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ABSTRACT 

A basic modular exploration sequence which includes a carefully 

balanced selection of geological, geochemical, and geophysical modules 

is developed for geothermal prospecting in the eastern Basin and Range. 

The cost per square mile for application of this exploration architecture 

is $461.00. If one were to expand this basic system to include virtually 

all techniques being routinely employed in geothermal prospecting today, 

then the cost per square mile would increase to $790.00. This latter 

expenditure rate is difficult to justify, but some increase above the 

$461.00 basic cost appears to be warranted to make exploration costs 

about equal to land acquisition costs and model-test drilling costs. 

Total costs per discovery appear to range from $6M to $27M depending upon 

assumptions, when the costs of exploring for "dry" prospects are included 

in the costs of the discoveries. Development and operating costs are 

not included in the analysis. 

The basic exploration architecture described here is compared with 

others previously advanced in the literature. While differences in approach 

are abundant, there is a central core of exploration activities and an 

order to these activities to which most of us "architects" probably would 

subscribe. If a common basic is used for computing costs of individual 

exploration modules, then there is no great cost disparity between any of 

the architectures reviewed. 



1.0 Introduction 

The design of exploration campaigns (herein termed exploration 

architecture) intended to discover economically viable resources, be they 

geothermal, base metal, oil and gas, uranium, or whatever, is not a totally 

objective science. Further, exploration architecture is a dynamic thing 

which changes as more is learned about a) a specific geological area, 

b) a specific resource type, or c) the methods used in exploration. Thus, 

it is seldom that two industrial concerns will agree on a particular 

exploration architecture for a given commodity in a given area at a given 

time. Nevertheless, there are certain guidelines which most follow, con

sciously or subconsciously, in arriving at the design of an exploration 

campaign. In the following, I present my current notions on exploration 

architecture suited tp discovery of convective hydrothermal systems in the 

eastern Basin and Range physiographic province of the western USA. 

The approach to exploration architecture that I use is not new. 

Similar forms of it have appeared in the literature for years; three 

basic and useful references from the mining literature are Hawkes and 

Webb (1962), Pfleider (1968), and Ward (1972). As noted by Grose (1971), 

"The modern exploration approach to geothermal energy is basically similar 

to that of metaliferous mineral deposits and oil and gas. However, the 

science and technology of development of geothermal resources is young 

and untested by long experience of success and failure," Articles on 

exploration architecture which reflect different and broader experience 

bases than I am able to provide are Banwell (1970), Combs and Muffler 

(1973), Greider (1975), Dolan (1975), Furumoto (1975), McNitt (1975), and 



Meidav and Tonani (1975), My analysis largely ignores these works at the 

outset since my intent is development of exploration architecture suited to 

detection of hidden geothermal resources in a relatively large region, 

whereas the earlier authors mostly start with the assumption that a 

small prospect area has been identified. Later I shall compare my 

findings with theirs, 

2.0 Basic Principles of Exploration Architecture 

An exploration sequence should consist of a number of optional modules, 

each of which depicts one or more specific geological, geochemical, geophys

ical, or "physical" activities. Figure 1 is a generalized modular explor

ation system. Decisions to proceed along the various paths indicated 

depend upon results of prior modules, upon economic analyses made at 

critical junctures, upon one's experience with the area and the 

commodity, and upon the exploration tools at one's disposal. The intensity of 

total expenditures on geology, geochemistry, and geophysics, the distribution 

of expenditures between these three basic sub-disciplines, and the 

specific activities under each sub-discipline, vary widely from company 

to company, from one commodity to another, from one area to another, and 

from time to time. The particular manner in which I present my concepts 

of exploration architecture (Ward, 1972) i.e. via a collection of optional 

hard modules, is itself often contested; many prefer shadowy boundaries 

between options. Nevertheless, I shall stay with this concept here 

because I believe that hard modules force one to make hard decisions which 

ultimately lead to cost-effective exploration. My notion is that the 

least expensive modules come first in the exploration sequence p rov i ded 

that they produce sufficient data points of reliable quality to permit a 



logical sequence of decisions. At every point where an economic appraisal 

is indicated, the exploration program or prospect could be terminated or 

continued. The tendency to continue regardless of the economic forecast 

must be restrained. Of course, value judgments on such matters depend 

upon the risk one is prepared to take at any decision-making juncture. 

Risk is usually assessed by deriving an expected value of a venture at 

any branch point in an exploration architecture (e,g, Newendorp, 1976). 

The risk for one optional path of Figure 1 is expected to be different 

to that for another. Indeed, risk might be lower in Figure 1, if say, 

the d e t a i l e d e x p l o r a t i o n modules were eliminated entirely. Development 

of a risk decision strategy depends upon years of experience with numerous 

prospects in numerous parts of the world. Since that is not the data 

base from which I draw, I merely note in Figure 1, that economic appraisals 

must be conducted at all branch points. This then allows the reader to 

inject his own risk decision strategy upon a basic piece of exploration 

architecture. Given this overview of exploration architecture, let us 

now proceed to suggest architecture suited to exploration for convective 

hydrothermal systems in the eastern part of the Great Basin of the USA. 

3.0 The "Full Option" Approach 

Some may contend that land acquisition and drilling for geothermal 

resources in the eastern part of the Great Basin is so expensive that 

one ought to conduct nearly all possible modules of an exploration sequence 

prior to land acquisition and certainly prior to drilling. Let us evaluate 

this extremum. Figure 2 portrays a hugh array of geological, geochemical, 

geophysical and hydrological modules which might be employed prior to 

drilling a geothermal prospect while Figure 3 and Table 1 give estimates 



of the costs associated with such a program and the basis for the estimates, 

respectively. 

On Figure 4, the geologic map of Utah, we have marked a 90 mile by 

150 mile area. This area is largely underlain by Tertiary extrusives 

but includes later intrusives and volcanics. It contains most of the 

KGRA's in Utah and is believed to be a region of major crustal perturbation 

(Eaton, 1975). Roosevelt Hot Springs KGRA, the most prominent geothermal 

prospect in Utah, lies near the center of its northern border. Let us 

initially assume that we are interested in any 30 mile by 30 mile (900 

square miles) block within this 13,500 square mile area. Figure 3 and 

Table 1 then provide reasonable, but not uncontested, cost estimates for 

each module of the exploration sequence for this 900 square mile area. The 

total cost of exploration for a 900 square mile area would then be $0.710M. 

For the entire 90 mile by 150 mile region, the total cost of the "full 

option" exploration would be $10.7M, not including land acquisition, 

drilling, or production testing. 

Also shown at the end of each modular step of Figure 3, is the 

fraction of the initial area remaining to be considered after each phase; 

the fractional reduction in area after each phase is my best estimate and 

it is subject to debate. However, if one believes this area reduction 

pattern, then only 8% of the total area will remain for drilling. Eight 

percent of the initial test area of 900 square miles is 72 square miles 

or about the maximum dimension of one geothermal prospect, if Roosevelt 

Hot Springs is of typical size. Thus, for the whole 150 mile by 90 mile 

zone underlain by Tertiary volcanics, we assume a maximum of 15 geothermal 

prospects. 



Grieder (1975) assumes 0.38 of all prospects warrant temperature 

gradient holes whereas I assume 0.21 of the area studied. I would drill 

0.08 of the area whereas he would drill 0.25 of the prospects. My figures 

are lower than Greider's because I am covering blind areas and prospects 

whereas Greider is covering prospects only. My estimates of area reduction 

by phase, given in Figure 3, were based upon a simple formula of 25% area 

reduction after phases I, II, IV, and VI, and 50% area reduction after 

phases III, V; this formula was derived from my personal experience in 

regional exploration in the mining industry and from comparison of mining and 

geothermal objectives, problems, and techniques. Greider's estimates of 

prospect reduction appear to be based upon his personal industrial experience 

and upon that of the geothermal industry in general. The two estimate 

schemes appear to be in broad agreement, however subjective. 

4,0 The "Restricted Option" Approach 

Not too many practitioners of geothermal exploration will agree that 

the full option approach ought to be employed. Accordingly, in this section 

I have deleted those methods which have not been proven to me to produce 

consistently meaningful data. Others may be able to prove me wrong now 

or at some time in the future. I shall welcome challenge at any time. 

Table 2 and Figures 5 and 6 show one logical restricted option architecture. 

Costs have been cut, relative to the full option approach, to $0.415M per 

900 square mile area and would total $6.2M per 13,500 square miles. 

While I cannot agree, some would argue that modules 3, 4, and 5 

ought to be deleted also, leaving the net cost for 900 square miles at 

$0.360M and for 13,500 square miles at $5.4M. 



others would argue that some form of passive seismic technique 

(either microearthquake, earth noise, teleseismic studies, or some combination 

thereof) ought to be included. If so, and if passive siesmic methods 

are placed in phase VI, then minimum budgets of $0.455M per 900 square miles 

or $6,8M per 13,500 square miles must be allocated. Still others would 

argue for active seismic in phase VI and it is difficult to conceive of 

less than $100K additional per 900 square miles for budgets of $0.515M 

per 900 square miles or $7.7M per 13,500 square miles. 

In both of these latter estimates, we have retained the cost of modules 

3, 4, and 5 because we need more early regional data if we are to apply 

seismic methods with intelligence at the target definition stage. 

5.0 The "MT Option" Approach 

The most significant observation brought out at the "Workshop on 

Electrical Exploration Methods in the Geothermal Environment", held at 

Snowbird, Utah in November, 1976, was that the magnetotelluric method (MT) 

characteristically obtains a resistivity less than one ohm-m, at depths 

in the range 2 to 15 km, beneath a geothermal prospect. This observation 

suggests that we ought to use MT always as a reconnaissance electrical 

method. Experience at Roosevelt Hot Springs demonstrates that a minimum 

station density for detection of this low resistivity zone is one station 

per square mile. For an area 30 miles by 30 miles, or 900 square miles, 900 

observations would be required if this were the initial tool in the exploration 

sequence. However, if MT is left until the area is reduced to 0.28 of its 

original size (Figures 7 and 8 and Table 3 ) , then only 207 observations 

would be required. A nominal cost of $1600 per station is suggested leading 



to MT costs of $330K per 900 square miles. This cost might be shaved 

considerably by employing the combined MT/Telluric method, but we 

have no strong scientific basis for so doing at the present time. If 

we are to afford the MT method in such scope, then modules 4 and 5 

perhaps ought not to be afforded because the regional structural infor

mation provided by gravity and aeromagnetics may not be necessary when 

regional electrical structural Information is provided by MT, This approach 

then leads to costs of $0,700M per 900 square miles or $10,5M per 13,500 

square miles, 

6,0 Comparative Costs of Various Approaches 

In Table 4 I have summarized the exploration costs per 900 square 

miles, per 13,500 square miles, and per square mile for the several 

optional approaches discussed here. We observe that costs can range 

from $400 to $778 per square mile; these costs are not excessive in 

reference to exploration for any type of resource. 

To these costs must be added the costs of a) land acquisition, which 

we assume to be $0.450M based on acquiring 45,000 acres* at $10 per acre, 

and b) model test drilling which we assume to be $0,500M for one hole to 

5,000 feet. If a prospect warrants a production test we add $1.500M for 

three holes to 5,000 feet and $0.500M for production testing and for 

additional geoscientific efforts such as mapping faults by active seismic 

methods and defining the hydrologic regime by whatever methods are available. 

*Note that an Individual company is limited to 25,000 leased federal acres 
per state at the present time so it is doubtful that a company would commit 
its 25,000 acre allotment to one prospect plus seek an additional 20,000 
from state and private acreage. In this respect, Greider (1975) uses 7,500 
acres per prospect; such a limited acreage would cover only the heart of the 
prospect at RHS KGRA. 



If we assume that one prospect only can result from exploration 

of a 900 square mile area, as discussed earlier, then a maximum of 15 

prospects will be discovered in southwestern Utah by the types of 

exploration architecture described here. Each of these 15 prospects 

will require one model test drill hole to 5,000 feet. Greider (1975) 

notes that the industry average is less than one producer for every 16 

model test holes drilled. In Table 4 we have assumed both 1 in 15 and 

5 in 15 producers per model test hole drilled. The worst case states 

that our brands of exploration architecture are no better than those 

Industry has used in the past, while the best case states that we shall 

do substantially better than has been done (or that with the discovery 

of the resource at Roosevelt Hot Springs, southwest Utah is elephant 

country where odds of discovery are higher). 

It is of interest to compute that variations in costs of exploration, 

restricted to the various assumptions made so far, do not perturb total 

costs per discovery by more than ±10% about the mean; and that this 

perturbation percentage is independent of the number of discoveries 

per prospect drilled. Even when land acquisition costs are reduced to 

1/3 of the entries given above, the perturbation of total costs caused 

by variations in exploration architecture are only ± 13% about the mean. 

It would seem to us that two conclusions can be drawn from these last 

two sentences: a) the inertia of drilling and testing costs overwhelms 

exploration costs, and b) all effort should be exerted in exploration 

to reduce the number of "dry" prospect wells and to reduce the cost of 

production testing. 



7.0 Conclusions 

We conclude that geoscience studies are comparatively inexpensive 

in geothermal exploration in the eastern Basin and Range. Our route to 

this conclusion is tenuous. Nevertheless, it appears to be justified to 

spend at least $1.5M to $2.0M on geoexploration per discovery so identified 

through a modular exploration sequence. The "full option" sequence described 

above appears to be excessive while the basic "restricted option" appears 

to be conservative. Some compromise between the two is appropriate. The 

impact of various exploration costs on total costs per discovery is minimal. 

There would appear to be physical room, according to our area reduction 

schedule of Figure 3 for a maximum of 15 prospects in southwestern Utah. 

If we assume that a minimum of 300 megawatts may be developed per prospect, 

then southwestern Utah ought to yield as much as 4500 megawatts. Based 

on comparing early and late experience at the Geysers in California, 1500 

megawatts per prospect or 22,500 megawatts total, ought to be the maximum 

expected of southwestern Utah, The total area considered is 13,500 square 

miles. The maximum area of the Roosevelt Hot Springs prospect is of order 

72 square miles. Thus, the whole of the Tertiary volcanic belt of southwestern 

Utah, if totally productive, would have 188 prospects, whereas we have 

assumed that at most it is 8% productive, or that it contains 15 potential 

geothermal prospeatSa We are inclined to reduce these prospects to a 

minimum of one and a maximum of five d i scove r i es so that the total geothermal 

power development in Utah might range from a minimum of 300 megawatts to 

a maximum of 7500 megawatts. Each discovery will cost $5.95M to $6.99M if 

5 are discovered or $21.65M to $26.95M if only one new discovery is made. 
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This cost per discovery is justifiable when development costs will be 

much larger (Greider, 1975) and when 300 to 1500 megawatts per discovery 

can be developed. Ultimately, then we must conclude that a fairly 

thorough exploration architecture ought to be employed. We are conditioned, 

of course, by the fact that we know we are hunting for elephants in 

elephant country. 
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8.0 Epilogue 

The above analysis was written without detailed reference to other 

articles on geothermal exploration architecture. This procedure minimizes 

historical bias and focuses on architecture suited to the eastern Great 

Basin. It is of interest, therefore, at this juncture to compare our 

analysis with analyses performed by others in prior years. Four previous articles 

are used for this purpose, those of Banwell (1970), (essentially repeated 

in Banwell (1974)). Combs and Muffler (1973), Greider (1975), and Dolan (1975). 

To be fair to Greider, it should be mentioned that only a small part of his 

article was devoted to exploration architecture. Figures 9 through 16 

present the technological and cash flows for each of these four architectures. 

It should be appreciated that I have taken considerable liberty in converting 

the texts and figures of these authors to the structured frame of reference 

I am using. Further, the cost estimates for their architectures are mine 

and not theirs; while designed to ensure uniformity and thereby facilitate 

comparisons, there is no assurance that any one author would concur with 

my costing basis or my Intended depth of study. (In fact, Greider estimates 

$95K per prospect for all of this exploration,whereas using his words, 

some indirect knowledge of his company's habits, and my costing basis, I 

estimate $420K for a 900 square mile area). 

Words added to Figures 9 through 16\ beyond those already given, would 

be superfluous. Each figure requires study unto itself and comparison with 

all other figures in this report. One overwhelming observation is that if 

one accepts my costing basis, then the costs for the four new architectures 

range from $420K to $595K per 900 square miles, a range totally encompassed 

by my range of $360K to $710K given in Table 4. 
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As one final study, I have attempted to find common denominators 

between my "restricted option" and the options that Banwell, Combs and 

Muffler, Greider, and Dolan would take. I cannot call the resulting 

option a consensus because I have no assurance that these authors would 

agree with me. However, if I understand their writings, then the compromise 

option of Figures 17 and 18 would satisfy each of us in basic content 

whether we are doing grass roots exploration of a large territory or are 

evaluating a prospect. It seems to me to represent the lowest common 

denominator, costing $360K per prospect or per 900 square miles, to which 

each of us would like to add some tens of thousands of dollars to satisfy 

our curiosities; the end result ought to be a budget in the $400K to $600K 

range, or possibly higher. 
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Table 1 

Module 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

Scientist 
Man-Years 

0.25 

0.15 

0,10 

0,10 

0,25 

0.05 

0,05 

0,25 

0.20 

0,20 

0,10 

0,50 

0.25 

0.10 

0.10 

0,20 

0,25 

0,50 

0.50 

0.50 

Technician 
Man-Years 

0.50 

0,15 

0,10 

0,10 

0,05 

0,05 

1,00 

0.50 

0.20 

0.10 

0.50 

0.50 

0.50 

0.25 

0.20 

0.75 

0.50 

0.50 

0.25 

Full Option 

Labor 
Man-Years 

0.25 

0.50 

0.20 

0,20 

0.10 

1.50 

0.25 

0.10 

0.10 

0.10 

.50 

1.50 

Support 
Costs 

5K 

3K 

2K 

17K 

2.5K 

IK 

IK 

lOK 

6K 

2K 

IK 

25K 

75K 

1.5K 

3K 

3K 

9K 

55K 

20K 

5K 

Total 
Costs 

30K 

15K 

lOK 

25K 

20K 

5K 

5K 

50K 

30K 

20K 

lOK 

80K 

lOOK 

20K 

15K 

20K 

40K 

lOOK 

75K 

40K 

Quantity 

50 Dates 

3000 Line Miles 

1500 Stations 

200 Analyses 

100 Holes 

900 Obs. 

25 Holes 

25 Holes 

25 Holes 

180 Line Miles 

Totals 4,55 6.70 5.30 246K 710K 

Basis: 1) 

2) 

3) 

4) 

5) 

6) 

Scientist man-year 

Technician man-year 

Local Labor man-year 

Support costs are minimal. 

Hardware amortization covered in overhead 

60K (salary + overhead) 

20K (salary + overhead) 

lOK (salary + overhead) 

Reconnaissance electrical (Module 12) costs based on 4 bipole-dipole 
readings per section but self-potential,tellurics, MT, or tellurics/ 
MT might be considered and might reduce costs, 

7) Detailed electrical (Module 19) costs based on dipole-dipole resistivity. 



Table 2 

Restricted Option 
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Module 

1 

2 

3 

4 

5 

8 

9 

10 

13 

15 

16 

19 

20 

Scientist 
Man-Years 

0.25 

0.15 

0.10 

0.10 

0,25 

0,20 

0,20 

0,20 

0.25 

0.10 

0.05 

0.50 

0.50 

Technician 
Man-Years 

0.50 

0.15 

0,10 

0,10 

0,50 

0.50 

0.20 

0,50 

0.25 

0,05 

0,50 

0,25 

Labor 
Man-Years 

0,25 

0,20 

0,20 

0.20 

0.10 

0.05 

1,50 

Support 
Costs 

5K 

3K 

2K 

17K 

2,5K 

6K 

6K 

2K 

75K 

3K 

0,5K 

20K 

5K 

Total 
Costs 

30K 

15K 

lOK 

25K 

20K 

30K 

30K 

20K 

lOOK 

15K 

5K 

75K 

40K 

Quantity 

50 Dates 

3000 Line Miles 

1500 Stations 

100 Analyses 

100 Holes 

25 Holes 

25 Holes 

180 Line Miles 

Totals 2.85 3.60 2.50 147K 415K 

Basis: 1) Scientist man-year 60K (salary + overhead) 

2) Technician man-year 20K (salary + overhead) 

3) Local labor man-year lOK (salary + overhead) 

4) Support costs are minimal, 

5) Hardware amortization covered in overhead, 

6) Detailed electrical (Module 19) costs based on dipole-dipole resistivity. 



Module 

1 
2 

3 

8 
9 
10 
12 

13 

15 
16 
19 
20 

Scientist 
Man-Years 

0.25 

0,15 

0.10 

0.20 

0,20 

0.20 

(per sound! 

0.25 

0.10 

0.05 

0.50 

0.50 

Technician 
Man-Years 

0.50 

0.15 

0.10 

0.50 

0.50 

0.20 

ng basis 

0.50 

0.25 

0.05 

0.50 

0.25 

Table 3 

MT Option 

Labor 
Man-Years 

0.20 

0.20 

0.20 

0.10 

0.05 

1.50 

Support 
Costs 

5K 

3K 
2K 

6K 

6K 
2K 

330K 

75K 
3K 
0.5K 

20K 

5K 

Total 
Costs 

30K 
15K 
lOK 

30K 
30K 

20K 

330K 

lOOK 

15K 
5K 
75K 

40K 

17 

Quantity 

50 Dates 

100 Analyses 

100 Holes 

207 Soundings 

25 Holes 

25 Holes 

180 Line-miles 

Totals 2.50 3.50 2.25 458K 700K 

Basis: 1) Scientist man-year 60K (salary + overhead) 

2) Technician man-year 20K (salary + overhead) 

3) Local Labor man-year lOK (salary + overhead) 

4) Support costs are minimal. 

5) Hardware amortization covered in overhead. 

6) MT costs at $1600 per sounding. 

7) Detailed electrical (module 19) costs based on dipole-dipole resistivity. 



Table 4 

Option Exploration Exploration Exploration Exploration Land Cost/ Model Test 
Cost/900 sq.mi. Cost/13,500 Cost/sq.mi. Cost/Discovery Discovery Cost/Discovery 

sq. mi. 

Production Test Total Cost/ 
Cost/Discovery Discovery 

Full 

Table 2 
(basic) 

Table 2 
(basic, less age 
dating, gravity and 
aeromagnetics) 

Table 2 
(basic, plus 
passive seismic) 

Table 2 
(basic, plus 
active seismic) 

MT Option 
(no gravity, or 
areomagnetics) 

$710K 

$415K 

$360K 

$455K 

$515K 

$700K 

$10.7M 

$ 6.2M 

$ 5.4M 

$ 6.Rr; 

$ 7.7M 

$10.5H 

$790 

$461 

$400 

$506 

$572 

$778 

* Assumes 5 discoveries of 15 prospects drilled. 

+ Assumes 1 discovery of 15 prospects drilled. 

$2.14M*($10.7H)+ $1.35M*($6.75M)+ $1.50M*($7.50M)-t 

$1.24M ($6.2M) $1.35M ($6.75M) $1.50M ($7.50M) 

$2.00M*($2.00M)+ $6.09M*($26.95M)+ 

$2.OOM ($2.OOM) $6.09M ($22.45M) 

$1.10M ($5.4M) $1.35M ($6.75M) $1.50M ($7.50M) $2.OOM ($2.OOM) $5.95M ($21.65M) 

$1.36M ($6.8M) $1.35M ($6.75M) $1.50M ($7.50M) $2.OOM ($2.OOM) $6.21M ($23.05M) 

$1.54H ($7.7H) $1.35M ($6.75M) $1.50M ($/.50M) $2.OOM ($2.OOM) $6.39M ($23.95M) 

$2.10M ($10.5M) $1.35M ($6.75M) $1.50M ($7.50M) $2.OOM ($2.OOH) $6.95M ($26.75M) 
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ABSTRACT 

A basic modular exploration sequence which includes a carefully 

balanced selection of geological, geochemical, and geophysical modules 

is developed for geothermal prospecting in the eastern Basin and Range. 

The cost per square mile for application of this exploration architecture 

is $461.00. If one were to expand this basic system to include virtually 

all techniques being routinely employed in geothermal prospecting today, 

then the cost per square mile would increase to $790.00. This latter 

expenditure rate is difficult to justify, but some increase above the 

$461.00 basic cost appears to be warranted to make exploration costs 

about equal to land acquisition costs and model-test drilling costs. 

Total costs per discovery appear to range from $6M to $27M depending upon 

assumptions, when the costs of exploring for "dry" prospects are included 

in the costs of the discoveries. Development and operating costs are 

not included in the analysis. 

The basic exploration architecture described here is compared with 

others previously advanced in the literature. While differences in approach 

are abundant, there is a central core of exploration activities and an 

order to these activities to which most of us "architects" probably would 

subscribe. If a common basic is used for computing costs of individual 

exploration modules, then there is no great cost disparity between any of 

the architectures reviewed. 



1.0 Introduction 

The design of exploration campaigns (herein termed exploration 

architecture) intended to discover economically viable resources, be they 

geothermal, base metal, oil and gas, uranium, or whatever, is not a totally 

objective science. Further, exploration architecture is a dynamic thing 

which changes as more is learned about a) a specific geological area, 

b) a specific resource type, or c) the methods used in exploration. Thus, 

it is seldom that two industrial concerns will agree on a particular 

exploration architecture for a given commodity in a given area at a given 

time. Nevertheless, there are certain guidelines which most follow, con

sciously or subconsciously, in arriving at the design of an exploration 

campaign, in the following, I present my current notions on exploration 

architecture suited tp discovery of convective hydrothermal systems 1n the 

eastern Basin and Range physiographic province of the western USA. 

The approach to exploration architecture that I use is not new. 

Similar foms of it have appeared in the literature for years; three 

basic and useful references from the mining literature are Hawkes and 

Webb (1962), Pfleider (1968), and Ward (1972). As noted by Grose (1971), 

"The modern exploration approach to geothermal energy Is basically similar 

to that of metaliferous mineral deposits and oil and gas. However, the 

science and technology of development of geothermal resources is young 

and untested by long experience of success and failure." Articles on 

exploration architecture which reflect different and broader experience 

bases than I am able to provide are Banwell (1970), Combs and Muffler 

(1973), Greider (1975), Dolan (1975), Furumoto (1975), McNitt (1975), and 



Meidav and Tonani (1975). My analysis largely ignores these works at the 

outset since my intent is development of exploration architecture suited to 

detection of hidden geothermal resources in a relatively large region, 

whereas the earlier authors mostly start with the assumption that a 

small prospect area has been Identified. Later I shall compare my 

findings with theirs. 

2.0 Basic Principles of Exploration Architecture 

An exploration sequence should consist of a number of optional modules, 

each of which depicts one or more specific geological, geochemical, geophys

ical, or "physical" activities. Figure 1 is a generalized modular explor

ation system. Decisions to proceed along the various paths indicated 

depend upon results of prior modules, upon economic analyses made at 

critical junctures, upon one's experience with the area and the 

commodity, and upon the exploration tools at one's disposal. The intensity of 

total expenditures on geology, geochemistry, and geophysics, the distribution 

of expenditures between these three basic sub-disciplines, and the 

specific activities under each sub-discipline, vary widely from company 

to company, from one commodity to another, from one area to another, and 

from time to time. The particular manner in which I present my concepts 

of exploration architecture (Ward, 1972) i.e. via a collection of optional 

hard modules, is itself often contested; many prefer shadowy boundaries 

between options. Nevertheless, I shall stay with this concept here 

because I believe that hard modules force one to make hard decisions which 

ultimately lead to cost-effective exploration. My notion is that the 

least expensive modules come first in the exploration sequence p r o v i d e d 

that they produce sufficient data points of reliable quality to permit a 



logical sequence of decisions. At every point where an economic appraisal 

is indicated, the exploration program or prospect could be terminated or 

continued. The tendency to continue regardless of the economic forecast 

must be restrained. Of course, value judgments on such matters depend 

upon the risk one is prepared to take at any decision-making juncture. 

Risk is usually assessed by deriving an expected value of a venture at 

any branch point in an exploration architecture (e.g. Newendorp, 1976). 

The risk for one optional path of Figure 1 is expected to be different 

to that for another. Indeed, risk might be lower in Figure 1, if say, 

the d e t a i l e d e x p l o r a t i o n modules were eliminated entirely. Development 

of a risk decision strategy depends upon years of experience with numerous 

prospects in numerous parts of the world. Since that is not the data 

base from which I draw, I merely note in Figure 1, that economic appraisals 

must be conducted at all branch points. This then allows the reader to 

Inject his own risk decision strategy upon a basic piece of exploration 

architecture. Given this overview of exploration architecture, let us 

now proceed to suggest architecture suited to exploration for convective 

hydrothermal systems in the eastern part of the Great Basin of the USA. 

3.0 The "Full Option" Approach 

Some may contend that land acquisition and drilling for geothermal 

resources in the eastern part of the Great Basin is so expensive that 

one ought to conduct nearly all possible modules of an exploration sequence 

prior to land acquisition and certainly prior to drilling. Let us evaluate 

this extremum. Figure 2 portrays a hugh array of geological, geochemical, 

geophysical and hydrological modules which might be employed prior to 

drilling a geothermal prospect while Figure 3 and Table 1 give estimates 



of the costs associated with such a program and the basis for the estimates, 

respectively. 

On Figure 4, the geologic map of Utah, we have marked a 90 mile by 

150 mile area. This area is largely underlain by Tertiary extrusives 

but includes later Intrusives and volcanics. It contains most of the 

KGRA's in Utah and is believed to be a region of major crustal perturbation 

(Eaton, 1975). Roosevelt Hot Springs KGRA, the most prominent geothermal 

prospect In Utah, lies near the center of its northern border. Let us 

initially assume that we are interested in any 30 mile by 30 mile (900 

square miles) block within this 13,500 square mile area. Figure 3 and 

Table 1 then provide reasonable, but not uncontested, cost estimates for 

each module of the exploration sequence for this 900 square mile area. The 

total cost of exploration for a 900 square mile area would then be $0.710M. 

For the entire 90 mile by 150 mile region, the total cost of the "full 

option" exploration would be $10.7M, not Including land acquisition, 

drilling, or production testing. 

Also shown at the end of each modular step of Figure 3, 1s the 

fraction of the initial area remaining to be considered after each phase; 

the fractional reduction in area after each phase is my best estimate and 

It is subject to debate. However, if one believes this area reduction 

pattern, then only 8% of the total area will remain for drilling. Eight 

percent of the initial test area of 900 square miles is 72 square miles 

or about the maximum dimension of one geothermal prospect, if Roosevelt 

Hot Springs is of typical size. Thus, for the whole 150 mile by 90 mile 

zone underlain by Tertiary volcanics, we assume a maximum of 15 geothermal 

prospects. 



Grieder (1975) assumes 0.38 of all prospects warrant temperature 

gradient holes whereas I assume 0.21 of the area studied. I would drill 

0.08 of the area whereas he would drill 0.25 of the prospects. My figures 

are lower than Greider's because I am covering blind areas and prospects 

whereas Greider is covering prospects only. My estimates of area reduction 

by phase, given in Figure 3, were based upon a simple formula of 25^ area 

reduction after phases I, II, IV, and VI, and 50% area reduction after 

phases III, V; this formula was derived from rny personal experience in 

regional exploration in the mining industry and from comparison of mining and 

geothermal objectives, problems, and techniques. Greider's estimates of 

prospect reduction appear to be based upon his personal industrial experience 

and upon that of the geothermal industry in general. The two estimate 

schemes appear to be in broad agreement, however subjective. 

4.0 The "Restricted Option" Approach 

Not too many practitioners of geothermal exploration will agree that 

the full option approach ought to be employed. Accordingly, in this section 

I have deleted those methods which have not been proven to me to produce 

consistently meaningful data. Others may be able to prove me wrong now 

or at some time in the future. I shall welcome challenge at any time. 

Table 2 and Figures 5 and 6 show one logical restricted option architecture. 

Costs have been cut, relative to the full option approach, to $0.415M per 

900 square mile area and would total $6.2M per 13,500 square miles. 

While I cannot agree, some would argue that modules 3, 4, and 5 

ought to be deleted also, leaving the net cost for 900 square miles at 

$0.360M and for 13,500 square miles at $5.4M. 



others would argue that some form of passive seismic technique 

(either microearthquake, earth noise, teleseismic studies, or some combination 

thereof) ought to be included. If so, and if passive siesmic methods 

are placed in phase VI, then minimum budgets of $0.455M per 900 square miles 

or $6.8M per 13,500 square miles must be allocated. Still others would 

argue for active seismic in phase VI and it is difficult to conceive of 

less than $100K additional per 900 square miles for budgets of $0.515M 

per 900 square miles or $7.7M per 13,500 square miles. 

In both of these latter estimates, we have retained the cost of modules 

3, 4, and 5 because we need more early regional data if we are to apply 

seismic methods with Intelligence at the target definition stage. 

5.0 The "MT Option" Approach 

The most significant observation brought out at the "Workshop on 

Electrical Exploration Methods in the Geothermal Environment", held at 

Snowbird, Utah in November, 1976, was that the magnetotelluric method (MT) 

characteristically obtains a resistivity less than one ohm-m, at depths 

in the range 2 to 15 km, beneath a geothermal prospect. This observation 

suggests that we ought to use MT always as a reconnaissance electrical 

method. Experience at Roosevelt Hot Springs demonstrates that a minimum 

station density for detection of this low resistivity zone is one station 

per square mile. For an area 30 miles by 30 miles, or 900 square miles, 900 

observations would be required if this were the initial tool in the exploration 

sequence. However, if MT is left until the area is reduced to 0.28 of its 

original size (Figures 7 and 8 and Table 3 ) , then only 207 observations 

would be required. A nominal cost of $1600 per station is suggested leading 



to MT costs of $330K per 900 square miles. This cost might be shaved 

considerably by employing the combined MT/Telluric method, but we 

have no strong scientific basis for so doing at the present time. If 

we are to afford the MT method in such scope, then modules 4 and 5 

perhaps ought not to be afforded because the regional structural infor

mation provided by gravity and aeromagnetics may not be necessary when 

regional electrical structural information is provided by MT. This approach 

then leads to costs of $0.700M per 900 square miles or $10.5M per 13,500 

square miles. 

6.0 Comparative Costs of Various Approaches 

In Table 4 I have surrenarized the exploration costs per 900 square 

miles, per 13,500 square miles, and per square mile for the several 

optional approaches discussed here. We observe that costs can range 

from $400 to $778 per square mile; these costs are not excessive in 

reference to exploration for any type of resource. 

To these costs must be added the costs of a) land acquisition, which 

we assume to be $0.450M based on acquiring 45,000 acres* at $10 per acre, 

and b) model test drilling which we assume to be $0.500M for one hole to 

5,000 feet. If a prospect warrants a production test we add $1.500M for 

three holes to 5,000 feet and $0.500M for production testing and for 

additional geoscientific efforts such as mapping faults by active seismic 

methods and defining the hydrologic regime by whatever methods are available. 

*Note that an individual company is limited to 25,000 leased federal acres 
per state at the present time so it is doubtful that a company would commit 
its 25,000 acre allotment to one prospect plus seek an additional 20,000 
from state and private acreage. In this respect, Greider (1975) uses 7,500 
acres per prospect; such a limited acreage would cover only the heart of the 
prospect at RHS KGRA. 



If we assume that one prospect only can result from exploration 

of a 900 square mile area, as discussed earlier, then a maximum of 15 

prospects will be discovered in southwestern Utah by the types of 

exploration architecture described here. Each of these 15 prospects 

will require one model test drill hole to 5,000 feet. Greider (1975) 

notes that the industry average is less than one producer for every 16 

model test holes drilled. In Table 4 we have assumed both 1 in 15 and 

5 in 15 producers per model test hole drilled. The worst case states 

that our brands of exploration architecture are no better than those 

industry has used in the past, while the best case states that we shall 

do substantially better than has been done (or that with the discovery 

of the resource at Roosevelt Hot Springs, southwest Utah is elephant 

country where odds of discovery are higher). 

It is of interest to compute that variations in costs of exploration, 

restricted to the various assumptions made so far, do not perturb total 

costs per discovery by more than ±10% about the mean; and that this 

perturbation percentage is independent of the number of discoveries • 

per prospect drilled. Even when land acquisition costs are reduced to 

1/3 of the entries given above, the perturbation of total costs caused 

by variations in exploration architecture are only + 13% about the mean. 

It would seem to us that two conclusions can be drawn from these last 

two sentences: a) the inertia of drilling and testing costs overwhelms 

exploration costs, and b) all effort should be exerted in exploration 

to reduce the number of "dry" prospect wells and to reduce the cost of 

production testing. 



7.0 Conclusions 

We conclude that geoscience studies are comparatively inexpensive 

in geothermal exploration in the eastern Basin and Range. Our route to 

this conclusion is tenuous. Nevertheless, it appears to.be justified to 

spend at least $1.5M to $2.0M on geoexploration per discovery so identified 

through a modular exploration sequence. The "full option" sequence described 

above appears to be excessive while the basic "restricted option" appears 

to be conservative. Some compromise between the two is appropriate. The 

impact of various exploration costs on total costs per discovery is minimal. 

There would appear to be physical room, according to our area reduction 

schedule of Figure 3 for a maximum of 15 prospects in southwestern Utah. 

If we assume that a minimum of 300 megawatts may be developed per prospect, 

then southwestern Utah ought to yield as much as 4500 megawatts. Based 

on comparing early and late experience at the Geysers in California, 1500 

megawatts per prospect or 22,500 megawatts total, ought to be the maximum 

expected of southwestern Utah. The total area considered is 13,500 square 

miles. The maximum area of the Roosevelt Hot Springs prospect is of order 

72 square miles. Thus, the whole of the Tertiary volcanic belt of southwestern 

Utah, if totally productive, would have 188 prospects, whereas we have 

assumed that at most it is 8% productive, or that it contains 15 potential 

geothermal prospec-ts. We are inclined to reduce these p rospec ts to a 

minimum of one and a maximum of five d i s c o v e r i e s so that the total geothermal 

power development in Utah might range from a minimum of 300 megawatts to 

a maximum of 7500 megawatts. Each discovery will cost $5.95M to $6.99M if 

5 are discovered or $21.65M to $26.95M if only one new discovery is made. 

http://to.be
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This cost per discovery is justifiable when development costs will be 

much larger (Greider, 1975) and when 300 to 1500 megawatts per discovery 

can be developed. Ultimately, then we must conclude that a fairly 

thorough exploration architecture ought to be employed. We are conditioned, 

of course, by the fact that we know we are hunting for elephants in 

elephant country. 
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8.0 Epilogue 

The above analysis was written without detailed reference to other 

articles on geothermal exploration architecture. This procedure minimizes 

historical bias and focuses on architecture suited to the eastern Great 

Basin. It is of Interest, therefore, at this juncture to compare our 

analysis with analyses performed by others in prior years. Four previous articles 

are used for this purpose, those of Banwell (1970), (essentially repeated 

in Banwell (1974)). Combs and Muffler (1973), Greider (1975), and Dolan (1975). 

To be fair to Greider, it should be mentioned that only a small part of his 

article was devoted to exploration architecture. Figures 9 through 16 

present the technological and cash flows for each of these four architectures. 

It should be appreciated that I have taken considerable liberty in converting 

the texts and figures of these authors to the structured frame of reference 

I am using. Further, the cost estimates for their architectures are mine 

and not theirs; while designed to ensure uniformity and thereby facilitate 

comparisons, there is no assurance that any one author would concur with 

my costing basis or my intended depth of study. (In fact, Greider estimates 

$95K per prospect for all of this exploration,whereas using his words, 

some indirect knowledge of his company's habits, and my costing basis, I 

estimate $420K for a 900 square mile area). 

Words added to Figures 9 through 16', beyond those already given, would 

be superfluous. Each figure requires study unto itself and comparison with 

all other figures in this report. One overwhelming observation is that if 

one accepts my costing basis, then the costs for the four new architectures 

range from $420K to $595K per 900 square miles, a range totally encompassed 

by my range of $360K to $71 OK given in Table 4. 
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As one final study, I have attempted to find common denominators 

between my "restricted option" and the options that Banwell, Combs and 

Muffler, Greider, and Dolan would take. I cannot call the resulting 

option a consensus because I have no assurance that these authors would 

agree with me. However, if I understand their writings, then the compromise 

option of Figures 17 and 18 would satisfy each of us in basic content 

whether we are doing grass roots exploration of a large territory or are 

evaluating a prospect. It seems to me to represent the lowest common 

denominator, costing $360K per prospect or per 900 square miles, to which 

each of us would like to add some tens of thousands of dollars to satisfy 

our curiosities; the end result ought to be a budget in the $400K to $600K 

range, or possibly higher. 
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Table 1 

Module 

1 
2 
3 

4 
5 
6 
7 

8 
9 

10 

n 
12 

13 

H 

15 

16 
17 

18 
19 
20 

Scientist 
Man-Years 

0.25 

0.15 

0.10 

0.10 

0.25 

0.05 

0.05 

0.25 

0.20 

0.20 

0.10 

0.50 

0.25 

0.10 

0.10 

0.20 

0.25 

0.50 

0.50 

0.50 

Technician 
Man-Years 

0.50 

0.15 

0.10 

0.10 

0.05 

0.05 

1.00 

0.50 

0.20 

0.10 

0.50 

0.50 

0.50 

0.25 

0.20 

0.75 

0.50 

0.50 

0.25 

Full Option 

Labor 
Man-Years 

0.25 

0.50 

0.20 

0.20 

0.10 

1.50 

0.25 

0.10 

0.10 

0.10 

.50 
1.50 

Support 
Costs 

5K 

3K 
2K 
17K 

2.5K 

IK 
IK 
lOK 

6K 

2K 
IK 

25K 

75K 

1.5K 

3K 

3K 

9K 

55K 

20K 
5K 

Total 
Costs 

30K 

15K 
lOK 
25K 
20K 

5K 

5K 
50K 

30K 
20K 

lOK 

80K 
lOOK 

20K 

15K 

20K 
40K 

lOOK 

75K 
40K 

Quanti ty 

', 

50 Dates 

3000 Line Miles 

1500 Stations 

200 Analyses 

100 Holes 

900 Obs. 

25 Holes 

25 Holes 

25 Holes 

180 Line Miles 

Totals 4.55 6.70 5.30 246K 710K 

60K (salary + overhead) 

20K (salary + overhead) 

lOK (salary + overhead) 

Basis: 1) Scientist man-year 

2) Technician man-year 

3) Local Labor man-year 

4) Support costs are minimal. 

5) Hardware amortization covered in overhead. 

6) Reconnaissance electrical (Module 12) costs based on 4 bipole-dipole 
readings per section but self-potential,tellurics, MT, or tellurics/ 
MT might be considered and might reduce costs. 

7) Detailed electrical (Module 19) costs based on dipole-dipole resistivity. 
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Restricted Option 

Module 

1 
2 

3 
4 
5 
8 

9 

10 
13 

15 

16 
19 

20 

Scientist 
Man-Years 

0.25 

0.15 

0.10 

0.10 

0.25 

0.20 

0.20 

0.20 

0.25 

0.10, 

0.05 

0.50 

0.50 

Technician 
Man-Years 

0.50 

0.15 

0.10 

0.10 

0.50 

0.50 

0.20 

0.50 

0.25 

0.05 

0.50 

0.25 

Labor 
Man-Years 

0.25 

0.20 

0.20 

0.20 

0.10 

0.05 

1.50 

Support 
Costs 

5K 
3K 

2K 
17K 
2.5K 

6K 
6K 
2K 

75K 

3K 
0.5K 

20K 

5K 

Total 
Costs 

30K 

15K 
lOK 
25K 
20K 
30K 

30K 

20K 
lOOK 

15K 

5K 
75K 

40K 

Quantity 

50 Dates 

3000 Line Miles 

1500 Stations 

100 Analyses 

100 Holes 

25 Holes 

25 Holes 

180 Line Miles 

Tota s 2.85 3.60 2.50 147K 415K 

Basis: 1) Scientist man-year 60K (salary + overhead) 

2) Technician man-year 20K (salary + overhead) 

3) Local labor man-year lOK (salary + overhead) 

4) Support costs are minimal. 

5) Hardware amortization covered in overhead. 

6) Detailed electrical (Module 19) costs based on dipole-dipole resistivity. 
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Table 3 

Module 

1 
2 

3 
8 
9 
10 
12 

13 

15 

16 
19 

20 

Scientist 
Man-Years 

0.25 

0.15 

0.10 

0.20 

0.20 

0.20 

(per sound! 

0.25 

0.10 

0.05 

0.50 

0.50 

Technician 
Man-Years 

0.50 

0.15 

0.10 

0.50 

0.50 

0.20 

ng basis 

0.50 

0.25 

0.05 

0.50 

0.25 

MT Option 

Labor 
Man-Years 

0.20 

0.20 

0.20 

0.10 

0.05 

1.50 

Support 
Costs 

5K 

3K 
2K 
6K 

6K 
2K 

330K 

75K 

3K 

0.5K 

20K 

5K 

Total 
Costs 

30K 

15K 
lOK 
30K 
30K 

20K 
330K 

lOOK 

15K 

5K 

75K 

40K 

Quantity 

50 Dates 

100 Analyses 

100 Holes 

207 Soundings 

25 Holes 

25 Holes 

180 Line-miles 

Totals 2.50 3.50 2.25 458K 700K 

Basis: 1) Scientist man-year 60K (salary + overhead) 

2) Technician man-year 20K (salary + overhead) 

3) Local Labor man-year lOK (salary + overhead) 

4) Support costs are minimal. 

5) Hardware amortization covered in overhead. 

6) MT costs at $1600 per sounding. 

7) Detailed electrical (module 19) costs based on dipole-dipole resistivity. 



Table 4 

Option Explorat ion Explorat ion Exp lo ra t ion Exp lo ra t ion Land Cost/ Model Test Product ion Test Total Cost/ 
Cost/900 sq.mi . Cost/13,500 Cost /sq .mi . Cost/Discovery Discovery Co5t/D1scovery Cost/Discovery Discovery 

sq. ml . 

$790 $2.14t1*($10.7M)+ $1.35M*($6.75H)+ $1.50M*($7.50H)+ $2.OOM*($2.O0M)+ $6.09M*($Z6.95M)+ 

$461 $1.2411 ($6.2ti) $1.35M ($6.75M) $1.50M ($7.50M) $2.OOM ($2.OOM) $6.09M ($22.45M) 

$400 $1.10H ($5.4H) $1.35M ($6.75M) $1.50M ($7.50H) $2.OOM ($2.OOM) $5.95M ($21.65M) 

$506 $1.36M ($6.8M) $1.35M ($6.75M) $1.50M ($7.50M) $2.OOM ($2.OOH) S6.21M ($23.05M) 

$572 $1.54M ($7.7H) $1.35M ($6.75H) $1.50M ($7.50M) $2.OOM ($2.OOM) $6.39M ($23.95M) 

$778 $2.10M ($10.5M) $1.35M ($6.75M) $1.50M ($7.50M) $2.OOM ($2.OOM) $6.95M ($26.7bM) 

Fu l l 

Table 2 
(bas ic) 

Table 2 
(bas ic , less age 
d a t i n g , g rav i t y and 
aeronagnetlcs) 

Table 2 
(bas ic , p lus 
passive se ismic) 

Table 2 
(bas ic , p lus 
ac t i ve seismic) 

MT Option 
(no g r a v i t y , or 
areonagnet lcs) 

$71 OK 

$415K 

$360K 

$455K 

$515K 

$700IC 

$10.7M 

$ 6.2M 

$ 5.4M 

$ e.w: 

$ 7.7M 

$10.5M 

* AssuMes 5 discoveries of 15 prospects drilled. 

+ Assumes 1 discovery of 15 prospects drilled. 
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