GL01253

POSTULATED DGE DEVELOPMENT SCENARIOS

FOR

ELECTRIC GENERATING CAPACITY BY SITE

EXAMPLE - DRAFT COPY

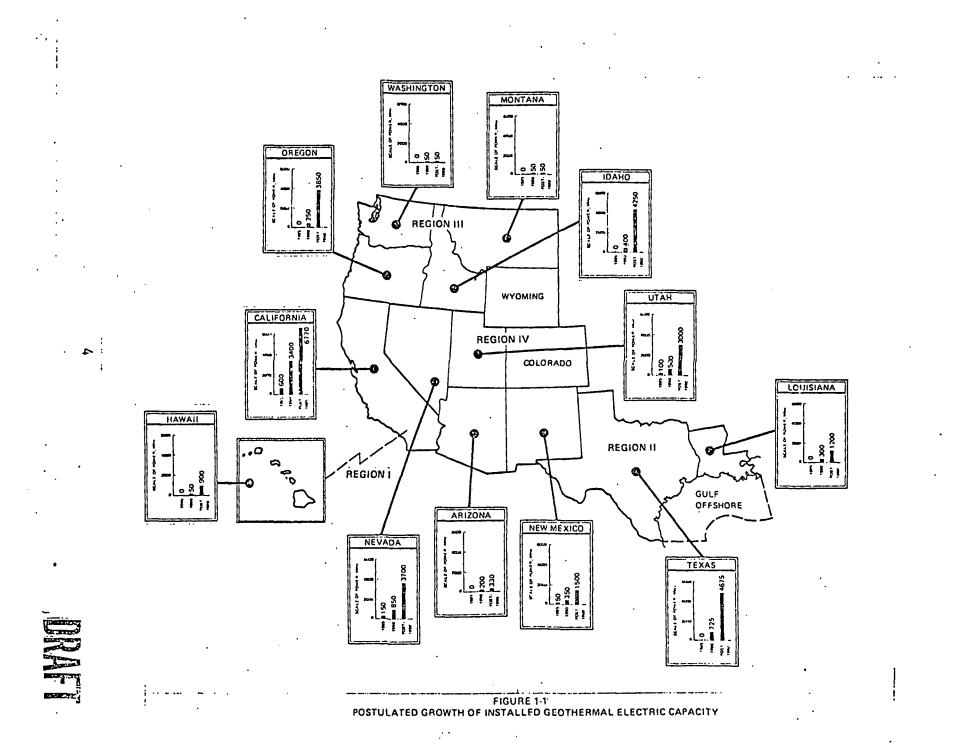
DRAFT

TABLE 141

POSTULATED DGE GEOTHERMAL DEVELOPMENT SCENARIOS

PROSPECT

CENERATING CAPACITY INSTALLED EACH YEAR


	Рте- 1983	1983	1984	1985	1986	1987	1988	1989	1990	Post- 1990	TOTAL
CALIFORNIA & HAWAII											
Brawley, CA		50		50		100	100	100	100	500	1,000
Coso Hot Springs, CA				50	50	50	150	150	150		600
East Mesa, CA				50			50				100
Geysers, CA (liquid- dominated				100	100	100	100	100	100	400	1,000
Geyers, CA (steam)	1678	160	220	110					<u> </u>		2,168
Class Mt., CA									50		50
Heber, CA		50		50		100	100			700	1,000
Lassen, CA				50		50 100	_		50		100
Mono-Long Valley, CA				00		100			100 50	850	250 900
Puna, HI Salian San CA		50		100 \	75	75	100	100	100	1400	2,000
Salton Sea, CA Surprise Valley, CA					50		50	100	100	1700	2,000
NORTHWEST	•		•				•				
Alvord, OR						50			50	200	300
Baker Hot Springs, WA									50 . 50 ⁴	2	
Bruneau-Grandview, ID						50			100	3000	3,150
Mt. Hood, OR					·				502	2 <u> </u>	
Raft River, ID							50		50		100
Vale Hot Springs, OR							50		50	700	· 800
Weiser-Crane Creek, ID		·			·		50		100 50	, 850	1,000
West Yellowstone, MT									50*		
SOUTHWEST											
Brady Hot Springs, NV		50	·		50	_	100		100	700	1,000
Beowawe, NV		50			50		50		100	750	1,000
Chandler, AZ					50				100	80	230
Cove Fort-Sulfurdale, UT				50		50		50	50	1300	1,500
Leach, NV						50			50	1400	1,500
'Roosevelt Hot Springs, UT		50		. —	50		50		100	750	1,000
Safford, AZ					·	50				50	100
Steamboat Springs, NV				50	·	_	50	·	100		200
Thermo, UT Valles Caldera, NM		50	·		100		50 100		100	450 1150	500 1,500
CULF COAST 3											
Acadia Parish, LA						50			50	250	350
Brazoria, TX					25		100	100	200	1800	2,225
Calcasieu Parish, LA			`		-	50			50	250	350
Cameron Parish, LA					·	50			50	400	500
Corpus Christi, TX			·			50			50	1550	1,650
Kenedy County, TX		-			-	50			50	200	300
Matagorda County, TX			-			50		-	50	400	500
Cumulative Power On Line	1678	2188	2408	3068	3668	4793	6093	6793	9143	3092 3	30,923
1											

¹ Pilot plants are not included in this table.

2 MITRE-assumed plant capacities for analysis.

3 These geopressured sites are postulated to produce 29.315 MW thermal equivalent of methane by 1985.

IRAFT

ا سا

EXAMPLE DEVELOPMENT SCENARIO - ROOSEVELT HOT SPRINGS, UTAH

Draft Copy

•'

ROOSEVELT HOT SPRINGS, UTAH

Postulated Development Scenario

PLANT NUMBER	INSTALLED CAPACITY (MWe)	PLANT ON-LINE DATE
1	50	1983
2	50	1986
3	50	1988
4	100	1990
SUBSEQUEN	I PLANTS 750	1991-1998
TOTAL	1000	to 1998

Estimates of Resource Characteristics

RESOURCE CHARACTERISTIC		ESTIMATE		
Subsurface Fluid	Range:	204-260		
Temperature (°C)	Best Estim	ate: 230		
Total Dissolved Solids (PI	ew)	7,800		
Electric Energy Potential	(MWe 30 Years)	100		
Overlying Rock	Medium-Hard:	Sediments		
met	amorphics, and	volcanics		
Depth to Top of Reservoir	(Meters)	830		
Land Status		•		
Total KGRA acres		29,791		
Total Federal acres		24,592		
Federal acres leased	•	24,592		
Total State and private	acres	5,199		
State and private acres	leased	No data		

¹ All Federal land in the KGRA was offered in the Federal lease sales. Through first and second offerings, nearly all has been leased. The site is now unitized, and Phillips Petroleum Company is the operator of the land holdings, according to recent information from DOE/DGE.

DRAFT

Development Status and Activity

Thermal Power Company, a subsidiary of Natomas Company, has completed a joint venture well which was drilled to 382 meters (1254 feet). Preliminary testing demonstrated a well-head pressure of 25 kg/cm² (355 lbs./sq. inch) and temperature of 222°C (132°F). Projected total mass flow capability of well is one million lb/hr of steam and hot water.

Phillips Petroleum Company reports that an 823-840 meter (2700-2800 foot) test well had an initial flow rate of 90,700 kg/hr (200,000 1b/hr) of steam at 204°C (400°F). Phillips has now completed 10 production wells and is negotiating with several potential hydrothermal users including the City of Burbank, Utah Power & Light Company, and other firms interested in nonelectric applications such as hybrid coal power plant/geothermal process heat uses.

Thermal Power Company plans to build a larger test facility to determine more precisely the electric generating capability potential. Thermal Power holds options to drill on an additional three sections of geothermal leaseholds in the Roosevelt fields. Two wells drilled in 1976, at the site of a significant new field discovery the year before, were both successful producers. One was 1860 meters (6100 feet) deep and the other only 380 meters (1250 feet) deep. The latter produced steam at 300 feet, 700 feet, and 1200 feet and a total mass flow of about one million lb/hr.

Major Development Problems

No major development problems are currently evident at the Roosevelt Hot Springs hydrothermal site. However, technological areas which could entail a moderate risk include:

- fluid disposal
- high silica content of brine
- cooling water availability/subsidence.

Postulated Development Scenario: Status and Implications

First Commercial-Scale Plant: 50 MWe in 1983

Based on the number of developers and the recent field activity at Roosevelt Hot Springs, this appears to be one of the more attractive candidates for development. Phillips Petroleum Company holds Federal leases on which Utah Power Company is planning to build an electric generating plant. The resource temperatures indicate a commercial effectiveness of installing a flash conversion process at this site. As shown in Figure 26-1, the first 50-MWe plant is scheduled to go on line in 1983. Accordingly, the commitment to develop must be made in 1978 and plant final designs must be ready by 1980. Moreover, any technological RD&D, in order to be incorporated in the design specifications and installations must be completed by 1980. Figure 26-2 shows the scheduled activities of principal participants in the development of all the plants at the Roosevelt Hot Springs prospect.

FIGURE 26-1

DEVELOPMENT SCHEDULE FOR FIRST PLANT: ROOSEVELT NOT SPRINGS, UTAH

OPERATING ENTITIES	ACTIVITY	RECIPIENTS	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	· 1987
BLM	Issue STG Permit	Developer	1										
USCS BLM County Cov't	Issue Drilling Permits Process EIA/EIS Issue Land Use Permit	Developer CEQ Developer		HED COMPL			, - ,						
Duveloper	Preliminary Geophysical Exploration		· > A350	JED CONFL	5160								
Duvelopar Developer Developer Urllicy	Exploratory Drilling and Reservoir Assessment Develop Utility Interest Feasibility Study		J										
Producer/De- veloper) and Utility	Finnncial Negotistions				•	•							
Producer Producer/ Utility	Site Salection Design			 ,									
Utility	Prepare Master Development Plan	BLM, USCS		·		1				•		•	
Utility .	Prepare Environmental Data Statement	BLM, FPC, State,County				•							
Producer/ Utility	Commitment to Development	• .		Δ									
BLM ,FPC . State,USCS	Cartify Plant and Site, Issue Permits	Producer & Utility						1					
FPC	Process ElA/EIS (Drilling) Process EIA/EIS (Plant) Process EIA/EIS (Trans- mission Line)	CEQ CEQ CEQ							-				
Producer Ucility Ucility Ucility	Development Drilling Plant Construction Install Transmission Line (96.5km)				;			·					

FIGURE 26-1

NDACT

FIGURE 26-2

OPERATING ENTITIES	ACTIVITY	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987
Ovner	Lease Loud, Issue Prospecting Permit											
County .	Process Environmental Report - Pre-lease Issue Land Use Permit Process Environmental Report - Drilling							-		_	<u>s_</u>	_
State	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines			1					_			
Devclopar	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Plan Development Drilling		1		1					·	5	C
Utility ,	Commit to Development Frepare Environmental Data Statement and Master Development Plan Construct Plant, Install Transmission Lines Power on Line		<u>1</u>	<u> </u>	t	<u> </u>					50	
DOI/USCS	Issue Drilling Permit Process EIA/EIS - Drilling			1		-					<u> </u>	
DOI/BLM	Process EIA/EIS, Lease Land Issue STC Drilling Permit Certify Plant and Site, Issue Permits			1	·	-		 		5		
DOI/USFS	Process EIA/EIS, Lense Land Iosue STG Drilling Permit											
FPC	Certify Plant and Site, Issue Permits Process EIA/EIS - Plant & Transmission Line			1					-			
BIA	Process EIA/EIS, Lease Land Issue Drilling Permits											

DEVELOPMENT SCHEDULE FOR ALL PLANTS: ROOSEVELT HOT SPFINCS, UTAH

FIGURE 26-2, Concluded

DEVELOPMENT SCHEDULE FOR ALL FALNTS: ROOSEVELT NOT SPRINGS, UTAH

OPERATING ENTITIES	. ΛCTIVITY	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
Owner	Lease Land, Issue Prospecting Permit			·								
County	Process Environmental Report - Pre-lease Issue Lond Vsc Permit Process Environmental Report - Drilling	_			_		12_					
State .	Process Environmental Report, Lease Land Issue Prospecting/Exploration Permits Issue Drilling Permits Certify Plant and Site - Issue Permits Process Environmental Reports - Drilling, Plant Construction, Transmission Lines	£							12			•
Developer	Exploration and Reservoir Evaluation Commit to Development Prepare Master Development Plan Development Drilling	5 5 2	۲. ۲. ۲.		A	A	Δ	Α	A12 12 	12		
Utility	Commit to Development Prepare Environmental Data Statement and Master Development Plan Construct Plant, Install Transmission Lines Power on Line	<u>5</u>	A 5	A 	Å 	↓ 	À │	A 	∆ ¹² 12	12		
DOI/USCS	Гочег он Line Iявие Drilling Permit Frocess EIA/EIS ~ Drilling	<u>50 A</u>			10045		100	100▲	100 A	100 <u>A</u>	100	<u>50 ▲12</u>
DOI/BLM	Process EIA/EIS, Lease Land Issue STG Drilling Permit Certify Plant and Site, Issue Permits	 5				<u>1</u>			12			
DO1/USFS	Process EIA/EIS, Lense Land Issue STG Drilling Permit											
FPC	Certily Plant and Site, Issue Permits Process EIA/EIS ~ Plant & Transmission Line	_ <u>5</u>							<u>12</u> <u>12</u>			
BIA	Process EIA/EIS, Lease Land Issue Drilling Permits		-	-		-			_			

÷ .

:.

<u>Development Problems</u>. There are a number of site-related technological problems of moderate concern. The reservoir/return formation is fractured volcanic, capped with medium-to-hard overlying rock and, consequently, its ability to absorb return flows of return flows of brine over extended operating times is in question.

In addition, although quantitative data have not been well established for silica content in produced brines, there are some indications that silica carryover and scaling may be problems at the Roosevelt Hot Springs site. Similarly, maintaining long-term flows from production wells could be a significant consideration.

Environmental concerns are relevant, particularly regarding potential land settlement in that locale: recent withdrawals from (nearer-surface) aquifers have resulted in observed subsidences of six feet. The possible impacts of seismic excitation are also a moderate concern.

Surface water for evaporative cooling is generally unavailable in the region. This water shortage may not be a problem should the underground brine-receiving formations be able to tolerate a slight deficit in reinjection (i.e., based on tradeoffs in cooling versus subsidence and reservoir depletion).

Economic Analysis. The projected economics of electrical generation at the Roosevelt Hot Springs geothermal power prospect are presented in Table 26-I.

TABLE 26-I

ECONOMIC ANALYSIS: ROOSEVEL' HOT SPRINCS, UTAN

PLASH SYSTEM , 50 HW ELECTRIC PLANT FIRST PLANT ON LINE DATE : 1983

TEMPERATURE IN CENTIGRADE DEGREES (BEST ESTIMATE) : 230WELL DEPTH IN METERS :1300BRINE SALINITY :LOWOVERLYING ROCK TYPE : MEDIUM HANDSPECIFIED WELL PICH RATE (KGM./HR.) :363000THE COST PER PRODUCTION WELL IS NOT SPECIFIED : THE DEPAULT COST PER PRODUCTION WELL (\$) = 533136.2THE COST PER INJECTION WELL IS NOT SPECIFIED : THE DEPAULT COST PER INJECTION WELL (\$) = 533136.2

٩

PRODUCER FINANCIAL DATA

UTILITY PINANCIAL DATA

DEET FRACTION :	0.30		DEBT FRACTION :		0.50
ANNUAL INTEREST RATE ON DEBT (FRACTION) :	0.08		ANNUAL INTEREST RATE ON DEBT (PRACTION) :		0.08
REQUIRED RATE OF RETURN ON EQUITY (FRACTION) :	0.20		REQUIRED RATE OF RETURN ON EQUITY (FRACTION)	:	0.12.
PROPERTY TAX RATE (FRACTION) :	0.01		PROPERTY TAX RATE (FRACTION) :		0.01
REVENUE TAX RATE OR ROYALTY (FRACTION) :	0.10		REVENUE TAX BATE OR ROYALTY (PRACTION) :		0.0
EPPECTIVE TOTAL INCOME TAX RATE (PRACTION) :	0.50		EFFECTIVE TOTAL INCOME TAX RATE (FRACTION)	:	0.50
EFFECTIVE INVESTMENT TAX CHEDIT (FRACTION) :	0.04		EFFECTIVE INVESTMENT TAX CREDIT (FBACTION)	. '	0.04
ESCALATION FACTOR FOR GEN COSTS :	0.05		ESCALATION FACTOR FOR OCH COSTS :		0.05
 ESCALATION PACTOR FOR ENERGY COSTS :	0.05	•	ESCALATION FACTOR FOR ENERGY COSTS :		0.05
ESCALATION PACTOR FOR CAPITAL COSTS :	0.05		ESCALATION FACTOR FOR CAFITAL COSIS :		0.05
LIFE SPAN OF PROCUCTION WELLS (YEARS) :	10.00		LIFE SPAN OF UTILITY PLANT (YEARS) :		30.00
LIFE SPAN OF INJECTION WELLS (YEARS) :	10.00	1.	ULTIMATE CAPACITY PACTOR :		0.80
LIPE SPAN OF PRODUCER PLANI (YEARS) :	20.00		. START, UP COST HULTIPLIER :		1.038
START UP COST MULTIPLIER :	1.081	1	•		

* NURBER OF WELLS , CAPITAL COSTBASIS AND OCH COSTS , AND REVENUE REQUIREMENTS WITHOUT ANY B&C IMPACTS *

CAPITAL COSTBASIS (1977 \$M)

OCH COSTS (1977 \$H/YB.)

			·			
	7 PRODUCTION WELLS :	4.492		PRODUCER		
	6 INJECTION WELLS :	3.850		GENERAL :	0.224	
	PRODUCER PLANT EXCLUDING WELLS :-	4.708	•	WELL :	0.069	
	BEPLACEMENT PRODUCTION WELLS :	3.836		DEEP WELL PUMP :	0.0	
	REPLACEMENT INJECTION WELLS :	3.288		SPENT BRINE TBEATMENT :	0.0	
	REPLACEMENT PLANT :	2.077		CHEMICAL & MECHANICAL CLEANING :	0.0	
	TOTAL FOR PRODUCTION FIELD :		22.253	TOTAL :		0.294
	GENEBATING PLANT :		24.113	UTILITY		
	TOTAL :		46.366	. GENERAL :	0.703	
		•		CHEMICAL & MECHANICAL CLEANING :	0.0	
-	• .			TOTAL :		0.703 _.
2				•		
· M						

** REVENUE REQUIREMENTS **

PRC	DUCER	:	13.744	MILLS/KWHR
U 1	ILITY	:	7.016	MILLS/KWHR
•	TOTAL	:	20.760	MILLS/KWHIR

nn Ar

ROOSEVELT H.S. , NEVADA (CONTINUED)

* REE IMPACTS FOR PLANT NO. 1 - ON LINE DATE : 1983 *

BED COMPONENT		ANTICIPATED CHANGE	CHANGE IN REVENUE
	•	(%)	BEQUIREMENTS (MILLS/KWHR)
CAPITAL COST PER PEODUCTION WELL		-5.00	-0.2576
CAPITAL COST PER INJECTION WELL	٦	-5.00	-0.2208

t

** REVENUE BEQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

E	RODUCER	:	12.266	MILLS/KWHR	
	UTILITY	:	7.016	MILLS/KWHR	
*	TOTAL	1	19.283	MILLS/KWHR	

* SENSITIVITY OF COST OF ELECTBICITY (PROM PLANT NO. 1 , RGD IMPACTS INCLUDED) *

BESOURCE & OPERATING PARAMETERS	MILLS/KWHR
HIGH RESOURCE TEMPERATURE ESTIMATE (260 DEGREES CENTIGRADE)	15.330
LOW RESOURCE TEMPERATURE ESTIMATE (200 DEGREES CENTIGRADZ)	33.178
HIGH CAFACITY FACTOR VALUE : 0.85	18.148
LOW CAPACITY FACTOR VALUE : 0.60	25.710
EXPENSING OF INTANGIBLE DRILLING COSTS (70.0% OF WELL COSTS EXPENSED)	17.812
DEPLETION ALLOWANCE (22.0% CF GROSS INCOME)	16.873
INVESTMENT TAX CHEDIT (26.2% GBOSS, 15.0% EPFECTIVE)	18.198

i.

ROOSEVELT H.S., NEVADA (CONTINUED)

* REC IMPACTS FOR PLANT NO. 2 - ON LINE DATE : 1986 *

RED COMPONENT	ANTICIPATED CHANGE (\$)	CHANGE IN BEVENUE Bequirements (bills/kweb)
NUMBER OF PRODUCTICN WELLS	-3.00	-0.7358
CAPITAL COST PER PRODUCTION WELL	-12.00	-0.6181
CAFITAL COST PER INJECTION WELL	-12.00	-0.5298
CAPITAL COST OF GATHERING SYSTEM	-10.00	-0.0649
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0254
CAPITAL COST OF TURBINE GENERATOR	-3.00	-0.0728
CAPITAL COST OF FROCESS MECHANICAL (UTILITY)	-10.00	-0.0270
LIPE SPAN OF PRODUCTION WELLS	. 20.00	-0.3758
LIPE SPAN OF INJECTION WELLS	100.00	-0.9828
START UP COST MULTIPLIERS	(PRODUCER: -4.16 , UTILITY: -2	-12) -0.7208

** REVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

Carrier Street

۰.

F	BODUCER	:	10.264	MILLS/KWHR		
	UTILITY	:	6.770	MILLS/KWHR		•
*	TOTAL	÷	17.034:	BILLS/KWHR	*L	Ð

ROOSEVELT H.S., NEVADA (CONTINUED)

5

r.

* RGE IMPACTS FOR PLANT NO. 3 - ON LINE DATE : 1988 * .

RED COMPONENT	ANTICIPATED CHANGE (%)	CHANGE IN REVENUE Requibements (Mills/KWHR)
NUMBER OF PRODUCTION WELLS	-3.00	-0.7358
CAPITAL COST PER PRODUCTION WELL	-12.00	-0.6181
CAPITAL COST PER INJECTION WELL	~12.00	~0.5298
CAPITAL COST OF GATHERING SYSTEM	-10.00	-0.0649
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0254
CAPITAL COST OF TUREINE GENERATOR	-3.00	-0.0728
CAPITAL COST OF PROCESS KECHANICAL (UTILITY)	-10.00	-0.0270
LIPE SPAN OF PRODUCTION WELLS	- 20.00	-0.3835
LIFE SPAN OF INJECTION WELLS	100.00	-0,9958
START UP COST MULTIPLIERS	(PRODUCER: -4.16 , UTILITY: -2.	12) -0.7208

** REVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

PRODUCER : 10.247 MILLS/KWHR UTILITY : 6.770 MILLS/KWHR * TOTAL : 17.017 MILLS/KWHR *

ROOSEVELT H.S. , NEVADA (CONTINUED)

* REC IMPACTS FOR PLANT NO. 4 - ON LINE DATE : 1990 *

BCD COMPONENT	ANTICIPATED CHANGE	CHANGE IN BEVENUE
	(%)	BEQUIREMENTS (MILLS/KWHB)
NUMBER OF PRODUCTION WELLS	-3.00	-0.7358
CAPITAL COST PER PRODUCTION WELL	-20.00	-1.0302
CAPITAL COST PER INJECTION WELL	-20.00	-0.8830
CAPITAL COST OF GATHERING SYSTEM	-10.00	-0.0649
CAPITAL COST OF DISTRIBUTION SYSTEM	-10.00	-0.0254
CAPITAL COST OP TUREINE GENERATCH	-3.00	-0.0728
CAPITAL COST OF PROCESS MECHANICAL (UTILITY)	-10.00	-0.0270
LIFE SPAN OF PROCUCTION WELLS	20.00	-0.3835
LIFE SPAN OF INJECTION WELLS	100.00	-0.9958
START UP COST MUITIFLIERS	(PRODUCER: -4.16, UTILITY: -2	.12) -0.7208

** BEVENUE REQUIREMENTS WITH ALL THE RED IMPACTS INCLUDED. **

· P	RODUCER	:	9.672	MILLS/KWHR	
	UTILITY	:	6.770	MILLS/KWHR	
	TOTAL	1	16.442:	MILLS/KWHR	- # t

Econord

The levelized busbar cost of flash-conversion electricity¹ from this site is estimated to be 20.8 mills/kWh using currently available technology. Accounting for anticipated cost reductions from the RD&D program, the first commercial-scale plant at this site, postulated to come on line in 1983, is expected to have a levelized busbar energy cost of 19.3 mills/kWh.

It is assumed that geothermal electric plants in this region will be competing primarily against new western coal-fired power plants. The levelized busbar cost of electricity from these sources is expected to be about 20.0 mills/kWh in 1985, rising to 20.6 mills/kWh in 1990 under assumptions of the National Energy Plan scenario for escalation of coal prices.

The costs of electricity (with RD&D benefits) at this prospect are therefore competitive without the advantage of Federal subsidies.

Subsequent Plants

The second plant at Roosevelt, also a 50-MWe plant, is scheduled to go on line in 1986. Its construction must commence in 1984, the design must be completed in 1984, and the commitment to develop this expanded capacity must be made by 1982. With a required RD&D cutoff time of 3 years before power on line, no operating experience will be

See Chapter 2 for a detailed description of the computer print-out and assumptions and data used in this analysis.

available for Plant 2 from any of the new 1983 plants, including Roosevelt Hot Springs Plant 1. The projected cost of electricity from Plant 2 is 17.0 mills/kWh (Table 26-I). Plant 3 will realize benefits from the same RD&D contributions and, since it will be the same size as Plant 2, will have similar power production costs.

Plant 4, 100-MWe capacity in 1990, will benefit from further RD&D impacts (Table 26-I) and will produce electricity at a favorable 16.4 mills/kWh.