MEMORANDUM

TO: Mike
FROM: Durian
RE: Hazards meeting in Logan

The following comments are taken from my notes of the meeting. Temp also took notes, and has the attendance list. I talked about the LURI programs, and gave a brief synopsis of Kim McCarter's work this year. I did not talk about UUGG. Frank Brown said no one would be at the meeting, and I did not find Bill Nash to compile material. Merrill fid talked about CRSC and Geography Department efforts. He and I were the only two Ul representatives at the meeting.

USU

Several major philosophical points became clear during the meetirig. These were expounded by various USU speakers as:

Bruce Bishop stressed the reed to not duplicate activities or set up a competitive organization to what is going on. He sees the need for better formal and informal
coordination.

They are planning to establish a natural resources and environmental hazards eenter in policy arajrsis. This would look at the policy side of such iscues as pumplng the Great Salt Lake (which has had no policy studies).

USU is Eet up for cooperative research with both private and public sector organizations. The geotechaicel group presently is working with Dames and Moore (Jeff Keston, who is also and adjunct professer at USU, CH2M Hill, and BYU. They gay that the passibilities for eooperative research have been in place. They are willing to share data they have, such as digitized quadrangles, Eqils data, air photos, ete.

The 1 ist I gave you summarizes their ouerall projects. In a bit more detail on some:

Fopest Science

USL is working et iNEL on wind and weter erosion, specifisally in regards to the integrity of low-level westes. Next year they witr be lookirg at nutirent cycles at INEL.

They are working on slope failufe of spoil heaps and phosphate run-off in phosphate mining in Idaho.

They have projects in acidrain, working on changeg in hydrologic pathways, and developifg a model to simulate weathering in high mountain terrains.

The group is slsa developing a videg disk for training
forest fire fighters, and working with the interagency fire group in Boise to study the effects of wildfires on urban and suburban areas (e.g. Cedar City).

Another area of research is in what to do with the pine bark beetle, since the traditional methods for dealing with it do not exist in a depressed lumber market.

Sociological studies include the impacts of natural hazards on the perceptions of land and tourism. Does nuclear Waste make a site less attractive? Work for the Park Seruice is showing that some people don't mind hazards, but some, typically those who travel in motor homes and spend lots of money, do mind. The Park Seruice is now starting to use hazards as a mechanism to control erowds.

Range Science:
Most of their studies are concerened with the effects of overgrazing, fires, and erosion. They are looking for constructive methods to encourage rapiorevegatation of desirable species after a fire.

Institute for Land Rehabilitation:
Fifty faculty members are associated with this institute at USU. I have given you one of their brocures. They organize workshops in mine spoils, soil mieroflora, etc,

One research project centers on the disturbance characteristics of a major coal mine. This is being funded by

NSF, USDA, and coal companies. The goal is to revegetate mined areas. Step one is to identify the rules for vegetation, including such aspects as the architectural rules for planting (elumps, not rows). The second phase is to develop mathematical descriptions of the processes, in order to develop general theories. They are finding that by observing natural processes at Mount St. Helens, some lessons important to mined lands are becoming understood.

Dean of Natural Resources:

They have a fish group: some people working on marshes (especially along the Great Salt Lake), animal behavior, and mammalian hazards. The National Preditor Ecology Lab is on campus. USU now has funding from insurance companies to study the problem of auto-deer impacts, especially as the range for deer becomes restricted.

Geotechnical Engineering - Loren Anderson

The main four areas of emphasis are earthquakes, landslides, dam safety, and waste embankments. They are very successful at getting money.

In earthquake studies, they have $\$ 350 \mathrm{~K}$ from the uSGS to do liquefaction mapping from Utah County north along the Wasatch Front. The maps for Salt Lake County are finished. They have had $\$ 150 K$ from the USGS to do seismic slope stability mappirig in Salt Lake and Davis counties, and will have new USGS monies to
finish the northern wasatch Front. Jeff Keaton has $\$ 16 k$ in new USGS monies to study tectonic subsidence during an earthquake. Jim MrCalpin has $550 K$ from the USGS to study the Hansel Valley fault scarp, and anticipates new monies to study young movement on the East Carhe Fault. Jim also has mineral lease funds in this project.

Landslide research:
USU is working on getting downlinks from the GOES satellite as a mechanism for remote telemetry of data. They are now monitoring a landslide, which includes some of Kim Mcearters equipment, but they are relying on a Camptell scientific telemetry system, which is apparently working very well. The have s50k to study the link between debris slides and snow melt. They have mineral lease funds $(\$ 25 K$) and some USFS funds (?) to do a multivariate analysis of landslide susceptability in Davis county. This has just been putlished as a PhD. The Forest Service has contributed $\ddagger 36 K$ to document the 1983 slides in utah. USU has 19 topo maps on tape to look at these hazards. Other landslide studies include the modeling of sediment transport and an attempt to do an age classification.

Dam Safety
Risk and probabilistic analyses form the basis of this effort. They are now using $\$ 45 \mathrm{~K}$ in mineral lease funds.

Waste Embankments

Probabilistic stability modeling is part of what they are doing, with $\$ 213 K$ from the Bureau of Mines and $\$ 25 K$ from the USFS.

David Bowles talked about the hydrologic and climate aspects of USU research. These studies are of floods, solls and erosion, the Great Salt Lake, weather modification, and droughts.

Floods
The primary emphasis is along the Wasatch Front. They are developing analytic techniques suitable for steep canyons, cluverts, sediment and debris generation, and other applicable aspects of local hydrology. They are planning to use goEs telemetry for real-time application. USU is also working on changes that will be required as the field of floods gets swamped with data in the next few years, and evolves from and area with just a few historical records to one with continuous monitoring.

Soil and Erosion
Using the rainfall simulator, they do a lot of highway and other structure engineering work. They also are developing erosivity maps.

Great Salt Lake
USU is working on the problem of forecasting lake levels, with some success (they claim). They are also working on lake level probability estimations, and have developed a model that is used by the state to predict financial costs of various lake levels. They are now contributing to the $E I S$ on west desert pumping. USU is working on lake level circulation and salinity models. Another projert is dealing with the hydrology and climatology of the west desert, which could also be important if

```
an accellerator is built. Salinity studies of the lake and also
the Colorado River Basin include persommel from the water lab,
soil scientists, economists, etc.
    Droughts
    USU is inuolved in a review of 1977 drought policies, as
the vulnerability of water supply to drought remains, and we live
in a deser.t.
    Weather modification
    This is cloud seeding research, trying to understand the
process of formation of precipitation in clouds.
```

Another major effort of USU is in toxic and hazardous waste management. Ron Sims talked about these. They are getting private company funding from engineering companies and the American Petroleum Institute, and federal funding from EPA in Cincinnati, Washirgton, D.C., Research Triangle Park, N.C., Corvallis, Denver, and Kerr (?), OK., and furding from the USGS. They have state funding from Utah. The current funding level is क1. $4 \mathrm{million}$.

In the Salt Lake Ualley, USIJ is working on both the Fortland Cement and Sharon Smelter superfund sites. They are trying to figure out what should be done.

They are writing the final EPA rules for RCRA, evaluatirig what can safely be put in the ground. This is multidisciplinary work, involuing biologists, chemists, etc.

Other projects include work on underground storage tanks,
mine drainage, and, with mineral lease funds (up to $\$ 75 k$), household toxics and the legacy of $K C C$ in western Salt Lake Valley. The chem lab at USU has about $\$ 2$ million in hardware, 12 full time technicians, and 8 chemists and professors who use it. They exercise great care in sample handling, even going so far as to keep separate glassware for different wet chemical elemental analyses. All toxic waste material is handled in a separate room, except for the small amounts actually needed for analyses.

BYU

BYU was represented at the meeting by two speakers. Delbert talked about environmerital chemistry. Their main effort is on sulphur in the atmosphere. They are doing work on the chemical processes that occur in clouds, by studying power plant emissions in fog banks. They have also found that the plume from the $L A$ basin can be traced into Utah. Along the Wasatch front, work on inuersions is continuing. These may be more severe than previously thought. In Utah Valley, respiratory admissions to the hospital rise a few days after the start of an inversion episode. The chemistry of inversions is not understood, except that the air stagnates, which is demonstrated by the drop off in pollution with distance from the steel mill.

Les Youd, who is a geotechnical engineer in Eivil Engineering, talked about his liquefaction program. He also mentioned work in fractures in rocks around nuclear waste, and

Abstract

work on the structural response of buildirigs to earthquakes. Les is new at BYU this year, after 17 years with the LISGS in Menlo Park. His background is in liquefaction. He has written five proposals; two are funded, two are promised, and one has not yet had a response. He has USGS monies to make a liquefaction map of the US, and will be studying liquefaction at Borah Peak. He also has Army Corps funding for this. He will be working some in the area of the Parkfield earthquake prediction.

SUMMARY

My impression is that USU has a very strong, diuersified, and fairly comprehensive program. Dur strengths in geology and geophysics might compliment their efforts, however, and provide them with data they are not able to gather. BYU seems like a possible area for cooperation, but youd is already working with USU, and the atmospheric cooperation would have to be through environmental studies (in a raising of their profile). No one who spoke is doing Dennis' kind of Rn work.

I will be happy to prouide you with more comments if you would like.

OGDEN NATURE CENTER
GROUND MAGNETIC SURVEY

by
Phillip M. Wright
Earth Science Laboratory
University of Utah Research Institute (UURI)
and
Mike Long
Utah Division of Environmental Health (UDEH) Solid and Hazardous Waste Management

Introduction

On 1 October 1987, a ground magnetic survey was conducted on land currently owned by the Ogden Nature Center. The objective of the survey was to determine the lateral extent of a waste dump. The land had previously been deeded to the City of Ogden by the Army's Defense Depot Ogden (DDO), and had been used by DDO partly for storage of military equipment and partly for dumping. Evidence for the existence of a dump site can be seen on the surface over much of the property, and DDO had furnished the information that outdated military equipment and phosphorous incendiary devices had been destroyed and buried at the site. However, there are no records of the exact location or nature of the disposal area(s). It is presumed that disposal was made in shallow trenches, mostly above the level of ground water, which in the area is 6 to 10 feet below ground level. Trenches were apparently covered with a thin layer of soil after use.

There is some limited evidence, furnished by a number of dead trees, that leachate from the disposal trenches could be affecting the flora in the area. It is, thus, the goal of the UDEH to drill several appropriately placed, shallow monitoring wells to determine if chemical species are, indeed, leaching and migrating from the disposal site. For reasons of safety, it is desirable to place any monitoring wells outside of disposal trenches because the exact nature of the material disposed is unknown and there is the possibility that ordnance or incendiary devices which were undestroyed could be in the dumps.

Survey Description

The Magnetic Method. In magnetic prospecting, variations in the magnitude of the earth's magnetic field are measured using
instrumentation specifically designed for the purpose. These variations are then related to the extent and type of material in the subsurface. The method has been most fully developed for use in petroleum and mining exploration, where variations in the distribution of magnetic minerals, caused by variations in subsurface geology, are detected. The primary natural magnetic mineral is magnetite ($\mathrm{F}, \mathrm{CO}_{4}$) . In environmental applications, the magnetic method is primatily used in detecting metallic material in the subsurface. Many metals containing iron are magnetic, although some types of stainless steel are not. Aluminum and brass are essentially non-magnetic for our purposes. Other common materials found in waste dumps are generally non-magnetic or weakly magnetic. Thus, variations in the magnitude of the earth's field over a disposal site will generally reflect presence or absence of iron or steel in the subsurface, and indicate areas where iron and steel has been dumped. In dump areas that contain no iron or steel, no magnetic anomalies are generally to be expected.

Equipment. The survey was carried out using a seintrex Model MP2 proton-precession magnetometer. This type of magnetometer measures the magnitude of the earth's total magnetic field in units of gammas, where 1 gamma equals $\mathbb{E}-9$ tesla (1 tesla equals 1 weber per square meter). The instrument has a resolution of about 1 gamma and is relatively insensitive to orientation of the sensing head in the earth's field.

Expected Magnetic Anomaly Pattern. Typically, a dump filled with various material, some of which contains iron, will yield a jumbled magnetic pattern. Each iron body will act like a magnetic dipole (for three-dimensional objects such as barrels, old wheels, etc) or a line of dipoles (pipes, re-bar, etc). One would anticipate no ordering to orientation of the metal objects and a range in sizes between very small (< 1 in.) to objects 1 to 2 feet on a side and pipes or re-bar 5 to 15 feet long. Each magnetic body will yield an anomaly such that there will be a magnetic high over the southern portion of the body and a magnetic low directly north of the body. The amplitude of the northern low will be about ten percent of the amplitude of the high. In east-west profile across the body, the high will be centered on the southern portion of the body and there will be weak lows directly outside the body on both the east and west sides. The lows in these cases are due to polarization effects of the body in the earth's field, and the low to the north will be larger than the lows to the east and west due to the northern dip of the earth's field. This anomaly pattern varies with magnetic latitude, and our discussion here is pertinent to the magnetic latitude of Utah, which is about 60 degrees north (i.e., the earth's magnetic field dips 60 degrees to the north at our magnetic latitude). With such anomaly patterns over a jumble of material in the shallow subsurface, a very chaotic magnetic pattern will result. Some profiles will pass directly over magnetic bodies while others will pass to the north or south of magnetic bodies. Further, the amplitude of individual anomalies
will depend on the amount of magnetic material in the body and its distance from the magnetometer. Anomaly amplitudes ranging from a few gammas to one thousand gammas or more can be expected. The anomalies due to individual bodies will be additive at the observation point. Thus, the value of the earth's field at each measuring point will be a combination of positive and negative effects from all nearby magnetic bodies.

It would not be possible to resolve the shape and location of each magnetic source without extremely detailed and more costly surveying than was undertaken in this effort. Since we are simply interested in the boundaries of disposal, and not so much in identifying individual magnetic bodies, the profile and station spacings were selected to give reasonable detail on boundaries without providing the detail necessary to resolve individual dump components.

Field Data Acquisition. Field data were read at stations along profiles. The profiles were spaced usually every 50 feet and the station spacing along the profiles was 10 feet. A base line was established as shown on Figures 1 and 2. The base was oriented $N 09^{\circ} \mathrm{W}$, and was marked off each 50 feet using a heavy plastic surveyor's tape. The profiles were oriented normal to the base line, and readings extended both to the west and to the east from the base line. Measurement along the profiles was done with a plastic surveyor's tape of the same kind as used for the base line measurement. All directions were determined with a Brunton compass.

The magnetometer was carried on straps that suspended it in front of the operator, on his chest, whereas the magnetic sensor was held on a 6 -foot non-magnetic staff built for that purpose. The staff was held away from the operator in such a fashion that the sensor was appropriately oriented in the earth's magnetic field. All unnecessary magnetic material was removed from the operator's person before surveying began. Repeat measurements were made using the instrument in an empty field near the offices of UURI on the morning of the survey, and the repeatability of measurements was about one gamma. Since variations in the magnetic field in the survey area were found to be several hundred gammas, as discussed further below, the repeatability of the instrument is deemed to be satisfactory for this survey.

Magnetometer surveying proceeded in order along 18 profiles as noted on the accompanying figures. In general, stations were first occupied westward from the baseline at 10 -foot intervals until either the Old Plain City Canal was reached or vegetation became too thick to penetrate without brushing the line. Most profiles extended to the Canal. Next, the east end of the profile was surveyed at 10 -foot intervals to a position some 20 to 30 feet from a high wire-mesh fence that surrounds the Juvenile Detention Center, whose property borders the Nature Center for some distance north of the beginning point of the survey. Wright carried and read the magnetometer and Long
recorded the data. A copy of the plotted field data accompanies this report (Figure 2), and all originals are being transmitted to the UDEH offices.

Results. The survey results are shown on maps and profiles. Figure 1 is a copy of an air photo of the survey area at a scale of 1 in $=200 \mathrm{ft}$. , and figure 2 is a map of the magnetometer readings at the same scale. Because the earth's magnetic field in this area is about 54,000 gammas, 50,000 gammas was subtracted from each field reading before plotting in order to simplify the map work. This, of course, has no affect of the results or interpretations. The scale of the air photo was verified in the field by measurement prior to the magnetic survey.

Figures 3 through 19 are profile plots of the data for the first 17 of the 18 profiles surveyed. Profile 18 was not plotted because it has a rather complex shape, as shown on Figure 2. Minor probable errors in recording the position of the magnetometer in the field were found on Profiles 3, 10, 11, and 12, but if these errors are real they would have essentially no effect on the results as interpreted herein.

The area of dumping is much larger than was anticipated on the basis of simple field examination before the survey began. Figure 2 illustrates the area that the magnetic survey indicates to be underlain by magnetic material. Within the dump area, the magnetic field varied from about 53,200 gammas to more that 55,000 gammas, a range of nearly 2000 gammas. In areas outside the dump, the field varied within about 15 gammas of 54,570 gammas in the clear area on the southwest side of the survey and within about 15 gammas of 54,600 in the non-dump area on the northeast side of the survey. On a few of the profiles, the dump boundary was a little ambiguous, as detailed examination of the individual values will show. This could be due to stations over portions of the dump where there was no magnetic material. However, on the whole, the boundaries of the dump are believed to be reasonably well resolved from the present work.

The disposal site extends over most of the area between the Canal and the Detention Center fence, and it is apparent that the dump continues onto Detention Center property. In the areas marked "A" and "B" on Figure 2, it is believed to be reasonably safe to drill monitor wells. Drilling is not recommended in the remainder of the area covered by this magnetic survey.

Shown on figure 1 is an area marked "C", which is the site of a planned pond. As part of this survey, we walked around this area with the magnetometer, taking readings at miscellaneous sites. The values without exception indicated no evidence for disposal sites in this area, and it is believed to be safe to proceed with cat work to make the pond.

At the conclusion of the survey, two metal stakes were left along the base line. Also, pink flagging was used to mark the
locations of each of the profiles along the baseline. Using these markers, it should be reasonably straightforward to locate any of the magnetometer stations with sufficient accuracy. It may be desirable to replace the rather temporary markers left in the field with more permanent ones.

Fiqure 3
Profile 1

Fiqure 4
Profile 2

Fiqure 5
Profile 3

Fiqure 6
 Profile 4

Foqure 7
Profile 5

Fiquere 8
Profile 6

Fequre ro
Profile 8

Fiqure 11
Profile 9

Fiqure 12
Profile 10

> Fiqure 13
> Profile 11

Fequre 14
Profile 12

Fiqure 15
Profile 13

Fiqure 16
Profile 14

Fqure 17
Profile 15

Fquere 18
Profile 16

Profile 1

Profile 2

Profile 3

Profile 4

Profile 5

Profile 6

Profile 7

Profile 8

Profile 9

Profile 10

Profile 11

Profile 12

Profile 13

Profile 14

Profile 15

Profile 16

Profile 17

Profile 18 (1)

Profile 18 (2)

Profile 18 (3)

Profile 18 (4)

Profile 18 (5)

Profile 18 (6)


```
FROFTIE i
```

0	4526
10	4531
20	4542
30	4552
10	4550
50	4571
60	4571
70	4571
10	4573
70	4582
100	4574
110	4572
120	4573
130	4573
140	4573
150	4574
160	4576
170	4582
180	4582
150	4586
200	4587
205	4580

FROFILE 2

0	4529
10	4533
20	4535
30	4651
40	4586
50	4549
60	4546
70	4542
30	4541
90	4599
100	4586
110	4563
120	4545
130	4545
140	4548
150	4548
160	4567
170	4569
180	4570
190	4576

FROFILE 3

6	4542
10	4522
20	4556
30	4542
40	4532
60	4555
70	4557

80	4561
90	4563
100	4559
110	4562
120	4566
130	4566
140	4569
150	4561
160	4560
170	4569
180	4568
150	4563
200	4561
210	4571

FROFILE A
$-60 \quad 3139$
$-50 \quad 4517$
$-40 \quad 4535$
$-30 \quad 4285$
$-20 \quad 4695$
$-10 \quad 4961$
$0 \quad 4774$
10 A 700
$20 \quad 4490$
$30 \quad 4523$
$40 \quad 4567$
$50 \quad 4510$
$60 \quad 4289$
70 4557
80 3365
$90 \quad 4620$
$100 \quad 4545$
$110 \quad 4559$
$120 \quad 4569$
$130 \quad 4571$
$140 \quad 4572$
$150 \quad 4574$

160	4572
170	4574

$170 \quad 4574$
$130 \quad 4579$
$185 \quad 4578$

FFGFILE $\overline{3}$

-60	4011
-50	4172
-40	3791
-30	4129
-20	4378
-10	4137
0	4684
10	4535
20	4471
30	4505
40	4515

50	4571
60	4569
70	4564
80	4570
90	4565
100	4571
110	4572
120	4570
130	4571
140	4571
150	4571
160	4570
170	4570
180	4569
190	4575
200	4578

PROFILE ©
$-70 \quad 4191$
$-60 \quad 4510$
$-50 \quad 4600$
$-40 \quad 4615$
$-30 \quad 4576$
$-20 \quad 4777$
$-10 \quad 4514$
$0 \quad 4943$
$10 \quad 4541$
$20 \quad 4525$
$30 \quad 4309$
$40 \quad 9507$
$50 \quad 4677$
60 4651
$70 \quad 4674$
30 4644
$90 \quad 4646$
$100 \quad 4.538$
$110 \quad 4608$
$120 \quad 4577$
130
40

140	4579
150	4577

$160 \quad 4577$
$170 \quad 4577$
$180 \quad 4576$
$190 \quad 4575$
2004576

FROFILE 7
$-70 \quad 4320$
$-60 \quad 4382$
$-50 \quad 4512$
$-40 \quad 4571$
$-30 \quad 4.556$
-204700
-10
$-\quad 4587$

10	4635
20	4514
30	4585
40	4585
50	4649
60	4626
70	4668
80	4590
90	4593
100	4603
110	4572
120	4713
130	4613
140	4582
150	4579
160	4580
170	4582

FFOFTLE 8
$-70 \quad 4713$
$-60 \quad 4728$
$-50 \quad 4626$
$-40 \quad 4570$
$-30 \quad 4554$
$-20 \quad 4536$
$-10 \quad 4310$
$0 \quad 4512$

104603
$20 \quad 4729$
$30 \quad 4595$
$40 \quad 4591$
$50 \quad 4427$
$60 \quad 4683$
$70 \quad 4784$
$80 \quad 4638$
$90 \quad 4600$
$100 \quad 4530$
$110 \quad 4615$
$120 \quad 4632$
$130 \quad 4545$
$140 \quad 4557$
$150 \quad 4573$
160 4581

FFGFILE 9

-80	4468
-70	4676
-60	4614
-50	4645
-40	4605
-30	4558
-20	4612
-10	4604
0	4601
10	4569
20	4595

30	4674
40	4591
30	4573
60	4477
70	4574
80	4563
80	4522
100	4542
110	4645
120	4677
130	4592

PROFILE 10

-80	4518
-70	4554
-60	4606
-50	4635
-40	4525
-30	4583
-20	4550
-10	4564
0	4594
10	4617
20	4654
30	4556
40	4613
50	4554
60	4714
70	4666
50	4605
90	4592
100	4574
170	4605
180	4584

FROFILE 11

-80	4419
-70	4435
-60	4474
-30	4533
-40	4599
-30	4683
-20	4727
-10	4568
0	4545
10	4707
20	4649
30	4702
40	4658
50	4337
70	4676
30	4746
90	4643
100	4698
110	4669
120	4583

130	4677
140	4770

FFOFILE 12

-90	4443
-80	4533
-70	4504
-60	4520
-50	4635
-40	4585
-30	4532
-20	4529
-10	4558
0	4703
10	4705
20	4657
30	4591
40	4817
50	4717
60	4592
70	4711
80	4812
90	4601
100	4634
110	4503
120	4535
130	4527
140	4343
150	4549
170	4604
180	4889
190	4999
200	5042
210	4744

FROFILE 13
$-90 \quad 4633$
$-80 \quad 4752$
$-70 \quad 4823$
$-60 \quad 5079$
$-50 \quad 4594$
$-40 \quad 4556$
$-30 \quad 4501$
$-20 \quad 4521$
$-10 \quad 4557$
$0 \quad 4727$
$10 \quad 4720$
204617
$30 \quad 4630$
$40 \quad 4632$
$50 \quad 4711$
$60 \quad 4748$
$70 \quad 4622$
$90 \quad 4693$
904636
$100 \quad 4521$

110	4770
120	4557
130	4728
140	5029
150	4406
160	4519
170	4601
180	4500
190	4322
200	4656

FROFILE 14

-90	4578
-80	4850
-70	4045
-60	4857
-50	4862
-40	4980
-30	4631
-20	4560
-10	4662
0	4386
10	4545
20	4685
30	4521
40	4492
50	4512
60	4536
70	4534
30	4444
90	4351
100	4324
110	4826
120	4787
130	4738
140	4441
150	4532
160	4533
170	4449
150	4303
190	4839
200	4688

FROFILE 15

-90	4417
-80	4416
-70	4567
-60	4358
-50	4353
-40	4536
-30	4550
-20	4513
-10	4723
0	5022
10	4667
20	4615

30	4720
40	4797
50	4724
60	4704
70	4465
80	4776
90	4736
100	4659
110	4605
120	4548
130	4577

Frofile ib

-80	4551
-80	4570
-70	4530
-60	4594
-50	4595
-40	4593
-30	4593
-20	4588
-10	4575
0	4547
10	4526

$20 \quad 4552$
$30 \quad 4539$
$40 \quad 4499$
$50 \quad 4620$
$60 \quad 4921$
$70 \quad 4904$
$80 \quad 4840$
$90 \quad 4574$
$100 \quad 4552$
$110 \quad 4689$
$120 \quad 4826$
$130 \quad 4773$
$140 \quad 4526$
$150 \quad 4735$
160 4738
$170 \quad 9734$
$180 \quad 4672$
FEOFILE 17

-100	4569
-90	4580
-80	4582
-70	4586
-60	4576
-50	4537
-40	4622
-30	4873
-20	4727
-10	5105
0	4639
10	4591
20	4576

30 . 4590											
404622											
50 - 4531											
60 4503											
$70 \quad 4543$											
$90 \quad 4612$											
90 4630											
100 4657											
$110 \quad 9673$											
$150 \quad 4742$											
$430 \quad 4895$											
$140 \quad 5169$											
150	5170										
160	4915										
170	4.951										
180	5108										
190	4574										
FROFTLE 18											
(1)		(2)		(3)		(4)		(5)		(6)	
1000	4632	1020	4647	1040	4568	-100	4609	1010	4569	200	4450
1050	4601	1.030	4601	1050	4572	-90	4604	1030	4615	110	4551
1100	4607	1040	4592	1060	4607	-80	4607	1040	4594	120	4590
1150	4508	1050	4608	1070	4613	-70	4604	1050	4603	130	4598
		1.060	4614	1080	4804	--60	46 ± 1	1060	4604	140	457%
		1070,	4593	1090	4592	-40	4616	1070	4605	150	4596
		1080	4604	1100	4595	-30	4650	1080	4609	1.60	4595
		1090	4608	1110	4602	-20	4586				
		1100	4607			-10	4610				
		1110	4611								

\because

		OLSES	｜ooc－os	$16 L 5 S$	30b－ast
		SL385	cbl－बce	bt1ps	30k－ast
		9LStS	081－002	бしを狺	－ 0 －020
		LCS\＄	वा－ष्वद	Lそう	$301-05 t$
		LLS阬	वश－वण्द	8L5FS	कt－st
		$\angle 2555$	OSI－40t	52575	－brest
		6455	－ 7 －002	69515	081－0．5e
		925	Oहा－0．02	02575	OT－ast
		LLS75	ol－0¢	－LSFS	कの－0．5
		80.175	व11－00E	12.575	वsा－ase
		8をの雩5	$001-00 \varepsilon$	12575	OH－CST
		9阝5 55	－6－00E	1655	वहा－0s
		中10す5	08－00\％	02575	$\overline{\sigma I}-a s$
		flars	O2－00E	21555	011.05
		15975	－O－NE	1－5\％S	0000 ct
		LLの可	CS－00t	STSFS	Oh－0sip
		Losps	07－00\％	O2S5s	a．$=0.5$
		báprs：	O\％－ 0 ¢	Fasps	OL-QSC
s－7		s2st5	－7－0．	62565	09－ase
		185¢5	－1－00\％	1LStS	2s－05e
16155	302－00\％	物S	00－00\％	81575	क．－05\％
OIsps	习09－0の天	ちゃ币	ne．4rs	Sests	or－ar
－ants	उes－00	97	习ब्य	12.355	－r－ar
S19．5s	－	110	－707－0．7－7	Sest5	01－0se
9 LSTES	30¢－002	CLIFE	वब्ड－ask	F695S	00－29t
$\begin{aligned} & \text { LLLDS } 3 \\ & \text { plspos }=3 \end{aligned}$	$\begin{aligned} & 3 \operatorname{z-0.0\varepsilon } \\ & 901-00 \varepsilon \end{aligned}$	braw			$\begin{aligned} & x+7+45 \\ & \text { a). } 1000 \end{aligned}$

Profilel 7 Station Mag	Profile 8 station: Ma	$\left\{\begin{array}{l} \text { 'profileq } \\ \text { station Mag } \end{array}\right.$
350-00 54704	400-00:57512	450-00: 54601
360-10 54635	400-10 54603	450-10 54567
350-20: 5454	400-20 s-4 729	450-20:54599
350-30: 54585	-60-30-54595	$450-3 e^{\prime}-54624$
$350-40 \quad 358$	100-60.5459/	450-40 -5k 51
350-50 51644	400-50 54427	450-50 57578
350-60 54 496	400-60. 5x 683	451-60: 54497
300-70 54668	$40-70.5470 . f$	450-70 54594
520	600-80 -54688	450-80!-54505
90 : 5×593	400-90 54600	450-90 54572
350-100:54603	4000 100 54530	$450-100 \quad 54542$
$350-110: 542$	$600-1 p_{0} 54619$	40-110-54645
154713	A00 $=120 \quad 54632$	450-120 54677
5466	$400-130 \cdot 54.545$	450-30-54592
50-140:54582	400-140.51557	450-8toE 54597
350-150 54579	400-150-54573	$450-10 \mathrm{E} 54604$
$350-160: 54580$	100-14.0 5	450-20E 54612
-350-120-54582	-400-005 54446	$450-30 E \quad 54553$
350-10氏 54587	- $400-10 \mathrm{E}$ 546	450-40E - 54605
350-20E 5470	400-20¢ 54,534	-50-50E 546d 5
350-30E 54456	$400 \cdot 30654554$	-50-60E -54614
350-4OE -54.591	400-40e 54570	450-20B 54676
-350-50E1-54512	$40-\operatorname{gac} 54626$	$450-805 \leq 4468$
$350-6015$	$400-60254728$	
350-70E 54320	$400-70 E \mid 54713$	

	EsS4．5 991－ool	105ps 30\％－059
－		7TSEX
	｜pbps，0p1－092	LSS75 701．059
！	वरL下ड，वहा－कर	060 ¢S： 00 －0¢
	L8LFS，or－002	रS9．5 mot－est
	नट9下ड णा－002	て2E75，06T－059
	F＇955 001－0．2	00555 907－050
	$15 ¢ \mathrm{ES}$ ab－OOL	1095 06T－059
$y m$		6505 99－659
$n W$		905¢5 051－059
	9ESpS：09－002	$67055: 0.01-650$
Q．6555－90L－002	－05p5：05－62	हCL7 5 ，बहा－259
बडहुS 30\％－co	26pps of－002	L85\＄5 m－009
Stors 308－002	12S5S oह－002	वLLFS．व1－05の
LS875 उan－ 0 －	Sa9］s．ot－002	TZ9FS OOLCS9
298＋5 305－02	5p5\％S क－02L	和985 व5－an
$063 \mathrm{HS} \mathrm{30} \mathrm{\%-092}$	985ps，00002	E64FS 08－ 0
1इ9す5 30\％－002	हुل	च2975，0q－0sa
	F गा：for	भLps，09－059
23955 $\overline{\square 1-062}$	をह斤t5 ₹06－059	TLLS 05－059
	そらट¢5 $308=059$	2vの下5 op-000
86975 joc－0．0	22055 302－059	
bहहमड वbl－a＜	6L0F5 309－059	LInts 106－05a
－EOSp5．C81－002	phsps $\operatorname{pas}-051$	
btons 1OL－00L	2S55 107－059	L2LAS ${ }^{00-059}$
		 （ ）गोfact

Parties

```
The parties to this contract are:
```

 Scintrex, Inc.
 4088 West 1820 South, Unit B
 Salt Lake City, Utah 84104
 hereinafter called Scintrex, and
University of Utah
391 Chipeta Way \#C
Salt Lake City, Utah 84108
(801) 524-3439
hereinafter called the "lessee".
Equipment
Scintrex hereby leases to the lessee and the latter rents from Scintrex, the following equipment:

Scintrex MP-2 Proton Magnetometer s/n 8005610
hereinafter called "The Equipment". The equipment shall also include any item substituted or added by the parties during the validity of this contract to the equipment originally furnished.

Territory
The lessee undertakes that The Equipment will not be removed from the territory of the USA.

Rent
The lessee agrees to make the following rental payments to Scintrex:

A Preparation Fee of $\$ 50.00$ to cover outgoing and incoming testing and quality control inspection, packing, documentation, and delivery to the Salt Lake City, Utah airport. From the first to the thirtieth day of the Rental Period inclusive, the rental rate shall be $\$ 25.00$ per day. Thereafter, for the duration of the Rental Period, the rental rate shall be $\$ 20.00$ per day.
: : : : : : :
The currency for all amounts expressed in this contract is U.S. dollars.

The Rental Period for which the above charges apply commences on the date of shipment from the Scintrex plant and terminates on the day The Equipment is received at the Scintrex plant or on the Conversion Date as described under. "Option to Purchase" below.

Payment Terms
Rentals payable in advance.
All invoices will be for payment net 30 days and any outstanding payments will bear interest at the compound rate of 1.5% per month or part thereof. If Scintrex shall be obliged to bring and action to collect unpaid rentals or other sums due under this contract, the lessee agrees to bear all costs, including a reasonable attorney's fee.

Deposit
A deposit equal to the preparation fee, (plus insurance, plus 10 days rental the total of which is $\$ 310.00$ is required prior to delivery of the equipment.

Date of Shipment
It is agreed by the lessee that Scintrex may make delivery of The Equipment from its plant on or about 30 October 1987 .

The Lessee agrees, in good time prior to the shipping date, to provide Scintrex with full shipping instructions.

Option to Purchase

The Lessee shall have the option during the period prior to returning The Equipment to Scintrex, to purchase The Equipment from Scintrex at a price of $\$ 4,985.00$ plus sales tax and in the event of the exercise of such option to purchase, a sum equal to 50% of rentals incurred to the Conversion Date or 50% of six months rent, whichever is the lesser sum, shall be applied in reduction of the purchase price. Evidence of such purchase shall be by payment of the total amount owing to Scintrex. The Conversion Date is defined as the mutually agreed upon date when the Rental Period ceases and Scintrex receives the full and final payment.

Other Terms

Insurance

Scintrex is prepared to provide fire and theft insurance at a daily premium of $\$ 1.00$, subject to the terms of item 9 of the "Appendix to Scintrex Rental Contract". To accept or decline this insurance, the Lessee should sign this contract in one of the two places provided.

Accepted \qquad Declined \qquad

Acceptance
This agreement made 30 october 1987 is valid for acceptance by the Lessee for a period of 60 days.

In entering into this contract, the Lessee agrees to all of the above terms as well as those given on the attached "Appendix to Scintrex Rental Contract" and in witness of this agreement has cause one copy of this contract to be signed by an authorized signing officer and to be returned to Scintrex.

Scintrex Limited:
Authorized Signature:

Name: David J. Morris

Title: Agent

Lessee:
Authorized Signature:

Name: David R. Langton
Title:
To ch

APPENDIX TO SCINTREX RENTAL CONTRACT

The following terms form an integral part of the Rental contract.

1. WARRANTY.. Scintrex warrants that the Equipment will be in good operating condition when delivered to the Lessee.
2. CONTROL OF EQUIPMENT.. The Lessee agrees to maintain absolute control and possession of The Equipment at all times during the Rental Period and shall not cause The Equipment to be moved outside of the Territory except for the purpose of returning it to Scintrex. The Lessee shall cause The Equipment to be handled by competent, trained personnel only, with due respect to safety procedures. The Lessee shall pay all expenses of operating The Equipment.
3. TRANSPORTATION.. The Lessee shall pay all shipping charges and insurance on The Equipment when in transit to or from Scintrex' plant. The Lessee further agrees that packaging and packing shall be in accordance with the same standards employed by Scintrex. Any freight charges, if paid by Scintrex, will be invoiced to the Lessee at cost plus ten percent.
4. CONFORMANCE TO LAW.. The Lessee shall comply with and conform to all laws, ordinances and regulations, present or future, in any way relating to the ownership, possession, use or maintenance of The Equipment throughout the term of the Rental Period.
5. LIABILITY.. Scintrex shall in no way be bound by any representations, expressed or implied, or by agreements not embodied in this contract. Neither Scintrex, nor its officers, employees or agents shall be liable in any manner to the Lessee, its employees, agents or anyone else from any damage whatsoever resulting from The Equipment or the use of The Equipment, including results or lack of results obtained by the use of The Equipment.
6. TAXES.. The Lessee shall keep The Equipment free of levies, liens and encumbrances and shall pay all license fees, registration fees, assessments, charges, duties and taxes (municipal, provincial and federal), which may be levied or assessed directly or indirectly against or on account of The Equipment or any interest therein or use thereof, including any applicable sales or use taxes imposed on this contract.
7. RETURN OF EQUIPMENT. . Scintrex has the right to demand the return of The Equipment at any time and the Lessee agrees to return The Equipment promptly upon demand by Scintrex.

REPAIR AND REPLACEMENT.. The Lessee shall keep and maintain The Equipment in a good state of repair and condition
(reasonable wear and tear excepted) and shall at the termination of the Rental Period pay to Scintrex compensation in respect of any of The Equipment which may be broken or damaged or lost. The amount of such compensation shall be the retail value of the article according to the then current Scintrex price list, less a reasonable allowance for the damaged article as may be determined by and allowed by Scintrex in its absolute discretion. The Lessee assumes complete responsibility for any damage to equipment, including wear and tear, while it is in any way attached to the exterior of an aircraft or towed by an aircraft or used in drill holes.

The Lessee agrees to report to Scintrex any faulty mechanism or damages in transit immediately upon receipt of The Equipment. The Equipment shall be deemed to have been received in perfect working order unless faulty mechanism is reported immediately upon receipt of the Equipment.

Scintrex agrees to repair or replace at its own expense any defects in workmanship and manufacture in The Equipment or any effects of reasonable wear and tear. However, the liability of Scintrex in such event does not extend to transportation charges for The Equipment to or from the area in which it is being used nor to any lose of time or other costs which may be incurred by the Lessee.

If any defect occurs which impedes the proper operation of The Equipment during the time it is in the Lessee's possession, the Lessee undertakes to report such defect to Scintrex by the quickest possible means. If, in the sole discretion of Scintrex, the defect has not occurred due to any fault of the Lessee, then Scintrex may agree to a hiatus in the Rental Period, during which time: l) The Equipment will be repaired and 2) rental charges will not be applied. Such a hiatus will begin on the say that Scintrex is notified of the defect and terminate on the day that the repaired Equipment is received by the Lessee. Depending upon availability, Scintrex may agree to supplying substitute equipment. If this occurs, the hiatus will be adjusted accordingly.
9. INSURANCE FOR FIRE AND THEFT.. Subject to acceptance by the Lessee, Scintrex shall during the term of the Rental Period, keep The Equipment insured against fire and theft only, and a premium of 3.5 percent of the rental rates shall be charged for such insurance. This insurance shall be kept in force from the time The Equipment is first shipped by Scintrex until it is returned to Scintrex or delivered to another Lessee of Scintrex.

In the event of loss of part or all of The Equipment by fire, the Lessee will report said loss within 3 days to Scintrex, and the residue of The Equipment shall be held for
inspection by a representative of the insurance company or of Scintrex, for a period of at least 30 days. Failure to comply with this provision will void this insurance and the Lessee will then become responsible for replacement of The Equipment.

In the event of loss of part or all of The Equipment by theft, the Lessee will report said loss immediately to Scintrex and to the law enforcement agency having jurisdiction in the area in which the loss occurred. Failure to report said loss to the proper law enforcement agency within 48 hours after the loss is discovered will void this insurance and Lessee will then become responsible for replacement of The Equipment.
10. INSPECTION AND REMOVAL OF THE EQUIPMENT.. Scintrex or its Agent may at all reasonable times, enter the land or premises of. the Lessee for the purpose of viewing the state and condition of The Equipment.

Upon breach of this contract by the lessee, Scintrex may enter the land or premises of the Lessee, and remove and carry away therefrom The Equipment and for that purpose do all things reasonable and necessary for such removal without being liable for any damage caused thereby and without prejudice to Scintrex' rights in respect of any rent or sums of money due or to become due from the Lessee under this contract.
11. ASSIGNMENT.. The Lessee agrees that the Lessee will not assign this lease or any interest herein, or mortgage or hypothecate this lease or any interest therein, or sublet or make any alterations or additions or improvements to The Equipment, or permit the use thereof by any person other than Scintrex having been first obtained. Consent to any of the foregoing prohibited acts shall apply only in the given instance and a further like act by the Lessee or by the Lessee's assignee or sublessee shall require a further written consent. The Lessee agrees that neither this lease nor any interest herein shall be assignable or transferable by operation of law.
12. TERMINATION.. Should The Equipment become lost, destroyed or so damage that it becomes the subject of an insurance claim or is incapable of repair, the Rental Period shall cease on the date that the Lessee notifies Scintrex of such event.

It is hereby mutually agreed, covenanted and understood by and between the parties hereto that in the event any proceedings under the Bankruptcy Act or any amendment thereto be commenced by or against the Lessee or in the event the Lessee be adjudged insolvent or makes an assignment for the benefit of the Lessee's creditors, or if a writ of attachment or execution be levied on The Equipment
and be not released or satisfied within 10 (ten) days thereafter, or if a receiver be appointed in any proceeding or action to which the Lessee is a party with authority to take possession or control of The Equipment, this contract, at the option of Scintrex, shall immediately end and terminate and shall in no way be treated as an asset of the Lessee after the exercise of the aforesaid option.
13. INTERPRETATION. Scintrex' failure to enforce any or all of the above terms and conditions in a particular instance or instances shall not constitute a waiver or preclude subsequent enforcement.

This contract shall be interpreted under and in accordance with the laws of the Province of Ontario.

NO.

DATE 30 September 1987

DMW GEOPHYSICAL SERVICES. INC.

EQUIPMENT RENTAL LIST

Daily Rates

Gravity Meters
LaCoste \& Romberg Model G

Magnetometers

Scintrex MP-2
Scintrex MP-3 Recording Proton
Magnetometer (2)
Scintrex MP-3 Recording Base
Station (2)
Scintrex MP-3 Gradiometer Option
Scintrex MF-2/100 Filuxgate
Scintrex MFD-4 Digital Fluxgate

VLF \& EM
Scintrex VLF-3 Recording VLF
Receiver (2)
Scintrex VLF-3 E field sensor
Scintrex SE-88
Scintrex SE-81
Scintrex EM-4
Geonics. EM-31D
Geonics EM-34-3
Geonics EM-34-36 (Large coil)

Radiometrics

Resistivity
Scintrex RSP-6 DC Resistivity 8 \$ 24.00 \$110.00
Self Potential System
$4088 \mathrm{\omega} 1820$ So.

972-4004-
(801) $539-8471$

P \& D Charges

Instrumentation for exploration. P.O. Box 8094, Salt Lake City, Utah 84108 (801) 467.28.11

September 30, 1983

Dr. Stan Ward
Earth Science Laboratory
University of Utah Research Institute
420 Chipeta Way, Suite 120
Salt Lake City, UT 84108

Dear Dr. Ward:
It was nice to meet you at the SEG Convention, and I have enclosed some information about my company, Not shown is the fact that I have just made an agreement with Hunted ('70) Ltd. to act as their regional representative and distribute their IP transmitters and receivers. Mark Halliday used this equipment in the Philippines and found it to be very reliable.

I understand that you contract for most of your geophysical surveys, and Mark and I would appreciate the opportunity to bid on any ground geophysical programs that you may plan in the near future. We expect to provide personally supervised geophysical surveys at reasonable costs. Just call if we can be of service to you.

Sincerely,

September 11, 1983

To: Exploration Geophysicists

Subject: New developments and background of Great Basin Geoservice

Gentlemen:

Great Basin Geoservice is pleased to announce that Mr. Mark E. Halliday has joined the firm and will direct the geophysical contracting operations. Mr. Halliday graduated from the University of Utah with a M.S. in geophysics, and has extensive field experience in the U.S., Australia, Japan, and the Philippines leading surveys in the search for minerals and geothermal resources. We expect that his combination of skills and experience will allow us to offer more services so we can better meet the needs of our clients.

Great Basin Geoservice (GBG) was founded in 1979 and has been primarily involved with the sales, rentals, and repairs of geophysical instruments. GBG is the exclusive U.S. distributor for GEM Systems, who manufactures the GSM-8 magnetometer, which is the world's lightest and most compact 1 gamma proton precession magnetometer. GEN Systems also makes a solar powered portable magnetometer, a hish sensitivity overhauser airborne magnetometer, and has fust introduced the GSM-18 advanced portable memory magnetometer. GBG acts as regional representative for OYO U.S.A., who distributes the OYO Corp. line of geophysical and geotechnical instruments including portable borehole logging systems, engineering and signal enhancement seismographs, geoelectric instruments, recording systems, and instruments for soil and rock mechanics. GBG also represents: Canadian Mining Geophysics, makers of the MR-10 digital magnetometer base station and M-10 data logger: Instrumentation GDD, whose Electronic Level and Chain+Level have proved very valuable for reducing surveying costs for gravity and seismic surveys, because they measure the elevation difference between two points without a line of sight thus allowing fast and easy profiling: and W. Sodin, who builds a prospector and geodetic oravity meter which are available with or without a solid state electronically controlled internal heating element.

Our goal is to provide a diverse selection of the highest uuality instruments and field surveys, with the accent on personalized service and reasonable prices. We look forward to having the opoortunity of being of seryice to you.

©

PROTON

FEATURES

The GSM-8 is a lightweight one gamma proton precession magnetometer designed primarily for hand held and base station operations, but adaptable for other Earth's magnetic field measurements like airborne/ marine surveys, pipe and cable detection and tracking, treasure hunting etc.

The instruments power consumption, size and weight have been minimized to make it the World's lightest and most compact one gamma proton precession magnetometer.

Ruggedized Liquid Crystal Display allows for easy reading in bright sunlight and an all-metal package ensures lasting use in rough field conditions.

Flexible design of electronics enables a wide selection of cycling speeds and other necessary feàtures for almost universal Earth's field measurements, and complete selftest feature ensures reliable operation and early warning of instrument malfunction due to interferences like excessive field gradient, power line or other electromagnetic radiation, or internal breakdown.

- 1 gamma resolution and accuracy, 0.5 gamma optional
- Worldwide range
- High gradient tolerance
- Excellent visibility of the display in any ambient light
- Display stays active between readings
- WORLD'S LIGHTEST AND MOST COMPACT 1 GAMMA PROTON PRECESSION MAGNETOMETER
- External trigger and digital output standard, analog output optional
- Rugged, all-metal package
- No-lock indication
- Polarize indication

- Shoulder and/or belt strap for easy carrying
- Sensor back-pack for hand-free operation optional
- Nonmagnetic battery pack optional
- Custom modifications available

GEM SYSTEMS, INC. 58 Ravenscroft Circle Willowdale (Metro Toronto) Ontario Canada, M2K 1W9
Telephone: (416) 221-5778 .

RESOLUTION:
ACCURACY:
RANGE:
GRADIENT TOLERANCE:
OPERATING MODES:

OUTPUT:

EXTERNAL TRIGGER:

POWER REQUIREMENTS:
POWER SOURCE:

BATTERY CHARGER:
OPERATING TEMPERATURE:
DIMENSIONS:

WEIGHT:
STANDARD PACKAGE:

STANDARD ACCESSORIES:
GUARANTEE:

1 gamma or 0.5 gamma optional
± 1 gamma over operating range
20,000-100,000 gamma in 23 overlapping steps
Up to 5000 gamma/meter
MANUAL PUSHBUTTON, new reading ever 1.85 sec., display active between readings

CYCLING, pushbutton initiated, 1.85 sec . period.
SELFTEST cycle, pushbutton controlled, 7 sec. period.
VISUAL: 5 digit $1 \mathrm{~cm}\left(0.4^{\prime \prime}\right)$ high Liquid Crystal Display, visible in any ambient light

DIGITAL: Multiplied precession frequency and gating pulse

ANALOG: 0-99 gamma (optional)
Permits externally triggered cycling with periods longer than 1.85 sec . (cycling faster than once per sec. optional)
$10-28 \mathrm{~V}$ DC 8 W s per reading
INTERNAL: 12 V 0.75 Ah NiCd rechargeable battery, 3,000 readings between chargings

EXTERNAL: $12-28 \mathrm{~V}$
Input: $120 / 220 \vee 50 / 60 \mathrm{~Hz}$. Output 75 mA DC constant current
$-3510+55 C$
CONSOLE: $15 \times 8 \times 15 \mathrm{~cm}\left(6 \times 31 / 3 \times 6^{\prime \prime}\right)$
SENSOR: $14 \times 7 \mathrm{~cm}$ dia ($53 / 4 \times 23 / 4^{\prime \prime} \mathrm{dia}$)
STAFF: $175 \mathrm{~cm}\left(70^{\prime \prime}\right)$ extended, $53 \mathrm{~cm}\left(21^{\prime \prime}\right)$ collapsed
$2.7 \mathrm{~kg}(6 \mathrm{lb})$ complete, $2.3 \mathrm{~kg}(5 \mathrm{lb})$ in back-pack mode
CONSOLE, with batteries, carrying harness SENSOR, with cable
STAFF, collapsible
BATTERY CHARGER, MANUAL, CARRYING CASE
15 Months from the date of shipping

Instrumentation for exploration., P.O. Box 8094, Salt Lake Clty, Utah 84108 (801) 467-2811

PRICE LIST

GEM SYSTEMS
GSM-8 proton precession magnetometer \$ 3.675
GSM-9 solar powered magnetometer 4,025
GSM-11 high sensitivity airborne magnetometer 43,000
Accessories: Back pack adapter for sensor 30
Extra section of staff 35
Sensor cable 75
Belt pack for " D " cell battery supply 105
CANADIAN MINING GEOPHYSICS
MR-10 base station 4,300
MR-10/2 base station for automatic diurnal corrections 5,300
MM-10 memory module 2,875
MM-10 with analog to digital converter 3,350
Accessories for MR-10:
Bastc language programming 400
8K RAM non-volatile memory 470
100 foot long sensor cable 300
Power cable 45
Cable to connect mag to MR-10 85
Accessories for mM-10:
RS 232 interface 440
4K RAM 375

RENTAL RATES

GSM-8	$550 /$ month
GSM-9	$600 /$ month
MR-10	$625 /$ month
MR-10/2	$775 /$ month
MM-10	$430 /$ month

Weekly rates available upon request.
Purchase option: 60% of first ten months rentals will be credited toward purchase price.

All prices and rental rates F.O.B. Salt Lake City, Utah and are subject to change without notice. Effective October 1, 1982.

