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responsibility for the accuracy, completeness, or usefulness of any 
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Reference to a company or product name does not imply approval or 
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ABSTRACT 

We have adapted a three-dimensinal (3D) volume integral equation 

to magnetotelluric (MT) modeling. Incorporating an integro-difference 

scheme increases the accuracy somewhat. Utilizing the two symmetry 

planes of a buried prismatic body and a normally incident plane wave 

source greatly reduces the required computation time and storage. 

Convergence checks and comparisons with one-dimensional (ID) and 

two-dimensional (2D) models indicate that our results are valid. 

In this paper, we show theoretical surface anomalies due to a 3D 

prismatic conductive body buried in a half-space earth. Instead of 

studying the electric and magnetic fields, we have obtained impedance 

tensor and magnetic transfer functions by imposing two different 

source polarizations. Manipulation of the impedance tensor and -

magnetic transfer functions yields the following MT quantities: 

apparent resistivity and phase, impedance polar diagrams, tipper 

direction and magnitude, principal directions, skew and ellipticity. 

With our preliminary analyses of these MT quantities, we have found 

that three-dimensionality is usually revealed by all of them. 

Furthermore, we have recognized two pairs of complementary parameters; 

apparent resistivity and phase, and skew and ellipticity. Because of 

surface charges at conductivity boundaries, low-frequency 3D responses 

are much different from ID and 2D responses. Thus, in many cases 3D 

models are required for interpreting MT data. 

Although an overall 3D MT interpretation is still not 

practical, combined 2D and 3D modeling could be applied to yield a 



gross 3D structure, which is composed of a cross section and its 

strike extent. In doing so, we suggest that the cross section be 

obtained from higher frequency 2D Ej^ mode modeling, and that the 

strike extent be derived by matching with lower frequency E.. mode 

results due to corresponding 3D models. In addition, we have 

indicated that some simple 3D features, e.g., location above 

conductive zone, corners, and symmetry lines, can be easily 

recognized. 



INTRODUCTION 

The magnetotelluric (MT) method, which makes use of naturally 

occuring electromagnetic fields is one of the most widely used 

electrical prospecting techniques due to its potential for deep 

exploration. However, MT has been hampered severly by a lack of. 

interpretational capability. Inappropriate one-dimensional (ID) and 

two-dimensional (2D) interpretation models are often used because the 

necessary three-dimensional (3D) models are not readily available. 

These simple interpretation algorithms are useful in some geological 

situations v/here ID or 2D models apply. However, the results can be 

quite misleading in cases where the earth is three-dimensional and the 

'E' parallel (E..) and 'E' perpendicular (E ) modes do not separate. 

There are two basic approaches to numerical modeling: (1) 

differential equation (DE) and (2) integral equation (IE) methods. 

Both methods are useful and necessary. Differential equation 

solutions are easier to set up, and they result in large banded 

matrices. Because the entire earth is modeled on a grid, DE methods 

are preferable for modeling complex geology. Integral equation 

formulations involve more difficult mathematics, but their advantage 

is that unknown fields need be found only in anomalous regions. Thus, 

integral equation solutions are less expensive for simulating the 

response of one or a few small bodies and hence more useful for 

evaluating field techniques, for designing surveys, and for generating 

catalogs of interpretation curves. 

We have refined and adapted an integral equation solution 



(Hohmann, 1975) so that it can be used to simulate the MT response of 

a 3D body in a half space (Hohmann and Ting, 1978). MT modeling is 

easier than our previous controlled-source EM modeling because of the 

lower frequencies, lower conductivities and deeper targets, and 

smoother fields. Furthermore, for bodies which have vertical symmetry 

planes, both the computer time and storage are greatly reduced, which 

makes 3D modeling economically feasible. 

In the past few years, 3D geophysical EM solutions have been 

given by others (Jones, 1974; Weidelt, 1975; Reddy et al., 1977; Jones 

and Vozoff, 1978). However, all of those results have been presented 

without adequate crosschecks. In addition, the accuracy of results 

obtained from any numerical method will be affected by the 

discretization of the work domain, and little attention has been paid 

to this matter in the published work. 

In this paper, we have done our best to address the two problems 

mentioned above. The validity of our solution is supported by a 

convergence check and comparison with ID and 2D models. Although we 

are not able to give quantitatively the accuracy of our 3D solution, 

all the 3D models in this paper have been discretized fine enough to 

yield reasonably accurate results based on the convergence check. 

For readers who are not familiar with the integral equation 

theory, we have given a brief review of the theory at the outset. The 

details are given in Hohmann (1975) and Hohmann and Ting (1978). In 

the remainder of the paper, various MT functions over a 3D prismatic 

body buried in a half-space earth are analyzed. 



THEORY 

Consider the configuration shown in Figure 1, the earth is taken 

to be a half-space of conductivity ^ i , except for a rectangular 

inhomogeneity having variable conductivity 02 (r). Since a plane wave 

normally incident upon the earth is usually assumed for MT sounding we 

begin with the source-free Maxwell's equations (in mks units) in the 

frequency domain (ei"t ^ ^ ^ Q dependence): 

7 X r + ^a)^^^^ = 0 (i) 

7 X H - a f " 0 (2) 

where we have assumed that the magnetic permeability in the earth is 

the same as it is in free space and where we have neglected 

displacement currents in the earth. 

We define the primary fields as the homogeneous-earth fields ' 

described by 

7x1*' + i m j f = 0 , (3) 

and 

7x.]f.aif = 0 . (4) 

Substracting (3) from (1) and (4) from (2) yields 

7 x (E - f ) + io:Ug (H - if) = 0 . ^̂ ^ 

^ - D - - P (6) 
7 X (H - H' ) - a£ + aiE = 0 



Note that a is the actual value of conductivity anywhere below the 

surface: it is equal to 02(r) in the inhomogeneity and o^ elsewhere 

in the earth. 

Now we rewrite (6) as 

7 X ( H - if) - ai(E - E^) + (ai - a) r = 0 . (7) 

If the difference fields are treated as secondary fields and denoted 

by superscript 's', (5) and (7) become: 

7 X ^ + ioju^H^ = 0 , ^̂ ^ 

and 

7 X H^ - aiE^ = 3^ . (9) 

where 

^ " Lozir) - 0i] E (10) 

is- the polarization or scattering current which exists only In the 

inhomogeneity. 

Hence the electromagnetic field has been split into two 

components, denoted as primary and secondary fields. The primary 

field is the field that would be present if the earth were 

homogeneous. It can be obtained easily by solving (3) and (4). The 

secondary field is due to the polarization current in the 

inhomogeneity. It can be found by treating Js as a source current, 

converting (8) and (9) to an integral equation, and solving 



numerically. The secondary electric field is given by 

E^ = -ioiUQA"- 7* , (11) 

where A and <J) are vector and scalar potentials (Harrington, 1968), 

given in the earth by 

^CF) = ] y ^ ' ( ^ ' ) S (F, P ) dv' , (12) 

and 

. f Z \ - i_ ( v . 1* ("TM R i T . T M dv' . 
(13) 

^(?) = --L.f V . J« (P) G (7,7') dV , 

where G is a scalar Green's func t ion , which fo r a whole space is given 

by 

e • i k i i f - T ' 
S ( r , r ' ) = _ _ , . ( l A ) 

4iT I r - r ' l ^^^> 

For a body in a half space, additional terms must be added to the 

potentials to'account for image currents in the air. The secondary 

field is due to currents and charges, as defined by (11), (12), and 

(13). The charges occur at discontinuities in "Js, both inside the 

body (due to the discretization scheme) and at the boundaries of the 

body. 

Adding,the incident and secondary fields, we obtain an integral 

equation 

F = E - ioju^S"- 7^ ^ (15) 

which can be written symbolically as 



E (f) = f (7) +^"^[02(7) - d ] G (7, 7 ) . r (7) dv' , (16) 

where G is the half-space dyadic Green's function (Tai, 1971) which 

accounts for the earth-air interface. 

For a numerical solution, Hohmann (1975), Weidelt (1975), and 

Meyer (1976) divided the inhomogeneity into N cubic cells as shown in 

Figure 2, and used pulse subsectional basis functions (Harrington, 

1968) to represent the unknown electric field in the inhomogeneity. 

Conductivity is taken to be constant in each cell. This amounts to 

assuming that the polarization current is constant throughout each 

cell. The integration over the dyadic Green's function in (16) can be 

carried out numerically (Meyer, 1976) or analytically over the volumes 

and surfaces of the cells (Hohmann, 1975) to obtain the equation 

r (7) = r (7) + z (02. - cTi) r (7. 7 ) . r , (17) 
n=l ^ " 

where E"̂  is the electric field and agn is the conductivity in cell n. F 

is the dyadic Green's function for a finite cube of current, unlike G 

which applies to an infinitesimal current element. Care must be taken 

in deriving r, because G is singular at r = r'. 

We have derived (17) in a manner similar to that described by 

Hohmann (1975), except that, following Harrington (1968), we 

approximate the derivatives of the scalar potential in (11) with 

differences. Also instead of concentrating the charge (the ^ • js 

term in (13)) at the boundaries between cells, we distribute it 

uniformly over a volume extending from the center of one cell to the 

center of the next cell (Hohmann and Ting, 1978). 



As various authors have indicated, approximating derivatives with 

differences provides accuracy similar to that of smooth basis 

functions but is much easier to implement on a computer. See, e.g., 

Miller and Deadrick (1974), and Butler and Wilton (1975). 

In more concise notation, the electric field at the center of 

cell m is given by writing (17) in the form 

- - P ^ _ _ 

^m ~ ^m * 2 (cTz., - ai) r • E l M i \ 
f m ^3j ̂  ̂ n "1' 'mn ^n • U o ) 

Rearranging (13), we- get 
N 

„fl ^ ^ ' ^ n - -l) "mn " I n ^ * ̂ n ' "^ (19) 
=P 

in which 
I , m = n 

mn 
^ , m 6̂ n , (20) 

where F i s the 3 x 3 unit dyadic and o'is the 3 x 3 null dyadic. 

Writing (19) for each of the N values of m produces a partitioned 

matrix equation 

[̂  • [El = -cf ] (21) 

to solve for the electr ic f ie ld in the ce l ls . The elements of the 

matrix are themselves 3 x 3 matrices, given by 

"mn ' ^""^n " ^ i ^ ^mn " 'mn . ( 2 2 ) 

Once (21) is solved for the fields in the cells, the electric 

field at any point outside the inhomogeneity can be calculated from 



(17), while the magnetic field can be obtained easily by applying 

equation (1) to (17). 



SIMPLIFICATIONS FOR SYMMETRIC BODIES 

The MT source is assumed to produce normally incident plane waves 

in the earth. If the inhomogeneity has any vertical symmetry planes, 

the total fields in the inhomogeneity must be either symmetric or 

antisymmetric. To solve the final matrix equation, we only need to 

examine part of the inhomogeneous body. 

For the simple models which we consider in this paper, there are 

two vertical planes of symmetry passing through the center of the 

body. Hence it is only necessary to solve for one-fourth of the total 

number of unknowns in any quadrant. 

Unfortunately the resulting matrix, for a problem with symmetry 

planes, is not symmetric as it is in the general case, for 

equal-conductivity and equal-size cells. Even so, the computer 

storage and computation time are reduced considerably.' In the general 

case 3N(3N + l)/2« 9N2/2 storage locations are required, where N is 

the number of cells. With two symmetry planes, the storage 

requirement is (3N/4) x (3N/4) = 9 N 2 / 1 6 — less by a factor of 8. 

Furthermore, the conductivities and sizes of the cells can be 

different. Figure 3 illustrates the comparison in computer time. In 

each case, forming and factoring (LU decomposition) the matrix account 

for most of the computer time. Matrix factorization time is less by a 

factor of about 35 when symmetry is invoked. The time required to 

form the matrix is less for the symmetric problem, because only 

one-fourth of the matrix elements need to be computed. 

In the general case a maximum of 120 cells can be used on the 



University of Utah Univac 1108 computer, but for a prismatic body with 

two vertical symmetry planes the limitation is 340 cells. This 

increase in the number of cells as well as the flexibility of choosing 

cells with different sizes and conductivities permit us to model large 

or shallow bodies more accurately or, alternatively, to model several 

bodies. 



CHECKS ON THE SOLUTION 

Because of the many possibilities for theoretical and programming 

errors, it is important to verify the accuracy of any numerical 

solution. The best check is with results from another type of 

numerical solution. Unfortunately, the only other published 3D MT 

results are those of Jones (1974), Weidelt (1975), and Reddy et al., 

(1977), all for outcropping bodies which we cannot model accurately. 

However, convergence checks as well as comparisons with ID and 2D 
» 

models, which are shown in the following sections, lend credence to 

our results. 

Convergence Check 

An important self-check is convergence: as the discretization is 

made finer, the results should converge to some value. The model we 

have used to check convergence is a 1 km x 2 km x 2 km conductive 

prism buried in a 100 0-m earth. To see how the resistivity and depth 

of the prism affect our results, we have chosen four cases, by using 

two prism resistivities, 0.5 n-m and 5 n-m, and two depths, 250 m and 

500 m. Three discretizations used for the prism are shown in Figure 

4. The hybrid discretization in the middle is a transition between 

the top and bottom discretization. We have checked convergence at the 

earth's surface above the center and above the lower left corner of 

the prism as shown in Figures 5 and 6 respectively. Since all 

apparent resistivities and phase angles derived from the impedance 

tensor have about the same convergence, we have only shown results of 

one apparent resistivity, P • 



It is clear that our results are converging. In Figures 5a and 

5b, we see that the convergence improves drastically as the 

resistivity of the prism increases by a factor of 10. Furthermore, 

convergence tends to become worse as the frequency increases, except 

at the highest frequency where the response due to the prism is dying 

out. The above phenomena can be explained partly by the "concept of 

skin depth. As we decrease the resistivity in the prism or increase 

the frequency, the skin depth in the prism becomes less which means 

that fields are varying more rapidly. Conductivity contrast also 

affects the variation of fields within the prism. Because we have 

assumed the electric field is constant within each cell, more rapid 

field variation requires smaller cells. Smooth basis functions would 

be more desirable than our pulse functions, but they are very 

difficult to implement in three dimensions. 

Another factor which affects convergence is the depth of the 

prism. When the prism is made shallower, from 500 m to 250 m, 

convergence gets worse, as shown in Figure 5. The poor convergence at 

this shallow depth is mainly attributed to the inaccuracy of the 

constant-cell approximation when the observation point is too close to 

the cells and when the secondary fields are greater. On the other 

hand, we have obtained results (not shown here) for the prism buried 

at a greater depth, 1000 m, and have noticed that, at both 

conductivity contrasts and at all the frequencies, results for all the 

discretizations lie within 5% of each other. The essence of above 

observation is to tell us to use smaller cells in the shallow part, 

and larger cells in the deeper part of the prism. As we can see, the 



results of a hybrid discretization, which is the middle case in Figure 

4, are close to those of the finest discretization. However, the 

ratio of computation cost for these two cases is about 1 to 10. 

Figure 6 shows results above the lower left corner of the prism. 

Because the secondary fields here are much weaker compared to those 

over the center of the prism, convergence is satisfactory for all the 

cases because the major contribution is coming from the primary 

fields. 

From the above discussion, we note that the convergence of our 

results depends on many factors: cell size, conductivity within and 

surrounding the inhomogeneity, frequency, depth of burial, all of 

which are coupled together. Because convergence is affected by so 

many factors, we are not able to quantify accurately any general 

criteria among those factors to assure a certain accuracy in our 

results. 

Comparison with One-dimensional Model 

To examine the validity of ID interpretation over a 3D body, we 

compared theoretical results for a three layer model with those for 

horizontal 3D square slabs in place of the middle layer. The ID model 

consists of an anomalous layer with resistivity 5 n-m and thickness 

100 m buried 200 m deep in a half space of resistivity 100 n-m. To 

compare with 3D models, we replace the infinite anomalous layer by a 

finite square slab having different lateral extents. The apparent 

resistivity is calculated over the center of the slabs and plotted as 

a function of frequency. The comparison is shown in Figure 7 for 



square slabs 400, 800, 1200 and 1600 meters on a side. All the slabs 

are discretized into 100 m cubes. We believe the 3D results should be 

reasonably accurate based on the convergence check. 

Due to the storage limitation on our computer, the largest slab 

we can run is 1600 m by 1600 m. Our 3D results appear to be 

converging to the ID curve, but the convergence is very slow at the 

lower frequencies. This illustrates the important point that because 

of surface charges at its boundaries are important, a 3D slab must be 

very large for ID interpretation to apply. If ID inversion is applied 

to the results obtained for our largest slab, the results will be 

erroneous. 

Comparison with Two-dimensional Model 

Another useful check, and one which is enlightening for MT 

interpretation, is the comparison between results for elongated 3D 

prisms and those for a 2D model with the same cross section. In the 

three-dimensional case the currents are not confined to flow parallel 

as in the two-dimensional (TE) case, but may be deflected laterally by 

regions of different conductivity. This lateral flow of current 

affects the nature of the fields near structures of finite extent in 

all three dimensions, and these effects are reflected in the 

theoretically calculated apparent resistivity values. With this in 

mind, it is useful to compare apparent resistivity curves to obtain 

some indication of the effect the finite extent of the 

three-dimensional structure makes in the calculations. 

Figures 8 and 9 show comparisons between our 3D results and 2D 



I 

results computed with Rijo's (1977) finite element algorithm at 0.1 Hz 

and 10 Hz. Three different strike extents are shown in the figures. 

Discretization in the cross section of the 3D prisms is the same as 

the hybrid case in Figure 4. Since we are only interested in the 

center profile, larger cells (500 m cubes) were used near the long 

ends of the prism which not only saves significant computer time but 

also allows us to run a 12-km-long prism. Discretization of the 3D 

prisms has been carefully designed and checked on the basis of our 

convergence check to assure all the results are reasonably accurate. 

Figure 8 shows the comparison for the incident electric field 

parallel to the strike direction (E|| mode). Apparent resistivity is 

plotted along a profile across the center of the prism. The secondary 

electric field due to surface charges at the ends of the body becomes 

important at lower frequencies while that due to volume currents 

decreases with decreasing frequency. 3D results approach the 2D curve 

at the lower frequency as the length increases, but significant 

-difference still exists between the longest prism and the 2D model. 

This is primarily due to the surface charges which accumulate at the 

boundaries perpendicular to current flow in the 3D prism, which do not 

appear in the 2D case. At 10 Hz all the results are very close to 

those of the 2D model because surface charges do not have a 

significant role compared to volume currents and the contribution from 

the far ends of the prism has been severely attenuated. 

Letting the incident electric field be perpendicular to strike (E 

mode) we obtain another comparison, shown in Figure 9. Surface 

charges are included implicitly in the 2D E formulation, and two 



solutions do not diverge as much as they do for the E mode at the low 

frequency. Near the center of 

converging, but not toward the 

be: (1) our longest prism is 

model, (unfortunately, we are 

the profile, note that our results are 

2D curve. The possible reason could 

still not long enough to resemble the 2D 

not able to make the prism any longer 

with the limited storage in oiir computer), or (2) error introduced by 

our constant-cell approximation, or (3) error in the 2D results. We 

think the most probable reason is (2). 

By looking at the 2D-3D comparison in Figures 8 and 9, we notice 

that, at least for our simple prismatic model, 2D E modeling could 

be applied to the 3D E mode results to reveal the earth cross sedtion 

at the center profile (Wannamaker, 1979). Low frequency 3D E mode 

results are much different from their corresponding 2D results. 

Therefore, 2D E,, mode interpretation can be misleading if the data are 

three dimensional. On the otjher hand, since 3D E.. mode results at the 

itive to the strike extent, it should not 

be difficult to resolve the itrike extent of a gross three dimensional 

structure by studying its lo\y frequency E.. mode data if we assume that 

its cross section does not vury along the strike. In doing so, we 

Dn be obtained from higher frequency 2D Ex 

strike extent be derived by matching with 

Its due to corresponding 3D models, 

is: How long must an elongated 3D prism 

be for its response to resemble a 2D structure? From Figures 8 and 9, 

we notice that the answer tĉ  the above question not only depends on 

the mode (E.. or Ej^), but also is heavily influenced by the frequency. 

lower frequency are ^e ry sen;; 

suggest that the cross secti 

mode modeling, and that the 

lower frequency E.. mode resu 

One important question 



The comparisons in Figures 8 and 9 are useful for two reasons 

(1) they support the validity 

out the problems in interpreti 

of the 3D solution, and (2) they point 

ng data with 2D models. Because there 

are lateral conductivity boundaries in all directions for a typical 

three-dimensional application of MT, all fields are interrelated and 

can not be separated. As deduced by Wannamaker (1978), standard mode 

identification is invalid, and 3D models, are required for interpretation. 



PRESENTATION OF VARIOUS MT PARAMETERS FOR A SIMPLE 3D EARTH MODEL 

In MT work, we usually do 

fields themselves because they 

not interpret the electric and magnetic 

depend on the source fields, over which 

we have no control. Instead, vie look at the relationships between 

these fields, such as impedancii tensor and magnetic transfer 

functions. They all contain iiformation about the subsurface; 

however, it is very difficult to make any physical interpretation by 

looking directly at them. Therefore, some manipulation of these two 

quantities is necessary to yie 

In this section, we show 

Id more recognizable parameters. 

surface contour maps of various MT 

parameters due to a 3D prism buried in a half-space earth, which is 

shown in Figure 10. The prism is discretized into 250 m cubes which 

should make the results very jiccurate. Because there are two vertical 

symmetry planes, results are shown for the lower right quadrant only. 

For the benefit of others who might want to compare with our results, 

we have included numerical data at some selected points on all the 

contour diagrams. 

Apparent Resistivity and Phasje Along Original Coordinate System 

The horizontal magnetic 

surface can be related by the 

x̂ = V . * V y 

and electric fields at the earth's 

frequency domain expression 

and 
E.. = Z,.. H„ + Z H 

. (23) 

, . (24) 

y yx X yy y 

or in a concise form 



where 

{£} 

f = 

= CZ} (H) 

rz z ' 
XX xy 

, yx yy 

(25) 

(25) 

E and H are vectors fomied by (E^^, Ey) and (Hx, Hy) respectively, and 

Z Is the impedance tensor. To 

have to impose another source 

equations 

K ' Ẑ  Ĥ  + 
X2 XX X2 

solve for the four unknowns in Z, we 

polarization to obtain two more 

'y^' V H * 1 H 
yy yz 

(27) 

(28) 

where we have used subscript 2' to designate fields generated by the 

second source polarization, 

obtained by changing only the 

his second set of fields can be easily 

right hand side of equation (21). 

The impedance tensor obtained through the above equations (23), 

(24), (27), and (28), is transformed to apparent resistivity and phase 

by the following simple formu 

0 . • - ' Z. . /u (1) 

9.. = tan'^ [ I (Z^-, 
ij m IJ 

lae 

)/Re(Z.j)] 

(29) 

i.j = x,y , (30) 

where Im(Zij) and Re(Zij) are the imaginary and real parts o f Z . . 

respectively, and where the phase Q^^ is the angle measured 

counter-clockwise in the complex plane. Because the impedance tensor 

varies with respect to the coordinate system, apparent resistivity and 

phase derived from it also vary with the coordinate system. 



Figures 11 and 12 show surface contours of the apparent 

resistivity along the original coordinate system at 0.1 Hz and 10 Hz 

respectively. On the coordinate axes, on-diagonal apparent 

resistivities, PXX 3nd Pyy are zero, which means the fields could be 

decomposed into the E and E mode as in the 2D case. This happens as 

a coincidence because our coordinate system is right on the symmetry 

lines of the earth model. Near the corner, P^X and Pyy approach their 

maximum which is purely due to the three dimensionality. Because 

three dimensionality is more important at the lower frequency, Pxx and 

pyy are much greater at 0.1 Hz than they are at 10 Hz. Also because 

of the symmetry of the model, contours of Pxy and Pyx have a similar 

pattern except for a 90-degree rotation. 

The corresponding phase contours are shown in Figures 13 and 14. 

XX and yy are neglected on the coordinate axes where the on-diagonal 

impedance elements, 1 ^ ^ and Zyy are near-zero unstable numbers. 

Unlike apparent resistivity, phase contours do not explicitly show the 

three dimensionality. Furthermore, we see stronger variation, which 

means higher resolving power, of phase at the higher frequency in 

contrast to the small variation diagnostic of apparent resistivity at 

the higher frequency. This suggests that apparent resistivity and 

phase are really two complementary parameters. Hence, they should be 

treated simultaneously in the broad band MT interpretation. 

Impedance Polar Diagrams 

Once the impedance tensor Z has been found in our original 

(x,y,z) coordinate system, it can be rotated horizontally to any other 



system (x',y',z) by an angle 9 in the clockwise direction. The 

rotated impedance elements are given as: 

22ix(^J = ^2xx*2yy) * ^^xx'^yy^ =«29 + (Z^^+Z^^) sin29 ^ (31) 

22;y(9) = (Z^^-Zy^) . (Z^y>Z^^) COS29 - (Z^^-Z^y) sin29 ^ (33) 

2Z;x^^) - - ^ W ^ * ^ V ^ y x ^ "^29 . (Z^^-Z^y) sin29 . (33) 

2Z;y(«) = ( ^ , , ' ^ y y ) ' i \ y , ' l y , ) COS29 - (Z^^^Z^^) sin29 ' ^̂ ^̂  

The superscript "prime" for the impedance elements is used to indicate, 

that they are functions of 9. By horizontally rotating the original 

coordinate system in 3° increments from 0" to 360", we contour the 

magnitude of the off-diagonal element, |Zxy I and the diagonal element 

IZxx I 0^ ^^^ impedance tensor. The resulting diagrams, which have been 

called impedance polar diagrams (Reddy et al., 1977), are presented at 

0.1 Hz and 10 Hz in Figures 15 and 16 respectively. The diagonal 

element is normalized with respect to the off-diagonal element which 

in turn is normalized to its own maximum value. The polar diagrams 

for |Zyx I and |Zyy | can be obtained from IZxy I and IZxx I respectively 

by just a 90-degree rotation. The main advantage of these polar 

diagrams is that they eliminate the dependence on the orientation of 

coordinate system and, therefore, allow us to have an overall picture 

of the impedance tensor. Here, we are only dealing with the magnitude 

of the impedance elements, but similar polar diagrams for impedance 

phase could also be studied. 

The polar diagrams for jzjjy jin general have the shape of a 



peanut. The polar diagrams for |Zxxl always attain the shape of a 

clover leaf. Along the symmetry lines of the model these lobes are 

symmetric, a characteristic of a two-dimensional earth (Reddy et al., 

1977). Away from the symmetry lines, these diagrams start to have an 

elongation, and their magnitudes become greater, particularly at the 

lower frequency. Therefore, with a polar diagram, one can immediately 

recognize a three dimensional structure from a single measuring site, 

unless it is located on a line of symmetry above the structure. Of 

course, this recognition can be more easily achieved at a lower 

frequency as shown by the comparison of Figures 15 and 16. 

Tipper 

A relationship similar to (23) or (24) can be written between the 

vertical magnetic field component, Hz, and the horizontal magnetic 

field components Ĥ ^ and Hy. 

Hz = AH^ -H BHy , (35) 

where A and B are unknown complex coefficients, which are called 

magnetic transfer functions. To solve for A and B, we again need two 

different source polarizations. This pair of coefficients can be 

thought of as operating on the horizontal magnetic field and tipping 

part of it into the vertical. For that reason, (A, B) is also called 

the "tipper" (Vozoff, 1972). Its magnitude is 

|T| = {|A|2 + |B|2}l/2 . (36) 

The tipper direction, (j) , here is defined as the angle measuring 



Figures 11 and 12 show surface contours of the apparent 

resistivity along the original coordinate system at 0.1 Hz and 10 Hz 

respectively. On the coord'inate axes, on-diagonal apparent 

resistivities, PXX and Pyy are zero, which means the fields could be 

decomposed into the E and E mode as in the 2D case. This happens as 

a coincidence because our coordinate system is right on the symmetry 

lines of the earth model. Near the corner, Pxx and Pyy approach their 

maximum which is purely due to the three dimensionality. Because 

three dimensionality is more important at the lower frequency, Pxx and 

Pyy are much greater at 0.1 Hz than they are at 10 Hz. Also because 

of the symmetry of the model, contours of Pxy and Pyx have a similar 

pattern except for a 90-degree rotation. 

The corresponding phase contours are shown in Figures 13 and 14. 

XX and yy are neglected on the coordinate axes where the on-diagonal 

impedance elements, Zxx and Zyy are near-zero unstable numbers. 

Unlike apparent resistivity, phase contours do not explicitly show the 

three dimensionality. Furthermore, we see stronger variation, which 

means higher resolving power, of phase at the higher frequency in 

contrast to the small variation diagnostic of apparent resistivity at 

the higher frequency. This suggests that apparent resistivity and 

phase are really two complementary parameters. Hence, they should be 

treated simultaneously in the broad band MT interpretation. 

Impedance Polar Diagrams 

Once the impedance tensor Z has been found in our original 

{ x , y , z ) coordinate system, it can be rotated horizontally to any other 



clockwise from the x axis along which the coherency between vertical 

and the horizontal magnetic field is at its maximum. It can be 

obtained explicitly by the formula (Jupp and Vozoff, 1976) 

(A^+Bj)tan-''(B M ) -K (A?+B?)tan"''(B./A.) 

where subscript 'r' means the 'real part' and 'i' means the 

'imaginary' part of a complex number. 

We have drawn the tipper direction as an arrow in the polar 

diagrams on Figures 15 and 16. The length of the arrow represents the 

magnitude of the tipper, and it has been normalized with respect to 

the maximum value on the whole grid. In the two dimensional case, 

this direction should be perpendicular to the true strike direction of 

the structure. However, for our three dimensional prism, the 

direction varies and always points away from the conductive prism. 

Practically, we think the tipper direction is a very useful 

parameter. By plotting it at a few points on the surface, we can 

easily locate the area below which the conductive zone lies. This not 

only can help select a drilling location, but also can show where more 

detailed MT work should be carried out. Furthermore, we have found 

the above unique characteristic of tipper direction almost has not 

been affected by the frequency, at least between 0.1 Hz and 10 Hz. 

Figure 17 presents the contour of tipper magnitude at 0.1 Hz and 

10 Hz, which represents the relative strength of vertical magnetic • 

field (Vozoff, 1972). Its values along "x" axis are larger than those 



along the corresponding "y" axis. This is because currents tend to 

flow along the elongation direction of the prism. At the higher 

frequency, tipper magnitude is much greater, and its contour tends to 

outline the boundary of the prism. 

Principal Directions 

There are many ways to define the principal directions derived 

2 2 
from the impedance tensor. For example, maximize |Zxy | •*" |Zw„| > 

* 2 2 
minimize \ly^^ \ + |Zyy I , maximize IZxyl or Izjx.l* minimize \ 1 ^ ^ \ o r 

\ l y y \ , maximize |zjy + Zyx|. etc. They all give the principal 

directions of the structure if the earth is two dimensional. In our 

3D case, though, these methods do not give the same results. This is 

because the trace of all the impedance elements on the complex plane 

is an ellipse, all having the same orientation, instead of a line or a 

point as in the 2D or ID case respectively (Word et. al., 1970). We 

have chosen the method of Sims et. al; (1969) of maximizing the 

absolute value of the sum of the off-diagonal elements, mainly because 

their method always gives two perpendicular directions which 

correspond to the major axis of the ellipse - a unique characteristic 

of the impedance tensor. 

The angle, Q Q , at which IZxy + Zyx I has zero first derivative can 

be derived analytically (Sims et. al, 1969). 

.̂  2(R^R2 + I I ) : 

with Ri, R2 and Ii, Iz are the real and imaginary parts of (Zxx ' Zyy) 

and (Zxy + Zyx) respectively. Between zero and 360 degrees, there are 



eight o's which can satisfy equation (38), but only four of them give 

the maximum value of \ ' l^^f + Zyx I and they form two principal 

directions perpendicular to each other. 

In Figures 15 and 16, the single straight line at each grid point 

represents the principal direction farthest from the direction of 

tipper. If the earth were two dimensional, this direction would 

coincide with the strike direction. For our 3D prismatic model, this 

direction varies around the prism and tends to parallel the nearest 

side of the prism. Hence, estimation of the electrical strike 

direction from a single measuring site for an elongated 3D body could 

be misleading since it depends upon where the observer is located. 

Once again, just like the tipper direction, principal directions are 

not affected much by changing the frequency. 

Skew 

The three-dimensionality parameter 'skew' is defined as 

iZ' + V I 
skew= Lf^ . -jV\ (39) 

' xy yx' 

As noted from equation (31) to (34), both (Zxx •*• Zyy) and (Zxy - Zyx) 

are independent of , skew does not depend on the measuring axes. 

Figure 18 shows the surface contours of skew at 0.1 Hz and 10 Hz. 

Skew must be zero for one and two dimensional structures. But it is 

also zero along the lines of symmetry of our 3D model. Consistent 

with the contours of on-diagonal apparent resistivities, Pxx and Pyy 

along the original coordinate system, three-dimensionality has been 

revealed more obviously at the lower frequency. However, its maximum 



occurs somewhat off the corner as opposed to the on-diagonal apparent 

resistivities which have their maximum right above the corner. We 

think this is due to the asymmetry between Zxy and Zyx which were 

introduced in the calculation of skew. 

Ellipticity 

As we have said, all the impedance elements trace out similar 

ellipses on a complex plane as we horizontally vary the orientation of 

the coordinate system. The ellipticity, which is the ratio of minor 

to major axis of the ellipse, can be obtained analytically (Word et. 

al., 1970). 

l(Zxx-Zvv)C°s 2e^ + (Z^ +'Z„JSin 2e | 

where QQ can be any of the principal directions derived previously. 

Ellipticity, like skew, is also a three-dimensionality indicator 

because it is zero for one- and two-dimensional models. Figure 19 

shows the surface contour of ellipticity at 0.1 Hz and 10 Hz. The 

contour of ellipticity has a very similar pattern as that of skew 

except that they vary differently with frequency. While skew shows 

three-dimensionality more obviously at the higher frequency, 

ellipticity does that at the lower frequency. Hence, these two 

parameters are a pair of complementary three-dimensionality 

indicators. 



CONCLUSIONS 

Our results show that the forward modeling of three-dimensional 

structures can be achieved successfully by our integral equation 

method. Since pulse basis functions are used, we have not been able 

to model accurately very shallow or large subsurface features as they 

require a great number of cells which our computer can not handle at 

the present time. 

Usually, MT measurements are made in the frequency range 0.001 Hz 

to 10 Hz. In this paper we have shown that ID or 2D interpretation 

over a three-dimensional earth can be misleading, particularly using 

the lower half of the above frequency range. Hence, in many cases, 3D 

models are required for interpreting MT data. 

By presenting various MT parameters due to a simple 3D model, we 

have recognized two pairs of complementary parameters, namely, 

apparent resistivity and phase, skew and ellipticity. They should be 

examined simultaneously for any broad band MT exploration. All the MT 

parameters have clearly shown three-dimensionality. Hence, the 

re(:ognition of a three-dimensional structure from the field data 

should not be difficult. 

Although an overall 3D MT interpretation is still not practical, 

combined 2D and 3D modeling could be applied to yield a gross 3D 

structure, which is composed of a cross section and its strike extent. 

In doing so, we suggest that the cross section be obtained from higher 

frequency 2D E mode modeling, and that the strike extent be derived 

by matching with lower frequency E mode results due to corresponding 



3D models. In addition, we have indicated that some simple 3D 

features, e.g., location above conductive zone, corners, and symmetry 

lines, can be easily recognized. 
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Figure 12. Apparent resistivity (n-m) at 10 Hz along original 

coordinate system 

Figure 13. Phase (degrees) at 0.1 Hz along original coordinate system 

Figure 14. Phase (degrees) at 10 Hz along original coordinate system 

Figure 15. Impedance polar diagrams, tipper direction and principal 

direction farthest from it at 0.1 Hz 

Figure 16. Impedance polar diagrams, tipper direction and principal 

direction farthest from it at 10 Hz 

Figure 17. Tipper magnitude at 0.1 Hz and 10 Hz, contour interval is 

0.02 

Figure 18. Shew at 0.1 Hz and 10 Hz, contour interval is 0.02 

Figure 19. Ellipticity at 0.1 Hz and 10 Hz, contour interval is 0.02 



AIR 

EARTH 

Figure 1 



°-2m 

Figure 2 



600j 

500 

00 
O 

^ — No Vertical Symmetry Plane 

Two Vertical Symmetry Planes 

400 

CO 
o 
z 
o 

(O 

UJ 

2 

300 

^ 200 

o 
z 
a. 
O u 

00 
80 
60 
40 
20 
0 

20 40 60 80 100 200 300 
NUMBER OF CELLS 

Figure 3 



LEGEND 
h - ^ ^ 

Figure'4 



O.OI 

15 

10 
9 
8 
7 
6 

5 

i 4 

5 3 
X 

•^ 2 
in 
Ul 
CC 
a: 

1 
0.9 
0.8 
0.7 

0.6 

Q5 
04 

-

• 
-
-
-

-

-

-

-

-

-

• 

- —-
1 1 

-=-

" 

DEPTH = 250 m 
COND. CONTR AST =200 

1 1 

0.1 to 

100 
9 0 -
8 0 -
7 0 -
60 
50 

4 0 -

- , 3 0 -
E 

t 20 
K 
>» 

Q . 

(O 
Ul 
oc 10 
Q; 9 

< f 
6 
5 
4 - DEPTH : 2 5 0 m 

COND. CONTRAST •• 20 

-L. 

Hz 
O.OI 0.1 I 

Hz 

10 

Figure 5a 



100 
90 
80 
70 
60 

50 

40 

E 
1 

a 
X 

>> 

CO 
UJ 
CC 

ol 
a. 
< 

30 

20 

10 
9 
8 
7 
6 

5 

4 DEPTH' 500m 
COND.CONTRAST:200 

001 0.1 10 

100 
9 0 
8 0 
7 0 
6 0 
5 0 

40 

^ 30 
E 
I 

cJ 20 
X 

>» 

</) 
Ul 
oc 
a. 
< 

10 
9 
a 
7 
6 

4 -

3 -

DEPTH -SOOm 
COND. CONT RAST:20 

O.OI 0.1 10 
Hz Hz 

Figure 5b 



E 

c: 

100 
90 
80 
70 
60 
50 
40 

o. 30 
to 
UJ 
a: 
a: 
a. 
< 

2 0 

10 

100 
90 

~ 80 
6 70 
Ci 60 
^«50 

' * - "40 

0̂  301-
a: 
a. 
< 

20 

10 

DEPTH - 2 5 0 ID 

CONa CONTRAST •• 2 0 0 

1 1 

001 0.1 ( H z ) I O 

DEPTH'SCOm 
CONO. CONTRAST =200 

E 

<n 
lU 
ac 

CL 
a. 
< 

100 
9 0 
8 0 
70 
60 
50 
40 

3 0 

2 0 

10 

DEPTH : 2500) 
CONa CONTRAST • 20 

- 1 _ - 1 -

0.01 0.1 (Hz ) i 10 

9 0 
- . 8 0 
E 7 0 

Ci 6 0 

^ K 5 0 

' - - 4 0 

oc 30 
tL 

20 

m 

• 

-

-

1 

1 

— ^ 

DEPTH : 5 0 0 r o 

OOND. CONTRAST = 2 0 

Figure 6 



m 

E 

c; 

UJ 
IT 

a: 
a. 
< 

150 

too 
90 
80 
70 
60 
50 
40 

30 

20 

10 

SLAB 
& 400m X 400 m 
^ 800m X 800 m 
• 1200 m X 1200 m 

O.OI 10 100 
FREQ. ( H z ) 

MODEL 

air 

h,=2pOm /s, »100a-m **''*** 

- * — h2*IOOm /J2«SA-m — ^ 

h3»Cb p^a lOO^-m 

Figure 7 



Figure 8 



150 

- 30 

150 

(00 
90 
80 

« 70 
E €0 

<3 50 

« 40 

" = 3 0 
Q. 
a. 
< 

20 

i_i 1 

Ql Hz I 

'A, 

DISTANCE O.SiOn 

lOOil-m 

Figure 9 



PLAN VIEW 

•I km-

2km 

MMMMiMiMMri 

5 ^ - m 

MMM.MM.MMri 

• * - x 

100 H- m 

(Results cure \ 
shown in this j 
quadrant. / 

f 
Y 

oir 
earth 0.25 Km 

4 -

SECTION 
VIEW 

100 12-m 

Figure 10 

http://MMM.MM.MMri


•X ^Txrrrr'. 

S U ; 

149 3 

119 7 

39.2-».X 

101,3 

051 .03S 109 9 107.9 104.6 lOtO 

I2a0- 1 0 9 . 4 - ^ X 9^r~n ' ^ ' ^ ^°^ -.0(30*. X 

Figure 11 



9a9.M...;j -000 '000 lOOO-te X 20ai. i , , , . . , , 63.4 94.2 '. 99.7-». X 

OO 

MO .161 .041 .009 101:1 / 97. a 9a9 999 

XX 

.079 .OOS 93. SSZii 

so 

80.7 9 « 0 - - - 99.S 

300 .009 .007 .002 994 98.6 99.3 99.9 

» 0 OOt .001 JOOO 9 9 I 99.2 99.6 99.9 

yx 

21.9 . 

I 
36 .3 i i i ^ -

IQ39. 

100 
\ 

mo 

100 

>9L^ 9 6 . 9 - ^ . X 999.i.'.i.'.| • ' ^ ° " • 0 ' ^ fl00,.^-x ' 

9ai 

90.2 969 99.0 99 4 

98 7 99.2 99.6 99B 

100.0 tOOO 99.9 

.641 .025 .002 

300 .III .019 .002 

300 .006 .0(34 .001 

000 .000 .000 .000 

xy yy 

Figure 12 



220.7. 

221*81; 

.41.0 38.7 36.6_». X 233,l...„ 

2229 

I 
220 

22a3 218.7 217.2 

mm 

223 

.227.4 223.7 229. 3 . * . X 

229.^ 229:3 229.2 

219.1 2t~9 216.6 2238 224.3 224.8 

e XX 

. / 

43.9 219.9 219.3 ^ 214.4 224 

e yx 

' ^ 

2217 217.9 216.7 219.6 2243 2244 224.7 2249 

2246 224.7 2248 

.44.6 ,».X aafl 

448 

449 

49.0 

44.7 ' ,nayt...:-y.:::t 

_4I.9 ^46 " • WftI ^ X 

41.2 39.1 37.9 

40 

79 7 ^39.8 38 4 36.9 

448 38.1 37.2 36.0 

39.S 365 39.8 

t 
9 

11 

348 

Figure 13 



224.2 \ 229.9 229.4 

239.6. 228.9 2 2 6 . 2 - ^ 

.2271 229.9 

229.2 

229.0 229.1 

• 6 9 . 1 . . . . . . . . I 41.8. 

ill 
S9y.ii£iii 

48 I 46.0 

.43.6 4 4 . 6 . . ^ X 204.8..,!.,. • 181.7 146.4 177.8.* , x 

43.1 44.1 44 8 

e xy 

49.0 

46 0 49.6 49.2 49.1 

49 "3 49.3 49.1 49.1 

Figure 14 



U 0.5 Km,* 

J 0 c±) dfD G[:)' 0 O O ' " 
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