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INTRODUCTION 

Investigations on the factors that control the 
movement of fluids in the underground inevitably 
become involved with fractured rock masses. In 
the petroleum industry, it was recognized long ago 
that the presence of fractures, either natural or 
man made, is crucial to the economics of the recovery 
methods to be employed in many oil fields. The 
development of groundwater resources is likewise 
often dependent on the presence of fractures to 
provide a drainage system in low permeability rocks. 
Geotechnical engineers have been faced with difficult 
problems when designing and constructing large 
engineering works in fractured rocks; catastrophic 
failures of' large daras provide evidence of the 
magnitude of their problems. The leakage problems 
that have resulted when natural fractures were not 
detected in developing projects for underground 
storage of petroleum hydrocarbons are still another 
kind of evidence of the importance of fracture 
systems. The current problem of evaluating migration 
of aqueous solutions of radionuclides through crys­
talline rock masses where the movement will be 
controlled by the discontinuities is a critical issue 
in the design of nuclear waste repositories. These 
examples simply serve to illustrate the fact that the 
.fractures play a key role in. understanding the flow 
behavior of rock systems. 

Despite the importance of th'is problem and the 
great amount of investigation by many workers, much 
remains to be done in developing a complete under­
standing of the factors that control fluid movement 
through fractured rocks.. The range of subject matter 
covered by the papers presented in Topic Area 1 of 
this symposium gives a good indication of the com­
plex problems that face earth scientists. 

We shall address three different aspects of this 
problem in an effort to describe some investigations 
currently underway in this laboratory. The first 
part of this paper is an attempt to develop an ex­
pression for fluid flow in a deformable fracture. 
Our approach to this problem of the hydromechanical 
l>ehavior of a deformable fracture differs from that 
of Gangi (1978) although we both have a common 
starting point, the roughness of the fracture sur­
face. The second part has to do with the problem of 
how to treat flow through networks of fractures. It 
is customary to consider a discontinuous rock mass 
Dy some equivalent porous medium but this raises 
some important questions that will be discussed, 
"he third part will present the most recent results 
Oy our group to develop a fully coupled finite 
Element code for flow through fractured porous 
.nedia subject to thermal, hydraulic and mechanical 
stresses. 

HYDROMECHANICS OF FLOW IN A SINGLE FRACTURE 

We have developed a simple physical model to 
understand the effect of normal stress on flow 
through a single rough walled fracture. In order to 
gain a fundamental understanding of the problem, we 
have focussed on the physical mechanisms and have 
excluded the use of arbitrary fitting parameters. A 
single fracture is considered to be composed of a 
collection of voids, and the closure of the fracture 
under stress to result from the deformation of.,.these 
voids. From such a model, the macroscopic measurable 
quantities, such as the normal stiress and correspond­
ing normal fracture displacements, can be correlated 
to the geometrical characterization of a rough walled 
fracture. The effect of roughness is incorporated 
into the usual parallel plate model of a fracture, 
and the flow rate as a function of normal stress 
is predicted and validated against laboratory data 
on granite and basalt. 

Solutions of the Navier Stokes equation show 
(Boussinesq, 1868; Bear, 1972) that steady, laminar 
flow through two smooth parallel plates separated by 
a constant distance b obeys the cubic law, that is, 
the flow rate is proportional to b^. The cubic law 
has been shown to hold down to apertures of 0.2 pm 
in open fractures made of optically smooth glass 
(Romm, 1966). We have shown (Tsang and Witherspoon, 
1981) that an equivalent cubic law may be used for a 
rough walled fracture if the constant value for the 
aperture is replaced by a statistical average. This 
implies that the hydrological property of a rough 
walled fracture may be suitably modeled by a mathe­
matical aperture distribution function. 

Fig. 1 Schematic representation of a fracture 
by an asperity model. 

Fig. 1 shows such a schematic representation for 
a fracture, which consists of a smooth top slab and 
a rough bottom slab with asperities of different 
heights (hj). The configuration of asperities 
gives rise to a fracture with variable aperture bj. 
The problem is then to develop an asperity function 
that is a correct mathematical expression for the 
variability of the real, physical fracture. 



Theoretical Development 

Geometrically, a single rough walled fracture may 
be envisioned either as a collection of voids or as 
an array of asperities (Fig. 2). 'Jnder increasing 
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Fig. 2 Schematic representation of a frac­
ture by either the asperity or the 
void model. 

tion of voids, all with the same orientation as the 
one shown in Fig. 4, the. effective modulus Egjj 

Fig. 4 Geometry of a flat elliptic crack in 
in rock block under stress. 

normal stress, more asperities come in contact and 
the average distance between points of contact 
decreases. Though an asperity description for a 
fracture seems to be a natural candidate for the 
study of flow through fractures, we find that the 
void description is better suited to the interpreta­
tion of the mechanical property of a single fracture 
under stress. By considering the closure of a single 
fracture as resulting from the shortening of the 
average crack length of the voids, we were able to 
arrive at an asperity function consistent with 
mechanical measurements of fracture displacement and 
applied normal stress. 
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3 Typical normal s t ress-displacement be­
havior for i n t a c t and jointed rock. 

Given measurements of normal s t r e s s displacement 
for both i n t a c t and jointed rock such as those shown 
in Fig. 3, we may define both the i n t r i n s i c Young's 
modulus, E, for the i n t a c t rock and the e f fec t ive 
Young's modulus , ^ ^ f t i fo r t h e j o i n t e d rock from 
t h e r e s p e c t i v e s l o p e s of the s t r e s s - d i s p l a c e m e n t 
curves: 

Eeff(a,AVt) = i f ^ ^ 

(1) 

( 2 ) 

At low stresses, the effective Young's modulus Egff 
of the jointed rock is much smaller than that of the 
solid rock. As stress is increased, Egjf approach­
es the value of E for the solid rock. 

Consider first the geometry of one elliptic flat 
crack of length 2d enclosed in a rock volume of u = 
AxAyfiz. Following closely the formulation of Walsh 
(1965), one can show that for a rock with a collec-

of the rock with voids is related to the intrinsic 
rock modulus E by: 

'̂ •eff 

_1 ̂  4 71 <d?> 
E E <u> ' 

(3) 

where both the half-crack length cubed and the volume 

enclosing each void have been averaged over all the 

voids in the sample. This expression is not sensi­
tive to the actual shape of the void. The second 
term on the right-hand side of (3) arises from 
the strain energy associated with the cracks. Since 
(3) applies to a physical situation of sparse voids, 
the effect of the voids on the elastJLc modulus is 
expected to be small. Then the property of the 
rock medium in which the voids are situated may be 
described by Young's modulus for t h e intact rock, and 
therefore the same modulus E appears in the strain 
energy term associated with the cracks. 

Fig. 5 Representation of single horizontal 
fracture by an array of voids. ^ 

If we were to consider one single horizontal 
fracture as a collection of voids, the physical 
situation will be as shown in Fig. 5. Here the voids 
are dense and the void ratio is large. Only a small 
fraction of the total fracture area is in contact. 
To describe the effective modulus Egfj of the 
fractured rock in the vicinity of the fracture, (3) 
may be modified to: 

1 4TI <d3> 
= — • ^ 

Eeff E Eeff <u> 
(4) 



where (4) now includes Egff in the last term. When 
the voids are large in number and close in proximity, 
the void-void interaction is no longer negligible as 
Is assumed in the derivation of (3). Since it is 
difficult if not impossible to account for this 
interaction in the calculation of strain energies, we 
make a plausibility argument to lump the effect of 
the interaction by introducing Egff in the last 
term of (4). The argument being that due to the high 
void ratio, the property of the rock medium is better 
represented by the effective modulus of the fractured-
rock than by the modulus of the intact rock. 

Suppose there are M^ voids in the fracture with 
a total cross sectional area A. then the average 
volume enclosing each crack may be written as: 

portray a portion of fracture shown in Fig. 5 at 
different stages of normal stress. The crack length 
2d is defined as the distance between two adjacent 
areas where the two fracture surfaces come into 
contact. These areas of contact are simply the 
asperities as shown in Fig. 2. Under increasing 
load, the deformation of the voids causes more 
asperities to come in contact, and leads to a de­
crease in the average crack length. This process 
results in a gradual increase of the effective 
modulus with increasing normal stress according to 
(7). The average crack length 2<d> continues to 
decrease as the voids deform until the term <d>/Az 
becomes negligibly small compared to 1, at which 
point the jointed rock will exhibit an effective 
modulus identical to that of the intrinsic modulus. 

<u> 
A Az 
M„ 

(5) 

where Az is a thickness around the fracture within 
which Eeff is applicable (see Fig. 5). Since the 
rock fracture is represented by a collection of 
voids, one expects the contact area of the fracture 
walls to be small such that the total void area is 
almost identical to the total fracture cross section 
area A. Therefore: 

<(2d)2> Mv •= A (6) 

In addition, for a spatially random collection of 
My voids, <d^> == <d2><d> and (4) may now be written 
approximately as: 

eff ^ , _ •^<d> 

Az 
(7) 

Equation 7 gives a useful r e l a t ionsh ip between the 
two moduli and t h e ave rage h a l f - c r a c k l e n g t h <d> 
which cha rac te r i zes the rough f rac ture a t d i f fe ren t 
levels of s t r e s s . 

(a) Ot normal stress a, 

(b) at normal stress o^>a•, 

(c) at normol stress <r̂ ><̂ z 

-2d, -i—2d^ - I - 2d, - I - 2d.—i 

Fig. 6 Deformation of voids in a sequence 
of increasing normal stresses. 

The physical picture implied by (7) is illustrated 
schematically in Fig. 6, which is an attempt to 

We therefore attribute the "softness" of a jointed 
rock to an average crack length that initially is 
relatively long and the stiffening of t h e jointed 
rock under compression to the shortening of this 
average crack length. This differs from Gangi's. 
(1978) "bed of nails" model, in which he ascribes the 
closure of a fracture to the elastic compression of 
the "nails" or "asperities". In Gangi's model, 
the "softness" of the fracture is said to result from 
the small number of asperities tJiat are in contact. 
These areas therefore sustain much higher stresses 
than that measured by the total load divided by the 
total fracture area. As a result, the strain of 
these asperities in contact is expected to be larger 
than the strain in an intact rock under the same 
load. 

However, when we apply such an asperity model to 
both the flow data and stress-strain measurements in 
a granite fracture (Iwai, 1976], we found that in 
order to obtain a result that is quantitatively com­
patible with the data, we had to assume that the 
total area of all the asperities that are in contact 
with the top slab (Fig. 1) took on a value of less 
than .001 of the total fracture area at an applied 
stress level of 20 Mpa. The experimental measurement 
[Iwai, 1976] gives a value between .1 to .2 for the 
contact area of the fracture at the same stress 
level. The discrepancy of two orders of magnitude 
between a parameter in the theory and measurement 
implies that the physical fracture system appears to 
be much "softer" than that described by the asperity 
model. On the other hand, the alternate mechanism 
proposed above, where the closure of the fracture 
under normal stress is ascribed to the deformation of 
voids, does predict a very soft elastic property at 
low stress. It also predicts a gradual increase of 
Young's modulus with stress, and a correct contact 
area in accordance with the laboratory measurment. 

It is clear from Fig. 6 that one may view the 
sequence (a) (b) (c) either as a decrease in the 
average crack length 2<d> or as an increase in the 
number Nj. of areas in contact under increasing 
load. For a rough-walled fracture, we shall describe 
the former process as a "void model" and the latter 
process as an "asperity model." For a spatially 
random distribution of voids or asperities, Nj. 
varies inversely with <d>. Given elastic stress 
measurements, it is evident from (7) that the rela­
tive average crack length 2<d> as a function of 
stress or fracture displacement can be calculated, 
and therefore, N^ may be deduced. 

The number of contact areas, Nj,, is the key to 
aperture distribution. Fig. 1 represents a rough-



walled fracture as an array of asperities of varying 
heights hj. At zero applied stress, the maximum 
possible aperture is b^, which corresponds to an 
asperity of zero height. With applied axial stress, 
the fracture closure AV results in a downward 
displacement of the top slab. At nonzero stresses, 
the aperture which corresponds to each asperity of 
height h is: 

|(bp-AV - h) h < (b„ 

h >̂  (bo 

AV) 

AV) 

(8) 

Let n(h) denote the asperity height frequency 
distribution function which characterizes the 

investigations on the mechanical and hydrologlcal 
properties of tension fractures in samples of basalt 
and granite to test the validity of our physical 
theory, Iwai measured normal displacements for both 
intact and jointed rock at normal stresses up to 
20MPa, and he also estimated the contact area within 
the fracture to be 10 to 20% of the total fracture 
area at maximum stress. Figure 7 shows how his 
results for radial flow of water through a single 
fracture in basalt decreased with increasing normal 
stress during the first loading cycle. Based on his 
fracture displacements, we used (12) to determine 
average apertures and then computed flow rates from 
(11) for fractional contact areas of 10, 15, and 20%. 
The smooth curves on Figure 7 show how the theoreti­
cal results compare with Iwai's experimental data. 

number of asperities in contact at any stress, 
is: 

n(h) dh. (9) 

It is clear from (9) that the asperity height dis­
tribution function, n(h), can be obtained from the 
derivative of N^- For a given set of stress dis­
placement measurements, it is possible only to 
deduce the change in <d>/Az relative to its value at 
zero applied stress from (7). This implies that N,, 
and in turn n(h) can only be determined to within 
some constant multiplier, because the value of bg 
is not known. If the contact area as a fraction of 
the total fracture area is known to be co at a speci­
fied deformation AV, then: 

Nc(AV) 
(10) 
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Fig. 7 Experimental and theoretical flow as 
a function of normal stress in basalt. 

and bo is readily determined if a functional form 
exists for Nj,(AV). 

We have shown (Tsang and witherspoon, 1981) that 
if the aperture variation of the fracture is spatial­
ly random, the equivalent cubic law for flow through 
a rough walled fracture may be written as: 

2 _ 
A(t> 

<b^> (11) 

where C is a proportionality constant that depends on 
the macroscopic fracture dimensions and properties of 
the fluid. The statistical average for the variation 
in aperture may therefore be computed from: 

,bo-AV 

<b3(Av, c )> 

r ° <bo Av - h)3n(h) dh 

f n(h) 
(12) 

dh 

Once the normal s t r e s s displacement measurements and 
an e s t i m a t e d c o n t a c t a rea of t h e f r a c t u r e a t any 
s t r e s s are known, flow through the rough f rac tu re may 
be ca l cu l a t ed from (12) . 

Applicat ion to Laboratory Data 

We used r e s u l t s from I w a i ' s (1976) l a b o r a t o r y 

In analyzing Iwai ' s (1976) data for r a d i a l flow in 
a g r a n i t e f r ac tu r e , we used h i s r e s u l t s for both the 
l o a d i n g and un load ing c y c l e s . F i g . 8 shows the 
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Fig. 8 Experimental and theoretical flow as a 
function of normal stress in the first 
loading and unloading cycles in granite. 
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h y s t e r e s i s t h a t he o b s e r v e d a s a r e s u l t of a perma­
n e n t s e t i n t h e f r a c t u r e . We a s s u m e d a maximum 
f r a c t i o n a l c o n t a c t a r e a of 15% a t maximum a p p l i e d 
s t r e s s and t h e smooth c u r v e s i n d i c a t e how our t h e o r y 
compares w i t h h i s e x p e r i m e n t a l d a t a . S i n c e no cu rve 
f i t t i n g i s i n v o l v e d i n h a n d l i n g t h e f low d a t a , we 
b e l i e v e our t h e o r y p r o b a b l y c o n t a i n s tihe e s s e n t i a l 
p h y s i c s t h a t i s r e l e v a n t t o t h e c o u p l i n g b e t w e e n 
s t r e s s and flow i n a de fo rming f r a c t u r e . 

Summmary 

Both a "void" and an "asperity" description of 
the fractures are used in this theory. The former 
is suited to the mechanical property, and the 
latter, to t h e hydrological property of the rough-
walled fracture. The physical picture that emerges 
from such a model is that at zero applied stress, the 
fracture is propped open by only a few tall asperi­
ties, giving rise to very long average "crack" 
lengths. Therefore, the elastic property of the 
jointed rock appears to be extremely soft at low 
applied stresses. At higher stresses, the number of 
asperities in contact increases rapidly, causing a 
rapid decrease in the average crack length. Thus, 
the Young's modulus of t h e jointed rock approaches 
that of the intact rock. 

The fact that the fractional contact area of the 
fracture at the maximum applied stress of 20 MPa is 
on the order of 0.15 is of considerable interest. 
While the stress-displacement measurements indicate 
that the Young's modulus of the jointed rock becomes 
almost identical to that of the intact rock at this 
stress level, the fracture is far from being "closed"; 
in fact, only about 15% of the fracture surfaces is 
in contact. The mechanical property of the fracture 
becomes indistinguishable from that of the intact 
rock, not because the fracture is "closed," but 
because the average crack length under increased 
load has shortened sufficiently, causing the voids in 
the fracture to deform from elongated shapes (Figs. 4 
and 5) to voids more like spheroids. Thus, with 
respect to its elastic behavior, the fracture is very 
much like an intact rock; but with respect to its 
hydraulic behavior, the fracture is definitely "open" 
to allow fluid transport. Our observation therefore 
indicates that unless there are very high normal 
stresses, a fracture probably cannot be "closed" 
Sufficiently to completely prevent hydraulic flow. 
This seems to be consistent with the observation of 
Kranz et al. (1979) from their measurement of permea­
bility from pulse decay data. Kranz et al. deduced 
Indirectly from their data that the difference in 
the flow rate between a jointed and an unjointed 
rock does not vanish until t h e effective pressure 
is at least 200-300 MPa. 

POROUS MEDIA EQUIVALENT FOR A NETWORK 
OF DISCONTINUOUS FRACTURES 

.One of the important questions that arises when 
Considering the flow of fluids through a discontin­
uous rock mass is whether or not t h e fracture net-
*'ork behaves like porous media. In other words, can. 
One model the system by an equivalent permeability 
tensor and proceed to determine the movement of 
fluids under the application of known boundary and 
Initial conditions? 

Work that has been done to determine the equiva­
lent permeability of fractured rocks from information 
n fracture geometry (assuming an impermeable matrix) 

can be'classified into two categories. Most of the 
work that has been done falls into the first category 
"where fractures are assumed to be of infinite extent 
(continuous or extensive fractures). Very little 
work has been done in the second category, taking 
into account the finite or nonextensive nature of 
fracture size. 

Mathematical studies of extensive fracture 
systems were made by Snow (1965). Snow developed 
a mathematical expression for the permeability 
tensor of a single fracture of arbitrary orienta­
tion and aperture relative to a fixed coordinate 
system. The permeability tensor for a network of 
fractures is therefore the tensor formed by adding 
the respective components of the permeability 
tensors for each individual fracture. 

It can be seen in the field that fractures are 
clearly of finite dimensions. The fact t h a t frac­
tures are finite means that each fracture can con­
tribute to the permeability of the rock only insofar 
as it intersects other conducting fractures. In 
the extreme, an isolated fracture which does not 
intersect any other fracture effectively contributes 
nothing to the permeability of the total rock mass. 
This means that flow in any given fracture is not 
independent of flow in every other fracture. 

Two approaches have been taken to account for 
the finite nature of real fractures. Parsons (1966) 
and Caldwell (1971, 1972) have used analogue models 
to study finite fractures. Rocha and Franciss 
(1977) have proposed a field method for finding a 
correction factor to Snow's (1965) analysis. 

A significant result of Parson's work was that 
doubling the permeability of all fracture elements 
in the x direction increased the permeability in 
the y direction. This effect would not be seen in 
continuous fractures, but with discontinuous frac­
tures t h e net flow in the y direction must proceed 
through some fractures oriented in the x direction. 
Also, for a similar reason, permeability in the x 
direction is less than doubled. This is a signifi­
cant property of fracture systems that must be kept 
in mind. 

Homogeneous Anistropic Permeability 

In order to determine when a fractured medium 
behaves as a homogeneous, anistropic medium, one must 
determine if a syiranetric permeability tensor exists. 
The only way to show this is to actually measure the 
directional permecibility. Darcy's law: 

â i 
i] 3x. 

(13) 

can be used to examine t h e theory of d i r e c t i o n a l 
permeabil i ty measurement. The fact tha t flow and 
gradient are not n e c e s s a r i l y in the same d i r e c t i o n 
can be seen from i n s p e c t i o n of the above Darcy 
e q u a t i o n . Only when flow and g r a d i e n t c o i n c i d e 
with one of the p r i n c i p l e axes of p e r m e a b i l i t y 
w i l l flow and g r a d i e n t be i n the same d i r e c t i o n . 

Marcus and Evanson ( 1 9 6 1 ) , Marcus (1962 ) , and 
Bear (1972) give both the expression for permeabil i ty 
in t h e d i r e c t i o n of flow and p e r m e a b i l i t y i n t h e 
d i r ec t ion of g rad ien t . Both show how the r e s u l t s of 
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directional permeability measurement can be plotted 
as ellipsoids. For Kj, the permeability measured ih 
the direction of flux, i/1Cf plotted versus a, the 
direction of measurement, on polar coordinate paper 
will be an ellipsoid given by: 

(14) 

Likewise for Kg, the permeability in the direction 
of the gradient, 1//K„ plotted versus a will be an 
ellipsoid given by: 

1/K V K , 
(15) 

For permeability measured in the direction of flux, 
the major axis of t h e ellipsoid is in the direction 
of maximum permeability. For permeability measured 
in the direction of the gradient, the major axis of 
the ellipsoid is in the direction of minimum permea­
bility. 

Another basic problem is that of establishing 
homogeneity. Homogeneity has been discussed by 
Hubbert (1956), Fara and Scheidigger (1961), Toth 
(1967), Bear (1972), and Freeze (1975). Freeze 
points out that there is really no such thing as a 
truly homogeneous medium in geology. However, in 
order to have a tractable analysis of flow, a scale 
of measurement (the macroscopic scale) must be found 
for which the porous medium is seen as a continuum 
(Hubbert, 1956). On this scale t h e medium is said 
to be homogeneous. The scale at which analysis is 
possible is commonly illustrated with a diagram 
such as Figure 9. The volume at which the parameter 

Fig. 9 Change in value of measured permea­
bility with size of sample. 

of interest, in this case permeability, ceases to 
vary is defined as the representative elementary 
volume (REV). With respect to permeability, the REV 
of a medium can be sought by measuring the average 
permeability of increasing volumes of rock until the 
value does not change significantly with the addition 
or subtraction of a small volume of rock. 

There is no guarantee that such an REV exists 
for every permeable system. Indeed, Snow's (1969) 
theoretical and experimental work shows the permea­
bility of fractured rock may continue to increase 
with the volume tested. This implies that the 
statistical sample continues to change with the 
size of the sample. A further problem has been 
studied by Freeze (1975), Smith and Freeze (1979a, 
1979b), and Smith (1978). They have concluded that 
for some problems it may not always be possible to 

define equivalent homogeneous properties for in­
herently heterogeneous systems. 

The difficulty in identifying equivalent perme­
ability is that, (a) the equivalent permeability 
tensor that works for one set of boundary condi­
tions will not necessarily predict the correct flux 
for another set of boundary conditions, and (b) an 
equivalent permecibility which is correct in terms 
of flux may not predict the correct average head 
distribution. The first difficulty arises because, 
in general, different boundary conditions induce 
different gradients in different parts of the flow 
field. The permeability in one part of tbe field 
which has a higher gradient will have more effect 
on the total flux than the permeability in another 
part of the field which has a lower gradient. 
When the boundary conditions change, the emphasis 
changes. Therefore, a given equivalent permeabil­
ity tensor will only apply absolutely to kine-
matically similar flow systems. 

If the gradient within the internally heterogen­
eous REV remains approximately constant, each part 
of the element will have equal emphasis, and it may 
be possible to define a unique equivalent permeabil­
ity tensor which will be correct for approximately 
linear flow in any direction. However, if the 
isopotentials and flow lines are curved relative to 
tlie dimensions of the statistically determined REV, 
then the value of the equivalent permeability of the 
REV will depend on the particular kinematics of the 
flow system. In this case, analysis of the flow 
system would depend on the knowledge of the equiva­
lent permeability and the value of the equivalent 
permeability would depend on the flow system. So a 
unique solution to the flow problem is not guaran­
teed. If, on the other hand, the gradient is con­
stant and the average flow lines are linear witJiin 
the statistically determined REV, then there may 
exist a single permeability tensor which can be used 
to correctly predict flow in any direction. However, 
even under the constraints of a constant gradient, 
there is still no guarantee that a unique, symmetric 
permeability tensor will exist for every medium on 
any scale. 

Given a flow system such as seepage under a dam, 
the size of the appropriate REV must be small enough 
to have approximately a constant gradient throughout 
and therefore linear average flow lines. However, it 
must also be large enough to contain a representative 
sample of the heterogeneities. In some cases, it may 
be that a statistically defined REV is too large to 
have linear average flow lines. In this case, either 
a smaller REV must be found as the basis for analysis 
or a non-continuum analysis must be used. 

The above discussion leads to several conclu­
sions central to this investigation. First, it only 
makes sense to look for REVs in fractured rocks 
using flow systems which would produce a constant 
gradient and linear flow lines in a truly homoge­
neous, anisotropic medium. Boundary conditions 
which produce such a flow system will be described 
below. Second, the following criteria must be met 
in order to replace a heterogeneous system of given 
dimensions with an equivalent homogeneous system 
for the purposes of analysis: 

(1) there is an insignificant change in the value 
of the equivalent permeability with a small addition 
or subtraction to the flow volume; 



(2) an e q u i v a l e n t symmetr ic p e r m e a b i l i t y t e n s o r 
e x i s t s w h i c h p r e d i c t s t h e c o r r e c t f l u x when t h e 
d i r e c t i o n of g r a d i e n t i s c h a n g e d . 

Poin t (1 ) i m p l i e s t h a t t h e s i z e of t h e sample under 
c o n s i d e r a t i o n i s a good s t a t i s t i c a l sample of t h e 
h e t e r o g e n e i t i e s . P o i n t (2 ) i m p l i e s t h a t t h e boun­
dary c o n d i t i o n s a r e a p p l i e d t o t h e sample which would 
p r o d u c e a c o n s t a n t g r a d i e n t t h r o u g h o u t a t r u l y 
homogeneous a n i s o t r o p i c s a m p l e . Trie a c t u a l g r a d i e n t 
w i th in t h e h e t e r o g e n e o u s sample does n o t have t o be 
e x a c t l y c o n s t a n t f o r (2 ) t o be s a t i s f i e d . 

S t a t i s t i c s of F r a c t u r e Geometry 

Under a g i v e n s e t o f b o u n d a r y c o n d i t i o n s , t h e 
h y d r a u l i c b e h a v i o r of a f r a c t u r e d rock mass w i t h an 
I m p e r m e a b l e m a t r i x i s d e t e r m i n e d e n t i r e l y by t h e 
g e o m e t r y o f t h e f r a c t u r e s y s t e m . R e a l f r a c t u r e s 
have complex s u r f a c e s and v a r i a b l e a p e r t u r e s , b u t 
f o r t h e p u r p o s e s o f t h i s s t u d y a n d m o s t o t h e r 
s t u d i e s of f r a c t u r e s y s t e m s , t h e g e o m e t r i c d e s c r i p ­
t i o n i s s i m p l i f i e d . The a s s u m p t i o n i s made t h a t 
I n d i v i d u a l f r a c t u r e s l i e i n a s i n g l e p l a n e and 
have a c o n s t a n t h y d r a u l i c a p e r t u r e . C h a r a c t e r i z a t i o n 
of a f r a c t u r e sys tem i s c o n s i d e r e d comple te when each 
f r a c t u r e i s d e s c r i b e d i n t e r m s o f : (1) h y d r a u l i c o r 
e f f e c t i v e a p e r t u r e , (2 ) o r i e n t a t i o n , (3) l o c a t i o n , 
and (4) s i z e . 

As h a s been d i s c u s s e d i n t h e f i r s t p a r t of t h i s 
rev iew, t h e h y d r a u l i c b e h a v i o r of f r a c t u r e s has been 
shown t o be a f u n c t i o n of t h e i r a p e r t u r e ( e q u a t i o n 
1 1 ) . C h a r a c t e r i z a t i o n o f t h e p e r m e a b i l i t y o f a 
f r a c t u r e r e q u i r e s d e t e r m i n i n g t h e h y d r a u l i c a p e r t u r e . 
U n f o r t u n a t e l y , i t i s v e r y d i f f i c u l t - t o p e r f o r m 
h y d r a u l i c t e s t s on i s o l a t e d f r a c t u r e s i n t h e f i e l d . 
For exeimple. Gale (1975) i s o l a t e d a l i m i t e d number 
of h o r i z o n t a l f r a c t u r e s w i t h p a c k e r s and per formed 
i n j e c t i o n t e s t s t o d e t e r m i n e t h e i r a p e r t u r e s . 
G a l e ' s d a t a , h o w e v e r , i s n o t e x t e n s i v e e n o u g h t o 
make s i g n i f i c a n t a n a l y s i s of t h e r e l a t i o n s h i p b e ­
tween h y d r a u l i c and a p p a r e n t a p e r t u r e s . 

Because of t h e d i f f i c u l t y i n v o l v e d i n h y d r a u l ­
i c a l l y i s o l a t i n g a s i n g l e f r a c t u r e u n d e r g r o u n d , 
what we know of f r a c t u r e a p e r t u r e d i s t r i b u t i o n s i s 
l i m i t e d t o a p p a r e n t a p e r t u r e s t h a t have been o b s e r v e d 
d i r e c t l y i n c o r e s o r w e l l l o g s . The d i s t r i b u t i o n 
of a p e r t u r e s measured by B i a n c h i and Snow (1968) was 
found t o b e v e r y c l o s e t o l o g n o r m a l . I t may b e 
r e a s o n a b l e t o e x p e c t t h e d i s t r i b u t i o n of t r u e h y ­
d r a u l i c a p e r t u r e s t o a l s o be d i s t r i b u t e d l o g n o r m a l l y . 

The s t a t i s t i c s o f f r a c t u r e o r i e n t a t i o n a r e 
p e r h a p s t h e b e s t u n d e r s t o o d o f a l l t h e g e o m e t r i c 
p r o p e r t i e s of f r a c t u r e s . O r i e n t a t i o n i s e a s i l y 
measured i n c o r e s o r i n o u t c r o p s wi th s i m p l e t o o l s . 

•For i n s t a n c e , Mahtab (1972) deve loped a c o m p u t e r i z e d 
method f o r a n a l y z i n g c l u s t e r s of o r i e n t a t i o n d a t a . 
Once c l u s t e r s had been i d e n t i f i e d t h e y were compared 
t o A r n o l d ' s h e m i s p h e r i c a l n o r m a l d i s t r i b u t i o n . 

The m a t h e m a t i c a l d e s c r i p t i o n of f r a c t u r e l o c a ­
t i o n s a n d f r a c t u r e d i m e n s i o n s a r e i n t e r r e l a t e d . 
P r a c t u r e t r a c e s can be o b s e r v e d i n o u t c r o p s o r i n 
e x c a v a t i o n s . The l o c a t i o n of t h e i n t e r s e c t i o n s of 
f r a c t u r e s w i t h i n a b o r e h o l e can a l s o be d e t e r m i n e d . 
What we know a b o u t t h e l o c a t i o n of f r a c t u r e s i n 
Space and t h e i r s h a p e a n d d i m e n s i o n s comes from 
^ i s t r a c e l e n g t h and i n t e r s e c t i o n d a t a . 

R o b e r t s o n ( 1 9 7 0 ) , P r i e s t and Hudson ( 1 9 7 6 ) , 
"udson and P r i e s t ( 1 9 7 9 ) , and Baecher (1978) have 

s t iudied l e n g t h and s p a c i n g d i s t r i b u t i o n s f o r f r a c ­
t u r e s . B a e c h e r e t a l . ( 1 9 7 7 ) have r e v i e w e d t h i s 
l i t e r a t u r e on s p a c i n g and l e n g t h d i s t r i b u t i o n . 
Spac ing and l e n g t h have b o t h been r e p o r t e d t o v a r y 
e x p o n e n t i a l l y and l o g n o r m a l l y . - B a e c h e r ( 1 9 7 8 ) 
deve loped a c o n c e p t u a l j o i n t geometry model . J o i n t 
t r a c e l e n g t h s a r e assumed t o be lognormal ly d i s t r i ­
b u t e d and s p a c i n g s a r e assumed tx> be e x p o n e n t i a l l y 
d i s t r i b u t e d . The a u t h o r s i n f e r t h a t j o i n t s a r e 
c i r c u l a r d i s k s randomly d i s t r i b u t e d i n s p a c e . J o i n t 
r a d i i a r e shown t o b e l o g n o r m a l l y d i s t r i b u t e d . 

Numer ica l Method of A n a l y s i s 

A n u m e r i c a l code has been developed t o g e n e r a t e 
sample f r a c t u r e s y s t e m s in two dimensions u s i n g t h e 
g e o m e t r i c p r o p e r t i e s d e s c r i b e d above and to d e t e r m i n e 
t h e p e r m e a b i l i t y o f s u c h s y s t e m s . The c o m p u t e r 
p r o g r a m h a s b e e n u s e d t o s t u d y s a m p l e s o f b o t h 
e x t e n s i v e and n o n e x t e n s i v e f r a c t u r e ne tworks . 

The t w o - d i m e n s i o n a l mesh g e n e r a t o r p roduces random 
r e a l i z a t i o n s of a p o p u l a t i o n of f r a c t u r e s . I n p u t t o 
t h e g e n e r a t o r i n c l u d e s s p e c i f i c a t i o n of t h e d i s t r i b u ­
t i o n s t h a t d e s c r i b e t h e f r a c t u r e p o p u l a t i o n . The 
mesh g e n e r a t o r can randomly choose f r a c t u r e s f o r t h e 
sample a c c o r d i n g t o t h e s e d i s t r i b u t i o n s . D e t a i l s 
of t h e scheme f o r mesh g e n e r a t i o n a r e g i v e n by Long 
e t a l . ( 1 9 8 1 ) . A f i n i t e e l e m e n t a n a l y s i s can t h e n b e 
used t o c a l c u l a t e Q„, t h e component of flow t h r o u g h 
t h e p a t t e r n i n t h e d i r e c t i o n of t h e g r a d i e n t . Using 
D a r c y ' s l a w , t h e h y d r a u l i c c o n d u c t i v i t y i n t h e 
d i r e c t i o n of t h e g r a d i e n t of t h e s a m p l e f r a c t a r e 
p a t t e r n i s c a l c r u l a t e d from: 

(16) K = 
g A V<j) 

where A i s t h e g r o s s a r e a p e r p e n d i c u l a r t o f low. The 
a n a l y s i s of p e r m e a b i l i t y i s i ndependen t of t h e t y p e 
of f r a c t u r e model g e n e r a t e d . T h i s g e n e r a t o r p r o d u c e s 
models s i m i l a r t o B a e c h e r ' s (1978) bu t a n o t h e r f r a c ­
t u r e mode l , such a s t h a t p r o p o s e d by Veneziano (1979) 
c o u l d j u s t a s e a s i l y have been u s e d . 

The e f f e c t of sample s i z e on c o n d u c t i v i t y m e a s u r e ­
ment c a n b e s t u d i e d w i t h t h i s p r o g r a m . F i r s t a 
l a r g e f r a c t u r e p a t t e r n i s g e n e r a t e d . A s m a l l p i e c e 
of t h i s sample can be n u m e r i c a l l y removed and s u b ­
j e c t e d t o t h e n u m e r i c a l c o n d u c t i v i t y t e s t d e s c r i b e d 
above ( e q u a t i o n 1 6 ) . S u c c e e d i n g l y l a r g e r p i e c e s can 
be t e s t e d and t h e r e s u l t s compared. 

The program can a l s o b e used t o s tudy t h e v a r i a ­
t i o n i n c o n d u c t i v i t y be tween d i f f e r e n t r e a l i z a t i o n s 
of a s t a t i s t i c a l l y d e s c r i b e d f r a c t u r e sy s t em. T h i s 
Monte C a r l o t y p e a n a l y s i s c o u l d a l s o be u s e d t o 
a n a l y z e s t a t i s t i c a l d a t a c o l l e c t e d in t h e f i e l d . An 
e x p e c t e d v a l u e and s t a n d a r d d e v i a t i o n of e q u i v a l e n t 
p o r o u s media c o n d u c t i v i t y would be o b t a i n e d i n t h i s 
way. 

As p r e v i o u s l y d i s c u s s e d , a method which o b t a i n s 
c o n d u c t i v i t y i n t h e d i r e c t i o n of t h e g r a d i e n t must b e 
u s e d . G r a d i e n t can be a p p r o x i m a t e l y l i n e a r t l t r o u g h -
o u t a h e t e r o g e n e o u s r e g i o n i n s t e a d y f low i f t h e 
r e g i o n i s an REV. The d i r e c t i o n of f low, however , i s 
c o n t r o l l e d by t h e d i r e c t i o n of the f r a c t u r e s . The 
boundary c o n d i t i o n s n e c e s s a r y t o produce a c o n s t a n t 
g r a d i e n t i n a r e c t a n g u l a r , a n i s o t r o p i c flow r e g i o n 
a r e i l l u s t r a t e d i n F i g . 1 0 . I t c o n s i s t s o f two 
c o n s t a n t - h e a d b o u n d a r i e s ( s i d e s 2 and 4 ) a n d t w o 
b o u n d a r i e s ( s i d e s 1 and 3) w i t h t h e same l i n e a r 



variation in head from ^2 ~ ^ ' ^ to (fi ̂  = 0. An 
example of the configuration used in these analyses 
is shown in Fig. 10. Conductivity is measured in 
the direction perpendicular to sides 2 and 4. 

The linearly varying boundary conditions on 
sides 1 and 3 are necessary because, in general, the 
medium in the flow region is anisotropic. Without 
these boundaries the lines of constant head would 
be distorted near sides 2 and 4. 
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10 Boundary conditions necessary to pro­
duce constant gradient in a homogen­
eous anisotropic flow region. 

measured values of K^^ for a given area of rock may 
be quite erratic. This plot can be used as a test of 
whether or not the given area can be approximated aa 
a homogeneous porous medium. If IZ/KJJ^ does not 
plot at least approximately as an ellipse, then no 
single symmetirlc conductivity tensor can be written 
to describe the medium. If there is no conductivity 
tensor then flow through the medium cannot be ana­
lyzed by existing continuum techniques. 

Validation of Numerical Method 

The following two examples will illustrate the 
use of this numerical method of analyzing flow in 
two-dimensional networks of fractures. The. first 
example is a fracture system of known conductivity 
and was used to verify the numerical method of 
permeability measurement. The conductivity of 
fracture systems with infinitely long fractures is 
known from the theory developed by Snow (1965) and 
others. Because of the physical basis of this 
fracture model, we could only examine finite pieces 
of such fracture systems. The infinite fractures are 
seen in a finite model as fractures which transect 
the entire model. An arbitrary extensive- fracture 
system with two sets of parallel, evenly spaced, 
equal aperture fractures was tested. To provide an 
anisotropic case, the two sets were placed 30» apart. 
The numerical code was used to deterraine Kg for 
variations of a ranging from 0° to 105° as measured 
from one of the two fracture sets. Theoretically, 
this fracture network should produce an ellipse for 
.l/i'Kg as shown by the solid line on the polar plot in 
Pig. 11. The plotted points represent the results 

For the boundary conditions shown in Fig. 10, 
d^/d-y is zero. K̂ ĵ̂  can be calculated from: 

X X (i(i_ - i(>. ) L * - - ' ( ' . 
2 4 2 4 

(17) 

where Q^ is the total flux per unit thickness in 
the X direction. For $2 ^ 1 and 1̂4 = 0, and consist­
ent units, K,m is numerically equal to Qjj- Also, 
since Qy, the total flux per unit thickness in the 
y direction, is known, K^y can be calculated from: 

xy l<^2 - *^)L ()>2 - ^^ 
(18) 

^8 
^H 
1 yK / \ / f l 
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For ^2 ~ ^ ''nd 0, as above, K^y 

Flow through the fracture system is computed 
using a finite-element program developed by Wilson 
and Witherspoon (1970) for fracture flow. Fractures 
are represented as line elements with flux related to 
aperture by the cubic law. The rock matrix is 
assumed to be impermeable. Only the steady state 
flow rate is calculated. 

In general, the fracture pattern results in an 
anisotropic medium. Conductivity in such a frac­
ture pattern can be measured in any direction 
chosen. For homogeneous anisotropic media, 1//K^^ 
versus o, the angle of rotation, is an ellipse when 
plotted in polar coordinates. However, for inhomo­
geneous fractured media, V / K X X ""̂ y "ot plot as a 
smooth ellipse. In fact, the shape of a plot using 

Fig. 11 Polar plot of numerical results for 
\ / / x „ compared to theoretical ellipse. 
Extensive fracture system composed of 
two sets of parallel, evenly spaced, 
equal aperture fractures placed 30° 
apart• 

fron the numerical analysis as the direction of the 
hydraulic gradient was changed in increments of 15°. 
The small differences between theoretical and numeri­
cal results can be attributed to the finite nature of 
the numerical model. Obviously, a fracture network 
with these properties could be replaced by an equiva­
lent porous media. 

The second example is a nonextensive fracture 
system that was developed at random using the mesh 
generation scheme described by Long et al. (1981). 



•Sable 1 gives the statistics used to generate the 
fractures. The generation region was HOcm x llOcmi 

Table' 1. Input parameters for random network 
of fractures. 

Parameters Set 1 Set 2 

; DeneitY 

Orientation 

Length 

.Apertura 

Number of 
Fractures 

d i s t r i t iu t ion 
m, 92 (fleg) 

tfjgnormal 
d ts t r i i ju t ion 
n, s2 (cm) 

Ifflgnormal 
•d is t r ibu t ion 
m, s2 (-(an) 

49 

30, 5 60, 10 

40, io 30, 7.5 

.001, .005 ,005, .0001 

To determine what variations might be expected 
from a repetitive generation of networks having the 
same parameter a listed in Table 1, tliree different 
fracture Bystems were examined. Flow regions 75cm x 
7Scm oriented with a = 0" were investigated in each 
network. The three regions had r^twork eharacter­
istics as given in Talkie 2 . 

Table 2 . C h a r a c t e r i s t i c s of three random 
f rac tu re networks.; 

Setwork 

1 

2 

3 

Number 
of 

f r a c t u r e s 

a i 

as 

90 

number of 
F r a c t u r e 

I n t e r s e c t i o n s 

123 

ITO 

139 

Kumber 
of 

Nodes 

28S 

262 

319 

Number 
of 

S lemehts 

327 

306 

368 

ever , examination of. Table 3 shows tha t the flux in to 
Btde 2 does not equal the flux out of s ide 4 . The 
BVim of the f l u x e s through a l l a i d e s , however, i s 
ze ro as e x p e c t e d . These samples a r e c l e a r l y no t 
l>ehaving l ike porous media; in anisotropic porous 
media under the chosen boundary conditions the f lux 
on opposi te s ides would be equa l . 

To inves t i ga t e the problem of d i rec t iona l permea­
b i l i t y . Network 3 was se lec ted for fur ther a n a l y s i s . 
Flow regi"ons 7 5cm x 7 5cm i n s i z e were r o t a t e d a t 
. i n t e rva l s of 15° so t h a t a could be varied from 0° to 
180°. F ig . 12A ehows the f rac tu re network of the 
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i 

Boundary condi t ions were applied, to these three 
flow r e g i o n s such t h a t c o n d u c t i v i t y in t h e same 
d i r e c t i o n . cbuld_ be measured^ That i s , s i d e s 1 
and 3 were given a l i n e a r l y varying head d i s t r i b u ­
t ion , s ide 2 had a constant head of 1, a ide 4 had a 
Constant head of 0 ( s ee F i g . 1 0 ) . Tab le 3 g i v e s 
the t o t a l f luxes in a n V s from each aide for each 
(low reg ion . ,A p o s i t i v e sign i nd i ca t e s flow i n t o the 
r eg ion and a negative> s ign i n d i c a t e s flow out of 
the reg ion . 

. Table 3 . Total f luxes for th ree random 
f r ac tu re networks. 

•lletwor>[ Side 1 
em'/s 

Side -i. 
CB^/B 

Side 3 
cm3/g 

Side 4 

-1 0..1340ZE-19 4.41796E-7 -4.413.8ilE-7 -4,H3BBE-10 

2 0.39Z6OE-10 2.006216̂ 5 -2,OOS09E-5 -a.673S0E-10 

3 0.42390B-10 1401927E-4 -1i0i927E-<l -8..9.7e45E-)I 

Examination' of Table 3 leads to several conclu-
. elons. First, there is a great deal of variation 
j between -the three networks generated using the same 
statistical fracture popuiation. As shown in Table 
21 the number of fractures in each flow region 
Varies. Thus some of the variation in flow rate is 
'S'ie to npnergptic sampling. Recall that under the 
ooundary conditions used, for an ideal porous medium 
the flux in the x direction, i.e. frcm side 2 to side 
*' ta numerically equal to th* conductivity. How-

Fig. 12 Nonextensive random fracture system 
showing original generation region 
(A), and flow regions investigated 
when.ot = o° (B),a =45" (C), and 
a = 12 0° (D). 

original .generation region and Figs. ISB-C-D illus­
trate how different flow regions were created simply 
by rotating the boundaries while the network teinained 
fixed. 

/ 

* ^ N * ^ • • ^ \ . ^ A x \ \ \ J__-| 

f pS^ -J j j i a i i Jiiio* inio' imo'ii 

Fig. 13 Polar plot of numerical results for 
1//Kq f o r a nonextensive random 
fracture sys.tem. 



Figure 13 shows the values of 1//Kg plotted 
on polar coordinate paper where Kg is defined in 
terms of flux across side 2. The fact that inflow 
does not equal outflow on opposite sides leads to a 
problem in defining conductivity. If conductivity is 
arbitrarily defined as numerically equal to the 
inflow into side 2, no information is lost. Side 
2 for any angle a becomes side 4 for a -i- 180°, etc. 

The results on Fig. 13 clearly do not plot as 
an ellipse; nor are they symmetric. For certain 
angles of rotation (e.g., 75°, 90°) the value of 
l/i^„ becomes very large and goes off the scale of 
the graph. For these angles, Kg is very small 
because there is practically no hydraulic connection 
between sides 2 and any other side. This cannot be 
completely confirmed visually from the plots of these 
flow regions because aperture has not been included 
in the figures. Although isopotentials have not been 
plotted for these samples, it is fairly certain they 
will not be linear. If we define Ky^ as numerically 
equal to the flow into or out of side 3, then K^y is 
the flow into or out of side 1 when the flow mesh is 
rotated 90°. K^y should equal Ky^ if K^j is sym­
metric. For this example, computed values of Ky„ 
did not equal computed values of Kĵ y for any angle 
of rotation. This further demonstrates the noh-
syrametric nature of the permeability. 

The tests described.above show clearly that the 
sample chosen does not have a symmetric conductivity 
tensor and cannot be represented by an equivalent 
porous medium. As further proof of the nonhomogen­
eous nature of Network 3, flow regions of different 
sizes were extracted and tested. The particular 
orientation shown on Fig. 12 for a = 0° was selected, 
and the flow region was reduced from 75cm x 75cm to 
25cm X 25cm, while remaining centrally located in the 
original generation region. The results revealed 
order of magnitude changes in hydraulic conductivity 
from sample to sample and further illustrated the 
marked differences between the fluid flow behavior of 
this random fracture network and that of homogeneous 
porous media. 

Summary 

A numerical model has been developed to produce 
random networks of fractures. A computer program 
for fluid-flow analysis then measures the directional 
conductivity of these samples. 

of two reasons. First, the size of the REV may 
exceed the volume of rock that exists. secondly, 
for the case of an impermeable matrix, the fractures 
may not be dense enough to behave as a medium with 
a symmetric permeability tensor. Non-"tensorial" 
behavior would result from insufficient interconnec­
tions between fractures. In this case, the volume 
of fractured rock may be large enough to be a good 
sample of the fracture population, but the nature 
of the fractures is such that they will not behave 
hydraulically as a porous medium on any scale. 

The numerical techniques described here will be 
used to find fractured rock systems that do behave 
like anisotropic porous media. Fracture systems 
with specified geometries (spacing, aperture, length, 
and orientation) will be investigated. If the total 
number of fractures is held constant, the density of 
the fractures will be increased until systems are 
found which behave more like porous media. For a 
given population and a given total number of frac­
tures, we should be able to identify minimum fracture 
densities which produce homogeneous anisotropic 
behavior. The effect of each distributed parameter 
on the size of the REV and the value of the resulting 
conductivity can then be determined. 

Systems for which no REV exists will also be 
sought. This can be done by examining systems that 
are not dense enough to act like porous media. By 
holding this density constant and increasing the area 
of investigation, we can see if the behavior of the 
system becomes more like that of porous media or 
rema ins e rra tic. 

Methods for quantifying the porous media nature 
of fracture systems are under development. One 
method currently being investigated is to quantify 
how well the permeability data plot as an ellipse. 
Such an approach should lead to an understanding of 
the errors that can result from assuming a porous 
medium equivalent for a fractured rock mass when no 
such equivalence exists. Ultimately, our goal is to 
be able to analyze field data on fracture systems to 
determine when it is appropriate to make the simpli­
fying assumption of a porous medium equivalent. 
This, of course, will require an understanding of the 
need to extend the technique to three dimensions. 

COUPLED THERMAL-HYDRAULIC-MECHAWICAL FINITE ELEMENT 
MODEL FOR SATURATED FRACTURED POROUS MEDIA 

To determine if the fractured rock samples behave 
like porous media, the samples must be subjected to 
boundary conditions which would produce a constant 
gradient in homogeneous anisotropic media. If the 
medium has an equivalent porous medium permeability, 
these directional conductivity measurements should 
plot as an ellipse when l/ZlCg is plotted versus 
direction a on polar coordinate paper. Also, inflow 
will equal outflow on opposite sides of the rectang­
ular volume element tested, and measured values of 
Kxy will equal measured values of Ky^- Average 
isopotentials within the element will probably be 
linear, but this is not a necessary criterion for 
behavior as an equivalent porous medium. If the 
volume of the element tested is changed slightly, the 
measured values of K^j should not change signif­
icantly. 

It is possible to find a fractured rock popu­
lation for which no equivalent homogeneous porous 
medium permeability exists. This can occur for one 

In the usual treatment of fluid flow in porous 
media, the rock deformation has been considered 
through the concept of the coefficient of specific 
storage. This approach, although by no means pre­
cise, is adequate to represent most fluid flow 
problems. A more realistic treatment of the fluid 
flow behavior of deformable porous media came about 
after the introduction of the well-known theory of 
consolidation by Terzaghi (1925). With the advent 
of computers, numerical solution techniques for 
coupled one-dimensional equations of consolidation 
and multidimensional equations of fluid flow provided 
an approximate means of analyzing general fluid flow 
problems in deformable porous media (Helm, 1974, 
Narasimhan and Witherspoon 1977). Biot (1940) 
introduced the general theory of consolidation which 
makes possible a more realistic treatment of the 
hydromechcinical behavior of saturated porous rocks. 
In an attempt to develop a method for the solution of 
general consolidation problems, Sandhu and Wilson 
(1969) applied the variational finite element method 
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to the problem of fluid flow through saturated porous 
elastic solids. This method was extended by Ghaboussi 
ctnd Wilson (1971) in considering effects of fluid 
compressibility. 

The theories of mixtures (Green and Naghdi, 
1965), Crochet and Naghdi (1966), which have a 
sound thermodynaraical basis and a general associated 
constitutive theory, can be reduced to a special 
case of a theory for flow of fluids through porous 
elastic solids which is equivalent to Biot's work. 
The basic assumption of th i s approach leads to 
certain conceptual d i f f icul t ies in the physical 
interpretation of partial stresses. 

Recently Safai and Pinder (1979), in a Galerkin 
finite element method of analysis for fluid flow 
through deformeible porous media, made an attempt to 
consider the ent i re saturated-unsaturated flow 
regime. The proper constitutive s t ress-s t ra in 
relationship for the extension of Biot 's (1940) 
theory to the entire flow regime was later provided 
by Noorishad et al (1981a). 

Consideration of fracture deformability along with 
i t s hydromechanical behavior has appeared in the 
literature mainly since 1965. Davis and Moore (1965) 
measured one of the f i rs t direct evidences of frac­
ture deformations of the order of microns caused by 
earth tides. Snow (1968) reported strains of 10"' 
to 10"^ at a distance of about 300 ft from a water 
well in metamorphic rocks subjected to a significant 
drawdown. To handle this behavior, the early hydrau­
lic and hydromechanical analysis of fractures was 
achieved using an equivalent porous medium approach. 
Theoretical and numerical studies of fluid flow in a 
rock mass taking into account the deformable nature 
of fractures in a discrete manner was first carried 
out by Noorishad et a l . (1971). This work was based 
on earlier studies of discrete fracture behavior from 
a load-deformation point" of view by Goodman et a l . 
(1968) and a fluid flow point of view by Wilson and 
Witherspoon (1970). 

Numerical studies on deformable fractured rocks 
have been carried out by Rodatz and Wittke (1972) 
and Gale (1975). Iwai (1976) made a detailed series 
of laboratory tests on flow through a single fracture 
under load. The laboratory and field tests by Gale 
(1975) provided strong evidence of a nonlinear frac­
ture deformability induced by fluid pressure changes 
and also verified the capability of the numerical 
solution technique. The static approach of Noorishad 
et al (1971) was la te r extended by Hilber et a l . 
(1979) into the dynamic range where s t i ck-s l ip 
phenomena due to injection of an incompressible fluid 
^ a nonporous fractured rock was studied. 

A two-medium statist ical-numerical model was 
presented by Duguid (1973) who extended the method 
introduced by Barenblatt et al (1960) to fissured 
elastic porous media using a finite element numerical 
procedure. A deterministic solution for transient 
flow of fluids in deformable fractured porous rocks 
•^s. recently achieved using an enumerative approach 
(Ayatollahi, 1978). This variational finite ele­
ment technique is based on a generalization of 
Biot's (1940) constitutive stress-strain equation and 
"Ses a Gurtin (1964) type variational principal. An 
extension of this work by Noorishad et a l . (1981b) 
provides a general two-dimensional, finite element 
Solution technique for the investigation of the 
eformation, stress distribution, fluid storage, and 
•^d flow properties of a fractured porous medium 

under the influence of hydraulic and structural 
boundary conditions. At present, several groups arc 
investigating a host of numerical hydromechanical 
models which are at different stages of development. 
Baca (1980) and Tsang (1980) have summarized the 
capabilities of some of these new models. 

The presence of heat in fluid flow regimes brings 
about a chain of coupled effects which shal l be. 
referred to here as thermal-hydraulic-mechanical 
phenomena. The coupled phenomena for fluid and heat 
flow, usually known as hydrothermal flow, have been 
the subject of several detailed studies. A complete 
account of the s ta te-of- the-ar t can be found in 
Pinder (1979) and Wang et al (1980). However, i t 
should be pointed out that hydrothermal investiga­
tion of discontinuous rock masses is a problem that 
needs much more investigation. 

Studies of thermal effects on linear and nonlinear 
materials, known as thermoelasticity, are thoroughly 
covered in the physics and engineering disciplines 
and need not be considered here. As far as rock 
mechanics usage is concerned, thermoelasticity lies 
mostly within the confines of continuum applications. 
An account of the status and needs of the thermomech-
anical modeling techniques for continuous and discon­
tinuous media is given by Hocking (1979). More 
recent reports (Bacca, 1980; Tsang, 1980) indicate 
that a number of the new, developing models either 
have provisions for incorporating fractures or actu­
ally have the capability of modeling the discontinu­
ities in a discrete manner. 

A natural outgrowth of hydromechanical, hydrother­
mal , and thermomechanical modeling techniques is the 
development of a general model incorporating a l l of 
the above techniques. Baca (1980) and Wang et a l . 
(1980) have reported that a number of research organ­
izations are engaged in the development of such gen­
eral modeling techniques but to our knowledge, the 
details have not yet been published. Various rock-
water inte.Taction studies have been underway in this 
laboratory for some years, and the development of an 
approach to the thermal-hydraulic-mechanical behavior 
(or hydrothermoelasticity) of fractured rocks is part 
of an ongoing effort (Noorishad and Witherspoon, 
1981). The essential features of this coupled finite 
element method of analyzing fractured porous rocks 
will be presented below. 

Field Equations 

Using x̂ j. for the components of the bulk stress 
tensor, P for fluid pressure, and T for temperature, 
Noorishad and Witherspoon (1981) have shown that the 
stress-strain relationship for an elastic isotropic 
porous medium can be written: 

T. . = 2lie, . -̂  \S, . 6. -e. „ - B6. .T -f oe6 p 
i] i j 13 k l kx X2 i j 

(19) 

C = — a 6 . . e , . 
"o ^^ ^3 

I p ^ ^ T 
M M 

T 

In t h e above e q u a t i o n s t h e dependen t v a r i e i b l e s e , 
T, and P a r e i n c r e m e n t a l i n v a l u e a n d r e p r e s e n t 
d e v i a t i o n s from t h e z e r o s t a t e ( s t r e s s - f r e e s t a t e ) . 
A l s o , c o n t a c t e q u i l i b r i u m between t h e f l u i d and t h e 
s o l i d i s assumed. 

The govern ing e q u a t i o n f o r t h e f l u i d f low i s 
w r i t t e n a s : 
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3t 

rp£^f 1 
(20) 

and PI and [)„ are related through the equation bf 
state for the fluid: 

H. - % [l + %T. + Sppl (21) 

Note t h a t i n t e r n a l o r boundary sou rce terms a r e 
abseht in (20) , a r e s t r i c t i o n vjhich i s l a t e r eas i ly 
re laxed. 

The law governing t h e s t a t i c e q u i l i b r i u m is . 
given a s ; 

(22 ) 

F i n a l l y the law f o r c o n s e r v a t i o n of energy i s 
represented in the: following form:i 

fj[(pC)^T + T„'B6,,e^^) +,EP^C^^3.VT = 7 . K „ 7 T (23) 

where: 

' " ^ ' M ^ ' ^ i ^ i - ^ '^ - ^ " ' s ^vs 

^ ^ £ K ^ + (1 - C.)K^ 

The Darcy fluid velocity g is given as: 

(24) 

The quant i ty TQ represen t s the absolute temperature 
in the s t r ess-f ree s t a t e . In deriving' the govern­
ing equa t ion fo r h e a t f low ( 2 3 ) , the fo l lowing 
assumptions are made: 

( i ) thermal contact equil ibrium between 
the f lu id and the so l id 

( i i ) energy assoc ia ted with the f lu id d i l a ­
t a t ion i s n e g l i g i b l e 

( i i i ) f luid shearing s t resses , are absent in 
macroscopic sense 

(iv) i n t e rna l source terms and boundary 
- source terms are absen t . 

The l a s t assumption i s l a t e r removed in the numeri­
ca l algorithm. 

The •fundamental laws g o v e r n i n g s t a t i c e q u i l i ­
brium, f lu id flow, and hea t flow are coupled through 
the dependent ya r i ab res of the so l i d displacement 
v e c t o r , f l u i d p r e s s u r e , and macroscopic mediuni 
temperature. These laws, p resen ted in equations 20, 
22, and 23, in conjunction with cons t i t u t i ve equa­
t i o n s 19 and 21 p r o v i d e the complete mathematics 
of the cotipied qua s i " l i n e a r , t h e r m a l - h y d r a u l i c -
mechanical phenomena i n s a t u r a t e d porous e l a s t i c 
media. Extehsibn of the above development to. the 
nonlinear range i s no major t a sk and has already been 
accDiTiplished, For t h e sake- oiE s i m p l i c i t y , t he 
extended development fo r the n o n l i n e a r f r a c t u r e d 
media w i l l not be p resen ted h e r e . The above equa­
t ions with proper i n i t i a l and boundary condit ions 
(see Appendix) define the mixed ih i f ia l -boundary-
va lue problem fo r t h e r m a l - h y d r a u l i c - p e c h a n i c a l 
phenomena in porous media. 

Method of Solution 

The complexi ty of t h e h y d r o t h e r m o e l a s t i c i t y 
equationB. i s such t h a t an ana ly t i c (mathematical) 
s o l u t i o n fo r even s imple i n i t i a l and boundary 
value .problems i s not l i k e l y to be found. However, 
numer ica l s o l u t i o n s t o t h e most gene ra l problems 
can e a s i l y be s o u g h t . Var ious numer ica l schemes 
us ing well-known numer ica l t e c h n i q u e s , such a s 
f i n i t e element and f i n i t e differiance, can be u t i ­
l i z e d . In t h i s work a f i n i t e e lement technique, , 
was g iven s t r o n g p r e f e r e n c e because of ^ e a r l i e r 
experience with t h i s approach to l i n e a r and nonlinear 
problemsi of h y d r o e l a s t i c i t y ( A y a t o l l a h i , 1978; 
Noorishad e t a l . , 1981b}. fl mixed va r i a t i ona l and 
Galerkin f i n i t e element method forms the basis of 
t h i s approach. As a r e s u l t , the following s e t of 
matrix equations i s bbtaihed: 

K y + % p i C„„T = F 

Cpc^ + t i f + i*af i£ + 9 ^ 3 

c„„u 
-TU-

tSh-^ i*t5h£ + 5 h " ^ 

-1*Q(, 

-^ '8. 

(25 ) 

(26) 

( 27 ) 

where 1* represents time i n t e g r a t i o n . Detai ls of 
the method of s o l u t i o n and the complete e x p r e s ­
sions for the matrix coe f f i c i en t s a re given in the 
Appendix. 

To handle d i s c r e t i z a t i o n in t h e t ime domain, 
two d i f f e ren t schemes of time in t eg ra t ion are used 
t o i n t e g r a t e rnatr ix equa t i o n s 25 , 26 , and 2 7 . A 
p red i c to r - co t r ec to r scheme (Taylor, 1974). i s used 
fo r t h e i n t ' e g r a t i b n of t h e f i r s t two i m p l i c i t l y 

• coupled equations (Ayatol lahi e t a l . , 1981). The 
energy equation uses a Crank-Nicholson s tep-by-s tep 
procedure with, the so lu t ion of each time step being 
sought i n the middle of the i n t e r v a l . 

The coup l i ng of (27) t o (26) i s n o n l i n e a r and 
i s i m p l i c i t l y expressed in Hjjf, the nonsymmetric con­
v e c t i v e the rmal c o n d u c t i v i t y m a t r i x . The l a r g e 
time constant for the energy equation as compared 
t o t h a t of the flow e q u a t i o n s u g g e s t s t h a t the 
above f o r m u l a t i o n i s e a s i l y adap ted t o an i n t e r ­
l a c i n g scheme of s o l u t i o n s such as used by Sorey 
(1975) . Th i s i n t e r l a c i n g scheme uses t h e f l u i d 
v e l o c i t i e s obtained from a d i r e c t solut ion of {25) 
ahd (26) and -feeds back the temperature r e su l t ing 
frcEi a solut ion of (:27). This approach of exp l i ­
c i t l y solving the coupled equations i s enhanced by 
t h e low s e n s i t i v i t y of t h e dependent v a r i a b l e s P 
and U within some ranges of temperature in ..different 
problems. Therefore, the energy equation in these 
ranges can march through time using large time s teps 
compared to the -small time s teps required to solve 
the . o t h e r two equa t ions . . A f u r t h e r advantage i s 
gained in s i t u a t i o n s where the-mass t ransfer ' c o n t r i ­
bution to temperature; d i s t r i b u t i o n i s n e g l i g i b l e . In 
these cases a s ing le so lu t ion for the energy equation 
provides the needed temperatxire information for the 
stepwise so lu t ion of the other two equat ions. 

Three- types of eleinents are used in t h i s coupled 
technique: (a) two-dimensional isoparametric e l e ­
ments for sol id f lu id mixtures , (b) one-dimensional 
elements represen t ing f r a c t u r e segments f r e t the flow 
point of, view, and (c} one-dimensional Jo in t elements 
t o ' represent f r ac tu re segmerits for s t r uc tu r a l consid­
e r a t i o n s . Natural coordinates a r e used for d i s c r e t i ­
zat ion of the displacement, p ressure , and temperature 
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m t, 

5^.-. 

f i e l d s w i t h i n t h e q u a d r i l a t e r a l e lement . . T h i s l e a d s 
t o a p a r a m e t r i c f o r m u l a t i o n f o r t h e c o r r e s p o n d i n g 
i n t e g r a l s i n t e r m s o f c o o r d i n a t e p a r a m e t e r s f o r 
t h e p o r o u s s o l i d - f l u i d m i x t u r e e l e m e n t s . Numer i ­
c a l i n t e g r a t i o n i s pe r fo rmed u s i n g t h e Gauss q u a d ­
r a t u r e f o r m u l a . The i s o p a r a a i e t r i c b i l i n e a r f u n c t i o n 
used f o r d i s c r e t i z a t i o n and the" p a r a m e t r i c d e t a i l s i 
can be found -in f i n i t e element: t e x t s ( Z i e n k i e w i c z , 
1 9 7 1 ] . P p r t h e s t r u c t u r a l j o i n t e l e m e n t and t h e 
f l o w - l i n e e l e m e n t , d i s c r e t i z a t i o n - o f t h e d i s p l a c e m e n t 
and p r e s s u r e f i e l d s , i s w r i t t e n i a t e r m s ;bf l o c a l 
c o o r d i n a t e s . w h e r e n e c e s s a r y , t h e r e s u l t s a r e 
t r ans fo rmed t o t h e g l o b a l c o o r d i n a t e s y s t e m . The 
assumpt ion of un i fo rm a p e r t u r e w i t h i n -each f r a c t u r e 
was used t h r o u g h o u t t h e d e r i v a t i o n of t h e m a t r i c e s 
i n v o l v i n g f r a c t u r e volume i n t e g r a l s . 

V a l i d a t i o n of Numer ica l Scheme 

The c o m p l e x i t y o f t h e c o u p l e d phenomena u n d e r 
c o n s i d e r a t i o n makes i t p o s s i b l e t o p r e s e n t o n l y a 
p a r t i a l v e r i f i c a t i o n o f t h e m e t h o d of a n a l y s i s 
p r e s e n t e d . h e r e . I n t h e f o l l o w i n g d i s c u s s i o n , we 
s h a l l i n c l i i d e r e s u l t s of t h e a p p l i c a t i o n o f t h e 
method t o h y d r o m e c h a n i c a l , t h e r m o m e c h a n i c a l j a n d 
hydro the rma l p r o b r e m s . These examples do n o t f u l l y 
r e v e a l t h e power of t h i s a p p r o a c h . 

I n c h o o s i n g an e x a m p l e o f a h y d r o m e c h a n i c a l -
p r o b l e m , we e x a m i n e d a f r a c t u r e f l o w p r o b l e m f o r 
which an a n a l y t i c a l s o l u t i o n e x i s t s {Raghavan e t a l . , 
1976) . S i n c e t h i s p rob l em does no t r e q u i r e c o u p l i n g 
between f l u i d f low and r o c k d e f o r m a t i o n , t h e c o u p l i n g 
c o e f f i c i e n t a was s e t t o z e r o and 1/M was changed t o 
Sg i n e q u a t i o n 1 9 . 

T a b l e 4 , M a t e r i a l p r o p e r t i e s f o r hydromechan­
i c a l a n a l y s i s of f r a c t u r e d rock m a s s . 

Hatecial Property Va lue 

Mass densi ty , p̂ j-

Fluid Compressibility, Sp 

Dynamic viecosity^ njt 

9.80 X 102 itg/m^ , 

5.13 X lO-l GPa"l 

2.80 It ID"'' N sec/rri^ 

Young's modulus. Eg 

Poisson's r a t i o , v^ 

Maas d e n s i t y , , ps 

Porosity, € 
In t r i n s i c Pertrtea-
b i l i t y ; k£ 

B io t ' s constant , M 

Biot*s coupling 
constant, a 

2.15 GPa 

0.2S 

2i5 X 103 Iiig/cii3 . 

O: 15 

10-1-^ m̂  

l.<l7GPa, 14.0 GPa* 

1.0, 0.0* 

.Initial, normal gt i f f -
negs, £̂f̂  

I n i t i a l tangent ia l 
•s t i f fness , Kfa' 

• Cohes ion,- c,j 

Practures Friction angle, S 

Initial aperture, b 

Porosity, e, 

Biot's constant, M 

Biot '6 constant , a 

1.60 GPa/m 

0.50 GPa/Bi 

0.0 

aO" 

lO-^m,.10-4m 

0.15 

1.47 GPa, 14.0 GPa* 

1.0,0,0* 

*Osed in the uncoupled case* 

The problem i s t h a t of :-a s inglfe v e r t i c a l f r a c t u r e 
I n t e r s e c t i n g a w e l l o f z e r o r a d i u s i n a r e c t a n g u l a r 
porous medium. The f r a c t u r e i s assumed, t o be r i g i d 
and of v e r y h i g h c o n d u c t i v i t y . The- m a t e r i a l p r o ­
p e r t i e s ' of t h e f l u i d and rock a r e g iven i n Tab le 4 . 

" ? i g . 14 shows t h e f i n i t e e lement mesh used and P i g , 
I s shows how t h e n u m e r i c a l " r e s u l t s compare w i t h the-
a n a l y t i c a l s o l u t i o n (Raghavan e t a l . - ; 1 9 7 6 ) . For 
t h e 1 , t h e r e - i s e x c e l l e n t a g r e e m e n t 
Over t h e whole t i m e s p a n . I n t he case Xjj = 3 , t h e 

' d i f f e r e n c e s n o t e d on Fi 'g . 15 between n u m e r i c a l and 
. a n a l y t i c a l s o l u t i o n s i s a t t r i b u t e d t o t h e c o a r s e n e s s 

. • ^of t h e f i n i t e e l emen t mesh. The h a l f s l o p e of t h e 
> c u r v e f o r P^ v e r s u s t ^ a t e a r l y t i m e i s o f t e n 
'̂ •-' used as e v i d e n c e i n t h e . p e t r o l e u m l i t e r a t u r e f o r t h e 
' - .presence of a f r a c t u r e d sys tem ( G r i n q a r t e n e t a l , , 
^ .1975). 

; This problem was a l s o s o l v e d i n a coup led , manner 
-Khe re d e f o r m a b i l i t y i n b o t h t h e f r a c t u r e and t h e 
• ma t r ix were i n t r o d u c e d (Tab le 4 ) . The f r a c t u r e was 

.-•' =*^^o g iven a s p e c i f i c a p e r t u r e {.10"''™) so t h a t i t 
,..f "*d a f i n i t e p e r m e a b i l i t y . The e f f e c t of t r e a t i n g 

•-Cf. i 

i n 
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F i g . 15 PQ v e r s u s t p f o r s i n g l e v e r t i c a l 

f r a c t u r e of v e r y l a r g e c o n d u c t i v i t y i n 
p o r o u s medium. A n a l y t i c a l s o l u t i o n 
a f t e r -Raghayan e t a l , ( 1 9 7 6 ) . 

t h e sys tem in t h i s f a s h i o n i s t o change t h e p r e s s u r e 
drawdowns s i g n i f i c a n t l y . For e x a m p l e , F i g . 16 shows' 
how p r e s s u r e s dec rea ' se frcan the w e l l b o r e t o the . end 
of t h e v e r t i c a l f r a c t u r e . i t w i l l be n o t e d t h a t t h e 
p r e s s u r e d r o p a t t h e end o f t h e f r a c t u r e i s a b o u t 
h a l f t h a t a t - t h e w e l l b o r e . F o r c o m p a r i s o n , t h e 
problem was r e r u n i n a decoup led mode and t h e p r e s ­
s u r e d i f f e r e n c e s a r e f a r ' l e s s ( s e e c u r v e l a b e l e d 
" f l u i d f low a n a l y s i s " on F i g . 1 6 ) . 

F i g . 17 shows a p l o t of PQ v e r s u s t j j f o r t h i s 
f i n i t e c o n d u c t i v i t y f r a c t u r e problem t o d e m o n s t r a t e 
the ' d i f f e r e n c e s from t h e c a s e of a v e r y h i g h c o n d u c ­
t i v i t y f r a c t u r e ( F i g . 1 5 ) . Note t h a t a t e a r l y t i m e , 
t h e h a l f s l o p e r e l a t i o n s h i p no l o n g e r h o l d s . Note 
a l s o t h e S e p a r a t i o n b e t w e e n t h e two c u r v e s t h a t 
I n c r e a s e s w i t h t i m e - r e v e a l i n g t h e i m p o r t a n c e of 
f r a c t u r e d e f o r m a b i l i t y and t h e n e e d f o r c o u p l e d 
a n a l y s i s . 
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Fig. 17 Pp versus tp for single fracture 
of finite conductivity in porous 
medium showing differences between 
analyses based only on fluid flow 
or on coupled stress and fluid flow. 

In choosing a problem for a thermomechanical 
investigation, we first carried out some preliminary 
validation studies using both SAP4 and the present 
code. Solutions to two linear-elastic problems 
involving: (1) a finite line source in an infinite 
medium, and (2) a semi-infinite space subject to a 
constant temperature boundary condition were ob­
tained. The results from the two approaches were in 
excellent agreement. 

To demonstrate the ability of the code to handle 
non-linearities, a simple thermomechanical problem 

40 80 120 240 280 320 

F i g . 18 

160 200 
t.days 

Displacement versus time at a point 10m 
above base of rock column showing effect 
of fracture in reducing movement. 

consisting of a long column of rock intersected near 
its base by a fracture was chosen (see inset on Fig. 
18). Initially, the column temperature is 0°C, and 
after a step increase of 50° at the base, the 
problem is to determine the time variation of dis­
placements above the fracture at a height of 10m. 
The material properties of the rock are given in 
Table 5. Fig. 18 shows the highly non-linear mechan­
ical behavior of the fractured column and illustrates 
the ability of this finite element method to model 
discontinuous rock systems. 

Table 5. Material properties for thermomechan­
ical analysis of fractured rock column. 

Property 

Mass densi ty , Pg 2.5 x 10^ kg/p^ 

Specific heat capaci ty , Cyg 2.1 x IO"! Kcal/kg 'C 

Thermal conductivi ty. Kg 7.65 x 10"" Kcal/m sec "C 

Thermal expansion coeff ic ient , T 1.11 x IO""* OQ-I 

I n i t i a l normal s t i f f n e s s , Kf„ 2.5 x \Q~^ Pa/m 

young's modulus. Eg S.13 MPa 

Poisson's r a t i o , Ug 0.25 

An i n t e r e s t i n g p r o b l e m t h a t d e m o n s t r a t e s o n l y 
p a r t of t h e h y d r o t h e r m a l c a p a b i l i t i e s of t h i s code i s 
t h e s i m u l a t i o n of a s a t u r a t e d po rous medium t h a t i s 
g i v e n a m o m e n t a r y t h e r m a l f r o n t . The o n s e t o f 
c o n v e c t i v e mo t ion due t o buoyancy i s t o b e d e t e r ­
mined . The p h y s i c a l sys tem c o n s i s t s of two po rous 
r e s e r v o i r s t h a t i n i t i a l l y a r e k e p t a t t e m p e r a t u r e s TQ 
and 1 ^ , a s i l l u s t r a t e d by t h e i n s e t on F i g . 1 9 . 
I n i t i a l l y , a t h e r m a l b a r r i e r s e p a r a t e s t h e two 
r e s e r v o i r s , b o t h o f w h i c h a r e h o r i z o n t a l l y s e m i -
i n f i n i t e and i n s u l a t e d t o p and b o t t o m . At t = 0 , t h e 
b a r r i e r i s removed, and t h e problem i s t o d e t e r m i n e 
t h e i n s t a n t a n e o u s h o r i z o n t a l v e l o c i t y p r o f i l e a long 
t h e t h e r m a l f r o n t . An a n a l y t i c a l s o l u t i o n f o r 
t h i s p rob lem has been p u b l i s h e d by C l e a s s o n ( 1 9 7 9 ) . 

T h i s p a r t i c u l a r p rob lem i s v e r y s e n s i t i v e t o t h e 
f i n i t e e l e m e n t mesh t h a t i s s e l e c t e d , and some e f f o r t 
was r e q u i r e d t o a c h i e v e t h e op t imum g r i d f o r a 
s p e c i f i c number of n o d a l p o i n t s . The problem was 
s o l v e d w i t h a ne twork of 252 e l e m e n t s r e q u i r i n g 286 
noda l p o i n t s . The m a t e r i a l p r o p e r t i e s of t h e f l u i d 
and p o r o u s medium a r e g i v e n i n Tab le 6 . 

Tab le 6 . M a t e r i a l p r o p e r t i e s f o r h y d r o t h e r m a l 
a n a l y s i s of t h e n n a l f r o n t p r o b l e m . 

Property Value 

Downstream temperature, TQ 

Downstream mass dens i ty , p^ 

Downstream dynamic v i scos i ty , HQ 

Upstream temperature, Tj_ 

Upstream mass dens i ty , pĵ  

Upstream dynamic v i scos i ty , r\̂  
Fluid thermal expansion 
coef f ic ien t , Bj 

I n t r i n s i c permeabi l i ty , kf 

Gravity acce le ra t ion , g 

k f ( p , , - P i l q , q^ 

no + ny 

F in i te element mesh width, W 

Fin i te element mesh height , H 

20'C 

9.98 X 102 kg/m^ 

9.89 X 10"* kg/m sec 

90'C 

9.66 X 102 kg/m3 

2.17 X 10-'' kg/m sec 

-4.46 X 10"'' ' C ^ 

10-12 m2 

9.80 m/sec2 

2.42 X 10" ' tn/se'c 

900 n 

20 m 

14 



Fig. 19 shows a comparison of the numerical 
results for the instantaneous normal (horizontal) 

F i g P r o f i l e of i n s t a n t a n e o u s h o r i z o n t a l 
v e l o c i t i e s due t o buoyancy e f f e c t s 
a t l o c a t i o n of t h e r m a l f r o n t i n 
s a t u r a t e d p o r o u s m e d i a . 

v e l o c i t i e s c o m p a r e d w i t h t h o s e of t h e a n a l y t i c a l 
s o l u t i o n of C l e a s s o n ( 1 9 7 9 ) . C o n s i d e r i n g t h e 
f a c t t h a t i n t h e n u m e r i c a l a p p r o a c h , t h e t h e r m a l 
f r o n t must be m o d e l l e d by a zone of f i n i t e w i d t h , 
which i n o u r c a s e was 0.4m, t h e agreement i s q u i t e 
good. F u r t h e r mesh r e f i n e m e n t would u n d o u b t e d l y l e a d 
t o c l o s e r ag reemen t w i t h t h e a n a l y t i c a l s o l u t i o n . 

Summary 

An extension of Biot's (1940) theory of consoli­
dation is proposed here to provide a new technique 
for a realistic method of investigating the thermal-
hydraulic-mechanical behavior of fractured porous 
media. A direct solution process has been devel­
oped- that involves a variational formulation and a 
Galerkin integral to produce a set of three matrix 
equations. In this approach the equations of static 
ecjuilibrium and fluid flow appear in an implicitly 
coupled form and the energy equation is explicitly 
coupled to these equations. Finite element descreti-
zation, along with two schemes for time descretiza-
tion, yield the final form of the matrix equations 
which are then soved in a two-step procedure, re­
ferred to as an interlacing scheme. 

A partial validation of this new technique is 
presented by considering applications to hydro­
mechanical, thermomechanical, and hydrothermal 
Ptoblems. The hydromechanical problem involves the 
calculation of pressure drops in a vertical fracture 
that intersects a well and acts as a drain for the 
surrounding porous medium. The results reveal the 
etrors that can occur when the interaction between 
hydraulic and mechanical stresses is ignored. The 
thermomechanical problem involves the calculation of 
the expansion of a rock column with a heat source 
placed at one end. When a fracture exists between 
the location of the heat source and a point where one 
* attempting to predict the magnitude of thermally 
«iduced displacements, a highly non-linear behavior 
'esults that will not be predicted if one ignores the 
^^istence of the discontinuity. The hydrothermal 
Problem involves a saturated porous medium that is 
9iven a momentary thermal front. The difficulty in 
^dieting the onset of a natural convective motion 
an be handled by this new technique when the appro-
Ptiate finite element mesh is selected. Complete 
alidation of this new thermal-hydraulic-mechanical 
nite element model for saturated fracturd porous 
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NOMENCLATURE 

a 

A 

Ai,A2 

b 

bo 

Bi ,B2 & 
Cl ,C2 

- i j k i 

PT 

?UP 

-UT 

C v l 

Cvs 

d 

D/D^t 

E,E3 

^e f f 

h 

F 

g 

G 

h 

i?f 
\ 
%t 

K 

* f̂n 

i^fs 

K i j 

"•edia w i l l r e q u i r e much more work. 

typical asperity size 

fracture cross sectional area 

structural boundaries where displacements 
and surface tractions are prescribed 

fracture aperture 

maximum fracture aperture 

fluid flow and heat flow boundary parts 
where Dirichlet or Neuman boundary 
conditions are prescribed 

elasticity matrix 

components of elasticity tensor for solid 
phase 

fracture cohesion 

pressure-temperature coupling matrix 

displacement-pressure coupling matrix 

displacement-temperature coupling matrix 

specific- heat capacity of liquid at con­
stant volume 

specific heat capacity of solid at con­
stant volume 

half-crack length 

comoving time derivative following solid 

components of strain tensor for solid 
phase 

Young's modulus for rock 

Effective Young's modulus for jointed rock 

fluid storativity matrix 

heat capacity matrix 

components of body force vector 

force vector 

gravitational acceleration 

traction vector on A2 boundary 

asperity height in fracture 

fluid conductivity matrix 

heat conductivity matrix 

mass transfer conductivity matrix 

l.itrinsic permeability tensor 

.ciffness matrix 

normal stiffness 

tangential stiffness 

permeability tensor components 

permeability measured in the direction of 
flux 

permeability measured in the direction of 
hydraulic gradient 
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I 

L 

m 

M 

M„ 

n 

"i 

n(h) 

P 

P 

P 

P 
-t 
AP„ 

3 

l i 

I f 

q 

Q 

2g 

2h 
Qh 

s 

Ss 

T 

T 

^t 

U 

V 

AV 

AVr 

AVt 

"i 
or x,y,2 

liquid thermal conductivity tensor 

solid-fluid mixture thermal conductivity 
tensor 

solid thermal conductivity tensor 

length of cylindrical rock sample 

length of the boundary 

distribution mean 

Biot's constant for 1/eBp 

Biot's constant for I/EB^ 

number of voids in schematic representation 
of fracture 

total number of elements in finite element 
idealization 

outward normal direction cosine vector 

indices used to designate number of elements, 
i = 1, 2, 3 

asperity height distribution function 

number of areas of contact in fracture 

pressure 

pressure assigned on B-j boundary 

pressure vector 

pressure vector at preceding time step 

pressure drop 

fluid flow vector 

components of fluid flow vector and the 

horizontal component of fluid flow vector 

rate of fluid discheurge from well 

flow per unit width 

flow per unit width in direction of 
hydraulic gradient 

heat flow vector 

normal heat outflow from C2 boundary 

fluid flow vector 

normal fluid outflow from B2 boundary 

distribution variance 

specific storage coefficient of saturated 
porous elastic solid 

temperature 

temperature vector 

temperature vector at preceding time step 

volume enclosing one crack 

solid element displacement vector 

space occupied by fluid-solid mixture 

region of space occupied by fluid-solid 
mixture of an element n 

fracture deformation 

rock deformation 

total jointed rock deformation 

Cartesian coordinates, i = 1,2,3 

Biot's hydroelastic coupling coefficient or 
angle of orientation of hydraulic gradient 

Bp 

Y 

«i j 
6 

E 

nj.n 

X 

V 

«s 

Pi' H 

Ps' Ps 

PM 

(PC)„ 

T,T. . 
- ID 
T .T 
-T' Tij 

« 

-u 
« 
-e 

Thermoelastic coupling coefficient equal to 
(2p•̂ 3X)̂ f 

fluid compressibility 

fluid thermal expansion coefficient 

solid thermal expansion coefficient 

Kronecker delta function 

friction angle 

porosity 

liquid dynamic viscosity 

Lamg's elasticity constant 

Lamg's elasticity constant 

functional perturbation parameter 

Poisson's ratio 

fluid volume strain 

liquid mass density and average liquid mass 
density 

solid mass density and average solid mass 
density of porous space 

solid-fluid mixture mass density 

solid-fluid heat capacity 

stress tensor and components 

thermal stress tensor and components 

stress normal to fracture 

hydraulic potential 

displacement interpolation function matrix 

strain-nodal displacement transformation 
matrix 

pressure and temperatiire interpolation 
function matrix 

transformation matrix for pressure or 
temperature gradients 

fractional fracture contact area 
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APPENDIX 

Initial and Boundary Conditions 

The equations governing fluid flow (20), static 
equilibrium (22), and conservation of energy (23) 
in conjunction with the constitutive equations for 
the stress-strain relationships (19) and the equa­
tion of state for the fluid (2 1) have previously 
been discussed. These equations with the proper 
initial and boundary conditions define the problem 
to be solved. The initial and boundary conditions 
for the saturated porous elastic medium are: 

on A x[0, •») U(x, t) = U(x, t) 

T(x, t) . n(x) = G(x, t) on A x[0, ") 

P(x, t) = P(x, t) 

!if 

on B x[0, "») 

(Al) 

— V(P •̂  p^gz).n(x) = Q^(x, t) on B^xtO, ») 

T(x, t) = T(x, t) 

K VT.n(x) = Q. (X, t) 

U(x, 0) = 0 

on C x[0, <») 

on C x[0, ") 

on V 
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T(x , 0) = 0 

P ( x , 0) = 0 

T(x , 0) = T 

on V 

on V 

on V 

(Al) 

A, B, C r e p r e s e n t p a r t s of t h e b o u n d a r y f o r 
s t r e s s - d i s p l a c e m e n t , p r e s s u r e - f l u i d f l o w , a n d 
t e m p e r a t u r e - h e a t f l u x c o n s i d e r a t i o n s . V r e p r e s e n t s 
t h e v o l u m e u n d e r c o n s i d e r a t i o n . As m e n t i o n e d 
e a r l i e r , t h e d e p e n d e n t v a r i a b l e s JU, P and T r e p r e s e n t 
I n c r e m e n t a l d e v i a t i o n s from t h e s t r a i n - f r e e s t a t e 
assumed by t h e above c h o i c e of i n i t i a l c o n d i t i o n s . 
C o n s i d e r a t i o n o f a d i f f e r e n t s e t of v a l u e s f o r t h e 
i n i t i a l c o n d i t i o n s w i l l n e c e s s i t a t e r e p l a c e m e n t of 
0, P , and T by (U - U Q ) , ( P - P Q ) , and (T - T^) i n 
a l l c o r r e s p o n d i n g e q u a t i o n s . Also x has t o change t o 
(^ - J o ' ' However, t o cause l e s s m a n i p u l a t i o n , i t i s 
p r e f e r a b l e t h a t t h e d i s p l a c e m e n t v e c t o r IJ be k e p t i n ­
c rementa l i n n a t u r e and l e f t unchanged which w i l l n o t 
a f f e c t t h e r e s u l t s of t h e a n a l y s i s . 

V a r i a t i o n a l F o r m u l a t i o n 

The v a r i a t i o n a l m e t h o d i s u s e d t o f o r m u l a t e 
t h e h y d r o e l a s t i c [ A y a t o l l a h i , 1978] p a r t of t h e 
h y d r o t h e r m o e l a s t i c phenomena. L e t R = U, P be an 
a d m i s s i b l e s t a t e i n J d e f i n e d i n V x ( 0 , oo) and l e t 
t he f u n c t i o n s IJ and P p o s s e s s t h e a p p r o p r i a t e c o n t i n ­
u i t y and d i f f e r e n t i a b i l i t y c o n d i t i o n s . J i s t h e 
s e t of a l l a d m i s s i b l e s t a t e s and V i s t h e r e g i o n of 
space o c c u p i e d by t h e f l u i d - p o r o u s s o l i d m i x t u r e . 
A f u n c t i o n n ^ ( R ) o v e r J f o r e a c h t i m e t e [ 0 , " ) 
i s d e f i n e d a s : 

Galerkin formulation 

The Galerkin method is used to obtain a numer­
ical formulation for the energy equation. Choosing 
approximating functions of the form T = *I|, where ^^ 
represents the basis functions and Tĵ  signifies the 
discrete temperature values to be determined, the 
Galerkin procedure requires the following: 

I I (PC) *. Ir -̂  PT *. -I- (6. .e. .) 
M 1 3t o 1 3t 13 1] 

t v i i T 
i . . K VT > 
1 M I dv 

/ 
«,Q^ds = 0 
X h 

(A4) 

where the volume integral in equation (A4) repre­
sents a global restatement of (23), and the surface 
integral indicates the global satisfaction of the 
heat flux boundary condition. 

Finite-Element Discretization 

The field variables for the displacement vec­
tor, the pressure, and the temperature can be dis­
cretized as follows: 

U = s'^^u 

O^rp (A5) 

f "t'«> = / <^j • ^ i j k A i - -̂T • BSijeij 

a P j 
2 p f. * U, + 2P * — ^ 6, . e . . 

s i i p^ i ] 1] 

1 * V P * — V P - P * - P - P * — T n M M„ 
'« T 

•t- 2 * p gVz * VP)dv - 2 / G • U ds 

/ 
2 / 1 * Q * Pds (A2) 

T = V r i p 

w h e r e t h e ' i^ a r e p i e c e w i s e ' c o n t i n u o u s p o l y n o m i a l 
f u n c t i o n s w h i c h a r e u s e d i n c o n j u n c t i o n w i t h t h e 
mixed i s o p a r a m e t r i c q u a d r i l a t e r a l e l e m e n t s . P r o p e r 
s u b s t i t u t i o n of e q u a t i o n (A5) and r e l a t e d d e r i v a t i v e s 
of jty and ^ r e p r e s e n t e d by $̂ g and 0Q i n t h e G a l e r k i n 
i n t e g r a l and t h e f u n c t i o n a l , a f t e r p r o p e r d i f f e r e n t i ­
a t i o n , y i e l d s t h e f o l l o w i n g m a t r i x f i n i t e e l emen t 
f o r m u l a t i o n : 

K U - i - C P - ^ C T = F 
- - -UP- -UT- -

'^n.i" + ( E , + 1*H,)P -t- C„ T = -1*Q, -PU- - f - f - - P T - - I 

STU^ ^ t^h ^ ^*'5hf * 5h>lT = -i*Sh 

(A6) 

(A7) 

(A8) 

It can be shown that 

where 1* represents time integration. The matrix 
coefficients in the above formulation are defined 
by the following: 

^^^(R) = §77 n(R + v5) = 0 
v=o 

(A3) 

° o t e v e r y R e J i f , a n d o n l y i f , R i s a s o l u t i o n 
° t a t e of t h e m i x e d b o u n d a r y - v a l u e p r o b l e m . The 
P r e s e n c e o f t e m p e r a t u r e t e r m s i n t h e v a r i a t i o n a l 
P ' ^ i n c i p l e i s j u s t i f i e d p h y s i c a l l y , b e s i d e s t h e 
" ^ t h e m a t i c a l soundnes s of t h e f o r m u l a t i o n , by t h e 
^*°t t h a t t h e r m a l e f f e c t s a c t i n t he form of i n i ­
t i a l s t r a i n s ( Z i e n k i e w i c z , 1971) . 

N 

n=1 -f n 

-PU 

. n „ " i h 
* C * 
- e - - e d v 

SUP = i / i" 
n=1 n 

n n 
o P« 

1 4 
- - e 

dv 
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-UT 

N T 

= \ I * Bl * <3v 

n=1 -'n 
8£ 

n=1 -'n 

T 
C = — C "̂  
-TU T -UT 

o 

5f = 

N T 
^ r .n 1 .n , n 
\ I 4 — * dv 
A J " M" " 
n=1 -̂  n 

k^ T 
-f ^ r, n 

T 5B ̂^ 

N n 

n=1 -' n " 

-PT 1 [•"^•"'»" 
n=1 -'n T 

n=1 -'n 

n=1 -'.n 

N ^^r 

N ^n 

V 

"2 T 

-. I r*vVs" 
n=1 Ĵ n 

1 fi>-u%--
n=1 -{n 

n=1 -̂  n 

» J, h 1 dv 

where 1 = / n and Ij = \ ° 

(1 

n=1 / n 

HJ, = > I ZB^t, *e <̂ ^ 

The superscript T̂ . stands for matrix transposition 

operation. 

20 




