 71 1 Routt [aka Strawberry] (Spring D) HS Bd 51 8E 72 1 Sand Dun	
67 1 Rainbow HS N 40 171 68 1 Ranger HS N 40 171 68 1 Ranger HS ? 27 743 69 1 Rico (Diamond drill hole) W N 44 57 69 2 Rico (Big Geyser Warm Spring) W N 44 57 69 3 Rico (Geyser Warm Spring) W N 40 46 69 4 Rico (Little Spring) HS N 38 53 70 1 Roatcap Creek W N 22 27 70 2 Roatcap Creek (Stevens Gulch) W N 27 40 71 1 Routt [aka Strawberry] (Spring A) HS Bd 64 154 71 2 Routt [aka Strawberry] (Spring C) HS Bd 54 8E 71 4 Routt [aka Strawberry] (Spring D) HS Bd 51 8E 72 1 Sand Dunes Pool Weil	
67 1 Hallbow HS N HO	
601HallgerHSF27745691Rico (Diamond drill hole)WN4457692Rico (Big Geyser Warm Spring)WN3538693Rico (Geyser Warm Spring)WN4046694Rico (Little Spring)HSN3853701Roatcap CreekWN2227702Roatcap Creek (Stevens Gulch)WN2740711Routt [aka Strawberry] (Spring A)HSBd64154712Routt [aka Strawberry] (Spring B)HSBd548E714Routt [aka Strawberry] (Spring C)HSBd518E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WellW?20741731Sarcillo Canyon WellW?200741ShawsHSBnd4849751Smith Canyon Spring (Spring A)HSBnd4849751South Canyon Hot Springs (Spring A)HSBnd4849	
692Rico (Big Geyser Warm Spring)WN3538693Rico (Geyser Warm Spring)WN4046694Rico (Little Spring)HSN3853701Roatcap CreekWN2227702Roatcap Creek (Stevens Gulch)WN2740711Routt [aka Strawberry] (Spring A)HSBd64154712Routt [aka Strawberry] (Spring B)HSBd62114713Routt [aka Strawberry] (Spring C)HSBd518E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WeilW92040731Sarcillo Canyon WellW?2040741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	
693Rico (Erg Cusyser Warm Spring)WNA046694Rico (Little Spring)HSN3853701Roatcap CreekWN2227702Roatcap Creek (Stevens Gulch)WN2740711Routt [aka Strawberry] (Spring A)HSBd64154712Routt [aka Strawberry] (Spring B)HSBd62114713Routt [aka Strawberry] (Spring C)HSBd548E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WellW?20133731Sarcillo Canyon WellW?200741ShawsHSBnd29198751Smith Canyon Spring (Spring A)HSBnd4849751South Canyon Hot Springs (Spring A)HSBnd4849	
694Rico (Little Spring)HSN3853701Roatcap CreekWN2227702Roatcap Creek (Stevens Gulch)WN2740711Routt [aka Strawberry] (Spring A)HSBd64154712Routt [aka Strawberry] (Spring B)HSBd62114713Routt [aka Strawberry] (Spring C)HSBd548E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WellW?20133731Sarcillo Canyon WellW?20198751Smith Canyon SpringHSBnd4849751South Canyon Hot Springs (Spring A)HSBnd4849	
701Roatcap CreekWN2227702Roatcap Creek (Stevens Gulch)WN2740711Routt [aka Strawberry] (Spring A)HSBd64154712Routt [aka Strawberry] (Spring B)HSBd62114713Routt [aka Strawberry] (Spring C)HSBd548E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WellW8nd44133731Sarcillo Canyon WellW?20148751Smith Canyon SpringHS8nd29198751South Canyon Hot Springs (Spring A)HSBnd4849761South Canyon Hot Springs (Spring A)HSBnd4849	
701Indictap OreshWN2240702Roatcap Creek (Stevens Gulch)WN2740711Routt [aka Strawberry] (Spring A)HSBd64154712Routt [aka Strawberry] (Spring B)HSBd62114713Routt [aka Strawberry] (Spring C)HSBd548E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WeilW8nd44133731Sarcillo Canyon WellW?20148741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	279 4
702IterationWIterationFile711Routt [aka Strawberry] (Spring A)HSBd64154712Routt [aka Strawberry] (Spring B)HSBd62114713Routt [aka Strawberry] (Spring C)HSBd548E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WeilWBnd44133731Sarcillo Canyon WellW?2014741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	107 6
711Houtt [aka Strawberly] (Spring A)HSBd64134712Routt [aka Strawberry] (Spring B)HSBd62114713Routt [aka Strawberry] (Spring C)HSBd548E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WeilWBnd44133731Sarcillo Canyon WellW?2014741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	107.0
712Notit [aka Strawberry] (Spring D)NSBd52114713Routt [aka Strawberry] (Spring C)HSBd548E714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WeilWBnd44133731Sarcillo Canyon WellW?20741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	
7131343434714Routt [aka Strawberry] (Spring D)HSBd518E721Sand Dunes Pool WeilWBnd44133731Sarcillo Canyon WellW?20741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	
714Hour face strawberry (spring b)HisBd5152721Sand Dunes Pool WeilWBnd44133731Sarcillo Canyon WellW?20741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	
721Sand Duries Fool WeilWBit44155731Sarcillo Canyon WeilW?20741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	222.2
731Statchild Garlybri WeilW720741ShawsHSBnd29198751Smith Canyon SpringHS?200761South Canyon Hot Springs (Spring A)HSBnd4849	85
74751Smith Canyon Spring15Bit29195751South Canyon Hot Springs (Spring A)HS?200761South Canyon Hot Springs (Spring A)HSBnd4849	0.0
76 1 South Canyon Hot Springs (Spring A) HS Bnd 48 49	
76 1 South Carlyon Hot Sphings (Sphing A) 115 bird 46 49	
76 7 South Convol Unit Souland (Souland U) US Red 76 76 70	
70 Z South Canyon Hot Springs (Spring B) 75 Bild 40 40 40 40	806 D
79 1 Stoamboat Springs (Heart Spring) HS Bd 30 657	,00.0
70 1 Steamboat Springs (Fleam Spring) FIS Du S9 057	
76 2 Steamboat Springs (Steamboat Spring) FIS IN 20 56	
70 S Steamboa Spings (Steamboa Sping) 115 N 20 70	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{10}{10} = \frac{10}{10} = 10$	
00 Z Swissvale (Spinig T) 115 11 ZO 70L	
OT I Sylvesier Guich Wahn Spring FIS 2 92 1 Taxaa Comp (Pangalu) W/ 2 49 227	772 7
02 : Texas Camp (nangely) W : 40 227	12.1 15 A
0.3 1 Tringe Tot Springs Tot, W Du 40 775 4	-10.4
OF 1 Toward Spring HS 2 22	
PE 1 Two Milo Dood W 2 21 45	151 5
$\frac{1}{2} \frac{1}{2} \frac{1}$	35 A
0/ I Uraval) Well Vian (Spring A) US Rd 26 210	00.4
OD I Valley View Hot Springs (Spring R) HS Bd 30 210 00 0 Valley View Hot Springs (Spring R) HS Bd 34 250	
$00 \ 2 \ Valley View Hot Springs (Spring D) HS Bd 24 \ 215$	
00 3 Valley View Fot optilitys (optility D) FO DO 34 313 90 1 Waraa Wheel Gan (ALIR Banch Spring) HS Bd 55 120	

					Temp	Flow	Well
ID	Site	Name	Туре	Use	°C	l/m	depth, m
89	2	Wagon Wheel Gap (CFI Spring)	HS	Bd	49	135	
90	1	Waunita Hot Springs (Spring C)	HS	Bd,SH	78	171	
90	2	Waunita Hot Springs (Spring D)	HS	Bd,SH	57		
90	3	Waunita Hot Springs (Spring A)	HS	Bd,SH	77	1,000	
90	4	Waunita Hot Springs (Spring B)	HS	Bd,SH	78	-	
91	1	Lower Waunita Hot Springs (Spring A)	HS	N	70	285E	
91	2	Lower Waunita Hot Springs (Spring C)	HS	Ν	70	300	
91	3	Lower Waunita Hot Springs (Spring B)	HS	Ν	68	156	
91	4	Lower Waunita Hot Springs (Spring D)	HS	N	63		
92	1	Wellsville	HS	N ¹	35	460	
93	1	Wet Canyon	HS	?	26	270	

STATE OF COLORADO

COLORADO GEOLOGICAL SURVEY Division of Minerals and Geology

Department of Natural Resources 1313 Sherman Street, Rm. 715 Denver, Colorado 80203 Phone (303) 866-2611 FAX (303) 866-2461

Roy Romer Governor Ken Salazar Executive Director Michael B. Long Division Director Vicki Cowart State Geologist and Director

Howard Ross University of Utah Research Institute 391 Chipeta Way, Suite C Salt Lake City, UT 84108-1295

March 2, 1994

Re: Low Temperature Geothermal Project

Dear Howard:

I have made some minor corrections to the geothermometer estimates in the discussion part of the text after applying Mike Adam's geothermometer reliability test methods. A diskette containing the four tables of geochemical, location, and general data on the geothermal sites is also included. The submission of these files and report fulfills the contract obligations concerning deliverables. If you need any thing else, like more maps, let me know. It has been a pleasure working with you and I hope that we can continue our geothermal efforts in the future.

Sincerely,

James A. Cappa Chief, Minerals and Mineral Fuels

encl.

1992-1993 LOW-TEMPERATURE GEOTHERMAL ASSESSMENT PROGRAM, COLORADO

James A. Cappa Colorado Geological Survey 1313 Sherman Street, Suite 715 Denver, CO 80202 (303) 866-2611 December 30, 1993

Acknowledgements

This low-temperature geothermal assessment program was funded by the U. S. Department of Energy-Geothermal Division. The Colorado Geological Survey serves as a subcontractor to the Oregon Institute of Technology-Geo Heat Center for the purposes of fulfilling the terms of this contract within the State of Colorado.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe private property rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacture, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Abstract

Previous assessments of Colorado's low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late- 1970's. The purpose of the 1992-1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U. S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources.

The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30° C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases.

For the purposes of this report a geothermal area is defined as a broad area, usually less than three square miles in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978.

Six geothermal areas are recommended for further investigation: Trimble Hot

Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

1. Introduction

The first assessment of the geothermal resources of the State of Colorado was completed in 1920 by the Colorado Geological Survey with the publication of Colorado Geological Survey Bulletin 11, <u>Mineral Waters of Colorado</u>. Bulletin 11 contains chemical analyses of the state's mineral waters including the known geothermal waters and, also, has a section describing the utilization of the mineral waters.

Low-temperature geothermal resources are defined as those having a surface temperature of 20° to 100° C. The first modern low-temperature geothermal assessment for the state of Colorado was completed during a period of time from about 1976 to 1983. That assessment was carried out by the Colorado Geological Survey through a funding program with the U. S. Department of Energy and the U. S. Geological Survey. The 1976 survey involved a sampling program conducted over an approximate 12 month period of 125 geothermal sources from 56 geothermal areas and resulted in the 1976 publication of Colorado Geological Survey Information Series 6, <u>Hydrogeochemical Data of Thermal Springs and Wells in Colorado</u> (revised 1993).

In 1978, the Colorado Geological Survey published Bulletin 39, <u>An Appraisal of</u> <u>Colorado's Geothermal Resources</u>, which contained descriptive information on the sites, including location, current usage, geological setting and an analysis of various geothermometers for each of the 56 geothermal areas of the state. Bulletin 39 utilized the analytical geochemical information presented in Information Series 6.

Several other site-specific geological and geophysical studies were performed by the Colorado Geological Survey up to 1983. Economic evaluations regarding the utilization of geothermal heat and energy for various sites were also completed during this time. The U. S. Department of Energy was the primary funding agency. All the pertinent publications are listed in the Reference chapter of this report.

The need for a new geothermal assessment is evidenced by the results of the current 1992-1993 low-temperature geothermal assessment. In Bulletin 39 which was published in 1978, there are 56 geothermal areas and 125 geothermal sites. The 1992-1993 survey lists 93 geothermal areas and 157 geothermal sites throughout the state. Over 380 chemical analyses were compiled from various sources in the construction of the database. Utilization of geothermal resources has changed over years. In some cases flow rates and temperature of the geothermal sources have changed since prior assessments. Several errors in location and description of geothermal springs from both the above described Colorado Geological Survey publications and the U. S. Geological Survey WATSTOR database were corrected.

The data collected and compiled for this survey are recorded in four computer databases. A 1:1,000,000 scale map of the state (Plate 1) shows the location and ID number of each of the geothermal areas.

The 1992-1993 low-temperature geothermal assessment for Colorado was initiated in the fall of 1992 by the Colorado Geological Survey. The scheduled completion date is December, 1993. Funding for this survey was provided by the U. S. Department of Energy. The program was administered by the University of Utah Research Institute in Salt Lake City, Utah and the Geo Heat Center at the Oregon Institute of Technology, Klamath Falls, Oregon.

2. Data Sources

Data were compiled from a variety of sources including unpublished materials. The most important unpublished sources were the Colorado Department of Water Resources well permit files, the U. S. Geological Survey WATSTOR database, and analytical reports from private laboratories given to the principal investigator by geothermal source owners and operators.

The most important published source material includes: George et al., 1920, Colorado Geological Survey Bulletin 11; Barrett and Pearl, 1976, Colorado Geological Survey Information Series 6; and Barrett and Pearl, 1978, Colorado Geological Survey Bulletin 39.

The University of Utah Research Institute provided 10 new water analyses for each state for the current low-temperature geothermal assessment program. All 10 new analyses were completed for the Colorado portion of the program.

All geochemical data which maintained a cation-anion charge balance of $\pm 15\%$ were entered into the databases. Geothermal sources with only one analysis were entered regardless of the charge balance. All data entries, especially those with significant cation-anion charge balance errors, were checked by two separate operators. References for each analysis are recorded in the GTHCHM1 database.

3. Data Format

The data collected during this assessment has been distributed into four Quattro Pro 4 spread sheets on the enclosed diskette. For purposes of this program a geothermal <u>area</u> is defined as a geologically cohesive land area that may or may not contain several geothermal wells or hot springs. Generally an <u>area</u> is less than approximately three square miles. A <u>site</u> is defined as an individual geothermal well or hot spring within an <u>area</u>.

Each geothermal area within the database has a unique ID number. Different sites within a geothermal area have unique area-site numbers. All the tables list the ID number, Site number, and Geothermal Source (Name).

Table 1 is a location database (GTHLOC); it describes the county, quadrangle map, section, township, range, latitude and longitude, and Universal Transverse Mercator grid references.

Table 2 contains the long form of the geochemical database(GTHCHEM1). All the geochemical and sample data collected during this survey is stored in this Table. There can be multiple entries of geochemical data for each site.

Table 3 is the short form of the geochemical database(GTHCHEM2). It contains an abbreviated element list and has only one entry per site. Where multiple chemical

analyses were available all the results were averaged to make just a single entry.

Table 4 contains the general information database (GTHGEN). It has information such as temperature, flow rate, type, references, and current usage for each geothermal site.

All the data in the project databases were entered by hand. Much of the data resided in Colorado Geological Survey Bulletins and Information Series and had never been entered into a computerized database before. The only other computerized database used in this project was the WATSTOR database compiled by the U. S. Geological Survey; however, all of this data was entered manually.

The enclosed diskette contains all the database files in a Quattro Pro 4 format. These files can easily be transformed into Lotus 1-2-3 or other database manager files. The following table lists all the important computer database information for the databases.

TABLE	DATABASE NAME	INFORMATION	NO. OF FIELDS	NO. OF BYTES
Table 1	GTHLOC	Location	24	84,936
Table 2	GTHCHEM1	Chemistry, long list	59	385,444
Table 3	GTHCHEM2	Chemistry, short list	22	84,670
Table 4	GTHGEN	General information	8	29,316

Table A: List of pertinent computer file data for the low-temperature geothermal assessment databases. All databases are in Quattro Pro 4 format (WQ1 suffix).

4. Fluid Chemistry

The University of Utah Research Institute (UURI) provided 10 new water analyses for each state as part of the low-temperature geothermal assessment program. Because of time constraints a lower limit of 30° C was set on any geothermal spring or well to be visited in the field. Almost all of the geothermal sources greater than 30° C were visited. A few that would have required a full day to walk in to were not visited. The temperature, pH, conductivity, flow rate and current usage for each site were recorded. Sites for a complete water analysis were selected on a subjective criteria of developmental significance and lack of recent or quality geochemical data. The 10 sites selected for new water analyses in Colorado are:

> Craig Warm Water Well Desert Reef (Florence) Dotsero, South Mt. Princeton (Hortense Well) Ouray (Pool or Box Canyon Spring) Routt (aka Strawberry) Steamboat Springs (Heart Spring) Waunita Hot Springs Juniper Hot Springs

Pagosa Hot Springs (Big Spring)

The results of the new samples are included in Table 2 and have a reference number of 3. There were no new results that had serious implications for the prior known geochemistry of the geothermal areas.

Other sources of geochemical information were utilized in compiling the database. The most significant source of geochemical data was the DOE supported studies performed by the CGS in the late 1970's. The reference for each analysis is listed in Table 2. Any geochemical analysis that had a cation-anion balance error greater than 15% was discarded except for the case described below.

Geochemical data derived from the U. S. Geological Survey WATSTOR database was entered into the current database; unfortunately, most of those reports do not have an analysis for HCO_3^{-2} or CO_3^{-2} which causes severe errors in the cation-anion balance. As most of these analyses are the only one for that particular site they have been retained in the database even though they do not balance within the specified limits.

5. Discussion

The location of all the geothermal sites compiled during this assessment program is shown on Figure 1. The accompanying Plate 1 shows the location and geothermal area ID number. A frequency plot of all the geothermal temperatures from each site is shown in Figure 2. The greatest number of temperature measurements fall in the 25° to 40° C categories. There is another peak in the 51° to 55° C range.

The following section contains a brief discussion of the sites that were visited during the 1992-1993 geothermal assessment program. All the geothermometer estimates in the following section are derived from discussions and tables in Barrett and Pearl (1978). Some modification of suspect geothermometer estimates was made using the methods described by Michael Adams of UURI (personal communication, 1993).

Antelope Warm Spring, Mineral County

The Antelope Warm Spring was visited in June of 1993. The spring issues into a concrete-lined cistern approximately 6 feet by 4 feet at ground level and 5 feet deep. The spring is 20 feet north of wooden building shaped like a quonset hut. Inside this building is a 20 foot by 30 foot swimming pool. Water from the spring was used to fill the pool.

Mr. Larry (Sonny) Dickerson, longtime owner of the property around the spring, indicated the pool had not been used for several years. The pool was used by family and friends, never commercially. Currently, the swimming pool building is used for storage by Mr. Dickerson. The pool is covered by a tarp and is nearly empty. Water from the Antelope Warm Spring is diverted into the pasture surrounding the spring. A valve and pipe system (in an advanced state of disrepair) can still divert most of the spring flow into the swimming pool if desired.

Flow from the spring was measured at 50 liters per minute which was four (4) times the rate measured by Barrett and Pearl (1976) in 1975. Mr. Dickerson is of the opinion that

Figure 2: FREQUENCY DISTRIBUTION COLORADO GEOTHERMAL SOURCES

during the last five years flow from the spring has noticeably increased.

The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 35° to 52° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

Birdsie Warm Spring, Mineral County

There are five springs that issue from the toe of the slope just north of the road. All the flow enters a culvert and flows out to the Rio Grande. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 35° to 52° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Steven and Ratte, 1973).

Brands Ranch Artesian Well, Jackson County

The Brands Ranch Artesian Well was visited in May, 1993. There is no longer any physical evidence of the well mentioned in Barrett and Pearl, 1978. The spring bubbles up into a 15 feet diameter, 2.5 foot deep pool. There are no facilities in this somewhat remote area. The pool appears to get some occasional use from hunters, campers, fisherman and local people.

The collapsed well that makes the hot spring is the Horton 2 Brands well drilled in 1953 to a total depth of 1,075 feet. The lowest formation penetrated is the Morrison Formation. The hot waters probably come from the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a combination of geothermometers is 42° to 55° C (Hail, 1965; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Browns Canyon Warm Springs, Chaffee County

An attempt to visit this site was made in July, 1993. Several minor seeps were noted in the area described by Dick (1976) and Barrett and Pearl (1978); however, these seeps had a temperature less than 20° C (Scott et al., 1975; Barrett and Pearl, 1976; Dick, 1976; Barrett and Pearl, 1978).

Canon City Hot Springs, Fremont County

Canon City Hot Springs emerges from a corroded casing in the northeast corner of the front yard of a house that faces the nearby Arkansas River. Nothing remains of the "classy" thirty-eight room Royal Gorge Hotel and Spa built adjacent to the Spring in the 1870's. Fifteen years ago the current owner of the property filled in the swimming pool supplied by the spring.

Water from the spring is now used to irrigate some of the owner's and a neighbor's front yard landscape shrubs. When the spring was visited in June of 1993 the temperature of the spring was 40° C. The flow varied from 9 to 142 liters per minute (George et al., 1920; Taylor et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Cebolla Hot Springs, Gunnison County

The Cebolla Hot Springs near the village of Powderhorn was visited in May, 1993. The cabins and bath houses appeared to be still in useable and working condition; however, there was no one around to give us any information about present day usage. There are still two bath houses (George et al., 1920; Hedlund and Olson, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Cement Creek Warm Springs, Gunnison County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60° C (Barrett and Pearl, 1978).

Clark Artesian Well, Pueblo County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 60° C (Barrett and Pearl, 1978).

Colonel Chinn Hot Water Well, Delta County

This well was visited in November, 1992. The well water is piped through a closed wellhead to a manifold and then to stock tanks about 200 feet away. An accurate indication of the temperature could not be obtained; however, the property owner indicated that the water flows all the year without freezing (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Hail, 1972).

Conundrum Hot Springs, Pitkin County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50° C (Barrett and Pearl, 1978)

Cottonwood Hot Springs, Chaffee County

At the time of our visit in May, 1993, the Jump Steady Resort was renamed to the Cottonwood Hot Springs Inn. The Inn has guest cabins and hot spring spas in a somewhat rustic environment. Hot water which is used for bathing, domestic heating, and drinking purposes comes from an enclosed cistern.

Another set of nearby springs and a well are used by the Merrifield family for a greenhouse complex, domestic heating and bathing, and drinking.

The Cottonwood Hot Springs is located at the contact of the Tertiary Mount Princeton Quartz Monzonite and Precambrian migmatitic gneisses to the south. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 110° C (George et al., 1920; Scott, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Craig Warm Water Well, Moffat County

The Craig Warm Water Well is mislocated in Colorado Geological Survey Bulletin 39. The correct location is shown in Table 1 of the current reinvestigation of the geothermal resources of Colorado. The Craig Warm Water Well was visited in November, 1992. At that time the wellhead was in poor condition with hot water leaking from various places. There was no evidence of any activity or recent use of the well. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is approximately 100° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Crowley Ranch Reserve Well, Archuleta County

The Crowley Ranch Reserve Well was drilled as an oil and gas test by the Phillips Oil Company in 1943. The well intersected the Dakota Formation at 240 feet, Morrison Formation at 520 feet, Todilto Limestone at 1,200 feet, Wingate Sandstone at 1,308 feet, Chinle Formation at 1,508 feet and Precambrian quartzite at 1,515 feet. The well is reported to have begin flowing hot water at 1,558 feet. The well was abandoned at 1,625 feet and deeded to the Crowley's for irrigation purposes.

There is no longer any physical evidence of the well. Water bubbles up into 8 foot in diameter, 5 foot deep pool. During a visit to the site by CGS personnel in June, 1993, all the water from the well was diverted to the east into an irrigation ditch. Three hundred feet from the well some of the water is taken from the ditch to fill a just constructed hot tub. The remainder of the water in the ditch is allowed to flow into the Jaw Bone Canyon.

From 1943 until within the last year the 48° C well water was used for pasture irrigation. Now, 534 acres of the Crowley family holdings around the well are in a just developed recreational community called the Crowley Ranch Reserve. The Reserve is made up of 19 one to three acre parcels on the 534 acres. Property owners are given common ownership of a great amount of the Reserve's land. One of the amenities touted by the developers of the property is the geothermal hot tub referred to in the above paragraph. Just on the market, only two lots have been sold and as yet no homes have been built.

Deganahl Warm Water Well, Routt County

The Deganahl warm water well was drilled as an oil test in Cretaceous rocks by Fullerton Leasing Company of California in October, 1967. Because the well encountered only warm water, the company turned the well over to the land owner, Mr. Deganahl. He completed the well at a total depth of 2,500 feet in January, 1968 as a warm water well. The original flow of the well was some 11,900 liters per minute at the time of drilling. Caving problems while installing the casing reduced the well flow to 4,800 liters per minute. The temperature of the water is 43° C and the well had a shut in pressure of 200 psi.

In 1981, the Colorado Division of Wildlife applied for a permit to drill a geothermal well at their Finger Rocks Trout Hatchery facility three miles east of the Deganahl well. The permit application was denied by the State Water Engineer. The analyses of the Deganahl well water included in Table 2 were performed as part of the Division of Wildlife's feasability study on the proposed project.

The Deganahl well was visited in May, 1993. The owners of the well make only occasional use of the well for bathing purposes. The hot water is flowing at approximately 1,500 liters per minute out of the wellhead and into Watson Creek. A second well is located at a bearing of S33E and a distance of 225 feet from the original well. The conductivity, pH, and temperature of the water from the second well are similar to the original well. There is no record of the depth or history of the second well, according to a member of the Deganahl family. The flow rate of the second well is only about 100 liters per minute.

The geothermal waters are accounted for by a normal geothermal gradient and probably issue from either the Dakota Sandstone or sandstones within the Frontier Formation. The well was spudded into The Mancos Shale (Kucera, 1962).

Desert Reef (Florence), Fremont County

The Desert Reef Beach Club is a "Natural Outdoor Hot Springs". The facilities consist of a changing house and a 20 foot by 30 foot bathing pool fed by an old oil test well, the Conoco Huffman No. 1 well drilled in 1966. The well was drilled into Precambrian granite at 3,948 feet and has a total depth of 4,240 feet. Later the well was plugged back to 1,096 feet and produces 54° C water at a permitted flow of 1,100 liters per minute from the Morrison and Dakota sandstones.

Dexter Warm Springs, Conejos County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 20° to 50° C (Barrett and Pearl, 1978).

Dotsero Warm Springs, Eagle County

The Dotsero Warm Springs were visited in May, 1993. The springs and adjacent buildings described and pictured by Barrett and Pearl, 1978 on the northwest side of the Colorado River are no more. Construction activities on Interstate Highway 70 have destroyed the old buildings and the hot springs have been covered over by fill material for the new highway. There are some monitor wells in the area of the old springs at the river's edge; however, there was no sign of flow from these springs.

The springs on the south-east side of the river are still intact and flowing directly into the Colorado River at the base of a fill for the railroad tracks. The outflow quantity is impossible to measure; however, the waters were very saline to the taste. A sample of the water was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is approximately 100° C (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Dunton Hot Springs, Dolores County

Dunton Hot Springs is near the old mining town of Dunton. There are several old cabins around the Dunton Hot Springs. In the past few years a private group has tried to run a primitive resort around the Hot Springs. Unfortunately, they are no longer in business and all the cabins, lodge, and bathhouse are falling into disrepair. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 70° C (Bush and Bromfield, 1966; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Dutch Crowley Artesian Well, Archuleta County

The Dutch Crowley Artesian well was visited during June of 1993. The site's 70° C water is flowing from the top of surface casing which extends about 2 feet above ground level.

The well was spudded as an oil and gas test in July 1951 by a J. R. Butler from Houston Texas. The wildcat encountered two gas-and-water zones at approximately 800 and 1,200 feet in the Morrison Formation. The gas rate from the 800 foot sand and/or sands was estimated by the well-site geologist (Mr. Walt Osterhoudt) to be about 300,000 cubic feet per day. The well intersected the Entrada Sandstone at 1,500 feet and flowed fresh water with a temperature of 48° C. The well was bottomed at 1,741 feet. The hole was deeded by the operator to the Crowleys for a water well.

Barrett and Pearl's narrative on how to get to the well in their 1978 CGS Bulletin 39 is not accurate. The correct instructions are to read; proceed 3.8 miles southeast from the Chromo Post Office on US Highway 49 to where a dirt road leads east. Turn left on this road and drive about 1/8 of a mile. The well is about 3/4 of a mile due east of this parking spot on the south side of a boggy meadow.

Mr. Donny Shayhan, a Crowley family son-in-law who lead this investigator (H. T. Hemborg) to the well, indicated that he is considering piping water from the well to his ranch house located $1 \frac{1}{4}$ miles west of the well. Up to now this well has only been used for pasture irrigation.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 80° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Osterhoudt, 1978).

Eldorado Springs, Boulder County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 26° to 40° C (Barrett and Pearl, 1978).

Eoff Artesian Well, Archuleta County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60° C (Barrett and Pearl, 1978).

Florence Artesian Well, Fremont County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 34° to 50° C (Barrett and Pearl, 1978).

Fremont Natatorium Well, Fremont County

The 70 by 150 foot swimming pool supplied by the warm water well is now used only by the owners. The pool and concrete decking is in disrepair. The owner indicated that he and his wife closed the pool for public bathing 30 years ago because they could not afford to be in compliance with newly enacted public swimming pool water standards for chlorination. When this site was visited during June of 1993 the owner was using a portion of the warm well water to irrigate a sizeable vegetable and berry garden.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50° C (Barrett and Pearl, 1976; Scott, 1977; Barrett and Pearl,

1978).

Geyser Warm Springs, Dolores County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 120° C (Barrett and Pearl, 1978).

Glenwood Springs area, Garfield County

The Glenwood Springs area is the state's premier bathing spa area. There are several hot springs in the area around Glenwood Springs but only those on the north side of the Colorado River have been developed. No new analyses were taken from the Glenwood Springs area during this study. The Vapor Caves Spa donated a copy of a private laboratory report on the chemistry of their waters (George et al., 1920; Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The chemistry of the geothermal waters in the Glenwood Springs area is too complex for an accurate estimate of subsurface reservoir temperatures. The subsurface temperature is, probably, not much higher than the surface temperature of the hot springs, approximately 45° to 50° C (Barrett and Pearl, 1978).

Hartsel Hot Springs, Park County

The remains of the Hartsel Hot Springs were visited in May, 1993. The bath house that is pictured in Barrett and Pearl, 1978 is no longer standing, though some flow from the hot springs is still coming out of a pipe from the building's foundation. All the facilities of the Hartsel Hot Springs are unused and in a state of decay and disrepair. The flow was difficult to measure but it appears to be greater than 300 liters per minute.

There is a popular opinion based upon rumor and general tourist literature that the geothermal water from the Hartsel Hot Springs is highly radioactive (Cahill, 1983). This opinion appears to based upon an article (Howland, 1936) which describes a barite occurrence in the Pennsylvanian-Permian Maroon Formation about two miles southwest of Hartsel Hot Springs. The author states that there is an unusual blue-colored barite at this locality and he conjectures that the blue coloration was caused by radiation damage. As further evidence for his thesis, Howland states without providing any data or analysis that the Hartsel Hot Springs are highly radioactive based upon analyses done by the Colorado Geological Survey (George et al., 1920). The mean of 60 hot springs (>20° C) analyzed in the 1920 CGS study is 0.139 picocuries Ra per liter. The values range from a trace, 0.001, to 2.64 picocuries Ra per liter. The value for the Hartsel Hot Springs is 0.154 picocuries Ra per liter, only slightly above the mean.

A more recent study of the uranium concentration in natural waters of South Park (Sharp and Aamodt, 1976) indicates that the uranium concentration, as analyzed by fluorometric methods, in a filtered and acidified water sample from the Hartsel Hot Springs was 0.30 parts per billion (ppb) uranium. Two other analyses of the untreated sample were 0.98 and 0.10 ppb uranium. Samples from 16 springs in the South Platte drainage area within the South Park region which includes the Hartsel Hot Springs had values that ranged from 0.21 to 292 ppb uranium with an average of 22.6 ppb uranium. The average of 35

surface water samples in the same drainage area is 3.3 ppb uranium. The uranium concentrations of 0.3 ppb at the Hartsel Hot Springs is well below the regional average, 22.6 ppb, for the South Platte drainage in South Park.

It appears that the hot springs at Hartsel are associated with the South Park or Santa Maria Faults and\or the contact of the Morrison Formation and Precambrian crystalline rocks. Precambrian granites in the region around Hartsel are known to possess anomalously high geothermal gradients. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 55° to 85° C (George et al., 1920; Ettinger, 1964; Barrett and Pearl, 1976; Barrett and Pearl, 1978; McCarthy et al., 1982[b]).

Haystack Butte Warm Water Well, Boulder County

This well and surrounding area was visited in May, 1993. Warm water is still flowing from the wellhead into a 25 foot diameter pool which at the present time is used mostly by game birds as a watering and bathing pool. The pool is undeveloped and a significant amount of discarded machinery and other junk surround it. The temperature of the well has declined from 28° C in 1976 (Barrett and Pearl, 1976) to 20° C in May, 1993. The source of the hot water is conjectural; however, the location of the well on the Haystack Mountain Anticline indicates that structures along the axis of the anticline probably helped in circulating waters through the underlying Pierre Shale to depths adequate enough for heating to the observed temperatures (Trimble, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

The estimate of the subsurface reservoir temperature made by Barrett and Pearl (1978) from a variety of geothermometers was 50° C. The surface temperature of the spring has declined almost 30% since 1978. It may be reasonable to expect a similar decline in the subsurface reservoir temperature estimate to approximately 35° to 40° C.

Hooper Aquaculture Well, Alamosa County

Access to the Hooper Aquaculture Well is south from Hooper on Colorado Highway 17 for 2.7 miles to the intersection with Nine Mile Lane. Turn left (east) on this road and proceed for 0.2 miles to the site.

The subject well was drilled as an irrigation well by E. F. Lambert in 1963. Total depth of the well was 2,063 feet. A 12 3/4 inch casing was run from surface to 922 feet and 9 5/8 inch casing was run from 922 to 2,063 feet. The well casing is perforated from 1,242 feet to total depth. The driller's log indicates the perforated section is an interbedded mixture of sand, gravel and brown clay. The well according to State of Colorado Division of Water Resources records initially flowed 8,955 liters per minute.

About ten years ago Mr. Erwin Young of Alamosa bought 80 acres of land comprising the north half of the northwest quarter of Section 22, T40N, R10E. The Lambert (nee) Hooper Aquaculture well is located in the NW NW NW of this section was included in the purchase. After the purchase Mr. Young developed his acreage into a fish and alligator farm. The "geothermal" Hooper Aquaculture Well which now flows at about 2,600 liters per minute at a temperature between 30.2° to 31.3° C is about the perfect water temperature for the African perch or "Tilipia" that he is rearing at the site. During our visit to the site in June of 1993, water leaking around the casing of the Hooper well was measured at 31.3° C. Currently, all the commercial fish growing ponds are out of doors. Mr. Young, however, is in the middle of a project to enclose a number of tanks inside a metal shed to increase production in winter months. He also is developing an additional Tilipia rearing unit near Alamosa whose ponds will be supplied from a couple of (unknown) geothermal wells of a temperature nearly matching the Hooper Well.

Hot Sulphur Springs, Grand County

The Hot Sulphur Springs Resort is now only open during the summer and fall months. At the time of our visit in June, 1993 the resort complex was for sale. The springs appear to be controlled by a north-south trending fault in the Dakota Formation and the Middle Park Formation.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 150° C (George et al., 1920; Izett, 1968; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Idaho Hot Springs, Clear Creek County

This site was not visited during this program. The chemistry of the geothermal waters in the Idaho Springs area is too complex for an accurate estimate of subsurface reservoir temperatures.

Juniper Hot Springs, Moffatt County

Juniper Hot Springs was visited in November, 1992. At that time the buildings and other facilities associated with the resort were severely run down and in a general state of disrepair. Hunters who were camped there informed me that the resort was closed in 1989, more or less permanently, by the elderly owner who lives in nearby Craig. The source springs are enclosed in a locked building. A one-inch pipe carries hot water from the building for a distance of about eight feet and discharges into a pool. The sample for this study was taken at the discharge point.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 50° to 75° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Lemon Hot Springs, San Miguel County

The Lemon Hot Springs consists of a small, 20 foot diameter, pond at the mouth of an old adit. Several buildings having the appearance of private residences surround the pool and tunnel. The waters feeding the hot springs pool are draining from the tunnel. At the time of my visit in July, 1993, the pool was choked with weeds and algae. The owners of the hot springs could not be contacted concerning the status of the pool and springs (George et al., 1920; Bush et al., 1959; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Mineral Hot Springs, Saguache County

An attempt to visit this site was made in June, 1993; however, we were denied access to the area. According to the guard at the site the owner is planning on developing the area

and is very secretive about his plans. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Mount Princeton Hot Springs, Chaffee County

Because of the presence of hot geothermal water, the area around Mount Princeton Hot Springs has been heavily developed since the turn of the century and has been the site of various resorts, hotels, homes, and youth camps. The springs around Mount Princeton are the hottest in the state. The Hortense Hot Spring which services the Silver Cliff Ranch, a Christian youth camp, has a temperature of 85° C. The water is used for bathing, domestic uses and drinking purposes. A resort, several residences, youth camps, and a greenhouse utilize the hot water from several springs and wells in the area. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 130° C.

The state Division of Wildlife has a trout rearing unit at the Chalk Cliffs hatchery some two miles east of the Mt. Princeton Hot Springs. This unit was purchased by the state in 1948 but has been in existence since the 1920's. The 18° C water in the Chalk Creek is used in the trout rearing unit to advantage. Growth times for rainbow trout from fingerlings to a stocking length of 10 inches are decreased from a normal 18 to 22 month period to 12 months because of the warm water (George et al., 1920; Scott et al., 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Mullenville Warm Spring, Park County

The area around this spring, also known as Rhodes Warm Spring in the earlier literature, has been developed as a subdivision called "Warm Springs Ranch". Below the springs the outflow has been channelized by a boulder and cobble drain. The warm water goes to some fishing ponds on the subdivision. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 25° to 35° C (Tweto, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Orvis Hot Springs (Ridgeway), Ouray County

The Orvis Hot Springs resort utilizes geothermal water from a tufa mound just to the southeast of the resort buildings, from a well pit dug in 1991, and from springs which feed directly into a 35 foot diameter natural pool. The natural pool, used mostly for bathing in the 41° C water has a privacy fence and is surrounded with a wooden deck. The resort also has private rooms for bathing and massage and hydrotherapy sessions.

Part of the hot water from the tufa mound is being diverted to a greenhouse and aquaculture project about 1,000 feet to the south. The owner has ambitious plans to develop this project but at this writing, July, 1993, it is still under construction (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Ouray, Ouray County

The City of Ouray has taken an active role in developing the geothermal resources of the immediate vicinity. In 1989, the City drilled two shallow wells, OX-2 and OX-6, in

the City Park just to the south of the City Swimming Pool (Formerly known as the Radium Hot Springs Pool). These two wells are 90 feet deep and produce 48° C water which goes directly to the pool. At the time of my visit in July, 1993 one of the wells was temporarily shut-in. The pool still gets the bulk of its hot water via a pipeline from the Box Canyon Hot Springs.

Three motels in the City of Ouray are using geothermal waters from various sources for spas and space heating. The Twin Falls and Box Canyon motels are using geothermal waters from springs located at the motel sites, and the Manganese Mine at the mouth of Box Canyon, and from hot springs in Box Canyon. The Weisbaden Motel uses geothermal waters for its pool and space heating from a hot spring reservoir under the motel and from an underground Vapor Cave which has three natural hot springs issuing into it. The waste geothermal water from the Weisbaden Motel is used to heat the sidewalks and driveways of the City of Ouray municipal buildings about 200 feet down the hill.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 90° C (George et al., 1920; Luedke and Burbank, 1962; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Pagosa Springs, Archuleta County

These springs were visited during June of 1993. The main spring, Great Pagosa, situated a few hundred feet southwest of the Spring Inn is enclosed by a fence and posted with "No Trespassing" signs. The City of Pagosa Springs has recently built a viewing area on the east side of the spring which provides a good place to observe and photograph the spring. The city has placed four poster boards in the viewing area which describe the: (1) History of the Great Pagosa Hot Springs, (2) Geologic Requirements for a Hot Spring, (3) The Stratigraphic Section at Pagosa Springs, and (4) Distribution of the Pagosa Springs Geothermal Heating System. The poster boards are of good graphic quality and the historical and scientific information is accurate and well written for lay person understanding.

The Spring Inn is in the final phase of a major alteration of their pool area. When finished they will have a cluster of seven soaking pools of different sizes and water temperature ranging from about 35° to 45° C. Individual pools will be able to comfortably accommodate from 8 to 30 bathers.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 80° to 130° C (George et al., 1920; Hail, 1971; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Paradise Hot Spring, Dolores County

This hot spring is located 2.5 miles south of the Dunton Hot Springs along the West Dolores River. At the time of my visit in July, 1993, the springs were not open to the public. The owner of the property uses the warm springs and bath house for his own purposes which is no change from the previous inventory in 1976 (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Penney Hot Springs, Pitkin County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 60° to 90° C (Barrett and Pearl, 1978).

Pinkerton Hot Springs, La Plata County

The rerouting of the U. S. Highway 550 has destroyed two of the four hot springs that made up the Pinkerton Hot Springs. The two remaining springs, the Mound Spring and the Little Mound Spring, are located on the west side of the highway just a few feet from the pavement. The hot water from both springs is piped out to a drain along side of the highway and then to the natural drainage system. There has been some limonite-stained tufa build up at the site of the two remaining springs. The destruction of the two remaining springs has left the Colorado Timberline Academy (formerly the Golden Horseshoe Resort mentioned in Barrett and Pearl, 1978) without hot water for its pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 75° to 125°C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Poncha Springs, Chaffee County

The Poncha Hot Springs were visited in May, 1993. The facilities around the springs are currently maintained by the City of Salida. Since 1938 most of the water from the springs is transported by pipeline to the municipal swimming pool in Salida. The inlet temperature of the pool is approximately 47 to 50° C. Currently, the Boy Scouts of America use the facility heavily in the summer months as a base camp. There is no longer any commercial usage of the facilities.

According to the caretaker at the site there are numerous springs which over the years have fallen into a state of disrepair. Currently, there are efforts to find and repair some of the old cisterns and pipelines in order to improve the quantity and temperature of the flow.

The Poncha Hot Springs area is marked by the presence of several fossil and a few active tufa mounds that are associated with the hot springs. There are significant aprons of travertine that occur downslope of the area of hot springs.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 115° to 145° C (George et al., 1920; Van Alstine, 1975; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Rainbow Hot Springs, Mineral County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50° C (Barrett and Pearl, 1978).

Ranger Warm Springs, Gunnison County

This site was not visited during this program. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60° C (Barrett and Pearl, 1978).

Rico, Dolores County

Two of the four diamond drill holes noted by Barrett and Pearl, 1978 are still uncapped and flowing hot water. The Geyser Hot Water Well is flowing and bubbling with a slight geyser effect. It has built a substantial tufa mound, approximately 6 feet high, and an semi-circle shaped apron, approximately 25 feet in diameter, around the drill hole. Limonite staining is prominent in the tufa. The waters remain unused. The chemistry of the geothermal waters in the Rico area is too complex for an accurate estimate of subsurface reservoir temperatures (George et al., 1920; McKnight, 1974; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Routt [aka Strawberry] Hot Springs, Routt County

The Strawberry Hot Springs is in the process of development as a commercial enterprise. Don Johnson of Steamboat Springs has owned the property since 1982. In the ten years since Johnson has owned the property he has deepened four of the pools and imported sand for the bottoms, built wooden decks and walkways, built four rustic cabins, and hired a gardener. At the time of my visit in November, 1992, a massage house; a bath house with showers, toilets, and heat; and another cabin were under construction.

Recent geological mapping (Snyder, 1980) demonstrates that the Strawberry Hot Springs are hosted by an Proterozoic felsic gneiss and amphibolite. Younger granitic pegmatites are also found in the immediate area. A north-trending normal fault with an adjacent zone of pervasive epidote-chlorite alteration also occurs in the immediate area.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 125° to 175° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; Pearl et al., 1983).

Sand Dunes Pool Hot Water Well, Saguache County

Hot water for the swimming pool comes from a 4,400 foot deep well located just to the south of the pool. The pool is no longer open to the public; however, it is in good shape and is used by the family living on the premises. An experimental project for growing catfish using the geothermal water has been abandoned for many years (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Shaws Warm Spring, Saguache County

The site was visited during June of 1993. I could not gain access to spring. Sampling and measuring of water was achieved where the spring waters leave swimming pool. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 30° to 60° C (Barrett and Pearl, 1976; Lipman, 1976; Barrett and Pearl, 1978; Bond, 1981).

South Canyon Hot Springs, Garfield County

These three undeveloped springs were visited in May, 1993. The hot springs have had several periods of usage and limited development followed by a closing of the primitive facilities by local governments. At the present time the hot springs are channeled into two

pools dug into the dirt. There is obvious evidence of usage of the springs by bathers. The hot waters are associated with the Dakota Sandstone. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 70° to 130° C (Bass and Northrop, 1963; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Splashland Hot Water Wells, Alamosa County

The Splashland Pool is served by two wells that are 40 feet apart and 2,800 feet deep just to the west of the pool. In the winter when the pool is closed, the flow of the wells is used for space heating and domestic hot water in the surrounding ranch buildings. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 100° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Steamboat Springs, Routt County

Although there are several springs in the vicinity of the town of Steamboat Springs, only the Heart Spring has been used as a commercial hot bathing spring. The other springs in this area, which include the famous Steamboat Spring, have temperatures which vary from 14° to 19° C, too low to be considered as a geothermal resource in this study.

The Heart Spring is currently used for bathing within the larger Steamboat Springs Health and Recreation Association facility, a modern well appointed health club which includes an olympic size lap pool, tennis courts, weight room and exercise areas. It is impossible to obtain a good temperature measurement at the spring outlet; however, the Heart Pool had a temperature of 36.4° C at the time of my visit in November, 1992. According to the Office Manager, Linda Johnson, the flow rate varies from about 300 to 750 liters per minute. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 100° to 140° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Snyder, 1980; McCarthy et al., 1982(a); Pearl et al., 1983).

Stinking Springs, Archuleta County

Stinking Springs was visited in June of 1993. Warm water emerges in several places in a 1,500 foot stretch along the south bank of the Navajo River and north of the graded dirt road that parallels the river from Chromo to the springs and beyond. This area is very marshy and individual flows from points of emergence is very small.

The spring with the largest flow is south of the road. Barrett and Pearl (1976) sampled the water from this "main" Stinking Spring source in 1975 and found the temperature to be 27° C with a flow of 106 liters per minute. Our visit in 1993 found the temperature to be 25.4° C with a flow rate of 132 liters per minute.

The main spring bubbles up into a 20 foot diameter by 3 foot deep pool. This "soaking pool" seems to be a recent development or alteration to the spring. The spring is on property is owned by a newly (1992) formed recreational housing development called Crowley Ranch Reserve. It is assumed that they are responsible for the pool construction at this previously undeveloped and unused spring. Based on the lack of trash and foot prints around this newly dug out soaking pool, usage so far is judged to minimal.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 60° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Swissvale Warm Spring, Fremont County

This site was visited during June of 1993. Barrett and Pearl (1978) described the springs as being unused in 1978 and that is still the case. Sometime in the interim between the two site visits a 25 foot x 15 foot x 4 foot deep soaking pool was dug about 50 feet from where Spring F issues at the surface. All the flow from this spring was diverted to the pool before running into the nearby Arkansas River. The pool is now filled with moss and algae. It would appear no one has used this pool for soaking recently. The spring is on private property and posted for no trespassing. No one currently resides on the property.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Trimble Hot Springs, La Plata County

The Trimble Hot Springs lies within the well developed Trimble Hot Springs resort complex. The actual springs now have only a meager flow of 8 to 12 liters per minute. The resort pools and spas are served by a well [mistakenly called the Tripp Hot Springs well in Barrett and Pearl (1978) and Barrett and Pearl (1976)] which is 150 feet deep and contains a submersible pump at 35 feet. The well is pumping at about 1,000 liters per minute. A new bath house complex was built in 1988. The grounds around the pools are well maintained. At the time of our visit in July, 1993 the resort had a good crowd.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 45° to 70° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Tripp Hot Springs, La Plata County

The Tripp Hot Spring was mistakenly located at a well site 200 feet north of the Trimble Hot Spring by Barrett and Pearl (1978). The actual Tripp Hot Spring is located about 3/4 mile north of Trimble, near the mouth of Tripp Gulch and consists of a small natural pool, 25 feet x 10 feet x 5 feet deep. It is in the backyard of a private residence and has not been used for many years. The water currently flows off the property into a culvert (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Valley View Hot Springs, Saguache County

This site was visited during June of 1993. The site characterization in Cahill (1983) essentially catches the ambiance of this site. The amenities are about as he described in 1982 with the added note that the shower and bathroom facilities are now completed and that the site now has telephone service. The springs serve five soaking pools and one swimming pool.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 40° to 50° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978; Cahill, 1983).

Wagon Wheel Gap Hot Springs, Mineral County

Barrett and Pearl (1978) lists the location of the Wagon Wheel Gap Hot Springs as being in the SESE of Section 35, T41N, R1E; Spar City 7.5' quadrangle map. In actuality,

the Wagon Wheel Gap 4UR Hot Spring is in the NWNE of Section 2, T40, R1E; Lake Humphreys 7.5' quadrangle map. The Wagon Wheel Gap CFI Hot Spring is in the SWNE of Section 2, T40, R1E; Lake Humphreys 7.5' quadrangle map.

During a site visit on June of 1993, the 4UR Dude and Guest Ranch ownership was building a new deck and swimming pool north of the old bath house which will utilize waters from the 4UR Hot Springs.

The CFI Spring is unused unless you count the old bath tub that is by the spring which guests or employees of the ranch can fill with a bucket. The 65° C spring water must be mixed with the icy water from the adjacent Goose Creek to achieve the right temperature for a soak.

The chemistry of the geothermal waters in the Wagon Wheel Gap area is too complex for an accurate estimate of subsurface reservoir temperatures (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

Waunita Hot Springs, Gunnison County

The Waunita Hot Springs was visited in May, 1993. The upper Waunita Hot Springs is a well-developed and appealing guest ranch. Waunita Hot Springs has been a popular tourist attraction since the turn of the century and still is even to this day. The waters from the springs are used in the swimming pool, space heating for the ranch and guest cabins, and for drinking purposes. The waters at Waunita are among the hottest in the state with an immersed temperature of the spring "A" in the gazebo of 77° C. A sample of the water from the gazebo spring was taken for chemical analysis. The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 140° to 150° C.

The lower Waunita Hot Springs are approximately a half mile from the upper Waunita Hot Springs. All the bath houses, gazebos, cisterns, and springs at the lower springs are unused and in a bad state of disrepair. There is only a foot path to the lower Waunita Hot Springs. The water temperature, apparent quality (conductivity), and flow are about the same as seen at the upper springs. The most reasonable estimate of the subsurface reservoir temperature of the lower Waunita Hot Springs is approximately 130° C (George et al., 1920; Barrett and Pearl, 1976; Barrett and Pearl, 1978; Zacharakis, 1981).

Wellsville Warm Spring, Fremont County

This spring was visited during June of 1993. The concrete ponds supplied by the Wellsville Warm Spring were used for the raising of tropical fish starting some time around the middle 60's. They are still in good condition and filled with warm spring water. However, the business was closed six years ago because of the failing health of the owner who had run the fish farm for some 20 years. This gentleman passed away about 5 years ago.

An elderly brother-in-law of the fish farmer now lives on the property. He indicated the only use now of ponds supplied by the spring was for bathing and swimming by his grandchildren and his sister's grandchildren.

The most reasonable estimate of the subsurface reservoir temperature from a variety of geothermometers is 35° to 50° C (Barrett and Pearl, 1976; Barrett and Pearl, 1978).

6. Summary

The 1992-1993 low-temperature geothermal assessment program added 10 new chemical analyses to the geochemical database of the state's geothermal waters. Other sources of geochemical data were reviewed and all good quality, that is less than 15% cation-anion balance error, geochemical analyses were entered into the long form geochemical database, Table 2. Certain areas with higher than 15% cation-anion balance were left in the database because they were the only analysis for an area or site. Usually the most significant errors in the cation-anion balance were found in the U. S. Geological Survey WATSTOR database and are due to a missing HCO_3 analysis.

Several corrections were made to locations and names of hot springs and wells described in the older literature. The Colorado Geological Survey Information Series 6 (1976) was updated during 1993 and the correct locations were entered into the revised publication and the database for this assessment. Corrections were also made to several location entries in the U. S. Geological Survey WATSTOR database.

ITEM 1993 % CHANGE 1976-78 ASSESSMENT ASSESSMENT **GEOTHERMAL AREAS** 93 56 +66%**GEOTHERMAL SITES** 157 125 +26% 382 236 **GEOCHEMICAL ANALYSES** +62%SITES OF DIRECT HEAT 64 64 0 UTILIZATION SITES OF DISTRICT HEAT USE ? 20 SITES OF GREENHOUSES, 4 9 AQUACULTURE

A summary of the results of the 1992-1993 geothermal assessment and a comparison to the the 1976-1978 geothermal assessment are shown in the following table:

 Table B: Summary of the results of the 1993 Low-Temperature Geothermal Assessment

 Program compared to the 1976-1978 geothermal assessment.

7. Recommendations

The current assessment indicates that several areas in the state continue a long history of substantial utilization of their geothermal resources. The prime areas include Glenwood Springs, Idaho Springs, Steamboat Springs, Pagosa Springs, Mount Princeton, and Ouray. All of these areas, at the minimum, utilize the geothermal resources for swimming pools and spas. Some areas such as Ouray and Pagosa Springs utilize geothermal heat for space heating in municipal and other private buildings.

There are other areas in the state that are collocated with or near population centers

and are on the fringe of geothermal development. That is, they have had some development of their geothermal resources; however, there are indications that geological and geophysical studies may be used in a Second Phase geothermal assessment to increase the geothermal area and spur development in these areas. The geothermal areas that are candidates for a Second Phase are (not listed in any order of importance):

- 1) Trimble Hot Springs, La Plata County.
- 2) Orvis Hot Springs, Ouray County.
- 3) A large area southeast of Pagosa Springs along the Archuleta Antiform, Archuleta County.
- 4) Eastern San Luis Valley, Saguache and Alamosa Counties.
- 5) Rico and Dunton Hot Springs, Dolores County.
- 6) Cottonwood Hot Springs, Chaffee County.

Other areas that are geologically significant but far from a center of population are:

- 1) Deganahl well, Routt County.
- 2) Brands Ranch well, Jackson County.
- 3) Craig warm water well, Moffatt County.
- 4) Hartsel Hot Springs, Park County.

8. References

- Barrett, J. K., and Pearl, R. H., 1976, Hydrogeological data of thermal springs and wells in Colorado: Colorado Geological Survey Information Series 6, 124p.
- Barrett, J. K., and Pearl, R. H., 1978, An appraisal of Colorado's geothermal resources: Colorado Geological Survey Bulletin 39, 224p.
- Bass, N. W., and Northrop, S. A., 1963, Geology of Glenwood Springs quadrangle and vicinity, northwestern Colorado: U. S. Geological Survey Bulletin 1142-J, 74p., map scale 1:31,680.
- Bond, M. A., 1981, An integrated geophysical study of the Shaw Warm Spring area, San Luis Valley, south-central Colorado: unpublished MS thesis, Colorado School of Mines, 162p.
- Bush, A. L., Bromfield, C. S., and Pierson, C. T., 1959, Areal geology of the Placerville quadrangle, San Miguel County, Colorado: U. S. Geological Survey Bulletin 1072-E, p. 299-384, map scale 1:24,000.
- Bush, A. L., and Bromfield, C. S., 1966, Geologic map of the Dolores Peak quadrangle, Dolores and San Miguel Counties, Colorado: U. S. Geological Survey Geological Quadrangle Map GQ-536, scale 1:24,000.
- Cahill, R., 1983, Colorado Hot Springs Guide: Pruett Publishing Co., Boulder, Colorado, 180p.
- Dick, J. D., 1976, Geothermal reservoir temperatures in Chaffee County, Colorado: unpublished MS thesis, Northeastern Louisiana University, Monroe, Louisiana, 171p.
- Ettinger, M., 1964, Geology of the Hartsel area, South Park, Park County, Colorado: The Mountain Geologist, Vol. 1, no. 3, p. 127-132.
- George, R. D., Curtis, H. A., Lester, O. C., Crook, J. K., and Yeo, J. B., 1920, Mineral waters of Colorado: Colorado Geological Survey Bulletin 11, 474p.
- Hail, W. J., Jr., 1965, Geology of northwestern North Park, Colorado: U S. Geological Survey Bulletin 1188, 133p., map scale 1:24,000.
- Hail, W. J., Jr., 1971, Geological reconnaissance map of the Chris Mountain and Pagosa Springs quadrangle, Archuleta County, Colorado: U. S. Geological Survey Open File Report 71-142.
- Hail, W. J., Jr., 1972, Reconnaissance geological map of the Hotchkiss area, Delta and Montrose Counties, Colorado: U. S. Geological Survey Miscellaneous Geological Investigation Map I-698, scale 1:48,000.
- Hedlund, D. C., and Olson, J. C., 1975, Geologic map of the Powderhorn quadrangle, Gunnison and Saguache Counties, Colorado: U. S. Geological Survey Quadrangle Map GQ-1178, scale 1:24,000.
- Howland, A. M., 1936, An occurrence of barite in redbeds of Colorado: American Mineralogist, vol. 21, no. 9, p. 584-588.
- Izett, G. A., 1968, Geology of the Hot Sulphur Springs quadrangle, Grand County, Colorado: U. S. Geological Survey Professional Paper 586, 79p., map scale 1:62,500.
- Kucera, R. E., 1962, Geology of the Yampa district, Northwest Colorado: unpublished Phd. thesis, University of Colorado, Boulder, 675p, map scale 1:24,000.
- Lipman, P. W., 1976, Geologic map of the Del Norte area, Eastern San Juan Mountains, Colorado: U. S. Geological Survey Miscellaneous Investigations Map I-952, scale 1:62,500.
- Luedke, R. G., and Burbank, W. S., 1962, Geologic map of the Ouray quadrangle, Colorado: U. S. Geological Survey Geologic Map GQ-192, scale 1:62,500.
- McCarthy, K. P., Been J., Reimer, G. M., Bowles, C. G., and Murrey, D. G., 1982 (a), Helium and ground temperature surveys at Steamboat Springs, Colorado: Colorado Geological Survey Special Publication 21, 11p.
- McCarthy, K. P., Zacharakis, T. G., and Pearl, R. H., 1982 (b), Geothermal resource assessment of Hartsel, Colorado: Colorado Geological Survey Resource Series 18, 86p.
- McKnight, E. T., 1974, Geology and ore deposits of the Rico district, Colorado: U. S. Geological Survey Professional Paper 723, 100p., map scale 1:12,000.
- Osterhoudt, W., 1978, Chromo East, in Fassett, J. E.,(editor), Oil and Gas Fields of the Four Corners Area, Volume 1: Four Corners Geological Society, p. 113-115.
- Pearl, R. H., Zacharakis, T. G., and Ringrose, C. D., 1983, Geothermal resource assessment of the Steamboat-Routt Hot Springs area, Colorado: Colorado Geological Survey Resource Series 22, 86p.
- Scott, G. R., 1975, Reconnaissance geologic map of the Buena Vista quadrangle, Chaffee and Park Counties, Colorado: U. S. Geological Survey Miscellaneous Field Studies Map MF-657, scale 1:62,500.
- Scott, G. R., 1977, Reconnaissance geological map of the Canon City quadrangle, Fremont County, Colorado: U. S. Geological Survey Miscellaneous Field Studies Map MF-892, scale 1:24,000.

- Scott, G. R., Van Alstine, Sharp, W. N., 1975, Geologic map of the Poncha Springs quadrangle: U. S. Geological Survey Miscellaneous Field Studies Map MF-658, scale 1:62,500.
- Sharp, R. R. Jr., and Aamodt, P. L., 1976, Uranium concentrations in natural waters, South Park, Colorado: Los Alamos Scientific Laboratory, Informal Report LA-6400-MS, 49p.
- Snyder, G. L., 1980, Geological map of the northernmost Gore Range and southernmost Park Range, Grand, Jackson, and Routt Counties, Colorado: U. S. Geological Survey Miscellaneous Investigation Series Map I-1114, scale 1:48,000.
- Steven, T. A., and Ratte, J. C., 1973, Geological map of the Creede quadrangle: U. S. Geological Survey Geological Quadrangle Map GQ-1053, scale 1:62,500.
- Taylor, R. B., Scott, G. R., Wobus, R. A., and Epis R. C., 1975, Reconnaissance geologic map of the Royal Gorge quadrangle, Fremont and Custer Counties, Colorado: U. S. Geological Survey Miscellaneous Geological Investigation Map I-869, 1:62,500.
- Trimble, D. E., 1975, Geologic map of the Niwot quadrangle, Boulder County, Colorado: U. S. Geological Survey Geological Quadrangle Map GQ-1229, scale 1:24,000.
- Tweto, O., 1974, Reconnaissance geological map of the Fairplay West, Mount Sherman, South Peak, and Jones Hill quadrangles, Park, Lake, and Chaffee Counties, Colorado: U. S. Geological Survey Miscellaneous Field Study Map MF-555, scale 1:62,500.
- Van Alstine, R. E., 1975, Geologic map of the Bonanza NE quadrangle, Chaffee and Saguache Counties, Colorado: U. S. Geological Survey Open File Report 75-53, scale 1:62,500.
- Zacharakis, T. G., 1981, Geothermal resource assessment of the Waunita Hot Springs, Colorado: Colorado Geological Survey Special Publication 16, 69 p.