0 GL00998

THERMAL POWER COMPANY

Geothermal Well: Utah State 72-16 ML-25128 Roosevelt Field, Beaver County, Utah

24-Hour Flow Test, April 4, 1977 - April 6, 1977

CONTENTS

Summary

Test Description

Data Reduction Methods

Sample Calculation

Discussion of Test Results and Graphs

Flow Rate

Flow Rate versus Wellhead Pressure

Measurement Accuracy

Enthalpy (ho) and Flow Rate (m)

Pressure and Temperature on Flowline

Wellbore Pressure

Pressure Build-up

Appendix

Computer Program, Data and Print-out

Data For Graph #3

Semi-Reduced Data For Program

Raw Data

SUMMARY

Test

The pre-test safety checks of the wellhead proved to be of great value. Only minor leaks (a seal pot and a flange) were incurred.

Even with two reserve pits only one day's worth of production could be stored. An injection well would be required for long term testing of this well.

The instruments and control valves of the pipeline operated satisfactorily.

Well Production Capacity

The well's flow rate failed to stabilize. Wellhead pressure and flow rate dropped throughout a 16-hour portion of the test while the valve opening was constant. The total mass flow rate as measured by James' method was 1,309,000 lbm./hr. a $T_W = 416$ °F, $P_W = 294$ psia a 800 hrs. on 4/5/77. A Pressure versus Flow Rate plot suggests the well's maximum production rate to be in excess of 1.4 x 10^6 lbm./hr. A longer flow period is required to determine the significance of the decline - whether it shall continue to depletion or stabilization.

Measurements

The James' method of determining the flow rate of a twophase flow continues to be less than satisfactory. Separation of steam and water would provide sorely needed, accurate production data and provide a standard against which the James' method might be quantified or improved.

Improved reservoir information is dependent on longer flow tests.

Utah State 72-16 TEST DESCRIPTION

April 3, 1977

1500 hrs.: AAA welding arrived at location and checked the annulus and kill-line valves, the kill-line, and the bolts on the wellhead as per their checklist. The other duties on the checklist had been performed only two days previously and were not repeated. The pipeline was repressured and checked for leaks. It was then unpressured via the ball valve. The 12" wing valve was audibly leaking and was shut with a 36" wrench.

April 4, 1977

0730 hrs.: Pressure, temperature and flow measurement devices were installed.

0900 hrs.: Well ready to be opened. Waited for WKM personnel (Sug Roberts) to arrive.

0930 hrs.: 12" wing valve opened and line pressured.

0945 hrs.: 8" ball valve opened to indicated 25% opening.

0947 hrs.: Differential pressure meter engaged in order to monitor flow rate. Well surging because of throttling across ball valve.

0955 hrs.: Water started dripping from annulus pipe.

1000 hrs.: Took water sample.

1004 hrs.: Opened 8" ball valve to 50% indicated opening.

1025 hrs.: Opened 8" ball valve to 75% indicated opening.

1029 hrs.: Throttled well back by closing ball valve to 50% indicated opening because of excessive vibration of meter run and wellhead. Sent for railroad ties to chock pipe @ meter run and at 45° angle at wellhead.

April 4, 1977

1100 hrs.: Opened ball valve to 70% indicated opening after line chocked.

1115 hrs.: Opened ball valve to 75% indicated opening.

1130 hrs.: Closed ball valvue to 60% indicated opening momentarily. Re-opened almost immediately back to 75% indicated opening.

1145 hrs.: Opened ball valve to 80% indicated opening.

1215 hrs.: Broke and replaced thermometer.

1600 hrs.: H₂O sample grabbed. Opened ball valve to 87% indicated opening because of decreases in lip and differential pressure readings.

1800 hrs.: USGS (Al Truesdale) arrived to gather water and steam samples.

2200 hrs.: H,O sample grabbed.

2230 hrs.: USGS finished sampling.

April 5, 1977

0200 hrs.: H₂O sample gathered. Winds shifted from East to light Southerly. Sump condition tenuous.

0500 hrs.: About 4' capacity remaining in Sump #2.

0600 hrs.: H₂O sample grabbed.

0829 hrs.: 8" ball valve started leaking at seal flanges.
Shut-in well via wing valve and tightened ball valve
flange with hammer wrench. Opened 12" wing balve
completely, 8" ball valve to 25% indicated opening.
Sump #2 filled to within 1-foot of bottom of culvert,
so decision made to have Agnew and Sweet Production
Specialists (A&S) set-up for build-up pressure run
immediately.

0845 hrs.: USGS arrived to begin second sampling.

April 5, 1977

0855 hrs.: Seal pot @ Location l developed leak. Well shut-in at master valve to weld seal pot.

0915 hrs.: Well re-opened to 25% indicated opening.

1020 hrs.: Well shut-in. Wellhead pressure 350 psig. Sump water & 87°F. A&S immediately started "feeler" run with sinker bar and maximum reading thermometer (MRT).

1027 hrs.: Sinker bar on bottom @ 1248'.

1035 hrs.: Retrieved sinker bar and MRT. MRT reading 467°F.

1100 hrs.: Dual 0-1600 pressure tools with a second MRT made up on wireline.

1113 hrs.: Tools hung 1-foot off bottom @ 1247'. 7.5" orifice inspected and found bowed 1/32" from complete flatness. Silica deposits on bottom of orifice suggest separated flow with water flowing on bottom of pipe and steam and gas above occurring at some time during test. This flow regime probably occurred during high pressure, low flow rate conditions. The 12" wing valve had a slight leak.

April 6, 1977

1130 hrs.: A&S retrieved all tools. MRT and one pressure instrument failed. One more MRT survey was run, yielding a temperature of (456°F) (note that this is 24-hours after flow had ended.).

1300 hrs.: A&S released after doing a field reduction of the one good instrument's data. 12" valve shut tightly with 36" cheater.

April 7, 1977

12" valve leaking once again, so no decision made to have repaired.

Stainless steel sampler at Location 1 inspected and found to have no signs of abrasions or impact.

DATA REDUCTION METHODS

From James' "Metering of Steam-Water Two-Phase Flow By Sharp-Edged Orifices," Institute of Mechanical Engineering Proceedings 1965-1966, Volume 180, Part 1.

Nomenclature

bp = state at back pressure.

D = diameter of pipe in meter run (inches).

d_c = diameter of pipe where critical flow occurs (inches).

G = mass velocity (lbm./ft.² sec.).

hf = specific enthalpy of saturated liquid (BTU/lbm.).

hfbp = specific enthalpy of saturated liquid at a given back
 pressure (BTU/lbm.).

hfgbp = specific enthalpy of vaporization at a given back pressure (BTU/lbm.).

h_O = specific stagnation enthalpy (BTU/lbm.).

L=hfg = specific latent heat defined by state of flow by Po. (BTU/lbm.).

m = mass flow rate (1bm./hr.).

Patm = atmospheric pressure (psia).

 P_C = critical lip pressure (psia). $P_C = P_L + Patm$.

P_L = critical lip pressure (psig).

 P_O = line pressure upstream of orifice (psia) $P_O = R^2 \times 5 + Patm$.

R = static pressure reading upstream of orifice (red).

ΔR = differential pressure reading across orifice (blue).

 v_f = specific volume of saturated liquid @ P_o (ft. 3 /lbm.).

 v_q = specific volume of saturated vapor @ P_o (ft. 3 /lbm.).

y = centerline distance of '%" npt tap from discharge pipe lip.

 Y_{TP} = expansion factor for two-phase flow from Figure 14.

 $\beta = d_m/D.$

 \emptyset_{TP} = meter differential (mmHg).

Conversion Factors and Equations

$$P_{O} = R^{2} \times 5 + Patm \tag{1}$$

$$\emptyset_{\text{TP}} = (\Delta R)^2 \times 15.5145$$
(2)

 \emptyset_{TP} in psid = $(\Delta R)^2 \times 0.3$

Patm is corrected from the barometric pressure from the Milford airport to that at the well's location.

Flow Rate Determination

G = 10450 ÷ y
$$^{0.063}$$
 x P_c $^{0.96}$ ÷ h_o $^{1.102}$ if y ≤ 0.3 in. (3)

$$\dot{m} = \tau \div 4 \left(\frac{dC}{12}\right)^2 \times 3600 \times G$$
 (4)

$$\dot{m} = \tau \div 4 \left(\frac{dc}{12}\right)^{2} \times 3600 \times 10450 \div y^{0.063} \times P_{c}^{0.96} \div h_{o}^{1.102}$$

$$\dot{m} = 205,185.27 \frac{dc^{2}}{y^{0}} \div \frac{dc^{3}}{2063} \times P_{c}^{0.96} \frac{dc^{3}}{h_{o}^{1.102}}$$
(5)

 \dot{m} '" = 1.013 \dot{m} (\dot{m} ' used on Utah State 14-2 test)

Enthalpy Determination

$$h_{O}^{1.102} = 1450 \frac{P_{C}^{0.96}}{Y_{TP}} (\frac{dc}{dm})^{2} \sqrt{1-B^{4}} \sqrt{(h_{O}-h_{f})^{1.5}} (vg-v_{f}) + vf$$
 (6)

From Eq. (6), squaring both sides, and gathering terms,

$$h_O^{2 \cdot 204} = (1450)^2 \frac{P_C^{1 \cdot 92}}{Y_{TP^2}} \frac{(dc)^4}{dm} \frac{(1-B^4) [(ho - hf)^{1 \cdot 5} (vg-v_f) + vf]}{L}$$

$$\frac{h_{O}^{2^{\circ}2^{\circ}4} \cdot Y_{TP}^{2} \times \emptyset_{TP}}{(1450)^{2} P_{C}^{1 \cdot 92} (\underline{dc})^{\cdot 4} (1-B)} = (h_{O}-h_{f})^{1 \cdot 5} (vg-v_{f}) + vf$$

Flow Rate Determination

$$\frac{h_{O}^{2 \cdot 20 +} \left[Y_{TP}^{2} \not g_{TP} dm^{4}}{1450 p_{C}^{1 \cdot 92} d_{C}^{4}} (1-B^{4}) (vg-v_{f}) \frac{1 - (h_{O}-h_{f})^{1 \cdot 5}}{L} - \frac{vf}{vg-v_{f}} = 0 \quad (7)}$$

let
$$A = Y_{TP} \beta_{TP} dm^4$$

$$\frac{1450 P_C^{1 \cdot 92}}{dc^4} dc^4 (1-B^4) (vg-v_f)$$
(8)

$$C = \underbrace{vf}_{vg-v_f} \tag{9}$$

Then Eq. (7) becomes:

$$f(h_0) = A h_0^{2 \cdot 204} - (h_0 - h_f)^{1 \cdot 5} - C = 0$$
 (10)

and
$$f^{1}$$
 (h_O) = 2.204 A h_O $^{1.204}$ - 1.5 (h_O-h_f) $^{0.5}$ (11)

Applying the Newton-Raphson method for solving the roots of the equation (10), $f = \emptyset$ (h₀),

and the computer stops when $\delta^{nt1} \leq \epsilon$, ϵ being a predetermined accuracy for ho.

A computer program complete with appropriate logic to provide the necessary exits was thus designed to solve for h_0 . Once h_0 was found, the mass flow (\dot{m}) was calculated through equation (5). Then percent flash proportions for back pressures of 70, 80 and 125 psig were calculated through the equation.

Variable Assignments

C = un * % flash @ 80 psig = PF80 B = un D = D % flash @ 125 psig = PF125 E = EPSI d_c = DC PL = un & = DEL d_m = DM P_O = PO G = un R = un h_p = HF AR = un L = HFG v_p = UF m = MF v_g = UG Patm = un y = Y P_C = PC Y_TP = YTP	A = COF1	% flash @ 70 psig = PF70	$\emptyset_{\text{TP}} = \text{PHI}$
$D = D$ % flash @ 125 psig = PF125 $E = EPSI$ $d_C = DC$ $P_L = un$ $\delta = DEL$ $d_m = DM$ $P_O = PO$ $G = un$ $R = un$ $h_D = HF$ $\Delta R = un$ $L = HFG$ $v_D = UF$ $\dot{m} = MF$ $v_G = UG$ $Patm = un$ $y_D = Y$	C = un *	·	
$d_{C} = DC$ $d_{m} = DM$ $P_{O} = PO$ $G = un$ $h_{D} = HF$ $\Delta R = un$ $L = HFG$ $v_{D} = UF$ $m = MF$ $v_{D} = UG$ $v_{D} = VG$	D = D		
$d_{m} = DM$ $P_{O} = PO$ $G = un$ $h_{p} = HF$ $\Delta R = un$ $L = HFG$ $v_{p} = UF$ $\dot{m} = MF$ $v_{g} = UG$ $Patm = un$ $y = Y$	d _c = DC		-
$G = un$ $h_p = HF$ $\Delta R = un$ $L = HFG$ $v_p = UF$ $\dot{m} = MF$ $v_g = UG$ $v_g = UG$ $v_g = UG$	$d_{m} = DM$	$P_{O} = PO$	
$L = HFG$ $v_p = UF$ $\dot{m} = MF$ $v_g = UG$ $Patm = un$ $y = Y$	G = un		
$\dot{m} = MF$ $v_g = UG$ Patm = un $y = Y$	$h_p = HF$	$\Delta R = un$	
$\dot{m} = MF$ $v_g = UG$ Patm = un $y = Y$	L = HFG	$v_n = v_r$	
Patm = un	m = MF		
	Patm = un		
	$P_C = PC$		

Patm, Po, β_{TP} , ν_f , ν_g , h_f , and hfg must be hand calculated for this program. See the example problem that follows.

* = Unused.

SAMPLE CALCULATION

Data

For this particular test, the physical parameters were:

$$D = 10.02$$
"

$$dc = 7.625$$
"

$$dm = 7.500" + 0.0001"$$

$$y = 5/16$$
"

At 0800 hrs. on April 5, 1977, the following data was gathered:

$$R = 7.30$$

$$T_1 = 414$$
°F

$$P^2 = 211 \text{ psig}$$

$$BP = 25.180" Hg$$

$$\Delta R = 9.57$$

$$P_w = 282 \text{ psig}$$

$$T_2 = 391$$
°F

$$PL = 95.6 psiq$$

$$T_w = 416$$
°F

Patm =
$$(25.180 - 0.73) \div 0.4911 = 12.01 \text{ psia} = Patm$$

- 0.73 is a correction for altitude from the airport to the site.
- 0.4911 converts "of H_q to psia.

From Eq. (1)
$$P_O = (7.30)^2 \times 5 + 12.01 = 266.5 + 12.01 = 278.5 \text{ psia} = P_O$$

From Eq. (2)
$$g_{TP} = (9.57)^2 \times 15.5145 = 1420.9 \text{ mmH}_q = g_{TP}$$
 (27.5 psid)

Since P_0 , and using the Steam Tables generated by the USGS for this particular brine:

$$vg = 1.6608 \text{ ft.}^3/1\text{bm}.$$

$$h_{f} = 381.4 \text{ BTU/lbm}.$$

$$vf = 0.018794 \text{ ft.}^3/1\text{bm}.$$

$$h_q = 813.9 \text{ BTU/lbm}.$$

From Figure 14 in James' paper, the line for the value of the expansion factor Y_{TP} for $B^2 = 0.56$ follows the equation:

$$Y_{TP} = 1 - .01555 (g_{TP})$$

so
$$Y_{TP} = 1 - .01555 (1420.9) = 0.921 = Y_{TP}$$

$$P_{c} = P_{L} + Patm = 95.6 + 12.01 = 107.61 psia = P_{c}$$

Inputting the date, time, \emptyset_{TP} , Y_{TP} , P_O , P_C , vf, vg, h_r and hfg into the program yields:

4/5 800 hours $h_0 = 467.4$ BTU/lbm. $T_W = 416$ °F, $P_W = 294$ psia $\hat{m} = 1,309,000$ lbm./hr. + 15%

which, when flashed at 80 psig, would yield 263,100 lbm./hr. of steam, or roughly enough steam to sprovide 12.5MW of electrical generation capacity at a heat rate of 21,000 lbm./steam MW.

DISCUSSION OF TEST RESULTS

Flow Rate

From Graph 1, it is apparent that a gradual throttling up of flow rate was performed during the first three hours. decline during the flowing four hours caused the well to be opened up slightly more at 1600 hours. From 1600 hours to 0830 hours the following day the throttle was not disturbed. During that time flow rate fell from about 1.35 \times 10⁶ + 15% lbm./hr. to about 1.31 x 10^3 + 15% 1bm./hr., or a decline of 3%. This decline is highlighted in Graph 2. The 3% decline in mass flow rate, in wellhead pressure, Pw, upstream-of-orifice static pressure, Po location 1 pressure, P1, as well as a reduction in calculated h_{O} are clearly evident. The changes in the calculated values of h_0 and \dot{m} could be possibly attributed to many other variable changes had not the pressures declined so uniformly. The decline in flow rate at 2550 lbm./hr., if linearly extrapolated, would indicate that the well's flow would drop from 1.35×10^6 lbm./hr., to zero in only 22 days, with a commensurate drop in wellhead pressure to atmosphere. Of course, this extrapolation should under no circumstances be taken literally. An increase in flow rate and pressure occurred at 0800 hours just before the well was shut-in, and could suggest that a leveling out of the flow rate might have been starting. What the decline does dictate is the absolute necessity of a much longer (> 30 days) flow test to more completely determine the well's production capacity and delineate the characteristics of the reservoir from which it is producing before commitments to generate power are made.

Flow Rate versus Wellhead Pressure

Graph 3 depicts the relationship of \dot{m} as a function of P_W for early times during the test such that the production potential of the reservoir in its initial state is represented. The curve suggests that the well's maximum flow rate would probably be in excess of 1.4 x 10 6 lbm./hr. \pm 15% as measured by the James method.

The points labeled 1-4 are data points gleaned at later times during the flow test. Disturbingly, they suggest that the curve delineated at the initial time is shifting progressively downward to the left with time, indicative of a decline in the producing capacity of the well.

Measurement Accuracy

Enthalpy (h_O) and Flow Rate (m)

Enthalpy measurements (h_0) for the time of somewhat stable flow (1600 hrs. to 0830 hrs., or region 8 of Graph 1) varied less than 1% from an average and median value of 469.6 BTU/1bm. However, the temperature of the saturated water in the reservoir (from the pre-test temperature survey and the MRT run immediately after the flow) is only 468°F, which means the water has an enthalpy of only 444.7 BTU/lbm. By the first law of thermodynamics, the water at the surface, regardless of its percentage of flash, cannot have an enthalpy greater than that of the water (Measurements at Utah State 14-2 indicated a in the reservoir. reservoir enthalpy of about 480 BTU/lbm. with a surface enthalpy of 445 BTU/lbm. - a reasonable and rational amount of difference due to losses incurred from the water "pumping" itself several thousand feet to the surface, turbulence, and drag.) This serious descrepancy, then, of the calculated surface enthalpy (ho) being greater than that associated with the reservoir deserves an exploration of its effects and causes.

First, the 5.5% over-estimate in h_0 can have a significant result on the flow rate calculation of total mass and steam. For example if one recalculates the 0800 hrs. flow rate with h_0 = 440 BTU/lbm. as opposed to 467.4 BTU/lbm. (a 5.9% decrease in h_0) then the flow rate increases from 1.309 x 10^6 lbm./hr. to 1.399 x 10^6 lbm./hr. (a 6.9% increase in m). However, the substitution of the more accurate value of h_0 causes a decrease in the % of flash (for example, from 20.1% to 17.1% at 80 psig). The end result is a significant decrease in the calculated amount of steam producible at a given back pressure (from 263,600 lbm./hr. to 238,700 lbm./hr. in this case, or a 9.5% drop!). Since this is the quantity we look at for power generation purposes, the evaluation of enthalpy becomes important. It causes changes in the calculation of m and of % flashes (in the James method) and thus flavors the evaluation of the well.

Essentially, several elements of the testing equipment and operation vary outside of the limits of the method as declared by Russell James. These variances include, in suspected order of degree of effect:

- 1) The equipment effect that flange taps were used for measuring \$\mathscr{G}_{TP}\$ as opposed to James' use of vena contracta taps (tap at a diameter upstream, \$\frac{1}{2}\$ diameter downstream). (This is a result of blindly following again the footsteps of our predecessor in the field, and not setting up precisely as the literature states.) The effect of this misplacement is rather large, causing \$\mathscr{G}_{TP}\$ and thus \$h_0\$ to be too large.
- 2) The operational fact that h_0 in this test was calculated with p_{TP} of over 800mm H_g for most of the test, and of > 1400mm for the entire "decline" period. James' has only measured extensively in the range of 15 < p_{TP} < 780 mm H_g . This effect is minor.

In the future, then, larger orifices with D and $\frac{1}{2}$ D taps should be employed when using the James' method in an effort to get a true h_0 calculation.

Alternatively, the long learning process for measuring twophase flow could be avoided by separating the phases and measuring them separately.

Pressure and Temperature on Flow-line

Pressure measurements at the wellhead and lip were very satisfactorily and accurately measured with precision gauges. Needle valves effectively damped flow pulsations. The combination pressure-temperature measurements at the wellhead Location 1, and Location 2 will prove very helpful in determining pressure drop along the pipeline as a function of flow rate, the percentages of flash of the various locations, and even whether significant thermodynamics properties of the fluid are different from those of regular water. For example, a precursory comparison of wellhead pressure and temperature to those for water under the same saturated conditions suggested that the fluid indeed acts differently from pure water. Consequently, a USGS-produced table for the thermodynamic properties of the fluid of Utah State 14-2 was used in reducing the data for Utah State 72-16. Use of the regular Steam Table's values produced m's 2% lower than the geothermal fluid's values.

Wellbore Pressure

Enough build-up data was probably not gathered due to the desire to check the wellbore for any obstructions with a "feeler" run before lowering the tools. Since no real problems were encountered with obstruction or the well producing any rocks, I suggest future build-up runs to be done as soon after shut-in as possible.

I also suggest we attempt to use another contractor in an effort to get better repeatability in pressure surveys, better tool performance and lower cost.

JRM/tti-4/27/77

Graph # 1 1.4 1.3 Indicated Valve Openings, Mass Flow Rate, and 9 Sill-in 30 min 7 x 108 1 1. 120 min 0,5 0.4

л

Vate and lime (hours) 240 CP30 CU20 3000 340 340 340 340 CP31 300 000 000 000 000 0000 0000 472 376 [not book) 27.5 N 086 (Delore orilice) (2129)0 582 05 C (Wellhead) JACOB (JAKE) M. RUDISIL A Graph of the Decline in Enthalpy, fressures and Flow Mate from Less April 4-5 during the Flow Fest of Utah State 72-16.

Troph #2 16

331-51

ADDITION TO TEST DESCRIPTION

0823 hrs.: Well cut back to 0.17×10^6 lbm./hr. - for 2 min.

0825 hrs.: Shut-in completely - for 5 min.

0830 hrs.: Turned on to 0.17 x 10^6 lbm./hr. - for 25 min.

0855 hrs.: Shut-in for 20 min.

0915 hrs.: Re-opened to 170,000 lbm./hr. for 65 min.

1020 hrs.: Shut-in.

Totals for 0823 - 1020 hrs.

Shut-in 170,000 lbm./hr.

25 min. 1 hr. 32 min.

```
* HAT?
CLD: JAMOD
READY
:L
 CUCTOC THIS IS A ROUTINE TO TAKE THE SENI-REDUCED DATA FROM A TEST OF A GEOTHERMAL WELL BY THE JAMES METHOD AND
 UU020C THUS DETERMINE THE SPECFIC STAGNATION ENTHALPY, HO, THE TOTAL MASS FLOW, M, AND THE % FLASH OF THE FLOW TO STEAM
 LUCGGC AT VARIOUS BACK PRESSURES FOR GIVEN TIMES DURING THE TEST.
 LLC400
 UCCOOC THIS PROGRAM WILL BE MODIFIED TO DO TOTAL DATA REDUCTION IN THE NEAR FUTURE!
 06070 CORMON HEAD(16),MO.IDAY,IME,PC,PO,PHI,YTP,HF,HFG,VG,VF,D,DM.DC.H1.EPSI.ADATE(2)
 CUOSC REAL MF, PF70, PF80, PF125
 CCGSO REAL*8 DATAF
 00100 FPLAIN(H1)=(COF1*(H1**2.204))-(((H1-HF)/HFG)**1.5)-(VF/(VG-VF))
 66110 FPR IRE(E1)=(2.204*COF1*(H1**1.204))-((1.5/HFG)*(((H1-HF)/HFG)**0.5))
 C0130 PRINT 10
       10 FORMAT("ENTER THE NAME OF THE DATA FILE TO BE USED")
 60140
 00150
       READ(16,20)DATAF
 COIED OPENF(5,DATAF)
        20 FORMAT(A6)
 66170
 00180 READ (5,30)HEAD
 00190 30 FORMAT(24A5)
 LG2CO READ(5,*) H1,EPSI
 CU210 READ(5,*) D.DM.DC
 LC22C CALL DATE(ADATE)
 LG230 PRINT 40
 CO240 4C FORMAT(" SET PAPER--HIT C/R")
 60250 READ(16.*)DUMB
 G0260 PRINT 900, HEAD, (ADATE(I), I=1,2)
 CC276 900FORMAT(16A5/1X,2A5//)
 CC280 PRINT 905, D, DM, DC
L0290 905 FORMAT( "THE METER RUN'S INSIDE PIPE DIAMETER=",F6.3," INCHES, THE ORIFICE'S DIAMETER=",F6.3,
 002958" INCHES, AND",/,"THE DISCHARGE PIPE'S INSIDE DIAMETER= ",F6.3." INCHES.";//)
 COSCO SICFORMAT( 4X, "DAY", 7X, "TIME", 11X, "MASS FLOW", 18X, "SPECIFIC STAGNATION ENTHALPY", 10X, "% FLASH @".1X/14X.
 L03308"(HOURS)",7X,"(LBM/HOUR)",24X,"(BTU/LBM)",16X,"70 PSIG",4X,"80 PSIG",4X,"125 PSIG",///)
 LU335 49 READ(5,*,END=100),MO,IDAY,IME,PHI,PO,PC,HF,HFG,VG,VF,YTP
 60345 51 IF(NI.EQ.1) H1=470.
 U0355 COF1=PHI*(YTP**2.)/(2102500.*(1.-(DM/D)**4.)*((DC/DM)**4.)*(PC**1.92)*(VG-VF))
 60375 N=0
 60385 50 DEL=FPLAIN(H1)/-(FPRINE(H1))
 60395 F1=DEL+H1
 60405 N=8+1
 GC415 IF (ADS(DEL).LT. EPSI) GO TO 90
 66425 IF (N.GT.10) GO TO 99
 C0445 GC TO 50
 60460 90 PF70=(H1-279.8)/8.9644
 UC470 PFEC=(H1-288.11)/8.9028
 06480 PF125=(H1-318.53)/8.6687
 UC500 EF=((205185.27*(DC**2.))*(PC**.96))/(((5./16.)**.063)*(H1**1.102))
 CO52G PRINT 915, HO, IDAY, INE, MF, H1, PF70, PF80, PF125
 60530 915 FORMAT(3X, I2, "/", I2,7X, I4,12X,F8.0,24X,F5.1,20X,F4.1,7X,F4.1,9X,F4.1)
 60550 GO TO 49
 60554 99 HI=HI+1
 00555 IF(NI.EQ.1) GO TO 51
 60556 PKINT 598. IME
 00557 S90 FORMAT("
                      ENTHALPY CALCULATION FAILED TO CONVERGE FOR THE TIME ". 14)
 CC558 GO TO 49
 C0550 100 PRINT 999
 00595 999 FORMAT(//"ALL DATA HAS BEEN REDUCED")
```

OL:JAHOD

06600 END

06610 4,4,2200,1463.,285.,109.9,383.6,811.6,1.6237,.018625,.92 00620 + 4, 4, 2300, 1460, 284, 3, 109, 6, 383, 3, 812, 1, 1, 6277, 018822, 920630 4,4,2400,1451.,282.8,109.2,382.8,612.9,1.6362,.018814,.92 00640 4,5,100,1445.,282.1,109.1,382.6,812.7,1.6401,.018811,.32 00650 4,5,200,1439.,280.6,108.8,382.1,813.2,1.6486,.018804,.92 $c0 \in C0$ 4,5,300,1433.,297.9,108.4,381.8,813.4,1.6526,.018801,.92 LUCTO 4,5,400,1430.,279.2,108.1,381.6,813.6,1.6567,.018797,.92 υσοδο 4,5,500,1427.,279.2,107.9,361.6,613.6,1.6567,.018797,.92 06690 4,5,600,1424.,278.5,107.5,381.4,613.9,1.6608,.018794,.92 00700 + 5,700,1421.,278.5,107.3,381.4,813.9,1.6608,.018794,.92160716 4,5,866,1421...278.5,107.6,381.4,813.9,1.6608...018794...921 cu720 4,5,6760,1460,285.6,107.6,383.9,611.6,1.6193,.018629,.92 00730 4,5,8708,1377.,271.2,107.6,376.8,816.2,1.7044..018758..921 00740 4,5,900,26.22,401.,16.5,416.9,778.7,1.1592,.019344,.999 60750 4,5,945,18.77,403.6,13.75,419.7,778.,1.1518,.019355,.999 00760 4,5,1000,15.5,403.6,13.8,419.7,778.,1.1518,.019355..999

READY RUN: JAHOD

JAMOD 17:53 RDS11 APR 20 77 WED

ENTER THE NAME OF THE DATA FILE TO BE USED 2UT7216

SET PAPER--HIT C/R ?

24-HOUR TEST OF THE WELL UTAH STATE 72-16 ON APRIL 4-5,1977 20-Apr-77

THE METER RUN'S INSIDE PIPE DIAMETER=10.020 INCHES, THE ORIFICE'S DIAMETER= 7.500 INCHES, AND THE DISCHARGE PIPE'S INSIDE DIAMETER= 7.625 INCHES.

DAY	T IME	MASS FLOW	SPECIFIC STAGNATION ENTHALPY	%	FLASH a	
	(HOURS)	(LBM/HOUR)	(BTU/LBM)	7 0 PSIG	80 PSIG	125 PSIG
				*		
4/4	950	254864.	466.0	20.8	20.0	17.0
4/4	951	226111.	519.5	26.7	26.0	23.2
4/4	953	177052.	57 5 .5	33.0	32.3	29.6
4/4	959	241949.	477.6	22.1	21.3	18.4
4/4	1003	158951•	552.6	30.4	29.7	27.0
4/4	C	201970.	504.1	25.0	24.3	21.4
ENTHALPY	CALCULATION	FAILED TO CONVERGE FO	OR THE TIME 1005			
4/4	1007	936861.	457.0	19.8	19.0	16.0
4/4	1013	917934.	465.6	20.7	19.9	17.0
4/4	1017	881526.	483.0	22.7	21.9	19.0
4/4	1025	917934.	465.6	20.7	19.9	17.0
4/4	1027	1322075.	472.2	21.5	20.7	17.7
4/4	1029	943522.	448 .7	18.8	18.0	15.0
4/4	1031	943876.	464.6	20.6	19.8	16.8
4/4	1034	956656•	464.2	20.6	19.8	. 16.8
4/4	9999 50%	min 926751.	477.8	22.1	21.3	18.4
4/4	معمره ٥	max 992601.	448.9	18.9	18.1	15.0
4/4	1046	943876.	464.6	20.6	19.8	16.8
4/4	1052	928314.	466.2	20.8	20.0	17.0
4/4	1058	928857•	466.0	20.8	20.0	17.0
4/4	1160	1237524.	469.5	21.2	20.4	17.4
47 4	1105	1202511.	473.7	21.6	20.8	17.9
$t_i \neq -t_i$	aig į f	1282511*	h 72 . 7	51.7	on e	4 H L

4/4	/c 🛧 =	mm 1210418.	479.0	22.2	21.4	18.5
4/ 1	70%	MAP 1229342.	464.3	20.6	19.8	16.6
	1115		404•3 120 €			
4/4		1211266.	472.6	21.5	20.7	17.8
4/4	1120	1329046.	473.7	21.6	20.6	17.9
4/4	1125	1338038.	469.0	21.1	20.3	17.4
4/1	1140	1313220.	473.3	21.6	20.6	17.8
4/4	1145	1313220.	473.3	21.6	20. Ն	17. ն
4/4	1149	1354224.	476.7	22.0	21.2	18.2
4/4	1154	1358320.	475.4	21.8	21.0	. 18.1
4/4	1159	1359900.	474.9	21.8	21.0	16.0
4/4	1215 80 %	1362024.	474.2	21.7	20.9	. 18.0
4/4	80 80%	Min 1328316.	485.1	22.9	22.1	19.2
4/4	Eoper	max1382328.	467.9	21.0	20.2	17.2
4/4	12 30	1361192.	474.4	21.7	20.9	18.0
4/4	1245	1361192.	474.4	21.7	20.9	18.0
4/4	1300	1358210.	474.3	21.7	20.9	18.0
4/4	1330	1366014.	472.2	21.5	20.7	17.7
4/4	14 CO	1347778.	473.2	21.6	20.8	17.8
4/4	1430	1344401.	473.2	21.6	20.8	17.8
4/4	1500	1342554.	472.0	21.4	20.7	17.7
4/4	8012 802 12:00	min 1331665.	484.0	22.8	22.0	19.1
4/4	812 opin 14,00	MAN 1387553.	466.3	20.8	20.0	17.0
4/4	2023	min 1316627.	460.4	22.4	21.6	18.7
4/4	853 021530	max1368418.	463.9	20.5	19.7	16.8
4/4	1530	1346954	470.6	21.3	20.5	17.5
4/4	1600	1344950.	470.5	21.3	20.5	17.5
4/4	1630	1351144.	471.8	21.4	20.6	17.7
4/4	1700	1353134	470.1	21.2	20.4	17.5
4/4	8717 97%	mia 1329336.	477.7	22.1	21.3	18.4
4/4	8710 0/6h	mab1670468.	388.3	12.1	11.3	6.0
4/4	1800	1345642	470.6	21.3	20.5	17.5
4/4	1900	1337858.	470.9	21.3	20.5	
4/4	2000	1334984.	470.3	21.3		17.6
				21.3	20.5	17.5
4/4	2160	1331354.	470.7	21.3	20.5	17.6
4/.4	2200	1325164.	470.9	21.3	20.5	17.6
4/4	2300	1322477.	470.6	21.3	20.5	17.5
4/4	24 00	1321193.	469.5	21.2	20.4	17.4
4/5	100	1322452.	468.8	21.1	20.3	17.3
4/5	200	1322135.	467.7	21.0	20.2	17.2
4/5	300	1318415.	467.4	20.9	20.1	17.2
4/5	400	1315260.	467.3	20.9	20.1	17.2
4/5	5 C O	1312367.	467.5	20.9	20.1	17.2
4/5	600	1307351.	467.6	21.0	20.2	17.2
4/5	760	1303674.	466.0	21.0	20.2	17.2
4/5	8 00	1309154.	467.4	20.9	20.1	17.2
4/5	8780 87%	MA 1281983.	476.4	21.9	21.1	18.2
4/5	8708 oper	MAX 1338981.	457.9	19.9	19.1	16.1
4/5	900	169953.	526.1	27.5	26.7	23.9
4/5	945	157965.	530.6	28.C	27.2	24.5
4/5	1000	168528.	501.9	24.8	24.0	21.2
			F = · • •			

ALL DATA HAS BEEN REDUCED

USED: 38.6 UNITS

READY

24-HOUR TEST OF THE WELL UTAH STATE 72-16 ON APRIL 4-5,1977 22-Apr-77

THE METER RUN'S INSIDE PIPE DIAMETER=10.020 INCHES, THE ORIFICE'S DIAMETER= 7.500 INCHES, AND THE DISCHARGE PIPE'S INSIDE DIAMETER= 7.625 INCHES.

(HOURS) (LBM/HOUR) (BTU/LBM) 70 PSIG 80 PSIG 4/ 4 1245 1361192. 474.4 21.7 20.9 4/ 4 1300 1358210. 474.3 21.7 20.9 4/ 4 1330 1366014. 472.2 21.5 20.7 4/ 4 1400 1347778. 473.2 21.6 20.8 4/ 4 1430 1344401. 473.2 21.6 20.8 4/ 4 1500 1342554. 472.0 21.4 20.7 4/ 4 1530 1346954. 470.6 21.3 20.5 4/ 4 1600 1344950. 470.6 21.3 20.5 4/ 4 1630 1351144. 471.8 21.4 20.6 4/ 4 1700 1353134. 470.1	
4/4 1300 1358210. 474.3 21.7 20.9 4/4 1330 1366014. 472.2 21.5 20.7 4/4 1400 1347776. 473.2 21.6 20.8 4/4 1430 1344401. 473.2 21.6 20.8 4/4 1500 1342554. 472.0 21.4 20.7 4/4 1530 1346954. 470.6 21.3 20.5 4/4 1600 1344950. 470.5 21.3 20.5 4/4 1630 1351144. 471.8 21.4 20.6	125 PSIG
4/4 1300 1358210. 474.3 21.7 20.9 4/4 1330 1366014. 472.2 21.5 20.7 4/4 1400 1347776. 473.2 21.6 20.8 4/4 1430 1344401. 473.2 21.6 20.8 4/4 1500 1342554. 472.0 21.4 20.7 4/4 1530 1346954. 470.6 21.3 20.5 4/4 1600 1344950. 470.5 21.3 20.5 4/4 1630 1351144. 471.8 21.4 20.6	18.0
4/4 1330 1366014. 472.2 21.5 20.7 4/4 1400 1347776. 473.2 21.6 20.8 4/4 1430 1344401. 473.2 21.6 20.8 4/4 1500 1342554. 472.0 21.4 20.7 4/4 1530 1346954. 470.6 21.3 20.5 4/4 1600 1344950. 470.5 21.3 20.5 4/4 1630 1351144. 471.8 21.4 20.6	18.0
4/4 1400 1347776. 473.2 21.6 20.8 4/4 1430 1344401. 473.2 21.6 20.8 4/4 1500 1342554. 472.0 21.4 20.7 4/4 1530 1346954. 470.6 21.3 20.5 4/4 1600 1344950. 470.5 21.3 20.5 4/4 1630 1351144. 471.8 21.4 20.6	17.7
4/4 1430 1344401. 473.2 21.6 20.8 4/4 1500 1342554. 472.0 21.4 20.7 4/4 1530 1346954. 470.6 21.3 20.5 4/4 1600 1344950. 470.5 21.3 20.5 4/4 1630 1351144. 471.8 21.4 20.6	17.8
4/4 1500 1342554. 472.0 21.4 20.7 4/4 1530 1346954. 470.6 21.3 20.5 4/4 1600 1344950. 470.5 21.3 20.5 4/4 1630 1351144. 471.8 21.4 20.6	_ 17.8
4/4 1530 1346954. 470.6 21.3 20.5 4/4 1600 1344950. 470.5 21.3 20.5 4/4 1630 1351144. 471.8 21.4 20.6	17.7
4/4 1600 1344950. 470.5 21.3 · 20.5 4/4 1630 1351144. 471.8 21.4 20.6	17.5
4/4 1630 1351144. 471.8 21.4 20.6	17.5
4/4 1700 1353134. 470.1 21.2 20.4	17.7
	17.5
4/4 1800 1345642. 470.6 21.3 20.5	17.5
4/4 1900 1337858. 470.9 21.3 20.5	17.6
4/4 2000 1334984. 470.3 21.3 26.5	17.5
4/4 2100 1331354. 470.7 21.3 20.5	17.6
4/ 4 2200 1325164. 470.9 21.3 20.5	17.6
4/4 2300 1322477. 470.6 21.3 20.5	17.5
4/4 2400 1321193. 469.5 21.2 20.4	17.4
4/5 100 1322452. 468.8 21.1 20.3	17.3
4/5 200 1322135. 467.7 21.0 20.2	17.2
4/5 300 1318415. 467.4 20.9 20.1	17.2
4/5 400 1315260. ` 467.3 20.9 20.1	17.2
4/5 500 1312387. 467.5 20.9 20.1	17.2
4/5 600 1307351. 467.6 21.0 20.2	17.2
4/5 700 1303674. 468.0 21.0 20.2	17.2
4/5 800 1309154. 467.4 20.9 20.1	17.2
4/5 900 189953. 526.1 27.5 26.7	23.9
4/5 945 157968. 530.6 28.0 27.2	24.5
4/5 1000 168528. 501.9 24.8 24.0	21.2

ALL DATA HAS BEEN REDUCED

USED: 23.7 UNITS

READY

Utah State 72-16 24 hour Test 4/4/77-4/5-177

•																
Day	Time hr	BP in Ha	Patm PSia	P _L psig	R	ΔR	OTP Am lig	P. psia	Pc	de Brylle	B tu/Llone	V9 1413	lbm/413	55600 Pd	o Yrr	Nemarks
4/4	0945	25,173	12.00	_	7,05	_	-	260,5		-	-			-	_	Ball value open 1 25%.
	0946	"	"	_	7,05		-	260,5	_	-	-	-	-	-	-	
	0947	"	"	-	7.05	~	-	260.5	1	-	1	-	•	1	-	
	0998	,,	,,	9.0	7.05		ļ	240,5	13.0	-	-			1	-	Bellows engaged
	0950	11	"	7.5	8.8	1,2	22.3	399.2	19,5	418,4	779.2	1.1644	0019337	0.10	,999	
	0951	1,	"	7.5	9.8	1.5	34,9	399,2	19.5	413,4	771,2	1.1644	01019337	0.157	,999	
	0953	25,174	12.00	5,0	8,9	1.5	34,9	40811	17.0	420.9	776.83	1,1391	0.019374	0.153	; 999	
	0959	25,174	1200	7.0	8.95	1,2	22,3	412.5	19.0	422.0	775.7	1.1270	0,019393	0.0969	,999	High),
25% { [1003	25,175	12.00	2,5	9,0	1, 2	3,7,3	417	14.5	423.2	774.5	1,1148	0,019411	0.096	,999	Low > for 0955- 1005
1	Aug	25.175	12,00	4,75	8.95	1,2	22.3	412.5		420.9	775.7	1.1270	0.019393	0.097	, 999	Aug J
	1005	25.175	12,00	60.0	8.8	3,2	158.9	399.2	72.0	418.4	779.2	1.1644	0.019337	0.713	,994	Opened well to 50%
0%	1007	25,176	12.01	62.0	8.65	4, 3	286.9	386.1	74.0	414.8	782.7	1.2038	0.019281	1.33	, 988	
0.0	1013	25.178	12,01	(2,0	8,65	4.5	314.2	386.1	79.0	414.8	7 8 2.7	1,2038	0.019281	1.46	,987	Arg ligar In 50%
\	10 17	25,175	12.01	42,0	8.65	4.9	372.5		74	414.8	782.7	1,2038	0.019281	1,73	,985	Itigh for 1005-1025
ļ	1025	25,179	12.01	62	8,45	4,5	314.2	386.1	74	414.8	782.7	1. 2038	0.019281	1,46	.987	
7 5%		25.179	12.01	98	7.78	8.7		314.6	110	393,4	802,9	1.4741	0.018964	6.69	,942	Value opened to 75%
	1029	25,180	13.01	61	7.8	5.0	387,9	316.2	73	343,9	802,4	1,4668	0.018972	2, 70	,981	Value returned to 50%
50%	1031	25.180	12.01	64	8.60	4,65		381.8	76	4 13.6	783.8	1.2173	0.019263	1,58	,986	Well Stabilized
, }	1034	25,181	12.01	65	8.60	4.70	3 12.7		77	413.6	783,8	1.2173	0.017 263	1.61	.986	Averaged flow
	High.		12.01	65	8.67	4.95		387.9	77	415.3	787,2	1.1982	0.019289	176	.985	High
\	Low		12.01	65	8.57	4.40	300.4	375	77	411.7	785.7	1, 2393	0.019234	1,44	,988	Low
: \	1046	25,183	12.01	64	8.60	4.65	3 35.5	381.8	76	413,6	783.8	1.2173	0,019263	1.57	. 986	· · · · · · · · · · · · · · · · · · ·
: \ [1052	25.184	12.01	63	8.60	4.63	332.6	381.8	75	413.6	783,8	1,2173	0.019263	1.56	.986	
1	10 58	25,185	12.01	63	8.60	4.62	331.1	381.8	75	413.6	783,8	1,2173	0.019263	1.55	.987	Last Feeding @ 50%.

Utah State 72-16 29 hoor test 4/4- 4/5/77

Day 4/4	Time hr	βρ in.Hg	Pain Psia	P _L Psig	R	ΔR	OTP Am Hg	P. Psia	Pc	h e Bryllin	B tyllon	Vg 1413	Um/ft3	0 To 55.6	Yre	Remarks
- W. T	1100	25.185	12.0]	90	8.075		826,8		102	460.8	796.0	1,3735	0.019070	4,38	, 962	Well opened to 70%
(1105	17	/,	8.8	,,	"	826.8	338	100	400.8	716.0	1.3735	0.019070	4,38	,962	
742 }	1108	25,185	12.01	89	8.075	7.3	826.8	338	101	400.8	796.0	1.3735	0.019070	4,38	,962	average flow
70%)	Ligh			90	8.15	7.5	872.7	344.1	102	402.6	794.3		0,019097	4,55	,961	for 1100-1115
- 1	Low			୧୧	8,00	7,1	782.1	3 32	100	397.0	797.7	1,3977	0,019043	4,22	, 963	
	1115	25.184	12.01	88.5	8.675	7.3	826.8	338'	100.5	400.8	796.0	1.3735	0.019070	4,38	, 162	
	1120	25.183	12.01	99.0	7.8	8,8	1201.4	316.2	111	393,9	802.4	1.4668	0.018972	6,8	,941	75% open
75%	1125	25,183	12.01	98.5	7.7	8.8	1201.4	308. <i>5</i>	110,5	391,5	804.7	1.5026	0.018936	7,0	,939	
1	1140	25,182	12.01	97.5	7.8	8.65	1160.8	316.2	109.5	393,8	802.4	1.4668	0.018172	6.6	.943	
	1145	25.181	12.01	97.5	7,8	8.65	1160.8	316.2	109.5	393.9	802.4	1.4668	0.018972	6.6	,943	
80%	1149	25,181	12.01	102	7,60	9.75	1974	300,8	114	389.0	807,0	1.5403	0.018900	8,8	,924	Well open 1 to 80% after 1
0	1154	25.180	12.01	102	7.59	9.72	1466	300.1	114	388.7	807.2	1.5437	0.018896	8,8	924	
•	1159	25,180	12:01	102	7.59	9.70	1460	360.1	114	388.7	807.7	1.5437	0.018896	8.7	,924	
	1215	25.177	12.01	102	7.58	9,70	1460	299.3:	114	388.4	807.4	1,5478	0.018893	8.7	,924	
	high		12.01	102	7.68	9.90	1521	306.9	114	391.0	805.1	1.5105	0.018928	8,9	,923	
	Low		12,01	102	7.50	9.50	1400	አ የ3.3	114	388,4	807,4	1,5788	0.018865	8.6	۹۶۶ ،	·
	1230	25.175	12.00	102	7.58	9.70	1460	299.3	114	388.4	807.4	1.5478_	0.018893	8.6	.925	
ì	1245	25.172	12.00	13	11	"	1460	299.3	114	388.4	807.4	1,5478	0.018893	8.6	,925	
,	1300	15,170	12.00	101.7	7.57	9.70	1460		113,7	388.2	807.7	1.5519	0.018889	8,8	,924	:
	1336	25,165	12,00	101.8	7.55		1451		1/3.8	387.7	808.1	1.5596	0.018882	8.8	.924	
i	1900	25.160			1	9.65	1445	295,5	112.5	387.2	808.6	1,5672	0.018875	8,8	,924	
	1436	25,155	12.00	100.2	7.52	9.65	1445	294.8	112.2	386,9	808.8	1. 5709	0.018872	8,8	.924	
•	1500	25.150	11.99	.99.7	7.52	9,55	1415	294.7	111.7	3 86.9	908,9	1.5714	0.018872	8.6	,925	·
						·		:	i	ì			i i i			

•													•			•
Day 4/4	Time hr	BP in. Hg	Pate. Psia	psig	R	ΔR	Orp mm Hg	P. psia	Pc	h+ B14/lbn	B 1 yllm	16-/413	16 /ft 3	0 TI 55.8	Yre	Remarks
. 80%	high		12.00	102	7.68	9.85	[505	306.9	114.0	391.0	805.1	1.5105	0.018928	8,8	,924	7-212:00
	Low		12,00	102	7.50	9.55	1415	293,2	114	386,4	809.3	1.5793	0,018864	816	, 925	, }
	high		11.99	99.7	7.60	9,70	1460	300.8		389.0	807.0	1.5403	0.018900	8.7	.924	}≈1530
	Low		11,99	99.7	7.42	9.45	178 T.	287,3	Security of the Paris of the Pa	384,4	811.1	1,6111	0.018836	8.6	,425	
	1530	25,142	11,99	99.7	7.51	9,52	1406	214	111.7	386.6	809,1	1.8751	0.019868	8.6	925	
	1600	25.135	11.99 .	99.5	7,50	9.52	1406	293.7	111.5	386.4	809,3	1.5793	0.018864	8,6	,925	after this residen
87%	1630	25.127	11,98	100.4	7.45	9.76	1478	289.5	112,4	385.1	810,5	1,5990	0.018847	9.1	,921	opened to 87%
:	1700	25,120	11.98	100.1	7.44	9.75	147.5	288.7	112.1	384,8	810.7	1.6034	0.018843	9,2	920	
;	high		11.98	100.1	7.51.	9.90	1520	294	112,1	386.6	80911	1.5751	0.018868	9, 3	,919	
	Low			100.1	7.36			282.8		382.8	812,5	1.6362	0.018814	9,1	,927	•
	1800	25,126	11.98	99.6	7.43	9.75	1475	288.0		384.6	8 10.9	1.6073	0.018839	9,2	.920	
	1900	25.115	11.98	99.0	7,42	9.73		287,3		384.4	811.1	1,6111:	0.018836	9,2	,920	
	2000	25,120		98.6	7.40	9,72					811.6	1, 6193	0.018879	9,2	,920	
•	2100	25.125		98,4	7.40	9,72	1466	285.8		383.9	811.6	1.6193	0.018829	۱, ٦	, 920	
	2200	15.136	11.98	97.9	7, 39	9.71	1463	285.0	109,9	383.6	811.8	1,6237	0.018825	9, 2	,920	
, i	2300	25.130	11,98	97.6	7.38	9.70		284,3		383.3	812.1	1.6277	0.018822	9,2	,9:0	
	2400		11,99		7.36			282.8		382,8	812,5	1.6362	0.018814	9,2	.920	
1/5/77	0100	25H0	11.99	97.1	7.35	9.65		2821		382.6	812.7		0,018811	9.2	.920	
	0200	25,190	11.99	96.8	7.33			280.6		382.1	813.2	1.6486	0,018804	9, 2	,920	
i	0300	75,135	11.99	96.4		9.61		279,9			813.4	1,6526	0.018801	9, 2	,926	
	0400	25.135	11.99	96.1	7.31	9.60	1430	179.2	108.1	381.6	.813.6	1.6567	0.018797	9,2	.920	
	6500	25,140	11.99	95.9	7.31	9.59	1427	279.2	107.9	381.6	813.6	1.6567	0.018797	9, 2	.920	
	0600	25,145		95.5	7,30	9.58	1424	278,5	107.5	381.4	813.9	1.6608	0.018794	9,2	.920	
,										.	,			: : :		. '

Time BP Patm PL R AR OTP PSia Psia Psia Psia Psia Psia Psia Psia Ps	Time BP Patm PL R AR OTP P. P. P. OTYPOM O 700 25.165 12.00 95.3 7.30 9.57 1421 278.5 107.3 381.4 O 800 25.180 12.01 95.6 7.30 9.57 1421 278.5 107.6 381.4 Low 12.01 95.6 7.47 9.70 1460 285.8 107.6 383.9 Low 12.01 95.6 7.2) 9.42 1377 271.2 107.6 378.8 O 830 — 12.01 — — — — — — — — — — — — — — — — — — —	Time BP Pa+m PL R AR OTP PSia PSia PSia PSia PSia PSia PSia PSi	Time BP Pate PL R AR OTP PSia PSia PSia PSia PSia PSia PSia PSi	Time BP Pa+n PL R AR OTP PSia PSia PSia PSia PSia PSia PSia PSi	Time BP Pata PL R AR OTP PSia PSia 19513 Lbn/H3 Lbn/H3 Lbn/H3 Cool 0700 25.165 12.00 95.3 7.30 957 1421 278.5 107.3 381.4 813.9 1.6608 0.018794 9.1 0800 25.180 12.01 95.6 7.30 95.7 1421 278.5 107.6 381.4 813.9 1.6608 0.018794 9.1 6.660 12.01 95.6 7.47 9.70 1460 285.8 107.6 382.9 811.6 1.6193 0.018829 9.2 6.660 25.180 12.01 95.6 7.2) 9.42 1377 271.2 107.6 378.8 816.2 1.7044 0.018758 9.1 6.700 25.180 12.01 4.5 8.82 1.3 26.22 401.0 16.5 418.9 778.7 1.1592 0.019344 0.12 6.700 25.180 12.01 1.75 8.85 1.1 18.77 103.6 13.75 419.7 778.0 1.1518 0.619355 0.08 6.700 25.185 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.08 6.700 25.185 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.069 6.700 25.185 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.069 6.700 25.185 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.069 6.700 25.185 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.069	Time BP Parm PL R AR OTP PS
BP Pa+m PL R AR OTP PSia PSia PSia PSia PSia PSia PSia PSi	BP Pa+m PL R AR OTP PSia PSia PSia PSia PSia PSia PSia PSi	BP Pa+m PL R AR DTP PSia PSia BIYEM BYSTM PSia PSia PSia PSia BIYEM BYSTM PSia PSia PSia PSia PSia BIYEM BIYEM PSia PSia PSia PSia BIYEM BISA PSIA PSia PSia PSia BIYEM BISA PSIA PSIA PSIA PSIA PSIA PSIA BISA PSIA PSIA PSIA PSIA PSIA PSIA PSIA P	BP Pata PL R AR OTP PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSI	\$P Path PL R AR OTP P. P. P. Byth	BP Pata PL R AR OTF Propries Style Sty	BP Path PL R AR OTP PSIa PSIA
Pata PL R AR OTP PSia PSia PSia PSia PSia PSia PSia PSi	Pa+n PL R AR OTP PSia PSi3 Off PSi3 Of	Pata PL R AR OTP PSia PSia BYVEM BYVEM 12.00 95.3 7.30 9.57 1421 278.5 107.3 381.4 813.9 12.01 95.6 7.40 9.70 1460 285.8 107.6 381.4 813.9 12.01 95.6 7.40 9.70 1460 285.8 107.6 383.9 811.6 12.01 95.6 7.20 9.42 1377 271.2 107.6 378.8 816.2 12.01 12.01 4.5 8.82 1.3 24.22 401.0 16.5 418.9 778.7 12.01 1.75 8.85 1.1 18.77 403.6 13.75 419.7 778.0 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0 12.01 1.8 8.85 1.0 15.5 103.6 13.8 419.7 778.0	Pa+n PL R AR OTP PS PC OTY BTY DEN PS AS OTY PS OTY OTT OTT	Path PL R AR OTP PSia PSi3 OYUM BYUM BYUM BYUM BYUM BYUM BYUM BYUM B	Path PL R AR OTH PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSIA	Path PL R DR OTF Fia PSis OTYPEN BYTHE BYT
PL R AR OTP PSia PSia, P	PL R AR OTP PSia Psia Psia Psia Psia Psia Psia Psia Ps	PL R AR OTP PSIA PSIA BYLL BYLL PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSIA	PL R AR DTP PSia PSi3 OYYUM BYUM Worfft3 95.3 7.30 9.57 1421 278.5 107.3 381.4 813.9 1.6608 95.6 7.40 9.70 1460 285.8 107.6 381.4 813.9 1.6608 95.6 7.40 9.70 1460 285.8 107.6 383.9 811.6 1.6193 95.6 7.2) 9.42 1377 271.2 107.6 378.8 816.2 1.7049	PL R DR OTP PSia PSig Styllm S	P. R AR OTP P. P. P. OLYUM BYMM W. J. J. M. J.	PL R AR OTP P. P. OLYUN BYUM W/H3 Lbm/H3 Teo YT155.1 VTP 95.3 7.30 9.57 1421 278.5 107.3 381.4 813.9 1.6608 0.018794 9.1 .921 95.6 7.30 9.57 1421 278.5 107.6 381.4 813.9 1.6608 0.018794 9.1 .921 95.6 7.47 9.70 1460 285.8 107.6 383.9 811.6 1.6193 0.018829 9.2 .920 95.6 7.2) 9.42 1377 271.2 107.6 378.8 816.2 1.7044 0.018758 9.1 .921
R AR OTP PSIA PSIA 7,30 9.57 1421 278.5 107.3 7,30 9.57 1421 278.5 107.6 7,47 9.70 1460 285.8 107.6 7,2) 9.42 1377 271.2 107.6	R AR OTP PSia Pc Psis 1940m 7.30 9.57 1421 278.5 107.3 381.4 7.30 9.57 1421 278.5 107.6 381.4 7.47 9.70 1460 285.8 107.6 383.9 7.2) 9.42 1377 271.2 107.6 378.8	R AR OTP PSia Psia Propries By Mm 7,30 9.57 1421 278.5 107.3 381.4 813.9 7,30 9.57 1421 278.5 107.6 381.4 813.9 7,47 9.70 1460 285.8 107.6 383.9 811.6 7,2) 9.42 1377 271.2 107.6 378.8 816.2	R AR OTP PSia PSia PSia PSia PSia PSia PSia PSi	R DR OTP PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSI	R AR OTP P Sia PSi2 OFYED BY MEN MONTHS Lbn/ff3 OTISSIS 7,30 9.57 1421 278.5 107.3 381.4 813.9 1.6608 0.018794 9.1 7,40 7.70 1460 285.8 107.6 381.4 813.9 1.6608 0.018794 9.1 7,2) 9,42 1377 271.2 107.6 378.8 816.2 1.7044 0.018758 9.1	R AR OTP PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSI
AR OTP P.	AR OTP P. P. P. Siy 9.57 1421 278.5 107.3 381.4 9.57 1421 278.5 107.6 381.4 9.70 1460 285.8 107.6 383.9 9.42 1377 271.2 107.6 378.8 - 1.3 24.22 401.0 16,5 419.9 1.1 18.77 403.6 13.75 419.7 1.0 15.5 403.6 13.8 419.7	AR OTP PSia PSig Styllm Byllm 9.57 1421 278.5 107.3 381.4 813.9 9.57 1421 278.5 107.6 381.4 813.9 9.70 1460 285.8 107.6 383.9 811.6 9.42 1377 271.2 107.6 378.8 816.2 - 1.3 26.22 401.0 16.5 418.9 778.7 1.1 18.77 403.6 13.75 419.7 778.0	AR OTP PSia Psia Psia Psia Psia Psia Psia Psia Ps	AR OTP P. P. P. P. P. P. P.	AR OTP P. P. O'YUM BYUM D. L. Wg L. L. L. Wg L. L. L. Wg L. L. L. Wg L.	AR OTF P. P. P. SIYUM BYUM W/fft3 Lbn/ft3 Vm/ft3 Lbn/ft3 VTF 9.57 1421 278.5 107.3 381.4 813.9 1.6608 0.018794 9.1 ,921 9.57 1421 278.5 107.6 381.4 813.9 1.6608 0.018794 9.1 ,921 9.70 1460 285.8 107.6 383.9 811.6 1.6193 0.018829 9.2 ,920 9.42 1377 271.2 107.6 378.8 816.2 1.7044 0.018758 9.1 ,921 - 1.3 26.22 401.0 16.5 418.9 778.7 1.1592 0.019344 0.12 ,999 1.0 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.08 ,999 1.0 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.069 ,999
OTP PSIA PSIA 1421 278.5 107.3 1421 278.5 107.6 1460 285.8 107.6 1377 271.2 107.6 24.22 401.0 16.5 18.77 403.6 13.75 15.5 403.6 13.8	07P P. Pc Af mm 119 PSia PSi3 381.4 1421 278.5 107.3 381.4 1421 278.5 107.6 381.4 1460 285.8 107.6 383.9 1377 271.2 107.6 378.8 24.22 401.0 16,5 418.9 18.77 403.6 13.75 419.7 15.5 403.6 13.8 419.7	0 TP Psia Psia Psia Psia Psia Psia Psia Psi	0 TP PSIA PSIA PSIA PSIA PSIA PSIA PSIA PSI	OTP P. P. Ar L Vg λ-γ- MM 11g PSia PSig 814/10m 813/10m 8m/ft3 8m/ft3 <td< td=""><td>0 TP P. P. P. Sign Stylling St</td><td>0 TP P. P. P. OLYED BY LL WG Lbm/H3 Volum Prissi VTP 1421 278.5 107.3 381.4 813.9 1.6608 0.018794 9.1 .921 1421 278.5 107.6 381.4 813.9 1.6608 0.018794 9.1 .921 1460 285.8 107.6 383.9 811.6 1.6193 0.018829 9.2 .920 1377 271.2 107.6 378.8 816.2 1.7044 0.018758 9.1 .921 26.22 401.0 16.5 418.9 778.7 1.1592 0.019344 0.12 .991 18.77 403.6 13.75 419.7 778.0 1.1518 0.019355 0.08 .999 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.069 .999</td></td<>	0 TP P. P. P. Sign Stylling St	0 TP P. P. P. OLYED BY LL WG Lbm/H3 Volum Prissi VTP 1421 278.5 107.3 381.4 813.9 1.6608 0.018794 9.1 .921 1421 278.5 107.6 381.4 813.9 1.6608 0.018794 9.1 .921 1460 285.8 107.6 383.9 811.6 1.6193 0.018829 9.2 .920 1377 271.2 107.6 378.8 816.2 1.7044 0.018758 9.1 .921 26.22 401.0 16.5 418.9 778.7 1.1592 0.019344 0.12 .991 18.77 403.6 13.75 419.7 778.0 1.1518 0.019355 0.08 .999 15.5 103.6 13.8 419.7 778.0 1.1518 0.019355 0.069 .999
P. Pc Psia Psig 278.5 107.3 278.5 107.6 285.8 107.6 271.2 107.6 401.0 16,5 403.6 13.75 103.6 13.8	P. Pc Af Psia Psig Styllan 278.5 107.3 381.4 278.5 107.6 381.4 285.8 107.6 383.9 271.2 107.6 378.8 401.0 16,5 418.9 103.6 13.75 419.7 103.6 13.8 419.7	P. Pc Af Btylom 278.5 107.3 381.4 813.9 278.5 107.6 381.4 813.9 285.8 107.6 383.9 811.6 271.2 107.6 378.8 816.2 401.0 16,5 419.9 778.7 103.6 13.75 419.7 778.0 103.6 13.8 419.7 778.0	P. Pc 14 Byllon Wg 278.5 107.3 381.4 813.9 1.6608 278.5 107.6 381.4 813.9 1.6608 285.8 107.6 383.9 811.6 1.6193 271.2 107.6 378.8 816.2 1.7044 401.0 16.5 418.9 778.7 1.1592 403.6 13.75 419.7 778.0 1.1518	P. Pc orylla by the by	P. P. R. R. R. B. W. W. M.	P. P. R. R. R. L. W. L. W. L. L. W. L. L. W. L. L. L. W. L.
Pc Psig 107.3 107.6 107.6 107.6	Pc 814/10 107.3 381.4 107.6 381.4 107.6 378.8 16,5 418.9 13,75 419.7 13.8 419.7	Pc 814 L 813.9 107.3 381.4 813.9 107.6 381.4 813.9 107.6 383.9 811.6 107.6 378.8 816.2 16.5 418.9 778.0 13.75 419.7 778.0	Pc 814/10m 813.9 1.6608 107.6 381.4 813.9 1.6608 107.6 383.9 811.6 1.693 107.6 378.8 816.2 1.7044 16.5 418.9 778.7 1.1592 13.75 419.7 778.0 1.1518	Pc K+ L Vg L- Vg 1673 1673 381.4 813.9 1.6608 0.018794 107.6 381.4 813.9 1.6608 0.018794 107.6 383.9 811.6 1.6193 0.018829 107.6 378.8 816.2 1.7044 0.018758 16.5 418.9 778.7 1.1592 0.019355 13.8 419.7 778.0 1.1518 0.019355 13.8 419.7 778.0 1.1518 0.019355	Pc Kf L Vg L-1 Vg In Prissis Psign Siylum Siyl	Pc 14
	381.4 381.4 381.4 383.9 378.8 418.9 419.7	14 L 814 813.9 381.4 813.9 381.4 813.9 383.9 811.6 378.8 816.2 419.7 778.0 419.7 778.0	16 1/10m B1/10m B1/16 3 381.4 813.9 1.6608 381.4 813.9 1.6608 383.9 811.6 1.6193 378.8 816.2 1.7044 419.9 778.0 1.1518 419.7 778.0 1.1518	14 L Vg 1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	14 L Vg V-1 07,55.6 614/10m 813.9 1.6608 0.018794 9.1 381.4 813.9 1.6608 0.018794 9.1 383.9 811.6 1.6193 0.018829 9.2 378.8 816.2 1.7644 0.018758 9.1 419.7 778.0 1.1518 0.019355 0.08 419.7 778.0 1.1518 0.019355 0.08	14

•

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Branch of Experimental Geochemistry and Mineralogy 345 Middlefield Road, Menlo Park, California 94025

November 14, 1977

Keith Davis
Thermal Power Co.
601 California St.
San Francisco, Ca 94108

Dear Keith:

I enclose chemical analyses of water collected last April from your Utah State 72-16 well at Roosevelt Hot Springs. As Rudisill has probably told you the premature end of the flow test prevented our collection of properly separated steam and water samples. The water analyses appear O.K. but the "steam condensates" are also all water. The calculated aquifer temperature and aquifer chloride contents are a little lower than those for the 14-2 well and if possible I would like to resample the well to see if this is real. The gas analyses are in progress and I will send them but the goal/steam ratio will also suffer from the poor steam/water separation. We may be able to obtain some sort of a number by analysing for chloride in the gas bottles. The ion ratios are very similar in 14-2 and 72-16:

	14-2	72-16
C1/SiO ₂	5.7	6.2
Na/K	5.5	5.0
Cl/Na	1.7	1.6

so probably the gas contents are similar.

I hope these analyses are of use to you. Gene Ciancanelli has requested a copy but I thought this should come from you.

Best regards,

Alfred H. Truesdell

WELL NUMBER? THERMAL US 72-16 DATE OF COLLECTIONS APRIL 1977 PRESSURE UNITS: ABSOLUTE- BARS-1, MG/CM2-2, PST-3 GAUGE-BARS-4, FG/CM2-5, FS1-6 ENTER SILENCER PRESSURE, UNITS 0.8 1 IN BARS ABSOLUTE- 0.8 ENTER SEPARATOR PRESSURE, UNITS 288 & IN BARS ABSOLUTE= 20.3069088 COLLECTION POINT? (SILENCER+0, SEPARATOR=1) 1 ENTER CHLORIDE, SILICA IN FFM 3110 510 ENTER ENTHALPY AND UNITS(IAUOULES, 24CALORIES, 34SYU) (1647)1 WATER FRACTION IN SILENCER-0.789380372018 WATER IN SEPARATOR HAS 3110 PPM CL AND 510 PPM S102 WATER FRACTION IN SEPARATOR= 0.919548817584 ENTHALPY OF AQUIFER FLUID IN JOULES/GM MEASURED=1047,FROM SIL1CA=1067.87343644 IN BTU/LB= 450.128973784 AND 459.102939139 AQUIFER TEMPERATURE FROM ENTHALPY=242.029951288, FRON S1L10A-246.381692532 WATER IN AQUIFER HAS 2859,79528759 PFH CL AND 468.969641953 FPM 6102 EXCESS ENTHALPY=-20.8734364375 (IN BTU/LB= -8.97396235491) PERCENT STEAM IN AQUIFER- -1.20327840858

NEW DOWNHOLE CHEMISTRY PROGRAM -- VERSION OF 11/1/77

WELL NUMBER? 14-2 ROOSEVELT

DATE OF COLLECTION? NOV 76

PRESSURE UNITS: ABSOLUTE- BARS=1,KG/CM2=2,PSI=3
GAUGE- BARS=4,KG/CM2=5,PSI=6

ENTER SILENCER PRESSURE,UNITS 0.8 1
IN BARS ABSOLUTE= 0.8

ENTER SEPARATOR PRESSURE,UNITS 177 6
IN BARS ABSOLUTE= 13.0037252

COLLECTION POINT? (SILEMCER=0,SEPARATOR=1) 1

ENTER CHLORIDE,SILICA IN PPM 3650 640

ENTER ENTHALPY AND UNITS(1=JOWLES,2=CALORIES,3=8TU; 1160 1

WATER FRACTION IN SILENCER=0.8139J3537005

WATER IN SEPARATOR HAS 3650 PFM CL

_AND_640 PPM \$102

WATER FRACTION IN STLENCER= 0.837823335938

ENTHALPY OF AQUIFER FLUID IN JOULES/GM

MEASURED=1160, FROM SILICA=1135.30850473

IN BTU/LB= 498.710232158 AND 488.094799971

AQUIFER TEMPERATURE

FROM ENTHALPY=265.14228723, FROM SILICA=260.189390499 WATER IN AQUIFER HAS 3057.32528567 FPM CL

AND 536.0789542 PPM SI02

EXCESS ENTHALPY=24.6914952671 (IN BTU/LB= 10.615432187)

PERCENT STEAM IN AQUIFER= 1.48611429399

U.S. Geological Survey, Water Resources Division
Quality of Water Branch, Menlo Park, California
ANALYTICAL STATEMENT

RECEIVED

NOV 2 8 1977

Source: Roosevelt # 2	Lab. No. RO7-77-3	
Source: Roosevelt # 2 Water	mg/1 me/1	mg/TOC me/1
Location:	.	
, Sec, T, R	SiO ₂ 510	нсо 181
•	Al	
Point of coll:	Fe	OH'
	Mn	
		so 33
Disch, Temp. (°F.)		CI 2110
Date of coll .		F 5.2
Collected by: Truesdell	As	Br
₩BF:		<u> </u>
	Ca 12.4	NO ₂
Analyst:	Mg	NO,
Date completed: 28 Oct 77	Sr1.36	PO4
Checked by:	Ba	В
,	Na 1800	
	K 380	
	Li <u>15.0</u>	
CO = 13	NH,	
SO ₄ by Ba ⁺² Turbimetri	ic Cation totals:	Anion totals:
Dissolved solids:	Specific conductance (micromho	s at 25°C)
Calculated (mg/1) 6074	pH 7.83; Density at 2	0°C (g/ml)
Residue (180°C) (mg/1)	Sulfides as H ₂ S(mg/1)	
Hardness as CaCO ₃ (mg/1) 297	(Unpublished records, subject to	o revision. Copied
N. C. Hardness as CaCO ₃ (mg/1)71_5	from original record.)	
,	- 	☆ GPO 690-240

U.S. Geological Survey, Water Resources Division
Quality of Water Branch, Menlo Park, California

RECEIVED

NOV 28 1977

Source:	Roosevelt #1 Condensate	Lab. 1	10	7-2 me/1	7 PC	me/l
Location:			mg/l	me, i	mg/ I	mey I
	c,T, R	SiO ₂ _	104+		нсо <u> 193</u>	· ·
	•	Al _	· · · · · · · · · · · · · · · · · · ·		co,'	:
Point of col	1: ,	Fe _			он'	:
		Mn _				:
	•	<u>-</u>			$so_{\perp} = \frac{34}{}$	1
Disch	, Temp. (°F.)				CI <u>3180</u>	
Date of coll	• •	 -			F = 5.3	
Collected b	7 :	As _			Br	
WBF:	φ	_			I	
	·	Ca_	12.2		NO ₂	
		_	0.28		NO ₃	
-	eted:	and the second s	1.20	· · · · · · · · · · · · · · · · · · ·	PO ₄	· .
Checked by					B 27.2	 :
		Na _	2000			
		К	400			
2	±2	Li _	15.0			
so ₄ -2	by Ba Turbimetric	NH ₄ _				
·		Cation to			Anion totals:	
Dissolved s	5040	-			at 25°C)	
		_			°C (g/ml)	
	180°C) (mg/1)316				envision Conind	
Narquess as	- Caco 4 (8/1)		iginal record.		revision. Copied	
A. C. Hardn	ess as $CaCO_3$ (mg/1)64.	· Rom or	gmai record.	,		☆ GPO 690-240

U.S. Geological Survey, Water Resources Division
Quality of Water Branch, Menlo Park, California
ANALYTICAL STATEMENT

RECEIVED

NOV 2 8 1977

Source: Roosevelt #2	Lab. No. R07-77-4	77.0°
Condensate	mg/l me/l	TPC mg/1 me/1
Location:		
	SiO ₂ 104 ⁺	HCQ134
	Al	co ₃ '
Point of coll:	Fe	он'
	Mn	
		so ₄
Disch, Temp. (°F.)		C12330
Date of coll.:		F 3.8
Collected by:Truesdell	As	Br
WBF:	-	
	Ca 8.2	NO
Analyst:	Mg0.23	NO_3
Date completed:		PO,
Checked by:		В 183
•	Na 1350	
	K 290	
	Li <u>12.0</u>	
	NH,	
SO ₄ by Ba Turbimetric	Cation totals: 6835	Anion totals:
Dissolved solids:		os at 25°C)
Calculated (mg/1) 4277	pH = 7.91; Density at	20°C (g/ml)
Residue (180°C) (mg/1)		
Hardness as CaCO ₃ (mg/1)20		
N. C. Hardness as CaCO ₃ (mg/1) 48	4 from original record.)	
· 3 -		☆ GPO 690-340

Quality of Water Branch, Menlo Park, California NOV 28 1911 ANALYTICAL STATEMENT Roosevelt #1 Lab. No. RO7-77-1 mg/17PC me/1mg/1me/1SiO₂ 521 HCO 181 Al CO, Fe OH 32 SO 3260 _, Temp. (°F.)_ Cl F **Truesdell** Аs Br I 12.20 Ċa 0.29 NO, Mg 28 Oct 77 1.20

U.S. Geological Survey, Water Resources Division

Sr

Ba

Na

K

Li NH 2000

400

16.0

Turbimetric Dissolved solids: 6444 Calculated (mg/1) Residue (180°C) (mg/1) 297 Hardness as CaCO₂ (mg/1) N. C. Hardness as CaCO (mg/1)_ <u>6</u>4.6

(Water)

Source:

Location:

Disch.__

Analyst: __

WBF:

¼ Sec.

Point of coll:

Date of coll.:_

Collected by: _

Date completed: _

Checked by:___

Cation totals: Anion totals: Specific conductance (micromhos at 25°C) _ pH _____; Density at 20°C (g/ml)_ Sulfides as H,S(mg/1)___

(Unpublished records, subject to revision. Copied from original record.)

☆ GPO 890-240

RECEIVED

Utah State Well 14-2 ML-27536 Roosevelt KGRA, Utah Core #1

Interval 2600'-12' cut 12' Rec 10' (83%). Core in summary is granodiorite with about 5 thin (1") zones of quartz filled fractures cutting core at high angles. Near top of core a 1.5' zone of predominate quartz is noted.

Fractures are not open. Core is not in reservoir.

Local green alteration zones of chlorite after biotite,
also a tan material after hornblende. Some red staining.

Trace pyrite.

Cut 12' in 5 hours with new 6½" Christensen diamond core head. Core head wornout at end of run.

Geothermal Resources Well Summary Report

Sec. 16 T. 275. R. 9W. SL B. & M. ROOSEVELT Field BEAVER Location 990' South and 990' West from the Northeast corner of Section 16. (Give location from preparity of section carrier, or street center lines) Elevation of ground above sea level 5880 feet. All depth measurements taken from top of Kelly Bushing which is 21 feet above. Research to a complete and correct record of the present condition of the well and all work done thereon. So far as can be determined from all available records. Date January 17th, 1977 Hathaway Engineering Title Vice President (President, Secretary or Agent) Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Total depth 1254' Plugged depth Conglomerate 290' - Inch. Granite (fractured) 425' -		
All depth measurements taken from top of Kelly Bushing which is 21 feet above. The information given herewith is a complete and correct record of the present condition of the well and all work done thereon, so fair as can be determined from all available records. Date January 17th, 1977 Hathaway Engineering Title Vice President (Superintendent) (Superintendent) (Superintendent) (President, Scientary or Agent) Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Total depth 1254' Plugged depth Conglomerate 290' -		
All depth measurements taken from top of Kelly Bushing which is 21 feet abov The information given herewith is a complete and correct record of the present condition of the well and all work done thereon, so fair as can be determined from all available records. Date January 17th, 1977 Hathaway Engineering Title Vice President (Superintendent) (Superintendent) (President, Sectetary of Agent) Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Total depth 1254' Plugged depth Complete (Freedom and all experiments) (Superintendent) (Superintendent) (Superintendent) (Superintendent) (Superintendent) (Superintendent) (President, Sectetary of Agent) Completed drilling December 31, 1976 Conglomerate 290' -		
All depth measurements taken from top of Kelly Bushing which is 21 feet above the information given herewith is a complete and correct record of the present condition of the well and all work done thereon, so fair as can be determined from all available records. Date January 17th, 1977 Hathaway Engineering Title Vice President (Fresident, Secretary or Agent) Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Total depth 1254' Plugged depth Conglomerate 290' -		
The information given herewith is a complete and correct record of the present condition of the well and all work done thereon, so fat as can be determined from all available records. Date January 17th, 1977 Hathaway Engineering (Fingineer or Geological) Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Total depth 1254' Plugged depth Conglomerate		
The information given herewith is a complete and correct record of the present condition of the well and all work done thereon, so fair as can be determined from all available records. Date January 17th, 1977 Hathaway Engineering Signed W. E. D'Olier Hathaway Engineering Title Vice President (President, Secretary or Agent) Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Total depth 1254' Plugged depth Conglomerate 290' -		
W. L. D'Olier Hathaway Engineering (Superintendent) Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Total depth 1254' Plugged depth Completed depth		
Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Completed drilling December 31, 1976 Conglower at Geological Markers Deep Alluvium W/zones of hydrothermal alteration 0' - 2 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling W/zones of hydrothermal alteration 0' - 2 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling W/zones of hydrothermal alteration 0' - 2 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling W/zones of hydrothermal alteration 0' - 2 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling W/zones of hydrothermal alteration 0' - 2 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling W/zones of hydrothermal alteration 0' - 2 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976 Conglower at Geological Markers Deep Completed drilling December 31, 1976		
Commenced drilling October 22, 1976 Completed drilling December 31, 1976 Completed drilling December 31, 1976 Completed drilling December 31, 1976 Conglomerate Conglomerate 290' -		
Completed drilling December 31, 1976 Total depth 1254' Plugged depth Conglomerate 290' -	200	
Total depth 1254' Plugged depth Conglomerate 290' ~	н 90!	
Consider (Forghamed) ACEL -		
r i Granice (crancented) 920 7	1254	
Junk Granite (fractured) 425 -	(T.D	
Commenced producing not yet on production. Geologic age at total depth: 9-15 mybp		
Static test Production Root Data		
Date Shut-in well head Total Mass Flow Data	i	
France, F Pres. Paig Lbs/Hr Temp. F Pres. Psig. Enthalpy Orifice Water cuft/Hr Steam Lbs/Hr Pres.	Ten	
Short Preliminary test on 12-30-76 indicated mass flow capability i		
	17.	
approximately 1,000,000 pounds per hour of steam and hot water, wit	-	
flowing wellhead pressure of 355 psig and temperature of 432°F.	4	
The second of th		
A STATE OF THE PROPERTY OF THE		
Casing Record (Present Hole)		
F. 1.2 Depth of Shire Top of Casing Weight New or Secunders Grade Size of Hole Number of Sacks of Casing Secund Hand or Lapweld of Casing Drilled of Coment	Depth of if through	
" 85 Surface 94# N S H-40 26" 200		
3/8" 580 Surface 54.5# N S K-55 17½" 400		
5/8" 1,098 Surface 40# N S K-55 12½" 650		
	·	
Perforated Casing (Size, top. bottom, perforated intervals, size and spacing of perforation and method.)		
PERFORATED CASING (Size, top, bottom, perforated intervals, size and spacing of perforation and method.)		
	2 525	

50' to 1012' Surface to 1210

History of Geothermal Resources Well SUBMIT IN DUPLICATE

	OPERATOR THERMAL POWER COMPANY FIELD ROOSEVELT
	Well No. UTAH STATE 72-16 ML-25128, Sec. 16, T. 275 9W, SL B. & M.
	Date January 17th, 1977 Signed W. L. D'Olier
	601 California Street W. L/D'Olier San Francisco, CA 94108 415/981-5700 Title Vice President
	(Address) - (Telephone Number) (President, Secretary or Agent)
D	It is of the greatest importance to have a complete history of the well. Use this form to report a full account of all important operations during the drilling and testing of the well or during re-drilling, altering of casing, plugging, or abandonment with the dates thereof. Be sure to include such items as hole size, formation test details, amounts of cement used, top and bottom of plugs, perforation details, sidetracked junk, bailing tests, shooting and initial production data and zone temperatures.
Date	
1976	
10-22	Rigged up Loffland Brothers Company Rig No. 5. Spudded well at 4:00 P.M. Drilled 12%" hole to 85' and then opened up hole to 26". Ran 20" O.D., 94#, H-40, Buttress Conductor Casing to 85'.
10-23	Cemented 20" casing to surface with 200 sacks Class B Cement containing 2% Calcium Chloride. Landed 20" casing. Installed 20" Hydril GK BOP. Drilled 17½" hole to 163' with 9 ppg mud. Alpha Beta Gamma logging equipment installed and commenced operating at 85.
10-24	Drilled 17½" hole to 312', with mud. Well started flowing water. > Built up mud weight to 10.5 ppg and killed well. Displaced 900 cubic feet of slurry consisting of Class B Cement, Perlite and Silica Flour through drill pipe at 252'. Shut well in.
10-25	Stood cemented. Ran in hole with 17½" bit and found top of cement at 100'. Cleaned out cement to 156' with 9.8 ppg mud.
10-26	Cleaned out cement to 261'. Well started flowing water! Mixed mud to higher weight.
10-27	Mixed mud to 12.2 ppg.
10-28	Mixed mud to 14 ppg and killed water flow. Cleaned out to 312'. Displaced 100 sacks of 16 ppg neat construction cement at 286'.
10-29	Stood cemented. Drilled 17½" hole to 319' with 13.3 ppg mud.
10-30	Drilled 17½" hole to 498' with 13.5 ppg mud.
10-31	Drilled 17½" hole to 585' with 14.5 ppg mud. Well flowed small amount

of water diluting 14.5 ppg mud.

History of Geothermal Resources Well

Page 2

	SUBMIT IN DUPLICATE
	OPERATOR THERMAL POWER COMPANY FIELD ROOSEVELT
	Well No. UTAH STATE 72-16 ML-25128 Sec. 16 , T. 275. 9W, SL B. & N
	Date January 17th, 1977 Signed Will
•	601 California Street W. L. D'Olier
	San Francisco, CA 94108 415/981-5700 Title Vice President
	(Address) - (Telephone Number) (Pertident, Secretary or Agent)
•	It is of the greatest importance to have a complete history of the well. Use this form to report a full account of all important operations during to drilling and testing of the well or during re-drilling, altering of casing, plugging, or abandonment with the dates thereof. Be sure to include such iter as hole size, formation test details, amounts of cement used, top and bottom of plugs, perforation details, sidetracked junk, bailing tests, shooting ar initial production data and some temperature.
Date	
1976	
11-1	Built mud weight to 15.2 ppg and ran 13-3/8", 54.5#, K-55, Buttress Seamless casing to 580'. Used float shoe and 5 centralizers. Cemented with 400 sacks Class B Cement mixed 1:1 with Perlite, 40% Silica Flour and 2% Gel. Obtained good cement returns to surface.
11-2	Stood cemented. Some hot water flow surfaced from annulus between 13-3/8" and 20" casing strings. Waited on Halliburton to cement annulus.
11-3	Small hot water flow commenced in cellar outside 20" casing. Filled cellar with 15.8# slurry neat cement. Pumped 360 sacks Class B Cement mixed with 40% Silica Flour, 2% Gel and ½% HR-5 Retarder down annulus between 13-3/8" and 20" casing strings. Some fresh cement appeared in cellar and water flow in cellar stopped.
11-4	Stood cemented.
11-5.	Ran Schlumberger Cement Bond Log,w/Gamma Ray and Temperature Survey. Excellent bond from surface to 100', fair bond from 100' to 260', excellent bond from 260' to 522' (top of cement plug inside 13-3/8" casing). Cleaning out cement from cellar.
11-6	Cleaning out cement from cellar. Landed 13-3/8" casing.
11-7	Installed 12" Series 900 Shaffer Double BOP, Hydril GK BOP, and Grant

Rotating Head. Tested casing and Shaffer blind rams with 1000 psig,

pipe rams with 1500 psig, Hydril with 600 psig, Kelly Cock with 1000 psig and kill lines with 1500 psig. All O.K. Cleaned out

cement plug inside 13-3/8" casing to 565" with 124" bit.

History of Geothermal Resources Well SUBMIT IN DUPLICATE

Page 3

	OPERATOR THERMAL POWER COMPANY FIELD ROOSEVELT
	Well No. UTAH STATE 72-16 ML-25128, Sec. 16 , T, 275, B. 27 9W. , SL B. & M.
· .	Date January 17th, 1977 Signed Walks D'Olier
•	601 California Street
,	San Francisco, CA 94108 415/981-5700 Title Vice President (Address) (Telephone Number) (President, Secretary or Agency)
•	The state of the s
	It is of the greatest importance to have a complete history of the well. Use this form to report a full account of all important operations during the drilling and testing of the well or during re-drilling, alteriag of casing, plugging, or abandonment with the dates thereof. Be sure to include such items as hole size, formation test details, amounts of cement used, top and bottom of plugs, perforation details, sidetracked junk, bailing tests, shooting and initial production data and some temperature.
Date	
1976	
11-8	Cleaned out remaining cement plug in 13-3/8" casing and drilled out casing shoe. Drilled 12%" hole to 633' with water. Well started flowing hot water. Built mud weight to 14.2 ppg and killed flow. Ran short flow test.
11-9	Drilled 12%" hole to 742'. Mud weight cut from 14.2 ppg to 10.1 ppg from hot water entry and CO2 gas.
11-10	Drilled 12%" hole to 836'. Ran short flow test. Installed de-gasser to eliminate CO2 from mud. Installed cooling loop for mud.
11-11	Mixed mud weight to 15.2 ppg and drilled 12½" hole to 879°.
11-12	Drilled 12%" hole to 990' with 15.2 ppg mud.
11-13	Drilled 12%" hole to 1089' with 14.9 ppg mud.
11-14	Drilled 12%" hole to 1208' with 15.2 ppg mud.
11-15	Drilled 12%" hole to 1245' with 15.3 ppg mud. Lost complete mud returns at 1245! Ran short flow test on well.
11-16	Shut in well. Mixed mud. Waited on Otis snubbing equipment.
11-17	Ran Agnew and Sweet Temperature Survey. Waited on Otis snubbing equipment.
11-18	Mixing mud and waiting on Otis snubbing equipment.

11-19

Installing Otis snubbing equipment.

History of Geothermal Resources Well Page 4 SUBMIT IN DUPLICATE

	OPERATOR THERMAL POWER COMPANY FIELD ROOSEVELT
	Well No. UTAH STATE 72-16 ML-25128, Sec. 16 T. 275 / R 24. / SL B. & M
	Date January 17th, 1977 Signed W. I. D'Olier
	601 California Street San Francisco, CA 94108 415/981-5700 Title Vice President
	(Address) (Telephone Number) (Prenident, Secretary or Agent)
Date	It is of the greatest importance to have a complete history of the well. Use this form to report a full account of all important operations during the drilling and testing of the well or during re-drilling, altering of casing, plugging, or abandonment with the dates thereof. Be sure to include such item as hole size, formation test details, amounts of cement used, top and bottom of plugs, perforation details, sidetracked junk, bailing tests, shooting an initial production data and some temperature.
1076	
<u>1976</u>	
11-20	Snubbed drill string out of hole and closed well in with Shaffer blind rams.
11-21	Rigging up to snub in Halliburton EZSV Retainer-bridge plug.
11-22	Ran EZSV and set at 207.
11-23	Displaced 40 sacks Class B Cement mixed 1:1 with Perlite, 40% Silica Flour, 1/2% CFR-2 and 4/10% HR-5 at 206'. Stood cemented.
11-24	Tested casing and BOP at 1000 psig. Mixed mud.
11-25	Installed master valve and extension spool. Small hot water seep observed from ground about 25' SW of Well Also very small hot water seep observed outside 20" Conductor Casing in cellar.
11-26	Rigged up BOP stack. Tested blind rams and 13-3/8" casing with 1400 psig O.K.
11-27	Stripped in hole with Grant Turbodrill and $12\frac{1}{4}$ " bit and found top cement at 88'.
11-28	Drilled out 1' of cement plug when cones on bit locked. Pulled out of hole and ran back in with new 12%" bit and double Grant Turbodrill.
11-29	Drilled out cement plug to 174'.
11-30	Pulled out of hole and added 8" drill collars to drill string. Drilled out cement plug to 186'.

History of Geothermal Resources Well Page 5

M.

	SOUMIT IN BUFFICATE
	OPERATOR THERMAL POWER COMPANY FIELD ROOSEVELT
	Well No. UTAH STATE 72-16 ML-25128, Sec. 16 , T, 27S // R, 9W/ SL B. &
	11 11/1/4/21
	Date January 17th, 1977 Signed Signed
	601 California Street W. W. D'Olier
	San Francisco, CA 94108 415/981-5700 Title Vice President
	(Address) - (Telephone Number) (President, Secretary or Agens
	It is of the greatest importance to have a complete history of the well. Use this form to report a full account of all important operations during drilling and testing of the well or during re-drilling, altering of casing, plugging, or abandonment with the dates thereof. Be sure to include such is as hole size, formation test details, amounts of cement used, top and bottom of plugs, perforation details, sidetracked junk, bailing tests, shooting initial production data and zone temperature.
	m 137 3 - 1 190h
	Drilled out cement plug to 189%.
	Drilled out cement plug to 207', Drilled on EZSV Retainer at 207', came loose with strong jolt.
-	Grant Turbodrill ceased working. Pushed Retainer down to 580'. Would not push farther. Started pulling out of hole.
	Finished pulling out of hole. Layed down Grant Turbodrill.
	Ran in hole with 124" bit and 8" drill collars. Pushed Retainer down to 694'.
	Pushed Retainer to 1235' where it stopped.
	Ran second Halliburton EZSV Retainer to 629' where it stopped. Set same.
	Pulled out of hole with drill string and EZSV Setting Tool. Started running drill string in hole with 124" bit and 8" drill collars.
	Finished running in hole. Drilled on Retainer No. 2 for 5 minutes when it started moving downhole. Pushed Retainer No. 2 to 1239' where it stopped. Pulled out of hole.
	Started in hole with Halliburton EZSV Retainer No. 3.
	Set Retainer No. 3 at 1144'. Preparing to place cement plug on top of Retainer No. 3.

Pipe stuck. Freed same with water circulation.

Date

1976

12-1

12-2

12-3

12-4

12-5

12-6

12-7

12-8

12-9

12-10

12-11

12-12

History of Geothermal Resources Well Page 6 SUBMIT IN DUPLICATE

(President, Secretary or Agent)

OPERATOR THERMAL POWER COMPANY

FIELD ROOSEVELT

Well No.UTAH STATE 72-16 ML-25128, Sec. 16 , T. 27S. R. 9W. SL B. & M.

Date January 17th, 1977

601 California Street

San Francisco, CA 94108 415/981-5700

Tale Vice President

It is of the greatest importance to have a complete history of the well. Use this form to report a full account of all important operations during the drilling and testing of the well or during re-drilling, altering of casing, plugging, or abandonment with the dates thereof. Be sure to include such items as hole size, formation test details, amounts of cement used, top and bottom of plugs, perforation details, sidetracked junk, bailing tests, shooting and initial production data and zone temperature.

Date

- 1976
- 12-13 | Pulled out of hole.
- 12-14 Rigged down Otis snubbing equipment. Ran in hole open ended.

(Telephone Number)

- 12-15 Placed cement plug at 1138' with 35 sacks Class B Cement mixed 1:1 with Perlite, 40% Silica Flour, ½% CFR-2 and 3/10% HR-5.
- 12-16 Ran 12%" bit and cleaned out hole to 1100'. Circulated water to cool hole, then displaced water with 16 ppg mud.
- Ran 9-5/8", 40#, K-55, Buttress Casing to 1098'. Casing equipped with float shoe, float collar on top first joint, stab-in float collar on top second joint, centralizers 10' down on first joint and on top of third joint.
- Circulated water around casing to cool hole. Displaced water with mud. Ran in hole with drill pipe and stab-in tool. Stabbed into special stab-in float collar, circulated cold water, then displaced with 15 ppg mud and cemented casing with 650 sacks Class B Cement mixed with 40% Silica Flour, ½% CFR-2 and 3/10% HR-5. Slurry weighed 15.6 ppg. Displaced cement in drill pipe with water, pulled stab-in tool out of float collar and circulated cold water inside 9-5/8" casing.
- 12-19 Circulated water inside 9-5/8" casing to allow cement to set properly. Displaced water with 15 ppg mud and pulled drill pipe out of hole. Cut off 9-5/8" casing.
- Landed 9-5/8" casing in expansion spool. Installed BOP Stack consisting of 1-10" Series 600 master valve, 1-10" Series 900 Shaffer Double BOP, 2-10" Series 900 Hydril GK BOP's, and 1 Grant Rotating Head. Tested casing with 1000 psig for 5 minutes O.K. Tested BOP Stack. Tried to run Schlumberger CBL, but tool stopped at 260' in caked mud.

History of Geothermal Resources Well SUBMIT IN DUPLICATE

Page 7

OPERATOR THERMA	L POWER COMPANY	FIELD F	ROOSEVELT		
	TE 72-16 ML-251	28 _{. Sec.} 16 T.	278 A 189	9w. s	LB. & M.
Date January 17	,	Signed (V	LOGA	ll Ll	
601 California	Street	W. (J	. D'Olier		
San Francisco,	CA 94108 415/	981-5700	itle Vice	President	
(Address)	(Telephone Num)	ber1	• • • • • • • • • • • • • • • • • • • •	(President, Sec	MINTY OF Arent 3

It is of the greatest importance to have a complete history of the well. Use this form to report a full account of all important operations during the drilling and testing of the well or during re-drilling, altering of casing, plugging, or abandonment with the dates thereof. Be sure to include such items as hole size, formation test details, amounts of cement used, top and bottom of plugs, perforation details, sidetracked junk, bailing tests, shooting and initial production data and zone temperature.

Date

1976

- Cleaned out hole and ran logs in water. Ran CBL to 999' and Temperature log to 1012'. CBL indicated excellent bonding from 999' up to 85', then good to fair bonding from 85' to surface. Temperature log inconclusive due to unstabilized temperature of water.
- Ran in hole with 8½" bit and cleaned out cement and drilled out float collars to 1092'. Pulled 8½" bit and ran 8½" mill. Milled out cement and float shoe and cleaned out to Retainer. Milled on Retainer.
- Milled out Retainer. Ran 8½" bit and milled and pushed Retainer to 1241' with 13.6 ppg mud. Displaced mud with water. Pulled out of hole.
- 12-24 Tested well. Shut well in. Shut rig down at 4:00 P.M. for Holidays.
- 12-25 | Rig shut down for Holidays.
- 12-26 | Rig shut down for Holidays.
- 12-27 Commenced operations at 8:00 A.M. Lowered well pressure by pumping in water and mud. Ran in hole with 8½" bit.
- 12-28 Mixed mud to 16.4 ppg. Cleaned out Retainers and drilled new hole from 1245' to 1247'.
- 12-29 Pulled out of hole and changed bits. Drilled to 1254'.
- 12-30 Tested well.
- 12-31 Installed 12" Series 400 master valve above 10" Series 600 master valve and closed in well. Rigged down. Released rig at 4:00 P.M.

THERMAL POWER COMPANY
Utah State Well No. 72-16
Sec. 16, T27S, R9W, SLEWM, Beaver County, Utah
Loffland Rig No. 5
Spud: 10/23/76 Completed: 12/31/76

Bit No.	Bit Size	Bit Mfg.	Bit Type	Serial No.	Jet Size	Depth Out	Ftge.	Total Hrs.Run	Weight 1000 lbs.	Rotary RPM	Pump Pressure
ı	1211	HTC	XIG	retip 62685	14 14 14	85	85			. 60	600
2	17불	HTC	OSC3AJ	RR166	16 16 0	288	203	4	10/15	50/60	300
3	17호	SEC	888	RR	16 0 0	525	217	36-3/4	10/25	55/60.	400
4	121	HTC	osc16	RR	open	595	70	$1 - \frac{1}{4}$	e *		
5	124	HTC	X44	MW0.20	20 20 20	836	241	23-3/4	40	50	600
6	121/4	HTC	хии	мх944	20 20 20	1208	369	57 1	30/35	50/60	900/1200
7	12 1	SEC	м88	439675	24 24 24	1245	37 ⇒				
8	12‡	HTC	OWVJ	. zn860	open	1245	drilling	cement			
9	121	HTC	08012	xz264	. *.	drilli	ng cement	to 2071			
10	124	HTC	OMA	TZ935		11	11				
11	121	HTC	VWO	ZX457	open	no hol	.е				
12	121	HTC	OWV	RR				,			•
13	8호	HTC	ODV	sJ828		no hole	e B				•
14	8호	HTC	J7	VM456	open	drilli	ng cement	: •			
15	8호	HTC	V7	VR633	open	drill	out plug	to 1247'			
16	8호	HTC	v7 · ·	VM456	•	drill	out plug				

Operator: Thermal Power Company

Well: Utah State 72-16 ML-25128

Location: 990 feet south and 990 feet west from the northeast

corner of Section 16, T27S/R9W, SLB&M, Beaver County,

Utah.

Elevation:

Take all measurements from top KB.
Keep hole full at all times.
Check operation of BOE each round trip or daily, whichever first occurs.

Drilling Program

- 1. Drill 26" or $27\frac{1}{2}$ " hole to 40'+ to fit 20" casing. Cement with Class B cement treated with 2% CaCl₂ to fill annulus to cellar floor. Use 2 centralizers. Drill rat hole.
- 2. Drill $17\frac{1}{2}$ " hole to 650' to fit 13-3/8" casing.
- 3. Cement 13-3/8", 54.5#, K-55, buttress casing at 650' with 400 sacks Class B cement premixed with 1.0 cf/sack perlite, 2% gel and 40% silica flour. (100% excess). Run guide shoe with insert fillup. Tack weld and Bakerlok bottom 4 collars, weld shoe solid. Use top rubber plug only, plug holding head. Bump plug on shoe. Use 3 centralizers.
- 4. After 4 hours (or cement is firm), land 13-3/8" casing. Weld on 12" Series 900 WKM geothermal wellhead. Test weld with 1000 psig. Install 12" Series 900 Shaffer double hydraulic control gate and Hydril GK. All blowout preventers on this well to have high temperature packing elements. Test each preventer, casing, kelly cock, valves and check valve in kill line and blow down line valves to 1000 psig. for five minutes. Notify Utah Division of Water Rights to witness preventer tests 3 days in advance of testing (801/586-4231, Cedar City, Gerald Stoker). Enter test results on tour sheet.

Utah State 72-16 ML-25128 Drilling Program

- 5. Drill 124" hole to 1820' to fit 9-5/8" casing. One or more cores may be taken. Run Schlumberger Induction, FDC/CNL and Sonic logs at 1820'.
- 6. Cement 9-5/8", 40#, K-55, buttress casing at 1820' with 350 sacks Class B cement premixed with 1.0 cf/sack perlite, 2% gel, 40% silica flour and 0.3-0.4% HLX-C214 retarder (% retarder to be determined by maximum thermometers). (40% excess). Run fillup shoe and fillup collar on shoe joint. Tack weld top and bottom, bottom 4 collars, weld shoe solid. Use top and bottom rubber plug and plug holding head. Centralize 40' above shoe and every 5th joint above shoe. Have WKM (505/327-3359, Farmington, Sug Roberts) install centralizing elements in 12" head prior to cementing.
- 7. Land 9-5/8" casing. WKM install 12" Series 900 by 10"
 Series 600 14" stroke casing spool. Test pack off with
 1000 psig. Install 10" gate valve, two double hydraulic
 Shaffer control gates, Hydril GK and Grant rotating head.
 All equipment to have high temperature packing elements.
 Test all blowout preventers, casing and valving as before
 with 1000 psig. for five minutes each. Notify Utah DWR to
 witness preventer tests. Enter test results on tour sheets.
- 8. Drill 8½" hole to total depth, estimated at 6,000'. One or more cores may be taken. Run Schlumberger logs as ordered. Complete or abandon. 7" casing may be run as protection or production casing if required.
- 9. Survey hole angle every 2-300', on dull bits. Drillable wing stablizers are to be run in 12½" and 8½" holes, and 17½" hole if required. A multi-shot or wireline angle survey may be run if hole angle exceeds 5° over several thousand feet. Run drill pipe float valve in 8½" hole and have "wet plug" with valve in open position on floor at all times.
- 10. Install ABC mud logging service at shoe of 20" conductor. Record continuous mud in and out temperature, H₂S, CH₄, lithology, drilling rate. Have pit level indicator and intercom to drillers station. Take 2 sets W&D samples every 10' above 1800' and every 5' below 1800'. Mail daily copies of the mud log to:

Thermal Power Co. (3 copies) Hathaway Engineering (1 copy) 601 California Street 3382 El Camino, Suite 37 San Francisco, CA 94108 Sacramento, CA 95821 Attn.: W. L. D'Olier

Keep 3 copies up to date and spliced in trailer.

Utah State 72-16 ML-25128 Drilling Program

11. Mud Program. American Mud Company 505/327-2525

Surface-650'. Water and gel, 8.3-9.0 ppg.
650'-TD Milford City water, add sodium chloride if required.

Have lost circulation material on location.

12. Run and record maximum recording thermometers on each Totco run.

13.	Telephone :	numbers:	Therma	al Power	Company	415/981-5700	
			W. L.	D'Olier		415/982-5630	Nites
						805/833-8313	Weekend
			W. N.	Hathawa	У	916/489-1206	Office
						916/944-3884	Home
			H. E.	Wheeler		916/485-2715	