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FOLLOWING IN=SITU LEACHING OF UJRANTyM, PROC. OF NEW ORLEANS
SYMpP, OF SOC. MIN, ENG,« AIMEe NFW NORLFANSe LA,s FEB, 18-22,
1979 (PUB, AS IM SITU UPRPANTtIM MININA AND GROUND WATER
RESTORATION, ED., BY W, J, SCHLITT AND D, A, SHCOK), PP, 113~
124,

RIJMAs Ge PROPERTY EVALUATION PROCENIRES FOR IN=SIT) LEACHING
NF URANIIIM, ROCKY MT, GENCHEMICAL CNRP,. APR, 29, 1977, 20
PP, AVAILARLE FROM P.0, ROX 337+ MINVALE, UTAH 84047,

RiMAy Gs URANTUM SOLUTION MINING STATF NF THE ART. PRES, AT

ENERGY TECHNOLOGY CONF, AMD FEXHTRITs PETROL., DIV, OF SOCe. MECH,

ENGes AIME, HOIISTONy TEX.s SEPT. 18=-224 1977, PREPRINT 77-PET-
47‘ 11 PD.

RINKERs Co M. AND J, A, MACKALLON, GENLOGY OF THE OXINIZED
URANTUM NRE DEPOSITS OF THE TORDILLA HILL-DFWEESVILLE AREA,
KARNES COUNTY, TEXAS: A STIUDY 0OF A DISTRICT BEFORE MINING.
UeSe GEOL, SURVEY PAPER NN, 465« 1973. 37 PP,

CARLSONes R, Hee R, D, NORRISe ANN R, SCHFELLINGER, THE ROLEF
NF OXIDIZING AGENT IN THE CHEMISTRY nF TN SITH URAMIIHM
LEACHING, PRES, AT THE §55TH ANN, FALL TECH, CONF, AND
FXHIRITION, SPE. AIME, DALLASs TEXAS. SEPT, 21-244 1980, SPE
OoFEPRINT 9483+ 16 PP,

CARNAHAN, T, G, (RENN METALLIIRGY REQEARPCH CENTER), IN SITY
LEACHING 0OF URANIIM, PRES., AT THFE TN=PLACF LEACHING AND
SOLUTION MINING SHORT COURSE,. INCILLINF VILLAGE, NEVADA, MNOV.,
10=149 1875+ 1R PP,

CARNINEs Go Tes AND L. R, DARREE (ASSIGMNED TO FMC CORPORATION,
NEW YORKy N.Yes A CORP. OF DELs)s STARILIZATION OF HYDROGEN
PEROXIDE, UsSs PAT, 3938341764 MAY 144 1968,

CARPENTERs R, H,« AND R, K, RHAPPIJ, HYNROMETALLURGY AND LOw
GRADE ORE POTEMTIAL. PRFS. AT 107TH ANN, MEETINGe AIME,
ATLANTAs GAee MAR, 6=10s 1977,

CHAMRERLAINe P, Go. EVALUATING QORE RNNIES FOR LEACHING WwITH
PERMEABI|L.ITY MEASUREMENTS,., PRNC. NF NEW QRLEANS SympP, 0OF SOC.
MIN, ENG,y AIMEs NEW ORLFAMS, LA,y FFR, 18=22+ 1979 (PUR. AS
IN SITU HURPANIUM MINING AND GRNUIND WATFR RESTNORATINN, ED. BY

W, Je SCHLITT AND 0O, A, SHOCK)es PP, 7=723% PREPRINT 79=27« 14
pp,

CHAMBERLAIN, P, G, FIELD PFRMFARILTTY METHODS FOR IN-PLACE
LEACHING. MIN. CONG. Joo Vo 649 Nﬂ. QQ QEPTEMRER 19789 ppo
22-250

CHAPMANSs WOODes AND GRISWOLDe INC, GENLOGIC MAP 0OF GRANTS
HRANIUYM REGION, NEW MEXICO RURFAII NF MINES AND MINERAL
RESOIIRCESs CIRC. 319 1977. 3 PP,
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CHARLEYs w, R, FECONOMIC CONSIDPERATINONS NF SOLUTION MINING,
PRES. AT URANIUM RESNIIRCF/TFCH, SEMINAR II, COLORADO SCHONL
OF MINES, GOLDENe COLORADOs, MAR, 12-14, 1979, 13 PP,

CHASEs Co Kes He Jo WINTERS, AND R, R, RHAPPI, ECONOMIC
EVALUATINN OF IN SITU EXTRACTION NF 11IQANTIUM, PRES. AT AM,
NUCLEAR SNCe. MEETINGe GOLDENy COLN.s APR, 12-14, 1977, 12 PP,}
AVAILASLE FROM C, K, CHASEs MOUNTAIN STATES RESEARCH AWND
DEVELOPMENTs P.,0D, BOX 179A0, TUCSNON, ARIZONA 85731,

CHATTERJI« Be Des A, S. DESHPANNE, C, V., SHARMA, S, C,
KIULSHRESTHAS AMD R, N, SANKRAN, RESIILTS 0OF SOME BENEFICIATION
AND LIXIVIATION TESTS ON MEDTNIM=GRANF HRANIIIM ORE IN QUARTZITE
FROM CHHINJPA, KLY DISTRPICT, HIMACHAL PRADESH, PRNC. OF THE
TNDTAN NATIONAL SCIFEMCE ACADEMYe V., 3As Ay ND. 64 1970,

CHEMICAL WFEK, NEW SOLUTION CUTS 1RANTUM MINING COSTS. V.
29' DEC. ?.49 10759 PP, ?R—?go

CHEMICAL WFEK., SCOwlLs THEN A SMILF FOR SOLUTION MINING, FER,
2e 1977+ PP, 13-14.

CLARKy Do Ay STATE=OF=THE=-APT, 1IRANTIIM MININGs MILLINGs AMD
REFINING INDUSTRYs UeS. ENVIROMMENTAL PROTECTION AGENCY REPT,
EPA-660/2-T4~-038y JUNE 1974, 113 PP,

COLEMANy K, A,s AND G, W, STEWART, NFuW MEXICO®S FIRST {JRANTIIIM
IN SITU SOLUTION PROJECT. PRES, AT THF S5TH ANN, FALL TECH.
CONFo AND FXHIRTTION, SPEs AIMEe DALLASe TEXASe SEPT, 21-24,
1980, SPE PREPRINT Q4K9, & PP,

COLORADD NEPAPTMENT OF HFALTH. SMIRCE MATERIAL LICENSE ISSUED
TO WYOMING MINEPAL CNRPNRATION FOR A PILNT SCALE IN SITU
URANTIUM [ FACHING ORERATION IN WELD COHINTY, COLNRADN, PFEQMIT
ISSUED FoP ONF YFAR, OCTNKER 1976 = NCTNRER 1977,

CANINEs W, D, HRANIUM cNLUTION MINTNG: A COMPARISINN NF NEW
MEXICO WITH SOUTH TEXAS, PROC. THIRN ANN, URANIUM SEMINAR
WYDMING MIN, AND METALS SFCTINN NF ATME, CASPER. WYOMING, SFPT,
9-12. 1979, PP, 126=124,

COOKy Lo M, THF URANIUM DISTRICT OF THE TEXAS GULF COASTAL
PLAIN, TEXAS DFPARTMENT NF HFAL.THe AIISTIN, TEXAS., APR, 2R,
1978. 14 PP,

COOPERSTEIMNs P, PRESENTATIONS AT SEMINAP ON IN SITH URANTI(I
SOLUTION EXTRACTINNS, PRES, AT SEMINAR ON IN SITU URANINM
MINING FNR REGULATORY PERSONNFL, CNROIIS CHRTISTIy TEXAS. MADR,
=9y 1979, €5 PP,

COOPERSTEIMs R, SAFETY FVALUATINM RFEPORTY SNIRCE MATERIAL
LICENSE W.M,C0.s DOCKET N0, 40=R502, aNIIRCE MATERIAL LICENSFE
StJA=1341, TSSUED TO FUEL PROCESSING anND FARRICATION RRANCH.
DIVISION oF FUEL CYCLE AND MATFRIAL SAFETY, 50 PP,
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COXe Co H,e AND W, J. ROUSHEY, RECNVFRY OF URANIUM RY IN SITH
SOLUTION MINING, MINERAL IND, RilLLes Ve 22¢ NQO., 1, JANUARY
19799 12 ppo

CRAWFORD,. E. DEVELOPERS EYF TEXAS PNTENTIAL FOR IN SITU
URANIUM LEACHING. ENG. AND MIN, Jes Ve 176« NOo 7o JULY 1975,
PP. 81-82.

NAVIDSOWs D, He IN=SITU LEACHING OF NNNFERROUS METALS. MIN,
CONGe Jes V, 669 NO, Ty JULY 1980, PP, 52=54, 57,

DAVINSONe Do Hes Re Vo HIUFFy AND W, F, SONSTELIE. MEASHIREMENT
AND CONTROL IN SOLUTION MINING OF NDFEP-LYING DEPOSITS OF CNPPER
OR URANIIIM, PPRES. AT INSTRUMENT SNC., OF AMFRICA MIMN, AND MET.
IND, DIV, SYMP.ys DENVFRe COLOes NOV. 1-3, 1978, 7 PP,

DAVISs G, Re9 AND W, M, MCKNIGHTs JRP, FACILITIES FOR SOLUTION
MINING OF 1)RANIHM OPERATTINNAL AND ENMYIRONMENTAL ASPECTS. PRES.
AT AM, NUCLEAR SOCIETY, NOVEMRER 1974, AND IN SITU URANTIIM
MINING SEMINAKs MARCH 1979, 10 PP,

DAVIS’ Ga Ro' po E. MILLERO AND Gc Go SWIFT. IN-SITU LEACH
MINING FOR URANIUM, PROC, ADVISORY GROUP MEETING, INTERMAT,
ATOMIC ENERGY AGENCYs WASHINGTON, D.Cee NOV, 24=264 1975,
PANEL PROCEEDINGS SERIFS. 1976, PP, 193-202,

DavISs G, Ree AND E, L, RFED, CONTRNILING URANIUM SOLUTION
MINING OPERATIONS, MIN, CONG, Jeo V, A4s NO. 109y NCTNBER 197H,
PP, 35-380

NERRYs R, THE USE OF PEROXIDANTS IN THE LEACHING OF METAL
SULPHIDES, PRES, AT ANN, MEETING OF THE MET, SOC.s AIME, NEW
ORLEANSy LAse FER, 18=27. 1979, TMS PAPER SELECTION A=79=4,
24 PP,

DEVPIESs F, We NOVEL TEFCHMIQUES IN LTXIVIANTS AND SITE
RESTORATION, PROCe SOUTH TEXAS URANIIIM SEMINARS CORPIIS
CHRISTIs TEXAS,y SEPT. 10~13s 1978, AMERICAN INSTITUTE OF
MININSs METALLURGICALs AND PETPOLEHIM ENGINFEFRS,y INCee« NEW YNRK
CH, 12s PT, 44 1979y PP, 75-7R,

DEWe Je Noo AND W, Lo MARPTIN (ASSIGNFD TN CONTINENTAL OIL
COMPANYs PONCA CITY, OKLA,s A COPRPNRATINN OF DELAWARE)., 1IN
SITU ROASTING AND LEACHING OF URAMIUM NRES, U.S. PAT,
2+954421R4 SEPT. 27, 16960,

NRAVO CORPORATION, SOLUTTION MINING, SECTION 6.6.2 IN ANALYSIS
OF LARGE SCALE NON=COAL UNDFERGROIIND MINING METHONS, BUMINES
CONTRACT REPORT S0122059, JANUARY 1974+ PP, 455-464,

NDREVERs J. Tee BND Ce R, MCKEE, THF PUSH=PULL TEST: A METHOD
OF EVALUATING FORMATION ADSORPTINON PARAMETERS FOR PREDICTING
THE ENVIRONMENTAL EFFECTS OF IN=SITU COAL GASIFICATION AND
URANIUM RECOVERY., PROC, OF NEW NRLFANS SYMP, OF SOC. MIN,
ENG.Q AIME9 NEw ORLEANSO LA., FEB. 19-?29 1979 (pUBo AS IN
SITU URANTUM MINING AND GROUND WATER RESTORATION. ED. BY W.
Jo SCHLITT AND D, A, SHNCK)e PP, R7-98,
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NDUNCANs Do Wes AND A, BRIYNESTEYN, FNHANCING BACTERIAL
ACTIVITY IN A URANIUM MIME, CAN, MIN, AND MET. BULLes Ve 64.
NOD., 709, MAY 1971, PP, 32-36,

NUNCANy Do Wee AND Ao RPUYNESTEYN, MJCRORIOLOGICAL LEACHING
OF URANIyUM, PROC, 1970 URANIUM qYMD,s SNCORROs N. MEX.s COMP,
RY R, Je ROMANs 1970, PP, S55-61,

DURLERs Ne Les AND A, L, RISHNPP, IN=SITIH URANIUM LEACH MINING:
CONSIDERATIONS FOR MONITOP WELL SYSTFEMS, PRES. AT THE 55TH
ANN, FALL TECH. CONFe AND EXHIRTTINNG. SPE, AIME. DALLAS, TEXAS,
SFPT, 21=744 19804 SPF PREPRINT 8505, 10 PP,

DUTRIZAC, J, E.e« &ND R, I, C, MACNOMALD, FERRIC ION AS A
LFACHING MEDIUM, MINFRALS SCI. ENG.e« Vo Ao ND. 2, APRIL 1974,
PP, 59-100,

DUYVESTEYN9 W. p. C.’ G. po WICKEDQ AND Q. Eo DOANE. AM
OMNIVOROUS PROCESS FOR LLATERITE NFEPNSTTS, TO0O RE PRES. AT AIME
ANN, MEETINGs NEW ORLEANS, LA.. FER, 1R=22, 1979,

EARGLEs Do He URANIUM IN TEXAS, HNNISTNY GEOL. SOC. BULL.»
Ve 13 NO, 29 1970, PP, ]R-27-

FARGLEs Do Heo Ko A, NDICKINSON, AND 3, 0O, DAVIS. SOUTH TEXAS
URANIUM DEPOSITS. AAPG RllLLes Vo 59+ ND. 54 MAY 1975¢ PP,
T66=779,

EARGLEs N, Heo Re W, HINNDSs AND A, M, D, WEEKS, WURANIUH

GEOLOGY ANDN MINES. SOUTH TEXAS, TExaS (INIV, BUR, FCON. GENL.
GUIDESOOK NQO. 126 AIUSTINs TEXes 1971« 59 PP,

FISENBARTHe W, A, INDUSTRY VIFw OF REGHLATIONS ON IN SITU
MININGe PROC. THIRD ANN, |IRANTIUIM SFMTNAR WYOMING MIN, AND
METALS SECTIONM NF AIME, CASPEP WYOMINGs SEPT. 9-12s 1979, PP,
11-14.

FISFNSARTHe W, A, RFCONCILATION: FNVIRONMENTAL ISSHES IN IN-
SITU MINING VS REGHLATORY CONSTRATINTS, PRES. AT URANITIM
RESOURCE TFCH. SEMINAP I1., COLNRANN SCHONL OF MINESe GOLDENS,
CNOLORADO, MAR, 12=14+ 1979, 7 PP,

FNGELMANN, We He (ASSIGNED TO THE UNTTED STATES OF AMERICA AS
PEPRESENTEN BY THE SFCRETARY NF THE TNTEQINORe WASHINGTON,
N.Co)e FOAM INJECTION LEACHING PRNCFSS FOP FRAGMENTED NRE,
”.So PAT. 4,0&0.&19. MAP. ?l. 197Ro

ENGELMANN. We Hee AND D, R, KASPFR, ENVIRONMENTAL REGULATIONS
FOR IN SITH) URANIHM MINING: FROM EXPLNARATION TO RESTORATION,
CH. IN PROC. OF THE AM, ASSOC. OF PETROL. GEOL. ANN. MEETING.
HOUSTONs TEXes APR, 1-44 1979, 21 PP,
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ENGELMANN, W, H,s P, E, PHILLIPSs D, R. TWEETON, K. We LOEST,

AND M. T, NIGBOR, RESTORPATION OF GRNIINOWATER QUALITY FOLLOWING

PILOT=SCALE ACIDIC IN SITU URANTUMLEACHING AT NINE-MILE LAKE

SITE NEAR CASPERs WYOMING., PRES. AT THE 55TH ANN, FALL TECH,.
CONF, AND EXHIBITIONs SPEs AIME, DALLASs TEXASs SEPTe 21-24,

1980¢ SPE PREPRINT 9494, 24 PP,

EMGINEERING AND MINING JOURNAL, AGNFW LAKE MINES: TAKING
GIANT STEPS IN SOLUTION MINES, V. 179¢ NO, 11, NOVEMBER 1978,
PP, 158-161.

ENGIMEERING AND MINING JOURNAL, BEAR CREEK GEARS UyP FO0OR
COMMERCIAL USE OF BOREHOLE URANTIUM MINIMG, ENG. AND MIN., Joo
Vo 1809 NO, 3¢ MARCH 1979+ PP, 41 AND 45,

ENGINEERING AND MINING JOURNAL, CLIFFS READIES URANTIIM
SOLUTION TEST IN PUMPKIN RITTES AREA, V., 18l NO, 1,y JANIJARY
19809 ppo 439 47.

ENGINEERING AND MINIMG JUOURNAL . THF COST OF LEACHING U308 IN
STOPES AND PUMPING SOLUTION TO THE SHQFACE. V. 169+ NO. 6,
JUNE 1968, P, 186,

ENGINEERING AND MINING JNURNAL, ECONOMICS PROVIDE MOTIVE FOR
GROWTH OF BACTERIA LEACHING. V., 167+ NO. 6y JUNE 1965 543
PP,

ENGINEERING AND MINING JOURNAL, TINDTA STUNIES POSSIBILITY oF
COPPER MINING RY NyUCLEAR RLASTS. V. 171y NOs 7o JULY 1370,
33 PP.

ENGINEERING AND MINING JOIIRMAL, IN=SITII LEACHING OPENS NEW
URANIUM RESFRVES IN TEXAS, V. 176y N0o Ty JILY 1975, PP, 73-
81.

ENGINEERING AND MINING JOURNAL, IN STTU URANIUM LEACHING
OPERATIONS FLOURISH IMN SOQUTHERN TEXAS, V. 178+ NO. 69 JUNE
1977, PP, 23, 27.

ENGINEERING AND MINING JUNHRNAL., MINTING IN=SITU BY NATURES
EASY WAY, V. 168, N0, 10+ OCTORER 1967, PP, 75-80.

ENGINEERING AND MINING JOURNAL, NEW METHOD SHGGESTED FOR
LEACHING IRANIUM ORE IN Pl ACE. Ve 168y NO. 59 MAY 1967, PP,
106=107+2% DISCUSSINN OF 11,Ss PATENT 3.309+140¢ LEACHING OF
URANIUM ORE IN SITU, BY J, GARDNER AND M, I, RITCHIE.

ENGINEERING AND MINING JOIIRNAL, PRONDICERS AND NEWCNMERS PUSH
DEVELOPMENT PLANS, V. 179y NO. 114 NNVEMBER 1978, PP, 104-
106.

ENGINEERING AND MINING JOURNAL. SOLUTION MINING OPENING NEW
RESERVES, V., 175, NO, 74 JULY 1974. PP, 62-T1,

ENGINEERING AND MINING JOUIRNAL, TEXAS=URANTIUM PRODUCTION RY
IN SITU LEACHING. Ve 176 NO., 64 JIINE 1975, P, 304,
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ENGINEERING AND MINING JUNURNAL, IRANTUM LEACH PROJECT SNARLED
IN NEW MEXICOS ENVIRONMENTAL RULES, Ve 178+ NOo 64 JUNE 1977,
P. 33’ 3“.

ENGINEERING AND MINING JOUPNAL, HRANTUM PRODUCTION RBY IN=SITH
LEACHING, (TEXAS) JUNE 1075, P, 304,

ENGIMEERIMG AND MINING JOURNAL, U3NR PRNOCESS AVOINS SULPHATES
AND CALOPRPIDES. V. 180« NN, S5y MAY 1979, PP, 118-119,

ENGINEERING AND MINING JNURNAL, IN STTY URANIUM EXTRACTION
DOMINATES TEXAS MEETING, V, 181y NN, 12+ DECEMBER 1980. PP,
Q2-93.

FRICKSONG Jo We UNDERGOOIIND IN SITIH MINING=A NEW MINING
METHOD. MIN, ENG,s V. 30s NO., 114 MOVEMHER 1978+ PP, 1532~
1534,

FRICKSON. Jo W, UNDERGPALIND IM SITU ¢ & NEWw MINING METHOD,
PRNC. THIRD ANN, URANIIIM QEMINAR WYNMTNG MIN. AND METALS
SECTION OF AIME,s CASPER. WY(OMINGe SEPT., 9-12s 1979, PP, 15-18,

FISHER. J. R, BACTERIAL LEACHING NF FLLIOT LAKE URANIUM ORE,
CAN- MIN. AND MET. R”Ll.... Vo SQ. ND. ﬁ‘#qo MAY 19669 .Dpo 588—
597.

FISHERs Jo Ras Fo Co LENDRUMs AND R, 1, MACDERMID., LABNORATNRY
AND 1INDERGROUND STUDTES 0OF RACTERTIAL LEACHING OF ELLIOT LAKE
NRFES, PRES. AT G5TH AIME ANN, MEETIMG. FERB, 27 = MARQ, 34 1966,
NFEw YORX. 9 PP,

FISHMAN, P, H,s AND W, H, HIJANG, MINERAL OGTCAL ANALYSIS AND
URANTUM DISTRIRHTION OF THE SENIMEMTARY-TYOE URANINIM ORES,
PRES. AT THF &85TH anN, FALL TECH. CNONF, AND EXHIRITINNG SPE,
ATME ., DALLASs TEXASs SEPT, 21-7244 19RNe SPE PREPRINT 95024 12
Dp.

FITCHs D, Co FXPLORATINN GEQLOGY MFTHNNS IN THE GRANTS MINFRAL
RELT. PRFES. AT NHRANIUM SYMPOSTIMe SNCOPRND, NEW MEXICNe MAY
6=Ry 1970« 11 PP,

FITCHs J. Les AND B, G, HURD (ASSIGNED TN MOBIL OIL
CNRPNORATINON, A CORPOHFATINON OF NEW YNRK), IN SITU LEACHING
METHODe U,Se PAT, 342784232+ OCT. 11,4 195A,

FITCHe J, Les AND B, G, HURD (ASSIGNEN TN MORIL OIL
CNRPNRATINN, A CORPORATION OF NEW YNRPK), METHOD NF LEACHING
SIIBSIIRFACE MINERALS IN STTU,. 11,9, PATe 393094141, MAR. 14,
1967,

FRANKs J, No COST MODEILL FOR SOLUTINN MTINING OF URANINM, PRES.
AT THE URANTUM INDIISTPY SEMIMAR, GRAND JUNCTIONy COLQ.e OCT.
19-209+ 19764 25 PP, .

FRANKs J, Noe IM SITU LFACHING OF npanTIM, DPRES, AT THE 19375
URANTUM AND THORIUM RESFARCH AND RESNIIRCES CONF.e Ul.Se
GEOLOGICAL SURVFYs DENVFPRP, COLD,y DFC, H=10e 1975« 8 PP,
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GALICHON., P, IN=SITU LFEACHING OF URAMTUM ORE. M,S. THESIS,
UNIV, OF TEXASes AUSTIN. TEXASe NDECEMRER 1974, 83 PP, '

GALICHON, P,y R, S, SCHFCHTERe A, CNWLEY. ANND M, BRELAND,
CHEMICAL FACTORS IN IN=SITI IIRANT!HWM LFACH MINING, IMN SITH,
VO 19 NO. ?, 19779 pp. 175-14‘3-

GALLOWAY, W, E. DEPOSTINONAL AND GRONNDWATER FLOW SYSTEMS IN
THE EXPLORATION FOR URANTUM, RESEADCH COLLGNUINIM, BUREAY OF
ECONOMIC GEOLOGYes UNIV, OF TEXASe AISTING TEX.s 1979, 257 PP,

GALLOWAY, W, E. SOUTH TEXAS URANTIIM DROVINCE GEOLNGIC
PERSPECTIVE., GUIDEROMK 18, RBIIRFAI) NF ECONNMIC GEOLNGYs WNIV,
TEXASs AUSTIMN, TEX.s 1979, 8) PP,

GARDNER,y J,9 AND M, I, RITCHIE (ASSTGNED TO UTAH CONSTRUCTION
AND MINING COMPAMY, SAN FRANCISCOs CALLIF.s & CORPORATINN NF
DELAWARE), LEACHING 0OF UPANTIM ORF TN SITH, !1eS. PAT,
3430991404 MAR, 144 1967,

GARWACKA, K,y Do JOHNSON, M, WALSHe M, ARF|ANDs R, SCHECHTER,
AND Me HIMENICK, INVESTIGATIDOM OF THF FATE OF AMMONTA FROM
IN=SITU UYRANIUM SOLUTION MINING. TECH. REPNRT EHE-79~-014 THE
UNIV, OF TEXAS AT ANSTIN, AUSTINe TEXASe FFRRRIIARY 19794 140
PP,

GEORGEy D. Ree AMD J, R, RNSS, RECAVERY OF URANIUM FRO
URANIUM MINE WATERS AND COPPEP NRE | FACHING SOLUTINNS,
PROCESSING OF LOW=GRANDE (RANTHIM NRES, PROC, OF A PANEL HELD
IN VIENNA, JUNE 27 = JILY 14 1966s INTEDNAT, ATOMIC FENERGY
AGENCYs VIENNA, 19A74 PP, 227=234,

GEORGEsy Do Res Jeo Re ROSSe AND J, N, DRATER, BYPRONNUCT URAMT(M
RECOVERED WITH MEW TON EXCHANGF TECHMINIES, MIN. ENGee Vo 20,
NO. 19 JANUAPY 1968, PP, 73=77.

GODDARD s J, Bee AND D, P, RROSNAHAN, RATE OF CONSUMPTINN OF
DISSOLVED OXYGFN DURING AMMONMTUM CARANNATE IN SITU LEACHING

0F URANIum, PRFS, AT 109TH ANNUAL MFETING, SNC, MIN, ENG.

AIME, LAS VEGAS. NEVADA. FEB, 24=23. 19R0,.

GOODIERs JUe Te WYOMINGS IRANTUM TANNISTRY==STATUSs IMPACTS

AND TRENDS. RFPORT TOS§ MINERAL NDIVISTNA, DEPARTMENT OF
ECONOMIC PLANNING AND DFVFLOPMENMT. STATE OF WYOMING, PREPARED
BY: QUALITY DEVELOPMENT ASSNCTIATESe INCee SEPT, 304 1978, 225
PP.

GRANTs D, Co IN=SITII LEACHING STUNTIFS OF |URANTUM ORFS==PHASE
IVe FINAL REPORT, WESTINGHNISE FLECTRIC CORP.e R AND D CENTER.
1310 BEULAH ROADN, PITTSKURPGH. P,A.s RIMINES CONTRACT H0262004,
NOVEMBER 1978+ 497 OP,

GRIMESy M, E, PPREDICTINN OF (IRANTIIM EXTRACTION IN IN=SITH
STOPE LEACHING., PRNC, SOLITION MINING SYMP, e AIME ANN,
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MEYERs A, E. (ASSIGNED TN KEPR~MCGFF QTL INDUSTRIES INC.).
METHOD OF ACID LEACHINMG HPANTIM NRFS, 1,S. PAT, 32504589,
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AND MILLING. MIN, ENGe.s V. 304 NN, 10, OCTORER 1978, PP, 1433=-
1436,

2652 ROWSWELL, M, D, SOLUTINNM MINING FNo 1RANTUM BEING PIONEERED
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OF THE SOUTHERN PART OF THE POWDER RTVER BASIN, WYOMING, U.S.
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Jnderground In Situ Mining—

A New Mining Method

J. Wayne Erickson

Hundreds of millions of dollars have been spent to dis-
cover or purchase uranium resources that cannot, or should
not, be mined with conventional methods if human,
natural, and financial resources are to be conserved.

Three years ago, an industry-supported research study
was initiated to determine whether a safer and more
efficient (in terms of cost and environment) uranium min-
ing method could be designed to replace existing tech-
niques. As a result of this study, the “underground in situ”
method was conceived and developed to the stage where it
is now feasible. This approach involves: (1) sinking a shaft;
(2) driving a drift on the ore horizon the length of the ore
body; (3) drilling almost-horizontal long holes the width of
the ore body; and (4) oxidizing and leaching the uranium
drawn from thesé holes. The method is unique in that the
uranium is removed with a minimum of disturbance to the
natural hydrology of host or surrounding sands.

What the Concept Entails

In the late 1950’s, Teton Exploration and Drilling Co.
began drilling 1.5- to 3.7-m-diam (5- to 12-ft) shafts for
uranium mines and stabilizing the wet, unconsolidated
sands by filling the shaft with water and drilling mud until
it was lined. Using this method, the water table was left
undisturbed. Consequently, Teton’s technique will be
used with the underground in situ mining method.

The principle of maintaining the water table with a
minimum of disturbance will also be followed while driv-
ing the drift, using slurry mining methods with a shield
and shotcrete support system immediately behind the ad-
vancing face of the drift. The result will i‘;e a 3.4-m-diam
(11-ft) concrete tube extending the length of the ore body
with a 100-mm (4-in.) wall thickness and 150-mm (6-in.) ribs
at 1.2-m (4-ft) intervals. Careful control of aggregate size,
chemical additives, and shotcrete temperature will pro-
vide support equal to 75 mm (3 in.) of poured concrete for

* each inch of shotcrete.

In applications where this approach was used, shotcrete
has provided a strong, competent support system. In in-
stances where the shotcrete was applied to the back and
ribs only, the toes of the ribs have “kicked in.” To providea
flat floor and to support the drift floor and rib toes, a
450-mm*(18-in.) layer of concrete will be poured.

The shotcreted tube will provide multiple drilling sta-
tions for horizontal long-hole drilling. Three parallel long
holes will be drilled from each station, stacked on top of
each other. Percussion drilling will compact the sands as
drilling proceeds, sealing the long holes to permit probing,
surveying, and lining. The holes will be lined with PVC
tubing, and the tubing and the sand surrounding the holes
will then be perforated with a hydraulic jet perforation

J]- Wayne Erickson is affiliated with Viking Mining Co.,

Riverton, Wyo.
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~ system developed by the Bureau of Mines.

Alternate banks of long holes will be used to inject and
collect the oxidizing and leaching reagents along the en-
tire length of the ore deposit. Control of solution move-
ment will be maintained by close monitoring of the solu-
tion and water pressures. A single pump will transfer the
pregnant solution to the surface, where an ion-exchange
plant will recover the vranium.

Due to greater exposure and befter control of solution
movement, the rate of production will be faster and more
predictable than with other methods, resulting in 10% to
35% greater recovery of the total resource than possible
with surface in situ leaching. Capital cost on a per-pound
basis would be less than other methods; however, the total
capital required to initiate this method would be slightly
more than required for surface in situ recovery. The actual
cost of operation on a per-pound basis would be equal or
slightly less than that of surface-recovery leaching tech-
niques. ’

In the event a conventional underground mine is con-
sidered as a viable alternative method, the risk factor of
attempling underground in situ leaching as the primary
method is extremely low. An expenditure limited to a few
hundred thousand dollars may be the extent of risk, as
nearly all the underground in situ work will be com-
plementary to an underground conventional mine should
this alternative be pursued.

’

Limitations of Surface Leaching J

A quarter-century of surface in situ leaching experimen-
tation has proven that many uranium ore bodies are leach-
able if exposed to the proper oxidizing and leaching rea-
gents. Recovery of the uranium from ion-exchange plants
is also a proven process. However, there are technical,
economic, and environmental problems which limit the
use of this leaching method.

In many cases where surface leaching is now being
considered, the underground in situ method could be
more’desirable considering total pounds recovered, pre-
dictable recovery rates, development cost per pound re-
covered, and environmental problems.

A major problem arising from the use of wells is expo-
sure of the uranium to the oxidizing and leaching reagents
and the recovery of these reagents. Close well spacing is
normally required to adequately expose the mineral, con-
trol solution movement, and recover the pregnant solution,
due to (1) the varying lithology of the sands, (2) changes in
permeability and porosity, and (3) chemical and physical
contaminants in the host sands. Oxidizing:and leaching
reagents flow through the relatively highly permeable sec-
tions of the host sand; unfortunately, the uranium
mineralization is not limited to these sections and appre-
ciable quantities of the total mineral resource may not be
oxidized or leached.

Surface in situ leaching activity has demonstrated that
recovery wells have sharply declining production curves,
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caused by the chemical and physical contaminants re-
leased by the flow of the rcagents. These contaminants
reduce and sometimes eliminate the permeability of the
sands surrounding the recovery wells. Proximity of the
plugged sands to the recovery well determines whether
the well can be reworked or if a new well is required.

These conditions severely restrict the spacing of wells; in
Wyoming, for example, a 15-m (50-ft) gricrappears tobe the
maximum. The cost of drilling closely spaced wells leads
to definite economic limits to be applied to the ore body
before surface leaching can be considered feasible. Even
within the boundaries of a given uranium deposit, re-
covery of substantial portions of the deposit may not be
economically viable. This often leads to high-grading
when surface in situ leaching is used, and an appreciable
percentage of the total resource will remain untouched
and abandoned.

Other problemsinvolved in surface leachinginclude: (1)
maintaining a uniform temperature for the oxidizing,
leaching, and pregnant solutions; (2) preventing surface

mated 20% of the nation’s uranium resources under the
existing price structure. Although open-pit mining will
continue to make a substantial contribution to the total
uranium production of the US in the near future, it is not
the method which will be either economically or environ-
mentally acceptable for bulk production of our uranium
resources. Open-pit mining will decline in use as shallow,
large, high-grade dejmsits are depleted.

Conventional underground mining faces significant

hysical, environmental, and economic problems caused
Ey the need to recover deeper, more dispersed, and
lower-grade resources located in wet, unconsolidated
sands. These are not new problems; the industry has con-
tended with them for almost 30 years, proving that shafts
can be drilled, stations built, drifts driven and supported,
and long holes drilled. However, it can also be demon-
strated that conventional underground methods face def-

-inite limitations and also leave much of the total uranium

resource untouched, since uranium is left in the ground if
it is too dispersed, too thick, too thin, or too low-grade.
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injection and recovery lines from freezing; (3) control of
direction and completion of new wells; an§(4) controlling
hydraulic pressure in deep wells when the recovery rates
fluctuate. Unpredictable production rates and lack of

.definitive results with this method are also factors to be

reckoned with, but perhaps the most important question
is: How does one clean this underground environment
involving injected chemicals when the recovery wells are
only partially operable?

These factors combine to make surface in situ leaching
feasible in only alimited number of instances. In addition,
25 years of development effort in this area have failed to
establish an efficient or effective means of recovering
uranium resources above the water table.

Limitations of Conventional Open-Pit and
Underground Mining

Conventional open-pit mining is feasible only if the
mineralization is large enough, shallow enough, and rich
enoughto squort the cost ofstrip{n'ng, mining, and milling
operations plus the cost of rehabilitating the environment.
Capital requirements, reclamation costs, and the cost of
ra(ﬁoactive waste disposal continue to spiral upward, thus
limiting the application of open-pit methods to an esti-
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Ground support, water, swelling cl_:;ys and shales, dilution,
and ventilation problems contribute to the limited applica-
tion potential of this method.

Factors Atfecting Underground Mining

De?ite the ever-increasing state and federal regula-
tions designed to protect the miner, underground mining
remains one of the most hazardous and unpleasant occupa-
tions, creating labor problems associated with high
accident rates, high turnover (sometimes approaching
300% to 400% annually), cost overruns, and difficulty in
maintaining targeted production rates. Experienced un-
derground uranium miners are hard to find; thus the min-
ing ranks are filled with unskilled and‘inexperienced
workers. Tonnage produced per man-shift has generally
declined despite the increased capital expenditures and’
growing mecﬁanization involved in underground mining.
Environmental factors also complicate underground op-
erations. The method must deal with the problems of
operating a conventional mill, disposal of radioactive
waste material, and eliminating subsidence problems.
Ventilation and radioactive gases are also important con-
siderations. Perhaps the most serious environmental prob-
lem is a mine’s lowering of the surrounding water table,
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thus climinating the alternatives of surface or under-
ground leaching for that particular mine, as well as for any
adjacent property. This cffect can delay and even negate
the possi{Jility of recovering certain uranium resources.

Companies have addressed the problem of high-grading
in underground mining by implementing underground in
situ leaching as a secondary method. This procedure has
been only marginally successful. Before underground
leaching can be eflective as a secondary method, all un-
derground workings must be sealed and the water level
restored. Although this can be done, it is more efficient to
design the mine with underground leaching as the primary
method, since the company will have to seal as many asten
times the workings, and will have to contend with un-
natural water courses which otherwise would not exist if
conventional underground mining techniques had not
been used. :

In addition, the conventional underground mining op-
eration requires a sizable ca{)ital investment for a conven-
tional treatment plant. If followed by implementation of
the underground in situ method, an additional investment

belt of 55 m (180 ft). This hypothetical deposit was located
at a depth of 162 m (530 ft) and contained 227 000 kg
(500,000 1) of uranium per mile.

Study of the model indicated that the resource was too
deep to mine by open-pit and that less than 60% of the
uranium would be recovered by conventional under-
ground mining. In comparing the surface leaching method
with the underground in situ approach, indications were
that the underground method would provide 12 times
greater exposure of the uranium to oxidizing and leaching
solutions than would the surface method. The technolog-
ical problems of shaft sinking, drifting, long-hole drilling,
and injecting and recovering solutions were addressed.
Although existing technology could be used, there is much
room for improvement.

A comparison of development costs revealed that it
would cost $15.07 per pound recovered for the surface
leaching method, compared to $5.41 per pound recovered
for the underground in situ approach. The cost of leaching,
reagents, and operation of tge ion-exchange plant would
be nearly equal regardless of the method.

Recovery rates of 68% are shown for both
methods. Every indication exists that
higher recovery rates should be expected
when using the underground in situ leach-
ing method.
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will be required for the ion-exchange plant.

Conventional underground mining should therefore be
attempted only if the underground in situ method is de-
monstrably infeasible in a given situation. Almost every-
thing involved in recovering a resource by this method
will be directly beneficial to underground mining should
the conventional method become necessary; however, the
reverse is not true. For conventional mining, larger shafts
and ventilation systems, more long holes, increased water
pumping capacity, and larger waste tonnage removal ca-
pacity would be necessary in comparison with the under-
ground leaching approach, yet the in situ method will
address the recovery of the total resource, not just the
percentage defined as ore—ore which remains to be
milled.

Case Study Results

As an example, a case study was made on a typical
uranium roll front deposit 3.2 km (2 miles) long, with an
average grade of 0.075% U;Os (minimum cutoff grade

0.02%) and an average width throughout the mineralized
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Results of a series of case studies showed that surface in
situ leaching may be applicable to ore bodies less than 150
m (500 ft) deep but, under certain criteria, should not be
used beyond a 90-m (300-ft) depth. Beyond those depths,
underground in situ leaching is the more favorable
method.

Given the existing maze of governmental regulations, a
mining company must now consider all alternatives in the
initial phases of project planning, including underground
in situ leaching. Furthermore, the government must intro-
duce some flexibility into its requirements to allow a com-
pany to recover a resource with more than one method; for
instance, with underground in situ leaching followed by a
companion method should it prove necessary. s

This new method will require one-tenth the normal
labor force needed for a conventional operation, yet will
produce more uranium. This permits a highly trained,
well-paid, and stable work force, which can be interpreted
to a 90% reduction in underground mine dccidents. This
aspect alone should be incentive enough for government
and industry to work together in the implementation of this
promising new method. O
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I Undergmund In Situ M‘nihg———'

A New Mining Method

Hundreds of millions of dollars have been spent to dis-
coveror purchase uranium resources that cannot, or should
not, be mined with conventional methods if human,
natural, and financial resources are to be conserved.

Three years ago, an industry-supported research study
was initiated to determine whether a safer and more
efficient (in terms of cost and environment) uranium min-
ing method could be designed to replace existing tech-
niques. As a result of this study, the “underground in situ”
method was conceived and developed to the stage where it
is now feasible! This approach involves: (1) sinking a shaft;
(2) driving a drift on the ore horizon the length of the ore
body; (3) drilling almost-horizontal long holes the width of
the ore body; and (4) oxidizing and leaching the uranium

drawn from thesé holes. The method is unique in that the

uranium is removed with a minimum of disturbance to the
natural hydrology of host or surrounding sands.

What the Concept Entails
In the late 1950’s, Teton Exploration and Drilling Co.
began drilling 1.5- to 3.7-m-diam (3- to 12-ft) shafts for
vranium mines and stabilizing the wet, unconsolidated
sands by filling the shaft with water and drilling mud until

< it was lined. Using this method, the water table was left

undisturbed. Consequently, Teton’s. technique will be
used with the underground in situ mining method.

The principle of maintaining the water tablé with a
minimum of disturbance will also be followed while driv-
ing the drift, using slurry mining methods with a shield
and shoterete support system immediately behind the ad-
vancing face of the drift. The result will be a 3.4-m-diam
{11-ft) concrete tube extending the length of the ore body
with a 100-mm {4-in.) wall thickness and 150-min (6-in.) ribs
at 1.2-n (4-ft) intervals. Careful control of aggregate size,
chemical additives, and shotcrete temperature will pro-
vide support équal to 73 mm (3 in.) of poured concrete for
each inch of shoterete.

In applications where this approach was used, shotcrete
has provided a strong, competent support system. In in-
stances where the shoterete was applied to the back and
ribs enly, the toes of the ribs have “kicked in.” To provide a
flat Hoor and to support the drift floor and rib toes, a
450-mm (18-in.) layer of concrete will be poured.

The shotcreted tube will provide muitiple drilling sta-
tions for horizontal long-hole drilling. Three parallel long
holes will be drilled from each station, stacked on top of
each other. Percussion drilling will compact the sands as
drilling proceeds, sealing the long holes to permit probing,
surveying, and lining. The holes will be lined with PVC
tubing, and the tubing and the sand surrounding the holes
will then be perforated with a hydraulic jet perforation

J. Wayne Erickson is affiliated with Viking Mining Co.,
Ricerton, Wyo. ;
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system developed by the Bureaun of Mines.

Alternate banks of long holes will be used to inject and
collect the oxidizing and leaching reagents along the en-
tire length of the ore deposit. Control of solution move-
ment will be maintained by close monitoring of the solu-
tion and water pressures. A single pump will transfer the
pregnant solution to the surface, where an ion-exchange
plant will recover the uranium.

Due to greater exposure and better control of solution
movement, the rate of production will be faster and more
predictable than with other methods, resulting in 10% to
35% greater recovery of the total resource than possible ;
with surface in situ leaching. Capital cost on a per-pound
basis would be less than other methods; however, the total
capital required to initiate this method would be slightly
more than required for surface in situ recovery. The actual
cost of operation on a per-pound basis would be equal or
slightly less than that of surface-recovery leaching tech-
niques.

In the event a conventional underground mine is con- .
sidered as a viable alternative method, the risk factor of -
attempting underground in situ leaching as the primary "
method is extremely low. An expenditure limited to a few *
hundred thousand dollars may be the extent of risk, as”
nearly all the underground in situ work will be com-*
plementary to an inderground conventional mine should
this alternative be pursued.

REL ML T2 IR

ERNSME 2 FX L A

R

+

Limitations of Surface Leaching'

Bems P

A quarter-century of surface in situ leaching experimen- -
tation has proven that many uranium ore bodies are leach-
able if exposed to the proper oxidizing and leaching rea-
gents. Recovery of the uranium from ion-exchange plants 3
is also a proven process. However, there are technical,
economic, and environmental problems which limit the 3
use of this leaching method.

In many cases where surface leaching is now being?
considered, the underground in situ method could be :
more desirable considering total pounds recovered, pre- =
dictable recovery rates, development cost per pound re-:
covered, and environmental problems. ;’

A major problem arising from the use of wells is expo-

F

%

sure of the uranium to the oxidizing and leaching reagents.

and the recovery of these reagents. Close well spacing is3
normally required to adequately expose the mineral, con-2
trol solution movement, and recover the pregnant solution,
due to (1) the varving lithology of the sunds, (2) changes in:
permeability and porosity, and (3) chemical and physical;
contaminants in the host sands. Oxidizing and leaching
reagents How through the relatively highly permeable see-:
tions of the host sand; unfortunately, the uranium’
mineralization is not limited to these sections and appre-"
ciable quantities of the total mineral resource may not be
oxidized or leached. 4
Surface in sitn leaching activity has demonstrated that?

rccovery wells have sharply declining production curves,j‘_g
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caised by the chemical and physical contaminants re-
leased by the fiow of the reagents. These contaminants
reduce and sometimes eliminate the permeability of the
sands surrounding the recovery wells. Proximity of the

plugged sands to the recovery well determines whether -

the well can be reworked or.if a new well is required.
These conditions severely restrict the spacing of wells; in
wvoming, for example, a.15-m (50-ft) grid appears to be the
maximum. The cost of drilling closely spaced wells leads
to definite economic limits to be applied to the ore body
before surface leaching can be considered feasible. Even
within the boundaries of a given uranium deposit, re-
cavery of substantial portions of the deposit may not be
ceonomically viable. This often leads to high-grading
when surface in situ leaching is used, and an appreciable
- percentage of the total resource will remain untouched
. and abandoned. .
Other problems involved in surface leaching include: (1)
maintaining a uniform temperature for the oxidizing,
leaching, and pregnant solutions; (2) preventing surface

mated 20% of the nation’s uranium resources under the
existing price- structure. Although open-pit mining will
continue to make a substantial contribution to the total
uranium production of the US in the near future, it is not
the method which will be either economically or environ-
mentally acceptable for bulk production of our uranium
resources. Open-pit mining will decline in use as shallow,
large, high-grade deposits are depleted.

Conventional underground mining faces significant
physical, environmental, and economic problems caused
by the need to recover deeper, more dispersed, and
lower-grade resources located in wet, unconsolidated .
sands. These are not new problems; the industry has con-
tended with them for almost 30 years, proving that shafts
can be drilled, stations built, drifts driven and supported,
and lonyg holes drilled. However, it can also be demon-
strated that conventional underground methods face def
inite limitations and also leave much of the total uranium
resource untouched, since uranium is left in the ground if
it is too dispersed, too thick, too thin, or too low-grade.
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3 wjecticn and recovery lines from freezing; (3) control of
= direction and completion of new wells; an§(4) controlling
- hvdraulic pressure in deep wells when the recovery rates
fuctuate. Unpredictable production rates and lack of
& definitive results with this method are also factors to be
% reckaned with, but perhaps the most important question
% is: How does one clean this underground environment
2§ involving injected chemicals when the recovery wells are
% only partially operable?

£ These factors combine to make surface in situ leaching
: feasible in only a limited number of instances. In addition,
3 3 vears of development effort in this area have failed to
e establish an efficient or effective means of recovering
@ wranium resources above the water table.

4 Limitations of Conventional Open-Pit and
¥ Underground Mining

%@ Conventional open-pit mining is feasible only if the
Mineralization is large enough, shallow enough, and rich
%@g nough to support the cost ofstrip{)ing, mining, and milling
gk "Perations plus the cost of rehabilitating the environment.
b _(,af.)iml requirements, reclamation costs, and the cost of

@dioactive waste disposal continue to spiral upward, thus
4 “miting the application of open-pit methods to an esti-

154
& WG engineeRs

Ground support, water, swelling clays and shales, dilution,
and ventilation problems contribute to the limited applica-
tion potential of this method.

Factors Affecting Underground Mining

. Despite the ever-increasing state and federal regula-’
tions cﬁasigned to protect the miner, underground mining
remains one of the most hazardous and unpleasant occupa-
tions, creating labor problems associated with high
accident rates, high turnover (sometimes approaching
300% to 400% annually), cost overruns, and difficulty in
maintaining targeted production rates. Experienced un-
derground uraniuma miners are hard to find; thus the min-
ing ranks are filled with unskilled and inexperienced
workers. Tonnage produced per man-shift has generally
declined despite the increased capital expenditures and
growing mecll:anization involved in underground mining.
Environmental factors also complicate underground 6p-
erations. The method must deal with the problems of
operating a conventional mill, disposal of radioactive -
waste material, and eliminating subsidence problems.
Ventilation and radioactive gases are also important con-
siderations. Perhaps the most serious environmental prob-
lem is a mine’s lowering of the surrounding water table,
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thus eliminating the alternatives of surface or under-
ground leaching for that particular mine, as well as for any

. adjacent property. This effect can delay and even negate

the possibility of recovering certain uranium resources.

Companies have addressed the problem of high-grading
in underground mining by implementing underground in
situ leaching as a secondary method. This procedure has
been only marginally successful. Before underground
leaching can be effective as a secondary method, all un-
derground workings must be sealed and the water level
restored. Althotgh this can be done, it is more efficient to
design the mine with underground leaching as the primary
method, since the company will have to seal as many as ten
times the workings, and will have to contend with un-
natural water courses which otherwise would not exist if
conventional underground mining techniques had not
been used.

In addition, the conventional underground mining op-
eration requires a sizable capital investment for a conven-
tional treatment plant. If foﬁowed by implementation of
the underground in situ method, an additional investment

belt of 55 m (180 ft). This hypothetical deposit was located
at a depth of 162 m (530 ft) and contained 227 000 kg
(500,000 1b) of uranium per mile.

Study of the model indicated that the resource was too
deep to mine by open-pit and that less than 60% of the
uranium would be recovered by conventional under-
ground mining. In comparing the surface leaching method
with the underground in situ approach, indications were
that the underground method would provide 12 times
greater exposure of the uranium to oxidizing and leaching
solutions than would the surface method. The technolog-
ical problems of shaft sinking, drifting, long-hole drilling,
and injecting and recovering solutions were addressed.
Although existing technology could be used, there is much
room for improvement.

A comparison of development costs revealed that it
would cost $15.07 per pound recovered for the surface
leaching method, compared to $5.41 per pound recovered
for the underground in situ anroach; The cost of leaching,
reagents, and operation of the ion-exchange plant would
be nearly equal regardless of the method.

will be required for the ion-exchange plant. :
Conventional underground mining-should therefore be

" attempted ouly if the underground in situ method is de-

monstrably infeasible in a given situation. Almost every-
thing involved in recovering a resource by this method
will be directly beneficial to underground mining should
the conventional method become necessary; however, the
reverse is not true. For conventional mining, larger shafts
and ventilation systems, more long holes, increased water
pumping capacity, and larger waste tonnage removal ca-
pacity would be necessary in comparison with the under-
ground leaching approach, yet the in situ method will
address the recovery of the total resource, not just the
percentage defined as ore—ore which remains to be

milled. :

Case Study Results

As an example, a'case study was made on a typical
uranium roll front deposit 3.2 km (2 miles) long, with an
average grade of 0.075% U;O0z (minimum cutoff grade
0.02%) and an average width throughout the mineralized
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‘Results of a series of case studies showed that surface in

situ leaching may be applicable to ore bodies less than 150
m (500 ft) deep but, under certain criteria, should not be
used beyond a 90-m (300-ft) depth. Beyond those depths,
underground in situ leaching is the more favorable
method.

Civen the existing maze of governmental regulations, a .
mining company must now counsider all alternatives in the
initial phases of project planning, including underground
in situ leaching. Furthermore, the government must intro-
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duce some flexibility into its requirements to allow a com- %

pany to recover a resource with more than one method; for
instance, with underground in situ leaching followed by a
companion method should it prove necessary.

This new method will require one-tenth the normal *
labor force needed for a conventional operation, yet will

produce more uranium. This permits a highly trained,

well-paid, and stable work force, which can be interpreted *
to a 90% reduction in underground mine sccidents. This =
aspect alone should be incentive enough for government =
and industry to work together in the implementation of this
promising new method. [
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NDERGROUND

leaching and sub-

sequent precipi-
tation of cement copper
has now been commer-
cially practiced at the
mines of the Cananea
Consolidated Copper
Co., Cananea, Sonora,
Mexico, for four or five
years. Production this
year is likely to be
about 3,000,000 lb. by
this method, the prac-
tice and economy of
which will be described
and illustrated in this
article. The Capote 15
shaft is the deepest in
the Capote Basin, where most of the mines of the com-
pany are situated, and where most of the pumping is
done. As the mines are connected by . drifts on the
lower levels, the water finds its way to this shaft. This
water always contained more or less copper in solution
and was destructive to the pumps, so precipitation boxes
were installed some years ago, filled with scrap iron,
through which the water was passed to precipitate the
copper and protect the pumping equipment. Later, the
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C. C. Greenwond

ENGINEERING AND
MINING JOURNAL-PRESS

. many times.

UNIVERSITY OF UTAHR
RESEARGH INSTITUTE

EARTH SCIENGE LAB.
Vol. 121, No. 13

Underground Leaching at Cananea

Ore in Old Shrinkage Stopes Economically Treated by This Method—Scrap-Iron
Precipitation Plants Both Underground and on Surface

By C. C. Greenwood

Superintendent, Pregipitation Department,
Cananen Consolidated Copper Co.

practice was started of intentionally passing water
through old stopes for the extraction of copper. Pre-
cipitation on scrap iron was slow in the boxes con-
structed to care for this water, and the settling out of
the iron salts reduced the grade of the product. H. M.
Lavender, who was then in charge of operations, ex-
perimented with the use of air agitation in the boxes,
this proving very successful. as it tended to keep the
iron clean by preventing the precipitated copper from
tightly plating it. It also kept suspended matter and
precipitated salts in suspension, with the net result
that the copper precipitate formed was of high grade
and the capacity of the precipitation boxes was increased
The use of air in this way has been the
biggest factor in making underground leaching a profit-
able operation. ‘ .

Boxes were first installed on the 900, 1,000, and
1,200 levels of the Capote 15 mine. ILater, an old filled
stope was selected for leaching in the Oversight mine
near the “Eleven Shaft.” Precipitation boxes were in-
stalled on the 300 level of this shaft and later on the
400. These being successful, the leaching was extended
to the Tweive shaft of the same mine, and boxes were
ingtalled there on the 350 level. Whater from all the
Oversight boxes was allowed to flow underground to the
boxes in the Capote 15 mine, which extracted the last
of the copper.

All of this work had been done on operating account

Surface precipitation plant

The cement. copher on tlge dr_\"irng platform is the product of fifteen days’  operations.
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—that is, all monéy spent in connection therewith had
been- charged to the copper so produced, and in 1924
more than a million pounds of copper, as cement copper,
was produced at a cost of 4.32¢. per.pound. - This in-
cluded all expenditures at the mines, including instal-
Jation costs, but no smelter charges were included. Up
to that time, all of the boxes had been instulled under-
ground, utilizing convenient -drifts which were widened
sufficiently to accommodate the installation. Other
drifts had been bulkheaded and used for storage of
the head water for the plants.

NEW PRECIPITATING PLANT PUT ON SURFACE

Desiring further expansion, it was decided to fit up
a new precipitation plant on the surface where it would
be more. convenient to handle the scrap to the boxes’
and take the copper precipitate away from them; also,
larger individual boxes could be built to accommodate
larger pieces of iron. The location sc¢lected was near
the Veta Five shaft at ‘the portal of the Veta 9 tunnel.
Here there was connection with the company railway and
near by were old workings which it was desired to
leach. The new plant was completed and was put into
operation on Feb. 24, 1925, The complete cost, includ-
ing necessgty pumps, pipe lines, and blower, was $17,-
124. Duying 1925, this plant produced 695 wet tons
of precipitate,_containing 19.3 per cent moisture; or
563 Qv}; tons, (\-ontaining 485 tons of metallic copper.

I_Ihe’“precipitate shipped to the smelter assayed 85.48

—

per cent copper.

Precipitation boxes in this new plant are of 7,000
cu.ft. capacity, and the flow of solution through the
boxes is obtained by a grade of one-fourth of 1 per
cent. The water going to these boxes contained, on an
average, 3,653 parts per million of copper in solution
and the tailing water, 45 parts per million. Tailing
water goes to a pump sump, from which it is returned
to the old workings for leaching. It is necessary to
discard a portion of this tailing water continuously,
otherwise the iron salts in solution would become too
concentrated. Some of the ground being leached per-
mits the collecting of the water that has been through
the stopes, at points where it will flow by gravity to the
precipitation boxes, whereas other water must be
pumped against a 300-ft. head. Fir pipe and redwood
lined iron pipe is used, the latter being preferable on
the discharge lines of the pumps. The pump parts in
contact with the water are of acid-resisting bronze made
in the local foundry.

For agitation, the precipitation boxes require about
1,750 cu.ft. of low-pressure air per minute, this air
being furnished by a Root type blower. Each box is
supplied with air through a %-in. air hose, plugged at
the end, from which the air escapes through fs-in. holes
spaced about nine inches apart and staggered. The hose
lies on the bottom of the precipitation box, being cov-
ered and protected by a narrow box into which the air
discharges and from which it escapes through holes in
the side, to bubble up evenly through the scrap iron.
Formerly, the precipitation boxes were provided with a
false bottom to support the iron, but this has been
found to be undesirable. Another set of boxes of the
same capacity is now being installed on this ‘site.

CosT Is CLOSE TO 7¢C. PER LB.

During 1925 there was produced from leaching and
precipitation, 2,012,108 1b. of copper at a cost of 6.87c.
per pound in bullion at Cananea. This includes all equip-

hlaviavaa s bl

“area of approximately 31x93 ft.
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Tank and weirs ahead of precipitating plant

ment and installation costs. The consumption of iron
is not known definitely, but is estimated to be about
1.2 1. per pound of copper. Practically all the iron
used so far has come from the company’s scrap heaps,
and more is available, but eventually iron must be pur-
chased.

The precipitation boxes in use at the end of 1925
were as follows: :
Capacity, Ca.Ft.

900 level Capote...oove v ivnneivinnns 780
1,000 level Capoteo. oo .oeen .l L. 1,086
1,200 level Capote,. 980

300 level) Oversight 920

400 level Oversigh 1,104

350 level Qvergigl 1,000
Veta surface... ., . 7,000

Totnl v i i i e 12,870

Also, the new Veta surface plant, of 7,000 cu.ft., was
nearly completed. Most of the country being leached
is .an unknown quantity so far as tonnage and grade
are concerned. However, one stope—namely, the 3-39
stope of the Oversight mine—was situated so that it
could be handled by itself and yielded some quite re-
liable data. The same might also be said of the Veta 15
stope, above the Veta 17 tunnel in the Democrata Gulch.

The 3-39 stope had been mined by the shrinkage
system in 1916 and was left full of broken ore. This
stope extended from the 300 level to the 200 and had an
The ore was of such
a character that it broke in comparatively small pieces; .
its analysis was about as follows:

Cu, Acid
Bi02 AbOy Fe Ca0 S Cu soluble
49.0 15. 4 10:8 0.5 9.2 1.5 0.05

Flashlight in the 3-89 stope
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Loading platform -and setiling tanks

The copper occurred as secondary chalcocite in tiny
veinlets and seams. Old workings above and below the
stope were in good condition, so that the stope could be
entered at any time and the water could be accurately
distributed over its surface. The stope was estimated
to contain 15,790 tons of broken ore of 1.50 per cent
grade, or 473,700 lb. of copper. :

Water was delivered to the stope through a 2-in. iron
pipe, a hose heing used to distribute the water, as it
could be moved readily. A 50-ft. length was utilized,
the last ten feet being perforated to spray the water and
distribute it evenly over the surface. Leaching of the
stope was started on March 12, 1924, and the test was
considered complete on July 2, 1925, as on that date
conditions made it impossible to continue to get ac-
curate’ data on account of interference Ifrom other
leaching operations. All the water which percolated
through this stope was treated in the precipitation boxes
on the 350 level of the Twelve shaft of the Oversight
mine and no other water was treated in these boxes
during the test period. During the test, 9,488,000 gal-
lons of water was treated, containing 878,000 lb. of

"copper, or 80 per cent of all the copper estimated to

be in the stope. The boxes made an extraction of
98.13 per cent of the copper in solution and were ac-
tually in operation. 7,372 hours during the test. A
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tabulation is given in the accompanying table showing
the details of operation of the boxes by months.

The .“first wagh of the staope” took 261 days and
vielded 3,275,620 gal. of water, containing 229,977 1b.
of copper, representing 48.5 per cent extraction of the
total copper in the stope. “First wash of stope” is a
term used to describe the actual time required to cover
the total area of the ore with water. The back end of
the stopes is usually washed first and then the wash
water is moved when the analysis of solution is below
the grade that it is desired to feed into the boxes.
The water going into the stope had the following an-
alysis, in parts per million:

Cu, Nil Fe”, 140

Leaching of the stope is still in progress, though
the test is completed. - )

The plant employed to treat the copper water from
the 3-39 stope on the 350 level of the No. 12 shaft has
a capacity of 1,000 cu.ft., consisting of ten 100-cu.ft.
boxes. To accommodate this plant, one side of the
crosscut leading from the shaft was blasted out for a
distance of 150 ft., making the adit 10 ft. wide and
9 ft. high for the full length of the plant. The boxes
are placed in a line on one side of the tunmel. ‘This
method leaves space to lay the mine track in front of
the boxes. Beneath the track a sump 18 in. x 18 in. x
150 ft. was dug and the sides and bottom were faced
with concrete. The copper is removed from the boxes in
fifteen-day periods, by washing and shoveling through
side doors-into the sump.” As soon as the water drains
from the cement copper, it is shoveled into mine cars
and run to the surface for shipment.

Air to agitate the solution in the boxes is supplied
by a Connersville blower, with a discharge of 1,152
cu.in. per revolution, and driven by a 5-hp. electric
motor. The plant operates efficiently with about 4 cu.ft.
of free air per minute per cubic foot of box on this
type.of installation, the pressure being 3 Ib. per square
inch.

Fe'”, 100 Acid, Nil

Cost of Plant
Blasting side of drili oo 0 e e

Taabor and materind attached to boxes... ..ol
Fleetric motor, blower, pipe Hues, and airhoses. ..o ool L.

$2,600

A plant of this type will produce 1,000 lb. of copper
per day, when scrap ivon is used to precipitate the cop-
per, and will quite casily double this production with
de-tinned iron. -

Data of Operations in 3-39 Stope, Oversight Mine—3350 Level Plant, No. 12 Shaft—Leaching and Plant Averages

Heads, Pregnant Solution

Priseharge or Tailing Wauter

— Parts per Milion————~ DPounds  ———ee—e=Party per Million ——a——— 3 .
. Cals. Copper * Total Fe  Lbh.Cu Gal. Lial. Per Cent
Total per _in in in Water per Water per IBx-
Hours  Min. Cu  Fe” Fe Acid  Solution  Gu Fe* Fe*”  Acid  Solution Solution Lb.Cu Month  traction
Aarch, 1924 228 10,0 11550 490 816 130 13.428 1,080 7,990 1,221 50 9,211 1,036.9 10.80 136,800 90.63
April... ... 456 13.2 6913 ... ... 468 19,927 78 v . 230.7 20.92 361,380 98.65
May.. 418 13.6 8983 ... ..... 468 25,577 87 15 ... 264.3 13.91 343,140 98.97
June.. 475 1.8 10,688 .... ..... 325 28,853 183 e 3 .. 523.6 12.38 336,300 98.08
July.. ... 494 16.9 7576 ... ..., 251 31,125 86 5 ... 388.2 17.64 501,600 98.63
August. ..o 5t3  20.0 5939 ... ... 287 31.064 125 ..... e 17 .. 651.6 26.75 605,600 97.99
September........... 475 £4.0 8661 ... ..... 30 27158 83 ... e 10 ... 317.0 18.51 399,000 98.78
Qctober....ouo.vo.... 494 11.3 10,227 960 1,880 281 27,809 21 ... feen 4 L. 56.3 16.09 336,300 99.76
November........... 437 t1.9- 9808 s 264 25,036 87 ..... el 3 L. 242.6 16,29 313,500 99.07
December. . ..ovuvv. . 456 20.8 4,780 583 2,763 322 22,666 110 8,611 174 12 8,785 517.3 32.50 560,880 97.41
January, 1925........ 494 27.0 3,391 577 83 348 23,058 145 6,600 315 35 6915 984.9 49.92 800,280 92.32
380 25.4 4,737 1,395 2,938 296 22,063 96 8,534 132 25 8,666 455. 1 37.27 580,260 92.32
494  27.0 3,963 1,037 3,445 30} 26,949 54 6,704 91 12- 6,794 3744 45,2 800,280 98.24
513 .36.4 1,675 721 2,406 198 15,031 56 6,080 231 10 6,314 332.6 104.40 1,121,760 95.87
475 32.0 2,694 859 2,693 286 20,846 40 3,805 203 1 4,008 307.8 56,45 ,000 98.77
532 40.0 1,541 853 2,450 106 16,697 18 5478 277 8 5,735 197.5 86.40 1,276,800 98.74
38 40,0 665 650 1,800 110 516 Nil 4,150 200 Neut. 4350 ...... 197.60 91,200 100.00
I ... 1,372 371.0 -103,791 8,125 23,574 4,772 378,003 2,349 57,952 2,844 239 60,798 7,077.5 745.05 9,487,080 ......
............. - 21.8 6,105 812 2,357 281 - 22,235 138 6,439 316 14 6,755 416.3 43,83 558,063 98.13

Note: The iron in hends and tailings does not reflect the iron consumed in the boxes, for various reasona.
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Cost of Undergrc;und/Operations at Precipitation Plant
Cents per Lb.

Copper

Produced
L TS T R 0.15
JtT Y <1 T R 0.07
SUNATIRI. . v v v e v et i 0.03
SUPD . )t et ettt e 0.03
SUPERINtENdENTR. . oottt 8.07
General MURG FEPAIT. (i vt it ii et 0.75
Ingtallation.......... 1.15
Actual attenddnce . 0.03
Cleaning copper from tanks.. 0.70
Handling, drying, cleaning an 0.30
Filla development ; - : 0.4

1ron from bone yard, handling from rail .

into precipitating vats. ... i e i e 1.00
.09

The analyses shown in the accompanying table, which
were made daily, were to check underground operations
and to obtain a record of leaching in place and pre-
cipitation of copper, together with a rveliable record of
discharged water from the plants. The check on the
cement copper produced from this plant against the

I solution analysis was so close that a tabulation of the
y results of the test was justified.

LEACHING OF THE VETA 15 STOPE

The Veta 15 is an old shrinkage stope in the bottom
of “which was left about 42;000 tons of 1 per cent copper
ore\ﬁntaining about 840.000 1b. of copper. One-tenth
of the& copper was acid-soluble, ‘equal to 84,000 Ib. The
ore in this stope consists of large rocks, many of which
have caved into the stope from the back. The surface

/‘of the ore pile is uneven; varying in thickness from

a few feet to forty or more. Copper, as in the 3-89
stope, occurs as secondary chalcocite, concentrated in
the same manner - along the tiny seams and veinlets.
The rock, however, is harder and much more compact.
Near this stope is a large tonnage of low-grade mate-
rial,. designated as ‘“near ore,” which may possibly be
broken for leaching at a later date.

Leaching of this stope was started Feb. 24, 1925.
The copper extracted, and the main facts in regard to

the operation of the precipitation boxes up to Dec. 31,
1925, are as follows:

'
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This copper production reﬁresen’cs about 34 per cent
of the total copper in this stope, and indicates that the
ore is very amenable to this method of treatment. The
first wash of this stope is not completed. From general
indicationg about 40 per cent of the total copper will
probably be extracted with the first wash.

The general analysis .of cement copper shipped to the
smelter during 1925 is as follows:

o Wet Tuna - Ter Cent Per Cent Per Cent Per Cent
Cement Copper Muaisture Silica Iron Copper
1,701.2 18.7 Lt 5.2 85.40

The. general lay-out of the plants is shown in the
photographs.

Electric Shovel Efficient

Increased output in a shorter period of time, together
with a reduction in labor, resulted from the installa-
tion of an electric shovel by the Cowell Portland
Cement Co. at Cowell, Calif. This company had been
using steam shovels in. its quarrying operations, but
on account of the obvious economies and the ease of
operation, decided to purchase an electric shovel. It
was found that six cars could be loaded with the electric
shovel while the steam shovel was loading five. The
operator of the steam shovel was an experienced man,
whereas the electric shovel was operated by a steam
operator who had had no previous experience with elec-
trical equipment. The dipper on the steam shovel had
a capacity of three cubic yards; the electric shovel had
a dipper of only 1} cu.yd. capacity.

In operating the steam shovel, nine men were re-
quired, including a shovel runner, a craneman, a fire-
man, and six pit men. Only three men were needed for
the electric shovel; an operator and two pit men.

No boiler being required for the electric shovel, re-
placement of tubes, and troubles from leaks, scaling,
and like occurrences, were eliminated. A further sav-
ing was found by the elimination of a night watchman
for keeping the boilers fired at night. Approximately

ours als. per arts Copper per Million  Copper in in Hoxes, ocation t N is 3
Operating Minute Head Tailing Solution et Cent © 0 € next 13 save by the electric Shovel' as
2714 20.5 2,963 37 284,330 98. 65 temporary roadbeds and tracks are unnecessary.
~p——

Shafts of the Wallaroo copper

Photo by Ewing Galloway

mine, Wallaroo & Moonta Mining & Smelting Co., South Australia
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‘ing nahcolite through secondary
ushmg and photosorting;  reforting

e ~om spent shalé.
Superior,- along ~with McDowell-",

edly tested'and proven a new type of oil
¥ grate retort concept patented by

retortmg process

ntal compatlblhty of open-pit min-
B ing and recovery of oil from diatoma-
e ceous sediments at McKitirick, Calif.

he McKiterick field overlie deeper
ps in the Tremblor formation of
ocene age. The deeper traps have

s If the pilot project is successful, it
could lead to miring and oil recovery,
dding the. equivalent of four 100-
smillion-bbl oil fields to California
roduction. In -oil parla”nce, a field

ot

imated 412 rm!hon bbl of pmbab]c,
in-place crude contained within shallow
posits of oil-impregnated diatoma-
us sediments. The formations un-

tstimated content of &rude oil in the
iatomaceous zone is almost double the
.18 miilion bbl produced by the-entire
Rl cKnmck field since 'its discovery
¥y \are than 80 years ago.

Sek he digtomaceous sediments vary in
depth from the surface to about 400 ft.

g :Getty engincers estimate that the
a o g hallow deposits can be mined at an 8:1
rg{“’* fatio of ‘overburden to oil-bearing sedi-

nt. The pilot plant wifl jeek ‘engi-
ring data to facilitate the design
d construction of a full'scale process-
g plant-and related mining facilities il
E-’i'ﬁtnnmeru::ml mining ‘appears feasible.
%00 wells in the McKittrick property
ve: produced from zenes dbiout 1,500
2,000 ft deep for many years, but no
has beén recovered from the diato-
CeoUs deposits because they dad not

- t 3 T RgﬂHWEﬂSE’FY oF EU}'F

SEARC
Eapap ot B JsTivyTE

I; and leaching.alumina and soda ash N

Wellman Engineering Co., has report-
hale rétort for the process. A circular
M¢Dowell-Wellman is used in the oil |
developed by Su-

erfor:-Accordifig to"the company, oil
‘can be produced in the rangc of 51010,

cated 35 mi southwest of Bakérs- -

fheen developed by conventional wells. .

derfie 1,680 acres owned by Getty. The'

Al
) otqz mpgchgﬁ@

A single module, costing $270
million, would process.28,000 tpd of il
. shale feed to produce 4,500 tons of
nahcolite, 13,300 bbl of oil, 700 tons of
- ¢ell grade alumina, and 1,500 tons of
_' dénse soda ash. According to Superior,:
tests of raw nahcolite as-a dry scrub-
bing agent have shown. that it will
absorb nearly 100% of the suiphumus

axides from flue gas, under controlled

heolite can clean the stack gas
from the burning of about 25 tons of
low sulphur ¢oal ‘and -about 8 tons of

recovery of crude froms4HT oil-impreg-

.-nated :diatomagcedls sediments. Ac-
cording to~Getty, it now appears that
cerfain téchniqués devised to recover
oil shale apd tar sands could be
modified. fér application.

If the pilot is suécessful, full scale
operations could start up in late. 1982.
An._ independenit consulting firm, De-
Golyer & McNaughton, estimated oil-
bearing diatomaceous sediments at 627
million tons; with an-average grade of
28.188 gal per ton of crude. After
retorting, t
APL -

If mining operations are undértaken,
it will be necessary to plug producing -

wells on the property as the pit is
extended. Ultimately, about 70% af ‘the
wells would have to be abandoned. As
of June 1976,-the wells that wonid be
abandoned produced 5,158 bpd of-o0il
with the assistance. of steam stimula-
tion. After. mining operations, new
. wells would be drilled to recover the
remaining recoverable deeper crude oil
from the currently producing zones.
An E/M2 article by Earl C. Herken-
" hoff in June 1972 pointed out ‘that
m:mng of the 383 Known shaliow oil
fields in the US is a practical way to
ifcreasé oil production. Many such
fields are merely downtip extensions of
bituminous rock deposits that putcrop
and are at depths of about 500 ft. With
secondary or tertiary recovery tech-
niques, the. recovery of crude. from
conventional wells may be only 10-
15%. Even with wtilization of fire-
flooding; steaming; and other exotic
stimulants to recovery, the extraction
ratio rarely is more than haif the-oil in
the formation. Herkenhoff concluded
that it might be. posmbic to recover up
to 90% of the oil in such shallow
deposﬂs by conventional sarface min-
ing methods.
. Aside from in-situ combustion and
condensation of vapors, various. recov-
ery schemes have been suggested for

oxides .and up. to 50%. of:the nitrous -

_ conditigns: The company states that 1+
9T na

the density ‘is about 15

THIS VIONTH IN MIMING

‘ high selphur coal.at present air poflu-

‘tion centrol standards,

Alumina would be extracted in the
process: at.a price -competitive with
alumina from foreignh bauxite, the
company said.

Superior now owns 6,500 acres of
contiguous oil shale land in Colorado,
but the configuration of the land does
not fend itself to e[ﬁcwnt mining.

- According 1o Superior, consiruction of

a module cannot be started until 2 land
exchange has been completed with'the
Department of the lnteérior,” Negotia-
tions for the exchange have been under

-way since 1970. [

mature oil field '

recovery of bntumens. including a
numbeér of reforting systems. The US
Bureau of Mines pidneered a hot water
flotation process in 1948. Gréat Cana-
dian Oil Sands, which pioneered the -
recovery of Athabasca tar sands in-
Alberta, makes an initial extraction of’
bitumen using a hot water separation -
of pulped feed in a conical vessel. The
bitumen. i5 recovered as a froth from .
the-separator. T
In stmmary, Herkenhoff indicated
that recovery of oil ‘from shallow fields
locked marginally economic in 1972
that such resources may precede devel-
opment of oil shale bécause the -eco-
nomics look better; and that mining.of
such deposits could well open a signifi-
cant energy rescurce. Most of -hig
dfsumptions; however, were based. on7a -
mining ‘operation qualifying for-a 23%
depletion allowance —the level used by
the oil industry. [

Uranium leach project
snarled in New Mexico's
environmental rules

UNION CARBIDE CoRrp. has applied to
the New Mexico Environmental Im-
provement Agency- (EIA) for a permit
4o conduct experimental in-situ solu-
tion mining tests in a region 25 mi
northeast-of Albuguerque. The compa-
ny plans to drill 10 holes, nine of which
will monitor leaching dctivities: in a
central tole. Union Carbide will
reportedly use a hydrogen peroxide
leach soletion. The leach liquor will be
concernitrated and then trucked to Bene-
vides; Tex., for processing. ’
Union Carbide’s proposal is the
second plan for solution mining of
uranium in New Mexico. Al Topp, of

EiA’s radiation division, said that
leach mining of uranium will attract
{Continued on p 36)
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THIS MONTH IN MINING

moie New Mexico uranium companies
in-coming years as better grades of ore
are mined out. The first uranium solu-
tion mine in thé state was developed in
the Giants vegion by ‘Grace Nuclear,
but that operation has been halted.

A decision on the Union Carbide

-application hinges largely oi- the results

of an appeal of the state’s newly estab-
lished ground-water regulatioss.. Under
the contested rules, a company is

required to ﬁle a “discharge plan™ on

its.operations; and the amount of pollu:

tants that-can be released to surface
waters is Yimited. Partles tb thé appeal
of these regulations, in addition to

Union Carbidg, "are United Nuclear

Corp., United ‘Nuclear-Homestake
Partners, FEuxon, Gulf, Bokum Re-
sources, Countinental, Phillips, and
Ranchers Exploration and Develop-
ment. )

Union Carbide may also face opposi-
tion from residents near the ‘leach

mining area, who-are-already fighting 4

copper leach mining test being con.
diicted by Oxymin: County 6fficials in
the area are weighing a blasting ordi-
nance that-would require-a company to

obtain a blaslmg permn before undey..

taking mlmng A bill in the state legis.
lature to give county commissions the
powar 1o approve or.disapprove feach

mining ‘activities failed on the grouads:

that it would encroach on EJA, [

(Continued on p 39)

New and expanding mines and plants

. Capaclly
Bompany Lagation Project  Planned Now Units
Alean Aluminium Grande Bale, sm 63 toy Al
: . Que., Can. - ,
Brinex.. Kitts-Mictielin, mi’ N
Lab., Can. )
Cities Service Miami, Ariz, mi/pl 50M _ 424M tpd Guore
Comaico Weipa, mi 11.25MM  10MM  mtoy bauxite
Australia - _
Comalco Bell Bay; sm 114.5M 95.6M  mitpy Al metal-
“Tasmania o ’
“Comince Trail, BG,, cx 3000 195M  tpy n
‘ Can. Y 200M 170M  tpy Pb
Cons. Rutile N. Stradbroke |, i vutite, zircon
‘ Australia -
Cyprus Mines Ghent, p taic
Belgium o
DeBeersCans. . Qrapa, pi 45MM 23MM  mitpy ore
Batswana . . B
De Beers Cons. Kolngnaas, mi 45M carats/ma
5. Afr. . diamonds
_Denisan Mines _ Efliot Lake, mi 10M tpd U ore
Ont., Can, - .
Dolomite Mining Cebul, mi 700M " tpy dolomite rock
Phil. .
Greenex Marmorilik, mi In
o Greenland )
Lucky Mc Uranfum  Big Fagle mi, oPmi u
. .Wyn‘rning - .
Maria Cristina Ayungon, Phil. mi _- silica quartz
Chemical Ind. . : R
Minerals Rawiins, Wyo. i am tpd U are
Exploration . .
‘Mississippl Carisbad, mifph potasti
Chemical NM . :
Northgate " Tynagh, mifco  650M 585M  tpy Pb-Znare -
.. Explgration lréland . . .
" Patash Corp. of Saskatoon, mi/pl patash
Saskatchewan Sask,, Can. ‘
" SABIC/Korl- ‘Al-dubail > - 0 pl BooM. . ., mipyFe .
Siaht Saudi Arahia o TR
Texasgulf Kidd Gresk, miféo  5MM 3.6MM  tpy Cuore
Ont., Can,
"Vale do Rio Vitoria, PP M tity Fe péllets
Brazil

Doce-

-
T .

Inivestment  Start Tlass  Notes
$1B B Final decislon due. .
B Envirenmental
studies under
) way.
1978 A 45Mtpd in 1977
“FBGMM 1979 A8
1977 A
SCT25MM 1980 A .
staMM - AB  Switching.to_
. dredging. .
"$3MM 1978  AB  Doutling capac:ty
1978 A :
1976 A8
1877 A
1880 B Feasibility studr' '
. under way:: "Yt"‘ S
1978 A Qpéningadjacent ~
: 078 Z0R8. - 7
978 A Mine tife 10years.
‘ e
1977 A OR 500MM
taze A&
$14MM ‘A Doubling i/
capacity._v-'
1977 A e
 $122MM 1978 B Increasing pro-

- - dugtion 30%.
B Midrex direct re-

T e 8T trioo o duetionprotess: .

1978 ]

New company—
Gia. talo-
Brasileira dé
Pelotizacac..

Abbrevitions: JV—joint venture; UG ~underground; OP —open pit; OR —ore reserves: oo—concmtaiur. c:~comp1e1 ml-rn:ne pl plan! pp— pellet pla'nt re—refmery sm—smeher T i
milions; M—thousands; B—bilians; tpy —1ons per year; mipy —mighic. tons per year; A—projects nowmderoansmnctm B—projects with development program but for which firther fnanging <
may be requred and for which construction has nat yet begun; C—prngects nthe rm!:d proposa stage.

36

©EMI=dune 19T




-t
-

w
RE GUIDES that are ins -
fajlible cannot be established
in a district u'ml the last of
itz ore tias, been found; but in
5 whére development hag been.
ed ofr gver @ period ¢f gears, and
g» parts or ‘the g“ouna have beén
-1'rl'h' cut up; as i:f the oldér.and
f- ctive Junithg camps; certain ore
MG[:; -pray be establnuned that have
a proved (o Lé nedrly invariable for
ﬁ‘gmz:.ul dissected, that leave dittle 10
51’}'1%1&1{1{)11 For that p*\rtu.ular
$a and that constitute tHe frdiest
% for. guiding etploration into ad-

pu-ml\' explored or wholly un-

-p b pmct!mble, ore ‘guides must
ori terthe foilowd ing reéqiireinents .
ey muslt be based upon sore
zyr» relation to the 5re, such as the
ymutwn oi orehodies with a ‘tertain
ohvey dike, fr'u'tme ‘zong, or lime-
e bed,  As 4 general “arkmb prin-
5. subject to. fety maodifications, ‘the
i ‘mulv.url the reasoriing back of -an
x;L;r.;:m: sprogram, tHe less likely is
E“ program o yield ore.
hey must Be so, clearly defined
ﬁi o Easy oy grasp thar the mige fofé-
%ﬁ or shift boss will héve no dificulty
Ecnm'}rd snding and epplying them.
%2 day for fhe highly ;'EE.'H(.:}II'H ally‘
$‘:::~.Lil rentel. learned duld miysterious
has passed: The _eu[aﬂ’istp
function today, be he con-
%&:ng er mine geolygist, 1570 simphiiy;
é mr“p,mm for the: operating staff,
&

profiient of find: ing ofe. Utiless the:
g;0r ore contréls are so simiply: de-
wi that the ‘mgre responsible stiff-
iers engaged in operations under-
founl dre able to Tegognize thém
"mu! grasp theif sigdificdnce, a
ist¥ that Ec.‘tors impor-
noure discover y will be overléoked,
Ore guides must be larget and
! s 1o Kl thin the ore; ofherwise it

tas more to find the Fuide than 1o

e
.-1
I’B

3 e org frself, The pegmatite with
e Telds :par, which senvés as fore-
M eF 1o the gréat Bro oz Hill lode
geestralind, is an excellest kude sircé
u.q"r‘nr‘e.; Ejajah ach o the

3hclls_” of .

ﬁrrouﬂd the

; riets hkem:h are excel-
‘j, mnsueh disiricts, because
“ave two or-three tires 4s
¥ ore, and the more impor-
clirs entirely within theri.
’ftiv"e sulphur asiociated
Gpper orebodies  at  the
", oif the giher. hand. are
; because the volume of ore
- voluthe. of sulphur Ay

.~ | Roland Blanchard

hundred tifdiés, the sulphur - \EII‘!a do not

neces:.amly :exist: where the ord e\.lat::

and the veéins, £véd when present, Ires

ruentiy are not Eound until e ore- jtself
has been disélosed.

4. The major guides should be clearly
distinguishéd. s Io g-range ;and short-
range guides, so- the operating manage-
ment may be in position to appraise the.
risk, and apportion. expenditures- zc-
cordingl}r At Bisbes, Tor ekample,
rhanzanése at’the surface in association
with Rssuressilicificatiéns 15 tégarded a3.
a guide ito copper ore in the limestone
beneath A large surface atea with
protninent rhatiganese showings cor-
responds - usnally to 4 large ore ‘area,
whereas a surface aréa wih small and
spotty manganese showmg~ COl‘reap{)l’lda
usually to small and ‘spotty ore. The
manganese showings' occur -as much &3
ISUD fit. above the ore; aad in many

ifistaniced play cut in depth before the
r‘)r is reached. Sincé the\ sérve, only
as "enerai gmdeb to the ofe.areas, thex
are térmed long—r:mge guides, On the
other hand,. thé lirger occurrences of
‘hématite: are rarelv more than 300 it
from importast orel and, néacly alwars
toush that ore -at sowme point.  Since
these hemuatite: hodies: leaﬂ d1recd'. to
‘ore within a few hundred T nev are
termgd short-range gusd&.

5. The guides shotild b& demonstiated
jucts of oré accurrénee that-will stand
without the erutch of theory fo'-suppoft
“them. Many oré accurrénces may be
better understood in the hcrht of géo-
lugic theory, Put whéit en exploration
prograty hecomes, based to an imporiant
degree upoa theoretical tOI‘I:idE‘:I"lt‘Qna.
it?is usitilly foredoomed .to failure: Gind'
proved fact- of ore «asspciation, such was;
the fact that the ore in a -given dis-
tnct actuall) does ‘cectr repea;edlv inia
tertain limestone horizen, or ia ancihet
district opecurs. <cofidistendy a. certain
distance beneath the old erasion surface
regardless “of ¢hadadtar & rock involved,
15 worith 'a dozen theories of where the
‘ore ought to occur,

“Theugh :numerous, ore gu.dea exist
in every mining district, thé dominant
rrmdes uquly riiay be reduced to: three
‘or four' major. ore- controls so si

tifiple
‘that even’ ‘the miners have no diffieulty
i recognizing them, In favored dis-
tricts a single major guide oiten domi-
nates, Thus, -at- Chmr-na:. and San
Pedré miost ¢f the irporzant otrebodies
touch somewhere along the “marble
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line”;; that 13, along thé ifm%inﬁh*
lihe between the garnet zone 2nd the
marbleizad and vnaltered limestongs' bying
bevotd  Prospecting - the marble “line i
there would. havedisclosed most of ‘the ‘
commercial ore produced by ibe Tices :

S Rt T Py 1 B e i,

e RLEETEN

to date. Af Pliares the: mor’ impor-
tant orebolies liE within 73 fn of }if
the outer ‘edge, or per 1pherv of the S E

1,000x2,000-it, fractured oval:- pros
pectmﬂ‘ this outér zone would iikewise
aceount for probably 83 per ceni“of ite !
5. production, At the 0. % rm‘.e
near Milford, Utak; the. orebcdle:.
the monzonité ate associated wiz
quartz veins that make- out ifem a”
central plilg or Tylinder of quartz; and
the ore decreases irregulafly ‘but fapidly
with distance from- that centzal plog.
Theserexamples illusirate the simplicity
to ‘which prospecting fay be reduced
in especially -favored, districts.

P

IN ‘some-districts. the problem is nor o
simple. In 6né of the larger garnet
copper producers of the Sputhwest, pros=
specting  the marble liné svoudd  ha
yielded only a small pereentage: of iHe

tc.tal garnet ore; soira of the .

shoot: were embedded deep within ihe .
garnet withaut touching, at zay potat
the matble Tine. The explanation is -
tHat at Christmas and Sar Padro min-
cralwatmn took place under compata-
meh ‘quiet, canditiens, and il sulphide
orebodies were deposited wirthour ' dis-
tiubari¢e in the reducing 2oz at tiie
outer edge of the oxidizinz zone—in
othér \u:,rd.-,. at the outer edge of ihe
garnets’epm[ote zone; along marble .
line. At the Iarﬂer garngt district re-

ferred to, turbulent condmo;. pravailed
throughdut 'the periad of ore dzposition.
Thouo'h some of the sulphide dre Hegan
depésiting along ‘the marbla line, dis< '
terbances ‘occarréd which crmshed and

a5

brake open the garnet areas; and ‘the
ore-still in solutlon penetrated and was

prégipitated fnore 6r less 2t random
within the garnet zone itze

From theé foregding the  facc iz
deni ‘that org contrals -established as
depeudable in onhe listrici may be
whilly ml:leadmg m -another disrigt,
even thauo‘h the same-oré niinéral adours
at both places. and the same type of
depo:;t is involved: Betause bends
‘déncave 16 :the footwall of 2 vein are the
cre localizers at one place. the -assuaip-
tign 15 not warfanted-that bends concave
4o the hanging wall may net be the ore
localizeds, at Some. nthc,r pisce, even
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within a single district. Diffcrences in
tne character of the faulting movements
may readily account for this seeming
discrepancy, as has been discussed and
illustrated with diagrams by Hulin®.

‘Emmons® has quoted from some unpub-

lished data of my own, showing the
results of checking up the prospector’s
conviction that vein intersections or
junctions are the most favorable places
to look for rich oreshoots.

Out of 137 cases that have come
under my observation in which both
legs of the vein carried commercial ore,
74.45 per cent proved richer at the in-
tersection or junction; 11.68 per cent
showed no appreciable change; and
13.87 per- cent proved poorer at the
junction. In this last class, fifteen de-
posits, or 1095 per cent of the total
cases under consideration, showéd non-
coramercial values at the junction, and
seven of the fifteen, or-5.11 per cent of
the total, were entirely barren, even
though profitable ore had been extracted
from each of the veins near-by.

Again, the fact -that a formation or
type of rock is favorable or unfavorable
to ore in a given district does not neces-
sarily suggest that it is similarly favor:
able or unfavorable in another district.
In various parts of western North
America limestone is the ore carrier;
shales and slates are so barren that
often they are not considered worth
prospecting. Yet in various parts of
Australia the despised shales and slates
carry large, rich oreshoots, Mount Isa
being the outstanding recently dis-
covered example. Nor can-it be argued
that the.shales and slates are here min-
eralized because limestone is absent;
for in several places in northwestern
Queensland the ore solutions have passed
by the. limestone to deposit almost ex-
clusively within the shales and slates.

Even within the favored limestone belt

of southwestern United States, at the
Lookout property, in the Black Range,
in New Mexico, the limestone traversed

by the ore solutions shows only low-

grade mineralization; whereas, an 18-
to 20-ft. bed of the usually inhospitable
quartzite, lying beyond, carries the com-
mercial orebodies. These examples illus-
trate the danger of projecting too far
or with too much assurance the ore
habits of a given district, deposit, or
occurrence.

SUALLY, each district presents

examples of individual ore habits
which must be in large part mastered
before exploration programs may be in-
telligently and economically laid out.
Such effeciive (though admxttedly -in-
complete) mastery may require from
several weeks in simple cases to several
years in districts whose geology is com-

ICarlton D. Hulin. Engineering and Min-
ing Journgl, Vol. 127, p. 228, 317. Also,
“Structural Contro! of Ore Deposition,”

Econ. Geol, Vol. 24, No. 1, January- Feb-
ruary, 19"9

3W. H. Emmons. 'Vol. 76, p. 308, Trans.
ATME + P 0%, Trans
174

-least reliable.

chiefly because of the resulting tenfienc:,y endix constitutes an \ .

plicated, as at Bisbee, Eiy. Tintic, or
Eroken Hiil; but during that period
progress will be made which will con-
tinually reduce the explorziion hazards.
For guidance of the operating staff, as
well as to guard against unsound de-
ductions on the part of the geologist
himself, the data on which conclusions
are based should distinguish clearly be-
tween (1) agencies within the district
that have a proved and direct bearing
upon the finding of ore;

within the district not vet fuliy proved
but which seem- likely to have such
bearing; (3) agencies which have
proved effective as ore guides in other

districts under conditions closely re-

sembling those .in ground being ex-
plored. Manifestly, the third group is
Its inclusion is justified

to sharpen observation and  maintain
alertness in all concerned.

N ferreting out the less obvious

guides, the temptation to surrender
simply because a problem is difficult
and seemingly insoluble must continually
be combated. Shortly after the World
War a certain valuation eagineer de-
clared to me that after many years of
familiarity with the Bisbee limestone
deposits he had concluded that the only
way limestone ground could be ap-
praised in the district was cn the basis
of proximity to Sacramento Hill; any
other method was hopeless. On that
assumption; ground would be regarded
as decreasing uniformly in value out-
ward into the limestone from the main
ore locus, Sacramento Hill. This sort
of nonsense implies physical and mental
laziness on the part of the person mak-
ing the statement. To work out de-
tailed ore controls in ground like that
at Bisbee so as to permit proper evalua-
tion of the various limestone areas is.no
simple task; but the fact that it has been
done proves that it may be cdone again.

HEN compiling for discussion in

a report the ore guidss of a dis-
trict, one should first create 2 perspec-
tive, or mental framework, upon which
to hang the various details. A private
report on an Arizona property which
I have seen, drew an analogy between
the deposit and an ocean liner. Com-
mercial ore, dependent upon secondary
enrichment, was represented as the deck
and that part of the hull zbove water
line; unenriched primary ore, too low
in grade to be profitably extracted, was
represented as the hull below water line.
Although more than a dozen detailed
guides were subsequently discussed, the
reader was not confused, because each
guide was referred to its respective posi-
tion above or below water line, and
likened to some well-known ifeature of
the ship, such as the smokestack or en-
gine room. Shift' bosses are usually
able to visualize the commercial aspects
of a deposit when thus portrayad.

Enaineering and Mining Jozomal—Vél.I.?l, No4

(2) agencies’

restricted to sections which exhibit pro-

~

Discussion of any specific guide should
be_brief.” It should contain a clear, full . =
statement _of the relation of that guide - k
to the problem of finding ore, together -
with pertinent applications. Beyond
that everything should be ruled out,
however tempting the occasion for the .
author to air his ideas or knowledge, : -
Ordinarily, for such discussion two
hundred to five hundred words suffice;
rarely are more than a thousand words
justified, including references to illus--
trative cases. If facts alone are pre-
sented, as distinguished from ideas and &
theories, and brevity of style is culti- 3%
vated, prolongation of the discussion of - .’«g’
a single feature beyond six to elght ey

hundred words is usually dlﬂicult
Should the auth that :
<) ic_theory i s ag-

te its inte That the more =
reports one writes on the subject of ore [z
finding, the less need does there seem |
to be for discussion of theory, is a strik-
ing fact. k

The number of guides to be discussed. .
varies. with the scope of the report.
Fewer usually will be available or re:..
quired for an isolated, moderately small.
deposit than where a major mining dis- -',:'
trict is involved. In a certain silver- %
lead district in the andesite belt of New -~
Mexico which I have examined, ore- ..

‘shoots occur wholly within a 2-mile

length of the X.fault zone, which is
variably from 40 to 110 ft. aide.
Within that zone commercial ore- is

nounced concave bends with respect to

the footwall. Within those bends ore

is still further -confined to the more

highly brécciated areas. And within the

brecciated areas the richest ore occurs

where the andesite is strongly altered

to chlorite with minor epidote. Leached

products above the ore are locally help--

ful in directing exploration, but this

guide is of limited application because

(1) oxidation does not penetrate below

the 150 level; (2) most of the surface

ore has been mined; (3) the ore is

lenticular down the dip, so that an ore-

shoot does not necessarily extend up-

ward to the oxidized zone. The major

guides in this case are:

1, X fault zone. .

2. Concave bends with respect to the foot-
wall. .2

3. Brecciated parts of the bends. .

4. Highly chloritized areas wlthin the brec- -
cia portions. . .

5. Leached capping (local).

Several minor guides dealmg with -
the beginning and ending of veins
within the chloritized areas need to be:
discussed, but so far as the general
operating staff is concerned the guides
enumerated suffice. For the Ely district
I used the classification delineated in . .
the following: i

General Guides—three headmgs. )
Guides Within the Porphyry -3
A. Structural Features—flve headings.
B. E\presslon of Mineralization Above

the Ore—two headings.

'
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5 W ;Lh!mm‘, Limestonz :
tural Features—thirtéen head. -

on of Mineralization Above-
Ce ihk headings.
assion of Mineralization Below
Gre—rour headings!

Dis—seven headings,

U
e 13
. done in the’ }:Iy district since
i 1978 p.t‘:;umably has added

ey bl\ ummated others Lhat Werk.
fiv ch “inclided. A list-6f ore guides
eataloged does. not remain sta-"
parv 50 hmg as “cplorzmon continues;,
ination remains activey and apphca-
" amd search for new guldes are
m._gl[) enforced.
’thh the current guidés established
agiven mine or district, their appli~
Lgion in mine e‘:ploratron -has been -
] in $OME instances most e&'ectwely
ied ont -through discussion in con-
cence, at ‘which the presence of all-
embers -of the operating staff down to
o mdudmg riine foremen.is desirable.
member is generally handed a
& in advance, theé list of prospects
be discussed, ahd gach'is required to
- binit.in writing his conception of the
vorable add unfivorable factors af-
beting. 2 glven prospect. Mere vefbal
Rscussion 15 Unsatisfactory; it perm!ts
hirking,. and often degenerates into irre-
pﬁf‘.slblt_ ardd fippant quibbling. The
writen -statement, on the other hand,
Gxes. responsibility, compels scind rea-
sening, and conduces to) sustamed cleiar
thioking. By the time. the favorible
od unfavorable aspects of a -prospect;
3. reasoned out by the full operating_
aif, have been collected and threshed
gver in mmerence each member has;ob-
mined & vivid conéeption of why that
prospect 15! to-be run, what its chance is
for succéss or Iarlure and what guides
ot ore oc‘lhzmg factors he must watch
or is exploration progresses, Bécdusé
ach member has contributed something,
s feels a personal interest in the

AT ey the mo:,r;'c.:.réfu“y thought-
s out program -will be vitiated by ae-
ent or by factors thét could not have
@‘&m reasonably -foreseen. In the lime-
(stone deposits of one*Southwestérn ¢op-
g thtnct for example, certain, surface
wvidences 6f mineralization occur that
i Lre :.imrkv associated: with ore deposi-
en.  Either by direct or déeviois'routes
gitiose evidences have -been found to lead
tfnwm-.“lru to pré. Bt in sevefal in-
#Rances the orcbodies have been. cuf out
.7Y an intrusien. of post-orel rhyolite,
& which, with: true- Irony, failed to destroy
e evidence of ‘ezgoro s miineralization
ave.the ore, To | hava e:.\plorahon en-
ceunter such .a condition when every-
ing pointed to-a.large, proftable ore:
: Sody cannof but bé.- dlsheartenmg But
Aice none of us.is omniscient, we Thust
omé reconciled to the fact that: in

~Q”3mg out any prospecting campaign,
”ﬂppomtments will ensue—sometimes
o - (rough oversight on our part, soine-

times thfough the vagaries of iiif-

eralization «which were: not subject to
-analysis prior to actual exploration, A

certain allowance must be made for this,
parrtl‘cul,arl} ‘when prospecting limestoneg,
areas; where ore is characteristically
erratic in behavior and scéurrence.
that does. not mean we should go to the
othér extréine, and fai

selves of the most carefully reasoned
procrram that i3 p0-51b ¢ -at the tithe:

As Augustusg ‘Lecke once stated to"

e, wé miist remetaber that wé are. not.
competing Wwith a techmque that is l (}
per cert perfect Thé scidace of find-
ing ore iy probably not more than 35
peér.cent efficient today. If we impréve:
that eﬁig.lgncy 10, Ur &ven 3 per cent, we.
are: atcomplishing .2 great-deal
Mistakes -that -result from urisourdd
dedictions or lack of thoroughness in
reasoning and applying exiSting data
may be largely eliminated where proper
distinction.is_insisted upon beétwéén as-

AAugustus -Locke, oral commumcation
Ackncwledgment for seveTal ide=s here dis-
cussed . is due -Mr. -Locks, upon whose .staff
many: years ago I acquired my ‘fifat traln-
trig"in. the .use: of -ore guu:les ;

scertained

But,

2

fact, reasonalile probability,
and. the more remote’ conjecture; and

wvhete Con;clentloug, attempt is made to

recognize and acknowledge -the degree-
of dcmbt involved in using guides not
yet ssecurely established i a district:
Mistakes causéd by the undisclosel
vagaries of mineralizafion .are mot as-
lmmed.aatal) sabjedt toeantrol. Usually
they can be reduced ouly in the propoe-
tion that soch vagaries révezal them-
selves as distinet district hab1t5 The
impoitant point to be kept in mind -in
any district or -with any deposit is that,

_although a part.of the ground may have.

been rather thoroughly cut up, and its-
ofe habits- ascertained, ‘dther large, well-
rnineraiized areas have usually been
biit Tittle explored,.and cancerning their.
ore habits little. has been definitely
estabhahed To' assume that most of
the guides found deperxdable in proved
areas will apply in .adjacent untested
ground is reasonable; but so long as ore
continues erratic in occurrence, _con-
stant watch and diligent sédrch must
be mamtamed both for local exceptions

and for new, broad ore controls..

Cmﬁ:ﬁ:mg Tools Are (Chceaplly

R@@@ndntwm@d

YO AVOQID the unsatisfactory- man-
‘ual grinding of pipe-thréading dies
and 'other cutting tools, and. to render
them secviceable at a lower cost, Charlés
R Clarkson, master mechanic at the

Hayden ‘Smelfer of the Americian Smélt-

ing & Refining Company, Hayden,

Ariz, ,‘bmlt thé attachable grmdmu unit .

shown in ‘the accompanying’ sketch.
The machined tdble is mountéd on a

o GEIRING Vb eTS .

|

home-made compound rest and ¢ross-
‘slide ‘that rest 'on & .frame made of
channel and angle 1ron, whichis fitted
with an adjustmg gear and secured to
the. grinder pedestaf Jigs are pro-
v:ded for the various grinding opera-
tions, to expedite the correct setting up
of toéls to be ground and té maké pos-
sible the. mrnuftaneous grinding of sev-
eral dies or- tonl% at @ T material saving:

-

Lacec? cw‘ﬁag
anygle,

1:'?——'

=

Jig--

A

o o N
. Ta o

[>Grinding viif

; Ted L Gifimehed Yo
/ N N " | grinaer petiestal
Grmairr'g r’ub!e .
mounted on /zammade
mmpouna’ rest andl i
| Crosi-alide:
. Homs-n?ade,fabf; b
. , @djusting.gear-"_, :
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ABSTRACT

1

Resource Engineering énd Deveiopment, Inc. is designing and
building a portable 150 to 225 TPD, flotation-cyanide 1leach
plant with unitized, skid-mounted coﬁpoéents. This plant
design, with its portability, low capital investment, and high
recovery of silver and gold from many partially oxidized ores,
is welll suited to treat many small, high-grade deposits, old
waste dumps, and old mill tailing piles. A description is given
of flotation and/or cyanide 1leach tests run on abﬁut 17 par-
tially oxidized, newly mined ores; waste dumé materials; placer

slimes; and old mill tailings.



UNITIZED, PORTABLE, FLOTATION-LEACH
PLANTS FOR TREATING PARTIALLY
OXIDIZED GOLD AND SILVER ORES

INTRODUCTION

The large increase in precious .metal prices over the past
few years has generated considerable interest. in the milling
or remilling of many old, partially oxidized, mine dumps, tail-
ing piles, stope fill, and ores mined from oxidized surface

zones.

The present technology is often inadegquate to treat these
oxidized gold and silver ores. In several instances, heap or
pad leaching plants have failed because of low metal recoveries
and the necessity of winter shut-downs. Many of these ores
respond poorly -to treatment with either flotation or cyaniae

leaching alone.

The size and grade of many of these types of deposits will
usually not warrant the expenditure of capital needed for a con-

ventional, stationary, flotation or cyanide leach plant.

A simplified, wunitized, portable, flotation-cyanide leach
plant may be the solution to these problems. Considerable test-

ing has indicated that a combination flotation-leach plant will



successfully recover most of the silve; and gold ‘values from
many of these oxidized ores.

Resource 'Engineering and LDevelopment, Inc. (R.E.D.) is
currently designing and building ; 150 to 225 ton-per-day
(tonnége dependent on ore feed size) unitized, portable,
flotation-leach plant for Silver Bullion Milling and Refining,
Joint Venture. The first operating site will "be near Hailey,
Idaho, where the plant will be used to treat old flotation mill:
tailings, old minus 1/4 inch jig mill tailings and several old
mine dumps (95% minus 2 inch). Eventually, the plant may be
used to treat other company-owned or custom ores in the Central

Idaho area or it will be moved to another site(s).

UNITIZED, PORTABLE, FLOTATION-LEACH PLANT DESIGN

. The general concept of the unitized, portable, flotation-
leach (UPFL) plant is one in which both flotation and carbon-in-
pulp cyanide leach circuits are incorporated 1into a greatly
simplified mill design of commercial size, built in unitized,

skid-mounted modules. .

The flowsheet of a 150 to 225 ton-per-day plant of this
type 1is as shown iq Figure 1. In this plant design, prescreen-
ed, minus 2-inch ore will be periodically locaded into a 35 ton

ore storage bin, from which it is fed at a constant rate to a



FIGURE 1

FLOWSHEET OF 150-225 TON-PER-DAY
PORTABLE MILL FOR PROCESSING
OLD SILVER AND GOLD MINE DUMPS
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7' x 48" Hardinge conical ball mill with an internal grate. A‘
grizzly (6" opening) on the storage bin and a single, close-set
jaw crushér might be used in the ci.rcuit‘ if .coarse, hard ores
were to be fed to the plant. The ball mill discharge will. be
classified by a cyclone which broduces an overflow product with
a pulp density of about 40% to 45% solids. and a ‘product size of
about 95% minus 65 mesh. Flotation reagents and recirculated
solutions from the tailing pond will be added to the grinding
circuit.. The cyclone overflow will go to a DSM stationary
screen with a 28 mesh deck to remove oversized ore particles and
small wood pieces from the plant feed slurry, and then to a bank
of rougher flotation cells with a 10 minute retention time. The
flotation concentrates will be <cleaned once or twice, as
required, and then, since they are present as a small 'tonnage/
day, sent to a decant pond and a concrete pad for air drying
prior to shipment to a custom smelter. The flotation tails, af a
pulp density of about 38% to 43% solids, together with added
lime and sodium cyanide, will flow continuously through a series
of eight, 9' diameter x 10' deep, agitated tanks where a
simultaneous, 8 to 12 hour, carbon-in-pulp 1leach with 6 x 12
mesh carbon will be effected. 1In this leach circuit, the
activated charcoal will be periodically advanced from one tank
to another and retained in each leaching unit by a R.E.D.
proprietory reactor design. The activated charcoal, which is
expected to be loaded to about 500 oz/ton of precious metals,
will be periodically removed from the first tank in the leaching

system and shipped to a carbon stripping and regeneration and



refining facility where pure gold aﬁd silver 1ingots will be
produced. The leached tailings may be refloated _fo£- their re-
maining sulfide minerals and fine activated carbon in a second
flotation step. The final tailings wiil bé sent to an environ;
mentally acceptable tailings pond with a proprietory .R.E.D.
design. that ailows for additional 1leaching And rinsing of fhe
tailings in the tailings pond. The decanéed ;solutions from the
tailings pond, which contain small amounts of NaCN and CaO, will
be collected in a holding tank and then returned to the grinding

circuit.

This portable plant is to be "unitized", or built as sev-
eral skid-mounted modules in a shop some distance from the mill
. site. The individual units that will comprise the plant describ-
ed in Figure 1 would be: (1) the ore storage bin and feeder; (2)
the ball mill, surge box, motor, cyclone pump, and cyclone; (3)
the DSM screen, rougher and cleaner flotation cell banks, and
two slurry pumps; (4) 8 agitator tanks as single tanks or units
of two; (5) a small bank of rougher flotation cells and pump(s)

(optional); (6) a power panel and; (7) a power plant (optional).

On-site preparations and facilities will include: (1) the
water supply system; (2) the power system if a generator is not
used; (3) trailer housiﬁg for the mill manager; (4) the plant
sewer system; (5) portable office, lab and shop buildings; (6)
concrete pad and shed for mill; (7) a ramp to the ore bin; (8)
the tailings pond; (9) a concrete concentrate decant pond and

drying . pad; (10) parking and ore storage areas and; .



(11) solution and pulp piping systems.

The carbon stripping and regeneration' and gold and silver
refining facilities will probabiy be located at a site other
than that of the Hailey mill. It will consist principally of
(1) carbon stripping columns; (2) a heated strip solution reser-
voir and a pump; (3) electrowinning. cell(s) and rectifier(s);
(4) a rotary, external fired, carbon regener;tion kiln; (5)
silver and gold dissolution and precipitation equipment; (6) a
"crucible furnace and molds for melting and forming the gold and

silver ingots; and (7) a heavy safe.

This mill design has several features that are different
than most plants that have been built to process partially
oxidized gold and silver ©ores. First, it utilizes Dboth
flotation and cyanide leaching cirquits. This should (1) iﬂsure
a maximum recovery of both the sulfide and oxide gold and silver
minerals, (2) give it a flexibility to efficiently treat a wide
variety of ore types, and (3) reduce the pulp retention time
requirements in both the flotation and leaching circuits.
Secondly, the flowsheet 1is greatly simplified, i.e.; the com-
plete or partial elimination of the c¢rushing circuit should
greatly reduce the plant and operating costs; the replacement of
the flotation concentrate thickening and filtering section with
a concrete decant pond and drying pad should also reduce the
mill capital and operatind costs and; the short term, simultan-

eous, carbon-in-pulp 1leach circuit should minimize the number



and size of 1ea§h reactors that are required and reduce reagent
consumptions. Thirdly, the portable nature of the plant makes

it possible to build most of the plant in a shop at a greatly
reduced cost, as compared with’ field construction; it divides
its capital requirements between several sites; and keeps its

resalevvalue high. ' o

CAPITAL AND OPERATING COSTS

Capital and operating costs have been estimated for the 150
to 225 tons-per-day Hailey, Idaho plant, and its associated car-
bon regeneration and stripping and gold and silver refining

facilities,

The capital costs, which include used mining equipment
costs (1 track loader and 1 truck); mill equipment (new and
used), modular assembly, and transportation to the millsite
costs; millsite preparation costs; reagents and supplies for the
mill; the carbon stripping and regeneration and refining circuit
costs; engineering costs; overhead costs; enviroﬁmental costs;
startup costs; and miscellaneous and contingency costs; are

estimated at $1,000,000 .

Mining, milling and refining costs are estimated at $12.04/
ton on old flotation mill tailings, $l9;25/ton on olé jig tail-

ings, and $22.38/ton on old mine dump ores. These costs do not



include truck hauling costs over 4 miles, royalties;paid on the
ores, or plant amortization costs. These ores consume about 2.7

pounds of sodium cyanide per ton.

METALLURGICAL TESTWORK

Metallurgical testwork has been conducted on a wide variety
of oxidized gold and/or silver ore types by Resource Engineering

and Development, Inc. Table 1 describes many of these tests.

Most of the flotation tests in this table were performed on
ore pulps with a 40% pulp density (1,800 grams of dry ore plus
2,700 ml water), initial pH's in the 8.5 to 9 range, and with
about 0.1 gram NaCN per 1liter of pulp. Usually, the sulfides
were floated with small amounts of Aerofloat 31, Aero 317
(sodiuﬁ isobutyl xanthate) and sometimes, when a bulk lead-zinc
or zinc concentrate was desired, CuSO4-5H20 was used. Aerofroth
72 was usually used as a frother in an initial flotation step
and pine oil was used in a secondary flotation step. Promoters

Aero 404 and 407 were sometimes used to aid in gold recovery.

In the leaching tests, the flotation tailings that remained
after sampling were placed in a four liter beaker; NacCN, ca0 and
120 grams of 6 x 12 mesh activated carbon reagents were added:

and the pulp was stirred with a mechanical agitator with air



bubbling through. the pulp, for 8 to 24 hours. Four- hundred ml
pulp samples were taken periodically and analyzed to determine
gold and silver dissolutions, cyanide cbnsumptions, and the

degree of adsorption of precious metals by the activated carbon.

ft is usually better to have the- - flotation step first
rather than a leaching step because kl) sulfide removal reduces
the cyanide consumption in the subseqguent leach step, (2) the
flotation concentrate is higher grade when floated before the
leaching step, and (3) the amount of activated carbon required
in the system is less, as much of the silver and gold is removed
in the prior flotation step. In some cases, however, the cya-
nide leach seems to clean the mineral éurfaces and thereby

improves a subsequent flotation step.

The tests shown in Table 1 indicate that many oxidized
silver and goid ores respond quite well to the combined
flotation and cyanide leaching processes, but poorly to either

process used alone.



Cre
No.

13

14

15

16

17

18

Ore Source

Utah

Colorado

Southern
California

Southwest
Montana

Central

Utah

Southern
Nevada

Nevada

Canada

Utah

Idaho .

Socuthern
California

RESOURCE ENINGEERING AND DEVELOPMENT,

Ore
Grade,
oz/ton

or §

5 Ag
0.01 Au
S Pb
S Ag
0.03 Au
.4.5 Ag
30.3 Ag
0.02 Au
0.54 Cu
0.13 Au
0.6 Ag
0.03~
0.07 Au
0.6 Ag
1.81 Ag
0.062 Au
0.10 Au
1.5 Ag
1.5 Ag
0.018 Au
0.5 Pb
0.1 Cu
0.6 Zn
0.03 Au
0.2 Ag

TABLE 1 (continued)

TESTWORK PERFORMED ON OXIDIZED
GOLD AND/OR SILVER ORES BY

Ore
Descrip-

Underground,

95% -100m

(mostly sul-
fides)

Mine Dumps,
98% -100m

Mine Dumps,
95% -100m

Mined Surface
Ore,
80% -100m

Mined Surface,
Jasperiod,
99% -100m

CN Leach
Tailings,
90% -100m
(no regrind)

CN Leach
Tailings,
98% -100m

Tailings,
reground to
98% -100m

Flotation
Tailings,
90% -100m
(no regrind)

Dump Material,
95% -100m

Placer Slimes,
~100m

Process
tion, Grind Tested

e mem

3

Overall

Ag or Au NaCN

Recovered, Consumed,
$ 3/ten

80-83 Ag

11.5 Ag
50 Au
77 Au
50-62 Ag
S0-62 Ag

none
poor 8

60  Ag
87 Ag  10-15

88 . Au 6
40 Ag

60-80 Au 4

20 Ag

Poor .

58 Ag

92 Au 6.5
Poor

74.7 Au 3
43.5 Au

w/o regrind
Poor

35 Ag 6
70 Ag

50 Au

81 Pb

32 Cu

11 Zn

95 Au 2
9s Ag

10

INC.
Overall
Leach Flotation
Time, Cleaner Conc. Grade,
Hours oz/ton
or %
40-80 Ag
21 Ag
24
21 Ag
24
565 Ag
24
24
12
8
16
24
1 Au
69 Ag
42 Pb
3.2 Cu
6.3 2n
8



Cre
§o.

Qre Source

Hailey.
Idaho

Hailey.
Idaho

Hailey
Idabo

Central
Idaho
North

Idaho

tah

Utah

RESOURCE ENINGEERING AND DEVELOPMENT, INC.

Ore
Grade,
az/ton

or %

1.8 Ag
L Fb
3.5 Ag
2 Pb
3.8 Ag
2 Ph
4.0 Ag
2 Ph
0.17 Au
0.8 hg
3-5 Vié
0,015 Au
2 Pb
3 In
-5 Ag
2-10 Pb
0.004 Au
5 2n

TABLE 1

TESTWORK PERFORMED ON OXIDIZED

GOLD AND/OR SILVER ORES BY

Ore
Descrip-
tien, Grind

Flotation
Tailings,
60% -E5Sm***

Jig Tailings,

95% =100m

Mine Dumps,
95y -100m

Mine Dumps,
'95% -100m

Stamp Mill
Tailings,
95% -100m

Flétation
Tailings,
80% -100m

Mine Dumps,
95%. -100m

Process?

Tested

Fl

F2

Fl

F2

Fl
F2

e.m

Fl

F2

Fl

F2

b

Overall+*
Ag or An
Recovered;

k] .

67=75 Ag

42-50
78-86
80=87

Ag
Ag
Ag

42-50
82-9¢
85-93

Ag
Ag
Ag

62.6
a2
85-86

Ag
Ag
Ag

Poor
65
48

Au
Ag

26=-40 Ag,
Au and Pb
65-78
§7-80

14-27 BRu
-and Rgq
70-75 Ag
and Aun

&
(1]
AWE

© = Flotation, L = Carbon-In-Pulp Cyanide Leach’

overall recovery includes récover

o = Tylér mesh

11

Nacw
Cansumed,
‘#/ton

2.2

2.5

¥ in preceding process{es),

Leach
Time,
Aours

Overal
Flotati
Cleaner Conc
oz/to

or %

15-30
50-80

15-3¢
-50-80

15-30
50-80

1530
50=-80

30-50
50

30-50
50

25

50
0.1%

25
0.15

low Pb
34-78

1
on
. Grade,
n

Pb
Ag

Pb
Ag

Pb
Ag

rb

Ph

Ag

Pb
Ag

b

Ag
Au

Pk

Ag
Au

Ag
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ABSTRACT N

Resource Engineering &nd Deveiopment, Inc. is designing and
building a portable 150 to 225 TPD, flotation-cyanide 1leach
plant with unitized, skid-mounted coﬁponents. This plant
design, with its portability, low capital investment, and high
recovery of silver and gold from many partially oxidized ores,
is well' suited to treat many small, high-grade deposits, old
waste dumps, and old mill tailing piles. A description is given
of flotation and/or cyanide leach tests run on about 17 par-
tially oxidized, newly mined ores; waste dump materials; placer

slimes; and old mill tailings.



UNITIZED, PORTABLE, FLOTATION-LEACH
PLANTS FOR TREATING PARTIALLY
OXIDIZED GOLD AND SILVER ORES

<7

INTRODUCTION

The large increase in precious metal prices over the past
few years has generated considerable interest. in the milling
or remilling of many old, partially oxidized, mine dumps, tail-
ing piles, stope fill, and ores mined from oxidized surface

zones.

The present technology 1is often inadequate to treat these
oxidized gold and silver ores. In several instances, heap or
pad leaching plants have failed because of low metal recoveries
and the necessity of winter shut-downs. Many of these ores
respond poorly -to treatment with either flotation or cyanide

leaching alone.

The size and grade of many of these types of deposits will
usually not warrant the expenditure of capital needed for a con-

ventional, stationary, flotation or cyanide leach plant.

A simplified, unitized, portable, flotation-cyanide leach
plant may be the solution to these problems. Considerable test-

ing has indicated that a combination flotation-leach plant will



successfully recover most of the silver and gold values from

many of these oxidized ores.

Resource -Engineering and Development, Inc. (R.E.D.) is
currently designing and building 5 150 to 225 ton-per-day
(tonnage dependent on ore feed size) unitized, portable,
' flotation-leach plant for Silver Bullion Milling and Refining,.
Joint Venture. The first operating site will "be near Hailey,
Idaho, where the plant will be used to treat old flotation mill
tailings, old minus 1/4 inch jig mill tailings and several old
mine dumps (95% minus 2 inch). Eventually, the plant may be
used to treat other company-owned or custom ores in the Central

Idaho area or it will be moved to another site(s).

UNITIZED, PORTABLE, FLOTATION-LEACH PLANT DESIGN

The general concept of the unitized, portable, flotation-
leach (UPFL) plant is one in which both flotation and carbon-in-
pulp cyanide 1leach circuits are incorporated into a greatly
simplified mill design of commercial size, built in unitized,

skid-mounted modules. .

The flowsheet of a 150 to 225 ton-per-day plant of this
type is as shown in Figure 1. In this plant design, prescreen-
ed, minus 2-inch ore will be periodically loaded into a 35 ton

ore storage bin, from which it is fed at a constant rate to a



FIGURE 1

FLOWSHEET OF 150-225 TON-PER-DAY
PORTABLE MILL FOR PROCESSING
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7' x 48" Hardinge conical ball mill with an internal grate. A.
grizzly (6" opening) on the storage bin and a single, close-set
jaw crusher might be used in the circuit if .coarse, hard ores
were to be fed to the plant. The ball mill discharge will be
classified by a cyclone which broduces an overflow product with
a pulp density of about 40% to 45% solids. and a product size of
about 95% minus 65 mesh. Flotation reagents and recirculated
solutions from the tailing pond will be added to the grinding
circuit.- The c¢yclone overflow will go to a DSM stationary
" screen with a 28 mesh deck to remove oversized ore particles and
small wood pieces from the plant feed slurry, and then to a bank
of rougher flotation cells with a 10 minute retention time. The
flotation concentrates will be <cleaned once or twice, as
required, and then, since they are present as a small tonnage/
day, sent to a decant pond and a concrete pad for air drying
prior to shipment to a custom smelter. The flotation tails, at a
pulp density of about 38% to 43% solids, together with added
lime and sodium cyanide, will flow continuously through a series
of eight, 9' diameter x 10' deep, agitated tanks where a
simultaneocus, 8 to 12 hour, carbon-in-pulp leach with 6 x 12
mesh carbon will be effected. In this 1leach «circuit, the
activated charcoal will be periodically advanced from one tank
to another and retained in each leaching unit by a R.E.D.
proprietory reactor design. The activated charcoal, which is
expected to be loaded to about 500 oz/ton of precious metals,
will be periodically removed from the first tank in the leaching

system and shipped to a carbon stripping and regeneration and



refining facility where pure gold and silver ingots will be
produced. The leached tailings may be refloated for their re-
maining sulfide minerals and fine activated carbon in a second
flotation step. The final tailings will be sent to an environ-
mentally acceptable tailings pond with a proprietory 'R.E.D.
design that allows for additional leaching énd rinsing of ﬁhe
tailings in the tailings pond. The decanéed solutions from the
tailings pond, which contain small amounts of NaCN and CaO, will
be collected in a holding tank and then returned to the grinding

circuit.

This portable plant is to be "unitized"”, or built as sev-
eral skid-mounted modules in a shop some distance from the mill
site. The individual units that will comprise the plant describ-
ed in Figure 1 would be: (1) the ore storage bin and feeder; (2)
the ball mill, surge box, motor, cyclone pump, and cyclone; (3)
the DSM screen, rougher and cleaner flotation cell banks, and .
two slurry pumps; (4) 8 agitator tanks as single tanks or units
of two; (5) a small bank of rougher flotation cells and pump(s)

(optional); (6) a power panel and; (7) a power plant {(optional).

On-site preparations and facilities will include: (1) the
water supply system{ (2) the power system if a generator is not
used; (3) trailer housing for the mill manager; (4) the plant

sewer system; (5) portable office, lab and shop buildings; (6)
concrete pad and shed for mill; (7) a ramp to the ore bin; (8)
the tailings pond; (9) a concrete concentrate decant pond and

drying pad; (10) parking and ore storage areas and{



(11) solution and pulp piping systems.

The carbon stripping and regeneration and gold and silver
refining facilities will probably be located at a site other
than that of the Hailey mill. It will consist principally of
(1) carbon stripping columns; (2) a. heated strip solution reser-
voir and a pump; (3) electrowinning cell(s) and rectifier(s);
(4) a rotary, external fired, carbon regener;tion kiln; (5)
silver and gold dissolution and precipitation equipment; (6) a
"crucible furnace and molds for melting and forming the gold and

silver ingots; and (7) a heavy safe.

This mill design has several features that are different
than most plants that have been built to process partially
oxidized gold and silver ©ores. First, it utilizes both
flotation and cyanide leaching circuits. This should (1) insure
a maximum recovery of both the sulfide and oxide gold and silver
minerals, (2) give it a flexibility to efficiently treat a wide
variety af ore types, and (3) réduce the pulp retention time
requirements in both the flotation and leaching «circuits.
Secondly, the flowsheet 1is greatl& simplified, i.e.; the com-
plete or partial elimination of the crushing circuit should
greatly reduce the plant and operatiqg costs; the replacement of
the flotation concentrate thickening ahd filtering section with
a concrete decant pond and drying pad should also reduce the
mill capital and operating costs and; the short term, simultan-

eous, carbon-in-pulp leach circuit should minimize the number



and size of leaéh reactors that are required and reduce reagent
consumptions. Thirdly, the portable nature of the plant makes

it possible to build most of the plant in a shop at a greatly
reduced cost, as compared with field construction; it divides
its capital requirements between several sites; and keeps its

resale value high.

CAPITAL AND OPERATING COSTS

Capital'and operating costs have been estimated for the 150
to 225 tons-per-day Hailey, Idaho plant, and its associated car-

bon regeneration and stripping and gold and silver refining

facilities.

The capital costs, which include used mining equipment
costs (1 track loader and 1 truck); mill equipment (new and
used), modular assembly, and transportation to the millsite
costs; millsite preparation costs; reagents and supplies for the
mill; the carbon stripping and regeneration and refining circuit
costs; engineering costs; overhead costs; environmental costs;
startup costs; and miscellaneous and contingency costs; are

estimated at $1,000,000 .

Mining, milling and refining costs are estimated at $12.04/
ton on old flotation mill tailings, $19;25/ton on 0ld jig tail-

ings, and $22.38/ton on old mine dump ores. These costs do not



include truck hauling costs over 4 miles, royalties paid on the
ores, or plant amortization costs, These ores consume about 2.7

pounds of sodium cyanide per ton.

METALLURGICAL TESTWORK

Metallurgical testwork has been conducted on a wide variety
of oxidized gold and/or silver ore types by Resource Engineering

and.Development, Inc. Table 1 describes many of these tests.

Most of the flotation tests in this table were performed on
ore pulps with a 40% pulp density (1,800 grams of dry ore plus
2,700 ml water), initial pH's in the 8.5 to 9 range, and with
about 0.1 gram NaCN per liter of pulp. Usually, the sulfides
were floated with small amounts of BAerofloat 31, Aero 317
(sodium isobutyl =xanthate) and sometimes, when a bulk lead-zinc
or zinc concentrate was desired, CuSO4'5H20 was used. Aerofroth
72 was usually,.uéed as a frother in an initial flotation step
and pine oil was used in a secondary flotation step. Promoters

Aero 404 and 407 were sometimes used to aid in gold recovery.

In the leaching tests, the flotation tailings that remained
after sampling were placed in a four liter beaker; NaCN, CaO and
120 grams of 6 x 12 mesh activated carbon reagents were added;

and the pulp was stirred with a mechanical agitator with air



bubbling through‘ the pulp, for 8 to 24 hours. Four hundred ml
pulp samples were taken periodically and analyzed to determine
gold and silver dissolutions, cyanide consumptions, and ' the

degree of adsorption of precious metals by the activated carbon.

It is wusually better to have the- flotation step first
rather than a leaching step because (1) sulfide removal reduces
the cyanide consumption in the subsequent leach step, (2) the
flotation concentrate is higher grade when floated before the
leaching step, and (3) the amount of activated carbon required
in the system is less, as much of the silver and gold is removed .
in the prior flotation step. In some cases, however, the cya-
nide 1leach seems to clean the mineral éurfaces and thereby

improves a subsequent flotation step.

The tests shown in Table 1 indicate that many oxidized
silver and goid ores respond quite well to the combined
flotation and cyanide leaching processes, but poorly to either

process used alone,



TABLE 1 (continued)

TESTWORK PERFORMED ON OXIDIZED
_ GOLD AND/OR SILVER ORES BY .
RESOURCE ENINGEERING AND DEVELOPMENT, INC.

Ore . Overall Overall
Ore Qre Descrip~ Process Ag or Au NacCN Leach Flotation
No. Ore Source Grade, tion, Grind Tested Recovered, Consumed, Time, Cleaner Conc. Grade,
oz/ton k) 3/ten Hours oz/ton
or % or %
8 Utah 5 Ag Underground, F 80-83 Ag 40-80 Ag
0.01 Au 95% -100m )
S Pb (mostly sul-
fides)
) 11.5 Ag
9 . Colorado S5 Ag Mine Dumps, Fl 50 Au 21 Ag
0.03 Au 98% -100m L 77 Au 8 24
50-62 Ag
F2 50-62 Ag 21 Ag
10 Southern .4.5 Ag Mine Dumps, F none
California 95% -100m L poor 8 24
11  Southwest 30.3 Ag Mined Surface F 60 Ag 565 Ag
Montana 0.02 Au Ore, L 87 Ag 10-15 24
0.54 Cu 80% -100m
12 Central 0.13 Au Mined Surface, L 88. Au 6 24
Utah 0.6 Ag Jasperiod, 40 Ag
99% -100m
0.03-~
13 Southern 0.07 Au CN Leach L 60-80 Au 4 12
Nevada 0.6 Ag Tailings, 20 Ag
90% -100m
{no regrind)
14 Nevada 1.81 Ag CN Leach 13 Poor .
0.062 Au Tailings, L 58 Ag
98% ~100m F 92 Au 6.5 8
15 Canada 0.10 Au Tailings, F Poor
reground to L 74.7 Au 3 16
98% -100m 43.5 Au
w/o regrind
16 utah 1.5 Ag Flotation F Poor
Tailings,
90% -100m L 35 Ag 6 24
(no regrind)
17 Idaho . 1.5 Ag Dump Material, F 70 Ag 1 Au
0.018 Au 95% -100m 50 Au 69 Ag
0.5 Pb 81 Pb 42 Pb
0.1 Cu 32 Cu 3.2 Cu
0.6 Zn 11 Zn 6.3 Zn
18 Southern 0.03 Au Placer Slimes, L 95 Au 2 8
California 0.2 Ag -100m 95 Ag

10



) ' TABLE 1

TESTWORK PERFORMED ON OXIDIZED
GOLD AND/OR SILVER ORES BY
RESOURCE ENINGEERING AND DEVELOPMENT, INC.

Ore Overall** Overall
Ore Ore Descrip- Process* Ag or Au NaCN Leach Flotation
No. Ore Source Grade, tion, Grind Tested Recovered, Consumed, Time, Cleaner Conc. Grade,
oz/ton L} #/ton Hours oz/ton
or % or %
1 Hailey, 1.8 Ag Flotation L 67-75 Ag 2.2 8
Idaho 1 Pb Tailings,
60% ~65m***
-15-30 Pb
2 Hailey, 3.5 Ag Jig Tailings, Pl 42-50 Ag 50-80 Ag
Idaho- 2 Pb 95% ~100m L 78-86 Ag 2.5 8
F2 80-87 Ag 15~30 Pb
50-80 Ag
15-30 Pb
3 Hailey 3.8 Ag Mine Dumps, Fl 42-50 Ag 50-80 Ag
Idaho 2 Pb 95% -100m L 82-90 Ag 2.7 8
F2 85-93 Ag 15-30 Pb
. . 50-80 Ag
: 30-50 Pb
4 Central 4.0 Ag Mine Dumps, Fl 62.6 Ag 50 Ag
idaho ° 2 Ph 95% ~-100m L T82 Ag 2.5 8
F2 85~86 Ag 30-50 Pb
i . 50 Ag
5 North 0.17 Au Stamp Mill F Poor
Idaho 0.8 Ag Tailings, L 65 Au S 8
95¢ -100m 48 Ag
. ’ 25 Pb
3-5 aAg 26-40 Agq, S0 Ag
6 gtah 0.015 Au Flotation Fl Au and Pb 0.15 Au
2 Pb Tailings, L 65-78 7 . 8
3 2n 80% -100m F2 67-80 25 Pb
. 50 Ag
0.15 Aau
3-5 Ag 14-27 Au low Pb
7 vsah 2-10 Ph Mine Dumps, Fl and Ag 34-78 Ag
0.004 Au 95% -100m L 70-~75 Ag 4 8
5 Zn F2 and Au
* ¥ = Flotation, L = Carbon~In-Pulp Cyanide Leach

LA Overall recovery includes recovery in preceding orocess(es)
#¢* g = Tyler mesh

11
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ENERGY BACKGROUND

It takes energy to explore for, mine, and process
mineral ores into bulk materials such as copper,
iron, and aluminum. It takes additional energy to
process these into engineering materials, and ad-
ditional energy to run the supply and construction
equipment to fabricate these materials into systems
hardware—electric generating stations, transmis-
sion lines, pipelines, solar collectors, replacement
parts, and so on,

It also takes energy to explore for, extract, process,
and distribute nonrenewable fuels such as coal,
crude oil, gas, hydrogeothermal, and uranium.
Solar, hydroelectric, tidal, and hot dry rock geother-
mal are renewable sources that do not generally take
additional energy to process.

In summary it takes energy to build energy
systems, and energy to obtain the nonrenewable
fuels. This energy must be added to the energy used
by consumers to obtain the total US energy demand
shown in Fig. 1.

MINERALS CRISIS

Both nonfuel minerals and nonrenewable fuels are
in finite supply in the world. Let's focus on nonfuel
minerals.

A study done for a world population of 3 billion
posed the following question. If all 3 billion people
on Earth were instantly escalated to the same stand-
ard of living as those in the United States, how long
would key nonfuel mineral resources last without
recycling? The answers are startling, as shown in
Fig. 2. Many key resources such as silver, tin, lead,
and copper would be depleted within 12 years.
Though the world on average does not have the US
standard of living, emerging countries are trying to
achieve it. And world population continues to grow:
now about 4 billion, it is expected to reach 6.5 billion
by the year 2000. Thus, the study should serve as a
warning.

The United States has used up much of its higher
grade nonfuel mineral resources and is increasingly
dependent on imports, as shown in Fig. 3. Certain _
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key resources come from the Soviet Union or emer-
ging nations with potentially unstable governments.
The cost of mineral imports went from $10 billion in
1971 to $64 billion in 1978; over one-fourth of the bill
in 1978 was for nonfuel minerals. Many of those
minerals are key resources for building defense,
energy, trangportation, communications, and food-
producing systems. This increasing dependence on
imports of minerals extracted on land has made the
United States vulnerable to world cartels, like
OPEC, for nonfuel minerals. In addition, an attempt
is being made in the United Nations among a cartel
of Third World countries to limit the exploitation of
seabed minerals by industrialized nations by
amending the Treaty on the Law of the Sea.

As the world consumes its high-grade ores, lower
grade ores will be used at increasing expense. Part of
the expense is due to the fact that it takes much
more energy at increasing expense to process low-
grade ores. An example for copper is shown in Fig. 4.

The world situation has been studied by various
groups and government agencies in the United
States for several years. But no real substantive ac-
tion has been taken, even though the situation is
comparable in magnitude (import costs and
vulnerability) to the US energy situation.

ENERGY HARDWARE AND MATERIALS

In a recent study, Herbert Inhaber looked into the
amount of materials needed for various kinds of
energy systems. Inhdaber's results, though not neces-
sarily accurate in detail, stimulate thought. Shown
in Fig. 5, they indicate that building soft energy
systems like solar requires 20 times the amount of
materials required to build hard technology systems
like nuclear to obtain the same energy output. This
suggests that overemphasizing soft technologies may
result in a nonconservation ethic for nonfuel
minerals and materials and may further aggravate
the US nonfuel minerals-imports situation.

We must recognize that high-grade energy sources
are needed to obtain and fabricate the materials for
soft technology systems. Thus, emphasizing soft
technologies may push up the need for high-grade
energy sources for several years.

ENERGY FOR PROCESSING

0 ! L !
o 0.5 1.0 16

COPPER CONTENT OF ORE
(weight per cent}

. Fig. 4.

Example, for copper, of energy needed to
process ore vs grade of ore. Recycling uses
much less energy (E. Cook, "Limits to Ex-
ploration of Nonrenewable Resources,” in
Materials: Renewable and Nonrenewable
Resources, American Association for the
Advancement of Science, 1976, p.63).

APPROXIMATE METRIC TONS OF MATERIALS FOR CONSTRUCTION
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: OCEAN THERMAL

[ )souanTHERMAL

] sOLAR SPACE MEATING
___Jsotar PHOTOVOLTAIC

Fig. 6.
Estimate amounts of material required to build
various energy sources for the same energy output of
1 megawatt-year. [H. Inhaber, "Risk of Energy
Production,” Atomic Energy Control Board of
Canada report AECB-1119/REV-1 (May 1978).]



NEEDED ACTION

Energy and nonfuel minerals issues are tightly in-
terwoven; they cannot be treated separately. We
must learn in detail how they interrelate, and we
must use the information for planning and decision-
making. These important issues strongly influence
our national security in the broadest sense.

We should take the following actions immediate-
ly.

e Expand stockpiles of strategic minerals that

have no known substitutes.

o Determine materials requirements for the
various energy paths that the United States may
take, and then re-think those paths.

o Determine future energy needs for minerals ex-
traction and processing, and factor that data

- into the National Energy Plan.

o Offer incentives for conservation and recycling.

o Stimulate industry to explore for new mineral
resources domestically by increasing non-
competitive government programs to delineate
favorable exploration areas through reconnais-
sance studies like the Department of Energy's

;

National Uranium Resources Evaluation
program, wherein collected samples can be
analyzed fof several minerals.

o Identify needs and stimulate work by funding
the study and development of advanced mining
and processing techniques for lower grade ores.

e Expand research to find substitutes for critical -

materials.

For additional information on US mineral inven-
tories, deficits, import reliance, critical materials,
and issues, see the following publications.

1. Stockpile Report to the Congress, (April 1978 -
September 1978), GSA Federal Preparedness
Agency, GSA-DC-01904931 (April 1979).

2. Mineral Commodities Summaries 1979, (An-
nual Summary) US Bureau of Mines, US GPO
(1979).

3. Report on the Issues Identified in the Nonfuel
Minerals Policy Review, from an Interagency
Study for the White House Domestic Policy
Staff, US DOI (August 1979).

United States Department of Energy
Contract W-7405-Eng. 36 -

Readers are encouraged to correspond directly with the author.
Parmission to reproduce this article is granied.
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Pregnant liguor hrough a perforated pipe located
on the bottom S
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EVERAL years ago at the Douglas, Ariz., smelter
of Phelps Dodge Corp., a process for producing
sponge iron from converter slag was developed. Sponge
iron is the metallic product resulting from the chemical
reduction of iron oxides at temperatures below the
fusion point of iron or of any eutectic mixture in
impure iron ores. It is characterized by its large sur-
face area per unit of mass as compared to solid
material.
In the process a molten, high-iron content converter
slag is granulated in a water bath. The ferromag
- produced is dried in a rotary kiln and fed counter-
By W. G. HOGUE current through a stream of reformed natural gas in
’ a reducing furnace. The resulting sponge iron assays

Manager : about 75 percent total iron and 55 to 60 percent metal-
Copper Queen Branch lic iron. . .

Phelps Dodge Corp. ‘ -

Sponge Iron Pilot Plant Built

The sponge iron process was developed primarily to
provide a precipitant for the company’s Bishee, Ariz,,
leaching and precipitation operation, located about 23
miles from the Douglas smelter. A six-tpd pilot sponge
iron plant was built at the Douglas smelter and oper-
ated for 2% years, during which the process of
making sponge iron was studied and improved.

As was expected for a material with a large surface
area, the sponge iron reacted rapidly in laboratory pre-
cipitation tests. The problem was to develop a field
method that would utilize this reactivity on a tonnage
basis. Preliminary attempts to use sponge iron by
placing beds of it in the precipitation plant cells and
passing the copper bearing solution through it were

JANUARY 1967 ‘ 17
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Sponge Iron Screen Analysis

. Cumulative
Size ‘:" Percent . Percent .
4 Mesh : 0.21 ©o0.21
6 ‘.“‘". - 0.71 0.92
g 4.05 497
10 ¢ 13.89 18.86
14 ¢ ) - 21.18 40.04°
20 “ ’ 23.83 63.87
28 ¢ 17.09 80.96
33 -« 10.18 91.14
48 . 4.39 : 95.53
+ 65 ¢ 2.04 ' 97.27
+100 0.45 98.02
-100 « 1.98
100.00
Typical Analysis
Feltot) . 76.0 percent
Femet . ’ 56.0
Cu . 60
Si0, : 60
S ’ L 0.5
Zn ) 0.5

Weight =137 1b per cu ft

unsatisfactory. Each particle of sponge iron quickly
became coated with copper, and this effectively in-
sulated the iron from further contact with the liquor,
with the result that the reaction was either stopped
or slowed down below the point of practical useful-
ness. The beds of sponge iron also became cemented
and badly caked. It was obvious that ‘“caking” and
“blinding” would have to be overcome if sponge iron
was to -be used effectively as a precipitant.

“Caking” and “’Blinding’’ Problems Solved

The solution to the problem was a V-shaped reaction
vessel in the bottom of which was placed a perforated
pipe. Pregnant solution was introduced into the V-
trough through this pipe and the vessel was charged

‘with sponge iron. The charge was levitated by the

leach liquor and this effectively prevented caking of
the sponge. At the same time the particles of sponge

W. G. Hogue began his career work--
ing as an engineer for U.S. Vanadium
Corp. In 1946 he joined the Copper
Queen Branch of Phelps Dodge Corp. as
a geologist and has since served as chief
geologist, chief engineer, and general
superintendent. Hogue was promoted to
his present position as manager at Cop-
per Queen last year,

iron at the bottom of the trough were subjected to ajg

2] 3
im

violent abrading action that removed coatings of cop-!
per and presented fresh surfaces for further reaction.

According to Stokes’ law, the rate at which a spher-§§
ical body falls through a viscous medium varies as{{
the square of the radius of the particle and directly:
as the difference in density between the particle andf§
the medium through which it-is falling. Therefore{}
size is very important in determining a settling rate,
and density is relatively unimportant. Liquor intro-3)
duced into the bottom of a V-trough has a constantly:
decreasing vertical velocity as it ascends in the vessel.
It is therefore possible to set the discharge elevation
of the V-trough at a height which permits the effluent
liquor to carry with it essentially all of the small]
particles: of .abraded copper, but to retain-essentially:
all .of the larger particles of sponge iron.

As the particles of sponge iron continue to react in
the V-trough they become smaller in diameter and
lighter in weight. The lighter particles produced by
reaction with strong headwater are then displaced
upward in the charge of sponge iron and the relatively
heavy copper coated particles from higher in thej
charge settle downward, eventually being forced bys:
the sloping sides of the V- trough to cover the jets of i
entrant liquor and thus becoming subject to mechan-%
ical abrasion and chemical reaction. 3

ISRl

e gttt il

s S ) skl

This system effects the following results:

1) A fresh surface of iron is kept exposed for re-;
action.

2) Copper is removed from the field of reactionjy
essentially as it forms. This is important be-}
cause the Bisbee leach liquor has a rather high:
ferric iron content and freshly precipitated cop-a
per is a good reducing agent for ferric iron. Ifz.
the copper is not removed, it tends to go back‘
into solution. "

3) There is a constant stirring of the charge which§
prevents caking and permits the sponge iron

particles to react uniformly. ;

B i et

Two Products Produced in V-Trough
During the time the sponge iron pilot plant was‘
in operation, a series of systematic tests was made at i}
Bisbee to learn as much as possible about the actnom
of sponge iron in a V-trough precipitator. Several:}
different troughs were made and studied and enough..
data were accumulated to_permit some confidence in )
the design for permanent modification of the existing+}
precipitation plant. It was planned that sponge lrom
would replace shredded tin cans as the p11nc1pal R
precipitant.
Among the more important ilems of general infor- !
mation ascertained during this period were: ‘;} ‘
1) The extreme reactivity of porous sponge iron was §
being successfully utilized. The original tin can plant
was designed to keep the pregnant solution in con- {
tact with tin cans for one hour. By charging a slxght‘
excess of sponge iron into a V-trough, ferric iron’
can be reduced to a negligible amount and the optimum’

L
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- amount of copper precipitated with a time-in résiderice’

| of less than:30 seconds. .
?) Two préducts are made in the V—trough One is
cement copper which assays about 70 percent copper.

| The other is residue which remains.in the trough at

the erid of a batch run. This residue assays from 15
to 40 percent copper and one id two percent metallic
B iron, depending upon how .leng it was allowed, to
§ redct. Numerous attempts were made in the labora—
tory to concentrate the coppér ,m‘thls re/s:ldue and make
o rejectable product; but without success. These
aitempts includéd attrition ‘mixing and sizing, grind-
ing and flotation, and ‘magnetic separation. ‘None of

g these methods produeéd a product. containing léss.

than five percent copper, Since.the residue is nét re-
i jectable it is.éombined with the cement coppeér. This
raaked a lower grade.cement, but-it .also impioves the

- é ,:‘ drying qiialities of the precipitate. Carload shipments

this combination. product have dssayed as low as

1 cight pércent moisture while the normal éement copper

B usually contains from-25.to 30 percent Inoisture.
3) The fact that -fresh _dponge ironm reacts -very
rapidly, but increasingly slower after it is partmlly

A single ‘operator can
completely control the V-~
trough operation, By set-
ting. sefector switches,
strong or weak water can
be directed through any
one of three precipitators

JANGARY 567

Sporige iron has re-
placed tin cans as the
principal  precipitant at
the Bitbee leaching plant

réacied'sdggestéd a éoﬁntei‘-cm-i'ent;method of opera-

tion: In order to utilize substantially &ll of the metallic

iron content ¢f sponge ironm, it must be reacted with
strong headwater. In order for a pregnant solution to

‘be stnpped of substantially all of its copper, it must

be reacted with fresh sponge iron.
During the-test period, two V-troughs wers operated.

.in series, Strong.water was pumped through the first

V- twugh which’ contained partlally reactéd sponge
iron; tailwatér from the. first V-trough was pumped
through- “a “second V-trough which contained fresh
sponge iron. A typical shift’s result from this counter-

current operation is tabilated below:

Lb per.1000 Gal

; Cu Fe, Fe; Fef® pH
Headwater = . -
V-trough no. 1. 1.9 624 228 852 19
T'a_‘ilwatfelf _
Vatrough nos1 27 1096 08 1104 27
Tailwater .
V-trough na. 2 02 1240 Wil 1240 37
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‘requirements

- ‘taper lock fiubs and bushiing —

4) Durmg the test'period, one batch of sponge $ron
was allowed to, react until no evelution of hydrogen
could be observed. This residue, whith was entirely
non-magnetie, was allowed: to, completely an -dry.: The

dry res:due weighed only 185 Ib per cu ft compdred:

w1th 137 lb per cu ‘It for the original sponde iron.

Tin Cuan Beds Filter Fines
During the period of testing a cadreful comiparison
was made of the relative efficiencies -of the tin can

precipitation plant and the sponge iron V-trough in.

terms of iron consumption. Although.a direct com-
parison could not be made hecause of- plant arrange-

. ment, it was concluded that the efficiencies were, the

same.

A substant:al percentage of the copper produced in
the V-trough is in’very small pa:hcles, being at or
nearcolloidal size, and settling is sornething of a prob-
.- lem. Flocculating agerits do not seemn to be partlcularly

effective in speeding up the settling rates, but fortu- -

nately a bed of tin cans ‘makes an. effective filter for
.the fine copper. Current practice is t6 -operate the

- V-trough plant so that the ferri¢ iton is completely

reduced and-the tailwater contains between one. and
two 1b of copper per 1000 gal. This tailwater is passed
over tin can beds of the original precipitation plant

“is' washed. v

- has a strong water and - a weak water system. ’I‘her_a.-1

STANDARD
canmeet your

For all elevating and
conveying equipment

‘We specialize in mateiial mov-
ing eguipment. High girality
steel elevator buckets; wing’
type self cleaning pulleys, with

or solid hubs bored to your
specifications, and bin gates
in either single or duplex style.
Al Standard products are man-
viactured by skittéd workmen
in our motern plant

We also fabricate: welkdments
and ether sheet, plate and light
metal assemblies.

20

final pound. or so of copper in sohition is precipitatedd
| | and' any unsettled particulate copper is filtered out.

| 'bins by means of ﬁhrating feeders having a feed
range of up to seven tph. ’ ki)

lector switches, strong or weak water éan be directed ;

in labor requirements,

where the fipe copper is e¢fféctively filtered out. While
it would appedr that such a-method should result in;
..excessive_Jron consumption, this-is.not the case. Suc-i}
cessive tin can cells become blinded with copper; whichi
prevents appre{:xable iron consumption until the bHed!

9

Plont Has Two Water Systems

In 1965 the Bisbee precipitation plant was modified to
use sponge. iron. as the pnnmpal precipitant and is
currently using in: excess of 40 ipd. The modified: plant ,

are thiee V-troughs available and any one may bej§
used for weak or strong water. Headwater enters thejl
strong water sump, which has three 30-hp, abrasion-3§
resistant and acidproof, rubber-lined sump pumps:§§
The pumps are electrode controlled. In addition, aj iy
pneumatic device keeps the sump level constant by4§
throttling- & valve that controls the flow of liquor}
into the bottom of whichever V-trough has beenj|
selected. Overflow from this V-trough goes to a Iarge {
settling .sump whose overﬂow goes to 2 weak waterg®
sump. ‘

A set of pumps and controls identical to those of B
the strorig water system sends the partially -stiipped 1}
weak water t6 a second V-trough charged with freshik
sponge iron. Efluent from the second V-trough goesilf
to a settling sump whose overflow goes to the tin.canyf
beds of the original precipitation plant where theif

Sponge -iron is fed into the cells directly from storage4

.Cells Cleaned Every 24 Hr

" Present practice is to dump the residue “from each‘;y
V-trough once each 24 hours. To do this, the spongei
iron feed is cut, off from one cell at 2 time and the cell 1 §
is operated for two hours without the addition of more 1§
feed. At the gnd of two hours the metallic iron content #§
of the residue has been reduced to between one and 3§
two percent; copper content is usually about 20 per-#]
cent. By throwing a switch in the control room the ;
operator opens 4 rubber-lined, pneumatically-operated
dump valve and the entire load of residue is Rushed {}§
into a decantcéll. Here the water is drained off and j§
the mixed cément copper and residue are transferred
onto a drying pad with a clamshell. ale

A single operator can completely control the V- ik
trough operation from the control room. By.setting se- §

through any of the three V-troughs. Residue can be
ﬂushed from any desired trough by throwing a switch.
The only operation still requiring manual labor is
washing the settled copper from the settling cells
into the decant cells, This is done once a week and
is a much easier task than washing a large number
of 'can cells. The use of sponge iron-in the Bisbes pre-
cipitation plant has resulted in a substantial reductwn
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The following remarks describe the size, grade and form of the various uranium reserves in the non-commumst,y.
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producible at costs up to $25 per pound. The data has been compiled from a Jarge number of sources and is complet: [ the ne
varying degrees. In general, the data for the United States, Canada, South Africa and Australia is consndered mor le or N0

plete than that for other parts of the world.

Reference to reserves applies only to those tonnages which-are reasonably assured and which are estlmated 1
same manner as tonnages of other commodities. Large tonnages of uranium, yet undiscovered or inferred by l ....

%Rl detern
o of dej

factuval data, are labeled as resources, estimated in a manner too loose to be acceptable by mdustry as reserves on w

-productive facilities can be planned for the future. In ref-

erence to official figures in the United States, we consider -
‘only some classes of reserves and, of course, no class of

resource< as fitting mdustnes deﬁnmon of reserves.

U.S. reserves are low cost. In Canada however, and
particularly at Elliot Lake, Ont., there are large tonnages
of low grade materials in the drill indicated category, pro-
ducible.from existing openings at costs up to-$25 a pound
which-could be relied upon as mlll feed when prlces reach
hlgher levels : -

- Uranium deposits around the world, regardless of their
individual characteristics, can be cla551ﬁed into a few
main types on the basis of origin, form or environment of
occurrence. Geologists commonly refer to the four main
world reserve types as the pyritic, quartz-pebble con-
glemerate, the porous sandstone and conglomerate, the
vein and-replacement, and the-granitic and syenitic rock
uranium deposits. The four types may be described in
terms considered -important to the producer as follows:

Pyritic, quartz-pebble conglomerate deposits. These are

essentially of syngenetic origin, consequently the values
relate to observable sedimentary rock units which form
large blanket-like deposits in one or more stacked layers,
aggregating as much as a hundred million tons. Individual
_stope grades of some deposits vary from 1 to 4 Ib U304
‘per ton, averaging about 2 Ib, whereas others are half a
pound more or less where uranium is recovered as a by-
product. The deposits are usually flat to moderately dip-
ping, and stope muck is rarely free flowing. The stopes
vary in height from 6 to 20 ft or more and average 10 ft.
These deposits are mined underground from 100 to over
6000 ft in depth and all current workings are at 2000 ft or
more. The ores are hard and impervious and require fine
grinding, but mill recoveries of 95 percent are realized
with low acid consumption.  ° :

Porous sandstone and conglomerate deposits. The de-
posits in porous sands and conglomerates are found main-
ly in the western United States but are also found in Aus-
:tralia and parts of Africa, eastern Europe and Russia.
The mineralization is largely epigenetic, introduced by
ground waters whose presence is a continuing mining haz-
ard. The deposits are commonly pod-shaped, some are in

- ‘commonly average 4 to 6 b, The uranium is ge
" readily soluble, with 95 percent recovery. Milling pr

blankets and others are stacked along fault zones. Indi- 4

vidual tonnages vary from a few thousand to more than a
28 . 4 . -

in open pits and underground to about 2500 ft. Som

tures in excess of 100°F. These deposits have not ye 51 4

" tons of U,0; per deposit: By-product copper,’ go

_ing the lowest cost and most readily available pou

‘its because of certain ore and gangue minerals.

. rfulhon tons, and average -thickness is about 10 f
“variations from 2 ft to as.much as 50. =~ - & gfoited Sta

)

The deposits are flat to low dipping and are bemg i Y the bult
are free digging and others are blasted, but all & ’.“"dslt‘
transport from the face. Deposits near Mount Tﬁvﬂ minantl

N.M., are at depths in excess of 4000 ft with rock g \[‘{lvgg

v found
Bh unde:
‘rage ab
‘@S are
‘U Exii
2 mill re
pole 1 she
amitted
\li\ ‘e caj

exploited. Grades vary from 2 to 10-1b- U‘;O8 per n

few problems except for high acid consumption wlur~
individual déposits may be due to carbondte content‘i‘
e
Vein-and replacement type depos:ts Replacement‘
deposits are represented by large vertical or steegg
clined, plum-shaped or sheet-shaped bodies similf§ §0n the C
those recently discovered in Australia. Vein- llk&w for ed
rences are found at Beaverlodge in northern Sask 0‘;\"

wan and at the Swartzwalder mine in Colorado. Th pough L
esis of these deposits is similar to those in porous Nco to
1 sits are f

stones but in a different environment of emplaceny Powd
Vein and replacement deposits are generally h:g "" Gul?Ce
and are commonly at or near surface. Grades in mdr 2or c
ual deposits vary upward.from 3 Ib U;O, per tonﬁ _mlotus S
percent, and overall size from.a few to more than l'd? i 10 sth:::r
other metals will be available from a few of the QS additi
bodies. 35 vered ;
A large portion of world reserves of [hlS type w' m coppe

uric acid
'mi 0t
'mined in open pits and they can be considered as cany biever, o

U.S. ura

g ndicates

azipects |

‘particularly true of deposits with'significant secondm’; Rounts re
richment. In a few cases, it may be more economlc?l ¢ requin

to a carbonate leach process in spite of higher caplt 3 Katgs tﬁ

operating costs. Fovery r

‘ ' ¥ increa;
Granitic and Syenitic uranium deposns Granmc an 23 have |

There are milling problems associated with some d

" nitic rock deposits, in spxte of their low grade, pro Bied 40,0

have considerable future importance because:off

large potential reserves. Uraninite-bearing granmc
matities at Bancroft, Ont., the supergenely ennched fon drilli
ite of the Rossing dCPOblt in South West Africa andf; Clearl
lllmaussaq syemte of south Greenland are exangg . from }
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PRODUCTIVE CAPABILITY

gggardless of their size, ore reserves vary in their pro-
ve suitability one from another. Depending on size,

5. dépth and grade of the deposrts some orebodies

be extracted economically in months whereas others
lmquxre decades. In the case of vein-type deposits
0, 12.5000 tons of U;0; at surface and grading 10 to 20

! nt UsOs, extraction and gravity concentration could

- mdertaken quickly at low-cost. In-the-case of blanket
u quartz-pebble conglomerate deposits however,

a¢ capital costs are high, thickness and grade relative-
CommMmMUNISt w
ind is complei. §

idered more c¢

28 problems, the immense reserves will still be mined
ihe next century. Therefore the sizé of a reserve has
or no meanmg inrespect to demand. Rather, demand

etermine the required finding rate in respect to each

: estimated in § ’bfdeposn sought

ferred by lim:§s

‘eserves on whi B
— 3 RESER-VES L

-about-10 fi v - o

gda(;‘%bveslgs] . : ‘lv bulk of U S reserves are found in porous continen-
ib ut. all reg %ndstones of post Permian age. They occur pre-
r’ Mount T antly in the West, on the Colorado Plateau and in
with rock tema 4 :yommg Basins, with smaller deposits in the Gulf
have not yel b plains near San Antonio, TX. Minor deposits are

UsOs per ton g -’underground and in open pit. Underground mines

?lﬁdﬁl;zgg;;i e-about 350,000 tons of ore a year. Total U.S. re-

. A cs’
umption whic Fee
iate content... s g;Extracnon rates’ underground of about 80 percent

: ‘mﬂl recoveries of 95 percent will reduce this amount.
lacemenl of A ‘l shows the breakdown of the reserve by existing,
rep r Hitted: and potential future mills along with their pro-

E?)L&rs S;i-iﬁl,\ i' vé .capacities through the year-2000. - . . .

Vein-like ocg ﬁnd in a -curving belt from west of Albuquerque

1l_hef1:i Sa;_\;:h ‘Laguna, -Grants, Gallup and Shiprock in New
viorado. 11 ~~u 'to Moab in Utah (see fig. 1). In Wyomlng, the de-
t:' n p?rous s; hre found mainly in the Gas Hills and in the Shlrley
lell) arcle(me KBowder river basins west and northeast of Casper. Ini
neratly g 5 EWlf Coastal Plains, the uranium deposits are likewise
Sraszrs tl(r)ln”;nl [k us sands’ localed soiitheast of San Antonio. Other
n?ore than 50
copper, gold
few of the'

K10 the Powder river basin, and near Spokane
f addmon to-the-outlined reserves, uranium could be
red as a by-product from the burning of lignites,
B copper solutions, and from phosphate rock in phos-
Ruccacid production. The’ amounts involved are small,
er on:a yearly basis.
Skuranium demand relative to productive capabili-
ﬁicates a short fall in supply by 1978 (fig. 2). The

thls,typc wil
idered as coni
vailable p,ou-
vith some dé;

. . h
mmCFalSn-dIn Byects for additional discovery of reserves in the
ant secondal Wepts required to meet projected demand are bleak.
e economic PR

righer capitol§ unrred discovery lead time of about 5 years clearly

RS ery Tatés are calculated at 60,000 tons of U 30y in

Granitic and
1 grade, pl‘Of
because of
ring granitic !
sy enrichéd ¢

have reached 60,000 tons in only one year and sur-
%d 40,000 tons in only 5 years since lnceptlon of ex-
*'4' -about:1948.: No new major uranium district has
.fOUnd inthe U.S. since 1957, aithough annual explo—

nU
st Africara J%Clearly, the projected demand cannot be met in the
are examples $from hinh grad . d .

bxlrom high grade uranium sources, and uranium re-

Mining Congres* " By 76

und in Washxngton state. The deposits are mined-

ales that lmpons will be necessary. Required annual -

nw, and back support and ventilation are continuing -

are approxrmately 300,000 tons of contained

IGtihe Colorado. P]ateau, the.bulk of uranium deposrts .

-,m -are-found near Denver, in South Dakota adja- -

+

Sicreasing to 90,000 tons by 1985. Annual discovery

P:drilling has not dropped below 10 million ft since .
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- . . SO )
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Fig. 1. Uranium deposits of the United States

sources of the requrred magmtude grade ]ess than a’
pound U,04 per ton.

Canada ot

»

. of Canada s 440 000 tons of U,0g reserve, a rull 35 per-

" cent is found in pyritic quartz-pebble conglomerates in
the area of Elliot Lake, Ont. The replacement and vein-
type deposits are located principally in northern Sas-
katchewan along the edges of the Athabasca sandstore
basin, and account for most of the remaining reserves
(fiz. 3). Another. smaller vein- type reserve is found in the
Brinex deposits in Newfoundland. A few thousand tons
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Fig. 3. Uranium deposits of Canada

are found -ir'x radioactive pegmatites in the Bancroft area
between Toronto and Ottawa. They will require consid-
erable. underground development and grade control and

-mill feed will average no more than 2 b U;Q, per ton.

Canadian reserves and productive capabilities to the.
year 2000 are listed in table 2, which shows the lower an-

- nual but sustained period of Canadian productive capa-

bility compared to the U.S. Canadian productive capabili-
ty will reach an annual output of only three quarters of

.that in the U.S. in spite of the larger reserve. This is at-

tributable to the nature of occurrence and grade of the
ores in the Elliot Lake-area.

Utilities in Canada-are in a more favorable situation
than those elsewhere insofar as Canadian reserves are
about 50 percent greater while accummiulative demand

- through the year 2000 is less than 10 percent of that in the

U.S. Even so, Canada has recognized the inadequacy of
its future productive capability in terms of ‘demand and
committed export sales. Consequently, it is now federal -
policy that Canadian producers set aside ore for a 30-year
forward reserve for those reactors now operating and

. building. If the U.S. implemented such a policy, it Wil now

'world supplier of uranium.

about 0:3 b UaO&per ton. .. . -

require about 775,000 tons of U O in reserves fo‘?‘
114,000 mw already built or under construction. - %

In spite of Canada’s large uranium reserves, availig
production will- be madequate for Canada's need{y
1987, as indicated in fig. 4. Further discoveries ar?f
quired to meet later needs and to contmue as a m

Further discoveries can be expected in the areas ‘
rent reserves; however these will not come easily’ n”S‘; 1200
the rate previously experienced. Other obvious- buffy
productive target areas have been searched a numbe;
times over the past 25 years without success. In reco 20
tion of the need for additional reserves, the Federal-
vincial Uranium Reconnaissance.Program has been,
tiated and will involve high sensmvrty airborne ga o N
ray spectrometry at 5 km spacings and geochemrcaL
veys in mountainous and overburden areas. Exec b
of the program will requrre 10 years and will outline’3 .
tional aréas of uranium concentration which chara
istically host the known reserves. Similar Erda.: S
sored projects are underway in the Umted States. ;

South Africa and South West Africa

South Afnca and South West Afnca S reserves areg
servatively estimated at 300,000 tons of U 04 (see ﬁg,_k ;

These reserves are largely by-product from gold ’ 100

in the Rand and, consequently, the productive capa
is pre- determmed regardless of the reserves.

The Rand deposits are in pyritic quartz-pebble, 0l
glomerates and have an average grade of less than. 0.
U4Os per ton. The -annual production from the
could be an estimated 5000 to 6000 tons U;Oq.. Im orf

n N3, Canudra

quantities of mill tailings average about 0.1 Ib U;;O %J'%bom’ a
ton;-although some-slime areas of the ponds have hig do Johann
values. The slimes could-be a source at elevated.; i ~"c§:°"

but their productive capability is low because grad 1d Sgﬁfh%

i rock grad

. - . Reserve Potential Production C;ap'.fbilily ' . . -
Existing Mills (Tons U;0J. 1975 ~ 1978 198] 1983 1985 1988 1990 1995 - -
New Mcuro . 72.400 6700 7450 6750 4.250 4250 2.000 3
Utsh’ . S 6.000 900 900 <. 400" 400 ]
Colorado . © 5400 -1.200 500 500 .
Wyeming 60.000 3.500 5000 4400 3400 2400 20400 2000 1.000 -
Texas 4000 600 600 600
Washington 1,000 -300 100 .
- Subtot . 145,800 13.200 14.550 12,650 8.050 6.650 -4.400 2000 3.000_ | coe e .
Committed Mills .
New Mexico 8.500 2% 10 750 7% Table I. S
Potential Mills . © United States uranium ;
New Menico 71.000 4000 5.000 5000 5000 3.000 reserves and rOdllel()n ca ablll ;o
Wyoming 20.000 1500 1.500 1,500  1.500  1.500  1.000 . P p RE -
Washington 7.500 600 60 600 600 600
— e e —— e e — -
Totul 255.800 13200 20400 20500 15900 14500 9.500 6.000 1.000
Miscelluneons Reserves . -
New Mexico 16.500 _ )
Wyoming 18.000 - ‘.
Utzh, Columdu&S Dukota 7.500 ' . .
Texus _ 7.500 v .
GRANDTOTAL RESERVES 305.300 ‘ . .
.. . . N TWELKOM
- - PRESIDENT .
Reserve . Annual Production Cupibility . .BM:g
(Tons U.0J 197 1980 1985 1990 1995 2000 . . MARMON
Denison 160.000 1.800 3.500 3.300 3.000 3.000 3.000 e
Rio,, 210,000 2,500 3.000 5.000 5.000 4,000 3.000 Table 2
Agnew 10.000 500 500 00 500 TS0 A . :
Mudawasica 3.000 (5138 500 : R Canadian uraninm reserves
Eldorado 10.000 600 ¥ 1.000 . o
AMOR 10.000 2000 200 80 ) . and production capability
Gulf 25.000 2.200 2.200 B
Brinex 6.000 S00 500 500 A
TOTAL . 444.000 4.900 13,200 15.000 9,800 7500 6500 e
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Interpretation of seismic velocity and attenuation in partially molten rocks has been limited, with few = ‘;’;a S
exceptions, to models that assume the melt to be distributed either as spheres or as thin films. However, ] (o »
other melt phase geometries, such as interconnected tubes along grain edges, might equally well account 0 =i -
for seismic observations if there is a much larger fraction of melt. Seismic velocity and attenuation are s m

estimated in rocks in which the melt phase has the tube geometry, and the results are compared with re-
sults expected for the more familiar film model under similar conditions. For a given melt fraction, tubes
are found to give moduli intermediate between moduli for rigid spherical inclusions and compliant films.
For example, in polycrystalline olivine at 20 kbar the model predicts a decrease in V, of 10% and a de-
crease in V, of 5% at 0.05 melt fraction, without considering inelastic relaxation. Shear attenuation ap-
pears to be dominated by viscous flow of melt between the tubes and/or films. For olivine the tube model
predicts the increment of relaxation due to melt, Au/p, to be 0.01 at 0.05 melt fraction. Relaxation of the
bulk modulus is dominated by flow between melt pockets of different shape, heat flow, and solid-melt
phase change. If melt is present, considerable bulk attenuation is expected, although the relaxation may

be observable only at long periods, outside the seismic body wave band.

INTRODUCTION

It has been recognized for some time that partially molten
rocks can have significantly different acoustic and electrical
properties than the same rocks just below the solidus. In-
clusions of the liquid melt phase are more compliant in both
compression and shear than the solid matrix material. Hence
they mechanically soften the rock and decrease wave velocity
[Eshelby, 1957, Shimozuru, 1963; Walsh, 1965; Wu, 1966;
O’Connell and Budiansky, 1974; Birch, 1969; Stocker and Gor-
don, 1975; Watt et al., 1976]. The time dependence of proc-
esses excited by passing waves, such as viscous flow of melt,
heat flow, and phase changes, results in dispersion and wave
attenuation [Waish, 1969, Vaisnys, 1968, O’Connell and Bu-
diansky, 1977; Kjartansson and Nur, 1980]. In addition, the
network of melt phase provides paths of high electrical con-
ductivity [Presnall et al., 1972; Waff, 1974, Shankland and
Waff, 1974, 1977; Shankland, 1975). The strong dependence of
seismic and electrical properties on the presence of melt sug-
gests that these may be diagnostic of material properties at
depth.

Quantitative interpretation of seismic wave velocity and at-
tenuation in partially melted rocks has been limited, for the
most part, to models that assume the melt to be distributed ei-
ther as spheres or as thin films [Goetze, 1977, Mavko et al.,
1979). For example, Walsh [1969] modeled the melt phase as a
dilute distribution of isolated penny-shaped ellipsoidal films.
Under the stress of a passing wave the rock relaxes through
simple shear deformation across the film faces. Walsh pre-
dicted that the rock behavior with inclusions of a single aspect
ratio « is that of a standard linear solid [Fung, 1965; Zener,
1948] with modulus defect AM/M given by

AM/M = B/2a (la)
and frequency of peak attenuation given by
fo = ap/20y (15)

where B is the melt concentration by volume, g is the shear
modulus of the matrix, and 7 is the melt viscosity. Comparing

This paper is not subject to U.S. copyright. Published in 1980 by
the American Geophysical Union.

Walsh’s theoretical results with seismic velocity and attenua-
tion data, Solomon [1972] inferred a value of 10* P, and Nur
[1971] a range of 10°-10' P for the viscosity of melt in the
low-velocity zone under North America. Similarly, Spetzler
and Anderson [1968] and Anderson and Spetzler [1970] inter-
preted velocity changes in partially frozen brine in terms of
the Walsh model.

Simple shear relaxation of spherical inclusions has been
modeled by MacKenzie [1950), Oldroyd [1956], and Sato
[1952] and applied to interpretation of molten materials by
Birch [1969] and Stocker and Gordon [1975). Birch concluded
that P and S wave velocity in the low-velocity zone can be ex-
plained by assuming about 6-10% melt in the form of spheres.

While the Walsh type simple shear relaxation can at least
qualitatively explain the observed drop in velocity when melt
appears, Goetze {1977] and O’Connell and Budiansky [1977]
argue that the relaxation is too fast to explain the observed at-
tenuation at seismic frequencies. The melt viscosity must be
unreasonably high or the aspect ratio too small for the fre-
quency, given by (15), to lie within the seismic range. The fre-
quency of peak attenuation for spheres, also given by (1b)
with a = 1, lies many orders of magnitude above the seismic
range. Hence simple shear relaxation in any geometry may
pot be important except at laboratory frequencies.

A second postulated mode of viscous fluid relaxation, in-
volving films, occurs when melt flows between films at differ-
ent orientations or different aspect ratios. This ‘melt squirt’
was discussed by Mavko and Nur {1975] as a mechanism of
upper mantle relaxation and much earlier by Bior [1962] as a
mechanism of wave attenuation and dispersion. O’Connell
and Budiansky {1977] have quantitatively analyzed the squirt
mechanism in considerable detail for the film geometry and
argue that it is a more relevant model for wave attenuation
because of its longer relaxation time.

For a given volume fraction of melt the thin film geometry
is the most efficient softener, causing the greatest decrease in
velocity and, depending on frequency, the greatest increase in
attenuation. As a result the velocity and attenuation in much
of the low-velocity zone, for example, can be explained with
less than about 1% melt [Anderson and Spetzler, 1970;

O’Connell and Budiansky, 1977).

Paper number 80B0266. 5173



5174

Thermodynamic considerations [Bulau and Waff, 1977,
Bulau et al., 1979] and experimental results [ Waff and Bulau,
1977, 1979] suggest that tubes, rather than films, may be the
expected equilibrium melt geometry under some conditions.
Frank [1968] postulated the tube geometry to model melt per-
colation and to explain certain aspects of heat and mass trans-
port in a convecting upper mantle. Walker et al. [1978] refined
Frank’s tube model to calculate melt mobility and melt-solid
segregation. The effect of solid tubular inclusions (with circu-
lar cross section) on the effective elastic properties of a com-
posite has been treated by Wu [1966), Boucher {1974}, and
Walpole [1969).

In the tube model suggested by Smith [1964], shown sche-
matically in Figure 1, each tube is roughly triangular in cross
section with sharp edges. In the film geometry the flat grain
faces are coated. Details of the shape (e.g., tube versus film)
depend on the relative solid-solid and solid-melt surface
energies, as well as whether or not the system is in equilib-
rium. The factors affecting shape are discussed by Smith
[1964), Stocker and Gordon [1975], and Bulau et al. [1974].

Nonuniqueness in interpretation of seismic velocity and at-
tenuation has been recognized before [Stocker and Gordon,
1975; Goetze, 1977]. Even within the film model the results de-
pend on the aspect ratio of the film. However, analyses for ge-
ometries other than films and sphere have been lacking. In
this paper I present new model results for the effects of melt
on seismic velocity and attenuation. First, theoretical ex-
pressions for effective elastic moduli are derived for the case
of melt in the tube geometry. Next, the effects of the melt
phase on attenuation and dispersion are explored by com-
paring the high-frequency (unrelaxed) and the low-frequency
(relaxed) states. The model results are plotted and compared
with results for the film and sphere models in order to show

4

Fig. 1. (a) Schematic representation of melt tubes along grain
edges [after Smith, 1964]. (b) Cross sections of model melt tubes for € =
0, 1, co.
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the effect of melt phase geometry on seismological inter-
pretations. Finally, theoretical results are compared with pub-
lished laboratory and field observations of velocity and atten-
uation.

CALCULATION OF ELASTIC MODULI

‘We approximate the rock in Figure la as an isotropic elastic
solid containing a distribution of randomly oriented tubes of
the type shown schematically in Figure 15. For mathematical
convenience we assume that each tube segment is long and
narrow enough that its deformation is adequately modeled
with a two-dimensional cavity. The modeled cross-sectional
shape of each tube is given in the x-y plane by the parametric
equations

1
x = R(cos 8 + mCOSZH)

@

y = R(—sin 8 + sin 26)

1
2+¢
where R and € are constants and the parameter ¢ varies from 0
to 2 to trace out the entire contour. These shapes are chosen
because they somewhat resemble the three-sided cross section
in Figure la and because they are convenient to treat mathe-
matically. The approach is to use the complex variable
method of Muskhelishvili {1953] and to conformally map the
shape (2) into a unit circle. The shape (2) is shown in Figure
15 for three values of €. In the limit € = 0 the shape has three
cusps and the largest surface to volume ratio. This is the shape
used to represent the melt tubes in Figure la and to calculate
results in later sections, though given the degree of approxi-
mation of the model, the value of e is somewhat arbitrary. In
the limit € — oo the shape is a circle. By carrying e through the
calculations we can see the sensitivity of the results on pore
shape. In addition, various results can be checked by sub-
stituting ¢ — oo and comparing with published results for
tubes with circular cross section.

In this section we calculate the effective bulk and shear
moduli of the partially melted rock in two stages. We first find
the effective moduli of a dry porous rock with empty tubes,
using the Betti-Rayleigh reciprocity theorem [Walsh, 1965;
Jaeger and Cook, 1969). The results are then easily extended
to the case with melt-filled tubes.

Bulk Modulus

To apply the reciprocity theorem to find the bulk modulus,
consider the two sets of tractions shown in Figure 2. The rock
with volume V has a distribution of N pores or cavities of the
type shown in the figure. The system on the left is loaded by
an externally applied hydrostatic stress 8P, resulting in the
pore wall displacements 8U. Because we start by treating
empty cavities, the pore faces are stress free. The system on
the right has the same uniform stress 8P, applied to both the
external surface and the pore surfaces. In this case the system
behaves like a solid block without pores. Applying the reci-
procity theorem, we can write

épP 8P d
8P — V=8P — V—46P U, dA 3
e X X/ ®
where K is the intrinsic bulk modulus of the rock material and
K/ is the effective bulk modulus of the dry porous rock. The
integral is taken over the entire pore surface of the ith pore,

'
- \s-,
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Fig. 2. Applying the reciprocity theorem to a rock under two sets
of applied stress to calculate bulk modulus. On the left the pore sur-
faces are traction free. On the right the stress 8P is applied also to the
pore, making the rock deform as though nonporous.
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and 8U, is the component of displacement normal to the pore
_ wall (defined as positive for pore expansion). Rearranging the
equation, we obtain

11
KTK&PV

)

i=1 i

8U,dA

which gives the effective compressibility (equal to the inverse
of the effective bulk modulus) in terms of the pore wall defor-
mation. In the limit 8P — 0 the last term in (4) is simply the
pressure derivative of porosity.

The pore wall displacement 8U, resulting from the re-
motely applied stress 8P is derived in the appendix. Sub-
stituting (A27), (A28), and (A30) into (4) yields
Y wRd,

4 {

21— )[R+ €* + 2]
2 +e€)?

+ 2

i=}

(1 =200 [2+ € —

YTy Q+er

2

o
where u and » are the intrinsic shear modulus and Poisson’s
ratio of the solid elastic material. Here 4, is the tube length in
the third dimension. Average pore dimensions R and d can be
defined by

@
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NRd= Y R,

(®)

The total volume of N identical pores having dimensions R
and 4 defined in this way equals the total volume of the origi-
nal pores having the variable dimensions R, and d, if all pores
have the same shape parameter e. Hence we can write

NnR*d
14 {

2(1 — (2 + €+ 2]
Q@+e?

(1 —20)? [(2+¢€)?
2(1 +»)

™

)

Q2+¢€?

As a test we can examine the limiting case € — oo which
corresponds to tubes of circular cross section. In this case the
pore volume is N7R?d, and the expression (7) becomes exactly
the same as that given by Wu [1966] for the limiting case of a
low concentration of needle-shaped cavities (Wu's result with
the moduli of the inclusions set equal to zero). The bulk mod-
ulus for € = 0 and € — oo is shown in Table 1. Note that the
softening effect for tubes with € = 0 is about twice that for
tubes with € — oo,

The bulk modulus given by (5) and (7) assumes small
enough pore volume that pore interaction can be neglected in
the calculation of §U,,. Results for larger pore volume are esti-
mated by using the self-consistent approximation [0’Connell
and Budiansky, 1974] which we treat in a later section.

For the same rock with cavities filled with a liquid melt the
static or low-frequency bulk modulus X,,’ can be obtained by
using Gassmann’s [1951] relation

. K,/ +F
K, =K——fr X+ F (8a)
where
K/(K-K))
F=—{0— 247 8b
BK=K)) (86)

Here K/, and K, and K; are the bulk moduli of the dry porous

TABLE 1. Simplified Forms of Bulk and Shear Modulus for Tubes
=0 €— @
Bulk modulus, dry 1 _ 1 B[ B-4-38 1 _1, 8} 5-4
K/, K K 3(1 = 2») K, K K| 3(1-2)
Static bulk modulus, L - l KK, 1 = 1 KK,
saturated K,,,’—K+B{K—K! 7(:_1?+B{K—K,
3(1 - 2»)BKV 3(1 — 20)BKV

* XU+ )NTRA([(13 — 4v — 8274 (L + )]

40 — 26v
15

Static or dry shear

28
modulus w *

[
el

J

S—4y
/K5 —4n]+ 1

Unrelaxed saturated
shear modulus TN ;L'

]

b b

t ST D)NaRMGI(5 — 49)/3(1 — 29)]

1 1 BT40-24p
aaibhind v
gopop 15
1_1_8 P
‘ wow e WK)+1
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rock, of the intrinsic rock material, and of the fluid, respec-
tively, and B is the volume fraction of melt. Substituting for
K,/ from (5), we obtain

.‘_.-— _l_ B Kf - T 2

ran il {K_K[+3(1 2v)/3Vi:2(l +y)rS R,

(20 -9I@+ R +2] (1= [@+e— 2] ~' -1
Qrer W+ Q+ey ©)

This result assumes that the pore pressure is uniform every-
where throughout the rock. Cases where this condition does
not hold are discussed in the later section on attenuation. The
modulus X, is shown in Table 1 for e = 0 and € — oo,

Shear Modulus

To estimate the effective shear modulus, we consider the
same rock model used for the bulk modulus and once again
solve the problem in two steps. First, the reciprocity theorem
is used to compute the shear modulus for the corresponding
dry rock. Then the effect of liquid melt is included. To apply
the reciprocity theorem, consider the two sets of tractions
shown in Figure 3a. The rock has volume ¥ and a distribution
of N randomly oriented pores of the type shown in the figure.
The system on the left is loaded by the externally applied
principal stresses o, = ~8P, 0,, = 8P, and o,, = 0, resulting in
the pore wall displacements 8U. The pore faces are stress free.
The system on the right has the same external load plus the
tractions

-1 0 0
T=6P[0 1 0|4 (10)
0 0 0

applied to the internal pore surfaces, where i is the unit nor-
mal to the cavity surface (pointing into the cavity) at each
point. In this case the system behaves like a solid block with-
out pores. Applying the reciprocity theorem, we can write

8U-TdA (11)

LIS Z
¥ (81")2
where the integral is taken over the entire surface of the ith
pore.

The orientation of the ith pore relative to the applied prin-
cipal stresses is specified by the spherical coordinates A and £
of the pore axis as shown in Figure 3b. To solve for the pore
deformation, it is convenient to express the applied stresses in
terms of a rotated coordinate system x’-y’-z’ such that the z’
axis coincides with the pore axis. The primed system is ob-
tained by a rotation through an angle ¢ about the z axis fol-
lowed by a rotation through an angle A about the y’ axis. The
remotely applied stress components relative to this system are

cos? A(sin® £ — cos? §)

(o) =0P 2sin £ cos £ cos A

sin A cos A(sin’ £ — cos?£)  2sin £ cos £sin A

and the tractions T appearing in (11) can be written
T = (o) - & (13)

where @’ is the unit normal vector to the pore surface in the
primed system.
An important feature of the calculations is that the integral

cos? £ — sin? ¢
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Fig. 3. (a) Applying the reciprocity theorem to calculate shear

modulus. On the left the pore surfaces are traction free. On the right
the tractions T are applied to the cavity, making the rock deform as
though nonporous. (b) Orientation of the ith pore in terms of spheri-
cal coordinates.

that appears in (11),

W= / T.8U dA (14)
i

which represents the additional strain energy due to in-
troducing each pore, is invariant under rotations about the 2’/
axis. This follows from the symmetry of the pore. We can
therefore freely rotate the coordinates to facilitate evaluating
the pore strain energy (14).

The displacement field is found in the appendix. Sub-
stituting (A38)-(A40), (A45), and (A49) into (14) yields

2
/T.SUdA=—’ZI—2ﬁ{272+aoz
{

2(1 = W2 + €)* + 2]
(2+¢)?

21 + V)2 + € —
Q2 +¢?

2]] +45%(1 — v)} (15)

For large N the summation over all pores can be replaced
with an integral over the range of orientations A and ¢ [Walsh,
1966]. In each increment of solid angle, 42 = sin A dA d, the
number of pores is N d§2/4n, assuming an isotropic distribu-
tion of pore orientations. Integrating and substituting into (11)
give the effective dry rock shear modulus, valid for small con-
centrations of tubes:

NoRd (4 1 [20—»)[Q+eP+2]

3]

1 1
Wop v a+er

21+ +92 -2 .,
+ e :l-l-g(l—u)} (16)

2sin £ cos £cos A sin A cos A(sin? § — cos® £)

a2

2sin £ cos £sin A

sin? A(sin? § — cos® §)

Expressions for the cases € = 0 and € — oo are summarized in
Table 1. Again the softening effect of tubes with € = 0 is about
twice that for € — co. Once again the limiting case ¢ — oo
agrees with Wu’s [1966] result for low concentrations of
needle-shaped cavities.
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For the same rock filled with a liquid melt the modulus is
frequency dependent. At sufficiently low frequencies the in-
crement of pore pressure induced by the applied stress is zero
everywhere throughout the rock, and the saturated rock shear
modulus is equal to the dry rock shear modulus given in (i6).
At very high frequencies the applied stress changes faster than
the fluid can flow to equalize the pore pressure. In this case
the pores are effectively isolated from each other with respect
to flow. The pore pressure is a function of pore orientation rel-
ative to the applied stresses and is generally not equal to zero.
The nonzero fluid pressure resists distortion of the rock, and
the effective shear modulus with isolated pores, denoted here
as.p,’ is larger than the low-frequency modulus in (16). We
solve for p,” as follows.

Consider again the tractions shown in Figure 34, with the
exception that pore pressure 6P, are now applied to the rock
on the left, resulting in slightly different pore wall dis-
placement §U. As before, the system on the right behaves as a
solid block. Applying the reciprocity theorem, we can write

/SU,,’ ds
i

an

where the integral in each summation is over the entire sur-
face of the ith pore. The quantity

8U.TdA -

| l
it a s v 5 o

AV, = /w; ds (18)
where 8U,’ is the normal component of pore wall dis-
placement, gives the volume change of each pore in the rock
on the right side of Figure 3a. Because the rock on the right
deforms as a uniform solid block, AV, is simply proportional
to the hydrostatic component of the applied stress (which is
zero). Hence AV is identically zero, and (17) reduces to a form
similar to (11).

The pore wall displacement in this case is also evaluated in
the appendix. Substituting (A67) and (A70) into (11) and in-
tegrating over all pore orientations yield
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the cavity walls, except that the pore is now considered to lie
in a solid elastic material having the yet-unsolved-for effective
moduli. Hence the self-consistent dry rock moduli are found
by replacing u and » with the effective values g’ and ' on the
right sides of (7) and (16) and solving these together with the
usual relation for linear isotropic elastic materials:

3K, —
20K, + 1)

vy =

(20

The very low frequency self-consistent bulk modulus for
the melt-filled case is obtained from the self-consistent dry
modulus by using Gassmann’s relation. The low-frequency
melt-filled shear modulus is the same as the dry rock modulus.

Finally, the high-frequency self-consistent bulk and shear
moduli for the melt-filled case are found as follows. On the
right side of (19) K, », and pu (including values of u implicit in
the term 1/p") are replaced by their effective values of X,,/, v,
and p,”. On the right side of (7), p and » are replaced by the
effective p,” and »,./, and the self-consistent form of (7) is then
substituted into Gassmann’s relation. These two equations are
then solved simultaneously with

3K, — 2
23K, +u)

v, =

@n

CALCULATION OF ATTENUATION

A number of mechanisms have been proposed to account
for wave attenuation in rocks at elevated temperatures [Jack-
son and Anderson, 1970; Johnston et al., 1979; Mavko et al,
1979]. In this paper we focus on losses associated with the lig-
uid melt phase. In particular, we consider stress-induced vis-
cous fluid motion, heat flow, and phase changes. Other mech-
anisms, including dislocation motion and atomic diffusion,
dissipate wave energy in the solid phase at temperatures both
-above and below the solidus and must be superimposed. How-
ever, the various sources of attenuation may not be simply ad-
ditive [Stocker and Gordon, 1975, O’Connell and Budiansky,

N#R*d {

150V | =200 = 92+ €)?+ 2] + pl(2 + €)* -

where u’ is the low-frequency modulus given by (16). Sim-
plified forms for p,’ are given in Table 1 for € = 0 and € — oo.
As a check, the case ¢ — oo agrees with Wu’s {1966] result for
low concentrations of saturated isolated needle-shaped cav-
ities (computed by setting the inclusion shear modulus equal
to zero in Wu’s result).

Self-Consistent Approximation

As stated, the expressions (5), (7), and (9) for effective bulk
modulus and expressions (16) and (19) for effective shear
modulus were derived by assuming no pore interaction in the
elastic calculation. The self-consistent scheme [Hill, 1965; Bu-
diansky, 1965; Walpole, 1969; O’Connell and Budiansky, 1974}
provides one way of approximating the interaction and ex-
tending the results to slightly larger melt fractions.

To find the self-consistent moduli, we use the same isolated
pore solutions derived in the appendix for the displacement of

21 - M2+ e +2]— (1 - W2+ e -2
AU(1/K) = (1/K) = (1 = 2y/2u(1 + v)l]}

) {2(1 -2 +e?+2]—(1 —2v)[(2+e)2—2]} (19)

2+e?

1977]. For example, grain boundary relaxation may dissipate
wave energy below the solidus. If, however, melt appears as
films on grain boundaries, grain boundary relaxation is re-
placed by viscous shear, not added to it. For tubes the inter-
action should be much smaller, and we assume that the atten-
uation calculated here represents the difference in attenuation
just above and just below the solidus.

The attenuation is most easily estimated from the modulus
defect [Fung, 1965; Kjartansson, 1979]. Consider, for example,
a material whose relaxation can be approximated as a single
decaying exponential, resembling a standard linear solid [Ze-
ner, 1948]. In this case the maximum attenuation is given in
terms of the modulus defect as

1 M,— Mg
2 (MMp)"

and occurs at a frequency w,. Here M, the ‘unrelaxed modu-

Qonas™' = 22
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lus,” is the modulus at frequencies much higher than w,, and
Mg, the ‘relaxed modulus,” is the modulus at frequencies
much lower than w, The peak frequency w, depends on the
physical mechanism of relaxation and is almost always a
strong, function of grain and pore geometry.

Rocks are, without exception, characterized by distributions
of grain and pore dimensions and shapes. Furthermore, some
relaxation mechanisms (e.g., some of those controlled by dif-
fusion) cause attenuation to be spread out over a much
broader range of frequencies than is the attenuation of a stan-
dard linear solid [Kjartansson and Nur, 1980]. We would ex-
pect, then, that a continuous distribution of simple relaxation
peaks over a range of frequencies w, would be required to de-
scribe the attenuation.

In the case where the distribution causes Q to be constant,
or nearly constant, between frequencies w, and w, the attenua-
tion can be related to the moduli M, at w, and M, at w, with
the dispersion relation [Kjartansson, 1979]

(M3/M\) = (/) (23)
where
y= :—rtan" é
For large Q, (23) can be approximated as
A T YWY M'MzM2 249

If we interpret M, as being approximately equal to the unre-
laxed modulus and M, as the relaxed modulus, then (24) takes
on roughly the same form as (22) except for the factor which
depends on the spread of relaxation frequencies. This spread
is the most poorly determined quantity in any relaxation
model, but fortunately, the logarithmic dependence is weak.
For example, when w, and w, are separated by 6 orders of
magnitude, (24) becomes

M|—M2

" 25)

——
2 T8

which differs by only a factor of 4 from the single relaxation
peak result in (22).

In the following discussion of attenuation we estimate sepa-
rately the modulus defect and frequency dependence. We first
identify the various relaxed and unrelaxed states of the par-
tially melted rock and estimate the corresponding effective
moduli, using the results of the previous sections. While we
can estimate these moduli fairly accurately, a detailed calcu-
lation of the frequency dependence depends on many more
assumptions about the unknown distributions of pore sizes
and shapes and about the manner in which pores inter-
connect. Because of this uncertainty we estimate the’ magni-
tude of attenuation by using (23) and (24) and simply assum-
ing that Q is approximately constant over a range of fre-
quencies. In most of the figures we plot (M, — M,)/2M,, be-
cause it is independent of assumptions about the frequency
dependence and because it is an estimate of the upper bound
on the attenuation resulting from the mechanisms considered.

Bulk Attenuation

Consider again the rock mode! represented in Figure 1b. If
uniform pressure is suddenly applied, an increase in pore
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pressure is induced that is nearly uniform throughout the
rock, except for localized gradients that tend to force a small
amount of melt out of the sharp tips of the triangular tubes.

At the same time, increased adiabatic temperatures are in-
duced, generally different in the solid and melt phases because
of ‘their different thermodynamic constants [Kjartansson and
Nur, 1980]. Neglecting the minor fluid motion and consid-
ering times much shorter than the time for substantial heat
flow between solid and liquid, we take for the unrelaxed mod-
ulus K, the expression (9) with adiabatic values for X, K, and
v substituted on the right side. Tabulated values for the elastic
moduli of individual phases are usually appropriate for iso-
thermal conditions, but we can solve for the adiabatic values
by using the relations [Landau and Lifshitz, 1970]

Yoo = Mo (26) .
_rrt E,Toa?/9pc,
Y = 1 ZTE,Td?/%c,

where ¢, is the specific heat, T is the absolute temperature, a is
the volume coefficient of thermal expansion, and subscripts ad
and T refer to adiabatic and isothermal conditions, respec-
tively.

On a longer time scale, relaxation occurs as heat flows be-
tween the solid and liquid. One possible intermediate relaxed
state occurs when the local adiabatic temperature gradients
are relaxed. A second relaxed state will occur when the in-
duced solid-melt phase change is complete and the local tem-
perature gradients resulting from the release or absorption of
latent heat of fusion are relaxed. These effects are discussed in
detail by Savage [1965], Vaisnys [1968), and Kjartansson and
Nur [1980}.

With phase changes, the net relaxed volume change result-
ing from an applied compression (and therefore the effective
bulk modulus) depends on the elastic compressibilities of the
solid and liquid and thermal expansions resulting from the
temperature increase. The temperature increase associated
with phase change depends on the Clausius-Clapyron equa-
tion, which dictates the change in temperature that results
from the change in pressure for a solid and melt in equilib-
rium. In addition, a very large effect is the volume change that
accompanies the melting (or solidification) of material.

Kjartansson and Nur [1980] have computed the equilibrium
relaxed properties of partially melted olivine (fayalite) and
pyroxene, including the effect of the phase change, using ther-
modynamic data from Carmichael et al. [1977). Their calcu-
lations assume that the induced pore pressure is equal to the
applied pressure, which is appropriate for very thin films of
melt. For the present geometry the induced pressure is less
than the applied.

We obtain a rough estimate of the relaxed bulk modulus
K" with phase change for the tube geometry, using expression
(9) with adiabatic moduli specified for the solid and an effec-
tive melt modulus K’ defined to include the effect of the vol-
ume decrease at phase change. For a given melt fraction 8 we
estimate K/ from Kjartansson and Nur’'s values for relaxed
moduli X', using

@n



MAVKO: STANFORD @ CONFERENCE

where K, is the adiabatic solid modulus. The expression (27)
is simply the effective compressibility for a composite with in-
duced pore pressure equal to the applied pressure, the case
treated by Kjartansson and Nur.

We assume that the time constant for relaxation is governed
by both the phase change reaction kinetics [ Vaisnys, 1968] and
the thermal diffusion time, given by

= 1k

where / is a characteristic diffusion length and « is the diffusi-
vity; x is typically of the order of 1072 s cm™ [Carmichael et
al., 1977]. Length scales range from the pore radius R for
equilibration of the thinnest tubes up to the grain diameter for
equilibration of the larger tubes. Neither of these dimensions
is well determined for the upper mantle, but a reasonable
range of 0.001 </ < | cm, for example, corresponds to relaxa-
tion times of 107* < 1, < 10% s. In contrast, Vaisnys 1968} sug-
gests that the relaxation time, if it is based on the reaction ki-
netics, is of the order of 500 s. In a given system the slower
process would determine the overall relaxation time.

Shear Attenuation

Consider now the rock represented in Figure 3. If pure
shear stress is suddenly applied, the instantaneous induced
change in pore pressure is not uniform throughout the rock
but rather depends on the orientation of each pore relative to
the applied principal stresses. In addition, within each pore,
minor pressure gradients and viscous shear stresses appear
near the sharp crack tips.

Neglecting the latter, we take as the unrelaxed state the
condition where the pore pressure is uniform within each pore
but different.from one pore to the next. The unrelaxed shear
modulus is u,’, given by (19) with adiabatic moduli substituted
on the right side.

Relaxation occurs as melt flows from one pore to another,
from high pore pressure to low pore pressure. The final state,
if pores are randomly and isotropically distributed, has uni-
form pore pressure equal to the pore pressure that existed be-
fore the shear stress was applied. Hence the relaxed modulus
is given simply by (16) with isothermal moduli substituted on
the right side.

An intermediate relaxed state is possible. If squirt is suffi-
ciently slow, the local compression and dilation of unrelaxed
pores might lead to localized thermal relaxation and phase
change, even though the average microscopic stress field has
no hydrostatic component.

The relaxation time for flow between tubes is estimated as
follows. During relaxation a volume of liquid Av, is trans-
ferred from a pore with initially high pore pressure Ap, to one
with initially low pore pressure —Ap,, where Ap, is the in-
crement of pore pressure change induced by the applied shear
stress. When relaxation is complete, the increment of induced
pore pressure has decayed to zero. Hence we estimate the pore
pressure at any point during relaxation as

Ap = Ap, Av/Av, 29

where Av is the portion of excess pore fluid remaining in the
pore. The total volume flow rate out of a circular pipe with
radius r under pressure gradient aP/adx [Baichelor, 1967] is

(30)

(28)
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where 7 is the liquid viscosity. For the triangular tube with
length d the pressure gradient is approximately dP/dx = Ap/d.
Assuming an equivalent circular tube with radius roughly r =
2R/3, the volumetric flow rate out of the tube is

dAv _ m [2R\* Ap, Av
a 81,( 3] d Av Gb
‘Then Av decays exponentially with time constant
t, = 8lndAve/2nR*Ap, (32)

The ratio Av,/Ap, can be estimated from (A69) and (A70) to
be of the order of wR?d/K,. Hence

4, = (40n/K;)(d/R)* 33y

K, is typically 0.6 x 10'* dyn/cm?, and 7 is probably less than
10° P. Again, the important dimensions are poorly deter-
mined, but d ~ 1 cm, and 0.001 < R < 0.1 cm corresponds to
relaxation times 1072 < r < 10? 5. Lower viscosities and shorter
tube lengths decrease the relaxation time. In comparison,
O’Connell and Budiansky [1977] estimate the relaxation time
for flow between films of aspect ratio a as

{; = 2m/Ko?® (34)

On the average the ratio of pore length to width will tend to
decrease as the melt fraction increases, causing relaxation
times to shorten. Frank [1968) modeled grains as truncated oc-
tahedra of diameter a (between square faces) as follows. Each
of the 36 grain edges is shared by three grains, so that the total
edge length per unit volume of material is 6(2)'/?/d*. If the av-
erage tube diameter along all of the edges is R, then the melt
fraction of the tubes is

B = 372"*(R/a) (35)
If the distance of flow for squirt is d = a, then
(d/R)* = 372"%/B (36)

Therefore as 8 increases, there is a tendency for 1,, given by
(33), to decrease. However, to estimate the actual relaxation
times, we would need to know the distribution of tube diame-
ters R rather than the average R. For some tubes, d/R might
be significantly smaller than d/R. Similarly, we need to know
what fraction of the melt is in the tubes and what fraction is in
the tetrahedral regions where tubes intersect (Bulau and Waff,
1979]. For example, if only 10% of the melt is in tubes, then
(36) is modified as

(d/R)* = 3072"%/8 a7

The distribution of tube diameters and the fraction of meit in
tubes versus tetrahedra probably have very little effect on the
estimate of moduli versus melt fraction. These factors do,
however, complicate our estimation of relaxation time.

MODEL RESULTS

Effective bulk and shear moduli calculated for olivine
(fayalite) and pyroxene at 20 kbar are shown in Figure 4 as a
function of melt fraction. The similarity of results for the two
minerals suggests that the results may apply as least qualita-
tively to a range of compositions. Thermal and phase change
calculations were taken from Kjartansson and Nur 1980}, and
material parameters were taken from Carmichael et al. [1977).
Curves labeled ‘tubes’ show the results of this study (for ¢ =
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Fig. 4. Computed effective moduli as a function of volume melt
fraction, assuming (left) all tubes and (right) all films. The dashed
curve is the result from Kjartansson and Nur [1980] (see text). (a) Oli-
vine: P = 20 kbar, T = {600°K. (b) Pyroxene: P = 20 kbar, T =
1900°K.

0). For comparison, curves labeled ‘films’ are shown that as-
sume that the melt exists as penny-shaped ellipsoidal films
having a distribution of aspect ratios « uniform in In a be-
tween 10~ and 107 This is the case computed by O’Connell
and Budiansky. For films the expressions of O’Connell and
Budiansky were modified (see appendix) to treat more cor-
rectly the case of nonzero melt fraction. All of the curves in
Figure 4 incorporate the self-consistent approximation.
Comparing tubes and films, the upper unrelaxed bulk mod-
uli curves are approximately the same, because the adiabatic
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compressibilities of solid and melt are within a factor of 2.
Hence the difference in pore stiffness is not very important.
The other bulk modulus curves represent the various possible
relaxed states. Note that there is a small bulk relaxation due to
squirt. Although squirt should not affect isolated tubes in pure
compression, their compression does depend on the effective
shear modulus of the matrix. Hence at larger melt.concentra-
tions we observe the effect of coupling between bulk and shear
incorporated in the self-consistent approximation. For all ge-
ometries a small bulk relaxation results from the relaxation of
adiabatic temperature gradients (curve labeled ‘thermal’).

The largest single effect for the bulk modulus is the induced
solid-melt phase change. Recall that in this case the melt
looks effectively very compressible. By our model the differ-
ence between unrelaxed and (phase change) relaxed moduli
at small melt fraction goes continuously to zero at zero melt
fraction, where the results of Kjartansson and Nur show a dis-
continuous drop in relaxed modulus at the onset of melt. This
difference is produced by Kjartansson and Nur’s assumption
that the composite has zero shear stiffness. Their results are
shown as dashed curves in Figure 4. Note that our results con-
verge with theirs at melt fractions large enough that p’ — 0.
The curves labeled ‘squirt + p.c.’ (phase change) show an ef-
fect physically similar to the ‘squirt’ only curve except that the
relaxation is magnified because the melt is now effectively
very compliant.

The sets of shear moduli curves show the upper unrelaxed
moduli and various relaxed states. The greatest effect in shear
is relaxation due to squirt. However, the effect of phase charge
without squirt is also distinguishable.

In most cases the effects of melt are magnified in the film
geometry.. ‘

Figure 5 shows normalized P and S wave velocities pre-
dicted for olivine at 20 kbar if melt is in the form of tubes (e =
0) only. The upper curves represent the unrelaxed or high-fre-
quency values. The spread in velocities represents the dis-
persion resulting from the various relaxation mechanisms
shown in Figure 4. Note that if squirt alone occurs, there is a
large S dispersion and a small P dispersion. The effect of
phase change is to introduce additional P relaxation with no
further change in S.

1In the plot of modulus defect, AM/2M (where M = K + 4u/
3) and Au/2p, note that without phase change, squirt causes S
wave attenuation to be approximately 3 times the P wave at-

P wave S wave
1.0 1.0
-squirt |
8t phase change al |
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squirt
_YE 6t Y..s_ 6 4
v 1 Vo
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squirts 1 p.c.
0 .02 .04 .06 .08 .10 0 02 04 06 08 .0
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Fig. 5. Computed P and S wave velocity and attenuation versus volume fraction melt for olivine at 20 kbar, 1600°K,
assuming that melt is in the form of tubes only (¢ = 0). Different curves show the effects of the various relaxation mecha-

nisms.
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Fig. 6. Computed P wave velocily and attenuation for olivine at
20 kbar, 1600°K, comparing three different melt geometries: t, tubes
only (e = 0); f, films only, uniform in In (aspect ratio) between 10~
and 1074 and t + f, mixture of tubes plus films where at any melt
fraction 30% is in the form of films. The shaded regions show the
range of dispersion. (@) Relaxation due to phase change plus squirt.
(b) Relaxation due to squirt only.

tenuation. If phase change is important, then the situation is
reversed. Recall that these values can be transformed into 1/Q
if we estimate the frequency spread of relaxation. For a single
relaxation time the curves represent 1/Q. For a spread of 6 or-
ders of magnitude the values 1/Q would be approximately
one quarter of the plotted values.

Figure 6 shows normalized P and S wave velocity dis-
persion and attenuation for olivine at 20 kbar. Three sets of
calculations are compared. One assumes that the melt is in the
form of tubes (€ = 0) only; the second, films only (in the same
uniform distribution of aspect ratios as in Figure 4); and the
third, a mixture of tubes and films, where at any melt fraction,
30% by volume of melt is in films. The shaded regions define
the total range of dispersion, that is, the difference between
the high-frequency (unrelaxed) and low-frequency (relaxed)
velocities. The modulus defects are also plotted.

In Figure 6a it is assumed that both phase change and
squirt relaxation occur. This gives the largest possible relaxa-
tion for the various mechanisms discussed in this paper. In all
cases the dispersion and attenuation are predicted to be com-

TABLE 2. Material Parameters for Copper and Lead
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parable and sometimes greater for P waves as compared to S

-waves. This difference is caused by the phase change and il-

lustrates that it is primarily a mechanism of local compres-
sion.

Figure 64 is similar to Figure 6a except that phase change is
neglected so that the relaxation is produced by squirt only.
This would be the case if, for example, squirt were dominant
in the seismic body wave band and phase change were impor-
tant only at longer periods. Now § wave attenuation is pre-
dicted to be 2 or 3 times the P wave attenuation.

The interpretation of the curves for P and S wave velocity
dispersion and attenuation for pyroxene (Figure 7) is the same
as for the case of olivine in Figure 6.

Velocity and attenuation in partially melted copper-lead al-
loys were measured in the laboratory by Stocker and Gordon
[1975], in extensional resonance at about 100 kHz. The results
are shown in Figure 8. The vertical velocity axis is normalized
to the velocity with no melt. The horizontal scale is melt frac-
tion by volume. This alloy was chosen because it is known to
have a nonwetting melt that tends toward the tube geometry.

In Figure 8a the circles are data points. The curves are
based on theoretical low-frequency results for several melt ge-
ometries, using the material properties given in Table 2. (It is
assumed that viscous flow is relaxed and phase changes are
unimportant for these conditions.) The upper curve is for
spherical inclusions of melt as presented by Stocker and Gor-
don [1975), using Oldroyd’s [1956] theory. The lower two
curves are for triangular tubes (e = 0), and the middle curve is
for tubes with circular cross section (€ — o). All curves incor-
porate the self-consistent approximation except the one la-
beled NI (noninteracting), which is included for comparison.
Comparing the self-consistent curves, the triangular tubes are
more than twice as compliant as spheres or circular tubes; that
is, for a given velocity it takes twice as much melt in the circu-
lar geometry to explain the observations. The difference be-

Kadx [ 77,
Mbar Vad g/cm®  dynscm™2
Copper
Solid 1.300 0.355 8.792
Lead
Solid 0.360 0.459 11.07
Liquid 0.337 10.68 0.025
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Fig. 7. Same as in Figure 6 but for pyroxene.
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Fig. 8. Comparison of computed velocity and attenuation with
observations from Stocker and Gordon [1975) for a copper-lead alloy.
(a) Velocity normalized to the value without melt. Circles are data.
Curves are computed for the following geometries: sphere, spherical
inclusions; cir, circular tubes; tri and NI, triangular tubes. All com-
putations are self-consistent except for the curve NI (noninteracting).
(b) Attenuation. Boxes are data. The dashed curves were computed by
Stocker and Gordon [1975}. The solid curves were computed for three
different spreads in relaxation time (see text).

tween the two triangle curves is entirely a result of the method
of mathematically treating elastic interactions of the in-
clusions. At low melt fractions (<5%) the curves converge, as
is expected, and fit the data quite well, much better than the
sphere or circular tube geometries. Hence it seems that the
shape (e = 0) is a good model for the melt geometry. At larger
melt fractions the self-consistent and noninteracting results di-
verge. Probably, the best fit is some average of the noninter-
acting and self-consistent values.

Attenuation is plotted in Figure 8b. The boxes show the val-
ues observed by Stocker and Gordon [1975]. The curves show
upper bounds predicted by several models. The curves for
heat flow and phase change were taken from Stocker and Gor-
don {1975] and are too low to account for the observed attenu-
ation except at the lowest melt fractions.

The curves for 4, §, and {5 AE/E correspond to a single re-
laxation time and spreads of relaxation times approximately
equal to 6 orders and 9 orders of magnitude (see (24)), respec-
tively. The relaxation times, using Table 2 and (33), are of the
order of

t=3-10"%(d/Ry (38)

This would equal the experimental frequency if R/d = 5 X
107“. Such a thin tube might be reasonable at very small melt
fractions where the curves agree with the observations. At
larger melt fractions (~0.10) the theoretical curves predict a
maximum attenuation an order of magnitude or more larger
than that observed. The results could explain the observations
if, for example, the attenuation outside the frequency band of
constant Q falls off as 1/w and the largest relaxation time were
about one decade shorter (107° s) than the experimental pe-
riod (107 s). Again, using (33), this could require R/d = 107?
for the thinnest tubes. A two-decade difference between the
longest relaxation time (1077 s) and the experimental period
would require R/d = 0.005.

The tube geometry explains very well the velocity data and
provides a plausible explanation for the observed attenuation
in the copper-lead alloy. Stocker and Gordon [1975] also mea-
sured velocity and attenuation in a partially melted copper-
silver alloy, which tends toward the film geometry. O’Connell

and Budiansky [1977] have shown that those results are consis-
tent with theoretical predictions for melt squirt in the film ge-
ometry.

DISCUSSION AND CONCLUSIONS

We have discussed calculations for velocity and attenuation
in partially melted rocks. In particular, new results for the
tube geometry have been presented and compared with results
expected for the more familiar film model under similar con-
ditions. Our motivation was not to demonstrate that any one
model is best but rather to show the range of behavior that is
possible. In fact, over a range of conditions from crustal
magma bodies to ocean ridges to the asthenosphere it is pos-
sible that a variety of melt geometries exist. It is also possible
that the geometry depends on the amount of melt present.

From Figures 7 and 8 it is clear that the greatest reduction
in velocity and increase in attenuation is expected where melt
is in the film geometry; the least where in the tube geometry;
and almost any intermediate values when mixtures of tubes
and films. If melt is present, a finite bulk attenuation arising
from thermal relaxation, melt squirt, or phase change is ex-
pected. The phase change seems to be quite large for the oli-
vine and pyroxene examples calculated here.

Since bulk attenuation is seldom required to explain P and
S (body wave) attenuation, the model results suggest several
alternative constraints on melt in the upper mantle:

1. If bulk attenuation from melt is important at body
wave frequencies, then the spatial distribution of meit must be
very restricted. For example, partial melt in the mantle low-
velocity zone would have to be in thin layers. Alternatively,
melt might exist only in laterally restricted regions, such as
under ridges or trenches (E. Kjartansson, personal communi-
cation, 1979). ’

2. If bulk attenuation from melt is important at body
wave frequencies, then melt can be widely distributed but
only in minute fractions by volume except in spatially re-
stricted regions.

3. Bulk relaxation due to melt may not be important at
body wave frequencies. The larger relaxation time suggested
by Vaisnys [1968] would imply that bulk attenuation associ-
ated with phase change would be observed only with longer-
period surface waves and free oscillations.

We have suggested that in many cases dispersion and atten-
uation can be easily estimated from the spread of relaxation
times and modulus defect by using (23) and (24). Figure 9 il-
lustrates the results of this technique relative to more exten-
sive viscoelastic calculations done by O’Connell and Bu-
diansky [1977]. The plotted points are normalized § wave
velocity and Q for melt in the film geometry as computed by
O’Connell and Budiansky [1977, Figure 8]. For the three melt
fractions shown (0.6%, 1.8%, and 3%) a distribution of aspect
ratios is assumed to be uniform in In « between 10~* and 107,
as in Figures 4, 6, and 7. The results represent relaxation due
to squirt only.

Our predicted Q (assuming frequency-independent Q), is
shown by the pairs of dashed lines. The upper line in each
pair was found from the plotted value of Ap/2pu in Figure 6b
and the simplified expression (24) using w,/w, = 10°. The
lower line in each pair is calculated from the more exact ex-
pression (23) using the unrelaxed and relaxed moduli for
squirt only in Figure 4. Our predicted velocity dispersion is
calculated using (23) to interpolate between the unrelaxed and
relaxed moduli and using the constant Q value also calculated

~
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Fig. 9. Comparison of computed dispersion using the simple con-
stant Q assumption versus the more detailed viscoelastic calculations
of O’Connell and Budiansky [1977).

from (23). For the two smaller melt fractions (0.6% and 1.8%)
the low-frequency velocity at 1077 Hz was taken from Figure
6b. For the largest melt fraction (3%) the lower-velocity curve
was calculated using the relaxed velocity from Figure 65, at
10~® Hz. The lower frequency was used because O’Connell
and Budiansky’s 3% Q has not yet rolled off at 10~ Hz. A bet-
* ter fit is obtained by using our estimated constant Q and sim-
ply extrapolating upward from O’Connell and Budiansky’s
lowest velocity. Hence the constant Q approximation seems to
provide reasonable back-of-the-envelope estimates com-
parable to the results of more complicated calculations.

A sample interpretation of the upper mantle low-velocity
zone can be made from Figure 6. Typical values under the
western United States [Goetze, 1977] are a shear velocity drop
of 10-16% and peak attenuation of 1/Q = 0.04-0.06. These
ranges are shown by the horizontal dashed lines in Figure 6,
and it appears that a continuous range of interpretations is
possible between ~1% for films only to ~8% for tubes only.
An independent constraint comes from upper mantle electri-
cal conductivity. Gough [1974] models geomagnetic deep
sounding data under the western United States with a value of
0.5 mho/m. This value suggests a minimum melt fraction of
the order of 5% at 100-km depth [Shankland and Waff, 1977,
Figure 7). From Figure 6 it is clear that the seismic observa-
tions are consistent with melt fractions greater than 5% only if
the melt is in the form of tubes or tubes mixed with films. The
model with films alone lowers the velocity too much.

APPENDIX
Plane Strain Tube Deformation

In this section the deformation of a tube under remotely ap-
plied stress is found. The method of solution is that given in
detail by Savin [1961) for polygonal-shaped cavities.

The problem is most conveniently posed by using the com-
plex variable notation of Muskhelishvili {1953]. Stress solu-
tions of two-dimensional problems (plane stress and plane
strain) in the theory of linear isotropic elasticity can be ex-
pressed in terms of two analytic functions ¢,(z) and y,(z) of
the complex variable z = x + jy:

O +0,,=2{6,(2) + $,'(2)] (Al)
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0,y = Oux + 2i0,, = 2[z,"(2) + ¥/ (2)] (A2)

where the overbar refers to the complex conjugate.

For the case of an infinite body loaded uniformly at infinity
and having a cavity surrounding the origin, each of the poten-
tials can be expanded as

$:1(2) = $°(2) + ¢*(2)
¥(2) = ¥°(2) +¥*(2)

where ¢° and ¢° give the solution in a body without a cavity
under identical remote loading and ¢* and ¢* give the super-
imposed perturbations due to introducing the cavity.

If the remote loading takes the form of a uniaxial tensile
stress P acting along an axis forming an angle « with the x
axis, the corresponding potentials of the uniform solutions are
[Savin, 1961]

(A3)

¢%(2) = Pz/4

(A4)
Yo(2) = —Pze™*"/2

The corresponding uniform stress components relative to the
Xx-y axes are

0. = Pcos* «

(AS)

= in2
g, = Psin’ a
0., = Psinacos a

The problem of introducing the cavity into the uniform
stress field can be thought of as follows. Before introducing
the cavity the stress is uniform throughout the body. The trac-
tion T on any surface normal to the x-y plane specified by
outward unit normal # is given by Cauchy’s formula [Fung,
1965]:

T=(0xx axy)_ﬂ (A6)

Oyx Oy

where o,,, 0,,, and ¢,, are given by (A5). Imagine now cutting
and removing material to form the desired cavity but simulta-
neously applying precisely the tractions given by (A6) to the
newly formed surfaces. At this point the elastic field outside
the cavity is exactly the uniform field that existed before mak-
ing the cuts. The final desired state of traction free cavity sur-
faces is achieved by relaxing these tractions, the equivalent of
superimposing the additional tractions —T. Hence the prob-
lem reduces to finding the potentials ¢*(z) and J*(z) that cor-
respond to an infinite body with a cavity loaded by tractions
~T and having zero stresses at infinity.

The stress boundary conditions in the form of tractions —T
with components —X and —Y acting on the surface of the cav-
ity can be related to the potentials at the surface by [Savin,
1961)

*(2) + z2*(2) + Y*(2) = —i/ (X+iY)ds (A7)

0
where s is the distance along the surface in the z plane. In the
cutting process described above, a similar condition holds be-

tween the potentials of the uniform part of the solution and
the tractions +T given by (A6) that were applied to the cavity:

¢°(z)+z$i7'(7)+W5=+i/’(x+iY)ds (A8)

Hence at the surface of the cavity only we have, equating (A7)
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and (A8),

$%(2) + 267 (@) + $*(2) = —18°(2) + 26™(2) + ¥(2))
It is convenient to treat irregularly shaped cavities such as

those in Figure 15 by conformally mapping the outside of the

complex z plane into the inside of a unit circle in the complex

¢ plane by means of a function z = w({), which we choose here
as

(A9)

1 1

z=R ¢ 2+e€

¢ (A10)

where R and € are real constants. Accordingly, the values of
¢ = pe” on the unit circle (p = 1) generate the parameteric
equations for the tube when they are substituted into (A10):

x= R(oos 6+ L cos 20)

2+e€
(A1)
. |
y—-R(—sm0+ 2+€smzo)
Muskhelishvili [1953] gives the more general form
N L (A12)
=R+,

which if m = 1/n, maps the unit circle [{] = | into a symmetric
figure in the z plane with n + 1 cusps. Savin [1961] treats the
special case z = R - (1/¢ + {3/3), which corresponds toe = | in
(A10).

By using the mapping (A 10) and the uniform solutions (A4)
the potentials (A3) for the total problem can be transformed
to the { plane:

Bl = £ 0§+ $*10()

(A13)
le®)) = S € u(8) + (]
Including the notation
OO KOO

o) =¢* ()] Yu(§) = ¥*[w()]

the problem now reduces to finding the functions ¢({) and
Y(?) in the interior of the unit circle. Similarly, the boundary
condition (A9) can be transformed using the mapping (A10)
and the uniform field potentials (A4) to read

D+ W) = L)~ 0@ (AL

$o(0) +

’

w'(o)

where o = ¢? denotes the values of { on the unit circle.

Two functional equations for ¢4({) and Yo({) can be ob-
tained by multiplying (A15) and the complex conjugate of
(A15S) by

1 do

2rio—¢

(A16)

where ¢ is a point inside the unit circle, and integrating each
equation about the unit circle [Muskhelishvili, 1953, pp. 303-
308; Savin, 1961}:
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do
o—¢

€

~—

«0) 57

w'(0)

o) +

27 J,

+8

do
e—¢

-P P
= T / [1(0) ~ e™(o)] (A7)

1 [ e , . do
o(§) + i )], w,(o) ¢o'(0) o-¢

do (A18)

- P ___
= /7 [w(o) — e"”"w(O)]o

¢

where 8 is an undetermined constant.
If we assume a solution in the form

b =a+a?+a, >+ - (A19)

substitute into (A17), and equate coefficients of identical pow-
ers of {, we obtain

PR
w0 = 5| ems - 1| (a20)

Substituting (A20) into (A18), we obtain

_PR[ e 20
Yol = 2 [2+e Q2+e?
e ([(2+ € +2)/2 + e} &
1={2/2 + )8

_ /@ +9i{l2+ e +2)/2 + &)} ¢*
1+[2/2 + 918

e—ﬂagz
—§+ 2+e]

(A21)

Finally, substituting (A20) and (A21) into (A13), we obtain

PRTL . .0 1,
'¢(o=7[?+2e c—zﬂf} (A22)
__e—IZn
HD(D—PR[ f
Q+ee™—[2+ 2+ €L+ (2+ €
* 202+ e — 42 + P J (A23)

Hydrostatic Stress

The normal component’ of pore wall displacement §U, of
each pore resulting from the remotely applied hydrostatic
stress 8P can be found as the superposition of two problems.
The first is the plane strain deformation 8U,, resulting from
remotely applied stresses g, = 8P, o,, = 8P, and o,. = 2»6P.
Here the z axis is chosen to coincide with the pore axis. The
second problem is the deformation 8U,, resulting from uni-
axial applied stress 0., = (1 — 2»)dP.

The displacement field U, = (u, v) for the plane strain
problem can be expressed in terms of the analytic functions
$:(z) and ,(2) of the complex variable z = x + iy found in the
preceding section.

The outward normal component of displacement §U,, can
be written in terms of the Cartesian components as

(dy, —dx)
(dxz + dy1) 172

where ds = (dx, dy) is the increment of pore contour I in the
x-y plane. It follows that

8U,,=(u,v)- (A24)
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/8U.,,ds=lm/ (u+iv)dz
r r

where ds = |ds| and Im refers to the imaginary part. In-
troducing the transformation (A10) into (A25) gives [

w(®)
W'(§)

orle(d)] - ¢.[w(m}w'<o dg

/ 8U.,,ds-——[m / (3 — 4) $1[(®) —
(A26)

The functions ¢(8) = ¢,[w($)] and Y(§) = ¥,[w()] are given by
(A22) and (A23) for the case of a body with a single cavity
loaded at infinity by a uniaxial stress P acting along an axis in
the x-y plane forming an angle o with the x axis. For the
plane strain part of the hydrostatic problem we superimpose
the solution for stress 8P and « = 0 with that for stress §P and
a = /2. Finally, evaluating (A26) gives

2R — 2) [2+ €F +2]
2+ ¢

/ 8U,, ds =8P (A27)
r

The uniaxial loading problem with stress a,, = §P(1 — 2:11)
results in the axial strain ¢,, = §P(1 — 2»)/E and lateral strains
from the Poisson effect e, = ¢, = —ve,,. Here E is the in-
trinsic Young’s modulus for the rock material. Hence we can
write the change in cross-sectional area of the pore as

—2p(1 —
E

where I

_ TR+ €*—2) !

2v)6P

dA = /SUZ,, ds=(e..+¢e,)A= A (A28)

is the unstrained cross-sectional area of the pore obtained by
integrating the area enclosed by the curve (2). The contribu-
tion to the strain energy integral from the pore ends can be
approximated by assuming a finite pore length d and fmdmg
the pore axial length change

8P(1 — 20)Ad

/;ndmt‘)‘U,,2 ds=¢, Ad= 3

(A30)
1
Substituting the contributions (A27), (A28), and (A30) into (4)
gives the effective bulk modulus. '
(
Pure Shear Applied Stress: Empty Pores
The pore wall displacement 8U from the remotely applied
stress (12) is found as the superposition of three separate prob-
lems. Accordingly, we write the applied stress (12) as the sum

0, o, 0 |
(6/)=6Pl0, o, 0 :

pid

0 0 »o. +o0,)

0 0 0
+8P[0 0 0 ‘
0 0 0,0, +0,) |
0 ¢ o,
+8P{ 0 0 o, '(A31)

o, o, O

(A25)
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The first term on the right side of the expression gives the uni-
form applied stress field corresponding to plane strain defor-
mation; the second term is uniaxial stress; the last term corre-
sponds to antiplane deformation.

The rotational symmetry of the strain energy (26) allows the
plane strain problem to be replaced by the two-dimensional
hydrostatic (H) and deviatoric (D) components in the princi-
pal stress coordinate system

g6 O 0 s 0 0

@ u+ (0 )o={0 o O [+{0 -S 0O (A32)
0 0 2vo, 0o 0 o
where
0o = (0, + 0,,)/2 = —sin® A\(sin® £ — cos? §)6P/2  (A33)

S§*=[(0, — a, ’)2/4 +a, ’2]61’2
= [4(cos® A + 1)*(sin? £ — cos? £)? + 4 sin? £ cos? £ cos® A}6P?

Similarly, the antiplane problem can be replaced by the ro-
tated antiplane (A) stresses:

0 0 7
(6,74=|0 0 0 (A34)
r 00
where
7 =0, + 0,.> = §P? sin® A[cos? A(sin® £ — cos® £)?
+ 4 sin? § cos? §] (A35)

With the problem thus divided, the pore energy can be writ-
ten as

/T-SUdA=/ (Ta+ T+ To+ Ton)

- (8U, + 86U, + 86U, + 8U,,) dA (A36)
where the subscripts 4, H, D, and AX refer to the tractions
and corresponding displacements in the antiplane, hydrostatic
plane strain, deviatoric plane strain, and uniaxial problems,
respectively. By symmetry, several of the cross products in the
integrand integrate to zero, yielding

/T-&UdA=d,—/T,,8U,,ds
r

+¢/TH6UAxds+/T48UAdi
r ¢

nds

+ d,/TDSUD ds +d,/TA8U,. ds (A37)
r r

Each of these five integrals is now treated separately.

The contributions from the plane strain and axial deforma-
tions are found as in the calculations of bulk modulus. By
simply replacing 8P in (A27) with g, and noting that |T,| = o,
we obtain

oo R2 (1 — ¥)2[(2 + €)? + 2)
w2+ ey

d / T, U, ds = (A38)
r

The uniaxial stress g,,” = —204(1 + ») causes the lateral strains
€.’ =€,/ = 2a,v/E from the Poisson effect, and we can imme-



5186 MAVKO: STANFORD @ CONFERENCE

diately write, analogous to (A28),

200°vdmR? [(2 + €)* — 2]
@ 2+e@

d, / Ta8U, x ds = (A39)
T

The contributions from the pore ends are found from the axlal
strain as in (A30), leading to

20,2dmRY(2 + €)* — 2]
B2+ ey

/ TodU, xdA = (A40)
cnds

The plane strain deviatoric contribution is found by refer-
ring again to the complex notation. The energy integral can be
expanded as

_ /s 0 |-y
d,/;TDSUDds‘—d,/;(u,v) (0 —S] (dx

where u and v are the x and y components of U and the in-
ward unit normal to the pore contour dz = dx + i dy is

" —dy
n (dxz + dyZ)l/Z(

(A41)

(A42)

It follows that

d, / Tp0Up ds = Im 2% / [ — 4v)pi(2) — 2, (2) — Y(2)] dz
r r
(A43)

Transforming to the { plane using (A10), this becomes

im S / {6 - 491001~ & 51001 - B} a
(Ad4)

For the plane strain deviatoric problem we take ¢($) and y({)
from (A22) and (A23) and superimpose the solution for § at «
with that for —§ at « + 7/2. Integrating around the unit circle
Y, we obtain

4(1 — v)S?R%7

p (A45)

d, / TpdUpds =
r

The antiplane problem is solved by using a slightly different
complex notation. The antiplane displacement §U,, is nonzero
only in the 2’ direction and can always be written as the real
part of an analytic function ¢(z). It follows that the stresses

can be written as
Ox; + ioy: =H 6(1)/62 (A46)

The energy integral can be written as

d,-/;TABUA ds= d,/rSU(o,; dy — o,. dx) (A47)
1t follows that

d, /; T8U,ds=Im & / ‘;’—; G+d)dz  (A48)

The function ¢ is found in the next section. Transforming to
the { plane using (A10) and integrating around the unit circle,
we obtain

2 p2
d, / T,8U, ds= _ '; 2m (A49)
.

Substituting the contributions (A38)-(A40), (A45), and (A49)
into (14) gives the dry rock strain energy needed to find the ef-
fective shear modulus (16).

Antiplane Deformation

In this section the antiplane solution is found for an infinite
body with a tube loaded by a uniform simple shear field at in-
finity. Choose Cartesian coordinates such that all antiplane
displacements U are in the z direction. Then U is a harmonic
function and can be considered the real part of an analytic
function ¢(z) of the complex variable z = z + iy. It follows
that the only nonzero stresses can be written as

0o,, — io,, = p dp/8z

For the case of a body loaded uniformly at infinity and con-
taining a cavity the solution can be expanded as

- 9(2) =¢°2) + *(2)

where ¢° is the solution for a uniform body without a cavity
under identical loading and ¢* is the perturbation due to in-
troducing the cavity.

In the case of simple shear loading the uniform field is

(A50)

(AS1)

¢°(2) = (1/p)ze™* (A52)
The corresponding stresses are
o, tio,=T1cosa+irsina (A53)

Here a gives the angle between the normal to the plane of
maximum shear stress and the x axis.

The stress boundary conditions in the form of tractions T
acting on the surface of the cavity can be related to the poten-
tial function at the surface by

S
/o [T ds = % [9(z) = $(2)] (A54)
where s is the distance along the cavity contour in the z plane.
A similar condition applies to both the uniform solution ¢°
and the perturbing solution ¢*. We can now write
P Tt = e %)
L@ - F@l= 56" @ - @ (A5
for z on the contour of the cavity. Using the mapping (A10)
and introducing the notation ¢4({) = ¢*[w({)], this becomes

—_—— -7 -
$0(6) — do(0) = " [w(o)e™ — w(o)e”] (A56)
where ¢ denotes values of { on the unit circle. A functional
equation for ¢¢({) is obtained by multiplying both sides of
(A56) by

1 do

2rio— ¢

(AST)

where ¢ is a point inside the unit circle, and integrating
around the unit circle

1 [ &o0) = %(0)

i ¢ / [w(o)e™ — w(o)e‘“]—-—-

'Y
(A58)

If we assume a solution of the form

d)=al+al*+ (A59)

-~
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infegrate, and :equate like powers of §, we find

'.TR ;5 _ e——ia ‘2 .
w0 =7 [ Bt= ] (As0)
The total solution is that
. R [ es . .
ol =20 | e (a6

Pure.Shear Loading With Pore Pressure
To evaluate the pore wall displacements 8U of the ith pore,

consider the stress shown in Figure 3a. The desired sef of -

boundary conditions for the ith pore consists of the remotely
applied siress o,/ given by (12) plis the normal siress —87,;
(stress defined as- positive in tension) appliedl to the. walls of*
the pore. This can be expanded as the supérposition of two
problems. Thie fifst has the hydrostatic stress—8P,, applied re-
motely as-well as at the pore-walls: The resulting deformation
is‘that of a solid block under pure hydrostatic stress. The sec-
ond problem has the stress

ay’ + "SP,..* o 03/
921: 02'25 + BPJ-M 0'23’ (A62)
Q'j]" U'jﬁ’ ﬂ]j’ + 6Pm

applied remotely while the pore walls are stress free. This
‘problem resembles the dry rock calculatmn above and can be
once again ‘decomposed intg plane strain; uniaxial, and anti-
plang problems, as in (A31) It can be immediatély seen that
‘the pore pressure affecis only the terms in (A37) involving
plane strain hydroslatlc and-uniaxial displacements. These are
evalnated s follows,
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f T.8U ¢ ds = {[~20:(1 + 3}
s
+8P,(1 — 20)|/E — 8P,/3K} dA. (AB6)

Substituting, (A45), (A49), (A63), {A65), and (A66) into (14)
gives

o 3
fTﬁU,V—WRd'

o [ 201 ~ )2 + )°+ 2]

2+ €*
21 + A2+ €2 —2]
Q2+ef

21 =R +e2+72]
2 +e®

_ (=)@ +ef ~ 21*1],

@+ ey
The induced pere pressure 6F,, is.givén by
8P, = —K/(AV,/V,)

: {'{272 +45%1 — »)

+ BPPUQ

{ABT)

(A68)

‘where AV;/V, is the pore volumedric strains. The, volumetric

strain is the;sum of the pore éross-sectional area sirain in the
x’sy" plahe. plus the pore axial strain in the 2 direction,

VYV, = (A4/4) + ¢ (A69)

which are contained in the expressions {A63), (AG5), and
(A66). Eliminating AV,/ ¥, from (AGS) and (A69) and using
(A63) and (AGG) we obtam the induced pressure in the ith
pere-due to the- plane hydrostanc Siress o,.

8P, = {

The.plane strain bydrostatic. displacement is found just as®

in {A27) with.g, replaced by o, + 8P, Adding the. sohd block
area changedd = —26PA/3K we obtain

fTH‘SUH ='—dﬂn 2 6P

2+e*+72]
Q2 +-£)‘2‘

B

AL~ ») (A63)

The unidxial stress component of (A62) is
- l"{‘(G‘lvl’ +.8P, pi) + {0,2_2',‘""'“6}3, p:)_]
=20,(1 +'9) + 8P, (1. — 2v)

Ogx = (‘?33’ + EP pr",)
(A64)
The resuliing area change from the Poisson effect-is d4 =
—2vdo, ./ E. Hence
[=205(1 + ) + 8P, {1 — 25)]

E

12+ 9¥-2)
v

fT U,z ds= —2pdoo

(A6S)

The pore shortening from the same uniaxial stress is o, xd/E
and from the supenmposed solid block problem is —8P/3K:
Hence

i - iR +eP+2 - (1= W2+~ 2
20— @ + P+ 2+ 4@ + € — AWK ~ (I/K) — [(1 — 2977281 + v)]}}

(A70)

Modified F qrm&"of Self-Consistent
Moduli for Films.

O’Connell and Budiansky give the following self-Consistent
expressions for effective bulk modulus X and shear modulus
tiy for isolated saturated thin (penny shaped) films of aspect’

ratio a.
. 16 (1= v’z)
X u.K’il 3 (= De:l {(ATD)
. o3 3 _
W= u[l 35 { ,v‘)(D+ T 15] (AT2)
where: '
4 (1'_, L_-r"li K —1 .
=l —
b [ * 3za (1 - 2¢) K’] (A73)
The crack density parameter € is defined as € = (Za’)/V,

where a; is the. radius. of the ith crack and. V' is the tofal rock
volume containing-the N cracks.

These results. are strictly valid only in the limiting case of
zero crack porosity. This can be.seén by examining the results
when the ¢rack ‘derisity €:becomes large enough that g’ = 0,
that i§, € = 45/32 and »' = 0.5. I this case, (A71) and (A73)
reduce t6



5188 MAVKO: STANFORD (@ CONFERENCE

e

(A74)

?fl'-'

L
K

whiére 8 is the porosity-given by 8 =-4W(Eﬁ,d;1)/-3 V. The dor-
rect limit is

1 _1-8_8
—= i 75
KK 7K (A7)
which agrees with (A74) only when 8 <1
A second important limiting case is where K, = K, which.

shoutd yield the resuit X
duce to

= K. However, (A71) and (A73) 1é-

A - BK
K=K I+ Bma/a)(1 — 26)/(1 — v

which is correct’only if 8 — 0.

A modified set: ofl‘seif-tansistent: moduli for nonzero film
parosny WEre derwed by using the reciprocity theorem in or-
der t6 calculate the examples in Figures:4, 6, and 7. These are
‘gxactly the same as{A71)and (A72) except that the patametér
D is now redefined as

_ 1L K=K & a’
De=y—%  ALTH @/3ma((t — /(1 —

WK /KY
(A76)

Ifi this case, K/ -in the limit as p'— 0 reduces to (A75), and the
K’ — K in the limit KI - K.
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The variation of the mechanical and transport prop-
erties of cracked rock with pressure are accurately
described and their interrelationships developed and
understood by using the "Bed-of-Nails" model (Gangi,
1975, 1978). A number of different models were treat-
ed (by considering the asperities on cracks to be des-
cribed as hemispheres, cones, wedges, etc.) and it was
shown that they are mechanically equivalent to the
simpler "Bed-of-Nails" model which treats the asperi-
ties as distributions of rods. The same model was
used by Kragelskii (1965) to obtain an analytic model
for the true area of contact between rough faces to
characterize friction.

The rationale for the model is illustrated in Fig-
ure 1. Figure 1A shows (schematically) a "natural"
crack. This "crack" was generated by making a hair-
line fracture in the unfractured medium and then trans-
lating the lower half of the rock to right (by about
one-half the dominant wavelength of the hairline frac-
ture) and introducing some deformation to the contact
areas of the crack. This is similar to how open
cracks are formed in rocks in nature; that is, the
rock is fractured in extension and shear displacements
prevent the crack from closing up completely when the
rock is pressurized. Of course, if there is no or
little shear displacement along the crack, the crack
will mate very well and will close up, almost
completely, when the rock is pressurized.
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B) Mechanically and Hydraulically Equivaient Crack
(schematic)

Figure 1.

The mechanical properties of this crack can be
determined by using complex mathematical techniques,
such as Muskhelishvili's method of Singular Integral
Equations ' (see Mavko and Nur, 1978), but the essential
properties can be determined using a much simpler
method which treats the problem as a statistical one,
which it inherently is. The model chosen by the
author (Gangi, 1975, 1978) is the "Bed-of-Nails" model
which is illustrated in Figure 1B. That is, the dis-
tribution of asperities is treated as a distribution
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of rods; these are much simpler to analyze.

Earlier, Greenwood and Williamson (1966) used dis-
tributions of hemi-spheres of different heights to
characterize the closing or "approach" (and therefore,
the modulus) of cracks under pressure. They assumed
gaussian and exponential distributions for the heights
of the hemispherical asperities. Walsh and Grosenbaugh
(1979) used the Greenwood and Williamson theory to
predict the stiffness of a crack (i.e., the joint
stiffness or modulus) is proportional to the (normal)
stress (see their Figure 7). Walsh and Grosenbaugh
used the exponential distribution for the asperity
heights. We find the same mechanical behavior with
the simpler 'Bed~of-Nails' model if the power of the
power—-law asperity-height distribution function
(Gangi, 1975, 1978),

. N(h) = NT(l-h/wo)“'l, )

is very large; that is, if (n-1) is very much greater
than one. This distribution function holds when ’
there are very few tall asperities and most asperities
have heights that are a small fraction of the maximum
crack width, Ve

In equation 1, N(h) is the number of asperities
that have heights lying between h and wg. The quan-
tity Ny is the total number of rods on the crack face
used to represent the asperities. That is, all the
rods (as well as all asperities) have heights lying
between zero and wy, the latter being the width when
there is no stress acting across the crack (here we
are referring to the equivalent crack shown in Figure
1B).

We find that some cracked rocks have crack moduli
which definitely do not vary linearly with pressure
as predicted by the Greenwood and Williamson model.
These distinctly different moduli variations with
pressure are easily accomodated by the simple 'Bed-
of-Nails" model by allowing different values for n
(lsns=) in equation 1. The resulting asperity-height
distribution functions are illustrated in Figure 2.
These functions were chosen simply because they allow
us to determine the variation of the crack width with
pressure (or crack modulus) while at the same time
being general enough so that they can represent

reality. :

For power-law asperity-height distribution
functions (equation 1), the width (w) of the equiva-
lent crack varies with normal stress, P, (Gangi,
1978) as

wh, = 1-(e/p " @)

where
2
Pl ENowo b/n
E = the rod's Young's Modulus
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