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ABSTRACT

We have adapted a three-dimensinal (3D) volume integral equation
to magnetotelluric (MT) modeling. Incorporating an integro-difference
scheme increases the accuracy somewhat. Utilizing the two symmetry
planes of a buried prismatic body and a normally incident plane wave
source greatly reduces the required computation time and storage.
Convergence checks and comparisons with one-dimensional (1D) and
two-dimensional (2D) models indicate that our results are valid.

In this paper, we show theoretical surface anomalies due to a 3D
prismatic conductive body buried in a half-space earth. Instead of
studying the electric and magnetic fields, we have obtained impedance
tensor and magnetic transfer functions by imposing two different
source polarizations. Manipulation of the impedance tensor and -
magnetic transfer functions yields the following MT quantities:
apparent resistivity and phase, impedance polar diagrams, tipper
direction and magnitude, principal directions, skew and ellipticity.
With our preliminary analyses of these MT quantities, we have found
that three-dimensionality is usually revealed by all of them.
Furthermore, we have recognized two pairs of complementary parameters;
apparent resistivity and phase, and skew and ellipticity. Because of
surface charges at conductivity boundaries, low-frequency 3D responses
are much different from 1D and 2D responses. Thus, in many cases 3D
models are required for interpreting MT data.

Although an overall 3D MT interpretation is still not

practical, combined 20 and 3D modeling could be applied to yield a



gross 3D structure, which is composed of a cross section and its
strike extent. In doing so, we suggest that the cross section be
~ obtained from higher frequency 2D t, mode modeling, and that the
strike extent be derived by matching with lower frequency ql mode
results due to corresponding 3D models. In addition, we have
indicated that some simple 3D features, e.g., location above
conductive zone, corners, and symmetry lines, can be easily

recognized.



INTRODUCTION

The magnetotelluric (MT) method, which makes use of naturally
occuring electromagnetic fields is one of the most widely used
electrical prospecting techniques due to its potential for deep
exploration. However, MT has been hampered severly by a lack of .
interpretational capability. Inappropriate one-dimensional (1D) and
two-dimensional (2D) interpretation models are often used because the
necessary three-dimensional (3D) models are not readily available.
These simple interpretation algorithms are useful in some geological
situations where 1D or 2D models apply. ‘However, the results can be
quite misleading in cases where the earth is three-dimensional and the
modes do not separate.

'E' parallel (E,) and 'E' perpendicular (E

I .l)
There are two basic approaches to numerical modeling: (1)
differential equation (DE) and (2) integral equation (IE) methods.
Both methods are useful and necessary. Differential equation
solutions are easier to set up, and they result in large banded
matrices. Because the entire earth is modeled on a grid, DE methods
are preferable for modeling complex geology. Integral equation
formulations involve more difficult mathematics, but their advantage
is that unknown fields need be found only in anomalous regions. Thus,
integral equation solutions are less expensive for simulating the
response of one or a few small bodies and hence more useful for
evaluating field techniques, for designing surveys, and for generating

catalogs of interpretation curves.

We have refined and adapted an integral equation solution



(Hohmann, 1975) so that it can be used to simulate the MT response of
a 3D body in a half space (Hohmann and Ting, 1978). MT modeling is
easier than our previous controlled-source EM modeling because of the
lower frequencies, lower conductivities and deeper targets, and
smoother fields. Furthermore, for bodies which have vertical symmetry
planes, both the computer time and storage are greatly reduced, which
makes 3D modeling economically feasible.

In the past few years, 3D geophysical EM solutions have been
given by others (Jones, 1974; Weidelt, 1975; Reddy et al., 1977; Jones
and Vozoff, 1978). However, all of those results have been presented
without adequate crosschecks. In addition, the accuracy of results
obtained from any numerical method will be affected by the
discretization of the work domain, and 1ittle attention has been paid
to this matter in the published work.

In this paper, we have done our best to address the two problems
mentioned above. The validity of our solution is supported by a
convergence check and comparison with 1D and 2D models. Although we
are not able to give quantitatively the accuracy of our 3D solution,
all the 3D models in this paper have been discretized fine enough to
yield reasonably accurate results based on the convergence check.

For readers who are not familiar with the integral equation
theory, we have given a brief review of the theory at the outset. The
details are given in Hohmann (1975) and Hohmann and Ting (1978). In
the remainder of the paper, various MT functions over a 3D prismatic

body buried in a half-space earth are analyzed.



THEORY

Consider the configuration shown in Figure 1, the earth is taken
to be a half-space of conductivity 91, except for a rectangular
inhomogeneity having variable conductivity g2 (r). Since a plane wave
ﬁbrma]ly incident upon the earth is usua?ly égsumed for MT sounding we
begin with the source-free Maxwell's equations (in mks units) in the

frequency domain (ei®t time dependence):

‘v x E + 1mvaﬁ = 0 (1)

-

7xH-0E=0 (2)

where we have assumed that the magnetic permeability in the earth is
the same as it is in free space and where we have neglected

displacement currents in the earth.

We define the primary fields as the homogeneous-earth fields -

described by

IxE o+ imuoﬁp o (3)
and
v X-ﬁp -kdlfp =0 . (4)

Substracting (3) from (1) and (4) from (2) yields



Note that o is the actual value of conductivity anywhere below the
surface: it is equal to op(r) in the inhomogeneity and o elsewhere

in the earth.
Now we rewrite (6) as
VX(F-ITD)-01(-E--EP)+(01-0)§=0 . (7)

If the difference fields are treated as secondary fields and denoted

by superscript 's', (5) and (7) become:

7 x B+ uu i = 0 : (8)
and

vx A - o1k = > s (9)
where

T2 fop(F) - a1 E (10)

is: the polarization or scattering current which exists only in the
inhomogeneity.

Hence the electromagnetic field has been split into two
components, denoted as primary and secondary fields. The primary
field is the field that would be present if the earth were
homogeneous. It can be obtained easily by solving (3) and (4). The
secondary field is due to the polarization current in the
inhomogeneity. It can be found by treating JS as a source'current,

converting (8) and (9) to an integral equation, and solving



numerically. The secondary electric field is given by
=5 . -—
£ = ~Tuu A - 79 A , | (11)

where A and ¢ are vector and scalar potentials (Harrington, 1968),

given in the earth by
R(r) = gv Ty e (v ) dv s (12)

and

o(F) = -;l—ﬁv V. (@) e F T v,

1 (13)

where G is a scalar Green's function, which for a whole space is given

by
- -iky {F = T']
6 (7, 7) = &—0—
4n |r - r'|

(14)

For a body in a half space, additional terms must be added to the
potentials to account for image currents in the air. The secondary
field is due to currents and charges, as defined by (11), (12), and
(13). The charges occur at discontinuities in JS, both inside the
body (due to the discretization scheme) and at the boundaries of the
body.

Adding the incident and secondary fields, we obtain an integral

equation

E"'EP- imuox- V¢

which can be written symbolically as



EM=F (7« gv[Gz(F") - o1l §(F ) - E(r') av' (16)

where G is the half-space dyadic Green's function (Tai, 1971) which
accounts for the earth-air interface. .

For a numerical solution, Hohmann (1975), Weidelt (1975), and
Meyer (1976) divided the inhomogeneity into N cubic cells as shown in
Figure 2, and used pﬁ]se subsectional basis functions (Harrington,
1968) to represent the unknown electric field in the inhomogeneity.
Conductivity is taken to be constant in each cell. This amounts to
assuming that the polarization current is constant throughout each
cell. The integration over the dyadic éreen's function in (16) can be

carried out numerically (Meyer, 1976) or analytically over the volumes

and surfaces of the cells (Hohmann, 1975) to obtain the equation

EMF P (o FRF)E . ()
where E_ is the electric field and opp is the conductivity in cell n. T
is the dyadic Green's function for a finite cube of current, unlike G
which applies to an infinitesimal current element. Care must be taken
in deriving T, because G is singular at r = r'.

We have derived (17) in a manner similar to that described by
Hohmann (1975), except that, following Harrington (1968), we
approximate the derivatives of the scalar poténtial in (11) with
differences. Also instead of concentrating the charge (the V . Js
term in (13)) at the bodndaries between cells, we distribute it
uniformly over a volume extending from the center of one cell to the

center of the next cell (Hohmann and Ting, 1978).



As various authors have indicated, approximating derivatives with
differences provides accuracy similar to that of smooth basis
functions but ié much easier to implement on a computer. See, e.g.,
Miller and Deadrick (1974); and Butler and Wilton (1975). -

In more concise notation, the electric field at the center of

cell m is given by writing (17) in the form

= P N - -
"t nzl (020 = o1) Ty~ €, (18)
Rearranging (13), we. get
N == == —P
n£1 [lozg = 1) Ty - 6] En = - (19)
in which
- T,m=n
Smn ~
0,m#n s (20)

where T is the 3 x 3 unit dyadic and O is the 3 x 3 null dyadic.
Writing (19) for each of the N values of m produces a partitioned

matrix equation

-

to solve for the electric field in the cells. The elements of the
matrix are themselves 3 x 3 matrices, given by

M = (o2q = 01) Tpp - &y . (22)
Once (21) is solved for the fields in the cells, the electric

field at any point outside the inhomogeneity can be calculated from



(17), while the magnetic field can be obtained easily by applying
equation (1) to (17).



SIMPLIFICATIONS FOR SYMMETRIC BODIES

The MT source is assumed to produce'normally incident plane waves
in the earth. If the inhomogeneity has any vertical symmetry planes,
the total fields in the inhomogeneity must be either symmetric or
antisymmetric. To solve the final matrix equation, we only need to
examine part of the inhomogeneous body.

For the simple models which we consider in this paper, there are
two vertical planes of symmetry passing through the center of the
body. Hence it is only necessary to solve for one-fourth of the total
number of unknowns in any quadrant.

Unfortunately the resulting matrix, for a problem with symmetry
planes, is not symmetric as it is in the general case, for
equal-conductivity and equal-size cells. Even so, the computer
storage and computation time are reduced considerably.- In the general
case 3N(3N + 1)/2~ 9N2/2 storage locations are required, where N is
the number of cells. With two symmetry planes, the storage
requirement is (3N/4) x (3N/4) = 9N2/16 -- less by a factor of 8.
Furthermore, the conductivities and sizes of the cells can be
different. Figure 3 illustrates the comparison in computer time. In
each case, forming and factoring (LU decomposition) the matrix account
for most of the computer time. Matrix factorization time is less by a
factor of about 35 when symmetry is invoked. The time required to
form the matrix is less for the symmetric problem, because only
one-fourth of the matrix elements need to be computed.

In the general case a maximum of 120 cells can be used on the



University of Utah Univac 1108 computer, but for a prismatic body with
two vertical symmetry planes the limitation is 340 cells. This
increase in the number of cells as well as the flexibility of choosing
cells with different sizes and conductivities permit us to model large
or shallow bodies more accurately or, alternatively, to model several

bodies.



CHECKS ON THE SOLUTION

Because of thé many possibilities for theoretical and programming
errors, it is important to verify the accufacy of any numerfcal
solution. The best check is with results from another type of
numerical solution. Unfortunately, the only other published 3D MT
results are those of Jones (1974), Weidelt (1975), and Reddy et al.,
(1977), all for outcropping bodies which we cannot model accurately.
However, convergence checks as well as comparisons with 1D and 2D
models, which a;e shown in the following sections, lend credence to

our results.

Convergence Check

An important self-check is coﬁvergence: as the discretization is
made finer, the results should converge to some value. The model we
have used to cﬁeck convergence is a 1 km x 2 km x 2 km conductive
prism buried in a 100 @-m earth. To see how the resistivity and depth
of the prism affect our results, we have chosen four cases, by using
two prism resistivities, 0.5 Q-m and 5 Q-m, and two depths, 250 m and
500 m. Three discretizations used for the prism are shown in Figure
4., The hybrid discretization in the middle is a transition between
the top and bottom discretization. We have checked convergence at the
earth's surface above the center and above the lower left corner of
the prism as shown in Figures 5 and 6 respectively. Since all
apparent resistivities and phase angles derived from the impedance
tensor have about the same convergence, we have only shown results of

one apparent resistivity, &y



It is clear that our results are converging. In Figures 5a and
5b, we see that the convergence improves drastically as the
resistivity of the prism increases by a factor of 10. Furthermore,
convergence tends to become worse as the frequency increases, except
at the highest frequency where the response due to the prism is dying
out. The above phenomena can be explained partly by the concept of
skin depth. As we decrease the resistivity in the prism or increase
the frequency, the skin depth in the prism becomes less which means
that fields are varying more rapidly. Conductivity contrast also
affects the variation of fields within the prism. Because we have
assumed the electric field is constant within each cell, more rapid
field variation requires smaller cells. Smooth basis functions would
be more desirable than our pulse functions, but they are very
difficult to implement in three dimensions.

Another factor which affects convergence is the depth of the
prism. When the prism is made shallower, from 500 m to 250 m,
convergence gets worse, as shown in Figure 5. The poor convergence at
this shallow depth is mainly attributed to the inaccuracy of the
constant-cell approximation when the observation point is too close to
the cells and when the secondary fields are greater. On the other
hand, we have obtained results (not shown here) for the prism buried
at a greater depth, 1000 m, and have noticed that, at both
conductivity contrasts and at all the frequencies, results for all the
discretizations lie within 5% of each other. The essence of above
observation is to tell us to use smaller cells in the shallow part,

and larger cells in the deeper part of the prism. As we can see, the



results of a hybrid discretization, which is the middle case in Figure
4, are close to those of the finest discretization. However, the
ratio of computation cost for these two cases is about 1 to 10.

Figure 6 shows results above the lower left corner of the prism.
Because the secondary fields here are much weaker compared to those
over the center of the prism, convergence is satisfactory for all the
cases because the major contribution is coming from the primary
fields.

From the above discussion, we note that the convergence of our
'results depends on many factors: cell size, conductivity within and
surrounding the inhomogeneity, frequency, depth of burial, all of
which are coupled together. Because convergence is affected by so
many factors, we are not able to quantify accurately any general
criteria among those factors to assure a certain accuracy in our

results.

Comparison with One-dimensional Model

To examine the validity of 1D interpretation over a 3D body, we
compared theoretical results for a three layer model with those for
horizontal 3D square slabs in place of the middle layer. The 1D model
consists of an anomalous layer with resistivity 5 Q-m and thickness
100 m buried 200 m deep in a half space of resistivity 100 g-m. To
compare with 3D models, we replace the infinite anomalous layer by a
finite square slab having different lateral extents. The apparent
resistivity is calculated over the center of the slabs and plotted as

a function of frequency. The comparison is shown in Figure 7 for



square slabs 400, 800, 1200 and 1600 meters on a side. All the slabs
are discretized into 100 m cubes. We believe the 3D results should be
reasonably accurate based on the convergence check.

Due to the storage limitation on our computer, the largest slab
we can run is 1600 m by 1600 m. Our 3D results appear to be
converging to the 1D curve, but the convergence is very slow at the
lower frequencies. This illustrates the important point that because
of surface charges at its boundaries are important, a 3D slab must be
very large for 1D interpretation to apply. If 1D inversion is applied
to the results obtained for our largest slab, the results will be

erroneous.

Comparison with Two-dimensional Model

Another useful check, and one which is enlightening for MT
interpretation, is the comparison between results for elongated 3D
prisms and those for a 2D model with the same cross section. In the
three-dimensional case the currents are not confined to flow parallel
as in the two-dimensional (TE) case, but may be deflected laterally by
regions of different conductivity. This lateral flow of current
affects the nature of the fields near structures of finite extent in
all three dimensions, and these effects are reflected in the
theoretically calculated apparent resistivity values. With this in
mind, it is useful to compare apparent resistivity curves to obtain
some indication of the effect the finite extent of the
three-dimensional structure makes in the calculations.

Figures 8 and 9 show comparisons between our 3D results and 2D



!
results computed with Rijo's (1977) finite element algorithm at 0.1 Hz

and 10 Hz. Three different strike extents are shown in the figﬁres.
Discretization in the cross section of the 3D prism§ is the same as
the hybrid case in Figure 4. Since we are only interested in the
center profile, larger cells (500 m cubes) were used near the long
ends of the prism which not only saves significant computer time but
also allows us to run a 12-km-long prism. Discretization of the 3D
prisms has been carefully designed and checked on the basis of our
convergence check to assure all the results are reasonably accurate.

Figure 8 shows the comparison for the incident electric field
parallel to the strike direction (E" mode). Appareﬁt resistivity is
plotted along a profile across the center of the prism. The secondary
electric field due to surface charges at the ends of the body becomes
important at lower frequencies while that due to volume currents
decreases with decreasing frequency. 3D results approach the 2D curve
at the lower frequency as the length increases, but significant
-difference still exists between the longest prism and the 2D model.
This is primarily due to the surface charges which accumulate at the
boundaries perpendicular to current flow in the 3D prism, which do not
appear in the 2D case. At 10 Hz all the results are very close to
those of the 2D model because surface charges do not have a
significant role compared to volume currents and the contribution from
the far ends of the prism has been severely attenuated.

Letting the incident electric field be perpendicular to strike (El
mo&e) we obtain another comparison, shown in Figure 9. Surface

charges are included implicitly in the 2D E1 formulation, and two



solutions do not diverge as muLh as they do for the E" mode at the low
frequency. Near the center of| the profile, note that our results are
converging, but ﬁot toward the| 2D curve. The possible reason could
be: (1) our longest prism is [still not long enough to resemble the 2D

model, (unfortunately, we are not able to make the prism any longer

with the Timited storage in oyr computer), or (2) error introduced by
our constant-cell approximatign, or (3) error in the 2D results. We
think the most probable reason is (2).

By looking at the 2D-3D ¢omparison in Figures 8 and 9, we notice

that, at least for our simple| prismatic model, 2D El modeling could

be applied to the 3D El mode results to reveal the earth cross section
at the center profile (Wannamaker, 1979). Low frequency 3D E" mode
results are much different from their corresponding 2D results.
Therefore, 2D E" mode interprnetation can be misleading if the data are
three dimensional. On the other hand, since 3D E" mode results at the
lower frequency are very sensitive to the strike extent, it should not‘

be difficult to resolve the strike extent of a gross three dimensional

structure by studying its low frequency E” mode data if we assume that
its cross section does not vary along the strike. In doing so, we
suggest that the cross sectipn be obtained from higher frequency 2D E
mode modeling, and that the strike extent be derived by matching with
lower frequency E" mode results due to corresponding 3D models.

One important question (is: How long must an elongated 3D prism

be for its response to resemble a 2D structure? From Figures 8 and 9,

we notice that the answer tq the above question‘not only depends on

the mode (E_  or El), but also is heavily influenced by the frequency.




The comparisons in Figures 8 and 9 are useful for two reasons:
(1) fhey support the validity jof the 3D solution, and (2) they point
out the problems in interpreting data with 2D models. Because there
are 1aterq1 conductivity boundaries in all directions for a typical
three-dimensional application|of MT, all fields are interrelated and
can not be separated. As deduced by Wannamaker (1978), standard mode

identification is invalid, and 3D models. are required for interpretation.



PRESENTATION OF VARIOUS MT PARAMETERS FOR A SIMPLE 3D EARTH MODEL

In MT work, we usually do not interpret the electric and magnetic

fields themselves because they |depend on the source fields, over which
we have no control. Instead, we look at the relationships between
these fields, such as impedance tensor and magnetic transfer
functions. They all contain information about the subsurface;
however, it is very difficult to make any physical interpretation by
looking directly at them. Therefore, some manipulation of these two

quantities is necessary to yield more recognizable parameters.

In this section, we show jsurface contour maps of various MT
parameters due to a 3D prism buried in a half-space earth, which is
§hown'1n Figure 10. The prism is discretized into 250 m cubes which
should make the results very accurate. Because there are two vertical
symmetry planes, results are shown for the lower right quadrant only.
For the benefit of others who|might want to compare with our results,
we have included numerical data at some selected points on all the

contour diagrams.

Apparent Resistivity and Phase Along Original Coordinate System

The horizontal magnetic |and electric fields at the earth's
surface can be related by the frequency domain expression

E, = Z,H, * nyHy »  (23)

and » . (24)
= + .
Ey Znyx ZyyHy

or in a concise form




By = (D} (H) ‘ (25)

L %
where 7= y . (26)
Z Z
yx yy
E and H are vectors formed by (E,, Ey) and (Hx, Hy) respectively, and

? {s the impedance tensor. To|solve for the four unknowns in 7, we
have to impose another source polarization to obtain two more

equations

27

Ex, * Zete, *1ZeMy, (27)

= + H
EYz ZYXsz Zyy Y2 (28)

where we have used subscript |2' to designate fields generated by the
second source polarization. This second set of fields can be easily

obtained by changing only the|right hand side of equation (21).

The impedance tensor obtained through the above equations (23),
(24), (27), and (28), is transformed to apparent resistivity and phase

by the following simple formujlae

o35 = 12441%/ug (29)

iJ
-1

9 tan [Im(zij)/Re(zij)] i,d = x,y , (30)

where Im(Zij) and Re(Zjj) are the imaginary and real parts of'Zij
respectively, and where the phase 9ij is the angle measured
counter-clockwise in the complex plane. Because the impedance tensof
varies with respect to the coordinate system, apparent resistivity and

phase derived from it also vary with the coordinate system.




Figures 11 and 12 show surface contours of the apparent
resistivity along thé original coordinate system at 0.1 Hz and 10 Hz
respectively. On the coordinate axes, on-diagonal apparent
resistivities, Pxx and Pyy are zero, which means the fields could be
decomposed into the E and E mode as in the 2D case. This happens as
a coincidence because our coordinate system is right on the symmetry
lines of the earth model. Near the corner, Pyy and Pyy approach their.
maximum which is purely due to the three dimensionality. Because
three dimensionality is more important at the lower frequency, oy, and
pyy are much greater at 0.1 Hz than they are at 10 Hz. Also because
of the symmetry of the model, contours of Pxy and Pyy have a similar
pattern except for a 90-degree rotation.

The corresponding phase contours are shown in Figures 13 and 14.
xx and yy are neglected on the coordinate axes where the on-diagonal
impedance elements, Zy, and Zyy are near-zero unstable numbers.
Unlike apparent resistivity, phase contours do not explicitly show the
three dimensionality. Furthermore, we see stronger variation, which
means higher resolving power, of phase at the higher frequency in
contrast to the small variation diagnostic of apparent resistivity at
the higher frequency. This suggests that apparent resistivity and
phase are really two complementary parameters. Hence, they should be

treated simultaneously in the broad band MT interpretation.

Impedance Polar Diagrams

Once the impedance tensor Z has been found in our original

(x,y,z) coordinate system, it can be rotated horizontally to any other



system (x',y',z) by an angle 8 in the clockwise direction. The

rotated impedance elements are given as:

ZZ;x(e) a (Zxx+zyy) + (Zxx yy) cos28 + (Z Xy Zyx) sin2e . (31)
22, (0) = (Z,,-2,) + (2,*2,) c0520 - (2,2 ) sinza (3
2z,,(e) = =Ty Zyy) * (L * Z,,) cos2s - (Z,, -Z,,) sinze, (33)
2z, (9) = (zxx" *2,,) - (Z,-2,,) cos2s - (2, + z;x\ singg  »  (34)

The superscript "prime" for the impedance elements is used to indicate.
that they are functions of 6. By horizontally rotating the original
coordinate system in 3° increments from 0° to 360°, we contour the
magnitude of the off-diagonal element, Iz;yl and the diagonal element
IZ;XI of the impedance tensor. The resulting diagrams, which have been
called impedance polar diagrams (Reddy et al., 1977), are presented at
0.1 Hz and 10 Hz in Figureshls and 16 respectively. The diagonal
element is normalized with respect to the off-diagonal element which
in turn is normalized to its own maximum value. The polar diagrams
for |Zyx | and |Zyy | can be obtained from lz%y | and [z%x | respectively
by just a 90-degree rotation. The main advantage of these polar
diagrams is that they eliminate the dependence on the orientation of
coordinate system .and, therefore, allow us to have an overall picture
of the impedance tensor. ‘Here, we are only dealing with the magnitude
of the impedance elements, but similar polar diagrams for impedance

phase could also be studied.

| o .
The polar diagrams for ny |'in general have the shape of a



peanut. The polar diagrams for |z;x| always attain the shape of a
clover leaf. Along the symmetry lines of the model these lobes are
symmetric, a characteristic of a two-dimensional earth (Reddy et al.,
1977). Away from the symmetry lines, these diagrams start to have an
elongation, and their magnitudes become greater, particularly at the
lower frequency. Therefore, with a polar diagram, one can immediately
recognize a three dimensional structure from a single measuring site,
unless it is located on a line of symmetry above the structure. Of
course, this recognition can be more easily achieved at a lower

frequency as shown by the comparison of Figures 15 and 16.

Tipper
A relationship similar to (23) or (24) can be written between the
vertical magnetic field component, H,, and the horizontal magnetic

field components H, and Hy.
HZ = AH, + BHy , (35)

where A and B are unknown complex coefficients, which are called
magnetic transfer functions. To solve for A and B, we again need two
different source polarizations. This pair of coefficients can be
thought of as operating on the horizontal magnetic field and tipping

part of it into the vertical. For that reason, (A, B) is also called

the "tipper" (Vozoff, 1972). Its magnitude is
IT) = (|A12 + B151/2 . (36)

The tipper direction, ¢ , here is defined as the angle measuring



Figures 11 and 12 show surface contours of the apparent
resistivity along the original coordinate system at 0.1 Hz and 10 Hz
respectively. On the coordinate axes, on-diagonal apparent
resistivities, Pyy and Pyy are zero, which means the fields couid be
decomposed into the E and E mode as in the 2D case. This happens as
a coincidence because our coordinate system is right on the symmetry
lines of the earth model. HNear the corner, Py, and Pyy approach their
maximum which is purely due to the three dimensionality. Because
three dimensionality is more important at the lower frequency, Pyy and
Pyy are much greater at 0.1 Hz than they are at 10 Hz. A]Qo because
of the symmetry of the model, contours of Pxy and Pyy have a similar
pattern except for a 90-degree rotation.

The corresponding phase contours are shown in Figures 13 and 14.
xx and yy are neglected on the coordinate axes where the on-diagonal
impedance g]ements, Lyx and Zyy are near-zero unstable numbers.

Unlike apparent Eesistivity, phase contours do not explicitly show the
three dimensionality. Furthermore, we see stronger variation, wHich
means higher resolving power, of phase at the higher frequency in
contrast to the small variation diagnostic of apparent resistivity at
the higher frequency. This suggests that apparent resistivity and
phase are really two complementary parameters. Hence, they should be

treated simultaneously in the broad band MT interpretation.

Impedance Polar Diagrams

" Once the impedance tensor Z has been found in our original

(x,y,z) coordinate system, it can be rotated horizontally to any other



clockwise from the x axis along which the coherency between vertical
and the horizontal magnetic field is at its maximum. It can be

obtained explicitly by the formula (Jupp and Vozoff, 1976)

2,02y, -] 2,02 4.1
, . (AcBptan” (B/A.) + (A5+87)tan” (B,/A;)
| 7|2

where subscript 'r' means the 'real part' and 'i' means the
'imaginary' part of a complex number.

We have drawn the tipper direction as an arrow in the polar
diagrams on Figures 15 and 16. The length of the arrow represents the
magnitude of the tipper; and it has been normalized with respect to
the maximum value on the whole grid. In the two dimensional case,
this direction should be perpendicular to the true strike direction of
the structure. However, for our three dimensional prism, the
direction varies and always points away from the conductive prism.

Practically, we think the tipper direction is a very useful
parameter. By plotting it at a few points on the surface, we can
easily locate the area below which the conductive zone lies. This not
only can help select a drilling location, but also can show where more
detailed MT work should be carried out. Furthermore, we have found
the above unique characteristic of tipper direction almost has not
been affected by the frequency, at least between 0.1 Hz and 10 Hz.

Figure 17 presents the contour of tipper magnitude at 0.1 Hz and

10 Hz, which represents the relative strength of vertical magnetic -

field (Vozoff, 1972). Its values along “x" axis are larger than those



n. . n

along the corresponding "y" axis. This is because currents tend to
flow along the elongation direction of the prism. At the higher
frequency, tipper magnitude 'is much greater, and-its contour tends to

outline the boundary of the prism.

Principal Directions

There are many ways to define the principal directions derived
from the impedance tensor. For example, maximize [Z§y|2-+ |Z;X|2,
minimize IZ;X |2+-|Z§y |i maximize |Z;y| or |Z;xl; minimize fz;*| or
|2y |, maximize |z;y + Zyx|> etc. They all give the principal
directions of the structure if the earth is two dimensional. In our
3D case, though, these methods do not give the same results. This is
because the trace of all the impedance elements on the complex plane
is an ellipse, all having the same orientation, instead of a line or a
point as in the 2D or 1D case respectively (Word et. al., 1970). We
have chosen the method of Sims et. al. (1969) of maximizing the
absolute value of the sum of the off-diagonal elements, mainly because
their method always gives two perpendicular directions which

correspond to the major axis of the ellipse - a unique characteristic

of the impedance tensor.

The angle, €4, at which t;} + Zy; Ihas zero first derivative can
be derived analytically (Sims et. al, 1969).

6 = 1/4tan |
) 2,.2 2 .2

(38)

with Ry, Rp and I1, I2 are the real and imaginary parts of (Zyx - Zyy)

and (ny + Zyx) respectively. Between zero and 360 degrees, there are



eight o's which can satisfy equation (38), but qn]y four of them give
the maximum value of YZ;; + Z;} | and they form two principal
directions perpendicular to each other.

In Figures 15 and 16, the single straight line at each grid point
represents the principal direction farthest from the direction of
tipper. If the earth were two dimensional, this direction would
coincide with the strike direction. For our 3D prismatic model, this
direction varies around the prism and tends to parallel the nearest
side of the prism. Hence, estimation of the electrical strike
direction from a single measuring site for an elongated 3D body could
be mislteading since it depends upon where the observer is located.
Once again, just like the tipper direction, principal directions are

not affected much by changing the frequency.

kew

The three-dimensionality parameter 'skew' is defined as
Lot '
skew = +§¥5—;—;$L+ (39)
Xy yX

As noted from equation (31) to (34), both (Zyx + Zyy) and (Zyy - Zyx)
are independent of , skew does not depend on the measuring axes.
Figure 18 shows the surface contours of skew at 0.1 Hz and 10 Hz.
Skew must be zero for one and two dimensional structures. But it is
also zero along the lines of symmetry of our 3D model. Consistent
with the contours of on-diagonal apparent resistivities, Py, and Pyy

along the original coordinate system, three-dimensionality has been

revealed more obviously at the lower frequency. However, its maximum



¢

occurs somewhat off the corner as opposed to the on-diagonal apparent

resistivities which have their maximum right above the corner. MWe

think this is due to the asymmetry between Z,, and Zyy which were

introduced in the calculation of skew.

Ellipticity
As we have said, all the impedance elements trace out similar
ellipses on a complex plane as we horizontally vary the orientation of
the coordinate system. The ellipticity, which is the ratio of minor

to major axis of the ellipse, can be obtained analytically (Word et.
al., 1970).
|(Zxxfzyy)cos 26o + (ny+2yx)Sin 29°|

Ellipticity = (7,72, 005 2, ¥ (oL, JSm 2]

(40)
where gy can be any of the principal directions derived previously.

E1lipticity, 1ike skew, is also a three-dimensionality indicator
because it is zero for one- and two-dimensional models. Figure 19
shows the surface contour of ellipticity at 0.1 Hz and 10 Hz. The
contour of ellipticity has a very similar pattern as that of skew
except that they vary differently with frequency. While skew shows
three-dimensionality more obviously at the higher frequency,
ellipticity does that at the lower frequency. Hence, these two
parameters are a pair of complementary three-dimensionality

indicators.



CONCLUSIONS

Qur results show that the forward modeling of three-dimensional
structures can be achieved successfully by our integral equation
method. Since pulse basis functions are used, we have not been able
to model accurately very shallow or large subsurface features as they
reduire a great number of cells which our computer can not handle at
the present time.

Usually, MT measurements are made in the frequency range 0.001 Hz
to 10 Hz. 1In this paper we have shown that 1D or 2D interpretation
over a three-dimensional earth can be misleading, particularly using
the lower half of the above frequency range. Hence, in many cases, 3D
models are required for interpreting MT data. .

By presenting various MT parametersldue to a simple 3D model, we
have recognized two pairs of complementary parameters, namely,
apparent resistivity and phase, skew and ellipticity. They should be
examined simultaneously for any broad band MT exploration. A1l the MT
parameters have clearly shown three-dimensionality. Hence, the
recognition of a three-dimensional structure from the field data
should not be difficult.

Although an overall 3D MT interpretation is still not practical,
combined 2D and 3D modeling could be applied to yield a gross 3D
structure, which is composed of a cross section and its strike extent.
In doing so, we suggest that the cross section be obtained from higher
frequency 2D El mode modeling, and that the strike extent be derived

by matching with lower frequency E  mode results due to corresponding



3D models. In addition, we have indicated that some simple 3D
features, e.g., location above conductive zone, corners, and symmetry

lines, can be easily recognized.
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Three-dimensional model

Body discretized into cubic cells

Reduction in computer time for models having two vertical
symmetry planes

Body with different discretizations for convergence check.
Hybrid discretization in the middle

Convergence check above center of the prism for two prism
conductivities. Depth to top of prism is 250 m. Symbols
relate to discretizations shown in Figure 4

Convergence check above center of the prism for two prism
conductivities. Depth to top of prism is 500 m
Convergence check above lower left corner of the prism for
two prism depths and two conductivity contrasts
Comparison between one-dimensional three Tayer model and
horizontal three-dimensional slabs in place of the middle
layer. Horizontal extent of slabs shown in the figure.
E, mode comparison between 2D and 3D model having
different stfike extents

E, mode comparison between 2D and 3D model having
different strike extents

Three-dimensinfal model used to calculate various
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Apparent resistivity (Q-m) at 0.1 Hz along original

coordinate system
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Apparent resistivity (Q-m) at 10 Hz along original
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Phase (degrees) at 0.1 Hz along original coordinate system
Phase (degrees) at 10 Hz along original coordinate system
Impedance polar diagrams, ;ipper direction and principal
direction farthest from it at 0.1 Hz

Impedance polar diagrams, tipper direction and principal
direction farthest from it ‘at 10 Hz .

Tipper magnitude at 0.1 Hz and 10 Hz, contour interval is
0.02

Shew at 0.1 Hz and 10 Hz, contour interval is 0.02
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