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INTRODUCTION

Investigations on the factors that control the
movement of fluids in the underground inevitably
become involved with fractured rock masses. In
the petroleum industry, it was recognized long ago
that the presence of fractures, either natural or
man made, is crucial to the economics of the recovery
methods to be employed in many oil fields. The
development of groundwater resources is likewise
often dependent on the presence of fractures to
provide a drainage system in low permeability rocks.
Geotechnical engineers have been faced with difficult
problems when designing and consgtructing large
engineering 'works in fractured rocks; catastrophic
failures of large dams provide evidence of the
magnitude of their problems. The leakage problems
that have resulted when natural fractures were not
detected in developing projects for underground
storage of petroleum hydrocarbons are still another
kind of evidence of the importance of fracture
systems, The current problem of evaluating migration
of aqueous solutions of radionuclides through crys-
talline rock masses where the movement will be
controlled by the discontinuities is a critical issue
in the design of nuclear waste repositories. These
examples simply serve to illustrate the fact that the
. fractures play a key role in understanding the flow
behavior of rock systems.

Despite the importance of this problem and the
great amount of investigation by many workers, much
remains to be done in developing a complete under-
standing of the factors that control fluid movement
through fractured rocks. The range of subject matter
covered by the papers presented in Topic Area 1 of
this symposium gives a good indication of the com-
plex problems that face earth scientists.

We shall address three different aspects of this
Problem in an effort to describe some investigations
Currently underway in this laboratory. The first
Part of this paper is an attempt to develop an ex-
Pression for fluid flow in a deformable fracture.
Our approach to this problem of the hydromechanical
behavior of a deformable fracture differs from that
©of Gangi (1978) although we both have a common
Starting point, the roughness of the fracture sur-
face. The second part has to do with the problem of
how to treat flow through networks of fractures. It
is Customary to consider a discontinuous rock mass
by some equivalent porous medium but this raises
Some important questions that will be discussed.
The third part will present the most recent results
by our group to develop a fully coupled finite
element code for flow through fractured porous

.media subject to thermal, hydraulic and mechanical
Stresses.
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HYDROMECHANICS OF FLOW IN A SINGLE FRACTURE

We have developed a simple physical model to
understand the effect of normal stress on flow
through a single rough walled fracture. 1In order to
gain a fundamental understanding of the problem, we
have focussed on the physical mechanisms and have
excluded the use of arbitrary fitting parameters. A
single fracture is considered to be composed of a
collection of voids, and the closure of the fracture
under stress to result from the deformation of these
voids. From such a model, the macroscopic measurable
quantities, such as the normal stress and correspond-
ing normal fracture displacements, can be correlated
to the geometrical characterization of a rough walled
fracture. The effect of roughness is incorporated
into the usual parallel plate model of a fracture,
and the flow rate as a function of normal stress
is predicted and validated against laboratory data
on granite and basalt.

Solutions of the Navier Stokes equation show
(Boussinesq, 1868; Bear, 1972) that steady, laminar
flow through two smooth parallel plates separated by
a constant distance b obeys the cubic law, that is,
the flow rate is proportional to b3. The cubic law
has been shown to hold down to apertures of 0.2 ym
in open fractures made of optically smooth glass
(Romm, 1966). We have shown (Tsang and Witherspoon,
1981) that an equivalent cubic law may be used for a
rough walled fracture if the constant value for the
aperture is replaced by a statistical average. This
implies that the hydrological property of a rough
walled fracture may be suitably modeled by a mathe-
matical aperture distribution function.
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Fig. 1 Schematic representation of a fracture
by an asperity model.

Fig. 1 shows such a schematic representation for
a fracture, which consists of a smooth top slab and
a rough bottom slab with asperities of different
heights (hj). The configuration of asperities
gives rise to a fracture with variable aperture bj.
The problem is then to develop an asperity function
that is a correct mathematical expression for the
variability of the real, physical fracture.
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Theoretical Development
Geometrically, a single rough walled fracture may

be envisioned either as a collection of voids or as
an array of asperities (Fig. 2). indexr increasing

ASPERITIES

Fig. 2 Schematic representation of a frac-
ture by either the asperity or the
void model.

normal stress, more asperities come in contact and
the average distance between points of contact
decreases. Though an asperity description for a
fracture seems to be a natural candidate for the
study of flow through fractures, we find that the
void description is better suited to the interpreta-
tion of the mechanical property of a single fracture
under stress. By considering the closure of a single
fracture as resulting from the shortening of the
average crack length of the voids, we were able to
arrive at an agperity function consistent with
mechanical measurements of fracture displacement and
applied normal stress.
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Fig. 3 Typical normal stress-displacement be-
' havior for intact and jointed rock.

Given measurements of normal stress displacement
for both intact and jointed rock such as those shown
in Fig. 3, we may define both the intrinsic Young's
modulus, E, for the intact rock and the effective
Young's modulus, Eg¢ge, for the jointed rock from
the respective slopes of the stress-displacement
curves:

1 do

E{0,4V,) = T anv,

(1)

1 do

T dav, (2)

Eeggelo,AVy) =

At low streSses, the effective Young's modulus Egff
of the jointed rock is much smaller than that of the
solid rock. As stress is increased, Eggg approach-
es the value of E for the solid rock.

Consider first the geometry of one elliptic flat
crack of length 2d enclosed in a rock volume of u =
AxAytz. Following closely the formulation of walsh
{1965), one can show that for a rock with a collec-

tion of voids, all with the same orientation as the
one shown in Fig. 4, the.effective modulus Eofg
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Fig. 4 Geametry of a flat elliptic crack in
in rock block under stress.

of the rock with voids is related to the intrinsic
rock modulus E by:

1
Eeff

47 <ad>
E <uw>

=é+ , (3)
where both the half-crack length cubed and the volume
enclosing each void have been averaged over all the
voids in the sample. This expression is not sensi-
tive to the actual shape of the void. The second
term on the right-hand side of (3) arises from
the strain energy associated with the cracks. Since
(3) applies to a physical situation of sparse voids,
the effect of the voids on the elastic modulus is
expected to be small. Then the property of the
rock medium in which the voids are situated may be
described by Young's modulus for the intact rock, and
therefore the same modulus E appears in the strain
energy term associated with the cracks.
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Fig. 5 Representation of single horizontal
fracture by an array of voids. )
If we were to consider one single horizontal
fracture as a collection of voids, the physical
situation will be as shown in Fig. 5. Here the voids
are dense and the void ratio is large. Only a small
fraction of the total fracture area is in contact.
To describe the effective modulus Eggg of the
fractured rock in the vicinity of the fracture, (3)
may be modified to:

1
Egff

47 <ad>
Begg <w

=3,
= (4)
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where (4) now includes Egfg in the last term. When
the voids are large in number and close in proximity,
the void-void interaction is no longer negligible as
4s assumed in the derivation of (3). Since it is
difficult if not impossible to account for this
- interaction in the calculation of strain energies, we
make a plausibility argument to lump the effect of
the interaction by introducing Egfg in'the last
term of (4). The argument being that due to the high
void ratio, the property of the rock medium is better

:epresented by the effective modulus of the fractured:

rock than by the modulus of the intact rock.

Suppose there are M, voids in the fracture with
a total cross sectional area A. then the average
volume enclosing each crack may be written as:

A Az
v

<u> = (5)

where Az is a thickness around the fracture within
which Egfg is applicable (see Fig. 5). Since the
rock fracture is represented by a collection of
voids, one expects the contact area of the fracture
walls to be sgmall such that the total void area is
almost identical to the total fracture cross section
area A. Therefore:

<(2d)2> My = A . (6)

In addition, for a spatially random collection of
M, voids, <ad> = <d2><a> and (4) may now be written
approximately as:

E
<
eff ~1 - m<d>

E bz (7)

Equation 7 gives a useful relationship between the
two moduli and the average half-crack length <d>
which characterizes the rough fracture at different
levels of stress.
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Fig. 6 Deformation of voids in a sequence
of increasing normal stresses.

The physical picture implied by (7) is illustrated
8chematically in Fig. 6, which is an attempt to

portray a portion of fracture shown in Fig. 5 at
different stages of normal stress. The crack length
2d is defined as the distance between two adjacent
areas where the two fracture surfaces come into
contact. These areas of contact are simply the
asperities as shown in Fig. 2. Under increasing
load, the deformation of the voids causes more
asperities to come in contact, and leads to a de-
crease in the average crack length. This process
results in a gradual increase of the effective
modulus with increasing normal stress according to
(7). The average crack length 2<d> continues to
decrease as the voids deform until the term <d>/Az
becomes negligibly small compared to 1, at which
point the jointed rock will exhibit an effective
modulus identical to that of the intrinsic modulus.

We therefore attribute the "softness” of a jointed
rock to an average crack length that initially is
relatively long and the stiffening of the Jjointed
rock under compression to the shortening of this
average crack length. This differs from Gangi's,
(1978) "bed of nails" model, in which he ascribes the
closure of a fracture to the elastic compression of
the "nails"” or "asperities". In Gangi's model,
the "softness” of the fracture is said to result from
the small number of asperities that are in contact.
These areas therefore sustain much higher stresses
than that measured by the total load divided by the
total fracture area. As a result, the strain of
these asperities in contact is expected to be larger
than the strain in an intact rock under the same
load.

However, when we apply such an asperity model to
both the flow data and stress-strain measurements in
a granite fracture (Iwai, 1976]), we found that in
order to obtain a result that is gquantitatively com-
patible with the data, we had to assume that the
total area of all the asperities that are in contact
with the top slab (Fig. 1) took on a value of less
than .00l of the total fracture area at an applied
stress level of 20 Mpa. The experimental measurement
[Iwai, 1976] gives a value between .l to .2 for the
contact area of the fracture at the same stress
level. The discrepancy of two orders of magnitude
between a parameter in the theory and measurement
implies that the physical fracture system appears to
be much “softer" than that described by the asperity
model. Oon the other hand, the alternate mechanism
proposed above, where the closure of the fracture
under normal stress is ascribed to the deformation of
voids, does predict a very soft elastic property at
low stress. It also predicts a gradual increase of
Young's modulus with stress, and a correct contact
area in accordance with the laboratory measurment.

It is clear from Fig. 6 that one may view the
sequence (a) (b) (c) either as a decrease in the
average crack length 2<d> or as an increase in the
number N, of areas in contact under increasing
load. For a rough-walled fracture, we shall describe
the former process as a "void model" and the latter
process as an "asperity model." For a spatially
random distribution of voids or asperities, N
varies inversely with <d>. Given elastic stress
measurements, it is evident from (7) that the rela-
tive average crack length 2<d> as a function of
stress or fracture displacement can be calculated,
and therefore, N, may be deduced.

The number of contact areas, Ng, is the key to
aperture distribution. Fig. 1 represents a rough-




walled fracture as an array of asperities of varying
heights hj. At zero applied stress, the maximum
possible aperture is by, which corresponds to an
asperity of zero height. With applied axial stress,
the fracture closure AV results in a downward
displacement of the top slab. At nonzero stresses,
the aperture which corresponds to each asperity of
height h is:

(bg-8V ~ h) h < (bg - AV)

o h > (bg = AV)

Let n{h) denote the asperity height frequency
distribution function which characterizes the
fracture prior to loading. Then N, the total
number of asperities in contact at any stress,
is:

bo

Nc(AV) = n(h) dh. (9)

bo-AV

It is clear from (9) that the asperity height dis-
tribution function, n(h), can be obtained from the
derivative of N.. For a given set of stress dis-
placement measurements, it is possible only to
deduce the change in <d>/Az relative to its value at
zero applied stress from (7). This implies that Ng
and in turn n(h) ‘can only be determined to within
some constant multiplier, because the value of by
is not known. 1If the contact area as a fraction of
the total fracture area is known to be w at a speci-
fied deformation AV, then:

_ Nelaw) o)
T Nelbg) ¢

and by is readily determined if a functional form
exists for N.(AV).

Wwe have shown (Tsang and Witherspoon, 1981) that
if the aperture variation of the fracture is spatial-
ly random, the eguivalent cubic law for flow through
a rough walled fracture may be written as:

9 _ 3

s C <b*> (1)
where C is a proportionality constant that depends on
the macroscopic fracture dimensions and properties of
the fluid. The statistical average for the variation
in aperture may therefore be computed from:

be=AV
J (by = AV - h)3n(h) an

B3V, 9)> = 2 Bo (12)

[ n(h) dh

0

Once the normal stress displacement measurements and
an estimated contact area of the fracture at any
stress are known, flow through the rough fracture may
be calculated from (12).

Application to Laboratory Data

We used results from Iwai's (1976) laboratory

investigations on the mechanical and hydrological
properties of tension fractures in samples of basalt
and granite to test the validity of our physical
theory. Iwai measured normal displacements for both
intact and jointed rock at normal stresses up to
20MPa, and he also estimated the contact area within
the fracture to be 10 to 20% of the total fracture
area at maximum stress. Figure 7 shows how his
results for radial flow of water through a single
fracture in basalt decreased with increasing .normal
stress during the first loading cycle. Based on his
fracture displacements, we used (1l2) to determine
average apertures and then computed flow rates from
(11) for fractional contact areas of 10, 15, and 20%.
The smooth curves on Figure 7 show how the theoreti-
cal results compare with Iwai's experimental data.
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Fig. 7 Experimental and theoretical flow as
a function of normal stress in basalt.

In analyzing Iwai's (1976) data for radial flow in
a granite fracture, we used his results for both the
loading and unloading cycles. Fig. B8 shows the
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Fig. 8 Experimental and theoretical flow as a
function of normal stress in the first
loading and unloading cycles in granite.




hysteresis that he observed as a result of a perma-
nent set in the fracture. We assumed a maximum
fractional contact area of 15% at maximum applied
gtress and the smooth curves indicate how our theory
compares with his experimental data. Since no curve
fitting is involved in handling the flow data, we
believe our theory probably contains the essential
physics that is relevant to the coupling between
stress and flow in a deforming fracture.

Symmmary

Both a "void" and an "asperity" description of
the fractures are used in this theory. The former
ig suited to the mechanical property, and the
latter, to the hydrological property of the rough-
walled fracture. The physical picture that emerges
from such a model is that at zerxo applied stress, the
fracture is propped open by only a few tall asperi-
ties, giving rise to very long average "crack®
lengths. Therefore, the elastic property of the
jointed rock appears to be extremely soft at low
applied stresses. At higher stresses, the number of
agperities in contact increases rapidly, causing a
rapid decrease in the average crack length. Thus,
the Young's modulus of the jointed rock approaches
that of the intact rock.

The fact that the fractional contact area of the
fracture at the maximum applied stress of 20 MPa is
on the order of 0.15 is of considerable interest.
While the stress-displacement measurements indicate
that the Young's modulus of the jointed rock becomes
almost identical to that of the intact rock at this
stress level, the fracture is far from being "closed";
in fact, only about 15% of the fracture surfaces is
in contact. The mechanical property of the fracture
becomes indistinguishable from that of the intact
rock, not because the fracture is "closed," but
because the average crack length under increased
load has shortened sufficiently, causing the voids in
the fracture to deform from elongated shapes (Figs. 4
and 5) to voids more like spheroids. Thus, with
Tespect to its elastic behavior, the fracture is very
much like an intact rock; but with respect to its
hydraulic behavior, the fracture is definitely "open”
to allow fluid transport. Our observation therefore
indicates that unless there are very high normal
8tresses, a fracture probably cannot be "closed"
Sufficiently to completely prevent hydraulic flow.
This seems to be consistent with the observation of
Kranz et al. (1979) from their measurement of permea-
bility from pulse decay data. Kranz et al. deduced
indirectly from their data that the difference in
the flow rate between a jointed and an unjointed
rock does not vanish until the effective pressure
is at least 200-300 MPa.

POROUS MEDIA EQUIVALENT FOR A NETWORK
OF DISCONTINUQUS FRACTURES

.One of the important questions that arises when
Considering the flow of fluids through a discontin-
Yous rock mass is whether or not the fracture net-
work behaves like porous media.
Oone model the system by an equivalent permeability
tensor and proceed to determine the movement of
fluids under the application of known boundary and
initial conditions?

Work that has been done to determine the equiva-
lent permeability of fractured rocks from information
on fracture geometry (assuming an impermeable matrix)

In other words, can,

can be‘'classified into two categories. Most of the
work that has been done falls into the first category

Wwhere fractures are assumed to be of infinite extent

{continuous or extensive fractures). Very little
work has been done in the second category, taking
into account the finite or nonextensive nature of
fracture size.

Mathematical studies of extensive fracture
systems were made by Snow (1965). Snow developed
a mathematical expression for the permeability
tensor of a single fracture of arbitrary orienta-
tion and aperture relative to a fixed coordinate
system. The permeability tensor for a network of
fractures is therefore the tensor formed by adding
the respective components of the permeability
tensors for each individual fracture.

It can be seen in the field that fractures are
clearly of finite dimensions. The fact that frac-
tures are finite means that each fracture can con-
tribute to the permeability of the rock only insofar
as it intersects other conducting fractures. 1In
the extreme, an isolated fracture which does not
intersect any other fracture effectively contributes
nothing to the permeability of the total rock mass.
This means that flow in any given fracture is not
independent of flow in every other fracture.

Two approaches have been taken to account for
the finite nature of real fractures. Parsons (1966)
and Caldwell (1971, 1972) have used analogue models
to study finite fractures. Rocha and Franciss
(1977) have proposed a field method for finding a
correction factor to Snow's (1965) analysis.

A significant result of Parson's work was that
doubling the permeability of all fracture elements
in the x direction increased the permeability in
the y direction. This effect would not be seen in
continuous fractures, but with discontinuous frac-
tures the net flow in the y direction must proceed
through some fractures oriented in the x direction.
Also, for a similar reason, permeability in the x
direction is less than doubled. This is a signifi-
cant property of fracture systems that must be kept
in mind.

Homogeneous Anistropic Permeability

In order to determine when a fractured medium
behaves as a homogeneous, anistropic medium, one must
determine if a symmetric permeability tensor exists.
The only way to show this is to actually measure the
directional permeability. Darcy's law:

q = K.. — (13)
3 Y

can be used to examine the theory of directional
permeability measurement. The fact that flow and
gradient are not necessarily in the same direction
can be seen from inspection of the above Darcy
equation. Only when flow and gradient coincide
with one of the principle axes of permeability
will flow and gradient be in the same direction.

Marcus and Evanson (1961), Marcus (1962), and
Bear (1972) give both the expression for permeability
in the direction of flow and permeability in the
direction of gradient. Both show how the results of
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directional permeability measurement can be plotted
as ellipsoids. For Kg, the permeability measured in
the direction of flux, /Ef plotted versus ¢, thé
direction of measurement, on polar coordinate paper
will be an ellipsoid given by:

2

N

+ (14)

]
le

-
t\)>< r<N
+
xln

w

Likewise for K4, the permeability in the direction
of the gradient, 1//)?g plotted versus a will be an
ellipsoid given by:

R S (15)
1/K1 1/K2 1/K3

For permeability measured in the direction of flux,
the major axis of the ellipsoid is in the direction
of maximum permeability. For permeability measured
in the direction of the gradient, the major axis of
the ellipsoid is in the direction of minimum permea-
bility.

Another basic problem is that of establishing
homogeneity. Homogeneity has been discussed by
Hubbert (1956), Fara and Scheidigger (1961), Toth
(1967), Bear (1972), and Freeze (1975). Freeze
points out that there is really no such thing as a
truly homogeneous medium in geology. However, in
order to have a tractable analysis of flow, a scale
of measurement (the macroscopic scale) must be found
for which the porous medium is seen as a continuum
(Hubbert, 1956). On this scale the medium is said
to be homogeneous. The scale at which analysis is
possible is commonly illustrated with a diagram
such as Figure 9. The volume at which the parameter
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Fig. 9 Change in value of measured permea-
bility with size of sample.

of interest, in this case permeability, ceases to
vary is defined as the representative elementary
volume (REV). With respect to permeability, the REV
of a medium can be sought by measuring the average
permeability of increasing volumes of rock until the
value does not change significantly with the addition
or subtraction of a small volume of rock.

There is no guarantee that such an REV exists
for every permeable system. Indeed, Snow's {(1969)
theoretical and experimental work shows the permea-
bility of fractured rock may continue to increase
with the volume tested. This implies that the
statistical sample continues to change with the
size of the sample. A further problem has been
studied by Freeze (1975), Smith and Freeze (1979a,
1979p), and Smith (1978). They have concluded that
for some problems it may not always be possible to

define eguivalent homogeneous properties for in-
herently heterogeneous systems.

The difficulty in identifying equivalent perme-
ability is that, (a) the equivalent permeability
tensor that works for one set of boundary condi-
tions will not necessarily predict the correct flux
for another set of boundary conditions, and (b) an
equivalent permeability which is correct in terms
of flux may not predict the correct average head
distribution. The first difficulty arises because,
in general, different boundary conditions induce
different gradients in different parts of the flow
field. The permeability in one part of the field
which has a higher gradient will have more effect
on the total flux than the permeability in another
part of the field which has a lower gradient.
When the boundary conditions change, the emphasis
changes. Therefore, a given equivalent permeabil-
ity tensor will only apply absolutely to kine-
matically similar flow systems.

If the gradient within the internally heterogen—
eous REV remains approximately constant, each part
of the element will have equal emphasis, and it may
be possible to define a unigue equivalent permeabil-
ity tensor which will be correct for approximately
linear flow in any direction. However, if the
isopotentials and flow lines are curved relative to
the dimensions of the statistically determined REV,
then the value of the equivalent permeability of the
REV will depend on the particular kinematics of the
flow system., In this case, analysis of the flow
system would depend on the knowledge of the equiva-
lent permeability and the value of the equivalent
permeability would depend on the flow system. So a
unigue solution to the flow problem is not guaran-
teed. If, on the other hand, the gradient is con-
stant and the average flow lines are linear within
the statistically determined REV, then there may
exist a single permeability tensor which can be used
to correctly predict flow in any direction. However,
even under the constraints of a constant gradient,
there is still no guarantee that a unique, symmetric
permeability tensor will exist for every medium on
any scale.

Given a flow system such as seepage under a dam,
the size of the appropriate REV must be small enough
to have approximately a constant gradient throughout
and therefore linear average flow lines. However, it
must also be large enough to contain a representative
sample of the heterogeneities. In some cases, it may
be that a statistically defined REV is too large to
have linear average flow lines. In this case, either
a smaller REV must be found as the basis for analysis
or a non-continuum analysis must be used.

The above discussion leads to several conclu-
sions central to this investigation. First, it only
makes sense to look for REVs in fractured rocks
using flow systems which would produce a constant
gradient and linear flow lines in a truly homoge-
neous, anisotropic medium. Boundary conditions
which produce such a flow system will be described
below. Second, the following criteria must be met
in order to replace a heterogeneous system of given
dimensions with an equivalent homogeneous system
for the purposes of analysis:

(1) there is an insignificant change in the value
of the equivalent permeability with a small addition
or subtraction to the flow volume;
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(2) an equivalent symmetric permeability tensor
exists which predicts the correct flux when the
direction of gradient is changed.

point (1) implies that the size of the sample under
consideration is a good statistical sample of the
heterogeneities. Point (2) implies that the boun-
dary conditions are applied to the sample which would
produce a constant gradient throughout a truly
homogeneous anisotropic sample. The actual gradient
within the heterogeneous sample does not have to be
exactly constant for (2) to be satisfied.

statistics of Fracture Geometry

Under a given'set of boundary conditions, the
hydraulic behavior of a fractured rock mass with an
impermeable matrix is determined entirely by the
geometry of the fracture system. Real fractures
have complex surfaces and variable apertures, but
for the purposes of this study and most other
studies of fracture systems, the geometric descrip-
tion is simplified. The assumption is made that
individual fractures lie in a single plane and
have a constant hydraulic aperture. Characterization
of a fracture system is considered complete when each
fracture is described in terms of: (1) hydraulic or
effective aperture, (2) orientation, (3) location,
and (4) size.

As has been discussed in the first part of this
review, the hydraulic behavior of fractures has been
shown to be a function of their aperture (eguation
11). Characterization of the permeability of a
fracture requires determining the hydraulic aperture.
Unfortunately, it is very difficult. to perform
hydraulic tests on isolated fractures in the field.
For example, Gale (1975) isolated a limited number
of horizontal fractures with packers and performed
injection tests to determine their apertures.
Gale's data, however, is not extensive enough to
make significant analysis of the relationship be-
tween hydraulic and apparent apertures.

Because of the difficulty involved in hydraul-
ically isolating a single fracture undergroungd,
what we know of fracture aperture distributions is
limited to apparent apertures that have been observed
directly in cores or well logs. The distribution
of apertures measured by Bianchi and Snow (1968) was
found to be very close to lognormal. It may be
reasonable to expect the distribution of true hy-
draulic apertures to also be distributed lognormally.

The statistics of fracture orientation are
Perhaps the best understood of all the geometric
Properties of fractures. Orientation is easily
measured in cores or in outcrops with simple tools.

-For instance, Mahtab (1972) developed a computerized

method for analyzing clusters of orientation data.
Once clusters had been identified they were compared
to Arnold's hemispherical normal distribution.

The mathematical description of fracture loca-
tions and fracture dimensions are interrelated.
Fracture traces can be observed in outcrops or in
excavations. The location of the intersections of
fractures within a borehole can also be determined.
What we know about the location of fractures in
Space and their shape and dimensions comes from
this trace length and intersection data.

Robertson (1970),
Hudson and priest (1979),

Priest and Hudson (1976),
and Baecher (1978) have

gtidied length and spacing distributions for frac-
tures. Baecher et al. (1977) have reviewed this
literature on spacing and length distribution.
Spacing and length have both been reported to vary
exponentially and lognormally. Baecher (1978)
developed a conceptual joint geometry model. Joint
trace lengths are assumed to be lognommally distri-~
buted and spacings are assumed to be exponentially
distributed. The authors infer that joints are
circular disks randomly distributed in space. Joint
radil are shown to be lognormally distributed.

Numerical Method of Analysis

A numerical code has been developed to generate
sample fracture systems in two dimensions using the
geometric properties described above and to determine
the permeability of such systems. The computer
program has been used to study samples of both
extensive and nonextensive fracture networks.

The two-dimensional mesh generator produces random
realizations of a population of fractures. Input to
the generator includes specification of the distribu-
tions that describe the fracture population. The
mesh generator can randomly choose fractures for the
sample according to these distributions. Details
of the scheme for mesh generation are given by Long
et al. (1981). A finite element analysis can then be
used to calculate Qg the component of flow through
the pattern in the direction of the gradient. Using
Darcy's law, the hydraulic conductivity in the
direction of the gradient of the sample fracture
pattern is calculated from:

Q

K, = ;;7% (16)
where A is the gross area perpendicular to flow. The
analysis of permeability is independent of the type
of fracture model generated. This generator produces
models similar to Baecher's (1978) but another frac-
ture model, such as that proposed by Veneziano {1979)
could just as easily have been used.

The effect of sample size on conductivity measure-
ment can be studied with this program. First a
large fracture pattern is generated. A small piece
of this sample can be numerically removed and sub-
jected to the numerical conductivity test described
above (equation 16). Succeedingly larger pieces can
be tested and the results compared.

The program can also be used to study the varia-
tion in conductivity between different realizations
of a statistically described fracture system. This
Monte Carlo type analysis could also be used to
analyze statistical data collected in the field. An
expected value and standard deviation of equivalent
porous media conductivity would be obtained in this
way.

As previously discussed, a method which obtains
conductivity in the direction of the gradient must be
used. Gradient can be approximately linear through-
out a heterogeneous region in steady flow if the
region is an REV. The direction of flow, however, is
controlled by the direction of the fractures. The
boundary conditions necessary to produce a constant
gradient in a rectangular, anisotropic flow region
are illustrated in Fig. 10. It consists of two
constant-head boundaries (sides 2 and 4) and two
boundaries (sides 1 and 3) with the same linear




variation in head from ¢ = 1.0 to ¢4 = 0. An
example of the configuration used in these analyses
is shown in Fig. 10. Conductivity is measured in
the direction perpendicular to sides 2 and 4.

The linearly varying boundary conditions on
sides 1 and 3 are necessary because, in general, the
medium in the flow region is anisotropic. Without
these boundaries the lines of constant head would
be distorted near sides 2 and 4.
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Fig. 10 Boundary conditions necessary to pro-
duce constant gradient in a homogen-
eous anisotropic flow region.

For the boundary conditions shown in Fig. 10,
3$/3y is zero. Kyx can be calculated from:

Q Q

X X
K = = . (17)
xx (sz - ¢4)L ¢2 - ¢4

L

where Q, is the total flux per unit thickness in
the x direction. For ¢ = 1 and ¢4 = 0, and consist-
ent units, K., is numerically equal to Q-+ Also,
since Qyr the total flux per unit thickness in the
y direction, is known, ny can be calculated from:

Q Q
Ry = G = 80L ~ 3.3 (18)
xy 2 4 2 4

L

For ¢ = 1 and ¢4 = 0, as above, Kyy = Qy-

Flow through the fracture system is computed
using a finite-element program developed by Wilson
and Witherspoon (1970) for fracture flow. Fractures
are represented as line elements with flux related to
aperture by the cubic law. The rock matrix is
assumed to be impermeable. Only the steady state
flow rate is calculated.

In general, the fracture pattern results in an
anisotropic medium. Conductivity in such a frac-
ture pattern can be measured in any direction
chosen. For homogeneous anisotropic media, 1//E%x
versus &, the angle of rotation, is an ellipse when
plotted in polar coordinates. However, for inhomo-
geneous fractured media, I/JEXX may not plot as a
smooth ellipse. 1In fact, the shape of a plot using

measured values of Ky, for a given area of rock may
be quite erratic. This plot can be used as a test of
whether or not the given area can be approximated as
‘a homogeneous porous medium. If 1//Exx does not
plot at least approximately as an ellipse, then no
single symmetric conductivity tensor can be written
to describe the medium. If there is no conductivity
tensor then flow through the medium cannot be ana-
lyzed by existing continuum techniques.

Validation of Numerical Method

The following two examples will illustrate the
use of this numerical method of analyzing flow in
two~dimensional networks of fractures. The first
example 1ig a fracture system of known conductivity
and was used to verify the numerical method of
permeability measurement. The conductivity of
fracture systems with infinitely long fractures is
known fram the theory developed by Snow (1965) and
others. Because of the physical basis of this
fracture model, we could only examine finite pieces
of such fracture systems. The infinite fractures are
seen in a finite model as fractures which transect
the entire model. An arbitrary extensive- fracture
system with two sets of parallel, evenly spaced,
equal aperture fractures was tested. To provide an
anisotropic case, the two sets were placed 30° apart.
The numerical code was used to determine Kg for
variations of a ranging from 0° to 105° as measured
from one of the two fracture sets. Theoretically,
this fracture network should produce an eilipse for
1//X, as shown by the solid line on the polar plot in
Fig. 1l. The plotted points represent the results

Fig. 11 Polar plot of numerical results for
1//'1_(-g compared to theoretical ellipse.
Extensive fracture system composed of
two sets of parallel, evenly spaced,
equal aperture fractures placed 30°
apart.

from the numerical analysis as the direction .of the
hydraulic gradient was changed in increments of 15°.
The small differences between theoretical and numeri-
cal results can be attributed to the finite nature of
the numerical model. Obviously, a fracture network
with these propertiéds could be replaced by an equiva-
lent porous media.

The second example is a nonextengive fracture
system that was developed at random using the mesh
generation scheme described by lLong et al. (198l).
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Table 1 gives the statistics used +to generate the
The generation region was 1]l0cm x 1l0cum.
Table 1. Input parameters for random network
of fracturea.

Set 1

Parametersy Set 2

‘Dengity Numbar of 49 100

‘Fiac'_:.ux_es

Narmal

digtribution 30, 5 60, 10
m, ?2 {deg)

orientation

Lognormal

distribution: 4a, 10 33, 7.5
m, 52 {em)
Lagnermal
"digtribution,
w, 82 (cm)

Length

Aperture 001, 005 00S5; 000

from a repetitive generation of networks having the
game parameters listed dn Table 1, three different
fracture Bystems ‘were axamined.

network. The three regions had network character-
istlcd as given in Table 2.

Table 2. Characteristics of three random
fracture networks..
Number Mumber of Kumbar Number
Retwork of Fracture of qf‘
Fractures Intersections Nodes Elements
1 al 123 285 327
2 86 110 282 308

3 90 139 319 368

Boundary conditions were applied. to "these thres

flow reglons .such that conduetivity in the same
direction. could be measured: That is, sides 1
and 3 were given a linearly varying head distribn-
tion, side 2 hdd a constant head of 1, gide 4 had a
congtant head of 0 (see Fig. 10}, Table 3 gives
the total fluxes in om3/s from each side for each
flow region.
Tegion and a negative slgn indicates Flow out of
the regicn.

. Table 3. Total fluxes for three random
fracture networks.
‘Network  Side 1 gide 2 Side 3 side 4
em?/a gia)fs cm? /s end/s
1 0.13202E-19  d.41796E-7  <4.41384E-7  —4.113BEE-10
2 0.39260E-10  2,00829E-5 ~-2,DO809E-5 ~8.67380E-10
3. 0.42390E~10  1.019278-4 -1.0%927E~¢  -8.97845E-11

Examination’ of Table 3 Jleads 'to several ‘zonclu-
Firet, '
between -the three networks generated using the same
Statistical fracture population. As shown in Table
;. the humber of fractures in each flow region
Yaries. fThus some of the variation in flow rate is
due to nonergotic sampling. Recall that under the
b‘?“-nd;ary conditions used, for an ideal porous medium
the fiux in the x direction, i.e. from side 2 to side

+ ia numerically egqual to £he conductivity. Hpw-

-

‘behaving like porous mediai

To determine what variations might be expected

] Flow regions 75cm x
75cm oriented with & = 0® were investigated in each

A positive sign indicates flow intao the

there is a great deal of variatien

évqr} examination of Table 3 shows that the flux into

‘dide 2 does not equal the flux out of side- 4. The

suh of the fluxes through all sides, however, is
zero as expected. These samples are clearly not
In anisotropic porous
media under the chosen houndary conditigns the flux
on opposite sldes wonld be egual.

To investigate the problem of directional permea-
bility, Network 3 was selected for further analysis.
Flow regions 75em x 75cm in sizZe were rotated at

dntervals of 15¢ so that ¢ could be varied from 0° to

180°. Fig. 12A shows the fracture network of the

Fig. 12 Neonextensive random fracture system
showing original generation region
{A), and flow regions investigated
when @ = 0° {B), @ = 45° (C), and
a = 120° {D).

original géneration regicon and Figs. 12B-C-D 1llus-
trate how different flow reglons were created simply
by rotating the boundaries while the nétwork remained
“fixed. )

3 2003 3R wipd

cm
[ 1T

oL &4 -20I8
Fig. I3 Polar plot of numerical results for
lffié for a nonextensive -randam
fracture system.



Figure 13 shows the values of 1//Eg plotted
on polar coordinate paper where K, is defined in
terms of flux across side 2. The fact that inflow
does not egual outflow on opposite sides leads to a
problem in defining conductivity. If conductivity is
arbitrarily defined as numerically egual to the
inflow into side 2, no information is lost. Side
2 for any angle a¢ becomes side 4 for a + 180°, etc.

The results on Fig. 13 clearly do not plot as
an ellipse; nor are they symmetric. For certain
angles of rotation (e.g., 75°, 90°) the value of
l//i; becomes very large and goes off the scale of
the graph. For these angles, XK, is very small
because there is practically no hydraulic connection
between sides 2 and any other side. This cannot be
completely confirmed visually from the plots of these
flow regions because aperture has not been included
in the figures. Although isopotentials have not been
plotted for these samples, it is fairly certain they
will not be linear. If we define K,, as numerically
equal to the flow into or out of side 3, then K, is
the flow into or out of side 1 when the flow mesh is
rotated 90°. Kyy should equal ny if Kjj is sym-
metric. For this example, computed values of ny
did not equal computed values of Kyy for any angle
of rotation. This further demonstrates the non-
symmetric nature of the permeability.

The
sample

tests described . above show clearly that the
chosen does not have a symmetric conductivity
tensor and cannot be represented by an equivalent
porous medium. As further proof of the nonhomogen-
eous nature of Network 3, flow regions of different
sizes were extracted and tested. The particular
orientation shown on Fig. 12 for @ = 0° was selected,
and the flow region was reduced from 75cm x 75cm to
25¢cm x 25cm, while remaining centrally located in the
original generation region. The results revealed
order of magnitude changes in hydraulic conductivity
from sample to sample and further illustrated the
marked differences between the fluid flow behavior of
this random fracture network and that of homogeneous
porous media.

Summary

A numerical model has been developed to produce
random networks of fractures. A computer program
for fluid-flow analysis then measures the directional
conductivity of these samples.

To determine if the fractured rock samples behave
like porous media, the samples must be subjected to
boundary conditions which would produce a constant
gradient in homogeneous anisotropic media. If the
medium has an equivalent porous medium permeability,
these directional conductivity measurements should
plot as an ellipse when 1//fg is plotted versus
direction o on polar coordinate paper. Also, inflow
will equal outflow on opposite sides of the rectang-
ular volume element tested, and measured values of
Kxy will equal measured values of K,,. Average
isopotentials within the element will probably be
linear, but this is not a necessary criterion for
behavior as an equivalent porous medium. If the
volume of the element tested is changed slightly, the
measured values of Kj 5 should not change signif-
icantly.

It is possible to find a fractured rock popu-
lation for which no equivalent homogenecus porous
medium permeability exists. This can occur for one
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of two reasons. First, the size of the REV may
exceed the volume of rock that exists. Secondly,
for the case of an impermeable matrix, the fractures
may not be dense enough to behave as a medium with
a symmetric permeability tensor. Non-"tensorial"
behavior would result from insufficient interconnec-
tions between fractures. In this case, the volume
of fractured rock may be large enough to be a good
sample of the gracture population, but the nature
of the fractures is such that they will not behave
hydraulically as a porous medium on any scale.

The numerical techniques described here will be
used to find fractured rock systems that do behave
like anisotropic porous media. Fracture systems
with specified geometries (spacing, aperture, length,
and orientation) will be investigated. If the total
number of fractures is held constant, the density of
the fractures will be increased until systems are
found which behave more like porous media. For a
given population and a given total number of frac-
tures, we should be able to identify minimum fracture
densities which produce homogeneous anisotropic
behavior. The effect of each distributed parameter
on the size of the REV and the value of the resulting
conductivity can then be determined.

Systems for which no REV exists will also be
sought. This can be done by examining systems that
are not dense enough to act like porous media. By
holding this density constdnt and increasing the area
of investigation, we can see if the behavior of the
system becomes more like that of porous media or
remains erratic.

Methods for quantifying the porous media nature
of fracture systems are under development. One
method currently being investigated is to quantify
how well the permeability data plot ‘as an ellipse.
Such an approach should lead to an understanding of
the errors that can result from assuming a porous
medium equivalent for a fractured rock mass when no
such equivalence exists. Ultimately, our goal is to
be able to analyze field data on fracture systems to
determine when it is appropriate to make the simpli-
fying assumption of a porous medium egquivalent.
This, of course, will require an understanding of the
need to extend the technique to three dimensions.

COUPLED THERMAL-HYDRAULIC~MECHANICAL FINITE ELEMENT
MODEL FOR SATURATED FRACTURED POROUS MEDIA

In the usual treatment of fluid flow in porous
media, the rock deformation has been considered
through the concept of the coefficient of specific

storage. This approach, although by no means pre-
cise, is adeguate to represent most fluid flow
problems. A more realistic treatment of the fluid

flow behavior of deformable porous media came about
after the introduction of the well-known theory of
consolidation by Terzaghi (1925). With the advent
of computers, numerical solution techniques for
coupled one-dimensional equations of consolidation
and multidimensional eguations of fluid flow provided
an approximate means of analyzing general fluid flow
problems in deformable porous media (Helm, 1974,
Narasimhan and Witherspoon 1977). Biot (1940)
introduced the general theory of consolidation which
makes possible a more realistic treatment of the
hydramechanical behavior of saturated porous rocks.
In an attempt to develop a method for the solution of
general consolidation problems, Sandhu and Wilson
(1969) applied the variational finite element method
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- introduced by Barenblatt et al

to the problem of fluid flow through saturated porous
elastic solids. This method was extended by Ghaboussi
and Wilson (1971) in considering effects of fluid
compressibility.

The theories of mixtures (Green and Naghdi,
1965), Crochet and Naghdi (1966), which have a
sound thermodynamical basis and a general associated
constitutive theory, can be reduced to a special
case of a theory for flow of fluids through porous
elastic solids which is equivalent to Biot's work.
The basic assumption of this approach leads to
certain conceptual difficulties in the physical
interpretation of partial stresses.

Recently Safai and Pinder (1979), in a Galerkin
finite element method of analysis for fluid flow
through deformable porous media, made an attempt to
consider the entire saturated-unsaturated flow
regime. The proper constitutive stress-strain
relationship for the extension of Biot's (1940)
theory to the entire flow regime was later provided
by Noorishad et al (1981a).

Congideration of fracture deformability along with
its hydromechanical behavior has appeared in the
literature mainly since 1965. Davis and Moore (1965)
measured one of the first direct evidences of frac-
ture deformations of the order of microns caused by
earth tides. Snow (1968) reported strains of 10~7
to 1078 at a distance of about 300 ft from a water
well in metamorphic rocks subjected to a significant
drawdown. To handle this behavior, the early hydrau-
lic and hydromechanical analysis of fractures was
achieved using an equivalent porous medium approach.
Theoretical and numerical studies of fluid flow in a
rock mass taking into account the deformable nature
of fractures in a discrete manner was first carried
out by Noorishad et al. (1971). This work was based
on earlier studies of discrete fracture behavior from
a load-deformation point of view by Goodman et al.
(1968) and a fluid flow point of view by Wilson and
Witherspoon (1970).

Numerical studies on deformable fractured rocks
have been carried out by Rodatz and Wittke (1972)
and Gale (1975). Iwai (1976) made a detailed series
of laboratory tests on flow through a single fracture
under load. The laboratory and field tests by Gale
(1975) provided strong evidence of a nonlinear frac-
ture deformability induced by fluid pressure changes
and also verified the capability of the numerical
solution technique. The static approach of Noorishad
et al (1971) was later extended by Hilber et al.
(1979) into the dynamic range where stick-slip
phenomena due to injection of an incompressible fluid
in a nonporous fractured rock was studied.

A two-medium statistical-numerical model was
Presented by Duguid (1973) who extended the method
(1960) to fissured
ela§t1¢ porous media using a finite element numerical
Procedure. A deterministic solution for transient
flow of fluids in deformable fractured porous rocks
%ag recently achieved using an enumerative approach
(Ayatollahi, 1978).  This variational finite ele-

" Ment technique is based on a generalization of

Biot's (1940) constitutive stress-strain equation and
USes a Gurtin (1964) type variational principal. An
eXtension of this work by Noorishad et al. {1981b)
Provides a general two-dimensional, finite element
8olution technique for the investigation of the
deformation, stress distribution, fluid storage, and
fluid fiow properties of a fractured porous medium
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under the influence of hydraulic and structural
boundary conditions. At present, several groups are
investigating a host of numerical hydromechanical
models which are at different stages of development.
Baca (1980) and Tsang (1980) have summarized the
capabilities of some of these new models.

The presence of heat in fluid flow regimes brings
about a chain of coupled effects which shall be.
referred to here as thermal-hydraulic-mechanical
phenomena. The coupled phenomena for fluid and heat
flow, usually known as hydrothermal flow, have been
the subject of several detailed studies. A coamplete
account of the state-of-the-art can be found in
Pinder (1979) and Wang et al (1980). However, it
should be pointed out that hydrothermal investiga-
tion of discontinuous rock masses is a problem that
needs much more investigation.

Studies of thermal effects on linear and nonlinear
materials, known as thermoelasticity, are thoroughly
covered in the physics and engineering disciplines
and need not be considered here. As far as rock
mechanics usage is concerned, thermoelasticity lies
mostly within the confines of continuum applications.
An account of the status and needs of the thermomech-
anical modeling techniques for continuous and discon-
tinuous media is given by Hocking (1979). More
recent reports (Bacca, 1980; Tsang, 1980) indicate
that a number of the new, developing models either
have provisions for incorporating fractures or actu-
ally have the capability of modeling the discontinu-
ities in a discrete manner.

A natural outgrowth of hydromechanical, hydrother-
mal, and thermomechanical modeling techniques is the
development of a general model incorporating all of
the above techniques. Baca (1980) and Wang et al.
(1980) have reported that a number of research organ-
izations are engaged in the development of such gen-
eral modeling techniques but to our knowledge, the
details have not yet been published. Various rock-
water in%teraction studies have been underway in this
laboratory for some years, and the development of an
approach to the thermal-hydraulic-mechanical behavior
(or hydrothermoelasticity) of fractured rocks is part
of an ongoing effort (Noorishad and Witherspoon,
1981). The essential features of this coupled finite
element method of analyzing fractured porous rocks
will be presented below.

Field Equations

Using Tj5 for the components of the bulk stress
tensor, P for fluid pressure, and T for temperature,
Noorishad and Witherspoon (198l1) have shown that the
stress-strain relationship for an elastic isotropic
porous medium can be written:

= - g8 8
Tij 2ueij + Aaij leeki zoijT + a ijp
(19}
[
2 1 1
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In the above equations the dependent variables e,
T, and P are incremental in value and represent
deviations from the zero state (stress-free state).
Also, contact equilibrium between the fluid and the
solid is assumed.

The governing equation for the fluid flow is
written as:
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and py and p, are related through the eéquation of

state for the fluid:

Note that internal or boundary source terms are
‘absent in (20), a restriction which is later easily
relaxed.

(21}

The law géverning the static eguilibrium is

given as:

b
;~EJ,+ pE, =u
9%, 5 i

Finally the law for conservation of energy is
represented in the following form:

FelPOIT + T BSje,,) +.£pyC pg.Vr = VX Vr (23)

where:
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The Darcy fluid velocity q is given as:

x
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The guantity T, represents 'the absolute temperaturé

In deéfiving the govern=-
the following

in the gstress-free state.
ing equation for heat flow (23},
assumptions are made:

(i} thermal contact equilibrium’ betwéen
‘the fluid and the salid

[ii) energy associated with the fluid dila-
tation is negligible

{iif) fluid shearing stresses are absent in
macroscopic sense-

[iv)  internal source terms and boundary

‘Eource terms are absent.

The last assumption is later removed in the numeri-
cal algorithm.

The ‘fundamental laws gOvErnlng static equili-~
brium, fluid flow, and heat flow are coupled through
the dependent’ variables of the solid di'splacement
vector, fluid pressure, and macroscopic medium
temperature. These laws, presented in éguations 20,
22, and 23, in éonjunction with constitutive egua-
tiens 1% -and 21 provide the completé mathematics
of the coupled gquasi-linear, thermal-hydraulic-
mechanical phenomena in saturated Porous elastic
media. Extension of the above development to. the
nonlinear range is no major task and hae already been
accomplishéd. Por the sake. of simplieity, the
extended develdpment for the noalinear fractured
media will not be presented here. Theé ‘above equa-
tiona with .proper initial and boundary conditions
(see -Appendix) define the mixed 1n1t1al-houndary-
value problem for -thermal-hydraulic-mechanical
phenomena in porous media.

{22)
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. coupled eguations

velocities obtained from a direct solution of

Methed of Solution

The -complexity of the hydrothermoelasticity
eguations, is such thdt an analytic {(mathematical)
solution for even simple initial and boundary
value problems is not likely to be found. However,
numerjcal solutions to the most dgeneral problems
can ‘easily be- sought. Various numerical schemes
using wéll-known numefical techniques, such as
finite element and finite difference, can be uti-
llzed. In this werk a finite element technigue,
was given strong preference because of :earlier
experience with this: appreach to linear and nénlinéar
problems. of hydroelasticity (Ayatollahi, 1978;
Moorishad et al., 1981b}. A mixed variational and
Galerkin finite element method forms the basis of
this approach. As a result, the following set of
matrix eguations is obtaifed:

KU+ EupP + GnT = F (25}

B 4+ %H . 3 = —1% -

Cogl + (Ep + T*HIR + Cp T 1*Q, (26)
* = -1

o8 + [E AR 4 BT 124 {27)

=TU=

where 1* represents time integration. Details of
the method of sélutidn and the complete expres-
gions for the matrix coefficients afe given in the
Appendix.

To handle
two different

discretization in the time domain,
schemes of time intedqration are :-used
to. integrfate matrix equations 25, 26, and 27. A
predictor-corrector scheme (Taylor, 1974) is wused
for the integration of the first two 1mp11citly
{Ayatollahi et al., 1981). The
engrgy equaticn uses a Crank-~Nicholson step-by-step
procedure with. the solution of each time step being
sought in the middle of the interval.

The coupllng of {27) to (26} is nonlinear and
is 1mp11citly éxpressed in Hpyg, the nonsymmetric con-
vective thermal conductivity matrix. The large
time constant for the energy ‘eguation as compared
to that of the flow equation sugyests that the
ahove formulation is eaéily adapted to an inter-
lacing schene of solutions such as used by Sorey
(1975). This 1nterlacing scheme uses the fluid
{25)
and feeds back the temperature resulting
€27). 'Thiz approach of expli-

and {26)
from a solution of

‘citly solving the coupled equations is enhanced by

the low sensitivity eof the dependent variables P
and U within some ranges of temperdture in different
problems. Therefore, the energy equation in these
ranges can march through time using large time Steps

<c0mpared o the -small time steps reguired to solve

the other two equations. A firther advantage is
gained in situations where the- mass transfer contri=-

bution to tefiperature:distribution is negligible. In

these cases a single solution for ‘tle endrgy equation
provides the needed temperature infommation for the
stepwise solution of the ‘6ther two eguations.

Three types of elements are wpsed. in this coupled
technique: {a) two-dimensional isoparametric ele-~
ments for sclid fluid dixtures, (b) one-dimensional
elements representing fracture segments from the flow
point of view, and (¢} one-diménsional joint elements
to" represent fracture segments for structural consid~
eratiochs. Natgxal coordinates are used for discreti-~
zation of the displacément, pressure, and tenperature




fields within the quadrilateral element. This leads
to a parametric formulation ‘for the torresponding
i{ntegrals in terms &f cdordinate ‘parameters for
the porous solid-fluid mixture elements. Numeri-
cal integration is performed using the Gauss -quad-
yature formula. The disoparametric bilinéar furiction
used for discrétization and the parametric details
¢an be found :in finite element texts [Zienkiewicz,
1971]+ For the structural joint element and the
flow-line element, 615cretizatioﬁ~cf the displacement
and pressufe fields, is written in terms ©OF local
coordinates. 'Where necéssary, the results are
transformed to the global coordinate system. The
assumption of uniform aperture within -each fracture
vas used throughout the derivation of the matrices
w favolving fracture volume integrals.

* yalidation of Numerical Scheme

The compleéxity wf the coupled phenomena under
consideration mikes it possible ‘to present only a
v 'partial verification of the method ©f analysis
< presented. here. In thé following discussion, we
a‘ shall -include results of the application of the
nethod to hydromechanical, thermomechanical.; and
i— hydrothermal problems. These examples do not fully
%0 reveal the power of this approach.

In choosing an example of a hydromechanical.
_problem, we examined a fracture fldw problem for
% which an analytical solution exists {Raghavan et al.,
f ; 1976). Since this problem does not reguire coupling
{..: between fluid flow and rock deformation, the coupling
cueff1c1ent o was set to zero and 1/M was changed to
f } 8y in equation 19.

».. The problem is that of .a single vertital fracture
. intersecting a well of zere radius in a rectangular

" porous medium. The fracture is assumed_tp,bg rigid
and of very ‘high cenductivity. The- material pro-
perties' of the. fluid and rock are given in Table 4.
L Pig. 14 shows the finite element mesh used and Fig.
15 ghows how the numerical “résults compare with the
analytlcal solution tRaghavan et al.; 1978). For
the case Xp = 1, there. 'is excellent agreement
'over the whole time span. 'In the case Xp = 3, the
‘differénces noted on Fiyg. 15 between numerical and
. @nalytical solutions is attributed to the ¢oarseness
of the finite element wesh. ‘The: half slope of the
,: turve for Pp, versus tp at early time is often
‘used as evidence in the¢petroleum literature for the

?resence of a fractured sysktem. {Gringartén et al.,
975},

This problem was also 'solved in a coupled. manner
“ here deformability in both the fracture and the
o matrxx were introduced (Table ‘4): The fracture was
. ‘also given a spec1fic aperture (10~%m) so that it
) Eﬁhﬂd a finite permeability. The efféft of treating

/0
. [a=0
=7 . Verfically edlarged A
023
- o.1g
- 3% o 1== —
? L3 5 Thm o2 LUs 5m
Weni — %, l Froclure
$”"xf*4
flg9. 14, Two dimensional finite elemernt mesh.
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piot's constant, M

Table 4. Material pfoperties for hydromechan—
ical analysis of fractured rock mass.
Material Broperty vilue
Mass density, pyp 9.80 x 102 xg/m3
Fluid compressibility, fp 5.13 x 1071 gepa~1
pynamic viscosity,.n‘l 2.80 %1074 ¥ sec/m2
Young's modulus, Eg 2.45 GPa
Poiszon's ratio, vg 0.25
Mass density,. ps 2:5 x 10% ggrad -
Rock Porosity, € , 0.15
‘Intrinsic Permea- -
bility, kg 1012 42
Biot's Censtant, M 1.47GPa, 14.0 GPa*
- Biot's coupling
conatant, 1.0, 0.0%
Initial hormal sriff-
ness, Kgo 1.60 GPa/m
Initial tangential ]
stiffness, Kyg 0.50 GPa/i
'Col?es'ion.; Ceo 4.0
Fractures Friction angle, & 30e
Initial aperturs, b 10=3m, .10%3
Porosity, €. 0.15

1.47 GPa, 14.0 GPa*

Biot's constant, o 1.0,D.0%
*Dsed in the uncoupled case.
K}
[14] — T T T P [
«—— Analyticel solution
HNumericol: resubls
L :XD!'l d
, w' o Xp =3 -
o . d T Lmge T
g .
w| &
T
o 24 2 Y vary 1aige
- . T | eendugiviaty
o ng 'r“'l Frasture
p 4
! L — 4 L ;
10 02 ! 168 W 0%
;l e d
*
] 5, 7 x(z
Fig. 15 Pp versus tp for single vertical

fracture of very large conductiwvity .in
porcus medium. Analytical solution
affer -Raghavan et al. (1976).

the system in this fashion is to change the pressure

drawdewns significantly. For &£ixample, ‘Fig. 16 ‘shows
how pressurés decrfease from the wellbore to the. end
of the vertical fracture. If will be noted that the
pressure drop at the end of the fracture is about
half that at- the wellboré. For comparison, the
problem wag rerun in a decoupled mode and the pres-
sure differences are far’ less {see curve labeled
"fluid flow analysis” on Fig. 1&).

Fig. 17 shows a plot of P versus tp for this
finite conductivity fracturé problem to demonstrate
the differences from the case of a very high conduco-
tivity fracture (Fig, 15). HNote ‘that‘:at early time,
the half slope relationship .no longer holds. Hote
also the sepiration between the two curves that
increases with time: revealing the importanée of

fractufe deformability and the need for coupled

analysis.

P T
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Fig. 17 Pp versus tp for single fracture

of finite conductivity in porous
medium showing differences between
analyses based only on fluid flow
or on coupled stress and fluid flow.

In choosing a problem for a thermomechanical
investigation, we first carried out some preliminary
validation studies using both SAP4 and the present
code. Solutions to two linear-elastic problems
involving: (1) a finite line source in an infinite
medium, and (2) a semi-infinite space subject to a
constant temperature boundary condition were ob-
tained. The results from the two approaches were in
excellent agreement.

To demonstrate the ability of the code to handle
non-linearities, a simple thermomechanical problem

5 ) L T L B L] T B RS
4}
E
€
€ 3
Q
E
]
22
»
o
'
o .

n - N —
160 200 240 280 320
1, days

[o] 40 80 120

Displacement versus time at a point 10m
above base of rock column showing effect
of fracture in reducing movement.
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consisting of a long column of rock intersected near
its base by a fracture was chosen (see inset on Fig.
18). Initially, the column temperature is 0°C, and
after a step increase of 50° at the base, the
problem is to determine the time variation of dis-
placements above the fracture at a height of 10m.
The material properties of the rock are given in
Table 5. Fig. 18 shows the highly non-linear mechan-
ical behavior of the fractured column and illustrates
the ability of this finite element method to model
discontinuous rock systems.

Table 5. Material properties for thermomechan-

ical analysis of fractured rock column.

Property Value

2.5 x 103 kg/m3

2.1 x 1671 Kcal/kg °C
7.65 x 1074 Keal/m sec °C
1.11 x 1075 ec-l

2.5 x 1073 pa/m

5.13 MPa

0.25

Mass density, Pg

specific heat capacity, Cyg
Thermal conductivity, Kg

Thermal expansion coefficient, Y
Initial normal stiffness, Kg,
Young's modulus, Eg

Poisson's ratio, Vg4

An interesting problem that demonstrates only
part of the hydrothermal capabilities of this code is
the simulation of a saturated porous medium that is
given a momentary thermal front. The onset of
convective motion due to buoyancy is to be deter-
mined. The physical system consists of two porous
reservoirs that initially are kept at temperatures T,
and T, as illustrated-by the inset on Fig. 19.
Initially, a thermal barrier separates the two
reservoirs, both of which are horizontally semi-
infinite and insulated top and bottom. At t = 0, the
barrier is removed, and the problem is to determine
the instantaneous horizontal velocity profile along
the thermal front. An analytical solution for
this problem has been published by Cleasson (1979).

This particular problem is very sensitive to the
finite element mesh that is selected, and some effort
was required to achieve the optimum grid for a
specific number of nodal points. The problem was
solved with a network of 252 elements requiring 286
nodal points. The material properties of the fluid
and porous medium are given in Table 6.

Table 6. Material properties for hydrothermal
analysis of thermal front problem.
Property Value

20°C
9.98 x 102 kg/m3
9.89 x 10™¢ xg/m sec

Downstream temperature, Tq
Downstream mass density, p,
Downstream dynamic viscosity, ng
Upstream temperature, T) 90°C
Upstream mass density, pj 9.66 x 102 kg/m3
Upstream dynamic viscosity, nj 2.17 x 2079 kg/m sec

Fluid thermal expansion

coefficient, B¢ -4.46 x 1074 oc-1

Intrinsic permeability, k¢ 1012 52

Gravity acceleration, g 9.80 m/sec?

kelpa=p)g , q 2.42 x 1077 m/sec
Ng + Ny

Finite element mesh width, W 900 m

Finite element mesh height, H 20m
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‘Placed at one end.
the location of the heat source and a point where one

. existence of the discontinuity.
'.‘PtOblem involves a saturated porous medium that is

Priate finite element mesh is selected.

Fig. 19 shows a comparison of the numerical
results for the instantaneous normal (horizontal)
0.5 v T - T
f.E Mogel
o4r 7
Analyticol sotution (Cleasson (1979)]
I o3r 2 Qittused teant locotion
-~
~N H/2
02 b
o To T
[oN 5 . B
Wiy w/z w X
0.5 (Kol 15 2.0
. 9;/9,
Fig. 19 Profile of instantaneous horizontal

velocities due to buoyancy effects
at location of thermal front in
saturated porous media.

" velocities compared with those of the analytical

solution of Cleasson (1979). Considering the
fact that in the numerical approach, the thermal
front must be modelled by a zone of finite width,
which in our case was 0.4m, the agreement is quite
good. Further mesh refinement would undoubtedly lead
to closer agreement with the analytical solution.

Summary

An extension of Biot's (1940) theory of consoli-
dation is proposed here to provide a new technique
for a realistic method of investigating the thermal-
hydraulic~mechanical behavior of fractured porous
media. A direct solution process has been devel-
oped' that involves a variational formulation and a
Galerkin integral to produce a set of three matrix
equations. In this approach the equations of static
equilibrium and fluid flow appear in" an implicitly
coupled form and the energy equation is explicitly
coupled to these equations. Finite element descreti-
zation, along with two schemes for time descretiza-
tion, yield the final form of the matrix equations
which are then soved in a two-step procedure, re-
ferred to as an interlacing scheme.

A partial validation of this new technique is
Presented by considering applications to hydro-
Dechanical, thermomechanical, and hydrothermal
Problems. The hydromechanical problem involves the
Calculation of pressure drops in a vertical fracture
that intersects a well and acts as a drain for the
Surrounding porous medium. The results reveal the
errors that can occur when the interaction between
hydraulic and mechanical stresses is ignored. The
thermomechanical problem involves the calculation of
the expansion of a rock column with a heat source
When a fracture exists between

is attempting to predict the magnitude of thermally
induceq displacements, a highly non-linear behavior
Tesults that will not be predicted if one ignores the
The hydrothermal

9iven a momentary thermal front. The difficulty in

'Predicting the onset of a natural convective motion

€an be handled by this new technique when the appro-

valigeei Complete

ton of this new thermal-hydraulic-mechanical

m::ite Flement model for saturated fracturd porous
4 will require much more work.
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NOMENCLATURE

a typical asperity size

A fracture cross sectional area

Aq,Ay structural boundaries where displacements
and surface tractions are prescribed

b fracture aperture

bg maximum fracture aperture

B1,By & fluid flow and heat flow boundary parts

C1.Co where Dirichlet or Neuman boundary
conditions are prescribed

c elasticity matrix

Cijxe components of elasticity tensor for solid
phase

Cqo fracture cohesion

ng pressure-temperature coupling matrix

QUP displacement-pressure coupling matrix

EUT displacement-temperature coupling matrix

Cyg specific- heat capacity of liquid at con-
stant volume

Cys specific heat capacity of solid at con-
stant volume

a + half-crack length

D/DSt comoving time derivative following solid

€5 components of strain tensor for solid
phase

E,Eg Young's modulus for rock

Eoff Effective Young's modulus for jointed rock

§f fluid storativity matrix

Eh heat capacity matrix

£i components of body force vector

F force vector

g gravitational acceleration

G traction vector on Aj; boundary

h asperity height in fracture

Ef fluid conductivity matrix

Eh heat conductivity matrix

Ehf mass transfer conductivity matrix

Ef intrinsic permeability tensor

K . viffness matrix

Kepn normal stiffness ’

Kee tangential stiffness

Kij permeability tensor components

Kg permeability measured in the direction of
flux

Kq permeability measured in the direction of

hydraulic gradient
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liquid thermal conductivity tensor

solid-fluid mixture thermal conductivity
tensor '

s0lid thermal conductivity tensor
length of cylindrical rock sample
length of the boundary
distribution mean

Biot's constant for 1/eBp

Biot's constant for 1l/eBq

number of voids in schematic representation
of fracture

total number of elements in finite element
idealization

outward normal direction cosine vector

indices used to designate number of elements,
i=1,2,3

asperity height distribution function
number of areas of contact in fracture
pressure

pressure assigned on Bj1 boundary
pressure vector

pressure vector at preceding time step
pressure drop

fluid flow vector

components of fluid flow vector and the
horizontal component of fluid flow vector
rate of fluid discharge from well

flow per unit width

flow per unit width in direction of
hydraulic gradient

heat flow vector

normal heat outflow from C, boundary
fluid flow vector

normal fluid outflow from B, boundary
distribution variance

specific storage coefficient of saturated
porous elastic solid

temperature

temperature vector

temperature vector at preceding time step
volume enclosing one crack

solid element displacement-vector

space occupied by fluid-solid mixture

region of space occupied by fluid-solid
mixture of an element n

fracture deformation
rock deformation
total jointed rock deformation

Cartesian coordinates, i = 1,2,3

Biot's hydroelastic coupling coefficient or
angle of orientation of hydraulic gradient
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B Thermoelastic coupling coefficient equal to

(2u+3X0)Y

Bp fluid compressibility

Bp fluid thermal expansion coefficient

Y solid thermal expansion coefficient

5ij Kronecker delta function

[ friction angle

€ porosity

ng.N liquid dynamic viscosity

by Lamé's elasticity constant

P Lamé's elasticity constant

v functional perturbation parameter

Vg Poisson's ratio

3 fluid volume strain

Pgs 52 liquid mass density and average liquid mass
density

Pgs Bs solid mass density and average solid mass
density of porous space

oM solid-fluid mixture mass density

(PCly solid-fluid heat capacity

I'Tij stress tensor and components .

IT'TTij thermal stress tensor and components

1,0 stress normal to fracture

$ hydraulic potential

Su displacement interpolation function matrix

Qe strain-nodal displacement transformation
matrix

Q pressure and temperature interpolation
function matrix

®s transformation matrix for pressure or
temperature gradients

] fractional fracture contact area
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APPENDIX
Initial and Boundary Conditions

The equations governing fluid flow (20), static
equilibrium (22), and conservation of energy (23)
in conjunction with the constitutive equations for
the stress-strain relationships (19) and the equa-
tion of state for the fluid (21) have previously
been discussed. These equations with the proper
initial and boundary conditions define the problem
to be solved. The initial and boundary conditions
for the saturated porous elastic medium are:

u(x, t) = U(x, t) on A,x[0, =)
T(x, t) . n(x) = G(x, t) on Ax[0, =)
P(x, t) = B(x, t) on B.x[0, =)

(A1)
<f N
- v(p + Dlgz).g(f) = QE(E' t) on Bleo, o)

2
T({x, t) = f(g, t) on C1x[0, ® )
K,JTon(x) = Q (x, €) on C_x{0, =)
U(x, 0) = 0 on v




I(x, 0) =0 on V
P(x, 0) =0 on V (A1)
T(x, 0) =T on V

A, B, C represent parﬁs of the boundary for
gstress-displacement, pressure-fluid flow, and
temperature-heat flux considerations. V represents
the volume under consideration. As mentioned
earlier, the dependent variables U, P and T represent
incremental deviations from the strain-free state
assumed by the above choice of initial conditions.
Consideration of a different set of values for the
initial conditions will necessitate replacement of
U, p, and T by (U - Ug), (P - Py), and (T - Ty) in
all corresponding equations. Also T has to change to
(¥ - 15). However, to cause less manipulation, it is
preferable that the displacement vector U be kept in-
cremental in nature and left unchanged which will not
- affect the results of the analysis.

Variational Formulation

The variational method is used to formulate
the hydroelastic ([Ayatollahi, 1978] part of the
hydrothermoelastic phencmena. Let R= U, P be an
. admissible state in J defined in V x (0, ) and let

the functions U and P possess the appropriate contin-
F uity and differentiability conditions. J is the
) set of all admissible states and V is the region of
space occupied by the fluid-porous solid mixture.
; A function Q4 (R) over J for each time t ¢ (0, =)

't

‘¥ 1s defined as:

= * - ' 3
. (R) [(eij Cijka®ky ~ 2T * BS;4844

5
i v
¥3 ap,
-2 £, *U, +2p * ..
Psty i P 6ijeJ.J
k
_1tvﬁpi__fvp-Pt;11.p_ptb_14_T
e T
ﬂ - * - A -
1 + 2 quVz vP)dv 2[61 u,ds
=4 A,
¥
£ -2 /1 * Qz * Pds (a2)
g B2
3
: It can be shown that
&
1 8-Q(R) = & i -
(R) = Q(R + VR) =0 (A3)
3 R av
v=0
4
R for every R ¢ J if, and only if, R is a solution

State of the mixed boundary-value problem. The

~ Presence of temperature terms in the variational

Principle ig justified physically, besides the

Bathematical soundness of the formulation, by the

fact that thermal effects act in the form of ini-
Al strains (zienkiewicz, 1971).
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Galerkin formulation

The Galerkin method is used to obtain a numer-
ical formulation for the energy equation. Choosing
approximating functions of the form T = ¢T, where 9;
represents the basis functions and T; signifies the
discrete temperature values to be determined, the
Galerkin procedure requires the following:

a7 9
é —= —
[{(x)m i 3t * 8Todsi at (éijeij)

v

+ ¢ q.VT + VO . v
[+ Cvl ig T i KM T }dv

L
- ¢ 0 =
/ iths 0 (n4)
€2
where the volume integral in equation (A4) repre-

sents a global restatement of (23), and the surface
integral indicates the global satisfaction of the
heat flux boundary condition.

Finite~Element Discretization
The field variables for the displacement vec-

tor, the pressure, and the temperature can be dis-
cretized as follows:

T
= ¢Tr
U= &%y
p=oTrp (A5)
T = 0'TT

E3
where the ¢; are piecewise' continuous polynomial
functions which are used in conjunction with the
mixed isoparametric quadrilateral elements. Proper
substitution of equation (AS5) and related derivatives
of %, and ¢ represented by ¢, and ¢, in the Galerkin
integral and the functional, after proper differenti-

ation, yields the following matrix finite element
formulation:
KU+ CP+C T=F (a6)
Spl * (g + TTHOR + €T = -1%g, (a7)
gTug + [§h + 1'(§hf + gh)]g = -1'gh (a8)

where 1* represents time integration. The matrix
coefficients in the above formulation are defined
by the following:

N T
K = Z [ o'  av"
-~ -e- -e
n=1 “n
v
N
Tr n a pl s nTr n
gpu = gup = z 2 p 1 Qe dV
[}
n=1 "n
v



r
- n %~ n n
Sor ~ 2/953% av
n

1 Tr
S T Sour
o
N T
n 1 n r
T
= 2 ut -
n=1 n
v
. KE T on
= - dv
£ 2 fge 299
n=1 n
v
N T
r
z ]o“‘—v‘ av"
-pT - T
M
n=1 n T 4
v
N nTr
n n
= ¢ dav
E, = ji ¢ (DC)M
n=1 n
v
N nTt
n
ghf = z ¢ (epy C 2) q %
n=1 vn
N Tr

where j =

1
1
1
0
0
1]

The superscript T, stands for matrix transposition
operation.






