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ABSTRACT 

This dissertation is concerned with the measurement of the relation­

ship between the natural fluctuations of the earth's magnetic field 

arid the voltages they produce in the surface of the earth. This relation­

ship is approximately defined by the electromagnetic dLmpedance of the 

surface of the earth for normally incident plane waves. Measurements 

of the impedance have been used as a method of geophysical survey called 

magnetotellurics. Because the electrical resistivities of different 

types of ground differ by several orders of magnitude this method has 

met with moderate success in spite of the fact that the estimates of 

the impedance have not been very precisely reproducible. 

The tunnel junction dc SQUID magnetometer designed by Clarke, Goubau 

and Ketchen has superior noise and drift characteristics. I describe 

the design, construction and operation of a 3 axis dc SQUID magnetometer 

suitable for field measurements. Repeated magnetotelluric surveys with 

this instrument showed that the reduced intrinsic noise of the magnetometer 

did not significantly improve the reproducibility of the estimates of 

the impedance. Nonetheless, I demonstrate that the discrepancies between 

the surveys are consistent v i t h the noise bias errors of the least squares 

linear regression technique that was used to estimate the impedance 
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rather than with the errors inherent in the approximations made in the 

consideration of the physical problem. I also argue that the difficulties 

in the calculation of average power spectra, which have been blamed 

for the scattered results, are not significant. 

I tried dozens of alternative methods of estimating the impedance. 

Four classes of methods are described that failed to produce satisfactory 

estimates. However, they did unambiguously demonstrate the presence 

of correlations between the noises in different field components. 

In order to avoid bias caused by local sources of electric or magnetic 

noise, it is necessary to make simultaneous measurements of two components 

of the field fluctuations at a site remote from the magnetotelluric 

sounding site. The equations for the estimation of the impedance, for 

the calculation of the confidence limits and for the calculation of 

the signal and noise power spectra of all the measurements are derived 

for the remote reference method. The basic equations are remarkably 

simple, symmetric, unique and easily generalized. 

A test of the remote reference method is described in detail. Data 

were taken simultaneously at two sounding sites and the magnetic field 

at each site used as the reference for the other. The remote reference 

method unambiguously gave superior estimates of the impedance. The 

reproducibility of the results was everywhere consistent with the expected 

random error which was as small as 0.4% for the apparent resistivity 

of the ground at frequencies where copious data were recorded. 
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SECTION I: INTRODUCTION 

The Physical Problem 

In 1722 an English instrument maker named Graham discovered diurnal 

variations in the direction of a very accurate compass, thus becoming 

the first person aware of natural short term fluctuations in the earth's 

7 
magnetic field. After having discovered the laws of electromagnetic 

induction Faraday in 1831 attempted to measure the electric potentials 

in the earth's surface that he knew must be generated by these fluctua-

27 
tions. He failed because of the low sensitivity of hxs instruments. 

These telluric potentials were first observed by accident on early 

telegraph lines whose ends had been grounded while not in use. The 

early telegraphic receiver was just a magnetized needle in a coil. 

Spontaneous fluctuations of the needle were frequently observed. In 

1849 a British telegraph engineer named Barlow described a nice informal 

series of experiments in which he established that the currents were 

indeed produced by ground potential differences which were roughly 

homogeneous over the array of his telegraph lines and generally associated 

with high levels of natural magnetic phenomena. Thus Faraday and 

Barlow became the first in a long line of experimenters extending to 

the present day who have attempted with either unambiguous failure 

or ambiguous success to measure the relationship between these natural 

electric and magnetic fields. ' This is the goal of magnetotellurics: 

to measure the electromagnetic impedance of the surface of the earth 

for the naturally occurring fluctuations and ultimately to use that 

information to determine the electrical resistivity of the ground. 
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This long and somewhat confused history may have in part been 

caused by the fact that the problem might seem to be totally intractable. 

The impedance of any system depends on the configuration of the incident 

electromagnetic energy and this configuration is never known in any 

detail for the magnetotelluric problem. In fact, the dependence of the 

magnetotellixric impedance on the incident wave form is small and the 

incident wave can be approximated as a normally incident plane wave. 

This approximation actually consists of two physically distinct 

sets of assumptions. 1) The incident electromagnetic energy is composed 

of plane waves. 2) The impedance is independent of the angle of 

incidence and polarization of the incident wave, and the vertical 

magnetic field is a linear function of the horizontal magnetic fields. 

I will now define my notation and describe the physical picture 

of the problem that convinced me that extensive efforts to improve the 

method for estimating the impedance were justified. Each electro­

magnetic quantity will be described by a complex number with the time 

dependence e where O) = 2TTf is the angular frequency. The time 

dependence will be dropped from all equations. I will use a right 

handed coordinate system with the z axis pointing down into the earth. 

The earth has a conductivity O, resistivity p = 1/0, magnetic permiability 

-7 
y equal to the free space value y = 4Tr x 10 and permxttxvity or 

1 8 
dielectric constant e = e = ; c = 3 x 10 m/sec. All equations 

^ ^ 
will be in MKS units. The atmosphere has £ = e , y = y and 0 = 0 . 

o o 
With these conventions Maxwell's equations are 
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V X H = OE -

V X E = iwB 

V • E = 0 

V • B = 0 

iWEE (1 .1 ) 

(1.2) 

(1.3) 

(1.4) 

->• -v 

where B = yH. 

Combining these equations yields 

2 
V F = -icoy(o-ioje)F (1.5) 

for any field component F of E or H. Since 0=0 in the air, waves 

propagate with velocity c. Typical values of p in the earth are 0.1 

to 10,000 f^ while £ - 10 farads/m. Thus we can ignore we compared 

to O in the earth up to about 10 Hz. In the earth the wave will decay 

to an amplitude of 1/e in a distance 

/2/(yajO) = 500 /p7f (1.6) 

called the skin depth. 

The pattern of electromagnetic energy in the ear.th induced by an 

27 
incident wave can be constructed through Huygens' principle. The 

progress of the wave can be constructed by considering each point of 

the wave front at the time t as a new source of electromagnetic energy. 

Adding together the waves from all sources produces a new wave front 

at time t+6t at positions where the waves from all sources are in phase 

and interfere constructively. Huygens' principle is extremely general. 

It can be applied to any wave phenomenon, longitudinal or transverse, 

on any scale, including the realm of quantum mechanics. 
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Consider a small flat section of ground, one square inch, for 

example. Consider an incident wave that is sufficiently homogeneous 

that it can be approximated as a plane wave over that inch and consider 

only the energy that passes through that surface. If the incoming plane 

wave has an angle of incidence of 6. with the outward normal to the 

surface and wave vector k then the wave crossing that surface will 

form a plane wave at the angle of transmission 6 to the inward normal 

with wave vector k . From equation (1.5) , k = /iojoy k . Thus the 
t t t 

phase velocity in the earth 

V p = 1^1 • . 1 : ^ • 11.7, 

Matching phases at the boundary gives 

sin 0 = /o/(yOc ) sin 6. . (1.8) 

Thus as long as 

we « a (1.9) 

the angle of transmission will be essentially zero regardless of the 

angle of incidence. Thus for typical values of 0.1 Hz and 10 fim a 

normal angle of incidence should be one of the better assumptions of 

experimental physics. 

If the flat surface under consideration is large compared to the 

skin depth at frequency w then the only energy reaching points below 

the center of the flat surface will be due to the plane transmitted 

wave. Additional waves produced by surface features or inhomogeneities 
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beyond the flat surface will be attenuated to an insignificant level 

before reaching this area. For this transmitted wave there will be 

nonzero components of E and H only parallel to the surface and these 

will be related by 

E = ( l - i ) /a)yp/2 H 
X y 

(1.10) 
E = ( i -1) /(oyp/2 H 

y ^ 

from equation (1.1) or (1.2). Thus E leads H by 45° in phase and 

|E|/|H| becomes small for low frequencies or resistivity. 

The most important point of the preceeding paragraph is that the 

scale length of the problem is the skin depth. It is over such distances 

rather than the wavelength in air that the incident wave must be 

homogeneous in order for it to be approximated as a plane wave. The 

effects of inhomogeneities in the earth will be significant over 

32 14 5 

distances of the order of the skin depth. The many investigators ' ' 

who have considered the incident energy as a plane wave must have 

implicitly londerstood this but there is still such confusion that one 

of the most experienced investigators in the field, T. Rikitaki, 

in 1966 called the most basic and general results, equations (1.8) and 

(1.10), "ridiculous".^^ 

A second point which needs clarification is that when inequality 

(1.9) is satisfied, only two components of the magnetic field 

fluctuations need be measured to specify all the electromagnetic 

fields. The pattern of energy under an irregular surface will no 

longer be a plane wave. Nevertheless the pattern could in principle 
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be constructed using Huygens' principle from wavelets originating 

simultaneously everywhere at the surface, regardless of 9.. In other 

words, one of the three degrees of freedom of an electromagnetic wave 

has been lost at the surface. While inhomogeneous incident waves 

certainly could produce independent fluctuations of the third component 

of the magnetic field, such independent fluctuations will depend on the 

nature of the inhomogeneity. No additional information about the earth 

would be obtained by relating the electric field to all three magnetic 

fields unless the nature of the incident inhomogeneity were known. 

Thus all the approximations in group 2 should be reasonable as long 

as the inequality (1.9) holds. 

The validity of assiMiption 1 about the homogeneity of the incident 

wave depends not only on the nature of the incident wave and the skin 

depth but also on the conductivity structure. In a horizontally layered 

earth it may not be obvious which layer it is whose skin depth defines 

the range of the effects of inhomogeneities at a particular frequency. 

17 
The classic case of the effect of structure is the "coast effect". 

Comparatively large currents are generated in a very large conductive 

sheet such as the ocean so that it may take a large number of skin 

depths in the continental material before the secondary fields from the 

ocean are reduced to an insignificant level. It is obvious then that 

in this case the impedance of the earth near the coast will be strongly 

affected by the incident field over the ocean so that this structure 

will severely test the assumption of homogeneous incident fields. 

The effects of inhomogeneous fields have been studied for a large 

17 19 23 24 
number of models of the earth ' ' ' usually with a dipole or line 
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source at approximately 150 km elevation. The general conclusion is 

that for these models one would expect to see variations of the 

impedance of the order of 10% at 100 second period, increasing with 

period. All these model calculations are rather academic, however. 

"We simply do not have adequate knowledge of the sources of geomagnetic 

20 
disturbance to permit us to predict the scale length" of the source 

35 
fields. Numerous xnvestigators have attempted to augment our 

knowledge by simultaneous measurements of the magnetic fluctuations 

in different locations. Gross inhomogeneities of the total field have 

been demonstrated in the auroral and equitorial zones. Such measurements 

can not directly establish that the incident field is homogeneous 

however, because the total magnetic field is modified by the local 

conductivity structvire. One thing is certain: the natural field 

fluctuations are generated in many modes whose amplitudes and locations 

vary with time. Because of these variables there can be no single 

answer to the question of the validity of the plane wave assumption. 

I feel it can best be answered experimentally, through systematic 

investigation of the reproducibility of the impedance over stable 

geological areas. The limits to the accuracy of magnetotellurics will 

be much better than the worst case variations caused by inhomogeneities. 

With extentions of the techniques presented in this dissertation it 

may be possible to detect the presence of significant inhomogeneities 

and.correct for them. At the least,one could reject data that produced 

significantly anomalous estimates of the impedance. 
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I conclude from this physical picture that at least from 10 to 

5 
10 Hz the horizontal electric field in the surface of the earth due 

-v 
to distant sources, E (oj) (s denotes signal) , should have a time 

s 
independent linear relationship to the horizontal components of the 

->-
magnetic field, H (o)) . The linear relationship between two two component 

vectors is of course a rank two tensor and the impedance, which will 

be denoted by Z, is defined by 

E (w) = z(w) H (w) . (1.11) 
s % s 

Consider the form of the impedance tensor for a few models of the 

earth. Equations (1.10) for a homogeneous flat earth in matrix form 

are 

(1.12) 

A model of the earth whose conductivity is a function of depth only 

will be called one dimensional. In such a case the form of equation 

(1.12) would be unchanged if one replaced p by the apparent resistivities 

p (lo) , w=xy, yx, defined by 
w 

s : \ ( i - l ) /a)yp/2 

( l - i ) *4oyp/2\ 

0 / 

->-
H 

s 

p m = |z (w)l^/(wy) (1.13) 
w ' w 

It is convenient to use units of mVAm for the electric field and 

-5 Y = 10 Gauss for the magnetic. In these unxts the apparent 

resistivity in Q-m is 
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p (W) = 0.2 |Z |Vf (1.14) 
w ' w' 

A two dimensional earth is one in which the conductivity is 

invariant under translation in one horizontal direction. This is a 

reasonable model for many geological situations where an originally 

layered structure has been displaced along fault lines which are all 

in the same direction, called the strike direction. Thus the strike 

direction is the direction of translational invariance. If Z is 

expressed as a matrix in a coordinate system aligned with the strike 

direction then the diagonal elements are still zero. Even more 

generally, if there is any vertical plane of reflection symmetry 

passing through the magnetotelluric sounding site then the currents 

and voltages induced in the ground must also have that symmetry. 

Thus the diagonal elements of Ẑ  in a coordinate system aligned with 

the plane of symmetry will still be zero. For a two dimensional 

earth the plane of reflection symmetry is perpendicular to the strike 

direction. In a coordinate system not aligned with t±ie plane of 

symmetry the diagonal elements will not be zero. The strike direction 

for a two dimensional earth could be found by minimizing the magnitude 

of the difference of the diagonal elements as a function of the 

rotation angle 9 about the z axis. The same rotation angle maximizes 

the sum of the squared magnitudes of the off diagonal elements. 

The rotation properties of Z_ are determined by its tensor nature. 

For any tensor T̂ , rotating the coordinate system by an angle 9 about 

the z axis changes the matrix representation of T̂  to 
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T?̂' (9) = R(9) XR ^(9) (1.15) 

where 

, / cos9 sin9 \ 
R(9) = (̂  (6))"̂  =( (1.16) 

\ -sin9 cos9 / 

and t denotes the conjugate transpose. 

A three dimensional earth has an arbitrary conductivity structure. 

Then the rotation angle which maximizes the sum of the squared 

magnitudes of the off diagonal elements indicates what is called the 

apparent strike direction. The apparent strike direction is ambiguous 

by 90° since rotation by 90° just interchanges the x and y axes. By -

rotated apparent resistivity I will mean the apparent resistivity from 

equation (1.13) in a coordinate system aligned with the apparent 

strike direction. A measure of the "three dimensionality" of the earth 

is the skewness 

W = 
Z + z 
_2E YZ 
z - z 
xy yx 

(1.17) 

which is invariant under rotation. 

The rotated apparent resistivities, apparent strike direction, 

skewness, and also the phase angles of the off diagonal elements are 

real parameters of the complex impedance tensor elements that have a 

relatively straightforward qualitative relation to the resistivity 

of the ground. They are also easier to present graphically. I 

therefore will use these parameters to describe the impedance tensor 

estimates. 
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Previous estimation of 2_ 

The problem of actually measuring the impedance tensor would be 

trivial if all the measurements of the electric and magnetic fields 

were noise free. Unfortunately all measurements contain noise so the 

measixred fields E and H contain noise contributions E and H . I will 
n n 

include in the definition of noise ionospherically generated signals 

that do not satisfy the plane wave assumption so that Ẑ  is well defined 

and time independent. Thus 

n = E - ̂  H (1.18) 

- » • - > 

is the total error in E and H. In addition to the noise there is the 

problem that the defining equation for Ẑ , equation (1.11), is just 

the two component equations 

E = Z H + Z H (1.19) 

sx XX sx xy sy 

and 

E = Z H + Z H (1.20) 
sy yx sx yy sy 

in the four unknown impedance tensor elements. 

Some investigators, following Cagniard, simply ignored the 

tensor nature of the relationship, thus in effect assuming that 

Z = Z = 0 and Iz I = Iz I. This was not successfixL since Z XX yy ' xy' ' yx' xy 

and Z often differ in magnitude by more than an order of magnitude 

and it confused the discussion of source effects. Others ' ' 

estimated Ẑ  by attempting to find two relatively noise free measurements, 

a and b, of each component of E and H, thus producing two sets of 
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equations (1.19) and (1.20) that could be solved simultaneously if 

the determinant 

a b 
H H 
X X 

a b 
H H 
y y 

is not zero, that is, if the magnetic fields have a different 

polarization for the two measurements. Although it is theoretically 

possible to get an accurate impedance tensor estimate from this 

approach, the location of noise free signals of significantly different 

polarizations that can be analyzed without significant error for every 

frequency of interest requires both great effort and luck. 

17 
In 1964 Madden and Nelson recognized that an estimate of Z_ 

could be made incorporating all of the measured data by substituting 

the measured fields into equation (1.11), multiplying by H to form 

the diadic matrix products of the vectors and averaging over the 

products from a narrow band of frequencies or from different times 

to produce 

[EH] = Ẑ [HH] (1.21) 

where, by definition 

A B* A B* 
X X X y 

[AB] = \ I (1.22) 
A B* A B* 
y X y y 

is the average power spectral matrix, which is a tensor, and the bar 

indicates the average. 
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This particular estimate for Z_, which will be denoted by Z_ , has 

31, 33 
been used frequently enough ' to be called the usual method of. 

analysis. From equation (1.21) 

z" = [EH][HH] •"• . (1.23) 

30 H 

Sims, Bostick, and Smith recognized that Ẑ  is the estimate of 

Ẑ  that minimizes the mean square error of the prediction of the 

electric field from the magnetic. That is, 

—rr- (IE - z" H|^ ) = 0, i,j=x,y . (1.24) 
9Z . -
ID 

Sims et al also pointed out that there are six such least squares 

estimates of Ẑ  corresponding to the use of any pair of E , E , H , or 

H to predict the other two. For instance, one could calculate the 
y 
least squares admittance tensor Ŷ  defined by 

3Y. . 
13 

|H - YE|] = 0 (1.25) 

V P — 1 

and then obtain another estimate of Ẑ, Ẑ  , from 2̂  = X̂  • The difficulty 

with each of these least squares estimates, recognized by all these 

investigators, is that they contain the measured autopowers of the 
predicting fields, for example JH | and |H | in equation (1.23). 

X y 

This is unsatifactory because the autopowers are always biased 

estimates of the signal powers, even if the noises are not correlated 

witii the signals. For example. 
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<|H|^>=(|H |̂ >-f<H H*)-H<H H*>-f<|H |^>=<|H |^-f<|H | ^ > > ( I H I^) 
' x' ' sx' sx nx nx sx ' nx' ' sx' ' nx' ' sx' 

(1.26) 

where < ) indicates an ensemble average. On the other hand averaged 

measured crosspowers are not biased by the noise powers if the noises 

are not correlated with the signals or each other. That is 

< E H* > = < E H* ) -f < E H* > + < E H* > -h < E H* ) = < E H* ) . (1.27) 
X y sx sy nx sy sx ny nx ny sx sy 

Thus equation (1.23) gives estimates of the impedance tensor whose 

magnitudes are biased downward by the autopowers in the denominator of 

[HHJ . If H where known, it could be used in equation (1.23) to 

obtain an unbiased estimate for Ẑ. 

The least squares estimates for Ẑ  were a major advance at least 

in the sense that they made possible a quantitative measure of the 

combined noise in all the measurements via 

1(5. |2 E |E. - z" H - z" H |2 . (1.28) 
' x' ' X IX X xy y' 

Usually t he s"ize of |6. | is measured by the correlation coefficient 

C. where 
X 

c^ - -
1 

l E . l ' -
' 1 

- z" E.H* -
XX 1 X 

' 1 ' 

- Z " E .H* 
xy 1 y 

= 1 -
| 6 . I ' 
' X 

' X ' 

(1.29) 
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2 
C. is sometimes called the coherency. If C.=l then E., H , and H are 
X X X X y 

completely noise free and there is no measurement error. If all of 

the measurements are pure noise then C. approaches zero as the number 

of data in the average increases. 

By monitoring 0 and selecting only data for which it is small, one 

can ensure that one obtains relatively error free results. However, 

there is no guarantee that one will obtain many, if any, noise free 

- > • 

data at every frequency. Conversely, if the noise were in E only and 

->• H 
not in H, then Z_ would be unbiased, but the least squares estimates 

alone do not permit one to identify the noisy fields. 

Outline 

With t±ie development of the low noise dc SQUID it seemed reasonable 

to hope that a fieldworthy 3 axis magnetometer employing these devices 

might improve the estimation of Z_ by reducing the magnetic field noise. 

Section II describes the design considerations in the construction of 

such an instrument. 

Magnetotelluric surveys using our dc SQUID magnetometer were 

performed in Grass Valley, near Winnemucca, Nevada in 1975 and 1976 

as a joint effort of the Engineering Geoscience group and Physics 

department of the University of California, Berkeley. Comparison of 

the impedance tensor estimates from the two years using Ẑ  proved that 

we had joined the ranks of the ambiguously successful. Although the 

dc SQUID magnetometer proved to be accurate and convenient, the 

reduced intrinsic instrument noise did not seem to improve the quality 

of the data. Some values of the correlation coefficient, C , below 
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0.1 were obtained and the magnitudes of the impedance tensor elements 

were sometimes so small as to be physically unreasonable. Thus the 

intrinsic noise of the magnetometer did not seem to be a crucial 

factor. On the other hand, for data of high coherency the impedance 

tensor estimates were reproducible between the two surveys within about 

5% on the average and the discrepancies were all consistent with the 

hypothesis that the autopower measurement bias was the cause. Thus 

an investigation of tensor estimation seemed in order. Section III 

considers signal processing techniques, including the fast Fourier 

transform (FFT). The main point is that signal processing is also not 

the crucial factor in producing the large scatter in magnetotelluric 

results. 

Section IV discusses alternative tensor estimation techniques 

that were tested on the 1976 data. In that survey we recorded an 

extra channel of information by adding a third telluric line. This 

provided a reference signal to estimate the impedance in a simple 

way from the average crosspowers alone. The most straightforward 

estimators were spectacular failures. It seems that the most likely 

explanation for this is that there were real noise voltages in the 

ground, correlated between the telluric lines. In order to avoid 

the possibility of correlated noise from local sources it is necessary 

to record two simultaneous remote reference channels. 

Section V contains the linear algebra and statistics of tensor 

estimation by the remote reference technique. This method requires 

a number of reference channels equal to the rank of the tensor to be 



-17-

estimated. As long as the references are not correlated with the 

- > • - > • 

noises in E and H the method yxelds an unbiased estimate of the tensor 

- > • - > -

regardless of the correlations between the noises in E and H. Perhaps 

just as important is the fact that the equations are simple. The 

distributions of errors in the tensor estimate and associated parameters 

such as the rotated apparent resistivities are calculated and shown to 

be essentially the same as those in the least squares estimate Ẑ  when 

Z_ is an unbiased estimator. With the remote reference one can 

calculate the power spectra of both the signals and the noises, 

provided the noises are uncorrelated with each other and the signals. 

This calculation provides checks for such correlations. All these 

equations are extremely general and their application to tipper 

measurement is given as an example. It is a beautiful set of equations. 

The remote reference technique was tested on real magnetotelluric 

data taken near Hollister, California in 1977. Data from two magneto­

telluric sounding sites were recorded simultaneously so that the 

magnetic channels at each could be used as the reference for the other. 

This test was an unambiguous success. It is described in section VI. 

At frequencies higher than 0.3 Hz, where copious data were taken, the 

impedance tensor estimates were reproducible within approximately 1% 

between different data sets. The calculated random errors were every­

where consistent with the agreement between the results from data 

recorded in different overlapping frequency bands and at different 

times. 
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SECTION II. SQUID MAGNETOMETERS FOR THE FIELD 

The theory, fabrication, operation and performance of the 

Q 

cylindrical dc SQUID are discussed by Clarke, Goubau and Ketchen. 

Here I will discuss only those principles of design and elements of 

performance that are particularly important to geophysical applications, 

The three axis magnetometer is essentially three one axis 

magnetometers. The three SQUID sensors are place in orthogonally 

drilled holes in a single block of fiberglass. The block is immersed 

in liquid helium in a five liter superinsulated fiberglass dewar with 

a hold time of approximately five days. The electronics are mounted 

on top of the dewar. 

Character is t ics of the dc SQUID magnetometer 

This dc SQUID makes use of two Nb-NbO -Pb tunnel junctions in a 

superconducting loop. The large area of the tunnel junctions compared 

to point contact junctJ-ons makes them very resistant to distruction 

by accidental electrical discharge and physically and thermally 

stable. They can be operated at any temperature below 6°K because the 

critical cixrrent is relatively independent of temperature. At 
-2 

frequencies above 2 xlo Hz the equivalent flux noise is white with 

-10 2 level of about 10 y /Hz. At lower frequencies the power spectrum 

-11 2 
is approximately 10 /f y /Hz with an average long term drift of 

-5 less than 10 yAiour. The achxevement of this low drift rate 

requires the stabilization of the bath temperature but this is easily 

accomplished. The system is enclosed in the dewar so the temperature 

can easily be regulated by controlling the pressure of the vapor. 
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We did not bother to regulate the bath pressure in our surveys because 

the barometric pressure changes very little over the period of our 

lowest frequency tensor estimates (100 seconds). 

The dc SQUID is operated by passing a dc current greater than the 

critical current through the junctions so that a dc voltage and a 

Josephson ac voltage of frequency 2e/h = 480 MHz/yV appear across the 

junctions. The resistance of the junctions is a periodic function of 

-7 
the flux through the ring with flux period (|) = h/2e = 2.07 xio 

2 
gauss-cm . 

Commercially available rf SQUID magnetometers use a superconducting 

ring containing only one Josephson junction. The ring is then excited 

by an external rf oscillator and the energy dissipated in the SQUID 

is a periodic function of the flux through the ring. From this point 

on there is no difference between the operation of a dc SQUID and an 

rf SQUID excited at the Josephson frequency. Thus the electronics 

for the two types of SQUIDs are identical except that the rf SQUID 

requires an rf oscillator that is stable over a wide temperature 

range and the rf injection circuitry. 

The SQUID is placed in a negative feedback circuit. A coil 

modulates the flux through the SQUID at a high audio frequency, 100 kHz 

for our electronics. This modulates the voltage across the SQUID at 

100 kHz and the amplitude of the voltage modulation is a periodic 

function of the flux through the SQUID. The negative feedback circuit 

acts as a null detector. Any 100 kHz signal across the SQUID is 

amplified, demodulated by a lock in detector and integrator and 
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fed back through the modulation coil. This changes the dc flux 

through the SQUID to reduce the 100 kHz output. The feedback current 

necessary to null the 100 kHz signal is then proportional to the 

externally applied flux. 

Electronics Design 

The design of the electronics is a straightforward exercise in 

circuit analysis with the following requirements: the circuit must 

be stable, the noise of the electronics should not dominate the 

intrinsic noise of the sensOr, the frequency response of the circuit 

should be flat and the slewing rate, the maximum rate of flux change 

that can be nulled, should be as high as possible. 

The total flux through the SQUID is the externally applied flux 

(}) plus the feedback flux (() . Thus the output of the circuit at the 

frequency 0) is 

c()̂  = G(w) ((j)̂  + (f)̂ ) (2.1) 

where G(w) is the frequency response of the open loop. I shall refer 

to the SQUID as the beginning of the loop and the modulation coil 

as the end. The frequency response of the closed loop is then simply 

(!>-/(() = G(w)/(1 - G(lo)) = R(w) (2.2) 
X. a 

and the response at any stage in the loop can be calculated by dividing 

R by the forward gain between that stage and the end. The complication 

of the audio frequency modulation and demodulation can usually be 

ignored. Circuits resonant at the audio frequency f with bandwidth 
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f/Q can be included i n t h e open loop gain G(IJJ) as a simple p o l e , 

l / ( l - i w T ) , with 

T = Q/(7rf ) (2.3) 
m 

For low frequencies G(0) is usually a large negative number so 

R(0) = -1 and is essentially independent of the exact value of G(0). 

|G(0)I should be made as large as possible to minimize variations in 

R(0) . From eqxiation (2.2), the loop will be stable as long as there 

is no solution of l-G(a)) = O for any complex to with a positive imaginary 

part (remember that all amplitudes proceed in time as e ). The 

sensor noise will dominate the noise of the electronics as long as 

the sensor noise times the forward gain between the sensor and each 

stage is greater than the noise generated in that stage. 

Uie frequency response and slewing rate can be made independent 

of frequency by introducing a zero, (l-iWT ), into the open loop gain 

G to cancel each pole, l/(l-ia)T ) , in G other than the integrator pole, 
i r 

with T = T . However, poles near the beginning of the loop will 

reduce the signal level from the sensor at high frequency so that the 

sensor noise will no longer dominate the noise of later stages. Zeros 

added later in the loop to whiten the frequency response will cause 

high amplification of the noise at high frequencies. As the low 

frequency open loop gain, |G(0)|, or the compensating time constant, 

T , are increased the high frequency noise will eventually saturate 

the SQUID. Thus if |G(0)| is large the pole cannot be completely 

neutralized. 
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The slewing rate is limited in two ways. First, the maximum 

s s 
slewing rate at angular frequency o) is a)(|) where (J) is the amplitude 

of feedback flux which saturates some stage of the loop. The maximum 

slewing rate will be obtained if the first stage to saturate is the 

stage which provides the feedback current. The two stages most likely 

to sat\arate are the last stage of audio frequency amplification and 

the SQUID itself, where l̂ ^ -i- (J) I can not exceed d) /4. Second, the 

' f a ' o 
slewing r a t e a t t he modulation frequency obviously should be l e s s than 

27Tf d) where (b i s t he amplitude of the f lux modulation so t h a t the m m m 

feedback loop does not cancel the modulation. If R(a)) and thus the 

slewing rate are essentially independent of frequency then this limits 

the slewing rate at all frequencies to approximately irf cj) /2 since 

cb = d) /4. This limitation on the slewing rate can be circumvented 
m o 

at low frequencies by adding a pole, l/(l-iwT ), to the loop gain G. 
sr 

This solution greatly reduces the slewing rate and makes R(lo) a strong 

function of frequency at frequency 1/T and higher. One could also 

increase the second limit on the slewing rate by increasing f . This 
m 

could not be done to any great extent for an rf SQUID operated with 

a typical rf excitation frequency of about 30 MHz because the audio 

modulation frequency has to be very small compared to the excitation 

frequency. In contrast our tunnel junction dc SQUIDs are operated 

at a dc bias of approximately 2 yV so the Josephson frequency is on 

the order of 1 GHz. Thus a modulation frequency of the order of 

10 MHz could be used. 
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Unfortunately, the first limitation on the slewing rate is about 

the same as the second for our present design. This comes about 

because the p r e a m p l i f i e r s r e q u i r e a soixrce impedance of approximately 

5 
10 ohms for optimum noise performance. The dc SQUID magnetometer 

used in the 1975 and 1976 surveys employed resonant tank circuits 

with a Q of about 100 to match the low impedance of the SQUIDs (= Ifl). 

These were later replaced by resonant transformers with Q = 10. The 

time constant associated with this Q, equation (2.3) can be reasonably 

well neutralized to give a white frequency response up to about 30 kHz 

5 5 
and a slewing rate of approximately 3 x lo cj) /second = 10 Y/second. 

This time constant T can not easily be further decreased because 
m 

it is essentially the capacitance of the transformer and the line 

connecting the matching circuit to the electronics input (300 pf) 

5 -5 

times the impedance (10 ohms), producing T - 3xlo seconds. 

Since the frequency response can not be fully neutralized there is 

a phase shift between (}) and <̂  so that the SQUID saturates to limit 

the slewing rate. A lumped 10 to 1 impedance matching circuit with 

less than 300 pf capacitance is hard to build. 

F i e l d Operat ion o f SQUIDs 

SQUIDs are also very sensitive detectors of rf energy'so a 

SQUID magnetometer must be shielded for field use. Copper screening 

was found to be excellent for this. It was also generally beneficial 

to enclose the wires connecting the SQUIDs and the electronics in 

stainless steel capillary tubing and to enclose a separate dc ground 

wire. 



-24-

Atmospheric electrical activity at high frequencies can produce 

5 
flux changes more rapid than 10 Y/second. Thus it is usually necessary 

to attenuate the high frequency fluctuations with a metal can. We most 

frequently used a can external to the dewar with a 3db cutoff frequency 

of 55 Hz. Fields produced by Johnson noise currents are a consideration 

in the design of such cans. The amplitude of such fields is proportional 

-3/2 
to i where £ is a typical linear dimension of the can. 

For the measurement of small magnetic fluctuations in the 

presence of the earth's magnetic field it is essential that the 

magnetometer be held very rigidly. Our magnetometer was held by a 

wooden tripod and protected from the wind by a plywood pyramid. On 

soft ground the force of the wind on the pyramid moved the ground 

itself to a noticeable degree and it was necessary to bury the 

magnetometer. 
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SECTION III. SIGNAL PROCESSING 

There are several ways of calculating average powers. In this 

section I describe the method I have used and argue that the choice 

between methods is one of practical considerations only. The one 

fundamental point is that the goal of magnetotellurics is the 

estimation of the linear response function, %_, not the estimation of 

-)-
the power spectral densities. The response E is causally related to 

- ) • 

the input H and that relationship does not depend on the statistxcs 

of the signals. 

The approximation of signals of infinite duration by finite 

segments must always introduce error. However, such errors as 

spectral aliasing and trucation errors would have no effect on the 

tensor estimates if the electric and magnetic signals were simply 

proportional. Then the errors would be in the same ratio as the 

signals and one would still obtain the correct estimate for Ẑ. The 

estimates are affected only by the difference between the errors in 

the measixrement of E and H. Thus these errors are less important for 

magnetotellurics than they are for spectral estimation. Nonetheless 

one will certainly want to minimize the errors in signal processing. 

There are three basic ways of computing average powers: 

1) Fourier transformation of the data followed by multiplication by 

the conjugate Fourier components and averaging, 2) Fourier transformation 

of the time averaged autocorrelation and crosscorrelation functions 

and 3) narrow band filtering of the data followed by multiplication 

by the direct and quadrature (delayed by 90°) filter outputs and 
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time averaging. Theoretically any of these methods could be carried 

out with either digital or analog hardware to yield results of 

equivalent accuracy. The errors inherent in each method have 

corresponding errors in the others. The balance of truncation error 

against spectral resolution for method one corresponds to the 

competition between the number of data that can be averaged and the 

maximum time lag for method two and to the relationship between 

transient response and filter Q for method three. The errors due to 

both limitations can be decreased for each method as the length of 

the data segments is increased. The only criteria for the selection 

of a particular method are the practical limits and efficiency. 

For instance analog multipliers will always introduce noise proportional 

to the signals because of their nonlinearities whereas the precision 

of averaged digital products can be increased without limit by 

increasing the number of products in the average. The great efficiency 

of the fast Fourier transform (FFT) makes method one the most 

economical digital technique. Therefore I have used method one in 

all the data analysis. 

Sims and Bostick, in the 1969 edition of their excellent series 

29 
of technical reports on magnetotellurics, give quantxtatxve 

calculations and practical examples of the effects of truncation 

errors and digitizer resolution. They show that twelve bit digitizer 

accuracy is required and sufficient to obtain accurate power spectral 

estimates for the steep magnetotelluric power spectra. All our data 

were digitized with 12 bit resolution. Sims and Bostick also quantify 

the obvious result that truncation errors are likely to be large for 



-27-

the fundamental of the FFT and decrease for higher order harmonics. 

The severest test of the spectral resolution is at the lowest 

harmonics. This is because the resolution on a linear frequency scale 

is the same for all harmonics so that the fractional resolution (or the Q) 

of the harmonic is proportional to the order of the harmonic. The 

severest spectriom that must be dealt with in magnetotellurics is the 
p 

magnetic spectrum near 0,1 Hz which may be as steep as 1/f . The 

easiest and most certain way to obtain high spectral resolution is 

simply to use data segments for that spectral region that are very 

long compared to 10 seconds. I have used data segments at least 500 

seconds long for these frequencies so that the 0.1 Hz harmonic has a 

Q of about 50. Such high spectral resolution is really not necessary 

however, because as discussed above, the error in the estimates of Z_ 

34 
produced by spectral overlap is small. Wight, Bostick and Smith have 

reported that they have obtained the best results in their experience 

while using only the 6th and 8th Fourier harmonics of the fundamental 

in a real time analysis system. 

Because of the large truncation errors and low spectral resolution 

of the lowest harmonics I have used only the fifth and higher harmonics 

to calculate average powers. 

The mean and linear trend of each data segment were subtracted 

before any other digital processing. This procedure has both a 

physical and matliematical justification. Physically, while the 

signals can be filtered to remove spectral components outside the 

range of the harmonics of the FFT, the analog electronics almost 
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invariably introduce some dc offset and temperature drift. Offsets 

and drifts can then be clearly identified as noise and should be 

subtracted. Mathematically, one might consider analyzing the data into 

Legendre polynomials and subtracting the Legendre components up to 

any order to remove noise. The first two Legendre polynomials, the 

mean and the linear trend, are best fit over the length of the data 

segment by sinusoidal components of frequency lower than the 

fundamental and thus can reasonably be subtracted. The higher order 

polynomicals, however, primarily contain frequency components that are 

at higher frequency. The Legendre polynomials of order 2n-i-l and 2n-i-2 

are roughly equal to the cosine and sine components of the nth Fourier 

harmonic. If the measurements at some frequency within the range 

of the harmonics were suspected of being noise, it could best be 

eliminated by discarding the appropriate Fourier harmonics. 

All the details of truncation error and spectral resolution 

depend on the choice of the time window. Any time window that tapers 

smoothly to zero at the ends has greatly reduced sideband sensitivity 

compared to a square time window. Otherwise the differences are not 

drastic. I used time windows tapered to zero with a cosine bell 

shape over various fractions from 1/12 to 1/8 of the data segment 

length. 

Finally, average powers were calculated by multiplying by the 

conjugate Fourier coefficients and averaging the products from the 

Fourier harmonics contained in nonoverlapping frequency windows of 

Q = 3 and from all the data collected at different times. N will be 
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reserved throughout this dissertation to denote the number of products 

in the average. 

I should note that prewhitening of the signals can greatly 

alleviate the problems of spectral resolution and truncation errors 

as well as the demands on the dynamic range of the equipment. Wight 

et al employed a digital prewhitening of the signals in their real 

time analysis system. While none of the data analyzed here were 

prewhitened we now pass the magnetic signals through a simple single 

pole high pass filter with a one second time constant. 
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SECTION IV. FAILURES 

In the search for a good estimator of Ẑ  a very large number of 

methods were generated and discarded. This section describes four 

classes of methods that were further unambiguous failures or ambiguous 

successes. They yield some information about the character of the 

signals and noises in magnetotellurics and there are some interesting 

mathematical points but the major value of this section may lie in 

preventing wasted effort with these methods in the future. 

The first nethod is a solution for Ẑ  in terms of the average 

crosspowers between the components of E and H. The second uses higher 

moments of the crosspowers. Both methods have relatively high random 

errors. The third method involves the use of one reference channel 

and would always be effective if the noises were uncorrelated. The 

fourth attempts to exploit the quasisinusoidal nature of the signals 

by employing two stages of averaging. This was the most successful 

estimator for real magnetotelluric data using only local measurements. 

It was not an unambiguous success however for its random errors are 

larger than for the least squares estimators, it is too complex for 

thorough analysis and its success depends on matching an adjustable 

parameter to the statistics of the signals. 

Data 

These methods were tested both with simulated data on a PDP-11 

minicomputer and with real data from the 1976 Grass Valley survey. 

Dat:a were simulated for a known impedance tensor Ẑ  by choosing conplex 

random numbers with real and imaginary parts uniformly distributed 



-31-

over the range -1 to 1 to represent the magnetic signals H and H 

Electric field signals were calculated from H using equation (1.11) . 

Then noise was introduced by adding a random complex number with an 

adjustable weighting factor to each vector component of the signals. 

The weighting factors were adjusted to give the desired signal to 

noise ratios. The products of the noisy fields were then calculated 

and average powers obtained by repeating the process N times. Then 

the tensor estimates were calculated. In order to determine the 

statistics of the estimates the whole calculation was repeated K times 

with independent sets of random numbers. The mean value, Z.., and the 

2 
sample variance, O.., for each impedance element were computed from 

the expressions ^ 

•.. = K-^E"^'^ Z. . = K Z-* Z. . , (4.1) 

and 

r'. = | K - ^ E |Z.̂^̂  - Z . . A a. . = SK £ ^ Z.\' - Z. . / . (4.2) 
^^ ( £=1 3̂ ^3' ) 

The expected standard deviation in IZ,.I, AZ.., was taken as ± a../K . 
ID ID y.y 

Since the probability densities were fixed the simulated signals were 

stationary, unlike real magnetotelluric data. 

The Grass Valley data were taken using the dc SQUID magnetometer 

and a commercial rf SQUID magnetometer. Figure 1 is a map of the 

sites. The electric fields were measured with telluric dipoles 500 m 

long in an L array, with the equipment truck at the vertex. The 

telluric signals were amplified with PAR 113 preamplifiers and all the 
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XBL 777-5808 

Fig. 1. Location of the t e l l u r i c arrays for the 1975 and 
1976 survey s i t e s whose resu l t s are graphed in 
figures 2 through 5. 
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data recorded on a Honeywell 5600 FM analog tape recorder. The data 

were later digitized with twelve bit resolution and analyzed using 

the signal processing techniques discussed in section III on the CDC 

7600 computer system of the Lawrence Berkeley Laboratory. Further 

details of the equipment used in the survey, a description of the 

physical site, a review of other studies done in the area in connection 

with geothermal assessment and more complete results of the 1975 

4 
s\irvey are described by Beyer et al. 

The rotated apparent resistivities from Ẑ  for four of the 

stations are plotted vs period in figures 2 through 5 parts a and b 

for the 1975 and 1976 surveys, respectively. No results are plotted 

for some of the frequency windows because estimates with skewness 

(equation 1.17) greater than 0.6 were discarded as being grossly 

contaminated by noise.* A casual glance will reveal that this was 

at best an ambiguous success in measuring Z_. The apparent resistivities 

differ between the two years by as much as three orders of magnitude. 

The rotated apparent resist!vies at locations 2 and 4 calculated from 

the 1976 data using Z_ (equation 1.25) are shown in figure 6 for 

comparison. On the other hand the results from high coherency data 

were in reasonable agreement between the two years. The magnitude 

of C is indicated in figures 2 through 5 by a good rating if 

0.95 < C < 1, fair if 0.89 < C < 0.95 and poor if C < 0.89 for low 

frequencies (< IHz). For high frequencies (> 1 Hz) the ratings were 

Large values of skewness are physically impossible. We have not 
produced any skewness estimates greater than 0.6 from good data and 
so have chosen this as an arbitrary upper limit for reasonable estimates. 
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Fig. 6. Rotated apparent .resistivities versus square root of 
period from the 1976 data using the least squares admittance 
tensor, equation (.1-25), and Z^ = Y~ . a) location, 2, 
b) Ipeatipn 4. 
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good if 0.90 < G < 1, fair if 0.7-2 < C < 0.90 and poor if. G < 0.72. 

These are purely subjective; ranges chosen to display as much information 

as possible in a simple way. Note, that more than half the time the 

apparent resistivies from "good" data agree between the two years to 

within 10%. Also "poor" data eonsistently gave apparent resistivities 

FT 

lower than those' from "good" data when .Z_ was used and the apparent 

E H 

resistivies from Z_ are invariably higher than those from Z_ . Thus 

the bias errors are large' compared to the random- errors and the results 

are consistent with the, hypothesis that the sole' important source of 

error was. the autopower bias. 

There are, of course, possible, sources of bias other than the 

measured autopowers, such as systematic errors in the measurements. 

Also,, the strict definition of the bias, in an estimate is the 

difference between the ensemble average bf that estimate and the 

ensemble average of the quantity to be estimated. Any random error 

in a nonlinear function of the measurements will produce some bias in 

the estimate- However, this bias error will always be smaller than 

the random error arid thus will not be of any practical importance. 

I shall use "unbiased" to mean, practially :iinbiased by the noises in 

the measurements. 

, Method t : SoJ-utvon of 8 E<q-uations. 

Multiplying the defining equations (1,19) and (1.20) through by 

* * * * 
E , E , H . and H in turn, averaging and dropping the subscript s 
X y X • y 

produces the eight equations; 
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|E I = Z b* + z e , (4.;3) 

a. = 2, d* + Z e* ., (4.4) 
xx: xy- ^ • 

^ ^̂  ̂  l\l'' -̂  V "* '• ^̂-̂J 

c -= z f + z IH 1^ , (4,6) 
XX xy ' y' ' 

|E j .=. Z a* -i- Z e'* , (4.7) 
• y ' -yx yy 1 ' 

d- = Z H I -f ,Z f* , (4,.8) 

e- - Z f •<-, 2, [H I , (4.,9) 

and a* = Z b* + Z e* . (4.10) 
yx • yy ' ' 

Here a, b., c, d, e, and f are^ crosspowers, defined by a = E E* , 
-X y 

b = E H* , e =- E H*. , d = E H* , ê  = E H* , and f - H H* . 
x X • X y y X y y - x y. 

These equations contain all of the information .available from 

the average, powers. In prinpipie. one could, substitute the meaS.ure'd 

.̂average powers into these equations arid then use any pair from •; 

equation (4.3) through (4.6) to caiculate 3 and Z and any pair 
xx xy 

from (4.7) through (4,10) for Z and Z „ These 36 possible solutions 
yx yy 

contain all the least squares solutions. Z Is the sirnultanebus 

solution of (4,5), (4,6), (4.8) and (4.9°). Z is the simultaneous 

solution Pf the other four. 
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If the noises are uncorrelated with each other and the signals 

•then the measured average crosspowers are unbiased estimates of the 

signal crosspowers. Since the measured autopowers are biased by the 

noise powers the signal autopowers in the eight equations must be 

considered as unknowns if one is to obtain an unbiased estimate for 

Z_. Kao and Rankin have attempted to get unbiased estimates for Z_ 

by an iterative solution of these equations in terms of the crosspowers. 

However, there are eight equations with eight unknowns and they can in 

fact be solved directly. 

It is easiest to solve first for |H | and |H | , and to express 

all of the other unknown quantities in terms of these two autopowers. 

From equations (4.5) and (4.6) . 

b |H I^ - cf* 

"̂  F7|77^ - |f|' 
' x ' ' y ' ' ' 

and 
c IH 1̂  - bf 

(4 .14 ) z 
xy 

c 

H 2 
X 

|H ^ - b f 
' X 

H 2 - f | 2 
y ' 

Substituting equations (4.13) and (4.14) into equation (4.4) we find 

i i 2 i i 2 i i 2 i i 2 * * , , 2 * . * , , 2 * * * * 
| a | ( | H I JH I - |f I ) = (e ca ) |H I -f d ba |H | - a (d cf -f e bf) . 

X y X y 

(4.15) 

Similarly, by s\±)Stituting into equation (4,10) solutions for Z and 

Z obtained from equations (4.8) and (4.9) , one finds 
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2 , * lal (H H - |f I ) = ec a IH I -f db a IH I - a(dc f-l-eb f ) . (4.16) ' ' x y ' ' 'x' 'y' 

SLibtracting equation (4.16) from equation (4.17) we obtain the 

relationship between H and H : 
X y 

|H I = ;f—— \ - Im(d ba ) |H I -i- Im[a (d cf -i-e bf) ] | ., (4.17) 
Im(e ca ) ^ 

where Im(x) is the imaginary part of x. Substituting this result for 

|H I into equation (4.15) we find a quadratic equation for |H j 
X y 

{\«/J-^-\ H 1^ - w = 0 (4.18) 
y ' 

it ic ic ie ic it it ic 

where u = Im[d c eb -t- a (d cf + e bf) ]/2Im(d ba ) , 

ic ic ic ic O ic ic ic ic 

and w = - {lm[ec (d cf -t- e bf) ] -f |f| Im(e ca ) }/Im(d ba ) . 

The solution to equation (4.18) is 

|H I = u[l ± (1 -f w/u ) ] . (4,19) 

I 12 2 

The calculated autopower |H |- will be real only if 1 -t- w/u ^ 0. Data 

leading to complex values of |H | should be rejected since complex 

autopowers are not physically possible. |H | is obtained by I |2 
si±istituting equation (4.19) into equation (4.17) . In terms of |H | 

and |H I , the impedance elements and electric field autopowers^are 

given by 
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Z . = (b IH 1̂  - cf*)/D , (4.20) 
XX ' y ' 

Z = (c |H I - bf) /D , (4.21) 
xy x ' 

Z = (d |H 1̂  - ef*)/D , (4.22) 
yx y 

Z = (e IH 1̂  - fd)/D , (4.23) 
yy ' x ' 

|E I^ = [ |c |^ IH^I^ -t- | b | ^ |H 1̂  - 2Re(c*bf)]/D , (4.24) 

and 

|E I^ = [ | e | ^ | H ^ | ^ ^ | d | ^ |H I^ - 2Re(e*fd)]/D , (4.25) 
y ^ y 

^ o p 
where D = |H | |H | - |f| , and Re(x) is the real part of x. 

In equation (4.19) there are two possible solutions for |H | 

corresponding to the positive and negative values of the square root. 

The remaining problem is to determine which of the two solutions is 

correct. It is evident from equation (4.17) that |H | is real when 

|H I is real and, therefore, that the electric field autopowers 

obtained from equations (4.24) and (4.25) are also real when |H | 

is real. Consequently, no information regarding the selection of the 

correct root in equation (4.19) is obtained from the imaginary parts 

of equations (4.3) and (4.7), since they are identically zero. All 

of the information in equations (4.3) to (4.10) has been utilized. 

In the absence of noise it is obvious that one can determine the 

correct value for |H | by comparing the calculated and measured auto­

powers. In the presence of noise, the situation is, in general, rather 
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complicated. If there is noise on one channel only (for example, H ), 

the autopowers for the remaining (noise-free) channels (for example, 

E , E , H ) calculated using the correct solution of equation (4.19) X y y ^ 

agree exac t ly with the measured autopowers. If there is noise on more 

than one channel, all of the calculated autopowers are influenced by 

noise, and none agrees exactly with the measured value. In this general 

case the computer simulation has shown that the following procedure 

produces unbiased estimates of the impedance elements and the 

autopowers. 

(i) Compute all autopowers using both signs in equation (4.19) . 

If one sign leads to autopowers that are all positive, and 

the other leads to one or more negative autopowers, assume 

that the former sign is correct. If each sign leads to one 

or more negative autopowers, the data should be rejected, 

(ii) If both signs lead to positive autopowers, compute the 

0 0 0 0 
abso lu t e values of t h e logar i thms o f | E | / | E l , I E | / | E | , ^ ' x ' c ' x ' m ' y ' c ' y ' m 

0 0 0 0 
|H I /|H I , and |H I /IH I for each sign, where the 
' x ' c ' x ' m ' y ' c ' y ' m 

subscripts c and m denote calculated and measured quantities. 

The sign in equation (4.19) that produces the smallest 

absolute value of any of the logarithms is assvmed to be 

correct. This procedixre ensures that we obtain the correct 

root in the case where there is significant noise in only 

one channel. 

(iii) If the value of the calculated autopower is significantly 

higher than the measured autopower, there is a significant 
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error due to random noise. Data that meet criterion (ii) can 

be further screened by rejecting those for which the ratios of 

calculated to measured autopowers are significantly greater 

than a cut-off value S (̂  1), The value of S can be selected 

at will, but must be the same for all channels to avoid biasing 

the impedance tensor. As the cut-off value is made closer to 

unity, the computed impedance tensor becomes more acciurate, 

but fewer sets of data pass the criterion. 

The ability to express the impedance and autopowers entirely in 

terms of crosspowers is due to the correlation between E and E , In 
^ X y 

equation (4.4), E acts as a reference signal (in the sense of lock-in 

detection) for E , while in equation (4.10) E acts as a reference 

signal for E , If Z or Z = 0 the solution to equations (4,3) ^ y XX yy ^ x / 

through (4.10) becomes indeterminate. Thus, an unbiased estimate of 

the impedance tensor cannot be obtained when Z or Z is zero, for 
XX yy 

example, when the geology is 1-dimensional (Z = Z = 0, Z = -Z ) , 

or when the geology is 2-dimensional (Z + Z = 0 ) with one electrode 
XX yy 

in the strike direction (Z = Z = 0), To avoid the instability for 
XX yy -' 

a 2-dimensional geology, one should first roughly locate the strike 

direction, and make sure that neither electric field measurement is 

parallel to the strike. Ideally, one would choose the orientation so 

that |z I '̂̂  Iz I . 
' xy' ' yx' 

An example of the r e s u l t s of the computer s imula t ion for the 

impedance t enso r Z = -Z = 2 ( l - i ) and Z = -Z = 3 ( l - i ) i s given XX yy xy yx ^ 

i n t a b l e I . The n o i s e - t o - s i g n a l power r a t i o s were 1,5 for the e l e c t r i c 
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Table I, Calculation of impedance tensor elements from computer-
simulated data and the crosspower solution of equations (4,3) 
through (4,10). The noise-to-signal power ratios were 1.5 
and 1.0 for the electric and magnetic channels respectively 
and S = 1.5. 

Element 

Z 
XX 

Z 
xy 

Z 
yx 

Z 
yy 

True value 

2(1 - i) 

3(1 - i) 

-3(1 - i) 

-2(1 - i) 

Calculated value. 

2.15 - 2,04 i 

3,08 - 3,14 i 

-3.03 + 3.11 i 

-1.99 -f- 2,01 i 

Z. . 
ID 

a 
ij 

± 1.19 

± 1,83 

±1,67 

± 1.21 

AZ. . 
11 

± 0.12 

± 0.18 

±0.17 

± 0.12 
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channels, and 1,0 for the magnetic channels. The impedance tensor was 

estimated from equations (4,20) to (4,23) using the criteria (i) to 

(iii) with S=l,5 to determine |H . N was 256, The calculation was 
I yl 

repeated 256 times, each time using new data for the electric and 

magnetic fields. Of the 256 repetitions of the calculation, the 

selection criteria were satisfied 110 times, so that K = 110. The 

discrepancy between the true and calculated values of the impedance 

tensor is generally within one standard deviation. Hence there is no 

significant bias. 

For the real data from Grass Valley this method was an unambiguous 

failure. Very often the crosspowers were not consistent with any real 

value for the autopowers, More than half the time the solution for 

neither sign passed the selection criteria. The apparent resistivities 

from those data that did pass were so scattered that no additional 

information about the structure of the ground could be obtained. 

Examples of the results from this method'will be given in section VI 

for the data used to test the remote reference method. Those data 

usually passed the selection criteria but the results were still 

usually too scattered to be useful. 

Although this failure could be explained by assuming that Z and 

Z happened to be too small with the electrode orientation used in 
yy 

Grass Valley, the other methods in this section will demonstrate that 

there were definitely significant correlations in the noises for these 

data. This method is particularly sensitive to correlation between 
- > • 

the noises in the two vector components of E because the calculated 
autopowers (equation 4.19) depend strongly on the value of a = E E* 
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and E and E often are not strongly correlated, 
sx sy 

Method I I : Weighted Averages of Crosspowers 

In the previous method an unbiased estimate of Ẑ  was obtained 

by multiplying equations (1.19) and (1.20) in turn by a single field 

component, and solving the resulting eight equations for the impedance 

elements in terms of the average crosspowers. Each estimate made use 

of all the information contained in the crosspowers, and hence was 

the only possible unbiased estimate. One could also multiply equations 

(1.19) and (1.20) by more complicated functions of the various fields 

to obtain estimates of the impedance elements in terms of weighted 

averages of crosspowers. This technique yields an infinite number 

of estimates which do not contain measured autopowers. 

Consider again equation (1,19). Let A and X' be two distinct, 

but as yet unspecified functions. For the ith values of E , H , and 

H , X and A' take the values A. and A., If one multiplies equation 
y X X 

(1.19) in turn by A and A', and averages over all N data points, one 

obtains 

AE = z AH -I- z AH , (4.26) 
X XX X xy y 

and 

A'E = Z A'H -f Z A'H , (4.27) 
X XX X xy y 

,(i) where AE = (1/N) Z A. E , etc. These equations are linearly 
i=l 

independent provided that the determinant AH A'H -A'H AH ^ 0, ^ ^ X y X y 

in which case they can be solved for Z and Z : 
XX xy 
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AE A'H - AH A'E 

Z = ^ y y ^ (4.28) 
^^ AH A'H - A'H AH 

X y X y 

and 

AH A'E - A'H A E ~ 
(4.29) 

xy 

AH A ' E -
X X 

- A ' H AE 
X X 

AH A ' H -
X y 

- A ' H AH 
X y 

In a similar way, provided that ^H £'H - E'H EH ^ 0 , one 
x y x y 

obtains expressions for Z and Z from equation (1.20) , 
yx yy 

E,E E.'H - Efl 5 ' E 
z = y y — y y , (4.30) 
y^ Efl 5'H - 5'H Qi 

x y x y 

and 
Ĥ̂ ^ 5'E^_ - 5'H^ ^E 

yy 
Z = - ^ ^ î  ^ — ^ , (4 .31) 

^ 5'H - 5'H p 
X y X y 

" ( i ) where E, and E,' are again unspecified functions, and ^ = (1/N) Z E,. E , 
y i = i ^ y 

etc. 

In the absence of noise there are no constraints on A, A' , E,, and 

E,'. These functions could depend on the electric and magnetic fields, 

but equally well could be sequences of random nimibers, In the presence 

of noise certain restrictions must be imposed to obtain stable, 

unbiased estimates of the impedance elements from equations (4.28) 

through (4.31). The estimates are stable provided that the denominators 

do not tend to zero as N ->• «>. This requirement implies that A, A', E,, 

and 5' must be functions of the electric and/or magnetic fields since 

otherwise all the averages (for example, AE ) tend to zero as N ->• <». 
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The estimates will be unbiased if all the weighted averages approach 

the noise-free weighted averages in the limit N -̂  °°. If the impedance 

elements are to be both stable and unbiased it is straightforward to 

show that A and A' must be of the form 

A = pE , (4.32) 
y 

and ^ 
A' = TIE , (4.33) 

y 
* * * 

where p and n are either unity or any combination of E E , H E , H E 
x y x y y y 

* * and E E . Thus, the weighted averages AE , A'E , e t c , become pE E , y y ^ x x ' ^ x y 

riE E , e t c , , where p and n represent weighting functions for the 
Jf it ic ic 

crosspowers E E , H E , and H E . The weighting function E E contains x y x y y y ^ ^ y y 

the noise power in Ey, but it can be shown that this does not introduce 

bias into equations (4.26) and (4.27) provided that the noise in E is 

uncorrelated with that in E , H , and H . 
X X y 

By similar arguments, one can show that E, and E,' must be of the 

form 

? = yE* , (4.34) 
and 

C = VE* , (4.35) 

* * * 
where u and v are unity or any combination of E E , H E , H E , and 

y x x x y x 

E E . The quantities y and V are weighting functions for the cross-

powers E E , H E , and H E* . 

y X X X y X 

This method of weighted averages was tested using computer-

simulated data with the three different sets of weighting functions 
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.Table 11, Examples of -thrê e sets of weighting functions for weighted 
averag.e' method. 

Trial ?" 

(a) 
* * 

E . E H , 
y y X 

* * 
E E H 
X X X 

ih') 
* * 

E E. H 
y y y -X 

* * 
E E". "H 
X' X y 

(C) 
* * 
E E H . 
y y X 

* .* 
E E,. H 
y y Y 

* * 
E , E H 
X- X X 

* * 
E E H 
X X y 
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shown in table II for the same impedance tensor, noise-to-signal 

power ratios and N' as in the test o£.method I. The results obtained 

for the funGtipns (a) ar.e shown in tafolg III, and should be compared 

with those obtained using method I in table I. The weighted average 

technique yields unbiased impedance elements, but the sample variances 

aire three or four times greater than those obtained with method 1, 

Similar results were obtained using weighting functions (b) and (c) 

of table II. 

The apparent resistivities calculated via this -method from the 

Gr-ass; Valley data were hopelessly scattered and also appeared to have 

some- upward bias.. Occasionally values greater than 10 fi-m were 

obtainedi 

in the spirit of warning future investigators away from certain 

failure I shoixLd mention that various weighted averages containihg 

autopowers 'that would bias- the estimate of'^ were tried. It was hoped 

that the high.er' moment, calculations, would reduce the autopower bias 

by weighting periods of high signal levels more heavily. They did hot-. 

Method I I I - One .Reference Channel 

In order to obtain ah estimate that is stable for any tensor and 

does not have- the large random error of method II it is necessary to 

include .itraire informatipn in the: calculation. This section considers 

the possible uses'of one simultaneously recorded reference channeli 

During the l9?6 survey a third diagonal telluric dipole as shown in 

figure 7 was used to- measure such a signal, E j This gave us a second 

independent- measurement of each of the electric field componentsi 
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Table III. Calculatidh of impedance tensor elements from computer 
simulated data using weighted ayerages, and 'the weighting 
fune.tions (a) from table II„ The noise-to-signal power 
ratios: were 1.5. and 1.0 for the electric and magnetic fields 
respectively, 100- independent calculations were: used to 
obtaiK the average values and standard deviations. 

Element' True value Calculated value, Z, . a A.z. 
ij 

XX 

xy 

yx 

yy 

2(1 - i ) 

3(1. - i ) 

3(1. - i ) 

2(1 - i ) 

2.10 - 2.43 i 

3,18 - 2,37 i 

-3 .47 - 1.92 i 

-1 .74 - 2,65 ;i 

+ 4-. ,2 

± 6.4 

± 8.3 

± 6.0 

± 0,42 

± 0.,64 

± 0,83 

± 0..60 
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500 m 

XBL 7 7 7-5807 

Figv.. 7. Electrode configura:tion used in the 1976 survey to 
obtain an extra measurement of the telluric voltages, 
E.., for use as a reference. 
r . -- . , 
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E' = /2 E - E (4,36) 
X r y 

E' = /2 E - E (4.37) 
y r X 

29 
Sims and Bostick have suggested that with such independent measure­

ments one could replace the autopowers |E | and |E | in Ẑ  with 

the crosspowers E'E and E'E* to obtain an unbiased estimator. There 
X X y y 

is one disadvantage with this technique. Errors in the placement of 

the diagonal electrode and inhomogenieties in the ground will cause 

fractions of E and E to appear as noise in E' and E' respectively. 
X y ^ y X 

Since the magnitudes of E and E often differ by more than an order 

of magnitude the noise in the channel with the smaller signal can be 

substantial. There are a number of alternatives that circumvent this 

d i f f i c u l t y . 
-*• - y 

Any two of the four field components of E and H, A and B, can 

be related to the other two, P and Q, by a transconductance matrix G 

defined by 

A = G^^P + G^^Q (4.38) 

and 

B = G^^P + G22Q • (4.39) 

If R is the field from a fifth channel one can obtain an vinbiased 

* * 
estimate of Ĝ  by multiplying equation (4.38) by B and R in turn, and 

equation (4.39) by A and R , and averaging each of the equations over 

all data to find 
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AB* = G PB* -I- G QB* , 

AR* = G^^ PR* + G QR* , 
(4.40 

BA* = G^^ PA* -I- G22 QA* , 

and 
BR* = G., PR* -I- G-- QR* . 

21 22 

Once £ is known, Z_ can be computed. For five data channels one can 

show that there are six independent pairs of equations (4.38) and (4.39) 

leading to six independent estimates for Z_ that contain no autopowers. 

I f A = E , B = E , P = H", Q = H , and R = E , one has G = Z, whereas X y x y r =: = 

i f A = H , B = H , P = E , Q = E , and R = E , one has G = Y. x y x y r = = 

The rotated apparent resistivities calculated via these straight­

forward crosspower methods from the Grass Valley data of location 2 

are plotted in figure 8. Part a used the suggestion of Sims and 

Bostick, part b used the transconductance G = Z and part c used G = Y 

and Z = G . All should be compared with the least squares estimate 

E 
Z from the same data in figure 6(a). They all show the physically 

unreasonable large values and sharp peak in apparent resistivity and 

are essentially identical, even though they were derived from expressions 

containing different crosspowers. For example part b depends on E E* 

but not H H* and vice versa for part c. Since none of these estimates X y 

contains autopowers some of the noises must be correlated. The results 

from Z , figixre 3(b) do not show any such extremes of bias. Consequently, 

it is unlikely that there is any significant noise correlation in the 

crosspowers in Z , that is, H H*, EH*, EH*, EH*, and E H* . There-
= x y x x x y y x y y 

for the bias introduced into the 5-channel cross power analysis must 
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afise from Crosspowers of the electric fields, that is, the noises in 

the electric channels :are correlated. 

E 
The agreement be'twePn the .apparent resistivities from 2 , and those 

obtained by replacing the autopowers in z by E.E* indicates that EI -E., 

that is, the potential differenc;es (f, - .̂- ŝid ̂  - (f); are approximately the 
Ĵ  o ^ ^ 

same. This result implies -that there', were, no major noise sources in our 

measurement equipment, such as electrode noise (,ln particular, common 

eleetrpde noise) , amplifier noise., or tape recorder noise, as their con­

tributions would be different for <̂  - t))-̂, which was recorded on one' ehah-r 
nel (E ) , than d)_ - d)„; which was recorded as the difference of two other-

•X" 3, 2 

channels (E: and E ) . Thus, it-appears that the domihant noise in the, 
y r 

electric field measurement is due to real potential differences correlated 

over distances of a least the maximum electrode separation, 7p0 m. 

There, are several possible sources of electric field fluctuations 

9 

that would be correlated, over such distances'. Corwin has found self-

potentials as large as 50 mV at Grass Valley, He indicates that these are 

most likely streaming potentials, generated by the flow of spring water 

-through the ground. The large changes in water pressure that are often 

asspciated with hot springs could cause the streaming potential to fluc­

tuate . Corwin has also suggested that thexmoeleptric voltages; generated 

by the teimperature gradiehts of a geothermal area may be. a source of 

significant self-potential. If' these gradients fluctuate the voltage 

would also fluctuate. However, we would expect these fluctuations to be 

primarily at frequencies well below 0,3 Hz, the frequency at which the 

large peaks occur in figures 6 and 8., Eyen if the source of self-potential 

remains constant, fluctuatibhs in the surface self-potential can be 
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generated by the-variations in the. resistivity of the ground caused by 

seismic waves, surface temperature changes, water table changes, or 

underground presS:Ure. changes. Finally any local electrPma'ghetic source, 

natural or artificial, would of course give rise to correlated electric 

field variations. 

Method IV - Double Averaging 

None of the other methods o'f analysis in this thesis makes any 

assumptions about the statistical nature- of the; signals, The 

ionospheric signals are often quasisinusoidal fluctuations of only 

very slowly varying polarization and- frequency. It was hoped this 

property of the signals could be used to distinguish the signars from 

the noise. In fact this approach was the most successful one tried 

for the data callected in Grass Valley, However, because the success 

of the method depends on the statistics of the signals its accuracy 

can not be, predicted,. Further, no method that depends only on local 

measurements can be totally immune to noise Gorrelatipns, 

This rte.thod .begins with the e.a-lculation of. the average crosspowers 

• ^ - » -

of the components of E and H with a reference channel R . For example 

E R*̂ "' = Z H R*" -I- Z H. R*" . (4.41) 
X X- XX X X xy y X 

This average is, hot carried out over all W crbssprdduGts but only over 

a ismall subset n at adjacent Fourier harmonics of the same data segment,. 

The- superscript n denotes the average over such a. subset. Thus we have 

a large, niimber, -m, of values for each average crosspower where m could 

be as large as the number of ways of choosing a ŝ ijbset n from N objects, 
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N!/(N-h) I-n! i If h is large enough that the noise crbsspowers in 

equation (4-,44) ave,rage to zero then ithe equation is' accurately 

satisfied by the true value of Z fpr each of'the m subsets. If in 

addition the pplarlzations of the signals are different for some 

of these -subsets then we have linearly independent splutipns of equation 

(4 ,.44) and we can sdlve for Z and -2 . One' can include all ni subsets 
XX xy 

by picking Z .. and s to minimize the squared error in the prediction 
XX *̂*y 

o f E R* from H R* and H R*̂  ., T h a t i s 
X X X X y X 

.̂ _in -jti-. -m ra 
E R* H*R H R* •H,*R - E R* H*R H R*' H*R ' 

_ _ X X X X -y X y ' x x x ' -y x ' y -x y x 

XX • m m m̂ 

^ y X. ' X X ' ' X X ,y x ' 

a n d ( 4 . 4 2 ) 

- m " • • • ' "-~— m — ^—- m — m, 
E ,R*" H*R " H R * " H*R ' " - E R*" H*R " H R*" H*R * 

_ x X y X X X X X X X X x x x x x 
xy m m m 

2 2 2 
H R* H R * " ~ H R* H*R 

' y X ' ' X .X ' X X y X 

where the superscript m denotes the average- over the m subsets. The-

equations for 2 and 2 , can be: derived rin an identical manner. 
• • y x - y y • 
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I ^ Z I — m ^2];;;;;;;— m ^^^^^i^— . m -^^^^^— m 
E R*" H*R " H R*" H*R "̂  - E R*'̂  H*R ^ H R*" H*R ^ 

J ^ y y x y y y y y y y ^ V Y Y x y 
•"yx m m m 

liTT*''!^ Î TT*"!̂  - | i r i"*"S^"|^ 
' y y ' ' x y ' ' x y y y 

and 
(4.43) 

. j ^ j j j j j j j ^ 

Ln ———n ———:n ..^„ n z r ~ n n —-—n ——-n —rr~n E R* H*R H R* H*R - E R* H*R H R* H*R 
2 = y y y y x y x y y y x y x y y y 

yy m m m 

liTT*"!̂  | ir^"|^ - |irT*"iFF"|^ 
' y y ' ' x y ' ' x y y y 

One is free to pick the value of n and the way in which the n 

crossproducts are selected. If no extra reference channel has been 

recorded then one must use E for R and E for R , If an extra 
y X X y 

telluric measurement is available then one has the additional freedom 

to chose any combination of E and E for R and E and E for R , 
X r y y r X 

Note -that if n=l this estimate is identical to Z except that the 

average has been weighted by the reference power. In that case one 

would expect essentially the same bias as in Z . 

In the computer test with the simulated data of stationary 

signals and noises the double average technique did not, and was not 

expected to, yield significant improvements in the results. With an 

electric reference aligned with E or E , only the estimates of Z 
X y' -̂  XX 

and Z or Z and Z respectively could be improved. With the 
xy yx yy 

reference in a diagonal direction as in figure 7 -the polarization of 

the signals averaged to zero at the same rate as the noise in the 

first average with the result that the estimates were biased -the 
IS 

same as Z for all n. 
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The method behaved as expected when tested on the real data. As 

n was increased the bias decreased and the random errors increased. 

At frequencies below 1 Hz where the signals are often quasisinusoidal 

all of the evident bias in the apparent resistivities could be removed 

while increasing the random scatter between adjacent frequency windows 

to an rms value of about a factor of 5, At higher frequencies where 

the signals are very impulsive the method yielded only very slight 

improvement. 

Several different choices for R were tried including R =E , 

X y 
R =E , R = /2 ,E - E and R = E - E . There was a r e l a t i v e l y s m a l l 

x r x r y x r y ^ 

amount of b i a s , e i t h e r up or down, t h a t depended on the choice of R, 

The f i r s t average was performed only over c rossproduc ts from 

adjacent f r equenc i e s . Since i t was d e s i r e a b l e t o keep the r e s u l t s 

from adjacent frequency windows as independent as p o s s i b l e t h i s l i m i t e d 

the number i n the f i r s t average , n, t o the number of Fotxrier harmonics 

i n the cons t an t Q window. Then va r ious va lues of n were t r i e d t o see 

what value would minimize the b i a s wi thout unduely i n c r e a s i n g the 

random e r r o r s . The f i n a l choice below 1 Hz was n equal t o the sma l l e s t 

of t h e t h r e e numbers: the number of Four ie r harmonics i n t h e window, 

y^ and 36. For f requencies above 1 Hz any n g r e a t e r than 2 g r e a t l y 

inc reased the random e r r o r so n equal t o 2 was used. 

The r o t a t e d apparent r e s i s t i v i t i e s c a l c u l a t e d v ia -this me-thod 

with R = E - E and R = E - E . a re shown in p a r t c of f igu res 2 - 5 X r y y r X 

for coirparison wi th the r e s i s t i v i t i e s from Z , Because of the l a r g e 

random e r r o r i n t h i s method the loga r i thmic mean and s tandard d e v i a t i o n 
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of disjoint sets of apparent resistivities from adjacent frequency 

windows were plotted for the poorer data rather than the individual 

resistivities. For data that had been rated poor the average was 

over 5 windows and for fair, 3, 

Although the doxoble average method gave -the only physically 

reasonable results from our Grass Valley data -the method must still 

be considered at best an ambiguous success. Some bias still remains, 

depending on the choice of reference. Since the success of the method 

depends on the statistical nature of the signals, predictions about 

its success are nearly impossible. The random errors are comparatively 

large. 
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SECTION V. REMOTE REFERENCE 

The Estimate 

In the analysis of the 5 channel data two of the five channels 

were used as references for the other three channels. If the noise 

in either of the two references is correlated with the noises in the 

other three channels the impedance estimates will be biased. For our 

5 channel data from Grass Valley such bias was obvious. 

If two reference channels are available one can obtain an unbiased 

- > - > • 

estimate of Z even if the noise in E is correlated with the noise in H 

- > • 

as long as these noises are not correlated with the reference, R. In 

addition the equations are siitple, stable for any Z and have small 

random error. As opposed to the least squares approach, which gives 

six possible estimates for Z, or the 37 solutions that can be selected 

from equations (4.3) through (4.10), the remote reference estimate is 

unique. 

Quite analogously to Madden's generation of equation (1.23) for 

H R 

Z , the equation for the remote reference estimate Z can be derived 

by multiplying the defining equation for Z, (1,11), by R to form the 

diadic products, averaging and then solving for Z to obtain 

Z^ = [ER][HR] - (5,1) 

One might suppose, then> that other referenced estimates for Z would 

exist corresponding to the other least squares estimates but in fact 

they are all identical. For instance, corresponding to the least 

squares estimate for the admittance, equation (1,25), the referenced 
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admittance tensor estimate 

Y^ = [HR][ER] •"" , (5.2) 

If we then attempt to use this to generate an independent estimate of 

Z via 2̂  = X "® obtain 

(Y^) = [ER][HR]"-'- = Z^ , (5.3) 

the identical estimate. 

The reference can be either electric or magnetic. The distance 

it must be removed in order to avoid noise correlations depends, of 

course, on the range of the noise source. If the source is fluctuations 

in the streaming potential surface voltages then moving the reference 

beyond the local water flow field would be sufficient. If the noises 

are artificial they could be either very short range such as agricultural 

equipment or they could range over 50 miles like the fields from the 

Bay Area Rapid Transit system. 

Since one has to have an incident wave homogeneous over a large 

number of skin depths for the impedance to have a stable value, no 

additional physical conditions are required to use a remote reference. 

In fact one can guarantee that the signals are homogeneous over a long 

range by placing the reference at a great distance. The random error 

of the estimate will increase, however, as the coherence between the 

signals at the sounding site and the reference decreases with distance. 

R ->• . 
Z contaxns R xn both the numerator and denomxnator xn such a way 

that it is completely independent of the frequency response of the 
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instruments used to measure R. This can greatly relax the demands on 

telemetry used to transmit the reference. 

Error Ana lys i s - Variances of Z 

Equation (5.1) is such a simple linear equation that one can 

R R 
calculate the expected random errors in Z and in any function of Z . 

R R -»• -> 
One way to proceed is to relate the error in Z , Z - Z, to n where ri 

is the combined noise in the measurements as defined in equation (1.18) 

An ensemble of experiments must then be specified to calculate the 

variance of the elements of Z . The usual propagation of errors 

formula can then be used to calculate the error in any function of Z . 

In this section I will derive expressions for the variances of the 

apparent resistivity, phase angles of the impedance tensor elements 

and the skewness in a fixed coordinate system. Quantities calculated 

in the coordinate system aligned with the apparent strike direction 

are more uncertain because of the uncertainty in the apparent strike 

direction. Equations for the variances in that coordinate system will 

also be derived. 

R -»-P 
To compute Z - Z it is convenient to introduce the error ri 

o 
predicted when Z is substituted for Z in equation (1.18) : 

n^ = E - Z ^ . (5.4) 

->• 
On eliminating E between equations (1.18) and (5.4) one finds 

•* -*P -> 

n = n -I- A H , (5.5) 
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where A = Z - Z. Forming t h e d i a d i c product of equa t ion (5.5) with R* 

and averaging gives 

[TIR] = [n^R] + A[Hr] . (5.6) 

p p 
Since [ri R] = 0 from the d e f i n i t i o n of Z , equa t ion (1.5) , 

A = [nR][HR] ^ , (5.7) 

Thus 

\ j = n^A * / D , ( i = x ,y , j = x,y) , (5.8) 

where 

A = R H R - R H * R , (5.9) 
X X y y y y X 

A = R H * R - R H * R , (5 .10 ) 
y y X X X X y 

and 

D = H R * H R * - H R * H R * . (5.11) 
XX y y x y y x 

These equa t ions a re exac t by d e f i n i t i o n . The following equat ions 

are accu ra t e only for J.arge N, This cond i t ion i s not a s i g n i f i c a n t 

l i m i t a t i o n on t h e accvxracy of any p r a c t i c a l e s t i m a t e of e r r o r s . 

Equat ions v a l i d for small N can no t be accu ra t e un less the d i s t r i b u t i o n s 

of t h e no i ses i n the measurements are s p e c i f i e d . An experimenter can 

r a r e l y guarantee -the d i s t r i b u t i o n s of h i s no i ses wi thou t a l a r g e number 

of measurements, 

To compute the expected va r iances assimfie t h a t we have an ensemble 

R R 
of e s t ima te s for Z and t h a t each value of Z was computed from 
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identical sets of signals and stationary random noises. Define the 

variance, Var(Z..), by 
11 

Var(Z^.) = ( |A..1^) - |< A.. > i^ , (5.12) 
xj 11 ' X3 ' 

where ( ) is the ensemble average. This variance is the sum of the 

R -*• 

variances of the real and imaginary parts of Z... We assume that R 

is uncorrelated with T) so that ( A. .) = 0, Then, from equation (5,8) , 

Var(Z^.) = \ -̂ ^ ) . (5.13) 

If we substitute the measured value of |D| in equation (5.13), 

Var(Z..) can be written in expended form as 
11 

/ N N ^ 
Var(Z. .) = — - { I E n. n. A. A* ) , (5.14) 

^^ N2|D|2 \n=l m=l ^'""^'^ 3'^"^'" 

where N is the number of independent determinations of each field. This 

approximation introduces an error into the variance of order 1/N, For 

m ̂  n, n. and A. are statistically independant of rj. and A. 

x,m J ,m -̂  x,n 3,n 

(assuming that the analog filtering and Fourier transforming are 

performed appropriately). Thus, equation (5.14) reduces to 

Var (Z^.) = - r - ^ Z /in. I' |A. 1̂  \ . (5.15) 
^^ N'IDI' m=l \ "'"̂  '̂"̂  / 

If n. and A. are statistically independent, (\r\ . | |A. > = 
x,m 3,m ^ ' x,m' ' 3,m' 

0 0 
< In. I > < |A. I ). Since the crosspowers in the A. are in fact 
' x,m' ' 3,m' ^ J,m 
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not independent of the n. i the equality is not exact. However, 
X ,m 

- » • - > • 

provided R is independent of T\, the error introduced is of order 1/N, 

and can be neglected for large N, If the noises are stationary. 

( m. ) is independent of m, and equal to |n. • Under these 
X ,m X 

conditions, equation (5.15) simplifies to 

Var(Z^.) = In.1^ |A.|^ / N|D|^ , (5.16) 
X] ' X' 1 

It is easy to show, using equations (5.5), (5,8), and (5.16), that 

0 "O 0 0 

In.1 = |n. I [1 + 0(1/N)]. Thus, for large N, one can replace |n.| 

in equation (5,16) with 

I n ^ l ' = | E . | 2 - 2Re Tz^ H E % Z^ H E* - Z^ Z^* H H* 1 
X' ' x ' L IX X X xy y X xx xy x y j 

+ iz^ |2 |H |2 -H | Z ^ |2 |H |2 . (5.17) 
' xx' ' x' ' xy' ' y' 

The variance of Z.. is correctly given by equation (5.16) for 

-v 
arbitrary levels of noise but only if: (1) the noises in R are 

uncorrelated with the noises in E and H, (2) the noises in E and H 

are independent of the signals, and (3) the noises are stationary. 

The purpose of the remote reference technique is to ensure that the 

first condition is satisfied. The second assumption is likely to be 

well satisfied if the noises are generated locally. On the other 

hand, if the noises arise from inhomogeneous atmospheric sources, bo-th 

assumptions 1 and 2 may be violated, Assunption 2 could also be 

violated if the measuring eq\xipment produces errors that are proportional 



-70-

to the signals. The requirement (3) of stationarity is not particularly 

restrictive. We require only that the ensemble average and measxured 

time average of the noise powers be equal. Stationarity does not 

require that the noise in short segments of our data be the same for 

all segments. For example, magnetic fields from passing vehicles 

might introduce much more noise into some data segments than others, 

yet the ensemble and time averages of the noise power will still be 

equal, provided the times at which vehicles pass by in each experiment 

in the ensemble are random, I would like to emphasize that we do not 

need to assume -that the signals are stationary. Z and the errors in 

R - > • - > • 

Z involve only the ratxos of average crosspowers, and, since E, H, 
- * • 

and R are causally related, these ratios do not depend on the statistics 

of the fields. 

p 
It is inportant to note from equation (5.16) that Var(Z..) = 0 

- > - * • 

when there is no noise in E and H, regardless of the noise power in 

- » • - » • 

R. Also, when the noise power in R is negligible and the crosspowers 

in A. and D can be approximated by their noise-free values, it can be 

R - > • - * • 

shown that Var(Z..) is independent of the tensor relating R and H. 
0 "R 

Under these conditions, for given |n| / Var(Z..) diverges as 

|H I |H I - |H H* I -»• 0, that is, as the polarization of the 
' sx' ' sy ' sx sy' 

signal, H , increases. When there is noise in the reference, one can 
• s 

p 
easily verify that the contribution of the noise power to Var(Z..) 

-y 
increases as the polarization of R increases. Thus, the electric 

field from a telluric array in a location with a highly anisotropic 

apparent resistivity may not be a suitable reference. 
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, - ^ - + • . - > • , 

If H is noise-free, and if one replaces R by H in equation (5.7), 
* 

equation (5.16) gives the, expected variance in the least-squares 

H -* 
estimate of Z . Since A is .independent of the .orientation of R 

• ^ R • . 

relative to H, the variance in Z xs identical with the varxanqe xn 
H -> -> H 

2 for any noise-free R if H is also npise-free. Thus, because Z 

is pbtained by minimizing the mean square error in equation (1.24), 

Z also minimizes the mean square error. On the other hand, if there 
-*• H 

is noise in H, for large N the bias errprs In z are large compared 
H R 

to the random, errors in either 2 or 2 . Therefore, when there is 

-> H 
noise in H, Z is not a good esfimate of 2, and the question of the 

R H 
relative random errors in Z and 2 becomes academic. 

There are two atteitipts in the- literature 'to calculate the expected 

errors in estimates of the individual elements of the impedance tensor. 

Bentley attempted .such a caleulatibn for Z .. His calculation assumes 

that there is no noise in the measured fields, that the signals have 

stationary power spectra, and that the only source of error is the 

sampling distribution of the random signals,. In fact., only the ratios 

of power spectra enter into the estimate of Z, ,and these ratios are 

nbt affected by sampling errors,. Thus,. Bentley should have obtained 

a null estimate for -the errors, but t3id -not. because he neglecte'd the 

correlations between the errors in the' estimates of -the power spectra. 

* 
In arrivihg at equation (5,16), terins of order 1/N were neglected in 
estimating |n- | * 3!f the only noise is in the electric field, it is 

—' 0 " ' "~o 

easy to shqw that the unbiased estimator pf In.I is [N/(H-2)] |n. j 
^ 1 1 

for all N and for any noise-fre'e R. 
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-25 
Reddy et al have estimated; the random errors in the individual 

"H 
elements of Z using an expression derx'ved; from the error in a 

12 15 2 
combination pf the elements ' ' via a very rough approxima-tion,. 

The apprdximatioh is necessarily very rough because.̂  the error distfibu^ 

tion of the combinatipn does not contain enough information to specify 

the individual errors, and, in addition, -the expression fpr the joint 

erirprs is valid only for a npise-free magnetic.: field. Thus, neither 

approach appears to be! appropriate fbr magnetotellurics, 

.. . ^ . ^ R 

Variances of Funct ions of z 

Hpwevef large- the' hPise, the expected magnitude pf the erro^ 

ma:trix A can be made arbitrarily small by making N sufficiehtly large. 
R 

For small errprs, any function E,, of Z can .be expanded to first order 
.* 

in A. . arid A. . . Ih these expansions, it is convenient to shorten the 
.1.3 1-3 

notation as follows: 

A^. (i=X',y, j=x,y) ̂  A^ (k=l,2-,,3,4) 

where 1 = xx; 2 ~-xy, 3 = yx, 4 = yy. I will also drop the superscript 

R * 
R from Z - In-terms of A and A^, the error, SE,, in E, is given by 

k=l \ k k ' 

2 -^ 

Since ( A^^ = 0 , the var iance in C* i s Var(D = < |6C[ ) , I f n arid 

R a r e u n c o r r e l a t e d , ' (A A. )- = 0. for a l l „ k and Xj s ince the s i g n a l s 

and no ises aire ebmprex numbers of random phase . Thus Var(^) has the 
form 
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4 4 * * 

k=l i = l k 5, k £ 

which s i i t p l i f i e s t o 

4. 4 

H e r e , 

Var(C) = -S i G <A,A ) ., ( 5 . 20 ) 
k = l S^l ^ ^ ^ 

St5. ^ fe " d2* dZ* "̂  dZ, d2, ' ^^•^•^' 

I f ' ^ i s r e a l , G j, = 2Re ( - ~ - T^*-1 - '^^e ensemble average < A A- > 
kJt \ a z ^ d 2 ^ / k a 

can be evaluated with the same assumptions that were used in obtaining 

equation (5.16) . Returning to our original notation and using 

equations (5.9) and (5,10) we find that 

* * n.n * A-A 
<A,A„) =(A..A ) ̂  1 " J ra 

* P P 
where we have approximated (n.n ) by Yi.n *• Th equation (5,22) 

P P * . 
n.n * and A.A can be expressed in terms of measured crosspowers 
i n - J m ^ 

and autopowers as fpilows: 

:P„P. 
n:n * - E.E*----2. H E* - 2. H E * - z H*E. - 2* H*E, -̂  z. z \n 
1 n, i n IX X n ly y n nx x i hy y i xx nx'. x' 

+ Z. Z* H H* -i-'Z. Z* . H H* -(- Z. 2* H , (5.23) 
xy nx y X ix ny x y xy-ny ' y' 
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and 

* * * * * * * * * *" *" ~~i *" 
A A. = R,R^ H R̂^ H R +• R^R. H- R. H.R - R.K'j H' R, H-R - R, R H, R. H„R„ 

J m :] m k Tc x .Ji k £; k j xl- m .-j .£ k k Jt m k m k 3 i t 

(5.24) 

where k = x,y, . Jt = x,,y,. andk . "^ j and ..Jt =?̂  m. I t i s apparent t h a t 

Var(=5) will, in general, depend-on all 15 crosspowers and 6 autopowers 

of the components of the fields. 

To illustrate the use of equation (5 .,20) , let us compute the-

* 
variance in Re(Z } ,. -where "\i = 1,-2,3, or 4. Substituting .̂ = 'g = 

(2 + 2 .)/2 and., dg/dZ = d^ /d2 = 1/2 6 (6 is the Krdnecker delta) ̂  

one finds Var[Re(2. )]' = 1/2 < |A | ) = 1/2 VarCZ ) ,- Since 

Var(Z ) - Var[Re{-.Z ) ] -i- Varllm'tZ ) 1 this exan̂ ile .proves that 

Var(Re(Z )] = Var[lm.(Z )-L 

The elements of t h e aippare'rif i r e s i s t i v i t y matr ix Q a s s o c i a t e d with 

Z a re def ined by p = 0„2T |z | , where T i s the p.eribd i n sfeconds 

* * 
and Z has dimensions of mV/(kmY). i f we choose, £ - £ = 2 Z in 

equat ion (5,20) then d^/dZ^ = zjjs^^,, Ĝ^̂^ = ^ : | z^ |? 5 ^ 6 ^ ^ , . and 

0 0 

VaE(Q = 2JZ' j ( |A I ) . Thus t h e va r i ance p f -the element p i s 

given by 

O 0 

Var(p .) = (0".2T) V a r ( 0 = .0.4Tp < |A ( > . (5-25) 

* 
The phase , 4 of 2' i s defined by 

if i t 

t a n * - (2' - 2 ) / i {Z -1- 2 ) , (5.26) 
H y M M y 
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} — 4 

where i = / - I , I f ^ = tancj) , Var((j) ) = c o s 4 Var (^ ) . I n e q u a t i o n 

(5 .21 ) 

and 

* * 9 
dC/dZ, = 6 , 2Z / i ( Z + Z ) 

k yk y y V 

G, „ = 8 | z 1 ^ 6 , 6 „ / | z -t-Z*!^ 
k£ ' y' yk y£ ' ' y y' 

Thus 

V a r ( y = 8cos^(!)^ < | A ^ | ^ ) | Z ^ | ^ / | z ^ -t- Z * | ^ . ( 5 . 27 ) 

2 
To find the variance xn the skewness, W, we defxne ^ = W 

= |z -^Z 1 /|z - Z I, One obtains 
' XX yy' ' xy yx' 

Var(W) = Var(^)/4W , (5.28) 

whre Var(^) is given by equation (5,20) with the following values of 

O 0 

h i = ^14 = ^44 = 2W / K y - V l . (5.29) 

S2 = S3 =̂  -^3 = ^ S l ' 
and 

Re[(Z -HZ ) (Z - Z ) ] 

-=12 • S 4 = -«13 • -=34 • -<=n T ' \ ^ ^ • ' ' • ' ' " 
z - z 

' xy y x ' 

The rotation angle, 0, to align one of the axes with the apparent 

strike direction satisfies the equation 

2Re[(z -z ) (Z -̂ Z )] 
tan 46 = yy xx xy yx ^ ^^^3^^ 

Iz +z |2 - Iz - z r 
I xy yx' yy XX' 
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For any integer, m, 0 ± mTr/4 also satisfies equation (5,31), but the 

I 12 * 

solutxons wxth odd m maxxmxze Z -Z . If we choose E = E = tan 40, 
' XX yy' -? -a , 

4 
then Var(0) = cos 40 Var(^)/16. Var(^) is given by equation (5.20) 

with 

and 

Gn = G.. = -G, . = 2|a| Iz -f Z I , 11 44 14 ' ' ' xy yx' 

G-_ = G-, = G-- = 2|a|^ |Z - Z 1̂  , (5.32) 
22 33 23 ' ' ' XX yy' 

0 ic ic 
G = G^, = -G_. = -G,. = 2|a| Re[(Z -I- Z ) (Z - Z )], 
12 13 24 34 ' ' xy yx yy xx 

where 

(Z •»-Z)^-i-(Z - Z ) ^ 
a = -^^^^ ^ ^ ^ . (5.33) 

2 
[|z -h z 1̂  - |z - z 1̂ ] 
' xy yx' yy XX' 

The above equations can be used to calculate variances in any 

coordinate system provided one first rotates the measured spectral 

density matrixes to the desired orientation. However, if the rotation 

angle of the coordinate system is itself determined from the data, 

additional errors will be introduced in the calculated quantities 

because of the uncertainty in the rotation angle. The following 

expressions are for the variances of the apparent resistivities and 

of the phases of the elements of the impedance tensor in the coordinate 

system rotated by the angle 9 obtained from equation (5.31). 

Define the rotated apparent resistivity matrix (which is not a 

1 1 ' 12 , 
tensor) by p = 0.2T|Z | , where Ẑ  is the impedance tensor xn the 

I ' 12 ' 2 

rotated coordinate system. Then, i f E. = |Z | , Var(p ) = (0.2T) Var(£ ) . 

Var(^ ) is given by equation (5.20) with 
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'd?. . d£ ^ * 

S£ = 2 ^ M 5 / ^ ' ^'-''^ 

and 
d? 3C 9C ^n 

y ^ _ y + _1L 9S_ 
dZ, 3Z, 80 9z, 

k k k 

Using equations (1.15) and (5.35) we find 

^ = Z U (k) -f 2Re[Z V ] i ^ , (5,36) 
86 

where 

"̂"̂  3R _^ 3R"^ 
V = -5- Z R~ -F R Z - ^ ^ 

do !%! sa » RS do 

where R is defined in equation 1.16. 

The elements of equation (5.37) are 

2 
cos 0 -sin6cos0 

y(xx) = ' 2 
.-sinecose sin 6 

2 
sin6cos6 cos 6 

(sinoc 
2 

cos COS 6 -sin6cos6 

^nd . 2Q . Q Q 

sxn 6 sxnocoso 
S^^y^ =1 . 2 

.sin0cos6 cos f 

(5.35) 

dz \i ]s y y 3Z, ' 

^^ -1 
~ dZ^ ~ (5_37) 

(5,38) 

y(xy) = ( 2 ) , (5,39) 
-sin 6 -sin0cosf 

2 
sin9cos0 -sin 6 
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V can be written as 

V = 
'-sin28 cos26\ /Z - Z Z -t- Z 

W XX yy xy yx 
.-cos2e -sin26/ \ Z -HZ Z - Z 

xy yx yy xx 

(5.40) 

From equation (5,31) , 

36/3Z = -30/3Z = -a*cos 4e(z -i- z )/4 , 
XX yy xy yx 

and (5.41) 

3e/z = 36/3Z = a*cos 46(z - z )/4 , 
yx xy XX yy 

where a is defined in equation (5.33). 

I I 

Now cons ide r ffl , t h e phase of Z , and def ine 
y • y 

Z' - Z'* 
r - J . ' y y 

ŷ = ^ ^ % = i(z- + z'*) 
(5.42) 

Then, Var((|)') = cos <j)' Var{£ ) , and Var(^ ) is given by equation (5.20) 

From equations (5.42) and (5.35), we find 

d^ 

dZ, 
y _ = -2i 

= -2i 

dz 
- Z 

dZ' 
: ' * — ^ 
•'y dZ y dZ, 

X 

, 1 '*, 2 
Z -I- Z 

y y 

z'* U (k) -I- 2ilm[z' V ]30/3Z, 
y y y y' ' k 

(z' + z'*)^ 
y y 

(5.43) 

where y(k), V, and 36/3Z have been defined in equations (5.39) 

through (5.41). 
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Confidence Limits 

Although least squares linear regression is not the best me-thod 

of determining Z, the least squares principle is appropriate for the 

comparison of different estimates of Z. For example, the best model 

of the ground in a statistical sense minimizes the mean square of the 

magnitudes of the differences between the modeled and measixred values 

of Z, weighted in inverse proportion to the variances. However, to 

determine -the statistical significance of this discrepancy, one 

requires the distribution of the errors of the estimates, not just 

the variances. 

In equation (5.8) for -the error A. ., D can be approximated by 

its noise-free value for large N. In this approximation, A.. is just 

the sum of N complex random errors (one for each k, 1 ̂  k ^ N) and, 

by the central limit theorem, its real and imaginary parts are 

normally distributed. Since the error A.. is of random phase 

(Re(A. .)Im(A. .)) = 0. Thus Re(A. .) and Im(A. .) are also statistically 
ID 11 13 13 

independent. The sums of the squares of n independent normally 

distributed random variables with unity variance and zero mean has a 

2 -> -> 
Y distribution. Thus, if H and R are noise-free. 

6.. = lA..| /Var[Re(A..)] = 2|A..| N|D| /<ln.I > |A.| (5.44) 
X 3 ' X 3 ' X 3 X 3 ' I I ' I '-1̂  I I -J 1 

2 
has a X, distribution. In this expression, the unknown quantity 

0 T3 0 

( |n.I ) is best approximated by |n.| • The errors introduced by 

this approximation must be included to obtain an unbiased estimate of 
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I P 2 2 
the confidence limits. Since 3 = (2N-4) |n.| /(|n.| ) can be shown 

2 15 
to have a Y-,,, ., distribution the quantity 6. ./6 is the ratio of 2N-4 X3 

2 
two variables with x distributions. Thus (2N-4)6. ./(2S) has a Fisher F 

distribution with 2 and 2N-4 degrees of freedom, F . For large N 

I P I 2 
the modification introduced by |n.| is small. For example, for 

N > 25, the confidence limits for the F„ .,, ̂  distribution are less 
2,2N-4 

2 
•than 6% larger than those for the x, distribution up to the 95% 

confidence level. If the signal-to-noise ratios of R and H are much 

greater than the signal-to-noise ratio of E, this small correction to 

the confidence limits may be significant. If the noise is not 

predominantly in E, the other corrections of order 1/N that we have 

neglected will cause modifications of the distribution comparable with 

2 
the difference between the X .̂nd F distributions. These modifications 

cannot be described in terms of elementary distribution functions. 

2 
Thus, for most applications, the x distribution should be adequate, 

and as accurate as can be obtained without extraordinary effort. 

Errors estimated from the first-order Taylor expansion, equation 

(5.18), for example errors in the apparent resistivity, are linear func-

tions of the errors in the real and imaginary parts of Z . Therefore, 

within the limits of accuracy of -the Taylor expansion, these errors are 

also normally distributed. The confidence limits of these quantities are 

O "O 0 

again modified by the estimation of < |n.| ^ by |n.' so that the 

proper distribution is that of the ratio of a normally distributed to 

2 
a X distributed variable, or a Student t distributxon. However, the 

corrections to a normal distribution will be significant only when 
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the confidence intervals are so small that the Taylor expansion 

introduces a negligible error, and, as before, the noise is predominantly 

- > • 

in E. For most purposes, a normal distribution should be entirely 

adequate. 

As an example, consider two independent sets, a and b, of M 

a b 
estimates of Z. . (w) , Z. . (w, ) and Z. . (u), ) , where 1 < k < M. We calculate 

X3 13 k 13 k 

the probability that the disagreement between the sets arose from random 

errors alone assuming that the errors in set b are negligible conpared 

to the errors in set a. Such a calculation would be required if one 

wanted to determine the significance of the difference between a model 

of the ground (set b) and a sounding (set a), or if one considered 

rejecting a small subset of the data (set a) because of its disagreement 

with the rest of the data (set b) . If the quantities 6. .(w, ) have x„ 

M 13 k ^̂2 
a 2 

distributions then the total discrepancy, E 6. . (to, ) , has a x^ 
k=l 13 k ^2M 

distribution. Neglecting the errors in Z. .(o), ) , we find 
X3 k 

M M 2|Z^.(M ) - z ' ' . ( w ) I V I D ^ I 
Z 6^(a ) . ) = Z = L ^J ^ ^ ^ - ^ - — . (5.45) 

k=l ^^ k=l |^Pa |2 | ^ a | 2 

*~>. Thus the probability that C, > a through random errors alone is 

Determinat ion of Signal and Noise Powers 

R ->• 

The random errors xn Z depend only on the combxned noxse, n. 
->- ->-

rather -than on individual noises in E and H. Nevertheless, the 

determination of the noises in the individual fields is obviously 
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of practical interest. With a remote reference the signal and noise 

power spectral densities can be evaluated as follows. 

The value of Z obtained from equation (5.1) and the measured 

t P magnetic field, H, predict an electric field E , where 

-»•? R -> E = Z H (5.46) 

-»^p - > - - > • , * • - > -

E contains contributxons from the sxgnal H and the noise H = H - H . 
s n s 

I f t he no ises a re uncor re la t ed with each o the r and with the s i g n a l s , 

the s p e c t r a l d e n s i t y matr ix 

[E^E] = Z^[HE] = [ER][HR] -"-[HE] (5.47) 

has the expectation value ofthe spectral density matrix [E E ], where 

[E E J = 
s s 

I |2 * 
E E E 
' sx ' sx sy 

* I |2 E E E sy sx ' sy' 

The matrix [E E ] is Hermitian: The diagonal elements are real, and 
s s 

the off-diagonal elements are complex conjugates of each other. 

On the other hand, [E E] is, in general, not Hermitian because of the 

noises E , H , and R , If the phases of -the errors are unknown, it 
n n n 

P 
seems reasonable to estimate -[E E ] by the Hermitian part of [E E ] , 

5 S 
p 

[E E ] given by 

/̂  

[E E ]^ = ^ {[E^E] + [Ê E]"*"} = ([E^E] -(- [EE^])/2 
s s 2 

(5.48) 
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This estimate of the signal power can be derived in a second way. 

Equation (5.46) predicts the electric field from the magnetic field 

using R as a reference. This idea can easily be generalized. If any 

three quantities are linearly related, each of them can be predicted 

from either of the others, with the third as a reference. If all the 

noises are uncorrelated then each of the linear relationships between 

the three quantities can be estimated in a stable, unbiased manner, 

For instance, the electric field can be predicted from R, using H as 

the reference. That is, we can estimate G; defined by 

E = G R (5.49) 
s «s s 

from 

G^ = [EH][RH] •"• , (5.50) 

Thus we have a second estimate of the electric field signal power: 

[E^E]' = G^ [RE] = [EH][RH]"-'- [RE] . (5.51) 

p ' P i " 
Comparing this with (5,47), we see that [E E] = [E E] ! Thus we 

obtain equa-tion (5.48) by taking the Hermetian part of either estimate. 

Alternatively, considering (5.47) and (5.51) as two equally valid 

estimates, one would want to obtain the best estimate by taking their 

average, again producing equation (5.48). Thus we see that both ^ 

and the signal power estimates are unique and contain remarkable symmetry, 

Following these symmetries, we can immediately write down the 

predicted signal powers for H and R: 
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[H H ] ^ = ([H^H] •(- [HH^]) /2 , ( 5 . 52 ) 
s s 

[R R ] = ([R R ] + [RR^] ) /2 , (5 .53) 
s s 

where , 
[H H] = [HR][ERl ' [EH] , (5 .54 ) 

and _ 
[R R] = [RE][HE] [HR] . (5.'55) 

One. can calculate -the spectral density matrices for the noises by 

subtracting the estimated signal density matrices from the measured 

spectral density matrices, for example 

[E E ] = [EE] - [E E_^]^ . (5.56) 
n n s s 

The noise matrixes contain the crosspowers E E* , H H* , and R R* . 
nx ny nx ny nx ny 

Thus, one can determine whether there are significant correlations 

between the noises in the two components of each field. Such 

correlations may be indicative of measurement errors, and could be 

generated, for example, by noise from a common electrode, or by a 

moving magnetic object. 

The remote reference method requires the measurement of the three 
- > - » • - > -

fields E, H, and R, each with two components. Correlations between -the 

noises in the two components of each field do not bias the estimates 

R R 

of Z , the errors in Z , or the signal and noise power spectral 

density ma-trices. However, any correlation between a measured field 

and the noise in another field will bias the estimates of the signal 

and noise power spectra. Such correlations would usually cause a 
P P P 

significant .non-Hermitian part in the matrices [E E], [H H ] , and [R R ] . 

^ 
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R - y ->• 

Z will be biased only by correlations between n and R. Thus, 

P P P 
under mDSt circiimstances, the requirement that [E E ] , [H H] , and [R R] 

be Hermitian provides a sufficient but not necessary check on the 

p 
correlations that would bias Z . However, if the ionospheric signal 

is from a fixed inhomogeneous source, these matrices would still be 

j^ 
Hermitian, but Z would be biased. 

Genera l i za t i ons - the re fe renced t i p p e r 

All of the referenced tensor equations obviously hold for any 

rank tensor and can be immediately applied to the measurement of any 

tensor response function. The unbiased estimation of a tensor of 

rank n in the presence of correlated noises reqiiires n reference 

channels with uncorrelated noises. As a simple example of this I will 

include here the equations for the measurement of a quantity often 

investigated xn conjunctxon with- magnetotelluric surveys, the tipper T, 

The tipper is the linear relationship between the vertical and 

- > • - > • 

horizontal magnetic field components, defined by H = T H , The 

referenced estimate for the tipper is 

"*"R —1 
T = [ H ^ R ] [ H R ] (5 .57) 

where 

[H R] = (H R* H R* ) . 
z z X z y 

The v e r t i c a l m a g n e t i c s i g n a l power i s 

Re(H^H ) = Re([H R] [ H R ] " - ^ [HH ] ) . ( 5 .58 ) 
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The e r r o r i n -the e s t ima te of T i s 

A = [ T R ] [ H R ] (5.59) 

where 

T = H - T H . z 

Thus the variances of the elements of T are 

Var(Tj) = |T^|^ |A^|^ /(N|D|^) (5.60) 

where the A. and D are given in equations (5.9) - (5.11) and 

|T I = |H I -f |T I |H I -h |T I [H I - 2Re(H H* T -I-H H* T - H H* T T*) 
' ' ' z' ' x' ' x' ' y' ' y' X z X Y ^ Y X y X y 

(5.61) 

The apparent tipper strike is the direction of the horizontal 

magnetic field component that has the smallest linear relationship 

with H . The angle of rotation about the z axis that will align the 

X axis with the tipper strike, 0 , satisfies the equation 

2Re(T T ) 
tan 20 = : ^ (5.62) 

|T | 2 - IT |2 
' X ' ' y ' 

Caution must be exercised because 0 ± -r- also satisfies equation 

(5.62) for any integer m and the solutions for odd m maximize |T (6)| . 

o 2 9 
Therefore 0 obviously also maximizes |T (0)| and |T (0)| - |T (6)| . 

0 0 "> 0 
| T | -^|T| = | T | is independent of rotation and is a measure of X y 

the total horizontal contrast in resistivity. One may also wish to 

know just how well T (0) can be minimized. The minimum T (0)| is 
•' X ' X ' 

j ^ 



-87-

f = (IT I^ COS^0 - IT I^ sin^0)/cos20 . 
' x' ' y' (5.63) 

Thus 0 , |T| and f are interesting parameters of T for physical 

interpretation. Their variances can be calculated via the Taylor 

expansion analogous to equation (5.18) and for small errors the 

distribution of errors should be normal. Dropping the superscript 

R and calculating 3|T| /3T. we obtain 

Var ( |T | ) = Q ( | T I |A I + \T \ |A I -I- 2Re(T T*) Re(A A )) (5.64) 
I I ' ^ ' x ' ' x ' l y i i y i x y x y 

where A A* is given by equation (5.24) and 

Q = 2|TP|^/ (N|D|^) . Let ^ = tan 26 

Then Var (6 ) = cos 26 Var(^)/4 and 

Var(C) = |P| Q(|T I IA I -H IT I IA I - 2Re(T T*) Re(A A * ) ) (5.65) ' ' ' y ' ' x ' ' x ' ' y ' y x x y 

where 

p = (T -f T )/( |T 1 - IT I ) 
X y ' x' ' y' 

Var(f)=Q(2Ref||-^|f-J j Re A^AJ + df 
dT 

iA r + 
' x' 

df 
dT 

IA I ). (5.66) 
y 

df 3f 3f 36 

where 

dT. 
X 

3f 
36 • 

3f 

' 3T. 36 
X 

2Re(T T*) 
X y 

COS26 

T* cos^6 
X 

3T. 
1 

r 

3T cos26 

(5.67) 

(5.68) 

(5.69) 
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where 
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^^ -T* sin 8 
df y 
3T "" COS26 
y 

(5.70) 

39 
3T y 

(5.71) 

99 
3T X 

(5.72) 

B = cos^26^ P*/2 
T (5.73) 

*." 
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SECTION VI. TEST OF THE REMOTE REFERENCE METHOD 

This section describes in detail a test of the remote reference 

technique using data collected simultaneously at two sounding sites 

called Upper and Lower La Gloria. To assess the quality of the data 

as compared with those obtained from other surveys they were analyzed 

using Z . I also include the apparent resistivities as calculated 

via Z and method I, the crosspower solution of the eight equations. 

The data from Upper La Gloria were among the best we have collected, 

those from Lower La Gloria were among the worst, Z produced excellent 

results in every case. 

Data 

We established two complete magnetotelluric sounding stations 

separated by 4.8 km on La Gloria road in Bear Valley, California, at 

the sites shown in figure 9. The Upper La Gloria station is in hilly 

terrain where the geology consists chiefly of granites, while the 

Lower La Gloria station is in a level area over a zone of low 

18 
resistivity, and is slightly east of a fault that separates this 

zone from the granites. Lower La Gloria is about 2 km west of the 

San Andreas Rift Zone which runs in a northwesterly direction. 

For the electric field measurements we used the Pb electrodes 

20 installed by Corwin for dipole-dipole resistivity monitoring. The 

location of the electrodes is shown in figure 9. Electrodes E and E 

were the common electrodes at the lower and upper stations, respectively. 

The nonorthogonality of the -telluric arrays was taken into account in 

the analysis. For the magnetic field measurements we used our dc 



Willow Creek Peak/\ 
FM Repeater 

vo 
o 
I 

Fig. 9. Sites near Hollister, California, where magnetotel 1-uric data 
were recorded simultaneously. Dots denote electrodes,, dotible 
circles denote magnetometers. 

XBL77I2-65I4 
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SQUID magnetometer at Lower La Gloria, and an rf SQUID magnetometer 

manufactured by S.H.E. Corporation at Upper La Gloria whose magnetic 

-4 -1/2 
field sensitivity was approximately 10 y Hz . The magnetometer 

at each site was used as the reference for the signals at the other 

site. 

The data from both sites were recorded simultaneously. A block 

diagram of the measurement electronics appears in figure 10. The 

equipment at Lower La Gloria was battery powered, while that at Upper 

La Gloria was powered by a 60 Hz generator. Each signal was passed 

-through a preanpl i f ier -that contained a high-pass f i l t e r to attenuate 

the large-amplitude low-frequency signals that could have exceeded 

the dynamic range of the electronics. Each preamplifier was followed 

by a 60-Hz notch filter. The signals from Lower La Gloria were 

transmitted to Upper La Gloria by FM telemetry via a repeater on 

Willow Creek Peak. At Upper La Gloria we passed each of the signals 

through a four-pole band-pass f i l t e r , d igi t ized the signals with 12-bit 

resolution, and recorded the data on a nine-track digital recorder. 

The data were acquired in the four overlapping bands listed in 

table IV. Band 4 was intended to include periods from 30 s to 1000 s, 

but an error in setting the highpass filter of the telemetry preamplifier 

at the remote site resulted in the longest period being 100 s. The 

times required for data collection and the sampling periods are also 

listed in table IV. We recorded all -the data within a 40 hour period, 

making only brief interruptions to change gains and filter bands and 

to replace batteries. All the recorded data were processed using the 
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Table IV. Summary of filter bands, recording time per band, digitizer 
sampling period, and the number of points per fast Fourier 
transform (FFT). 

Filter 
band 
no. 

1 

2 

3 

4 

Filter 
band 
(s) 

0.02 - 1 

0.33 - 5 

3 - 100 

30 - 100 

Total 
recording 
time (h) 

0.54 

4,22 

10,52 

14,9 

Digitizer 
sampling 

periods (s) 

0,005 

0,1 

1 

10 

No. of 
points in 

data segments 

1024 

512 

512 

256 
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I 

XBL 781-4510 

F i g . 10. Block diagram of da ta a c q u i s i t i o n , 
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procedixres in section III except those rendered meaningless by equipment 

failure, amplifier saturation or obvious magnetic interference from 

passing vehicles. The lengths of the data segments are shown in 

table IV. The center period of each frequency window, the number of 

harmonics in each window and the nxomber of data segments are given in 

table V. 

Resu l t s 

The results are graphed versus period for Upper La Gloria in 

figures 11 through 21 and for Lower La Gloria in figure 22 through 32. 

Figure 11 contains the correlation coefficients C and C in the 
X y 

rotated coordinate system. Figures 12 through 14 contain tiie rotated 

E H 

apparent resistivies from Z , method I, and Z , respectively. The 

apparent resistivities from the remote reference method are indicated 

on these figures by a dashed line to facilitate comparison of the 

me-thods and are plotted with their probable errors in figure 15. 
P H R 

Consider the apparent resistivities from Z , Z and Z , figures 12, 
E 

14 and 16. In 60 of 64 cases the apparent resitivity from Z is larger 
H R 

than, and that from Z is smaller than, that from Z . This regular 

ordering of -the apparent resistivities demonstrates that the bias 

error in at least two of the estimates is large compared to the random 

error in any of -them and it strongly suggests that the bias is due to 

the measured autopowers in the least squares estimates. Comparing 
the differences between Z and Z , figures 12 and 14, with C, figure 11, 

we see that the relative bias usually but not always increases as C 

TJ 

decreases. Fot instance, p from Z at 0.032 second period has the 
yx 



Table V. Niomber of harmonics per window, and numbers of sets of data segments for each station. 

Band 

Period 
(s) 

0.023 
0.032 
0.044 
0.062 

0.085 
0.12 
0.16 
0.22 

0,30 
0.41 
0.57 
0.79 

no. 1 

Harmonics 
per window 

75 
53 
38 
27 

19 
14 
10 
7 

5 
4 
3 
2 

Band 

Period 
(s) 

0.325 
0.45 
0.63 
0.88 

1.2 
1.7 
2.4 
3.4 

no. 2 

Harmonics 
per window 

52 
37 
27 
19 

14 
10 
7 
5 

Band 

Period 
(s) 

3.3 
4.5 
6.3 
8.8 

12 
17 
24 
34 

49 

no. 3 

Harmonics 
per window 

52 
37 
27 
19 

14 
10 
7 
5 

4 

Band 

Period 
(s) 

32.0 
41.1 
60.9 
85.3 

no, 4 

Harmonics 
per window 

.13 
9 
7 
5 

I 

VD 

I 

Number of sets of data segments 

Upper La Gloria 

Lower La Gloria 

476 

381 

297 

297 

73 

73 

21 

21 
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Fig. 11. Correlation coefficients, C and C from equation (1,29), 
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versus period for the data from Upper La Gloria. 
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Fig. 12. Rotated apparent resistivities from 2 versus period. Upper 
La Gloria, ^^^-T.,. remote reference results. 
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10,00'Or 

Fig- 13. Rotated apparent fesistivities, from method I, 
crosspower solution of eight equations, versus 
period, Upper IJa Gloria. — remote .reference results, 
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Fig, 14.' Rotated apparent resistivities from Z versus period. 
Upper La Gloria. remote reference results. 
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Fig. 20. Magnetic field signal and noise power spectra versus 
period. Upper La Gloria. 
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Fig. 21. Remote magnetic reference signal and noise power spectra 
versus period. Upper La Gloria. 
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largest bias of any of the results from this station, possibly due to 

magnetic noise from the 60 Hz generator, and yet C for t h a t window 

is actually higher than for the adjacent frequency windows. Thus C is 

only a very rough indication of the accuracy of the least squares 

results, 

The apparent resistivities from method I, figure 13, are far more 

scattered than those from the other estimates. The best results 

from this method are for p at periods shorter than 1 s, where C 

xy ^ X 
is greater than 0,9, Here, they are still scattered over the 10% 

H E 
range of the disagreement between the Z and Z resistivities. Note 

that no value of apparent resistivity has been plotted at 0.032 s 

period for method I. This is because the predicted autopowers were 

not real. Thus we know that there is some significant noise in t h i s 

window even -through C is higher than in the adjacent windows. 

Because of the large random errors in method I and the bias errors 

in the two least-squares estimates they are not reliable estimates of 

the apparent resistivity when the C. are less than 0.9. If we were to 

reject all resistivities for which C is below 0.9, we could retain 
y 

only 11 values for p , all at periods longer than 0.5 seconds. 

The remote reference signal and noise spectra, fig\ires 19-21 

contain six times as much information as the least squares C.. They 

are calculated in a coordinate system with the x axis pointing towards 

magnetiic north and have not been corrected for the 60 Hz notch. The 

peak in the noise power in H at 0.032 second period shows up clearly 

and the bias of the least squares estimates is well predicted by the 

noise to signal ratio from these spectra. 
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Because of random errors in the calculated signal spectral density 

matrices, it is possible for the calculated noise power to be negative. 

This behavior was never observed at this station, even though the 

signal-to-noise ratios varied from 100:1 for E at 0,1 second period 
y 

and 200:1 for H at 85 second period to 1:7 for R at 9 second period. 

The signal power spectra for these data are particularly steep; for 

exanple, around 15 second period they increase roughly as the 8th 

power of the period. Nonetheless, the calculated noise spectra are 

comparatively smooth, indicating that the random errors are small. 

The non-Heritdtian parts of the predicted autopower spectral 

density matrices were very small. For example, the imaginary parts of 
P * 

the predicted autopowers (such as E E ) were always less than 10% of 

tlie real parts, and averaged about 1%, For periods shorter than 3 

seconds, where we had the most data, they were always less than 2%. 

Thus, even if the noise coherencies were statistically significant, 

they were too small to have any practical importance in the remote 

reference calculations. 

H R 

Z and Z gave similar estimates of the other parameters: apparent 

strike direction (equation 5.31), phase angles and skewness (equation 

1.17), at Upper La Gloria, figures 15, 17 and 18. The only difference, 

which may be too small to see in the graphical representation, is 

that there was a scatter in the value of the apparent strike direction 
H R 

of about ± 3° when estimated by Z t h a t was absent when Z was used. 

While the data from Lower La Gloria were much noisier, the same 

observations about the bias hold true. Apparent resistivities from 
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Fig. 22. Correlation coefficients, C and C from equation (1.29), 
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E H 

Z were invariably larger than those from Z , The difference reached 

a factor of 100 for p at 9 second period, figures 23 and 25, This 

station would have been a wasted effort with conventional analysis 
since C and C are never both above 0,9, The source of the bias 

X y 

is evident in the signal and noise power spectra, figures 30 

through 31. 

Lower La Gloria was the one station where method I was more 

successful than the least squares methods. For periods shorter than 

20 seconds it yielded apparent resistivities, figure 24, that lie 

between the two least squares resistivities, figure 23 and 25, in 

50 of 54 cases. -This result indicates that the random errors for the 

crosspower method are small in this case compared to the bias errors 

of the least squares methods, and is further evidence that the autopower 

bias is the major source of error. At periods between 3 and 20 

seconds method I produced dips in the apparent resistivity similar to 

those of the standard analysis, but about a factor of five smaller. 

In contrast with t he other methods, the remote reference method 

yields apparent resistivities, figure 27, that vary smoothly over the 

entire range of periods, even where the coherency is low. The results 

from overlapping bands agree within t he expected random error. At 

periods shorter than 1 s, the remote reference apparent resistivities 

agree with the results from the crosspower method to within the random 

scatter of the crosspower results (± 10%). 

It is interesting to compare the signal and noise power spectra 

for H at Lower La Gloria, figure 31, with the spectra for the reference 
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field for Upper La Gloria, figure 21, since they are, of course, 

physically the same thing. The difference between the two calculations 

is that in the former case the electric field at Lower La Gloria was 

used in equation (5.52) while in the latter the electric field at 

Upper La Gloria was used in equation (5,53). The converse relation 

-y 
holds for the calciiLation of the H spectra at Upper La Gloria and the 

reference spectra for Lower La Gloria. The eight pairs of spectra 

are satifyingly similar except for some noticable random scatter at 

tzhe longest periods where t±e number of data is least. In fact at 

Lower La Gloria there were two values of noise autopower in the 

magnetic field that came out negative. This would cause problems on 

a logarithmic plot so the absolute value was plotted. 

At Lower La Gloria -the standard and remote reference methods 

yield very similar values for 1:he phase angles, with scatter increasing 

with period up to about ±5° for periods longer than 10 s, figures 26 

and 29. The standard analysis yields values of apparent strike and 

skewness tihat differ by 20° and 0,2 respectively between bands 2 and 3, 

while no disagreements are apparent for the remote reference metJiod, 

figure 28, There are also consistent differences between the two 

methods. For example, the apparent strike at short periods determined 

by the remote reference method is about 52", while by the standard 

me-thod it is about 65°. 

Reproducibility of Apparent Res i s t i v i t i e s 

The final question to be answered is whether the expected random 

error is a good estimate of the reproducibility of the results. They 



-122-

are certainly in qualitative agreement. Where 1:he bands overlap the 

values usually agree within the calculated probable error. One can 

draw a very smooth curve tJirough at least 50% of the probable error 

ranges. One can get a slightly better estimate of the reproducibility 

by comparing the results obtained from disjoint subsets of the data. 

In bands 1 and 2 we had collected about 5 times as many data as 

were necessary to obtain estimates with reasonably small random errors, 

I divided these data into M subsets and thus was able to recompute M 

completely independent estimates for each of the apparent resistivities, 

If the average of the M values is p then the expected standard 

devia-tion of the average, O, is given by 

M 
a = E (p. - p) / (M-M) . (6.1) 

i=l ^ 

For band 1 at Upper La Gloria I formed 5 subsets and for band 1 at 

Lower La Gloria and for band 2 at both stations I selected 4. In an 

attempt to include signals of various polarizations in each of the 

M subsets I selected for each siobset roughly equal nim±)ers of records 

from two different recording times that were widely separated. 

Table VI summarizes the recording times and the number of the sxobset 

to which tJie data segments were assigned. There are no entries for 

the first two recording times in band 1 at Lower La Gloria because 

we had accidentally removed a set of preamplifiers from some of the 

channels at that station. 

Table VII lists the percentage expected standard deviation of the 

mean resistivity, 100 o/p, as a function of period for both stations. 



Tcible VI. Arrangement of data from bands 1 and 2 into subsets to estimate the standard deviation of 
the apparent resistivity at each period. Date refers to September 1977. 

Band 1 Band 2 

Subset number S u b s e t nx:miber 

Recording time Date 
Upper 

La Gloria 
Lower 

La Gloria Recording time Date 
Upper 

La Gloria 
Lower 

La Gloria 

11:55 

12:01 

7:30 

7:36 

1:20 

1:25 

1:30 

1:35 

1:40 

1:45 

AM -

PM -

PM -

PM -

PM -

PM -

PM -

PM -

PM -

PM -

12:00 

12:06 

7:35 

7:41 

1:25 

1:30 

1.35 

1:40 

1:45 

1:50 

PM 

PM 

PM 

PM 

PM 

PM 

PM 

PM 

PM 

PM 

14 

14 

14 

14 

15 

15 

15 

15 

15 

15 

2 

3 

4 

5 

1 

2 

3 

4 

5 

1 

Omitted 

Omitted 

3 

4 

1 

2 

3 

4 

1 

2 

9:25 

9:55 

10:43 

6:20 

7:00 

10:50 

11:38 

12:36 

AM -

AM -

AM -

PM -

PM -

AM -

AM -

PM -

9:50 

10:42 

11:27 

6:57 

7:32 

11:37 

12:25 

1:13 

AM 

AM 

AM 

PM 

PM 

AM 

PM 

PM 

14 

14 

14 

14 

14 

15 

15 

15 

1 

2 

3 

4 

2 

1 

3 

4 

1 

2 

3 

4 

2 

1 

3 

4 

1 

NJ 
Ul 
1 
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Table VII. Expected standard deviations, 100 O./p., of mean apparent 

resistivities from the remote reference method. 

Period 
(s) 

0.03 

0.04 

0.06 

0.08 

0.12 

0.16 

0.22 

0.30 

0.41 

0.57 

0.79 

0.33 

0.45 

0,63 

0,88 

1.2 

1.7 

2.4 

3.4 

Upper 

100 a / p 
xy xy 

0.4 

0.5 

0.2 

0 . 3 

0.5 

0,4 

0,7 

0.6 

0,04 

1,2 

1.2 

2.2 

0.8 

1.2 

1,2 

1,0 

1.1 

0.8 

1.3 

La Gloria 

100 a /p 
yx yx 

3.5 

0.8 

0,8 

2,1 

0.7 

1.4 

0.6 

0.9 

4.4 

2.2 

1,6 

1,6 

1,0 

3,0 

0.9 

1.3 

1.4 

3.4 

2.6 

Lower 

100 a / p 
xy xy 

2.0 

0.7 

1,3 

1,1 

0.8 

1.6 

1.9 

0,9 

0.7 

1,3 

1.8 

0,4 

1,2 

1,0 

0.9 

1.4 

0.9 

2.7 

1,7 

La Gloria 

100 0 /p 
yx yx 

2,3 

0.8 

0.5 

0,9 

0.7 

1.3 

1.1 

1.8 

1.2 

1.3 

1,5 

0,8 

0.5 

0.5 

0.7 

1.1 

1.5 

1.2 

2.0 
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We see that the expected fractional standard deviation of both p 
xy 

and p is always less 1±an 5%, and, for 87% of the data, is 2% or 
yx 

less. The average of a/p over all entries in table VII is 1.3%. For 

comparison, when I performed -the same analysis on the apparent 

resistivities calculated from Z , the average of the fractional 

standard deviation was 3.3%. At periods less than 3 seconds, the 

expected deviations are much smaller than the discrepancies caused 

by bias (typically 20%) that one observes when one compares tdiese 

results with those obtained from Z , 

With the number of subsets M being so small these estimates of 

the standard deviation's are very crude, with uncertainties of 

roughly a factor of 2, Nevertheless t±iey are in qualitative agreement 

with the expected random error from figures 16 and 27, One can obtain 

one more certain estimate of the reproducibility by calculating the 

rms value of a for a number of the resistivities with comparable a ' s . 

Averaging together 25 of the a's in this way should produce an 

estimate of the reproducibility that is accurate to within about 10%. 

Indeed, for the 25 apparent resistivities with the smallest expected 

percentage random error, the rms value of 0 was equal to 88% of the 

rms expected standard deviation as calculated from equation 5,20. 
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CONCLUSION 

The remote reference method is a superior metJiod of measuring Z. 

It makes possible the measvurement of Z with accuracy limited only by 

the inhomogeneity of the incident fields. This ultimate accuracy 

should be even better than that of the test in section VI since all 

the apparent errors in that test were easily accounted for by the 

expected random error, but will depend on the geology of the sounding 

site and the nature of the signals. 

Of course one shoiiLd minimize the errors of the measurements and 

of signal processing. However, the intrinsic noise level of our SQUID 

magnetometer was usually an insignificant (less than 10%) contribution 

to tihe magnetic field noise observed in our measurements, The great 

superiority of the results of the remote reference method over the 

o-ther methods of analysis for the same data processed in the identical 

fashion proves that the errors in that signal processing are not 

significant. Any digital technique for computing -the average powers 

should be satisfactory if applied with reasonable care. 

While the attempts to estimate Z from local measurements alone, 

as described in section IV, were not satisfactory, they did demonstrate 

correlated noises. Since the remote reference method can be used to 

separate out the ionosphericly generated electromagnetic signals, 

the source of these other "noises" may itself be an interesting area 

of investiga1:ion. 

The most exciting thing about the remote reference method is its 

extreme generality. The best previously used estimator for Z, Z , is 
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an example of least squares linear regression. This regression technique 

has almost invariably been employed to estimate the linear relationship 

between .any two processes, from the relationship between a person's 

height and his annual income to the response of an airplane wing to 

t h e -vibration of an engine. The difficulties of least squares linear 

regression have long been recognized by statisticians, Mosteller and 

21 
Tukey, in a chapter titled "The woes of regression analysis" 

concluded," at this point we can recommend only deep and careful 

thought." The remote reference method should be valuable in any 

area where many noisy data are available. The "autopower" bias can 

be removed from the estimation of any of these linear relationships by 

the measurement of a third related process, a "remote reference," and 

tiie use of the cross-correlation regression technique of section V. 
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