end CORRECTIONS IN MAGMETIC INTERPRETATIOM

by Ralph T. Shuey

ABSTRACT

The Talwani-heirtzler algorithra for rapid digital computation of the magnetic effect of bojes with arbitrary poiygonal cross section is modifiod to allow for finite strike extent of the body. The new algorithm reouires only one transcendental function for each polygon side at each profile point, whereas the original aloorithm requires two transcendental functions. Use of finite strike length in modeling macnetic profiles gives an inferred Eody with greater susceptibility, greater depth, and different shape. This is illustrated with theoretical and field examples.

INTROCUCTION

Quantitative interpretation of magnetic surveys currently relies heavily on the fechnigue of matching an observed profile with a thaoretical profile computed with formuias dun to Talwani and Heirtzier (leaia). These allow a source body of arbitrary cross section but assume infinite strike extent. Ir collaboration with A. S. Pasquale I have generalized the Talwani-Heirtzler formilas to allow for finite strike lenoth. The derivation is scheduled for putlication in the June, 19:3 issue of Geophysics. In this paper 1 will discuss the application.

EQUATIONS

Figure 1 defines the coordinate system. The body strikes parallel to the y axis and is terminated by planes $y= \pm Y$. The magnetic profile is along the x axis. For arbitrary magnetization $\underset{\sim}{\|}$ the comporients of ragnetic field due to the body are

$$
\begin{aligned}
& H_{x}=2 M_{x} P_{x}+2 M_{z} Q \\
& H_{y}=2 H_{y}\left(P_{z}-P_{x}\right) \\
& H_{z}=2 M_{x} Q-2 H_{z} P_{z}
\end{aligned}
$$

The theoretical profile is a linear combination of the three profiles P_{x}, P_{z}, and Q. For example, if the body is sunposed to have susceptibility k and no remanent magnetism, the total field anomaly T is given by

$$
\begin{aligned}
\frac{\gamma}{2 k F} & =P_{x} \cos ^{2} I \cos 2 A \\
& +P_{z}\left(\cos ^{2} I \sin ^{2} A-\sin ^{2} I\right) \\
& +Q \cos A \sin 2 I
\end{aligned}
$$

where F is the main field strergth and A is the angle between x axis and magnetic north.

Figure 1. Geometry of " $2 \frac{1}{2}-D$ dimensional" body. z axis is down, y axis is along strike, and traverse is along x axis.

COAPUTATION

The first step is to place the origin at the point where P_{x}, P_{z} and Q are to be evaluated. The basic relations are

$$
\begin{aligned}
& Q+i P_{z}=\oint \frac{Y}{r} \frac{d x}{x+i z} \\
& Q+i P_{X}=-\oint \frac{Y}{r} \frac{d z}{x+i z}
\end{aligned}
$$

in which the line integral goes clockwise around the cross-sectional figure and

$$
r^{2}=x^{2}+y^{2}+z^{2}
$$

If the body cross-section is a polyon of N sides, the integration is a sum of N term, each term being the integral along the eige from $\left(x_{1}: z_{1}\right)$ to (x_{2}, z_{2}). The final formulas are.

$$
\begin{aligned}
& Q+i P_{z}=\Sigma \frac{-\Delta x}{\Delta x+i \Delta z} \ln \left(F_{2} / F_{1}\right) . \\
& Q+i P_{x}=\Sigma \frac{i \Delta z}{\Delta x+i \Delta z} \ln \left(F_{2} / F_{1}\right)
\end{aligned}
$$

where the sum is over H sides and

$$
\begin{aligned}
& \Delta z=z_{2}-z_{1} \\
& \Delta x=x_{2}-x_{1} \\
& F_{n}=\frac{\Delta x+i \Delta z}{x_{n}+i z_{n}}\left(1+\frac{r_{n}}{y}\right)+\frac{i}{y^{2}}\left(x_{n} \Delta z-z_{n} \Delta x\right)
\end{aligned}
$$

with n taking the vaiues $1,2$.

Below is a FORTRAB V listing of subroutine MAG 2H，which finds PX，Q ，and $P Z$ according to the above equations．W is the number of vertices of the po ty－ gonal cross section．The X, Z coordinates of these vertices are given in the arrays VX，VZ．．These arrays must contain an（ $\mathrm{K} V+7$ ）th value winch repeats the first．Complex variables are used within this subroutine but not the main a program：Of the two expressions shown for Q ，statements 21 and 22，only one is needed and either one may be used．For each point of the profile the main program must place the coordinate origin at this point and call again the subroutine．In our experience computation of theoretical profiles for finite strike length Y is faster and cheaper than computation for infinite strike length using the Talwani－Heirtzler algorithm．

```
    i*
    ?*
    : \({ }^{*}\)
    \(1 *\)
\(5 *\)
    6*
    7*
    8.*
    ©
10*
1.1*
1?*
1.3*
14*
15*
18*
17*
1"
10*
シ10*
21*
2:*
2:*
24
つい
26*
27*
2苂
29*
```



```
COMPLEX I,F(2):FIMONXI?
DIMENSION VX(10),VZ(10),VR(10)
\(p x=0.0\)
\(0=0.0\)
PR \(\mathrm{F}=\mathrm{O} .0\)
Y SO \(=\mathrm{Y} *\) Y
NVP=NV+1
7
\(1 \quad \operatorname{VK}(\mathrm{~T} 1)=5 \mathrm{RKT}(\mathrm{VX}(11) * V X(\mathrm{~T} 1)+Y 50+V Z(I \mathrm{I})+V Z(T 1))\)
\(I=\operatorname{Carl}:(0.0 .1 .0)\)
DU \(5 \quad 15=1\), NV
\(\omega x=v \times(15+1)-v x(15)\)
                                    \(y=x_{i}-i\)
```



```
DKIZ=0. \(+1 * D Z\)
DO \(313=1,2\)
IV \(=15+13-1\)
\(3 \quad F(I 3)=\left\{\square_{1}=Z+(1 .+V Z(I V) / Y)\right) /(V X(I V) * I * V Z(I V))\)
    * + (I/YS?)*(V․(IV)*UZ-VZ(TV)*DX)
FLN=(CLOGiF(2)/F(1);)/DXIZ
Q1=-DX+REDL(FL:O)
QI= -DZ + AIMAG(FLN)
PCi=-DX*Ming(FLH)
P×1=DZ+RFML(FLH)
\(P X=P X+P X_{1}\)
\(P \angle=P ?+1 Z 1\)
\(0=Q+81\)
5 confine
RE TURIN
```

