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ABSTRACT 

A detailed electrical resistivity survey of 54 line-km was completed at 

the Coso Hot Springs KGRA in September 1977. This survey has defined a 

bedrock resistivity low at least 4 sq mi (10 sq km) in extent associated with 

the geothermal system at Coso. The boundaries of this low are generally well 

defined to the north and west but not as well to the south where an 

approximate southern limit has been determined. The bedrock resistivity low 

merges with an observed resistivity low over gravel fill east of Coso Hot 

Springs. 

A complex horizontal and vertical resistivity structure of the surveyed 

area has been defined which precludes the use of layered-earth or two-

dimensional interpretive models for much of the surveyed area. In general the 

survey data indicate that a 10 to 20 ohm-meter zone extends from near surface 

to a depth greater than 750 meters within the geothermal system. This zone is 

bordered to the north and west by bedrock resistivities greater than 200 

ohm-meters and to the south by bedrock resistivities greater than 50 ohm-

meters. A combination of observed increases in: 1) fracture density (higher 

permeability), 2) alteration (high clay content), and 3) temperatures (higher 

dissolved solid content of ground water) within the bedrock low explain its 

presence. 
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INTRODUCTION 

On behalf of the U. S. Department of Energy, Div is ion of Geothermal 

Energy, a detai led surface geological and geophysical invest igat ion of the 

Coso Hot Springs KGRA (F ig . 1) was undertaken by the Earth Science Laboratory, 

University of Utah Research I n s t i t u t e . The object ives of th i s work were 1) to 

c o l l e c t data needed fo r deta i led evaluation and in te rp re ta t ion of the resul ts 

of the d r i l l i n g of CGEH-1 (Galbra i th , 1978), and 2) to help determine possible 

s i tes fo r fu ture d r i l l t e s t s . Surface invest igat ions included geologic and 

a l t e ra t i on mapping at a scale of 1:24,000 (Hulen, 1978), a low-a l t i tude 

aeromagnetie survey (Fox, 1978), and an i n l i n e d ipole-d ipole r e s i s t i v i t y 

survey. This report describes only the resul ts of the r e s i s t i v i t y survey. 

Ear l i e r studies of the e l ec t r i ca l propert ies of rocks w i th in the Coso 

area were made by Furgerson (1973) and by Jackson and others (1977). 

Furgerson's studies consisted of Schlumberger r e s i s t i v i t y soundings and 

roving-dipole r e s i s t i v i t y mapping. Jackson's work included Schlumberger 

r e s i s t i v i t y soundings, audio-magnetotelluric (AMT) r e s i s t i v i t y soundings, and 

t e l l u r i c r e s i s t i v i t y mapping. Both studies, by design, were reconnaissance in 

nature. In cont rast , the present work was done to map horizontal and ver t i ca l 

r e s i s t i v i t y st ructure in deta i l in an attempt to determine possible 

cor re la t ion wi th the geothermal system and to help del ineate the extent of the 

geothermal system. 
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FIELD PROCEDURES 

The f i e l d survey was performed under contract by Mining Geophysical 

Surveys of Tucson, Arizona. An i n l i n e , d ipole-dipole electrode geometry was 

used (F ig . 2 ) . The survey provides resolut ion both of horizontal and of 

ve r t i ca l r e s i s t i v i t y contrasts because the f i e l d procedure generates both 

hor izontal p r o f i l i n g and ve r t i ca l sounding measurements. Measurements were 

made at dipole separations, n x a , o f n = 0 . 5 , 1 , 2 , 3, 4 , 5 and 6, where £ 

equals the dipole length. A g r i d of three north-south l i nes and s ix east-west 

l ines was surveyed to map the r e s i s t i v i t y structure of a 41 sq km (16 sq mi) 

area. A to ta l of 54 line-km of l i n e was surveyed in 20 f i e l d days, 40.8 

l ine-km using a= 300 m dipoles and 13.2 l ine-km using a=150 m dipoles (see 

Plate I I ) . 

Measurements were made in the time-domain mode. Instrumentation 

consisted of a Data Control Systems model IPR-2 receiver (Newmont-type) and a 

Geotronics model FT-20A t ransmi t te r . The s ignal- to-noise ra t i o generally was 

good even fo r signals below 1 mv. Repeat measurements were made by 

interchanging current and potent ia l dipoles to determine the accuracy of 

measurements. These repeat measurements are shown on the data pseudosections 

in Figures 4-13. Percentage differences were calculated for each of 121 

repeat measurements: the mean and standard deviat ions are 8.2% and 8.8% 

respect ive ly . In view of the wide range of observed r e s i s t i v i t y values and of 

past experience wi th r e s i s t i v i t y surveys, t h i s amount of error i s qui te 

reasonable. 
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SURVEY RESULTS 

In terpre ta t ion of Res is t i v i t y Pseudosections 

Line 1 (300 m dipoles. F ig . 4) i s an east-west r e s i s t i v i t y cross section 

9.6 km in length extending from a point west of Sugarloaf Mountain to a point 

east of Coso Hot Springs (see Plate I I fo r l i ne loca t ions) . West of Sta. 13 

apparent r e s i s t i v i t i e s are high at short electrode separations, presumably 

showing volcanic rocks over ly ing 50 to 100 ohm-meter basement rock. Low 

apparen t - res is t i v i t y values at greater electrode separations in t h i s area are 

less than true ( i n t r i n s i c ) r e s i s t i v i t y values par t l y because of the extreme 

r e s i s t i v i t y contrast between the volcanic rocks and the basement rocks (see 

F ig . 3) and because of the e f fec t of horizontal changes in r e s i s t i v i t y along 

the l i n e . Low apparent r e s i s t i v i t y probably associated wi th the geothermal 

system extends from Sta. 13 to Sta. 25, a distance of 3.6 km. Res is t i v i t y 

values less than 10 ohm-meters in t h i s in terva l are in terpreted to be an 

e f fec t of a f a u l t zone subparallel to the Line as shown on the geologic map of 

Plate I . East of Sta. 25 the 10 ohm-meter and lower values are related to 

gravel f i l l . The lack of an increase in apparent r e s i s t i v i t y with depth 

indicates that the thickness of the conductive gravel layer i s greater than 

500 m, assuming a r e s i s t i v i t y contrast ex ists between the gravel and 

underlying bedrock. 

A two-dimensional computer model of th i s l i ne from Sta. 8 to Sta. 24 

(F ig . 14) shows the in terpreted r e s i s t i v i t y s t ruc tu re . A two-dimensional 

model is a va l i d assumption i f r e s i s t i v i t y features extend at nearly r i gh t 

angles from the l i ne fo r a distance of 3 dipoles to e i ther side of the l i ne 
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(G. W. Hohmann, personal communication). The computed r e s i s t i v i t y values are 

in general agreement wi th the observed values ind ica t ing a reasonable 

in te rp re ta t ion of the r e s i s t i v i t y s t ruc ture . Points of di f ference between 

computed and observed values are par t l y the resu l t of non-two-dimensional 

st ructure along the l i ne such as the subparallel f a u l t zone. The western end 

of t h i s model approximates the r e s i s t i v i t y s t ructure between Sugarloaf 

Mountain and the three rhyo l i t e domes immediately to the north (see Plate I I 

f o r l i n e I coa t i on ) . A geologic section through t h i s area would probably show 

a rhyo l i t e neck extending to depth below the 3000 ohm-meter rhyo l i t e layer . 

While t h i s section would be geological ly more accurate the indicated 

r e s i s t i v i t y structure is more accurate with respect to current f low. Since 

the necks of the rhyo l i t e domes are three-dimensional, i . e . , inverted cones or 

funnel shaped, and more res is t i ve than the i r host rock the e lec t r i ca l current 

ac tua l ly flows around rather than through them. Since a two-dimensional 

computer model i s not l im i ted in s t r i ke length a res is t i ve zone that 

represents a neck would appear as a res i s t i ve dike through which current would 

be forced to f low. A three-dimensional model that l im i ted the s t r i ke length 

of the res i s t i ve zone would be more accurate both geophysically and 

geo log ica l ly . 

Line 2 (300 m dipoles. F ig . 5) i s a north-south r e s i s t i v i t y cross section 

9.6 km in length. Low r e s i s t i v i t i e s apparently re lated to the geothermal 

system extend from Sta. 9 to Sta. 23, a distance of 4.2 km. North of Sta. 23 

r e s i s t i v i t y increases rapid ly whi le south of Sta. 9 the r e s i s t i v i t y begins to 

increase more slowly, and the low r e s i s t i v i t y anomaly cannot be said to be cut 

o f f although AMT measurements taken at 7.5 Hz in t h i s area show apparent 



r e s i s t i v i t i e s greater than 50 ohm-meters at the southern end of Line 2 

(Jackson; personal communication). 

The interpreted r e s i s t i v i t y structure between Sta. 8 and Sta. 32 was 

determined by two-dimensional computer modeling (F ig . 15). A comparison of 

computed and observed values indicates a reasonable i n te rp re ta t i on . The plus 

20 ohm-meter values at depth in the Sta. 14 to Sta. 17 in terva l i s another 

example of the e f fec t of horizontal r e s i s t i v i t y changes. In th i s instance an 

increase in apparent r e s i s t i v i t y wi th increasing dipole separation was 

generated as the t ransmit t ing and receiving dipoles were moved from low to 

higher r e s i s t i v i t y zones. The two 15 ohm-meter zones, Sta. 9 to Sta. 10 and 

Sta. 13 to Sta. 14, extending to depth, are interpreted to be f a u l t zones. An 

in te res t ing and important feature i s the apparent r e s i s t i v i t y low which 

approaches the surface in the Sta. 12 to Sta. 14 i n t e r v a l . This low is 

immediately adjacent to the Dev i l ' s Kitchen surface fumarole a c t i v i t y and i s 

l i k e l y due to hot f l u i ds and open fractures associated with th i s a c t i v i t y . 

Line 2 (150-m dipoles. F i g . 6) was run to add deta i l to the r e s i s t i v i t y 

structure observed on the 300-m dipole l i n e . The data essent ia l ly represent a 

closer look at the upper three separations of the 300-m dipole data and 

present a more accurate p icture of the complex near-surface r e s i s t i v i t y 

s t ruc tu re . Near-surface apparent r e s i s t i v i t y is mainly h igh, wi th marked 

decrease at depth. Interpreted depth to lower r e s i s t i v i t y rock averages 90 m. 

The in terva l 12.5 to 13.5 shows low near-surface r e s i s t i v i t y again 

corresponding with the Dev i l ' s Kitchen area. 

Line 3 i s an east-west r e s i s t i v i t y p r o f i l e across the CGEH-1 d r i l l - s i t e . 



The r e s i s t i v i t y structure on th i s l i ne is s imi lar to that observed on Line 1 . 

Observed r e s i s t i v i t y values less than 20 ohm-meters between Sta. 7 and Sta. 12 

are related to the geothermal system and to a major north-northeast-trending 

f a u l t zone defined by Lines 4 and 6 to the nor th . A plus 30 ohm-meter zone 

extends to depth between Sta. 12 and Sta. 16. Low r e s i s t i v i t y values east of 

Sta. 17 are related to geothermal a c t i v i t y along the Coso Hot Springs f a u l t 

zone and to gravel f i l l in terpreted to be th icker than 500 m at the extreme 

eastern end of the l i n e . 

Line 4 was run across an apparent north-northeast-trending f a u l t zone 

noted by shearing in outcrop. A two-dimensional computer model (F ig . 16) 

shows the in te rpre ta t ion of the r e s i s t i v i t y structure observed on th is l i n e . 

The 450 m wide, 20 ohm-meter zone extending to depth between Sta. 7 and Sta. 

10 is in terpreted to be an expression of the f a u l t zone in c rys ta l l i ne 

basement rock. This f a u l t zone is one of the major north-northeast-trending 

structures observed in the area (see Plate I ) . 

Line 5 is an east-west r e s i s t i v i t y section wi th charac ter is t ics s imi lar 

to the Sta. 8 to Sta. 24 in terval on Line 1 . A two-dimensional computer model 

of the l i n e i s shown as F i g . 17. The 10 ohm-meter zone shown on t h i s model 

represents the geothermal system near i t s southern edge. 

Line 6 was run to determine i f the f a u l t zone mapped on Line 4 extends to 

the south towards CGEH-1. The near-surface, low r e s i s t i v i t y zone between Sta. 

8 and Sta. 9 is in terpreted to be the southern extension of t h i s s t ruc ture . 

10 



Line 7 was run west of the rhyo l i t e domes to tes t fo r possible low 

r e s i s t i v i t y , west-northwest-trending f a u l t zones, and to determine the 

r e s i s t i v i t y structure associated wi th the fumarole at the southwestern end of 

Sugarloaf Mountain. Near-surface, high r e s i s t i v i t y values between Sta. 3 and 

Sta. 8 are associated with subsurface volcanics while the low r e s i s t i v i t y zone 

at depth in t h i s in terva l of less than 20 ohm-meters i s caused in part by 

horizontal decreases in r e s i s t i v i t y outside th i s i n t e r v a l . In par t icu lar the 

Sta. 1 to Sta. 3 in terva l shows a zone of low r e s i s t i v i t y , less than 20 

ohm-meters, associated with the fumarole. This l ow - res i s t i v i t y zone probably 

extends from the surface to depth. I f a conductive f a u l t zone is associated 

with th is fumarole, i t s s t r i ke has not been establ ished. 

A near-surface, h i g h - r e s i s t i v i t y layer of plus 100 ohm-meters material 

thickens to the north from Sta. 8 to the northern end of the l i ne and i s 

associated wi th c r ys ta l l i ne basement rock. Res is t i v i t y values less than 100 

ohm-meters at depth in th i s in terva l probably r e f l e c t an increase in water 

content of the basement rocks below the water t ab le . 

Line 8 i s a 150-m dipole l i ne run along the eastern edge of Dev i l ' s 

Ki tchen. Apparent r e s i s t i v i t y values greater than 100 ohm-meters re f l ec t 

varying thicknesses of overly ing volcanic mater ia l . At Sta. 11 the high 

r e s i s t i v i t y rhyo l i t e zone probably extends to depth. The 8 ohm-meter anomaly 

below th i s s t a t i on , at n=6, i s another example of a r e s i s t i v i t y reversal due 

to hor izontal changes in r e s i s t i v i t y as shown on Figure 3. The near-surface 

zone of less than 20 ohm-meters below Sta. 16 i s re lated to the al tered rock 

at Dev i l ' s Kitchen while the somewhat higher r e s i s t i v i t i e s at depth indicate 

11 



that the alteration is l imited to the near-surface. Donald White, of the USGS 

(personal communication) has noted that the alteration at Devil 's Kitchen is a 

near-surface process involving oxidation of H2S vapors producing H2SO4 when 

mixed with ground water which attacks the surrounding rocks. This chemical 

model is clearly supported by the observed res is t iv i ty pattern. The 9 

ohm-meter anomaly in the Sta. 20 to Sta. 21 interval is associated with the 

faul t zone that l ies subparallel to Line 1 and the 6 ohm-meter anomaly to the 

north is probably related to a parallel structure. A comparison of this l ine 

with the 150 m dipole Line 2 (Fig. 6) shows that they are similar, indicating 

at least 600 m of east-west structural continuity between these l ines. The 

obvious east-west structural control of the less than 10 ohm-meter anomalies 

on l ine 8 explains the lack of good correlation between the computed and the 

observed res is t iv i ty values on Line 1 (Figs. 4 and 14). As a result , a 

north-trending, two-dimensional, 10 ohm-meter near-surface zone is not a valid 

model for the Sta. 16 to Sta. 20 E interval on Line 1. 

Line 9 is a 150 m dipole l ine run along the southern edge of Devil's 

Kitchen. The pervasive 30 to 50 ohm-meter values are somewhat surprising as 

lower values, comparable to those observed on Line 8 and associated with 

a l terat ion, were expected. The higher values suggest that the alteration 

exposed at the southern edge of Devil 's Kitchen is also the southern l im i t of 

alteration which is apparently l imited to the immediate area of H»5 gg^ 

emanation. This observation is again consistent with White's model of the 

alteration process. The 30-50 ohm-meter zone is related to the 

topographically subdued rhyol i te dome at the southern edge of the Devil's 

Kitchen and represents an area of relat ively higher res is t i v i t y , which extends 

12 



to ,depth, within the overall bedrock res is t iv i ty low. A res is t iv i ty contrast 

is observed at Sta. 13 which corresponds to a mapped fau l t . The lower 

res is t iv i t ies to the east are related to basement rock and indicate a 

continuation of the bedrock res is t iv i ty low in this area. 

Horizontal Resistivity Structure 

The horizontal res is t iv i ty structure of the surveyed area is discussed 

with reference to the data shown in plan view on Plates I I through VI . These 

Plates are overlays to the geologic base map, Plate I . 

Plate I I shows the interpreted near-surface res is t iv i ty d istr ibut ion. 

Locations of res is t iv i ty contacts and int r ins ic res is t iv i ty values were taken 

direct ly from two-dimensional computer models for Lines 1 through 5 and were 

interpreted by inspection for the other l ines. Catalogs of theoretical 

res is t i v i t y models show that the diagonal contour patterns are associated with 

near vertical res is t iv i ty contrasts and this association was used to interpret 

Lines 6 through 9. The region of 1,000-7,000 ohm-meters res is t iv i ty in the 

western portion of the survey coincides with outcrop of rhyolite domes. 

Resist ivi ty values over crystal l ine basement outcrop range from 10 ohm-meters, 

just west of Coso Hot Springs and just east of Devil 's Kitchen, to over 500 

ohm-meters in the northern and northwestern parts of the area. Basement 

res is t iv i ty values generally decrease to the south and east. 

Plate I I I is a contour map of f i r s t separation, n=l, apparent res is t iv i ty 

values. Almost al l of the surface geothermal manifestations in the Coso area 

occur within the 20 ohm-meter contour l i ne . Of particular interest is the 

narrow zone of less than 10 ohm-meters parallel to Line 1 at the center of the 

13 



map. Detailed geologic mapping indicates that this zone corresponds with a 

major east-northeast-trending faul t zone (Plate I ) . The strong simi lar i ty 

between the interpreted res is t i v i t y , Plate I I , and the apparent res is t i v i t y , 

Plate I I I , indicates the l imited effect of lateral res is t i v i ty averaging at 

n=l. 

Plate IV shows the interpreted true res is t iv i ty structure at an 

approximate depth of 300 meters. This interpretation is supported by 

two-dimensional computer modeling of individual l ines, where a two-dimensional 

approximation is reasonable, and by inference from catalogs of two-dimensional 

res is t iv i ty models (Ludwig, 1967) and three-dimensional models (Hohmann, 

1975). The 1000-7000 ohm-meter zone is the inferred root system of the 

rhyol i te domes. Resistivit ies shown on this Plate are generally lower 

relat ive to those shown in Plate I I and ref lect the increase in pore f l u i d 

below the water table. Depth to the water table is probably 50 to 100 m 

within the surveyed area. The western edge of the 10-20 ohm-meter zone 

parallel to Line 2 is generally well established by modeling while the eastern 

edge of this zone is poorly defined. Recent geologic mapping and the geologic 

log of CGEH #1 suggest the western edge of this zone may be related to a 

contact between a Cretaceous (?) leuco-granite intrusive to the east and older 

metamorphic rock to the west (Hulen 1978). The 30-50 ohm-meter circular 

feature is related to the rhyol i te dome just south of Devil 's Kitchen. The 

narrow, 10 ohm-meter zone subparallel to Line 1 is the expression of the major 

ENE trending faul t zone referred to on Plate I I I . The 10-20 ohm-meter zone on 

Line 7 is spatial ly related to a fumarole on the southwestern end of Sugarloaf 

Mountain. I f l inear, the eastern and western l imi ts of this low res is t iv i ty 
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feature have not been determined. 

Computed models of Lines 1 , 2 and 5 (F igs. 14, 15 and 17) show 20 

ohm-meter r e s i s t i v i t y values w i th in the geothermal system fo r the depth range 

300 to 1000 m. Increasing the i n t r i n s i c r e s i s t i v i t y values of the computer 

models from 20 to 50 ohm-meters, below 300 m generates higher 

apparen t - res is t i v i t y values than those observed at the greater dipole 

separations. The Induction Electrolog of CGEH #1 shows r e s i s t i v i t y values 

gradually increasing from 10 ohm-meters to 50 ohm-meters for the 300 to 1000 m 

depth i n t e r v a l . I f the r e s i s t i v i t y log of CGEH-1 i s taken as representative 

of the r e s i s t i v i t y structure at depth w i th in the geothermal system, then i t 

appears that 50 ohm-meters i s the upper l i m i t of i n t r i n s i c r e s i s t i v i t y f o r the 

system to a 1000 m depth. This conclusion is consistent with the model 

resu l ts where a gradual increase in r e s i s t i v i t y to 50 ohm-meters at a depth of 

1000 m is permissable. 

Plate V shows the contoured apparent r e s i s t i v i t y values observed at a 

dipole separation of n=3. The apparen t - res is t i v i t y s t ructure shown on th is 

plate is less complex than the interpreted r e s i s t i v i t y structure of Plate IV 

at a comparable depth. At the t h i r d separat ion, ve r t i ca l and la te ra l 

r e s i s t i v i t y values are averaged over a larger volume of rock which resul ts in 

gradational changes in the apparent r e s i s t i v i t y values. The r e s i s t i v i t y low 

defined by the 20 ohm-meter contour l i ne covers a 4 sq mi (10 sq km) area and 

i s open to the east and southeast. To the east the bedrock low merges wi th 

low r e s i s t i v i t y values of the g r a v e l - f i l l e d basin east of Coso Hot Springs. 

The extent of the bedrock low to the southeast i s not delineated by t h i s 

15 



survey. Although not fully defined by the results of this survey, the 

inferred southern limit of the low is supported by the results of AMT 

soundings in this area (D. B. Jackson, personal communication). The 

unsurveyed bedrock area is 2 to 3 sq mi (2-5 sq km) in extent. 

In the absence of any obvious change in rock type, this bedrock 

resistivity low is probably caused by a combination of observed increases in: 

1) fracture density (higher permeability), 2) hydrothermal alteration (higher 

clay content) and/or, 3) temperature (higher dissolved solid content). The 

results of recent detailed geologic mapping by Hulen (1978) and shallow 

temperature measurements by LaSchack (1977) support this conclusion. The 

significance of this interpretation should be judged in light of the results 

of recent work by Moskowitz and Norton (1977) which has shown that low 

resistivities associated with geothermal anomalies are "a complex function of 

fluid circulation patterns, fluid composition, and the distribution of 

conductive minerals produced by the reaction between circulating fluids and 

rocks." They point out that in many cases low near-surface resistivity 

anomalies cannot be entirely accounted for by hot circulating saline fluids 

and that observations of high thermal gradients associated with 

low-resistivity anomalies are not unique indications of a high-energy 

geothermal resource at shallow crustal depths. 

Plate VI a contour map of sixth separation, n=6, apparent resistivity 

values demonstrates the effects of lateral changes in resistivity. Overlaying 

this map on the map of first separation values, Plate III, shows that the 

position of resistivity highs and lows are generally reversed. The low, less 
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than 20 ohm-meters on Plate VI , west of l ine 2, is produced by the extreme 

contrast in res is t i v i ty between the rhyoli te and host rock. The transmitting 

and receiving dipoles for sixth-separation measurements were 1.8 km apart and 

located in relat ively lower res is t iv i ty host rock which causes this apparent 

low at depth. The plus 20 ohm-meter values observed in the center of Plate 

V I , near Devil 's Kitchen, were caused by the reverse situation where the 

transmitting and receiving dipoles were located in relat ively higher 

res is t i v i t y zones. Referring again to Figure 3, this reversal in apparent 

res is t iv i ty with increasing dipole separation is shown to be mainly the result 

of horizontal changes in res is t iv i ty rather than ver t i ca l . 
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SUMMARY AND CONCLUSIONS 

This survey has defined a bedrock r e s i s t i v i t y low at least 4 sq mi (10 sq 

mi) and up to 6 sq mi (15.5 sq km) in extent associated wi th the geothermal 

system at Coso. The boundaries of t h i s low are generally well defined to the 

north and west by 5- to 10-fold increases in r e s i s t i v i t y compared to 

r e s i s t i v i t i e s observed w i th in the low. The extent of the anomaly i s not as 

well defined to the south but r e s i s t i v i t y values generally increase in th i s 

d i rec t ion and the approximate southern l i m i t has been determined. The bedrock 

r e s i s t i v i t y low merges with an observed r e s i s t i v i t y low over gravel f i l l east 

of Coso Hot Springs. 

A complex horizontal and ver t i ca l r e s i s t i v i t y st ructure of the surveyed 

area has been defined which precludes the use of layered-earth or 

two-dimensional in te rpre t i ve models for much of the surveyed area. In general 

the survey data indicate that a 10 to 20 ohm-meter zone extends from near 

surface to a depth greater than 750 meters w i th in the geothermal system. A 

combination of observed increases i n : 1) f rac ture density (higher 

permeabi l i ty ) , 2) a l t e ra t i on (high clay content) , (Hulen, 1978) and 3) 

temperatures (higher dissolved so l id content of ground water) w i th in the 

bedrock low explain i t s presence. 

Addit ional r e s i s t i v i t y work would be necessary to f u l l y define the extent 

of the bedrock low to the southeast. Detai led l i n e s , using 150-m dipoles, 

would help to fur ther delineate major north-northeast and west-northwest 

s t ruc tura l features w i th in the low. 
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