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ABSTRACT

This dissertation is concerned with the measurement of the relation-
ship between the natural fluctuations of the earth's magnetic field
and the voltages they produce in the surface of the earth. This relation-
ship is approximately defined by the electromagnetic impedance of the
surface of the earth for normally incident plane waves. Measurements
of the impedance have been used as a methodAof geophysical survey called
magnetotellurics. Because the electrical resistivities of different
types of ground differ by several orders of magnitude this method has
met with moderate success in spite of the fact that the estimates of
the impedance have not been very precisely reproducible.

The tunnel junction dc SQUID magnetomefer designed by Clarke, Goubau
and Ketchen has superior noise and drift characteristics. I describe
the design, construction and operation of a 3 axis dc SQUID magnetometer
suitable for field measurements. Repeated magnetotelluric surveys with
this instrument showed that the reduced intrinsic noise of the magnetometer
did not significantly improve the reproducibility of the estimates of
the impedance. Nonetheless, I demonstrate that the discrepancies between
the surveys are consistent with the noise bias errors of the least squares

linear regression technique that was used to estimate the impedance



rather than with the errors inherent in the approximations made in the
consideration of the physical problem. I also argue that the difficulties
in the calculation of average power spectra, which have been blamed

for the scattered results, are not significant.

I tried dozens of alternative methods of estimating the impedance.
Four classes of methods are described that failed to produce satisfactory
estimates. However, they did unambiguously demonstrate the presence
of correlations between the noises in different field components.

In order to avoid bias caused by local sources of electric or magnetic
noise, it is necessary to make simultaneous measurements of two components
of the field fluctuations at a site remote from the magnetotelluric
sounding site. The equations for the estimation of the impedance, for
the calculation of the confidence limits and for the calculation of
the signal and noise power spectra of all the measurements are derived
for the remote reference method. The basic equations are remarkably
simple, symmetric, unique and easily generalized.

A test of the remote reference method is described in detail. Data
were taken simultaneously at two sounding sites and the magnetic field
at each site used as the reference for the other. The remote reference
method unambiguously gave superior‘estimates of the impedance. The
reproducibility of the results was everywhere consistent with the expected
random error which was as small as 0.4% for the apparent resistivity

of the ground at frequencies where copious data were recorded.
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SECTION I: INTRODUCTION

The Physical Problem

In 1722 an English instrument maker named Graham discovered diurnal
variations in the direcéion of a very accurate compass, thus becoming
the first person aware of natural short term fluctuations in the earth's
magnetic field.7 After having discovered the laws of electromagnetic
induction Faraday in 1831 attempted to measure the electric potentials
in the earth's surface that he knew must be generated by these fluctua-
tions.27 He failed because of the low sensitivity of his instruments.
These telluric potentials were first observed by accident on early
telegraph lines whose ends had been grounded while not in use. The
early telegraphic receiver was just a magnetized needle in a coil.
Spontaneous fluctuations of the needle were frequently observed. 1In
1849 a British telegraph engineer named Barlow described a nice informal
series of experiments in which he established that the currents were
indeed produced by ground potential differences which were roughly
homogeneous over the array of his telegraph lines and generally associated
with high levels of natural magnetic phenomena.l Thus Faraday and
Barlow became the first in a long line of experimenters extending to
the present day who have attempted with either unambiguous failure
or ambiguous success to measure the relationship between these natural
electric and magnetic fields.lo'19 This is the goal of magnetotellurics:
to measure the electromagnetic impedance of the surface of the earth

for the naturally occurring fluctuations and ultimately to use that

information to determine the electrical resistivity of the ground.



This long and somewhat confused history may have in part been
caused by the fact that the problem might seem to be totally intractable.
The impedance of any system depends on the configuration of the incident
electromagnetic energy and this configuration is never known in any
detail for the magnetotelluric problem. In fact, the dependence of the
magnetotelluric impedance on the incident wave form is small and the
incident wave can be approximated as a normally incident plane wave.

This approximation actually consists of two physically distinct
sets of assumptions. 1) The incident electromagnetic energy is composed
of plane waves. 2) The impedance is independent of the angle of
incidence and polarization of the incident wave, and the vertical
magnetic field is a linear function of the horizontal magnetic fields.

I will now define my notation and describe the physical picture
of the problem that convinced me that extensive efforts to improve the
method for estimating the impedance wexe justified. Each electro-
magnetic quantity will be described by a complex number with the time
dependence e-iwt where w = 27mf is the angular frequency. The time
dependence will be dropped from all equations. I will use a right
handed coordinate system with the Z axis pointing down into the earth.
The earth has a conductivity O, resistivity p = 1/0, magnetic permiability
H equal to the free space value “o = 41 X 10_7 and permittivity or

dielectric constant € = € = 12 ; ¢ =3 X lO8 m/sec. All equations

H,c

will be in MKS units. The atmosphere has € = Eo' U = uo and g = O.

With these conventions Maxwell's eguations are



> -> ->
V X H = 0OE - iweE (1.1)
VxE = iub (1.2)
VeE=0 (1.3)
V.B=0 (1.4)
-> >
where B = uH.
Combining these equations yields
2 . .
V'F = -iwu(0-1iwe)F (1.5)

for any field component F of E or E. Since 0=0 in the air, waves
propagate with velocity c¢. Typical values of p in the earth are 0.1

to 10,000 Om while € = 10_ll farads/m. Thus we can ignore WwE compared
to 0 in the earth up to about lO5 Hz. In the earth the wave will decay

to an amplitude of 1l/e in a distance

v2/(uwo) = 500 Vp/f (1.6)

called the skin depth.

The pattern'of electromagnetic energy in the earth induced by an
incident wave can be constructed through Huygens'principle.27 The
progress of the wave can be constructed by considering each point of
the wave front at the time t as a new source of electromagnetic energy.
Adding together the waves from all sources produces a new wave front
at time t+8t at positions where the waves from all sources are in phase
and interfere constructively. Huygens' principle is extremely general.
It can be applied to any wave phenomenon, longitudinal or transverse,

on any scale, including the realm of quantum mechanics.



Consider a small flat section of ground, one square inch, for
example. Consider an incident wave that is sufficiently homogeneous
that it can be approximated as a plane wave over that inch and consider
only the energy that passes through that surface. If the incoming plan
wave has an angle of incidence of Gi with the outward normal to the
surface and wave vector ; then the wave crossing that surface will
form a plane wave at the angle of transmission et to the inward normal

> ~

> . + .
with wave vector kt. From equation (1.5), kt = YiWwou kt' Thus the

phase velocity in the earth
v =1z = ] = . (1.7)

Matching phases at the boundary gives
sin Gt = Vw/(UOCZ) sin Bi . (1.8)

Thus as long as

we << © (1.9)

the angle of transmission will be essentially zero regardless of the
angle of incidence. Thus for typical values of 0.1 Hz and 10 {im a
normal angle of incidence should be one of the better assumptions of
experimental physiﬁs.

If the flat surface under consideration is large compared to the
skin depth at frequency w then the only energy reaching points below
the center of the flat surface will be due to the plane transmitted

wave. Additional waves produced by surface features or inhomogeneities




beyond the flat surface will be attenuated to an insignificant level

before reaching this area. For this transmitted wave there will be
> >

nonzero components of E and H only parallel to the surface and these

will be related by

Ex = (1-1i) vwup/2 Hy
(1.10)
Ey = (i-1) vwup/2 Hx

from equation (1.1) or (1.2). Thus Ex leads Hy by 45° in phase and
|E|/|§| becomes small for low frequencies or resistivity.

The most important point of the preceeding paragraph is that the
scale length of the problem is the skin depth. It is over such distances
rather than the wavelength in air that the incident wave must be
homogeneous in order for it to be approximated as a plane wave. The
effects of inhomogeneities in the earth will be significant over
distances of the order of the skin depth. The many investigator532’14'5
who have considered the incident energy as a plane wave must have
implicitly understood this but there is still such confusion that one
of.the most experienced investigators in the field, T. Rikitaki,
in 1966 called the most basic and general results, equat;ons (1.8) and
(1.10), "ridiculous".26

A second point which needs clarification is that when inequality
(1.9) is satisfied, only two components of the magnetic field
fluctuations need be measured to specify all the electromagnetic

fields. The pattern of energy under an irregular surface will no

longer be a plane wave. Nevertheless the pattern could in principle



be constructed using Huygens' principle from wavelets originating

simul taneously everywhere at the surface, regardless of Bi. In other
words, one of the three degrees of freedom of an electromagnetic wave
has been lost at the surface. While inhomogeneous incident waves
certainly could produce independent fluctuations of the third component
of the magnetic field, such independent fluctuations will depend on the
nature of the inhomogeneity. No additional information about the earth
would be obtained by relating the electric field to all three magnetic
fields unless the nature of the incident inhomogenéity were known.

Thus all the approximations in group 2 should be reasonable as long

as the inequality (1.9) holds.

The validity of assumption 1 about the homogeneity of the incident
wave depends not only on the nature of the incident wave and the skin
depth but also on the conductivity structure. In a horizontally layered
earth it may not be obvious which layer it is whose skin depth defines
the range of the effects of inhomogeneities at a particular frequency.
The classic case of the effect of structure is the "coast effect".17
Comparatively large currents are generated in a very large conductive
sheet such as the ocean so that it may take a large number of skin
depths in the continental material before the secondary fields from the
ocean are reduced to an insignificant level. It is obvious then that
in this case the impedance of the earth near the coast will be strongly
affected by the incident field over the ocean so that this structure
will severely test the assumption of homogeneous incident fields.

The effects of inhomogeneous fields have been studied for a large

17,19,23,24

number of models of the earth usually with a dipole or line



source at approximately 150 km elevation. The general conclusion is
that for these models one would expect to see variations of the
impedance of the order of 10% at 100 second period, increasing with
period. All these model calculations are rather academic, however.

"We simply do not have adequate knowledge of the sources of geomagnetic
disturbance to permit us to predict the scale length"20 of the source
fields. Numexous investigators35 have attempted to augment our
knowledge by simultaneous measurements of the magnetic fluctuations

in different locations. Gross inhomogeneities of the total field have
been demonstrated in the auroral and equitorial zones. Such measurements
can not directly establish that the incident field is homogeneous
however, because the total magnetic field is modified by the local
conductivity structure. One thing is certain: the natural field
fluctuations are generated in many modes whose amplitudes and locations
vary with time. Because of these variables there can be no sihgle
answer to the question of the validity of the plane wave assumption.

I feel it can best be answered experimentally, through systematic
investigation of the reproducibility of the impedance over stable
geological areas. The limits to the accuracy of magnetotellurics will
_be much better than the worst case variations caused by inhomogeneities.
With extentions of the techniques presented in this dissertation it
may be possible to detect the presence of significant inhomogenéities
and .correct for them. At the least,one could reject data that produced

significantly anomalous estimates of the impedance.



I conclude from this physical picture that at least from 10“2 to
105 Hz the horizontal electric field in the surface of the earth due
to distant sources, Es(w) {s denotes signal), should have a time
independent linear relationship to the horizontal components of the
magnetic field, ﬁs(w). The linear relationship between two two component
vectors is of course a rank two tensor and the impedance, which will

be denoted by Z, is defined by
>
(w) Hs(w) . (1.11)

Consider the form of the impedance tensor for a few models of the
earth. Equations (1.10) for a homogeneous flat earth in matrix form

are

0 (1-1) vwup/2
s (i-1) vwup/2 0 s

]
= 4

(1.12)

A model of the earth whose conductivity is a function of depth only
will be called one dimensional. In such a case the form of equation
(1.12) would be unchanged if one replaced p by the apparent resistivities

Qw(w), w=xy, yx, defined by

2
p, W = izw(w)l / (wu) (1.13)

It is convenient to use units of mV/km for the electric field and
Y = 10-5 Gauss for the magnetic. In these units the apparent

resistivity in Q-m is



2
p, W =o0.2 |z [“/f (1.14)

A two dimensional earth is one in which the conductivity is
invariant under translation in one horizontal direction. This is a
reasonable model for many geological situations where an originally
layered structure has been displaced along fault lines which are all
in the same direction, called the strike direction. Thus the strike
direction is the direction of translational invariance. If Z is
expressed as a matrix in a coordinate system aligned with the strike
direction then the diagonal elements are still zero. Even more
generally, if there is any vertical plane of reflection symmetry
passing through the magnetotelluric sounding site then the currents
and voltages induced in the ground must also have that symmetry.

Thus the diagonal elements of Z in a coordinate system aligned with
the plane of symmetry will still be zero. For a two dimensional

earth the plane of reflection symmetry is perpendicular to the strike
direction. In a coordinate system not aligned with the plane of
symmetry the diagonal elements will not be zero. The strike direction
for a two dimensional earth could be found by minimizing the magnitude
of the difference of the diagonal elements as a function of the
rotation angle 6 about the 2 axis. The same rotation angle maximizes
the sum of the squared magnitudes of the off diagonal elements.

The rotation properties of é are determined by its tensor nature.
For any tensor g, rotating the coordinéte system by an angle 6 about

the Z axis changes the matrix representation of T to
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' (6) = R(B) TR " (6) (1.15)
where
1 + cos8 sinb
R(B) = (R 7(0)) = (1.16)

-sinfB cosb

and T denotes the conjugate transpose.

A three dimensional earth has an arbitrary conductivity structure.
Then the rotation angle which maximizes the sum of the squared
magnitudes of the off diagonal elements indicates what is called the
apparent strike direction. The apparent strike direction is ambiguous
by 90° since rotation by 90° just interchanges the x and y axes. By
rotated apparent resistivity I will mean the apparent resistivity from
equation (1.13) in a coordinate system aligned with the apparent
strike direction. A measure of the "three dimensionality" of the earth

is the skewness

(1.17)

which 1s invariant under rotation.

The rotated apparent resistivities, apparent strike direction,
skewness, and also the phase angles of the off diagonal elements are
real parameters of the complex impedance tensor elements that have a
relatively straightforward qualitative relation to the resistivity
of the ground. They are also easier to present graphically. I
therefore will use these parameters to describe the impedance tensor

estimates.
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Previous estimation of Z

The problem of actually measuring the impedance tensor would be
trivial if all the measurements of the electric and magnetic fields
were noise free. Unfortunately all measurements contain noise so the

o + + . . . . + -+ Q3

measured fields E and H contain noise contributions En and Hn' I will
include in the definition of noise ionospherically generated signals
that do not satisfy the plane wave assumption so that Z is well defined

and time independent. Thus

-> -+ >
n=E-2ZH (1.18)

- ->
is the total error in E and H. In addition to the noise.there is the

problem that the defining equation for Z, equation (1.11), is just

the two component equations

E_=2 H +2 H (1.19)
sX XX SX Xy sy
and
E =2 H +2 H (1.20)
sy yX sX YY sY
in the four unknown impedance tensor elements.
Some investigators, following Cagniard,5 simply ignored the
tensor nature of the relationship, thus in effect assuming that
Z_ =12 =0 and IZ [ = IZ I. This was not successful since Z
XX yy Xy yx
and Zyx often differ in magnitude by more than an order of magnitude

and it confused the discussion of source effects. Othersl3'6'19

estimated Z by attempting to find two relatively noise free measurements,

> >
a and b, of each component of E and H, thus producing two sets of
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equations (1.19) and (1.20) that could be solved simultaneously if

the determinant

n® HP
X X

H H°
y y

is not zero, that is, if the magnetic fields have a different
polarization for the two measurements. Although it is theoretically
possible to get an accurate impedance tensor estimate from this
approach, the location of noise free signals of significantly different
polarizations that can be analyzed without significant error for every
freqguency of interest reguires both great effort and luck.

In 1964 Madden and Nelson17 recognized that an estimate of 2
could be made incorporating all of the measured data by substituting
the measured fields into equation (1.1l), multiplying by E* to form
the diadic matrix products of the vectors and averaging over the
products from a narrow band of frequencies or from different times

to produce

[EH] = 2[HH] (1.21)
where, by definition
A B* A B*
X X Xy
A B* A B*
y X yy

is the average power spectral matrix, which is a tensor, and the bar

indicates the average.
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H
This particular estimate for Z, which will be denoted by Z , has
31,33
been used frequently enough to be called the usual method of

analysis. From equation (1.21)

z" = [Er](mn] "t . (1.23)

. . ., 30 . H , .
Sims, Bostick, and Smith recognized that Z is the estimate of
Z that minimizes the mean square error of the prediction of the

electric field from the magnetic. That is,

9 (E-2"%1%) = o, i3=xy . (1.24)

Sims et al also pointed out that there are six such least squares
estimates of g_corresponding to the use of any pair of Ex, Ey, Hx’ or

Hy to predict the other two. For instance, one could calculate the

least squares admittance tensor Y defined by

9 - >
5 (]l - ¥E|) =0 (1.25)
ij -
. . E E -1 .
and then obtain another estimate of 2, Z, from 2" =Y ~. The difficulty

with each of these least squares estimates, recognized by all these

investigators, is that they contain the measured autopowers of the

. . 2 2 .
predicting fields, for example 'Hxl and IHy| in equation (1.23).
This is unsatifactory because the autopowers are always biased
estimates of the signal powers, even if the noises are not correlated

with the signals. For example,
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Qu_ 1%y = <Ju__ [D+@_m o+ m o+ (u[H=u_|D+qu |5 >du|H
X SX S¥ nx nx sX nx SX nx SX

(1.26)

where ( ) indicates an ensemble average. On the other hand averaged
measured crosspowers are not biased by the noise powers if the noises

are not correlated with the signals or each other. That is

(EH*) =(E_H* )+ (E H* ) +{(E H* Y+(E H* ) ={(E H* ) . (1.27)
Xy SX sy nx sy SX ny nx ny SX Sy

Thus equation (1.23) gives estimates of the impedance tensor whose
magnitudes are biased downward by the autopowers in the denominator of

-1 > . ' . .
[HH] . 1If HS where known, it could be used in equation (1.23) to
obtain an unbiased estimate for Z.

The least squares estimates for Z were a major advance at least

in the sense that they made possible a quantitative measure of the

combined noise in all the measurements via

= |g, -2°8 -2%u |%. (1.28)
i ix x iy y

Usually the size of ]61]2 is measured by the correlation coefficient

C. where
i

l - — (1.29)
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Cz is sometimes called the coherency. If Ci=l then Ei, Hx' and Hy are
completely noise free and there is no measurement error. If all of
the measurements are pure noise then Ci approaches zero as the number
of data in the average increases.

By monitoring g and selecting only data for which it is small, one
can ensure that one obtains relatively error free results. However,
there is no guarantee that one will obtain many, if any, noise free
data at every frequency. Conversely, if the noise were in E only and
not in ﬁ, then gﬁ would be unbiased, but the least squares estimates

alone do not permit one to identify the noisy fields.

Outline

With the development of the low noise dc SQUID it seemed reasonable
to hope that a fieldworthy 3 axis magnetometer employing these devices
might improve the estimation of g:by reducing the magnetic field noise.
Section II describes the design considerations in the construction of
such an instrument.

Magnetotelluric surveys using our dc SQUID magnetometer were
performed in Grass Valley, near Winnemucca, Nevada in 1975 and 1976
as a joint effort of the Engineering Geoscience group and Physics
department of the University of California, Berkeley. Comparison of
the impedance tensor estimates from the two years using E? proved that
we had joined the ranks of the ambiguously successful. Although the
dc SQUID magnetometer proved to be accurate and convenient, the
reduced intrinsic instrument noise did not seem to improve the quality

of the data. Some values of the correlation coefficient, Ci’ below
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0.1 were obtained and the magnitudes of the impedance tensor elements
were sometimes so small as to be physically unreasonable. Thus the
intrinsic noise of the magnetometer did not seem to be a crucial
factor. On the other hand, for data of high coherency the impedance
tensor estimates were reproducible between the two surveys within about
5% on the average and the discrepancies were all consistent with the
hypothesis that the autopower measurement bias was the cause. Thus

an investigation of tensor estimation seemed in order. Section III
considers signal processing techniques, including the fast Fourier
transform (FFT). The main point is that signal processing is also not
the crucial factor in producing the large scatter in magnetotelluric
results.

Section IV discusses alternative tensor estimation techniques
that were tested on the 1976 data. In that survey we recorded an
extra channel of information by adding a third telluric line. This
provided a reference signal to estimate the impedance in a simple
way from the average crosspowers alone. The most straightforward
estimators were spectacular failures. It seems that the most likely
explanation for this is that there were real noise voltages in the
ground, correlated between the telluric lines. In order to avoid
the possibility of correlated noise from local sources it is necessary
to record two simultaneous remote reference channels.

Section V contains the linear algebra and statistics of tensor
estimation by the remote reference technique. This method requires

a number of reference channels equal to the rank of the tensor to be
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estimated. As long as the references are not correlated with the
noises in E and E the method yields an unbiased estimate of the tensor
regardless of the correlations between the noises in E and H. Perhaps
just as important is the fact that the equations are simple. The
distributions of errors in the tensor estimate and associated parameters
such as the rotated apparent resistivities are calculated and shown to
be essentially the same as those in the least squares estimate E? when
gﬁ is an unbiased estimator. With the remote reference one can
calculate the power spectra of both the signals and the noises,
provided the noises are uncorrelated with each other and the signals.
This calculation provides checks for such correlations. All these
equations are extremely general and their application to tipper
measurement is given as an example. It is a beautiful set of equations.
The remote reference technique was tested on real magnetotelluric
data taken near Hollister, California in 1977. Data from two magneto-
telluric sounding sites were recorded simultaneously so that the
magnetic channels at each could be used as the reference for thelother.
This test was an unambiguous success. It is described in section VI.
At frequencies higher than 0.3 Hz, where copious data were taken, the
impedance tensor estimates were reproducible within approximately 1%
between different data sets. The calculated random errors were every-
where consistent with the agreement between the results from data
recorded in different overlapping frequency bands and at different

]
times.
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SECTION II. SQUID MAGNETOMETERS FOR THE FIELD

The theory, fabrication, operation and performance of the
cylindrical dc SQUID are discussed by Clarke, Goubau and Ketchen.8
Here I will discuss only those principles of design and elements of
performance that are particularly important to geophysical applications.

The three axis magnetometer is essentially three one axis
magnetometers. The three SQUID sensors are place in orthogonally
drilled holes in a single block of fiberglass. The block is immersed
in liquid helium in a five liter superinsulated fiberglass dewar with
a hold time of approximately five days. The electronics are mounted

on top of the dewar.

Characteristics of the de SQUID magnetometer

This dc SQUID makes use of two Nb—NbOx—Pb tunnel junctions in a
superconducting loop. The large area of the tunnel junctions compared
to point contact junctions makes them very resistant to distruction
by accidental electrical discharge and physically and thermally
stable. They can be operated at any temperature below 6°K because the
critical current is relatively independent of temperature. At
frequencies above 2><lO_2 Hz the equivalent flux noise is white with
level of about 10_10 Yz/ﬂz. At lower frequencies the power spectrum
is approximately lO_ll/f Y2/Hz with an average long term drift of
less than 10—5 Y/hour. The achievement of this low drift rate
requires the stabilization of the bath temperature but this is easily

accomplished. The system is enclosed in the dewar so the temperature

. 11
can easily be requlated by controlling the pressure of the vapor.
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We did not bother to regulate the bath pressure in our surveys because
the barometric pressure changes very little over the period of our
lowest frequency tensor estimates (100 seconds).

The dc SQUID is operated by passing a dc current greater than the
critical current through the junctions so that a dc voltage and a
Josephson ac voltage of frequency 2e/h = 480 MHz/UV appear across the
junctions. The resistance of the junctions is a periodic function of
the flux through the ring with flux period ¢_ = h/2e = 2.07X i0'7
gauss—cmz.

Commercially available rf SQUID magnetometers use a superconducting
ring containing only one Josephson junction. The ring is then excited
by an external rf oscillator and the energy dissipated in the SQUID
is a periodic function of the flux through the ring. From this point
on there is no difference between the operation of a dc SQUID and an
rf SQUID excited at the Josephson frequency. Thus the electronics
for the two types of SQUIDs are identical except that the rf SQUID
requires an rf oscillator that is stable over a wide temperature
range and the rf injection circuitry.

The SQUID is placed in a negative feedback circuit. A coil
modulates the flux through the SQUID‘at a high audio frequency, 100 kHz
for our electronics. This modulates the voltage across the SQUID at
100 kHz and the amplitude of the voltage modulation is a periodic
function of the flux through the SQUID. The negative feedback circuit
acts as a null detector. Any 100 kHz signal across the SQUID is

amplified, demodulated by a lock in detector and integrator and
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fed back through the modulation coil. This changes the dc flux
through the SQUID to reduce the 100 kHz ocutput. The feedback current
necessary to null the 100 kHz signal is then proportional to the

externally applied flux.

Electronics Design

The design of the electronics is a straightforward exercise in
circuit analysis with the following requifements: the circuit must
be stable, the noise of the electronics should not dominate the
intrinsic noise of the sensor, the frequency response of the circuit
should be flat and the slewing rate, the maximum rate of flux change
fhat can be nulled, should be as high as possible.

The total flux through the SQUID is the externally applied flux
¢a plus the feedback flux ¢f. Thus the output of the circuit at the

frequency W is

b = G(w) (¢f + ¢a) (2.1)

where G(w) is the frequency response of the open loop. I shall refer
to the SQUID as the beginning of the loop and the modulation coil

as the end. The frequency response of the closed loop is then simply

¢f/¢a = GWw) /{1l - G(w)) = R(w) ' (2.2)

and the response at any stage in the loop can be calculated by dividing
R by the forward gain between that stage and the end. The complication
of the audio frequency modulation and demodulation can usually be

ignored. Circuits resonant at the audio frequency fm with bandwidth
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f/Q can be included in the open loop gain G{w) as a simple pole,

1/(1-iwt), with

T = Q/(7f ) (2.3)

For low frequencies G(0) is usually a large negative number so
R(0) = -1 and is essentially independent of the exact value of G(0).
|G(O)| should be made as large as possible to minimize variations in
R(0). From equation (2.2), the loop will be stable as long as there
is no solution of 1-G(w) = 0 for any complex w with a positive imaginary
part (remember that all amplitudes proceed in time as e—in). The
sensor noise will dominate the noise of the electronics as long as
the sensor noise times the forward gain between the sensor and each
stage is greater than the noise generated in that stage.

The frequency response and slewing rate can be made independent
of frequency by introducing a zero, (l—ino), into the open loop gain
G to cancel each pole, l/(l—inp), in G other than the integrator pole,
with To = Tp. However, poles near the beginning of the loop will
reduce the signal level from the sensor at high frequency so that the
sensor noise will no longer dominate the noise of later stages. Zeros
added later in the loop to whiten the frequency response will cause
high amplification of the noise at high frequencies. As the low
frequency ogeﬁ-loop gain, |G(O)|, or the compensating time constant,
TO, are increased the high frequency noise will eventually saturate
the SQUID. Thus if IG(O)I is large the pole cannot be completely

neutralized.
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The slewing rate is limited in two ways. First, the maximum
slewing rate at angular frequenéy w is w¢2 where ¢; is the amplitude
of feedback flux which saturates some stage of the loop. The maximum
slewing rate will be obtained if the first stage to saturate is the
stage which provides the feedback current. The two stages most likely
to saturate are the last stage of audio frequency amplification and
the SQUID itself, where I¢f + ¢al can not exceed ¢o/4. Second, the
slewing rate at the modulation frequency obviously should be less than
21Tfm ¢m where ¢m is the amplitude of the flux modulation so that the
feedback loop does not cancel the modulation. If R{w) and thus the
slewing rate are essentially independent of frequency then this limits
the slewing rate at all frequencies to approximately ﬂfm¢o/2 since
¢m = ¢o/4. This limitation on the slewing rate can be circumvented
at low frequencies by adding a pole, l/(l—inp), to the loop gain G.
This solution greatly reduces the slewing rate and makes R(w) a strong
function of frequency at frequency ?./Tp and higher. One could also
increase the second limit on the slewing rate by increasing fm. This
could not be done to any great extent for an rf SQUID operated with
a typical rf excitation frequency of about 30 MHz because the audio
modulation frequency has to be very small compared to the excitation
frequency. In contrast our tunnel junction dc SQUIDs are operated
at a dc bias of approximately 2 UV so the Josephson frequency is on
the order of 1 GHz. Thus a modulation fregquency of the order of

10 MHz could be used.
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Unfortunately, the first limitation on the slewing rate is about
the same as the second for our present design. This comes about
because the preamplifiers require a source impedance of approximately
lO5 ohms for optimum noise performance. The dc SQUID magnetometer
used in the 1975 and 1976 surveys employed resonant tank circuits
with a Q of about 100 to match the low impedance of the SQUIDs (= 1Q).
These were later replaced by resonant transformers with Q = 10. The
time constant associated with this Q, equation (2.3) can be reasonably
well neutralized to give a white frequency response up to about 30 kHz
and a slewing rate of approximately 3><lO5 ¢o/second = lO5 Y/second.
This time constant Tm can not easily be further decreased because
it is essentially the capacitance of the transformer and the line
connecting the matching circuit to the electronics input (300 pf)
times the impedance (lO5 ohms), producing T = 3><10--5 seconds.

Since the frequency response can not be fully neutralized there is
a phase shift between ¢a and ¢f so that the SQUID saturates to limit
the slewing rate. A lumped lO5 to 1 impedance matching circuit with

less than 300 pf capacitance is hard to build.

Field Operation of SQUIDs

SQUIDs are also very sensitive detectors of rf energy so a
SQUID magnetometer must be shielded for field use. Copper screening
was found to be excellent for this. It was also generally beneficial
to enclose the wires connecting the SQUIDs and the electronics in

stainless steel capillary tubing and to enclose a separate dc ground

wire.
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Atmospheric electrical activity at high frequencies can produce
flux changes more rapid than lO5 Y/second. Thus it is usually necessary
to attenuate the high frequency fluctuations with a metal can. We most
frequently used a can external to the dewar with a 3db cutoff frequency
of 55 Hz. Fields produced by Johnson noise currents are a consideration
in the design of such cans. The amplitude of such fields is proportional
to 2—3/2 where £ is a typical linear dimension of the can.

For the measurement of small magnetic fluctuations in the
presence of the earth's magnetic field it is essential that the
magnetometer be held very rigidly. Our magnetometer was held by a
wooden tripod and protected from the wind by a plywood pyramid. On
soft ground the force of the wind on the pyramid moved the ground
itself to a noticeable degree and it was necessary to bury the

magnetometer.
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SECTION III. SIGNAL PROCESSING

There are several ways of calculating average powers. In this
section I describe the method I have used and argue that the choice
between methods is one of practical considerations only. The one
fundamental point is that the goal of magnetotellurics is the

estimation of the linear response function, Z, not the estimation of

+ ol

the power spectral densities. The response Es is causally related to
the input ﬁs and that relationship does not depend on the statistics
of the signals.

The approximation of signals of infinite duration by finite
segments must always introduce error. However, such errors as
spectral aliasing and trucation errors would have no effect on the
tensor estimates if the electric and magnetic signals were simply
proportional. Then the errors would be in the same ratio as the
signals and one would still obtain the correct estimate for g. The
estimates are affected only by the difference between the errors in
the measurement of E and E. Thus these errors are less important for
magne£otellurics than they are for spectral estimation. Nonetheless
one will certainly want to minimize the errors in signal processing.

There are three basic ways of computing average powers:

1) Fourier transformation of the data followed by multiplication by

the conjugate Fourier components and averaging, 2) Fourier transformation

of the time averaged autocorrelation and crosscorrelation functions
and 3) narrow band filtering of the data followed by multiplication

by the direct and quadrature (delayed by 90°) filter outputs and




time averaging. Theoretically any of these methods could be carried
out with either digital or analog hardware to yield results of
equivalent accuracy. The errors inherent in each method have
corresponding errors in the others. The balance of truncation error
against spectral resolution for method one corresponds to the
competition between the number of data that can be averaged and the
maximum time lag for method two and to the relationship between
transient response and filter Q for method three. The errors due to
both limitations can be decreased for each method as the length of

the data segments is increased. The only criteria for the selection

of a particular method are the practical limits and efficiency.

For instance analog multipliers will always introduce noise proportional
to the signals because of their nonlinearities whereas the precision

of averaged digital products can be increased without limit by
increasing the number of products in the average. The great efficiency
of the fast Fourier transform (FFT) makes method one the most
economical digital technique. Therefore I have used method one in

all the data analysis.

Sims and Bostick, in the 1969 edition of their excellent series
of technical reports on magnetotellurics,29 give gquantitative
calculations and practical examples of the effects of truncation
errors and digitizer resolution. They show that twelve bit digitizer
accuracy is required and sufficient to obtain ‘accurate power spectral
estimates for the steep magnetotelluric power spectra. All our data
were digitized with 12 bit resolution. Sims and Bostick also quantify

the obvious result that truncation errors are likely to be large for
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the fundamental of the FFT and decrease for higher order harmonics.

The severest test of the spectral resolution is at the lowest
harmonics. This is because the resolution on a linear frequency scale
is the same for all harmonics so that the fractional resolution (or the Q)
of the harmonic is proportional to the order of the harmonic. The
severest spectrum that must be dealt with in magnetotellurics is the
magnetic spectrum near 0.1 Hz which may be as steep as l/f8. The
easiest and most certain way to obtain high spectral resolution is
simply to use data segments for that spectral region that are very
long compared to 10 seconds. I have used data segments at least 500
seconds long for these frequencies so that the 0.1 Hz harmonic has a
Q of about 50. Such high spectral resolution is really not necessary
however, because as discussed above, the error in the estimates of é
produced by spectral overlap is small. Wight, Bostick and Smith34 have
reported that they have obtained the best results in their experience
while using only the 6th and 8th Fourier harmonics of the fundamental
in a real time analysis system.

Because of the large truncation errors and low spectral resolution
of the lowest harmonics I have used only the fifth and higher harmonics
to calculate average powers.

The mean and linear trend of each data segment were subtracted
before any other digital processing. This procedure has both a
physical and mathematical justification. Physically, while the
signals can be filtered to remove specfral components outside the

range of the harmonics of the FFT, the analog electronics almost
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invariably introduce some dc offset and temperature drift. Offsets
and drifts can then be clearly identified as noise and should be
subtracted. Mathematically, one might consider analyzing the data into
Legendre polynomials and subtracting the Legendre components up to

any order to remove noise. The first two Legendre polynomials, the
mean and the linear trend, are best fit over the length of the data
segment by sinusoidal components of frequency lower than the
fundamental and thus can reasonably be subtracted. The higher order
polynomicals, however, primarily contain frequency components that are
at higher frequency. The Legendre polynomials of order 2n+l and 2n+2
are roughly equal to the cosine and sine components of the nth Fourier
harmonic. TIf the measurements at some frequency within the range

of the harmonics were suspected of being noise, it could best be
eliminated by discarding the appropriate Fourier harmonics.

All the detdils of truncation error and spectral resolution
depend on the choice of the time window. Any time window that tapers
smoothly to zero at the ends has greatly reduced sideband sensitivity
compared to a square time window. Otheéwise the differences are not
drastic. I used time windows tapered to zero with a cosine bell
shape over various fractions from 1/12 to 1/8 of the data segment
length.

Finally, average powers were calculated by multiplying by the
conjugate Fourier coefficients and averaging the products from the
Fourier harmonics contained in ﬁonoverlapping frequency windows of

9 = 3 and from all the data collected at different times. N will be
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reserved throughout this dissertation to denote the number of products
in the average.

I should note that prewhitening of the signals can greatly
alleviate the problems of spectral resolution and truncation errors
as well as the demands on the dynamic range of the equipment. Wight
et al employed a digital prewhitening of the signals in their real
time analysis system. While none of the data analyzed here were
prewhitened we now pass the magnetic signals through a simple single

pole high pass filter with a one second time constant.
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SECTION IV. FAILURES

In the search for a good estimator of é a very large number of
methods were generated and discarded. This section describes four
classes of methods that were further unambiguous failures or ambiguous
successes. They yield some information about the character of the
signals and noises in magnetotellurics and there are some interesting
mathematical points but the major value of this section may lie in
preventing wasted effort with these methods in the future.

The first method is a solution for g in terms of the average
crosspowers between the components of E and E. The second uses higher
moments of the crosspowers. Both methods have relatively high random
exrors. The third method involves the use of one reference channel
and would always be effective if the noises were uncorrelated. The
fourth attempts to exploit the quasisinusoidal nature of the signals
by employing two stages of averaging. This was the most successful
estimator for real magnetotelluric data using only local measurements.
It was not an unambiguous success however for its random errors are
larger than for the least squares estimators, it is too complex for
thorough analysis and its success depends on matching an adjustable
parameter to the statistics of the signals.

Data

These methods were tested both with simulated data on a PDP-11
minicomputer and with real data from}the 1976 Grass Valley survey.
Data were simulated for a known impedance tensor Z by choosing complex

random numbers with real and imaginary parts uniformly distributed
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over the range -1 to 1 to represent the magnetic signals st and HS
Electric field signals were calculated from E using equation (1.11).
Then noise was introduced by adding a random complex number with an
adjustable weighting factor to each vector component of the signals.
The weighting factors were adjusted to give the desired signal to
noise ratios. The products of the noisy fields were then calculated
and average powers obtained by repeating-the process N times. Then
the tensor estimates were calculated. In order to determine the
statistics of the estimates the whole calculation was repeated K times
with independent sets of random numbers. The mean value, E;j’ and the

. 2 .
sample variance, Oij' for each impedance element were computed from

the expressions

K
= - L
z.. =kt 2,z (4.1)
) g=1
and
3 l
-1 9 —
o?. = {x Z |z.(.) -z, | . (4.2)
1] 9=1 13 1]
Th s T + 1/2
e expected standard deviation in ]Zijl, AZij, was taken as % Oij/K .

Since the probability densities were fixed the simulated signals were
stationary, unlike real magnetotelluric data.

The Grass Valley data were taken ﬁsing the dc SQUID magnetometer
and a commercial rf SQUID magnetometer. Figure 1 is a map of the
sites. The electric fields were measured with telluric dipoles 500 m
long in an L array, with the equipment truck at the vertex. The

telluric signals were amplified with PAR 113 preamplifiers and all the
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LEACH
HOT SPRINGS

XBL 777-5808

Fig. 1. Location of the telluric arrays for the 1975 and
1976 survey sites whose results are graphed in v
figures 2 through 5.
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data recorded on a Honeywell 5600 FM analog tape recorder. The data
were later digitized with twelve bit resolution and analyzed using

the signal processing techniques discussed in section III on the CDC
7600 computer system of the Lawrence Berkeley Labératory. Further
details of the equipment used in the survey, a description of the
physical site, a review of other studies done in the area in connection
with geothermal assessment and more complete results of the 1975

survey are described by Beyer et al.

The rotated apparent resistivities from E? for four of the
stations are plotted vs period in figures 2 through 5 parts a and b
for the 1975 and 1976 surveys, respectively. No results are plotted
for some of the frequency windows because estimates with skewness
(equation 1.17) greater than 0.6 were discarded as being grossly
contaminated by noise.* A casual glance will reveal that this was
at best an ambiguous success in measuring g. The apparent resistivities
differ between the two years by as much as three orders of magnitude.
The rotated apparent resistivies at locations 2 and 4 calculated from
the 1976 data using E? (equation 1.25) are shown in figure 6 for
comparison. On the other hand the results from high coherency data
were in reasonable agreement between the two years. The magnitude
of C is indicated in figures 2 through 5 by a good rating if
0.95 <c <1, fair if 0.89 <c¢ <.O.95 and poor if € <0.89 for low

frequencies (< lHz). For high frequencies (> 1 Hz) the ratings were

*
Large values of skewness are physically impossible. We have not

produced any skewness estimates greater than 0.6 from good data and
so0 have chosen this as an arbitrary upper limit for reasonable estimates.
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geod if 0.90 < C < 1, fair if 0.72 < C <0.90 and poor if. C < 0.72.
These are purely subjective: ranges chosen to display as much information
as possible in a simple way. Note that more than half the time the
apparent resistivies from “good” data agree between the two years to
within 10%., Also "poor" data consistently gave apparent resistivities
lower than those from "goocd" data when'g? was used and the apparent
resistivies from E? are invariably higher than those from Eﬁ; Thus

the b;as errors are large compared to the random errors and the results
are consistent with the hypothesis that. the sole important source of
‘error was the autopower bias.

There are, of course, possible sources of bias other than the
measured autopowers, such as systematic errors in the medsurements.
Also, the strict definition of the bias in an estimate is the
differerica between the ensemble average of that estimate and the
ensemble average of the guantity to be estimated. Any random errof
in a nonlinear function of the measurements will produce some bias in
the estimate. However, this bias error will always be smaller than
the random ervor and thus will not be of any practical importance.

I shall use "unbiased" teo mean practially unbiased by the noises in

‘the measurements.

Method I: Solution of 8 Equations

Multiplying the defining equations (1.19) and (1.20) through by
. * * R
Ex' Ey' I-Ix and Hy in turn, averaging and dropping ,the subscript s

Produces the eight equations:
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- 2 " . *
|qx| =2 Pr B c (4..3)
a =2 4&*x + 2 &% , (4.4)
XX Xy
b =2 |a |?:2 +Z, . £+ (4.5)
" 2 .
c =z f£*2z_  |H | , (4.6)
*x xy Uy
2 B :
B |" =2 af +2z e+, (4.7)
Y yx- Yy
2 ‘
d =z |8 |[T+z £+, (4.8)
yx X ¥y
\ 2 !
e =2 f£+2z__ [H |, (4.9)
¥X yy ¥ ‘
and a* = Z . b* + 2 ¥ . (4.10)
b Yy

Heré a, b, ¢, 4, e, ahd f are crosspowers defined by a = Exﬁ; ‘.

b=EH , c=EH* , d =EH* , ee= EH* , and f = H H* .
XX X'y Y X Y Y Xy

These equationsg contain all of the information available from
the average powers. In principle‘one could substitute the measured
.average powers into these equations arnd then use any pair from -
equation (4.3} through (4.6} to calculate ZXX and ny and any pailr
from (4.7) through (4.10) for Zyx~and Zyyy These 36 possible. solutions
coritain 411 the least SGuares solutions. Z' is the simultaneous

solution of {4.5), {4.6), (4.8) and (4.9). ZE is ‘the simultaneous

selution of the other four.
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If the noises are uncorrelated with each other and the signals
then the measured average crosspowers are unbiased estimates of the
signal crosspowers. Since the measured autopowers are biased by the
noise powers the signal autopowers in the eight equations must be
considered as unknowns if one is to obtain an unbiased estimate for
Z. Kao and Rankin16 have attempted to get unbiased estimates for Z
by an iterative solution of these equations in terms of the crosspowers.
However, there are eight equations with eight unknowns and they can in

fact be solved directly.

. . . 2 2
It is easiest to solve first for IHxl and IHyl . and to express
all of the other unknown guantities in terms of these two autopowers.

From equations (4.5) and (4.6).

b |0 |? - ce*

= Y
z = ’ (4.13)
To 1210 12 2
P 17 - el
and
c |Hx|2—bf
7 = 3 (4.14)
2 2 2
EHENTHERT

Substituting equations (4.13) and (4.14) into equation (4.4) we find

lal?(f |2 ]Hy|2- 1£]?%) = (e*ca*)|HX|2+a*ba*|ny|2-a*(d*cf*+e*bf) .
(4.15)

Similarly, by substituting into equation (4.10) solutions for Zyx and

Zyy obtained from equations (4.8) and (4.9), one finds
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(2 B2 - |f|2) =eca i |* +ab’a |5 |°-a(dc £+eb'£). (4.16)
Xy X y

Subtracting equation (4.16) from equation (4.17) we obtain the
. : 2 2
relationship between Hx and H :

1= —3—+ {- Im(@"pa") lu,

|2
*
Im(e ca )

* * * *
+Imfa (d cf +e bf)]} L (4.17)

where Im(x) is the imaginary part of x. Substituting this result for

2 . . . . . 2
IHXI into equation (4.15) we find a quadratic equation for |Hy| '

. 2 _—
<|H 1°) - 2ulu |°-w=0 (4.18)
Y y
* X * * * * * *
where u = Im[d c eb + a (d cf + e bf)]/2Im(d ba ) ,
* * * * 2 * * * *
and w = - {Im[ec (d c£ + e bf)] + |£]|“Im(e ca )}/Im(d ba )

The solution to equation (4.18) is

1/2
= ufl £ (1 + w/ud) / 1. (4.19)

2
The calculated autopower lHyl‘ will be real only if 1 + w/u2 Z 0. Data

. 2 . .
leading to complex values of |Hy| should be rejected since complex

. , 2, .
autopowers are not physically possible. |Hx| is obtained by

2
substituting equation (4.19) into equation (4.17). In terms of IHXI

2 : . . .
and IHyl , the impedance elements and electric field -autopowers, are

given by
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*
cf)/D ,

XX Y
2
2y = (€ IHX| - bf) /D, (4.21)
2 *
2 = (a [Hyl - ef )/D , (4.22)
2, = (e |n |> - gy p (4.23)
2
£ % = 1]el? |u | + Ib|? |Hy12 - 2Relc b£)1/D , (4.24)
and
|Ey|2 = 1lel? Ju l? + |a)? |Hyl2 - 2Re(e £a)1/D , (4.25)
2 2 2 .
where D = [HXI IHyl - [fl , and Re(x) is the real part of x.

. . . 2
In equation (4.19) there are two possible solutions for lHyl
corresponding to the positive and negative values of the square root.

The remaining problem is to determine which of the two solutions is

X 2
correct. It is evident from equation (4.17) that IHxl is real when

]Hyl2 is real and, therefore, that the electric field autopowers

obtained from eguations (4.24) and (4.25) are also real when ]Hy[z

is real. Consequently, no information regarding the selection of the
correct root in equation (4.19) is obtained from the imaginary parts
of equations (4.3) and (4.7), since they are identically zero. All
of the information in equations (4.3) to (4.10) has been utilized.

In the absence of noise it is obvious that one can determine the

2 .
correct value for |Hy| by comparing the calculated and measured auto-

powers. In the presence of noise, the situation is, in general, rather
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complicated. If there is noise on one channel only (for example, Hx),
the autopowers for the remaining (noise-free) channels (for example,
Ex, Ey' Hy) calculated using the correct solution of equation (4.19)
agree exactly with the measured autopowers. If there is noise on more
than one channel, all of the calculated autopowers are influenced by
noise, and none agrees exactly with the measured value. In this general
case the computer simulation has shown that the following procedure
produces unbiased estimates of the impedance elements and the
autopowers.
(1) Compute all autopowers using both signs in equation (4.19).

If one sign leads to autopowers that are all positive, and

the other leads to one or more negative autopowers, assume

that the former sign is correct. If each sign leads to one

oxr more negative autopowers, the data should be rejected.

(ii) If both signs lead to positive autopowers, compute the

absolute values of the logarithms of [Exlz/lExli ' |Ey|i:/|Ey|il,
|2
y'm

subscripts ¢ and m denote calculated and measured quantities.

[Hx|i:/|Hx|i], and lHy‘i:/lH for each sign, where the
The sign in equation (4.19) that produces the smallest
absolute value of any of the logarithms is assumed to be
correct. This procedure ensures that we obtain the correct
root in the case where there is significant noise in only
one channel.

(iii) If the value of the calculated autopower is significantly

higher than the measured autopower, there is a significant
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error due to random noise. Data that meet criterion (ii) can
be further screened by rejecting those for which the ratios of
calculated to measured autopowers are significantly greater
than a cut-off value S (® 1). The value of S can be selected
at will, but must be the same for all channels to avoid biasing
the impedance tensor. As the cut-off value is made closer to
unity, the computed impedance tensor becomes more accurate,

but fewer sets of data pass the criterion.

The ability to express the impedance and autopowers entirely in
terms of crosspowers is due to the correlation between Ex and Ey' In
equation (4.4), Ey acts as a reference signal (in the sense of lock-in
detection) for Ex’ while in equation (4.10) Ex acts as a reference
signal for Ey' 1f Zxx or Zyy = 0 the solution to equations (4.3)
through (4.10) becomes indeterminate. Thus, an unbiased estimate of

the impedance tensor cannot be obtained when Zxx or Zyy is zerxo, for

z =0, 2 = -2 ),
X Yy Xy yX

example, when the geology is l-dimensional (ZX

It

or when the geology is 2-dimensional (Zx + 2 0) with one electrode

X YY
in the strike direction (Zxx =2 =0). To avoid the instability for

Yy
a 2-dimensional geology, one should first roughly locate the strike
direction, and make sure that neither electric field measurement is
parallel to the strike. Ideally, one would choose the orientation so
that |2_ | = |z __].
Xy
An example of the results of the computer simulation for the

impedance tensor Z = -2 = 2(1-1i) and 2 = =Z = 3(1-i) is given
P XX vy Xy yX ( ) d

in table I. The noise-to-signal power ratios were 1.5 for the electric
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Table I. Calculation of impedance tensor elements from computer-
simulated data and the crosspower solution of equations (4.3)
through (4.10). The noise-to-signal power ratios were 1.5
and 1.0 for the electric and magnetic channels respectively
and S = 1.5.
Element True value Calculated value, 2, . g, . AZ. .
1] 1] 1]
Zxx 2(1 - 1) 2.15 - 2,04 1 * 1.19 * 0.12
ny 3(1 - 1) 3.08 - 3.14 i + 1.83 * 0.18
Zyx -3(1 - 1) -3.03 + 3.11 1 * 1.67 * 0.17
A -2(1 - 1) -1.99 + 2.01 i + 1.21 + 0.12

Yy
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channels, and 1.0 for the magnetic channels. The impedance tensor was

estimated from equations (4.20) to (4.23) using the criteria (i) to

(iii) with S=1.5 to determine lHy'z. N was 256. The calculation was
repeated 256 times, each time using new data for the electric and
magnetic fields. Of the 256 repetitions of the calculation, the
selection criteria were satisfied 110 times, so that K = 110. The
discrepancy between the true and calculated values of the impedance
tensor is generally within one standard deviation. Hence there is no
significant bias.

For the real data from Grass Valley this method was an unambiguous
failure. Very often the crosspowers were not consistent with any real
value for the autopowers. More than half the time the solution for
neither sign passed the selection criteria. The apparent resistivities
from those data that did pass were so scattered that no additional
information about the structure of the ground could be obtained.
Examples of the results from this method will be given in section VI
for the data used to test the remote reference method. Those data
usually passed the selection criteria but the results were still
usually too scattered to be useful.

Although this failure could be explained by assuming that Zxx and
Zyy happened to be too small with the electrode orientation used in
‘Grass Valley, the other methods in this section will demonstrate that
there were definitely significant correlations in the noises for these
data. This method is particularly sensitive to correlation between

S5
the noises in the two vector components of E because the calculated

autopowers (equation 4.19) depend strongly on the value of a = EXE;
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and Esx and Esy often are not strongly correlated.

Method II: Weighted Averages of Crosspowers

In the previous method an unbiased estimate of gzwas obtained
by multiplying equations (1.19) and (1.20) in turn by a single field
component, and solving the resulting eight equations for the impedance
elements in terms of the average crosspowers. Each estimate made use
of all the information contained in the crosspowers, and hence was
the only possible unbiased estimate. One could also multiply equations
(1.19) and (1.20) by more complicated functions of the various fields
to obtain estimates of the impedance elements in terms of weighted
averages of crosspowers. This technique yields an infinite number
of estimates which do not contain measured autopowers.

Consider again equation (1.19). Let A and A' be two distinct,
but as yet unspecified functions. For the ith values of Ex’ Hx' and
Hy' A and A' take the values Ai and Ai. If one multiplies equation

(1L.19) in turn by A and A', and averages over all N data points, one

obtains
AE =2 AH + 2 Mo, (4.26)
x XX X xy |y
and
AME, =2__ AMH_+2Z__ ANH_ , (4.27)
x XX x Xy ¥
— S (1)
where AEX = (1/nN) I Ai Ex , etc. These equations are linearly
i=1

independent provided that the determinant AHX X‘Hy - A'Hx AHY #*0,

in which case they can be solved for Zxx and Z
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AE A'H - M X'E
X X

Z, = Yy Y (4.28)
AH A'H - A'H M
X v X Yy
and
AH AME - A'H AEX
7z =-—2 X X (4.29)

Xy X A-Hy - NH_ AHY

In a similar way, provided that EHX E'Hy - E'Hx EHY # 0, one

obtains expressions for Zyx and Zyy from equation (1.20),

EE E'H - EH &'E
2oy = Y ¥ y Y. (4.30)
'H - 'H H
B, TH - DH_ T
and
EH E'E - &£'H EE
Z,, = X Y X Y (4.31)
' - [}
g, T'H - EH, TR
. N (1)
where £ and &' are again unspecified functions, and £ = (1/N}) I Ei E l,
y je1 1Y
etc.
In the absence of noise there are no constraints on A, A', &, and
£'. These functions could depend on the electric and magnetic fields,

but equally well could be sequences of random numbers. In the presence
of noise certain restrictions must be imposed to obtain stable,

unbiased estimates of the impedance elements from equations (Z.28)
through (4.31). The estimates are stable provided that the denominators
do not tend to zero as N +~ ®, This requirement implies that A( A, &,
and £' must be functions of the electric and/or magnetic fields since

otherwise all the averages (for example, AEX) tend to zero as N =+ ®,
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The estimates will be unbiased if all the weighted averages approach
the noise-free weighted averages in the limit N + ., If the impedance
elements are to be both stable and unbiased it is straightforward to

show that A and A' must be of the form

*

A = pE , 4.32
Y y ( )

and *

A' =nE_, (4.33)
Y

* * *
where p and n are either unity or any combination of EE , HE , HE
Xy Xy Yy

* —_— ——
and E E . Thus, the weighted averages AE , A'E_, etc. become pE E” ,
vy X X Xy
—* . . .
nExEy, etc., where p and n represent weighting functions for the
crosspowers E E*, H E*
Xy Xy

the noise power in Ey, but it can be shown that this does not introduce

, and HyE;. The weighting function EyE; contains

bias into equations (4.26) and (4.27) provided that the noise in Ey is
uncorrelated with that in Ex’ Hx, and Hy.
By similar arguments, one can show that § and &' must be of the
form
£ = pE (4.34)
-Ux ’ .

and

gl

VE© (4.35)
X

*
where Y and V are unity or any combination of E E*, H E*, H E , and
y x' xx" yx
* . . , .
ExEx' The quantities Y and V are weighting functions for the cross-
*
powers E E*, HE , and H E*.
y x' x x y X

This method of weighted averages was tested using computer-

simulated data with the three different sets of weighting functions
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Table IT. Examples of three sets of weighting functions for weighted
average method.

Trial A A _ £ B
. * Lk ke * * %
(a) E E.E H, E E E R _
b y ¥ X x X X
* * * - . x * *
(b} B E E_H E E E_ H
y y ¥ Y X X X

o,k k Kk N * %
(c) E E H. E E._.H E_E H E E H
Yy ¥y X Yy ¥ Y X X X X X
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shown in table II for tlie samé impedanceé tensér, noise-to-signal

poWer ratios and N as in the test of method I. The results cbtained
for -the functions (a) are shown in table ITI, and should be compairéed
with those obtidined using method I in table I. The weighted average
technigue yields unbiased impedance elements, but the sample variances
are three or four times greatel than those obtidined with wethod I.
Similar results were cbtained using weidghting functions (b) and (c)

of table II.

The dpparent resistivities calculated via this method from the
Grass, Valley data were hopelessly scattered and also appeared to have
some. upward bias. Occasfoﬁally*Values greater thah 1063Q-m weke
obtained.:

In the spirit of warning future investigators away from cexrtain
failure I shHould mention that various weighted averages containing
autopowers +that would bias the estimate of”E?Weﬁe tried. It was hoped
that‘the highgr‘moment‘calcuiatiens,wbuld réduce the autopower bias
by weightinig periods of high sighal levels more heavily. They did net.
Method ITII - One .Reference Channel

In order to obtain an esStimate that is stable for any tensor and
does not have the large random error of method II it is necessary to
inctlude wmore information in the ¢alculatien. This section considers
the possible uses of one simultaneously recorded reference channel.
During the 1976 survey a third diagonal telluric dipole as shown in
figure 7 was used to measure such a signal, Er: This gave us a second

independent. measurement of each of the electric field components:
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Calculation 6f impedance tensor elements from computer
simulated data using weighted averages, and ‘the weighting
fungtions-(a) from table II. Thé noise-to-sigiial power
ratios were 1.5 and 1.0 for the électric and magnetic fields
respectively. 100 independent calculations were used to
obtainm the average values and standard deviations.

Elément’ True value Calculated valuejlﬁij Oij Aéij
z_ 201 - i) 2.10 - 2.43 i + 4.2 + 0.42
~Z¥Y 3{1, - 4} 3.18 - 2:37 i * 6.4 + 0.64
zyx ~3(1 - i) -3.47 - 1.92 i + 8.3 + (.83
Zyx ~2F1 - 1) -1.74 - 2.65i + 6.0 + 0.60
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S00m

$2

<o

XBL 77 7-5807

Fig. 7. Electfode confiquration used in theé 1976 survey to
obtain an extra measurement of the telluric voltades,
E:’c" for use as a reference.
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E'=/2 E -E (4.36)
X r y

and
E'=V/2 E_-E (4.37)
r X

Sims and Bostick29 have suggested that with such independent measure-

I 2

ments one could replace the autopowers IEx|2 and lEy in E? with
the crosspowers E;E; and E§E§ to obtain an unbiased estimator. There
is one disadvantage with this technique. Errors in the placement of
the diagonal electrode and inhomogenieties in the ground will cause
fractions of Ex and Ey to appear as noise in E; and E; respectively.
Since the magnitudes of Ex and Ey often differ by more than an order
of magnitude the noise in the channel with the smaller signal can be
substantial. There are a number of alternatives that circumvent this
difficulty.

Any two of the four field components of E and ﬁ, A and B, can

be related to the other two, P and Q, by a transconductance matrix G

defined by

G,.P + G (4.38)

11 12Q

»
fl

and-

(4.39)

w
il

GZlP + GZZQ .

If R is the field from a fifth channel one can obtain an unbiased

* *
estimate of G by multiplying equation (4.38) by B and R in turn, and
equation (4.39) by A" and R*, and averaging each of the equations over

all data to find
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* = * *
AB Gy, PB* + G, QB*

AR* = G.. PR* + G,. OR* ,
11 2
1 (4.40

* = * *
BA* = G, PA* +G,, QA%

and

* = * *
BR G,y PR* + G,, OR* .

Once G is known, Z can be computed. For five data channels one can
show that there are six independent pairs of equations (4.38) and (4.39)
leading to six independent estimates for Z that contain no autopowers.

IfA=E,B=E, P = Hx) Q

[l
]
]

Hy' and R Er' one has G = 2, whereas

if A

1
ja
w

Il
o]
lao)

il

E , one has G
r =

1]
[{Ea

B =

<’ Q Ey, and R
The rotated apparent resistivities calculated via these straight-~

forward crosspower methods from the Grass Valley data of location 2

are plotted in figure 8. Part a used the suggestion of Sims and

Bostick, part b used the transconductance G = Z and part c used G = Y
-1 . .
and Z = G ~. All should be compared with the least squares estimate

gE from the same data in figure 6(a). They all show the physically

unreasonable large values and sharp peak in apparent resistivity and

are essentially identical, even though they were derived from expressions

containing different crosspowers. For example part b depends on EXE;

but not ﬁ;ﬁ§ and vice versa for part c¢. Since none of these estimates
contains autopowers some of the noises must be correlated. The results
from EH, figure 3(b) do not show any such extremes of bias. Consequently,

it is unlikely that there is any significant noise correlation in the

. H .
crosspowers in Z , that is, H H*, E H*, E H*, E H*, and E H* . There-
= xy' xx'" xy' Tyx Yy

for the bias introduced into the 5-channel cross power analysis must
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APPARENT RESISTIVITY (f-m)
O

Fig.

F ()

Loboueal]

o~

B

5 |OO 5 |O[ |O-I 5 IOO IO‘I

SQUARE ROOT OF PERIOD (sV?)

5 10!

Rotated apparent resistivities versus square root of period from the one réference
channel analysis, method III, of the 1976 data from location 2. a) substitution of-EiE;
for the electric field autopowers in z,, b) eguations {4.40) with

G = Zlr ¢) eguations (4.40) with G = Y( and z = g1,

- ] -

X8L 775-5420
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arige from ctosspowers of the electric fields, that is, the noises in
the electric channels are correlated.

The agreement bétween the apparént resistivities from g?.aﬁd those
obtained by replacing the autopowers in EE-by Ezgi-fndicates that E£==Ei,

that is, the potential differences ¢l-¢c and ¢3-¢

, are approximately the

same. This Febult implies that there wete no major noisé sources in our
measurement equipment, such as electrode noise (in particular, common
electrode noise), amplifier noise, or tape recorder noise, as their con-
tributiens would be different for ¢i-—¢0, which was recorded on one: chan-
nel (Ex},'than ¢3f-¢2? which was recorded as +the difference of two other:
channéls'{E&‘anatEr). Thus, it appears that the dominant noise in the
electric field measurement is due to real potential differences correlated
over distances of a least the maximum electrode separation, 700 m,

There axre sevetral possible sourées of eleétric field fluctuatidns
that would be correlated over such distances. 'Corwing has found self-
potentials as. large as 50 mV at Grass Valley. He indicates that these are
most likely streaming potentials, generated by the flow of spring watexr
through the ground. The large changes in water pressure that are often
associated with hot sﬁ:ings could cause the streaming potential to fluc-—
tuate. Corwin has also suggested that thermcelectric voltages generated
by the temperature gradients of a geothermal area may be. a sSource of
signifigant self—poten;ial. If'these gradients fluctuate the voltage
would also fliuctuate. HoweVeér, we would expect these fluctuations to be
primarily at frequencies well below 0.3 Hz, the frequéncy at which the
large peaks occur in figures 6 and B. Even if the source of self-potential

remains constant, fluctuations in the surface self-poténtial can be
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generated by the:valriations in the. ré&istivity of the ground caused by
seismic waves, surface temperéture changes, water table changes, or
underground pressure changes. Finally any locdal eledtromaghetic Source,
natural or -artificial, would of course give rise to correlated electric

field variations.

Method IV - Double Averaging

Nongé of the cother méthods of analysis in tHis thesis makes any
assumptiéns about the statistical nature of the signals. The
ionospheric signals are often quasisinusoidal fluctuations of only
very slowly Vvarying polarizaticn and frequency. It was hoped this
property of the signals could be used to distinguish the signals from
the noise. In fact this approach was the mdst sudcessful oneé tiried
for the data collected in Grass Valley. However, because the success
of the method depends on the statistics of the signals its accuracy
can not be. predicted. Further, nd method that dépéends only on local
measurements can be totally immune to noise correlations.

This methed begins with the calculation of. the averagé crosspowers

5 >
of the components gf E and H with a reference ¢hannel Rx' For example

ER* =2 HR‘ +2Z  HR . (4.41)
X% X% X X xy ¥ X :

This average is, not carriéd out. over -all N crogspréducts but only over

a small subset n at adjacent Fourier harmonics of the same data segment.,

The superscript n denctes the average over such a subset. Thus we have
a large. number, m, of values for each avérage crosspower where m could

be as large as the number of ways of choosing a subset n from N objects,
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NI/(N-n) inl. If n is large encugh that the noige c¢iosspowers 'Ln
‘equation (4.44) average to zero then the equation is accurately
satisfied by the true value of Z for each of 'the m subsets. If in
addition the polarizations of the signals are different for some

of ﬁhese‘sgbsets then we have linearly independent selutions of equation
(4.44) and wé ¢an sdlve for Zxx andAny. One can -include all m subséts
by picking sz‘and ny to minimize the squared error in the prediction

e —n —n ] y
of E R*n from H R* and H R*¥ .  That is
X x X K VR

0 —=il: -0, ol
- n o —
E R* H*R_ H R*' H*R. - E_R*  H*R ' H _R*  H*R
7 _ XX X X AR A X X Yy X _ ¥ vx
X ™ m T
——n 4 |=——n? ThnTag I
|g r*"|" |B_R*"| - |H_R¥ HPR
Uy X X x Xx yX
and (4.42)
hm‘ ; nm n nm : n nm'
E R** H*R ‘H_R*" H*R_ - B_R* H*R H R* H*R_
z - X X ¥y X H X X X X X X X x X 4
Xy m m m
2 2 )
|l ™" g r*™ - |JEr" wFR"
¥y X X X XX ¥y x

where the superscript m denotes the avéragée over thé m Subsets. The

equations for Zyx and Zyylcan be: derived in an identiecazl manner.
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m m —m m
ERHR"” HRTHR" - ERH*R " H R H*R "
s . Yy X YY vy vY Yy vy xy
yx m o om
2 -
| r*"|" |5 r*"| - |E_r<" @FR "
Yy Xy Xy y
and (4.43)
n nm n nm n nm n nm
E R*" H*R ' H R* H*R - E R H*R " H R*" H*R
g - XYY Yy xy Xy Yy Xy Xy Yy
Yy m m m
2 2 ——— 2
L r*"| |H rR*"| - | RrR*" H*R
Yy Xy Xy YV

One is free to pick the value of n and the way in which the n
crossproducts are selected. If no extra reference channel has been
recorded then one must use Ey for Rx and Ex for Ry. If an extra
telluric measurement is available then one has the additional freedom
to chose any combination of EX and Er for Ry and Ey and Er for Rx'

Note that if n=1 this estimate is identical to QH except that the
average has been weighted by the reference power. In that case one
would expect essentially the same bias as in gH.

In the computer test with the simulated data of stationary
signals and noises the double average technique did not, and was not
expected to, yield significant improvements in the results. With an
electric reference aligned with EX or Ey, only the estimates of ZXx
and 2 or Z and Z  respectively could be improved. With the

Xy yx yy
reference in a diagonal direction as in figure 7 the polarization of
the signals averaged to zero at the same rate as the noise in the
first average with the result that the estimates were biased the

H
same as Z for all n.
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The method behaved as expected when tested on the real data. As
n was increased the bias decreased and the random errors increased.

At frequencies below 1 Hz where the signals are often quasisinusoidal
all of the evident bias in the apparent resistivities could be removed
while increasing the random scatter between adjacent frequency windows
to an rms value of about a factor of 5. At higher frequencies where
the signals are very impulsive the method yielded only very slight
improvement.

Several different choices for R were tried including Rx=E '
Rx=Er’ Rx=/5.Er-Ey and Rx = Er-Ey. There was a relatively small
amount of bias, either up or down, that depended on the choice of R.

The first average was performed only over crossproducts from
adjacent frequencies. Since it was desireable to keep the results
from adjacent frequency windows as independent as possible this limited
the number in the first average, n, to the number of Fourier harmonics
in the constant Q window. Then various values of n were tried to see
what value would minimize the bias without unduely increasing the
random erxors. The final choice below 1 Hz was n equal to the smallest
of the three numbers: the number of Fourier harmonics in the window,
/N and 36. For frequencies above 1 Hz any n greater than 2 greatly
increased the random error so n equal to 2 was used.

The rotated apparent resistivities calculated via this method
with R.x = Er - Ey and Ry = Er - Ex' are shown in part c of figures 2 -
for comparison with the resistivities from EH. Because of the large

random error in this method the logarithmic mean and standard deviation
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of disjoint sets of apparent resistivities from adjacent frequency
windows were plotted for the poorer data rather than the individual
resistivities. For data that had been rated poor the average was
over 5 windows and for fair, 3.

Although the double average method gave the only physically
reasonable results from our Grass Valley data the method must still
be considered at best an ambiguous success. Some bias still remains,
dep;nding on the choice of reference. Since the success of the method
depends on the statistical nature of the signals, predictions about
its success are nearly impossible. The random errors are comparatively

large.
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SECTION V. REMOTE REFERENCE

The Estimate

In the analysis of the 5 channel data two of the five channels
were used as references for the other three channels. If the noise
in either of the two references is correlated with the noises in the
other three channels the impedance estimates will be biased. For our
5 channel data from Grass Valley such bias was obvious.

If two reference channels are available one can obtain an unbiased

> >
estimate of Z even if the noise in E is correlated with the noise in H

as long as these noises are not correlated with the reference, E. In
addition the equations are simple, stable for any Z and have small
random error. As opposed to the least squares approach, which gives
six possible estimates for %, or the 37 solutions that can be selected
from equations (4.3) through (4.10), the remote reference estimate is
unique.

Quite analogously to Madden's generation of equation (1.23) for
EH, the equation for the remote reference estimate gR can be derived

>
by multiplying the defining equation for Z, (1.11), by R*to form the

diadic products, averaging and then solving for Z to obtain

z® = [ER][#R] " (5.1)

One might suppose, then; that other referenced estimates for Z would
exist corresponding to the other least squares estimates but in fact
they are all identical. For instance, corresponding to the least

squares estimate for the admittance, equation (1.25), the referenced
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admittance tensor estimate

® = [ur][ER]7T . (5.2)

If we then attempt to use this to generate an independent estimate of

via

I

-1 .
=Y we obtain

Z

[ER)[HR] " = 2%, C(5.3)

o9
It

the identical estimate.

The reference can be either electric or magnetic. The distance
it must be removed in order to avoid noise correlations depends, of
course, on the range of the noise source. If the source is fluctuations
in the streaming potential surface voltages then moving the reference
beyond the local water flow field would be sufficient. If the noises
are artificial they could be either very short range such as agricultural
equipment or they could range over 50 miles like the fields from the
Bay Area Rapid Transit system.

Since one has to have an incident wave homogeneous over a large
number of skin depths for the impedance to have a stable value, no
additional physical conditions are required to use a remote reference.
In fact one can guarantee that the signals are homogeneous over a long
range by placipg the reference at a great distance. The random error
of the estimate will increase, however, as the coherence between the
signals at the sounding site and the reference decreases with distance.

§R contains E in both the numerator and denominator in such a way

that it is completely independent of the frequency response of the
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. + 1}
instruments used to measure R. This can greatly relax the demands on

telemetry used to transmit the reference.

Error Analysis - Variances of gR
Equation (5.1) is such a simple linear equation that one can
. R . . R
calculate the expected random errors in 2 and in any function of Z .
. . R R > >
One way to proceed is to relate the errxor in Z2 , Z - Z, to 1 where n
is the combined noise in the measurements as defined in equation (1.18).
An ensemble of experiments must then be specified to calculate the
variance of the elements of gR. The usual propagation of errors
formula can then be used to calculate the error in any function of ZR.
In this section I will derive expressions for the variances of the
apparent resistivity, phase angles of the impedance tensor elements
and the skewness in a fixed coordinate system. Quantities calculated
in the coordinate system aligned with the apparent strike direction
are more uncertain because of the uncertainty in the apparent strike
direction. Equations for the variances in that coordinate system will
also be derived.
R . . . . >
To compute Z - Z it is convenient to introduce the error n

predicted when 2" is substituted for Z in equation (1.18):

F ot (5.0

->
On eliminating E between equations (1.18) and (5.4) one finds

n=n +Q§, (5.5)

|
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R

*

-
where A = - Z. Forming the diadic product of equation (5.5) with R’

and averaging gives
P
[nR] = [n"R] + A[uP] . (5.6)

Since [nPR] = 0 from the definition of gR, equation (1.5),

-1
A = [nRI[HR] ™ . (5.7)
|
Thus
A.. = .A.* i = 1Y ] = ’ .
i nl 3 / D, (1 =x,, 3 =2x,) (5.8)
where
A =R H'R - R H*®R ) (5.9)
X x Y Y Y y X
A =R H®® - R H'R , (5.10)
y y X X x X 'y
and
* * * *
D =HR HR -HR HR . (5.11)
X X y y X Y y X

These equations are exact by definition. The following equations
are accurate only for .Jdarge N. This condition is not a significant
limitation on the accuracy of any practical estimate of errors.
Equations valid for small N can not be accurate unless the distributions
of the noises in the measurements are specified. BAn experimenter can
rarely guarantee the distributions of his noises without a large number
of measurements.

To compute the expected variances assume that we have an ensemble

. R . R
of estimates for Z and that each value of Z was computed from
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identical sets of signals and stationary random noises. Define the

. R
variance, Var(Zij), by

R 2
var(zh) = (|A. |5 - J¢a, .0 |%, (5.12)
1) 1] 1)
where ( ) is the ensenble average. This variance is the sum of the
-
variances of the real and imaginary parts of Z?j' We assume that R
>
is uncorrelated with 1 so that (Aij) = 0. Then, from equation (5.8),

2
In.a,|
Var(Z?.) = S T R

. (5.13)
? Io]?

If we substitute the measured value of |D|2 in equation (5.13},
R . .
Var(Zij) can be written in expended form as
N N
*
var(zi) = —+— ( I I n  n. A A . (5.14)
7 §°|p|* \n=1 m=1 *'MEm Jem3.n

where N is the number of independent determinations of each field. This
approximation introduces an error into the variance of order 1/N. For

m ¥ n, non and A, o 2Te statistically independant of 1, and A,

’ J. ' '

(assuming that the analog filtering and Fourier transforming are

performed appropriately). Thus, equation (5.14) reduces to

N

R 1 2 2
. .) = ———— . . . 5.15
Var(ZlJ) N2|D|2 mil <|Tll’m| |A3,m| > ( )
If n ané A are statistically independent (In ]2 IA |2 =
i,m j,m Y ! i,m j,m

¢ In. |2) (|a, |2). Since the crosspowers in the A, are in fact
i,m j,m j.m

1
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not independent of the ni o’ the equality is not exact. However,

« + . - + . 0
provided R is independent of 1N, the error introduced is of order 1/N,
and can be neglected for large N. If the noises are stationary,

- T 12
(|n |2 ) is independent of m, and equal to |nil . Under these

i,m

conditions, equation (5.15) simplifies to

R 2 2 2
var(z ) = In, | IAjl / N|p|° . (5.16)

It is easy to show, using equations (5.5), (5.8), and (5.16), that

|nil2 = |niPl2 [L + 0(1/N)]. Thus, for large N, one can replace |ni|2
in equation (5.16) with
Inf]? = |E.|? - 2Re [zg HE +2z% HE - 28 2% H H*]
i i ix x'i iy y'i ixiy xy
R |2 2 R |2 2
A R L (5.17)

The variance of Z?j is correctly given by equation (5.16) for
arbitrary levels of noise but only if: (1) the noises in E are
uncorrelated with the noises in E and ﬁ, (2) the noises in E and E
are independent of the signals, and (3) the noises are stationary.

The purpose of the remote reference technique is to ensure that the
first condition is satisfied. The second assumption is likely to be
well satisfied if the noises are generated locally. On thg other
hand, if the noises arise from inhomogeneous atmospheric sources, both

assumptions 1 and 2 may be violated. Assumption 2 could also be

violated if the measuring equipment produces errors that are proportional
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to the signals. The requirement (3) of stationarity is not particularly
restrictive. We require only that the ensemble average and measured
time average of the noise powers be equal. Stationarity does not
require that the noise in short segments of our data be the same for

all segments. For example, magnetic fields from passing vehicles

might introduce much more noise into some data segments than others,

yet the ensemble and time averages of the noise power will still be
equal, provided the times at which vehicles pass by in each experiment
in the ensemble are random. I would like to emphasize that we do not

. . R .
need to assume that the signals are stationary. % and the errors in

R . . . > >
Z involve only the ratios of average crosspowers, and, since E, H,

->
and R are causally related, these ratios do not depend on the statistics
of the fields.

It is important to note from equation (5.16) that Var(Zij) =0

-> >
when there is no noise in E and H, regardless of the noise power in

-> ->
R. Also, when the noise power in R is negligible and the crosspowers
in Aj and D can be approximated by their noise-free values, it can be

R . . . > >
shown that Var(Zij) is independent of the tensor relating R and H.

. R .
Under these conditions, for given |n|2, Var(zij) diverges as
2
I, 1 lu
5y

2 . . .
l - |H H [ -+ 0, that is, as the polarization of the
-
signal, HS, increases. When there is noise in the reference, one can

sx SX sy

. . , R

easily verify that the contribution of the noise power to Var(Zij)
+ .

increases as the polarization of R increases. Thus, the electric

field from a telluric array in a location with a highly anisotropic

apparent resistivity may not be a suitable reference.
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Lo > -+
If H is noise-free, and if oné réplaces R by H in equation (5.7},

*
equation {5.16) gives the expected variance 1in the least-squares

i w . " . 0] - F’;
estimate of gH; Since A is independent of the orientation of R

‘ -+ . P S . ; . ;
relative to H, the wvariance in Z 1is identical with the variance in

. . oL, ; . H
H‘for any noise-free R if H is also noise-free. Thus, beécause Z

[[}]

is obtained by minimizing the mean square error in eguation (1.24),
Z  also minimizes the mean sguare error. On the other hand, if there
' - ‘ . . H , .
is noise in H, for large N the bias errors in Z~ are large compdred

. , . H _ _R i .
to the random 'errors in either 27 of Z . Therefore, when there is

. Lo H , ) : . i
noise in H, Z2 is not a good estimate of Z, and the question of the

relative random :errors in gR ahd EH becomas academic.

There are two attempts in the literatu¥é to calculate the expected
errors in estinmdates of the individual elements of the impedance tensor.
Bentleya attempted Such a caleulation for EH; His calculation assumes
that there is no noise in the measured fields, that the signals have
stationary péwer spectra, and that the only source of error is the
sampling distribution 6Ff the random sighals. In fact, only the ratios
of power speétra enter into the estimate ofzg,,and these ratios are
not affécted by sampling errors. Thus, Bentley should have obtained
a null estimatée for the érrors, but did not because he neglected the

correlations between the errors ih the estimates of the power spectra.

* . . .- . . . :
In arriving at equation (5.16), terms of order 1/N were neglected in

éstimating lnilz. If the only hoise is in the electric field, it is

easy to show that the unbiased éstimator of Ihilz is [N/ (N-2) ] |h?l2
+
for all N and for any ncise-free R.
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25 o e o s . s
Reddy et al™ =~ have estimadted thé random errors in the individual
L . H . . N o .
eléments of Z using an expression derived from the error in a

. 12,15,2
conbination of the elements 5

via a vetry rough approximatien.

The dpproximation is nécéssarily very: rough because; the error distribu-
tion of the combination does not contain encugh information to specify
the individual errors, and, in addition, the expression for the joint

errors is valid only for a noise-free magnetic: field. Thus, heither

approach appears.tq be appropriate for magnetotellurics.

'Variances of Functions of gR

However larde thé& noise, the expected magnitude of the error
matrix é can be made arbitrarily small by making N sufficiently large.
For small errors, any function Ehof-éR'can,be.expanded to first order
in‘gij arnd Aij*i In theése expansions, it is convenient -to shorten. the

notation as follows;

'=-~7'» ’ = B ﬂ A= rQ‘l' r )
ﬂij {(i=x,¥, J=x,y) &k (kx=1,2,3,4),
where 1 = %xx; 2 = xy, 3 =yx, 4 =yy. I will also drop the superscript

. * .
R from gR. In terms of &k and ﬂk, the errcr, 8, in § is given by

\ ,
SE= 1 (— - ) . (5.18)
oo\ At ar A

. et 2 + )
Since (ﬂk ) = 0, the variance in & is var(f) = ([GE[ Y., Ifn and
E are uncorrelated, 'Cﬂkﬂg_) = 0 for all.k and £, sinc¢e the signals
and noises are complex numbers of random phase. Thus Var(g) has the

1]

form

Vi
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4 4 ; .
- s 45 dE ag_ag” _
var(f) = I Ik fdz dz <&kﬂ + o dz <Akﬁ ) . (5.19)
: k=1 %=1 Tk
which simplifies to
4 4 .
var(¢) = L I &G, {(AA Y . (5.20)
' k=1 g=1 K% L
Here,
+ ag dé* af  ag '
=G, = . - + = -y (5:. 21)
sz 2k dzﬁ 'dzﬁ az, azg
If £ is real, G : = 2Re ag_ QE:_ The ensemble average (A &* )
" kb dz, dz¥ /] ” = ' kL

can be evaluated with the same assumptions that were used in obtaining
eguation (5.16). Returning to our original notation and using

equations (5.9) and (5.10) we find that

P P *
. * ninn$ A’Am
(AA, ) = (B A Y= > (5.22)
? Njp|*
whére we have approximated <nin > by 7. n In equation (5.22)

PP ‘ * . . s R
ninn* and AjAm can be expressed in terms of measured crosspowers

and autopowers as follows:

nni* =EER*-2 HE -2 HE*-z* WE_- 2t WE +2, 2 |0
in, in ix ¥ n iy "y n nx x i ny y i ix nx''x
+ 7, Z* HH* +2, 2% HH* +7 2* |u [2 , {5.23)

iy nx y x ix ny xvy iv-ny 'y



~7a-—

L=
h=
1

. - * %
ijm.ﬂ R, R HkRk RRR +* RkR H R HER - R R H Rk H R RkRm_fHkRj H
(5.24)

where k = x,y, & = x,y, aid k' ¥ J and . ¥ m. It is apparent that
Var (£) will, in general, depeénd on 4l1l. 15 crosspowers -and 6 autopowers
of the components of the fields.

To Illustrate the use of equation (5.20), let us compute the.
variance in Ré(Zu}, where U = 1,2,3, or 4. Substituting E,E{E* =
(Zu + Z:}/z and;dg/dzk = ﬁg*/dz = 1/2 6 {6 is the Krdneckér delta),
Dneifinds‘Var{Re(Zu)]-=,l/2 (|&Ul2 = 1/2 Vartz“)a Since
Var(Zu) ='Var[RekZu}] + Var[1m¥zu)} this example proves that
var{Re(2Z )] = var[im(z }].

I I
The elements. of the apparent resistivity matrix p associated with

2 are defined by gk = 0.2T |§k]2, where T Is the periocd in seconds

, . . . * *

and E<hasvdimensions of mV/({kmy). ‘If we chodse. § =v€‘ = z-]‘lZ]rl in
g e g (2 o

equation {5.20) then d&/az, Zpauk” ) szuJ auksuﬂ’ and

Var{f) = 2‘Zﬁ‘2 (‘&ulz) . Thus the variance of the element pu is

given by

Var(pu} = (6.97) % var(&) =‘Q.4Tpu {|¢£~.u|"’2 Yo (5.25)

x4
The phase, ¢U of Zﬁ is defined by

: * *
tan & = (28 - /ilz + 2 . 5.26).
an ¢” ( . ZH)/l{ " ﬁu) {5.26)

K
R

L8

I
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where i = V/-1. If £ = tan¢u, Var(¢“) = cos4¢)u var(£). 1In equation

(5.21)
at/dz ) 2z*/‘(z z*)2
= + .
trdz, =0y 22 /12, + 2
and
2 * 4
=8 |2 8 8 7 o+ 2 .
Sk ‘ ul uk uf /] U ul
Thus
4 2 2 * 4
=8 (A Y 1Z Z Z . .27
Var(¢u) cos ¢U ] u| | u| / | u + UI (5.27)

. . . . . 2
To find the variance in the skewness, W, we define £ = W

2
=z +2z 12 /lz. -z . One obtains
XX Yy Xy ¥X

var(W) = var(£)/4w , (5.28)

whre Var(§) is given by equation (5.20) with the following values of

S9N

2 2
= = = - 7 .
Gy = Gyq = Gyy = 2 /szy gxl (5.29)
G.. = G.. = -G.. = Wa
22 33 23 11’
and
* *
Re[(zxx-+zyy)(zXy - zyx)]
Glag = Gyp = 7Gy3 = "G3q = “6y3 2 - (5.30)
lz -2z_|
xy yx

The rotation angle, @, to align one of the axes with the apparent
strike direction satisfies the equation
* *
2Re[(z -2 _)(z_ +2 )]
Yy XX Xy yX

2 2
o |

tan 46 =

| . (5.31)
- 12 -2

|z, +2
Xy Yy xx
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For any integer, m, O £ mm/4 also satisfies equation (5.31), but the

. . - 2 *
solutions with odd m maximize [2__-2 |°. If we choose £ = £ = tan 40,

XX | yy
4
then Var(0) = cos 40 var(§)/16. vVar(f) is given by equation (5.20)

with
_ _ _ 2 2
Gy = Ggq = Gy = 2la|” [z + zyxl ,
2 2
Gy, = G353 = G,y = 2|a] |zx - zyy| , (5.32)
and
: |2 * *
G, = Gy3 = =Gy, = =Gy, = 2| Re[(ZXY + zyx)(zyy -2 )1,
where
(zx + Z x 2 + (2 - Zxx)2
o= Yy XY 04 - - (5.33)
2 2
z - -z
[z, +2,,0° - 1z, - 2,17

The above equations can be used to calculate variances in any
coordinate system provided one first rotates the measured spectral
density matrixes to the desired orientation. However, if the rotation
angle of the coordinate system is itself determined from the data,
additional errors will be introduced in the calculated quantities
because of the uncertainty in the rotation angle. The following
expressions are for the variances of the apparent resistivities and
of the phases of the elements of the impedance tensor in the coordinate
system rotated by the angle 8 obtained from equation (5.31).

Define the rotated appérent resistivity matrix (which is not a
tensor) by pI = O.ZTIZLIZ, where é' is the impedance tensor in the

n

. v 2 ' 2
rotated coordinate system. Then, if Eu = ,ZUI , Var(pu) = (0.2T) Var(Eu).

Var(Eu) is given by equation (5.20) with
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ac at \
2Re —H H ,

G =

k2 de dZR
a 0 9§
6%, %, g
az, sz 90 9z

Using equations (1.15) and (5.35) we find

where

and

Qath-:
N| Y

oz
(k) = % 3z
oR
= -1
3% 2R 7

where R is defined in equation 1.16.

The elements of equation (5.37) are

and

RC

(xy)

Q<

U(yx)

zzg

o =
(
[
il

c0529
-sinfcosb
sinBcosH
—sin26
sinfcos
c0526
sin26

sinBcosh

-sinBcosh

-sinfBcosH
-sin 9
-sinBcosf

sinBcosH

Z U (k) + 2Re[z‘*v ]
poou W

0 )
v
) -
)

a6

BZk

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
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V can be written as
~

-sin20 cos20 Zxx -2 Z +Z <
v = Yy Xy y (5.40)
~ ~c0s26 -sin26 Z + 2 A/
Xy yxX vy XX
From equation (5.31),
2
96/97 = -906/92 = -0*cos 40(z +2Z )/4 ,
xX / Yy Xy ¥x /
and (5.41)
2
= = % -
BG/Zyx BG/BZXY a*cos 48(ZXX Zz )/4 ,
where 0 is defined in equation (5.33).
Now consider ¢;, the phase of Z', and define
ZI —_ Zl*
= D N S
EU tan¢)u i(Zﬁ " Zﬁ*) . (5.42)

Then, Var(¢ﬁ) = cos4¢ﬁ Var(gu), and Var(Eu) is given by equation (5.20).

From equations (5.42) and (5.35), we find

-

vk

az'

Y daz
[ ]
dg Zu dzk Zu dZk
dZU = -2 ' vk 2 (5.43)
k (2 +2 )
- u H

—
L

LR
7 U (k 2iIm([2 v ]196/9z
- g Utk o+ 2i m[ y u] 8/9z,

) [] 2 ’
Z + 2 %
L ( U u )

where g(k), Vv, and BG/BZk have been defined in equations (5.39)
through (5.41).



-79-

Confidence Limits

Although least squares linear regression is not the best method
of determining Z, the least squares principle is appropriate for the
comparison of different estimates of Z. For example, the best model
of the ground in a staﬁistical sense minimizes the mean square of the
magnitudes of the differences between the modeled and measured values
of Z, weighted in inverse proportion to the variances. However, to
determine the statistical significance of this discrepancy, one
requires the distribution of the errors of the estimates, not just
the variances.

In equation (5.8) for the error Aij' D can be approximated by
its noise-free value for large N. In this approximation, Aij is just
the sum of N complex random errors (one for each k, 1 <k €N) and,
by the central limit theorem, its real and imaginary parts are
normally distributed. Since the error Ai. is of random phase
(Re(Aij)Im(Aij)) = 0. Thus Re(Aij) and Im(Aij) are also statistically
independent. The sums of the squares of n independent normally
distributed random variables with unity variance and zero mean has a

2 . . . - o > .
Xn distribution. Thus, if H and R are noise-free,

2
|

- 2
a.j S lAijl /Var[Re(Aij)] (5.44)

2 2 2
i 2|Aij| N|D| /(|ni| ) lAj

2 . . . , . .
has a X2 distribution. In this expression, the unknown quantity

2 . , p .
(|ni| ) is best approximated by |ni]2 The errors introduced by

this approximation must be included to obtain an unbiased estimate of
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the confidence limits. Since 8 (2N-4) |n§‘2/(|ni|2) can be shown
2 . . . . -
to have a X2N—4 dlstrlbutlon15 the quantity Gij/B is the ratio of
. . 2 . . .
two variables with X distributions. Thus (2N-4)6ij/(28) has a Fisher F

distribution with 2 and 2N-4 degrees of freedom, For large N

Fy, on-4"

the modification introduced by |n§|2 is small. For example, for
N > 25, the confidence limits for the F2,2N—4 distribution are less
than 6% larger than those for the X; distribution up to the 95%
confidence level. If the signal-to-noise ratios of E and ﬁ are much
greater than the signal-to-noise ratio of E, this small correction to
the confidence limits may be significant. If the noise is not
predominantly‘in E, the other corrections of order 1/N that we have
neglected will cause modifications of the distribution comparable with
the difference between the X2 and F distributions. These modifications
cannot be described in terms of elementary distribution functions.
Thus, for most applications, the x2 distribution should be adequate,
and as accurate as can be obtained without extraordinary effort.

Errors estimated from the first-order Taylor expansion, equation
(5.18), for example errors in the apparent resistivity, are linear func-
tions of the errors in the real and imaginary parts of ER. Therefore,

within the limits of accuracy of the Taylor expansion, these errors are

also normally distributed. The confidence limits of these quantities are

2 P2
again modified by the estimation of (|ni| ) by |ni| so that the
proper distribution is that of the ratio of a normally distributed to
a x2 distributed variable, or a Student t distribution. However, the

corrections to a normal distribution will be significant only when
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the confidence intervals are so small that the Taylor expansion
introduces a negligible error, and, as before, the noise is predominantly

->
in E. For most purposes, a normal distribution should be entirely
adequate.

As an example, consider two independent sets, a and b, of M

. a b <L <

estimates of 2. .(w), Z,.(w )} and Z,_ (w )}, where 1 Sk S M. We calculate
i3 1] k i3k
the probability that the disagreement between the sets arose from random
errors alone assuming that the errors in set b are negligible compared
to the errors in set a. Such a calculation would be required if one
wanted to determine the significance of the difference between a model
of the ground (set b) and a sounding (set a), or if one considered
rejecting a small subset of the data (set a) because of its disagreement
' o 2

with the rest of the data (set b). If the quantities 6?j(wk) have x2

M
distributions then the total discrepancy, X 6?.(w ), has a X2
k=1 1] k 2M

distribution. Neglecting the errors in Z?j(wk), we find

a b 2.a;.a?
2|zij(wk) —zij(wk)| N? D%

(5.45)

A,

1 Pa 2 aj2
212 123

Thus the probability that ¢ > o through random errors alone is
2
1- .
sz(a)
Determination of Signal and Noise Powers
. R . . >
The random errxors in é depend only on the combined noise, N,

> -
rather than on individual noises in E and H. Nevertheless, the

determination of the noises in the individual fields is obviously
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of practical interest. With a remote reference the signal and noise
power spectral densities can be evaluated as follows.
R . .
The value of Z obtained from equation (5.1) and the measured

. . > . . . >P
magnetic field, H, predict an electric field E , where

>
=2 H . (5.46)

>P . . . . > . e > >
E contains contributions from the signal Hs and the noise Hn =H - H

]

If the noises are uncorrelated with each other and with the signals,

the spectral density matrix

[EPE] = ER[HE] = [ER][HR]_l[HE] (5.47)

has the expectation value of the spectral density matrix [EsEs]’ where

E_E |E
sy sX sy

The matrix [ESES] is Hermitian: The diagonal elements are real, and
the off-diagonal elements are complex conjugates of each other.
On the other hand, [EPE] is, in general, not Hermitian because of the
> > - .
noises E , H , and Rn. I1f the phases of the errors are unknown, it
n n

. o P
seems reasonable to estimate {ESES] by the Hermitian part of [E E],

P
[EsEs]' given by

[e e )" = = ([e"E] + %21} = ((£%E] + (eE¥D)/2 . (5.48)
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This estimate of the signal power can be derived in a second way.
Equation (5.46) predicts the electric field from the magnetic field
using ﬁ as a reference. This idea can easily be generalized. If any
three quantities are linearly related, each of them can be predicted
from either of the others, with the third as a reference. If all the
noises are uncorrelated then each of the linear relationships between
the three quantities can be estimated in a stable, unbiased manner.

> -
For instance, the electric field can be predicted from R, using H as

the reference. That is, we can estimate G, defined by

- ->
E =GR (5.49)
S ~ S
from
R -
¢ = [(eH](ra]™" . (5.50)

Thus we have a second estimate of the electric field signal power:
P . R -1
[E'e] =g [RrReE] = [eH][rH] ~ [RE] . (5.51)

Comparing this with (5.47), we see that [EPE]' = [EPE]Jr ! Thus we

obtain equation (5.48) by taking the Hermetian part of either estimate.

Alternatively, conside;ing (5.47) and (5.51) as two equally valid

estimates, one would want to obtain the best estimate by taking their

averade, again producing equation (5.48). Thus we see that both %F

and the signal power estimates are unique and contain remarkable symmetry.
Following these symmetries, we can immediately write down the

- -+
predicted signal powers for H and R:
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[HSHSJP = ([#H] + [HET 1) /2 , (5.52)
and p P p

[RsRs] = ([R'R] + [RR ])/2 , (5.53)
where b -1

(H'H] = [HR][ER] ~ [EH] , (5.54)
and P -1

[R'R] = [RE][HE] [HR] . (5.55)

One. can calculate the spectral density matrices for the noises by
subtracting the estimated signal density matrices from the measured

spectral density matrices, for example

P
[EnEn] = [EE] - [ESES] . (5.56)

The noise matrixes contain the crosspowers E E* , H H* , and R R* .
. nx ny nx ny nx ny

Thus, one can determine whether there are significant correlations
between the noises in the two components of each field. Such
correlations may be indicative of measurement errors, and could be
generated, for example, by noise from a common electrode, or by a
moving magnetic object.

The remote reference method requires the measurement of the three
fields E, H, and R, each with two components. Correlations between the
noises in the two components of each field do not bias the estimates

of gR, the errors in gR, or the signal and noise power spectral

density matrices. However, any correlation between a measured field
and the noise in another field will bias the estimates of the signal

and noise power spectra. Such correlations would usually cause a

. . . L. . . P P P
significant .non-Hermitian part in the matrices [E E], [H H], and [R R].
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R . . . > >
Z will be biased only by correlations between n and R. Thus,
. . P P P
under most circumstances, the requirement that [E E], [H H], and [R R]
be-Hermitian provides a sufficient but not necessary check on the
. . R . . . .

correlations that would bias g . However, if the ionospheric signal
is from a fixed inhomogeneous source, these matrices would still be

. R .
Hermitian, but E would be biased.

Generalizations - the referenced tipper

All of the referenced tensor equations obviously hold for any
rank tensor and can be immediately applied to the measurement of any
tensor response function. The unbiased estimation of a tensor of
rank n.in the presence of correlated noises requires n reference
channels with uncorrelated noises. As a simple example of this I will
include here the equations for the measurement of a gquantity often
investigated in conjunction with- magnetotelluric surveys, the tipper %.

The tipper is the linear relationship between the vertical and
horizontal magnetic field components, defined by Hsz = % ﬁs' The
referenced estimate for the tipper is

™ = [HZR][HR]_l (5.57)

where

= * *
[HZR] (Hsz, HZRy) .

The vertical magnetic signal power is

P _ -1
Re(Hsz) = Re([HzR][HR] [HHZ]). (5.58)




-86-

4

The error in the estimate of is

+ —-—
A = [tr][HR] ' (5.59)

where

> >
T=H -TH.
z

+
Thus the variances of the elements of T are

Var(T?) = |TP|2 |Ai|2 /(N|D|2) (5.60)

where the Ai and D are given in equations (5.9) - (5.11) and

= |H |2+|T |2|H |2+|T |2|H |2—2Re(H H* T +H H* T -H_H* T_T*).
z X x y Y Xz 'x yz'y Xy 'xvy

(5.61)
The apparent tipper strike is the direction of the horizontal
magnetic field component that has the smallest linear relationship
with H . The angle of rotation about the Z axis that will align the

)

% axis with the tipper strike, eT, satisfies the equation

*
2Re (T T )
Xy

Nk

tan 29T = (5.62)

|T

. R mn . . .
Caution must be exercised because GT * > also satisfies equation
. . 2
(5.62) for any integer m and the solutions for odd m maximize ITX(G)I .

Therefore BT obviously also maximizes |Ty(6)|2 and |Ty(9)|2 - ITx(B)IZ.

2 2 _ x2 oLl . .
lTxl + |Ty| = |T| is independent of rotation and is a measure of

the total horizontal contrast in resistivity. One may also wish to

2,
know just how well Tx(G) can be minimized. The minimum |Tx(9)| is
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£ = (|Tx|2 cos?8 - lTyl2 sin’0) /cos26 . (5.63)

Thus GT, |T|2 and £ are interesting parameters of % for physical
interpretation. Their variances can be calculated via the Taylor
expansion analogous to equation (5.18) and for small errors the
distribution of errors should be normal. Dropping the superscript

2
R and calculating 9|T| /3T, we obtain

2, 2 2 2 . —
var (|| Y=ot |° |a | IAy| + 2Re(T,T0) Re(AA)) (5.64)

X y

where AXA; is given by equation (5.24) and

Q = 2|Tp|2,/(N|D|2). Let £ = tan 26, .

Then Var (GT) = cos426T var (&) /4 and

2 2 2 2 2 —
var(§) = |p] Q(|Ty| la |® + |T | |Ay| - 2Re(TT}) Re(A.AY))  (5.65)

wﬁefe
' 2
2 2 2 2
P = (T, + Ty)/([Txl - |Ty[ )

* 2 —_—
_ daf af S df 2 af 2
Var (£) —Q(2Re<—dT <—dT >>Re R ‘ la |” + T lAyl ). (5.66)
X y y
af of of 236
ar, _ ar. T 38 or. (5.67)
1 1 1
where
*
§£ ) 2Re(TxTy) (5.68)
30 ~ cos26 ! :
2
T* cos 6
of _ x (5.69)

oT cos26 !
X



and
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3 —T; sin29
9T cos28

Y
26
3 - BTy
36
aT_ = BT

Y

2 *

B = cos 29T P /2

(5.70)

(5.71)

(5.72)

(5.73)
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SECTION VI. TEST OF THE REMOTE REFERENCE METHOD

This section describes in detail a test.of the remote reference
technique using data collected simultaﬁeously at two sounding sites
called Upper and Lower La Gloria. To assess the quality of the data‘
as compared with those obtained from other surveys they were analyzed
using EH. I also include the apparent resistivities as calculated
via gE and method I, the crosspower solution of the eight equations.
The data from Upper La Gloria were among the best we have collected,
those from Lower La Gloria were among the worst. QR'produced excellent
results in every case.

Data

We established two complete magnetotelluric sounding stations
separated by 4.8 km on La Gloria road in Bear Valley, California, at
the sites shown in figure 9. The Upper La Gloria station is in hilly
terrain where the geology consists chiefly of granites, while the
Lower La Gloria station is in a level area over a zone of low
resistivity%8 and is slightly east of a fault that separates this
zone from the granites. Lower La Gloria is about 2 km west of the
San Andreas Rift Zone which runs in a northwesterly direction.

For the electric field measurements we used the Pb electrodes
installed by Corwin for dipole-dipole resistivity monitor;ng.zo The
location of the electrodes is shown in figure 9. Electrodes El and E2
were the common electrodes at the lower and upper stations, respectively.
The nonorthogonality of the -telluric arrays was taken into account in

the analysis. For the magnetic field measurements we used our dc



Willow Creek Peak A
FM Repeater

L ower
La Gloria

Upper

' - -
OO0 ’
= La Gloria
' of 3
Fig. 9. Sites near Hollister, California, where magnetotelluric data XBL7712-6514

were recorded simultaneously. Dots denote electrodes, double
circles denote magnetometers.

_06_
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sdulD magnetometer at Lower La Gloria, and an rf SQUID magnetometer
manufactured by S.H.E. Corporation at Upper La Gloria whose magnetic
field sensitivity was approximately 10—4 Y Hz_l/z. The magnetometer
at each site was used as the reference for the signals at the other
site.

The data from both sites were recorded simultaneously. A block
diagram of the measurement electronics appears in figure 10. The
equipment at Lower La Gloria was battery powered, while that at Upper
La Gloria was powered by a 60 Hz generator. Each signal was passed
through a preamplifier that contained a high-pass filter to attenuate
the large-amplitude low-frequency signals that could have exceeded
the dynamic range of the electronics. Each preamplifier was followed
by a 60-Hz notch filter. The signals from Lower La Gloria were
transmitted to Upper La Gloria by FM telemetry via a repeater on
Willow Creek Peak. At Upper La Gloria we passed each of the signals
through a four-pole band-pass filter, digitized the signals with 12-bit
resolution, and recorded the data on a nine-track digital recorder.
The data were acquired in the four overlapping bands listed in
table IV. Band 4 was intended to include periods from 30 s to 1000 s,
but an error in setting the highpass filter of the telemetry preamplifier
at the remote site resulted in the longest period being 100 s. The
times required for data collection and the sampling periods are also
listed in table IV. We reco?ded all the data within a 40 hour period,

making only brief interruptions to change gains and filter bands and

to replace batteries. All the recorded data were processed using the
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Table IV. Summary of filter bands, recording time per band, digitizer

sampling period, and the number of points per fast Fourier
transform (FFT).

Filter Filter Total Digitizer No. of
band band recoxding sampling points in
no. (s) time (h) periods (s) data segments

1 0.02 -1 0.54 0.005 1024
2 0.33 - 5 4.22 0.1 512
3 3 - 100 10.52 1 512

4 30 - 100 14.9 10 256




b A e

Receiver | ~ [Tronsmitter}— Receiver |

V Repeater Station

Demodulator I

B%rmré?;s + EJ,] E]’] [:l,j + Transmiiter
.

Digital Multiple Channel Digitizer i
Recorder . 9 Multiplexer
Bandpass Voltage Controtled
Filters ) Oscillators
. Ex Ey Ex Ey
Preamplifiers . Preamplifiers
and Filters and Filters
Hx Hy Hz Hy My M,
RF SQUID DC SQuID
Es E2 E Magnetometer Es E Ep Magnetometer
Upper La Gloria Lower La Gloria
X8L 781-4510

Fig. 10. Block diagram of data acquisition.
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procedures in section III except those rendered meaningless by equipment
failure, amplifier saturation or obvious magnetic interference from
passing vehicles. The lengths of the ‘data segments are shown in

table IV. The center period of each frequency window, the number of
harmonics in each window and the nunber of data segments are given in

table V.

Results

The results are graphed versus period for Upper La Gloria in
figures 11 through 21 and for Lower La Gloria in figure 22 through 32.
Figure 11 contains the correlation coefficients Cx and Cy in the
rotated coordinate system. Fiqures 12 through 14 contain the rotated
apparent resistivies from EE, method I, and EH, respectively. The
apparent resistivities .from the remote reference method are indicated
on these figures by a dashed line to facilitate comparison of the
methods and are plotted with their proﬁable exrors in figure 16.

Consider the apparent resistivities from QE, gH and ER, figures 12,
14 and 16. In 60 of 64 cases the apparent resitivity from EE is larger
than, and that from gH is smaller than, that from ER. This regular
ordering of the apparent resistivities demonstrates that the bias
error in at least two of the estimates is large compared to the random
error in any of them and it strongly suggests that the bias is due to
the measured autopowers in the least squares estimates. Comparing
the differences between EE and EH, figures 12 and 14, with C, figure 11,
we see that the relative bias usually but not always increases as C

. H v .
decreases. For instance, pyx from 2 at 0.032 second period has the



Table V. Number of harmonics per window, and numbers of sets of data segments for each station.

Band no. 1

Band no. 2

Band no. 3

Band no. 4

Period Harmonics Period Harmonics Period Harmonics Period Harmonics

(s) per window (s) per window (s) per window (s) per window
0.023 75 0.325 52 3.3 52 32.0 13
0.032 53 0.45 37 4.5 37 41.1 9
0.044 38 0.63 27 6.3 27 60.9 7
0.062 27 0.88 19 8.8 19 85.3 5
0.085 19 1.2 14 12 14
0.12 14 1.7 10 17 10
0.16 10 2.4 7 24 7
0.22 7 3.4 5 34 5
0.30 5 49 4
0.41 4
0.57 3
0.79 2

Number of sets of data segments

Upper La Gloria 476 297 73 21
Lower La Gloria 381 297 73 21

_.96_.
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Fig. 11. Correlation coefficients, C_ and C from equation (1.29),

versus period for the data Xfrom Uzper La Gloria.
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Fig. 13. Rotatéd apparent resistivities from method T,

crosspower sclution of eight equations, versus
period, Upper La Gloria. —-—=-== remote reference results,
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Fig. 14." Rotated apparent resistivities from Z versus period,
Upper La Gloria. ———=-- remote reference results.
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largest bias of any of the results from this station, possibly due to
magnetic noise from the 60 Hz generator, and yet Cy for that window

is actually higher than for the adjacent frequency windows. Thus C is
only a very rough indication of the accuracy of the least squares
results.

The apparent resistivities from method I, figure 13,.are far more
scattered than those from the other estimates. The best results
from this method are for pxy at periods shorter than 1 s, where Cx
is greater than 0.9. Here, they are still scattered over the 10%
range of the disagreeﬁent between the E? and 2? resistivities. Note
that no value of apparent resistivity has been plotted at 0.032 s
period for method I. This is because the predicted autopowers were
not real. Thus we know that there is some significant noise in this
window even through CY is higher than in the adjacent windows.

Because of tﬁe large random errors in method I and the bias errors
in the two least-squares estimates they are not reliable estimates of
the apparent resistivity when the Ci are less than 0.9. If we were to
reject all resistivities for which Cy is below 0.9, we could retain
only 11 values for pyx' all at periods longer than 0.5 seconds.

The remote reference signal and noise spectra, figures 19-21
contain six times as much information as the least squares Ci' They
are calculated in a coord;nate system with the X axis pointing towards
magnetic north and have not been corrected for the 60 Hz notch. The
peak in the noise power in Hy at 0.032 second period shows up clearly
and thé bias of the least squares estimates is well predicted by the

noise to signal ratio from these spectra.
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Because of random errors in the calculated signal spectral density
matrices, it is possible for the calculated noise power to be negative.
This behavior was never observed at this station, even though the
signal-to-noise ratios varied from 100:1 for Ey at 0.1 second period
and 200:1 for HY at 85 second period to 1:7 for Rx at 9 second period.
The signal power spectra for these data are particularly steep; for
example, around 15 second period they increase roughly as the 8th
power of the period. Nonetheless, the calculated noise spectra are
comparatively smooth, indicating that the random errors are small.

The non-Hermitian parts of the predicted autopower spectral

density matrices were very small. For example, the imaginary parts of

the predicted autopowers (such as EzE; ) were always less than 10% of
the real parts, and averaged about 1%. For periods shorter than 3
seconds, where we had the most data, they were always less than 2%.
Thus, even if the noise coherencies were statistically significant,
they were too small to have any practical importance in the remote
reference calculations.

ZH and ZR gave similar estimates of the other parameters: apparent

strike direction (equation 5.31), phase angles and skewness (equation
1.17),.at Upper La Gloria, figures 15, 17 and 18. The only difference,
which may be too small to see in the graphical representation, is

that there was a scatter in the value of the apparent strike direction
of about * 3% when estimated by gH that was.absent when gR was used.

While the data from Lower La Gloria were much noisier, the same

observations about the bias hold true. Apparent resistivities from
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EE were invariably larger than those from EH. The difference reached
a factor of 100 for pxy at 9 second period, figures 23 and 25. This
station would have been a wasted effort with conventional analysis
since Cx and Cy are never both above 0.9. The source of the bias

is evident in the signal and noise power spectra, figures 30

through 31.

Lower La Gloria was the one station where method I was more
successful than the least squares methods. For periods shorter than
20 seconds it yielded apparent resistivities, figure 24, that lie
between the two least squares resistivities, figure 23 and 25, in
50 of 54 cases. -This result indicates that the random errors for the
crosspower method are small in this case compared to the bias errors
of the least squares methods, and is further evidence that the autopower
bias is the major source of error. At periods between 3 and 20
seconds method I produced dips in the apparent resistivity similar to
those of the standard analysis, but about a factor of five smaller.

In contrast with the other methods, the remote reference method
yields apparent resistivities, figure 27, that vary smoothly over the
entire range of periods, even where the coherency is low. The results
from overlapping bands agree within the expected random error. At
periods shorter than 1 s, the remote reference apparent resistivities
agree with the results from the crosspower method to within the random
scatter of the crosspower results (¥ 10%).

It is interesting to compare the signal and noise power spectra

-
for H at Lower La Gloria, figure 31, with the spectra for the reference
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field for Upper La Gloria, figure 21, since they are, of course,
physically the same thing. The difference between the two calculations
is that in the former case the electric field at Lower La Gloria was
used in equation (5.52) while in the latter the electric field at
Upper La Gloria was used in equation (5.53). The converse relation
holds for the calculation of the ﬁ spectra at Upper La Gloria and the
reference spectra for Lower La Gloria. The eight pairs of spectra
are satifyingly similar except for some noticable random scatter at
the longest periods where the number of data is least. In fact at
Lower La Gloria there were two values of noise autopower in the
magnetic field that came out negative. This would cause problems on
a logarithmic plot so the absolute value was plotted.

At Lower La Gloria the standard and remote reference methods
yield very similar values for the phase angles, with scatter increasing
with period up to about * 5° for periods longer than 10 s, figures 26
and 29. The standard analysis yields values of apparent strike and
skewness that differ by 20° and 0.2 respectively between bands 2 and 3,
while no disagreements are apparent for the remote reference method,
figure 28. There are also consistent differences between the two
methods. For example, the apparent strike at short periods determined
by the remote reference method is about 52°, while by the standard
method it is about 65°.

Reproducibility of Appérent Resistivities
The final question to be answered is whether the expected random

error is a good estimate of the reproducibility of the results. They
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are certainly in qualitative agreement. Where the bands overlap the
values usually agree within the calculated probable error. One can
draw a very smooth curve through at least 50% of the probable error
ranges. One éan get a slightly better estimate of the reproducibility
by comparing the results obtained from disjoint subsets of the data.

In bands 1 and 2 we had collected about 5 times as many data as
were necessary to obtain estimates with reasonably small random errors.
I divided these data into M subsets and thus was able to recompute M
completely independent estimates for each of the apparent resistivities.
If the average of the M values is D then the expected standard

deviation of the average, 0, is given by

Q
Il
™M=

(. -0 2/ (% -m) . (6.1)
l h N

i
For band 1 at Upper La Gloria I formed 5 subsets and for band 1 at
Lower La Gloria and for band 2 at both stations I selected 4. In an
attempt to include signals of various polarizations in each of the
M subsets I selected for each subset roughly equal numbers of records
from two differe;t recording times that were widely separated.
Table VI summarizes the recording times and the number of the subset
to which the data segments were assigned. There are no entries for
the first two recording times in band 1 at Lower La Gloria because
we had accidentally removed a set of preamplifiers from some of the
channels at that station.

Table VII lists the percentage expected standard deviation of the

mean resistivity, 100 0/5, as a function of period for both stations.



Table VI. Arrangement of data from bands 1 and 2 into subsets to estimate the standard deviation of
the apparent resistivity at each period. Date refers to September 1977.

:40 PM - 1:45 PM 15
:45 PM -~ 1:50 PM 15

Band 1 Band 2
' Subset number Subset number
Upper Lower Upper Lower
Recording time Date La Gloria La Gloria Recording time Date La Gloria La Gloria

11:55 AM - 12:00 PM 14 2 Omitted 9:25 AM - 9:50 AM 14 1 1
12:01 PM - 12:06 PM 14 3 Omitted 9:55 AM - 10:42 AM 14 2 2
7:30 PM - 7:35 PM 14 4 3 10:43 AM -~ 11:27 AM 14 3 3
7:36 PM - 7:41 PM 14 5 4 6:20 PM - 6:57 PM 14 4 4
1:20 PM - 1:25 PM 15 1 1 7:00 PM - 7:32 PM 14 2 2
1:25 PM - 1:30 PM 15 2 2 10:50 aM - 11:37 AM 15 1 1 &
1:30 PM - 1.35 PM 15 3 3 11:38 AM ~ 12:25 PM 15 3 3 ¥
1:35 PM - 1:40 PM 15 4 4 12:36 PM -~ 1:13 PM 15 4 4
1 5 1
1 1 2




-124-

Table VII. Expected standard deviations, 100 oj/Eg' of mean apparent

resistivities from the remote reference method.

1

Upper La Gloria Lower La Gloria
Period
() 100 cxy/’p'Xy 100 oyx/Eyx 100 oXy/Exy 100 oyx/ny
0.03 0.4 3.5 2.0 2.3
0.04 0.5 0.8 0.7 0.8
0.06 0.2 0.8 1.3 0.5
0.08 0.3 2.1 1.1 0.9
0.12 0.5 0.7 0.8 0.7
0.16 0.4 1.4 1.6 1.3
0.22 0.7 0.6 1.9 1.1
0.30 0.6 0.9 0.9 1.8
0.41 0.04 4.4 0.7 1.2
0.57 1.2 2.2 1.3 1.3
0.79 1.2 1.6 1.8 1.5
0.33 2.2 1.6 0.4 0.8
0.45 0.8 1.0 1.2 0.5
0.63 1.2 3.0 1.0 0.5
0.88 1.2 0.9 0.9 0.7
1.2 1.0 1.3 1.4 1.1
1.7 1.1 1.4 0.9 1.5
2.4 0.8 3.4 2.7 1.2

3.4 1.3 2.6 1.7 2.0
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We see that the expected fracticnal standard deviation of both B;Y
and B§x is always less than 5%, and, for 87% of the data, is 2% or
less. The average of 0/5 over all entries in table VII is 1.3%. For
comparison, when I performed the same analysis on the apparent
resistivities calculated from ZH, the average of the fractional
standard deviation was 3.3%. At periods less than 3 seconds, the
expected deviations are much smaller than the discrepancies caused
by bias (typically 20%) that one observes when one compares these
results with those obtained from ER.

With the number of subsets M being so small these estimates of'
the standard deviations are very crude, with uncertainties of
roughly a factor of 2. Nevertheless they are in qualitative agreement
with the expected random error from figures 16 and 27. One can obtain
one more certain estimate of the reproducibility by calculating the
rms value of 0 for a number of the resistivities with comparable O's.
Averaging together 25 of the O0's in this way should produce an
estimate of the reproducibility that is accurate to within about 10%.
Indeed, for the 25 apparent resistivities with the smallest expected
percentage random error, the rms value of 0 was equal to 88% of the

rms expected standard deviation as calculated from eguation 5.20.
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CONCLUSION

The remote reference method is a superior method of measuring z.
It makes possible the measurement of Z with accuracy limited only by
the inhomogeneity of the incident fields. This ultimate accuracy
should be even better than that of the test in section VI since all
the apparent errors in that test were easily accounted for by the
expected random error, but will depend on the geology of the sounding
site and the nature of the signals.

Of course one should minimize the errors of the measurements and
of signal processing. However, the intrinsic noise level of our SQUID
magnetometer was usually an insignificant (less than 10%) contribution
to the magnetic field noise observed in our measurements. The great
superiority of the results of the remote reference method over the
other methods of analysis for the same data processed in the identical
fashion proves that the errors in that signal processing are not
significant. Any digital technique for computing the average powers
should be satisfactory if applied with reasonable care.

While the attempts to estimate g from local measurements alone,
as described in section IV, were not satisfactory, they did demonstrate
correlated noises. Since the remote reference method can be used to
separate out the ionosphericly generated electromagnetic signals,
the source of these other "noises" may itself be an interesting area
of investigation.

The most exciting thing about the remote reference method is its

. . . H |
extreme generality. The best previously used estimator for Z, 2, is
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an example of least squares linear regression. This regression technigque
has almost invariably been employed to estimate the linear relationship
between .any two processes, from the relationship between a person's
height and his annual income to the response of an airplane wing to

the vibration of an engine. The difficulties of least squares linear
regression have long been recognized by statisticians. Mosteller and
Tukey,21 in a chapter titled "The woes of regression analysis"
concluded," at this point we can recommend only deepr and careful
thought."” The remote reference method should be valuable in anf

area where many noisy data are available. The "autopower" bias can

be removed from the estimation of any of these linear relationships by
the measurement of a third related process, a "remote reference," and

the use of the cross-correlation regression technigque of section V.
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