

DATA PACKET

GL013411

STATE TEAM HANDOUT

Salt Lake City Conference

January 22-24, 1980

Ъy

Roy Cunniff Gary Glazner Mark Houldsworth Keith Brown Kim Knauf Pat O'Dea Roy Heath Mike Shales Paul Liebert

New Mexico Energy Institute Physical Science Laboratory New Mexico State University Las Cruces, New Mexico

D

·

\$.

-54

-

Physical Science Laboratory

BOX 3-PSL, LAS CRUCES, NEW MEXICO 88003 AREA (505) 522-9100 TWX 910-983-0541

Distribution List

1 copy RMB&R State Teams

1 copy John Griffith

1 copy Burt Barnes

1 copy Randy Stevens

1 copy Fred Abel

]

R

Į

2

Ŋ

]

Alexandra di

2

1 copy (each) DOE Regions 9 and 10

CONTENTS

Copies of Salt Lake City Presentation Part I. NMEI Team

.

Part II. Advance copies of individual state data

- By state, Energy Demand vs Potential Geothermal Supply, for these policy cases.
- By state, for MID-CASE, data concerning possible geothermal heat on line, by consuming sector and site designation (potential and inferred).
- By state, for HIGH CASE, data concerning possible geothermal heat on line, by consuming sector and site designation (potential and inferred).

Part III. Data for Discussion at state team caucus.

- 1. BTHERM model sensitivity summary
- 2. Sensitivity output for seven of the more significant factors.
- 3. Description of BTHERM terms.
- 4. Example of Tammeron BTHERM output, which illustrates Investments, Taxes, Possible Fuel Savings, and in accepted accounting methods, Investment Judgement as to Investors Return on Investment.

· •

FORWARD

1

Ĵ

Example

This data package was prepared to serve as preliminary advance copy of the data developed by the NMEI team during the period January - December 1979. As such, the data represents the initial draft report of results, conclusions, and observation concerning geothermal potential development in the ten states of the Rocky Mountain Basin and Range.

A final report is in preparation which expands on the data contained herein, and which also provides additional data and judgements.

Data are not to be used for reference, quotation, or distribution without prior release by NMEI.

BRIEFING OUTLINE

• Overview of Methodology

100

- Market Program
- Geothermal Market Penetration

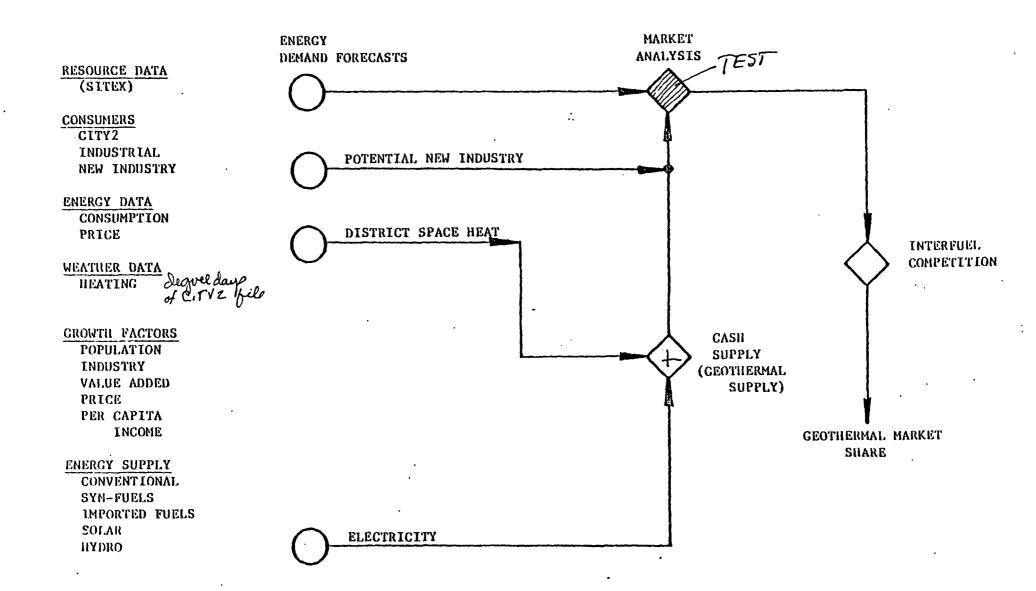
• Geothermal Electricity Potential

- Electricity Export/Import States
- Rocky Mountain Electrical Capacity
- Electrical Capacity vs Retained Capacity

Geothermal Direct-Use Potential

- Data Files
- Policy Options
- Fuel Price Data
- Fuel Price Increases
- Cities Served
- Geothermal Direct-Use Potential
- Geothermal Market Shares
- Economically Possible Market Penetration
 - High Case
 - Mid Case
- Policy Options vs Payback by 1990
- Required Drilling Programs by 1990
- Summary Cost and Benefit Analysis by 2020

MARKET PROGRAM


 (\mathbf{x})

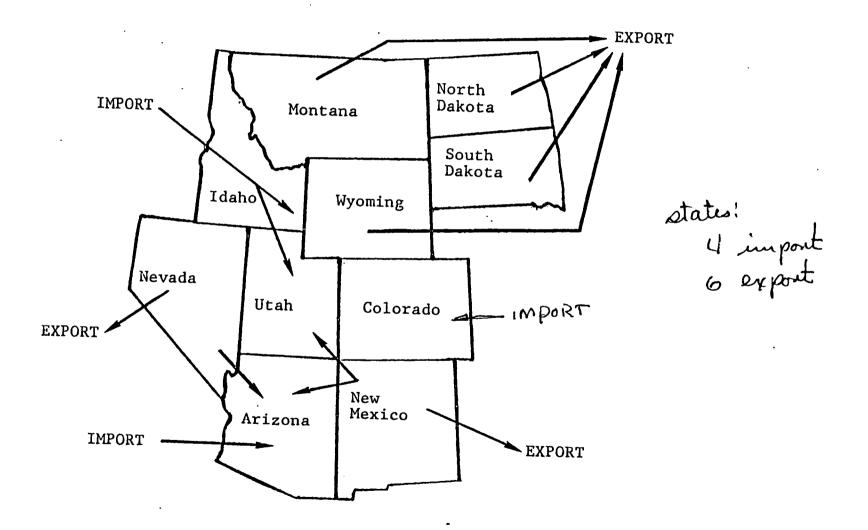
- **Operates on City and Site Files** 2
- (weathr) Input Parameters (Population, Distance, Temperature) -
- **Assigns Weighting Factors** 9
 - Resource temperature
 - City-Site Distance
- Computes and arrays:
 - Optimum city-site pairing
 - Unique city-site relationship
 - Resource name, temperature, city name, population, distance from resource, and weather data
 - Residential heat demand ٠
- Commercial and Industrial Demand Computed Separately 8

GEOTHERMAL MARKET PENETRATION

GEOTHERMAL ELECTRICITY POTENTIAL

(10 States)

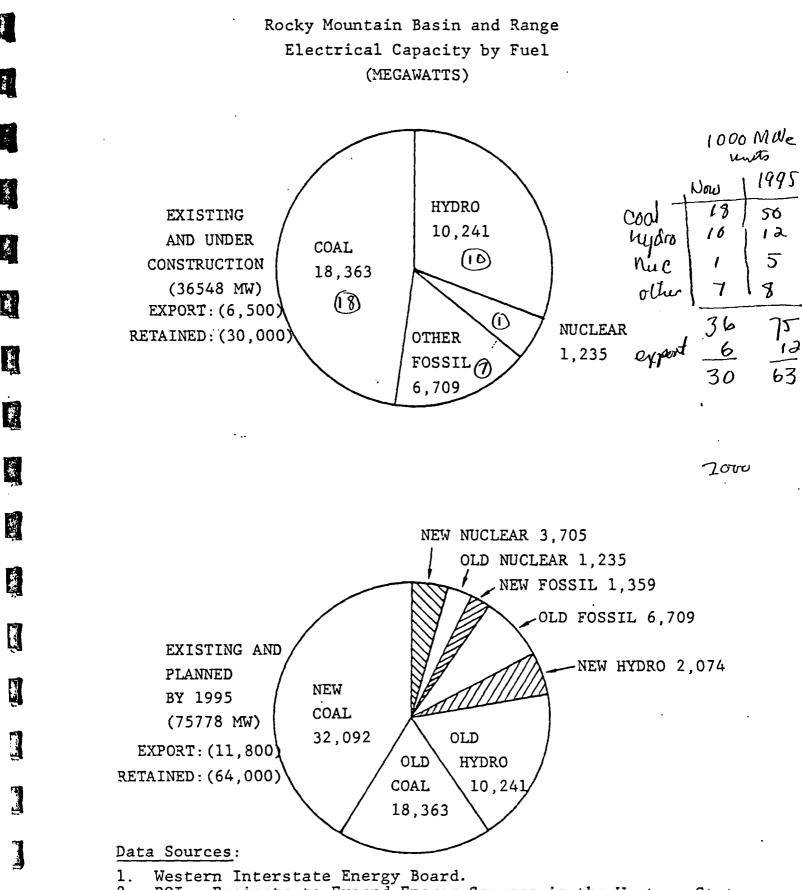
12 Sites, Temperature Higher than 200° C


94 Sites, Temperature between 149-199° C

TOTAL POTENTIAL

 $\frac{MW \text{ Potential}}{4,950 - 5,500} \left(\begin{array}{c} -G - 5 \frac{1}{2} \\ \text{nuclear plant} \end{array} \right)$ $4,100 - 11,150 \left(\begin{array}{c} -U - 11 \\ \text{nuclear plant} \end{array} \right)$ $9,050 - 16,650 \left(\begin{array}{c} -Q - 16 \\ 1000 \text{ MWe plact} \end{array} \right)$

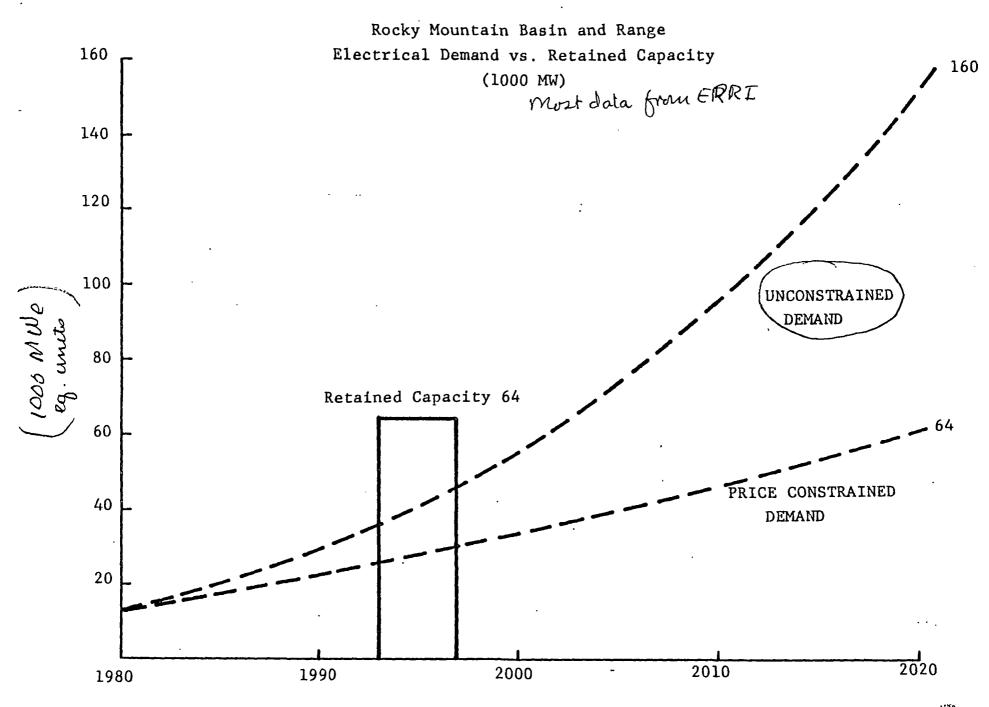
Rocky Mountain Basin & Range Electricity Export/Import States



2515 (1751)

.

			of the second				
	TEMP	≥ 200	ł	TE	MP > 149	< 199	
STATE	<u> # SITES</u>	MWE	MWO	<u>SITES</u>	MWE	MWO	
AZ	Ø	Ø	Ø	· 9	184	450	
CO	1	30	50	6	45	300	
ID	2	· 35	100	. 35	1792	<u>7100</u>	- probably too high
MT	Ø	Ø	Ø	Ø	Ø	Ø	mine see suge
NV	5	1286	1400	24	1360	2000	· ·
NM	2	2747	2800	12	235	600	
ND	, Ø	Ø	Ø	Ø	Ø	Ø	
SD	Ø	Ø	Ø	·Ø	Ø	Ø	
UT	1	964	1000	8	475	700	
WY	1	121	150	Ø	Ø	Ø	
TOTALS	12	5,183	5,500	94	4091	11,150	•
			£			Ą.	T 16,650
				~			M States
		T	ITLE	ELECT Pa	T. OF	- 10 13	
				før	200	an V	150-2000,


•

- 2. DOI Projects to Expand Energy Sources in the Western States.
 - 3. The 1975 Energy Production System in the States of the Rocky Mountain Region: Los Alamos Scientific Laboratory.
- 4. Basin Electric Power Cooperative: Bismarck, ND.

2011

Proyula al Scheme

150° C 90° C

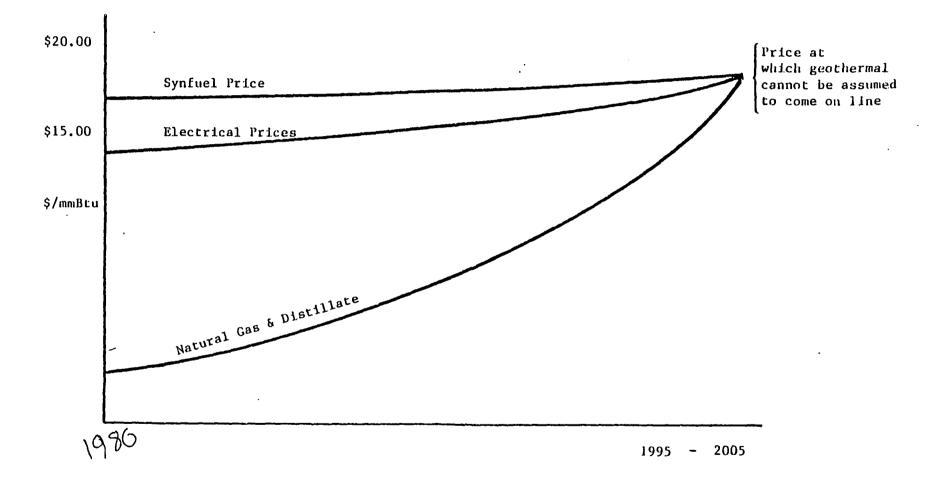
				what is the bottom timp ?		
				Geotherm	al Resource	Information
				geothermal	ELECTRIC	
	TOTAL		TOTAL	Presource_ TOTAL	POTENTIAL	DIRECT THERMAL
STATE	CITIES	POPULATION	INDUSTRIES	SITES	(MW)	QUAD BTU
						50°C
ARIZONA	182	1,956,626	1280	72	450	81.88
COLORADO	313	2,037,580	3600	113	350	• 6.37
IDAHO	261	560,395	1100	310	7200	155.81
MONTANA	332	574,800	800	136	0	6.92
NEVADA	97	487,150	161	307	3400	31.74
NEW MEXICO	192	908,016	1000	114	3400	25.55
NORTH DAKOTA	260	403,603	379	161	0	10.35
SOUTH DAKOTA	258	443,439	383	67	0	1.24
UTAH	225	950,053	1816	224	1700	13.50
WYOMING	137	306,600	488	64	150	11.00
TOTALS	2,257	8,628,262	11,007	1,568	16,650	344.36
					MWepot of	50 - 150°C
					MWepot of Res. with timp allove 150°C	
				•	allove 150°C	Physical Science E discontory

.

FEDERAL STIMULUS OTHER FACTORS 100% Reservoir Confirmation R1 = 0.2, R2 - 0.12HIGH PSS = 0.9 / 0.725% Matching Fund Investment and Depletion Credits R1 = 0.2, R2 = 0.12100% Reservoir Confirmation MID PSS = 0.9 / 0.7Investment and Depletion Credits 50% Reservoir Confirmation R1 = R2 = 0.25PSS = 0.5 / 0.2LOW Investment and Depletion Credits R1 = R2 = 0.35Investment Credits and PSS = 0.5 / 0.2LOW-LOW Depletion Allowance Expire Per Current Legislation

POLICY OPTIONS

All Four Cases Used Synthetic Fuel Price Limit: \$20/MMBTU (\$100-120 per barrel oil)


۰.

what in R1 R2 PSS

POSSIBLE INTER-FUEL COMPETION

ROCKY MOUNTAIN BASIN & RANGE REGION WIDE PRICE RANGE BY FUEL Dollars / MMBTU

 $\frac{\text{Natural Gas}}{2.37 - 6.03}$

Í

Í

¥ <u>Distillate</u> 4.39 - 7.20

<u>LPG</u> 5.33 - 12.11

(fuel oil)

STATE WIDE PRICE RANGE of Conventional Fuels Dollars / MMBTU (Oct. 1979)

a second

IJ

I

Q

) Second

-

1

5 Southern Rocky Mt. States

STATENATURAL GASDISTILLATELP GASArizona $3.39 - 3.55$ $5.59 - 6.19$ $5.33 - 7.16$ Colorado $2.38 - 4.89$ $4.94 - 5.30$ $5.55 - 5.70$ Nevada $3.04 - 3.67$ $6.89 - 7.02$ $6.90 - 8.12$ New Mexico $3.56 - 4.40$ $4.39 - 5.01$ $6.22 - 7.80$ Utah $2.37 - 2.56$ $4.85 - 7.17$ $6.00 - 12.11$					
Colorado 2.38 - 4.89 4.94 - 5.30 5.55 - 5.70 Nevada 3.04 - 3.67 6.89 - 7.02 6.90 - 8.12 New Mexico 3.56 - 4.40 4.39 - 5.01 6.22 - 7.80	STATE	NATURAL GAS	DISTILLATE	LP GAS	
Nevada 3.04 - 3.67 6.89 - 7.02 6.90 - 8.12 New Mexico 3.56 - 4.40 4.39 - 5.01 6.22 - 7.80	Arizona	# 3.39 - 3.55	5.59 - 6.19	5.33 - 7.16	
New Mexico 3.56 - 4.40 4.39 - 5.01 6.22 - 7.80	Colorado	2.38 - 4.89	4.94 - 5.30	5.55 - 5.70	
	Nevada	3:04 - 3.67	6.89 - 7.02	6.90 - 8.12	
Utah 2.37 - 2.56 4.85 - 7.17 6.00 - 12.11	New Mexico	3.56 - 4.40	4.39 - 5.01	6.22 - 7.80	
	Utah	2.37 - 2.56	4.85 - 7.17	6.00 - 12.11	
2-37 - 4.89 $4.39 - 7.17$ 5.33 - 12,11 Rauge H \$3.61 3.61 3.72 4.37 5.33 - 12,11 Rauge H EXCLUDES EFFECTS OF 3.72 4.75 7.72 4.75 7.72 4.75 7.72		\$ 3.61 IDES EFFECTS OF	4.39 - 7.17 "5.18	5.33 -12.11 #8.72 {	Range Hith A V of rouge

Mexico gas agreement Canadian gas price increase

> 12.11 5.33 17 M

1.17 4.39 11 56 578

2.37 4.89 716

361

December, 1979 OPEC Nations oil price increases

1		1				
Doutton 3.61	5.78	8.72				
Northmy 4.29	6.13	6,53				
#4400	#600	H 800				
STATE WIDE PRICE RANGE						
of Conventional Fuels						

Dollars / MMBTU (Oct. 1979)

5 Northurn Rody Mt. States						
STATE	NATURAL GAS	DISTILLATE	LP GAS			
Idaho	4.18 - 4.45	5.07 - 5.28	5.87 - 6.60			
Montana	5.65 - 6.03	6.43 - 7.20	6.53 - 6.95,			
North Dakota	2.55 - 2.98	6.37 - 6.86	6.70 - 7.19			
South Dakota	2.87 - 3.34	5.28 - 5.67	5.88 - 6.12			
Wyoming	2.60 - 3.45	5.69 - 5.90	6.01 - 6.37			
	2.55 - 6.03	3.07 - 7.70	5.87 - 7.19			

4,29

Q

ŋ

Q

Q

1

Ð

Ű

Ę

Ĩ

and i

5.01 - 1.20 7,87 - 7,19 6.13 6.53

EXCLUDES EFFECTS OF

Mexico gas agreement

Canadian gas price increase

December, 1979 OPEC Nations oil price increases

255 507 5.87 003 720 7.19 358 720 1306

. .

REAL PRICE GROWTH RATES (BY FUEL TYPE AND CONSUMING SECTOR)

TIME FRAME	RESIDENT	IAL		
	ELEC	DIST	LPG	N. GAS
1980-1990	.026	.04	.044	.066
1990-2020	.02	.03	.035	.05

IJ

Ŋ

Į

I

I

Į

Ŋ

Ĩ

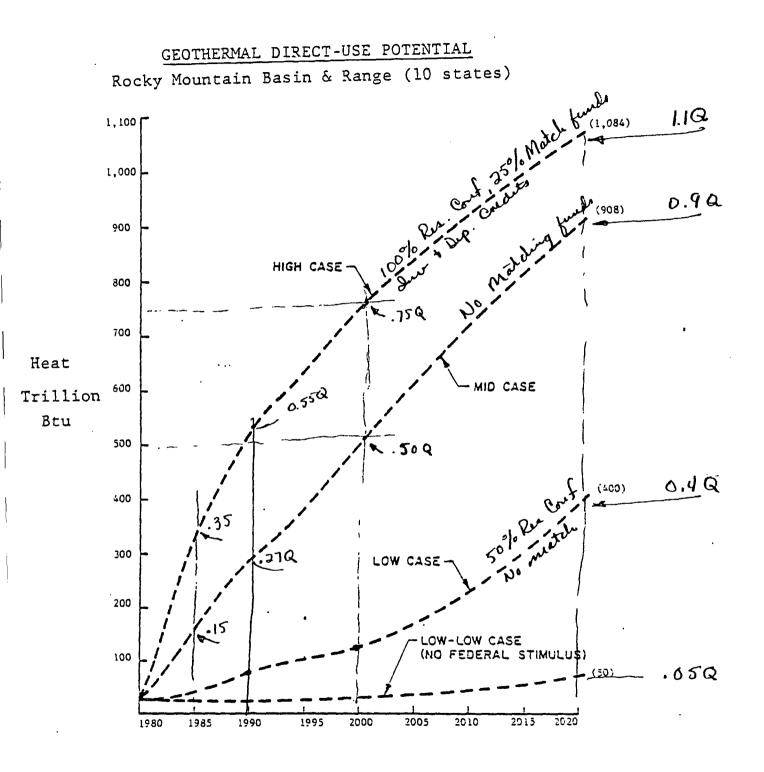
	COMMERCI	AL		
	ELEC	DIST	LPG	N. GAS
1980-1990	.027	.042	.052	.066
1990-2020	.02	.032	.045	.05

	INDUSTRI	AL		
	ELEC	DIST	LPG	N. GAS
1980-1990	.039	.035		.085
1990-2020	.03	.03		.06

X Cities within an acceptable finit destand from resource (perhaps 50 miles)

CITIES SERVED

CASE	<u>1990</u>	2000	2010	<u>2020</u>	CITIES CONSIDERED	File 2,257
HIGH	961•	995	1000	1000	1014.	
MID	461	716	850	897	1014	
LOW	87	141	173	186	1014	


POPULATION SERVED (MILLIONS)

· .

.

CASE	1990	2000	2010	2020	POPULATION CONSIDERED (1976)	File 8.63 Million
HIGH	5.75	6.99	8.36	10.14	4.39	
MID	3.23	5.59	7.96	9.84	4.23	
LOW	0.86	2.16	3.43	4.43	1.63	

Resonance above 50°C Within 50 miles and Economic

Does this assum if it's economical the people suited

ROCKY MOUNTAIN BASIN & RANGE

Geothermal Economical Market Shares (%)

		HIGH	: MID	LOW	LOW-LOW
Total Dema	and				
	1990	28.65	14.43	2.81	.70
	2020	24.91	26.05	11.43	1.12
Co-Located	d Market				
	1990	41.67	21.04	4.16	1.12
	2020	47.24	39.6	17.44	2.2

Rocky Mountain Basin & Range High Case Economically <u>Possible</u> Market Penetration (option) (Trillion Btu)

	· · ·	Heat on Line		
		2000	2020	
Potential	Residential/Commercial	272.2	421.7	
	Industrial	96.0	110.0	
Inferred	Residential/Commercial	275.1	376.8	
	Industrial	139.3	165.7	
Total	Residential/Commercial	547.3 .780	798.5] I.IQ	
	Industrial	235.3	275.7	
	Totals	782.6	1084.2	

١

Rocky Mountain Basin & Range

Mid-Case

Economically Possible Market Penetration

(Trillion Btu)

		Heat on Line		
		2000	2020	
Potential	Residential/Commercial	164.2	358.1	
	Industrial	85.7	103.4	
Inferred	Residential/Commercial	135.1	299.4	
	Industrial	111.5	146.6	
Total	Residential/Commercial	299.3] .5Q 197.2]	657.5 ,9Q	
	Industrial	197.2 [}]	250.0	
	Totals	496.5	907.5	

POLICY OPTIONS VS PAYBACK BY 1990

	NET				
	FEDERAL OUTLAY	CONSUMER SAVINGS			FOREIGN OIL
	\$ BILLIONS	\$ BILLIONS	CITIES	HEAT ON LINE	DISPLACEMENT
CASE	(NOMINAL)	(DISCOUNTED)	SERVED	QUADS	MMBBL/YEAR
HIGH	5.86	36.3	961	0.55 - 0.9*	305**
MID	1.70	9.9	461	0.27	122
LOW	0.28	0.2	87		70
LOW-LOW	N/A	0.06	20	0.015	20

* Includes 0.35 Quad for New Industrial Parks in Oregon, Washington, Idaho ** Assumes 2 to 1 ratio of oil imports to final end-use consumption

REQUIRED DRILLING PROGRAM (BY 1990)

· . .

.

.....

CASE	RESERVOIR CONFIRMATION	4-8 wells reservoir PRODUCTION pete WELLS	2-4 wells/site REINJECTION WELLS
HIGH	650	3000 - 4000	1500 - 2000
MID	350	1500 - 2000	750 - 1000
LOW	150	500 - 1000	250 - 500

* COMPARES WITH 50,000 - 60,000 1000 FEET OR DEEPER NATURAL GAS AND OIL WELLS/YEAR

200

1

HIGH CASE

ROCKY MOUNTAIN BASIN AND RANGE DISCOUNTED COSTS AND BENEFITS THRU 2020 (\$ BILLIONS)

	INVESTMENTS	TAXES & ROYALTIES	CONSUMER SAVINGS	TRILLION BTU/YEAR HEAT ON LINE
ARIZONA	2.3	0.35	18.6	176
COLORADO	1.5	0.28	14.0	244
IDAHO	1.2	0.24	14.7	178
MONTANA	0.9	0.07	3.2	51
NEVADA	0.2	0.04	3.6	75
NEW MEXICO	0.6	0.13	5.6	99
NORTH DAKOTA	0.4	0.14	3.6	51
SOUTH DAKOTA	0.2	0.03	1.6	15 ·
UTAH	0.8	0.17	8.5	145
WYOMING	0.5	0.08	3.7	56 .
	8.6	1.51	77.1	1,090

3-400/year

- Requires \$5.86 Billion Federal Outlay
- Provides up to 305 million barrels/year Foreign Oil Displacement by 1990 (

- - - - 1 - 4

- Requires 660 Reservoir Confirmation wells next two years Too High
- Requires 3000 4000 Production wells by 1990

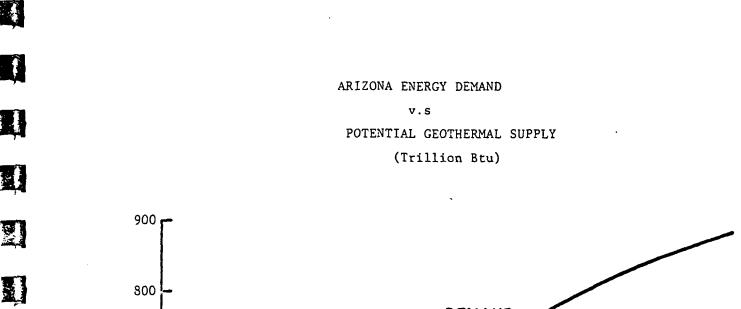
This assume the saving over a 30 year

Part II. Advance copies of Individual State Data.

2

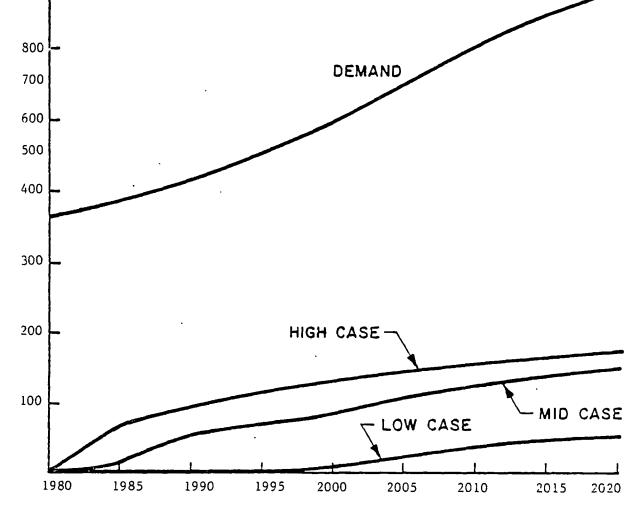
Number of Street of Street

L'en de

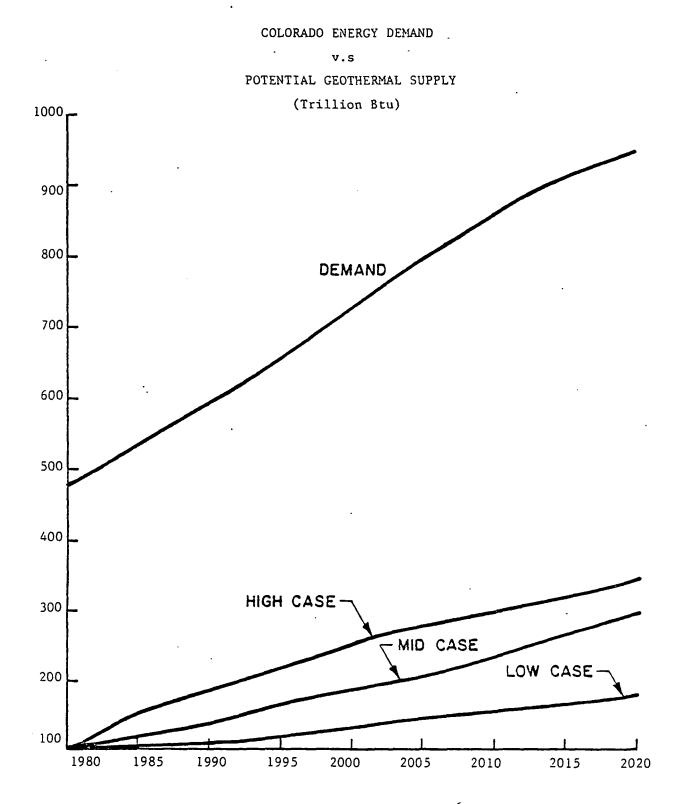

ŀ

ŀ

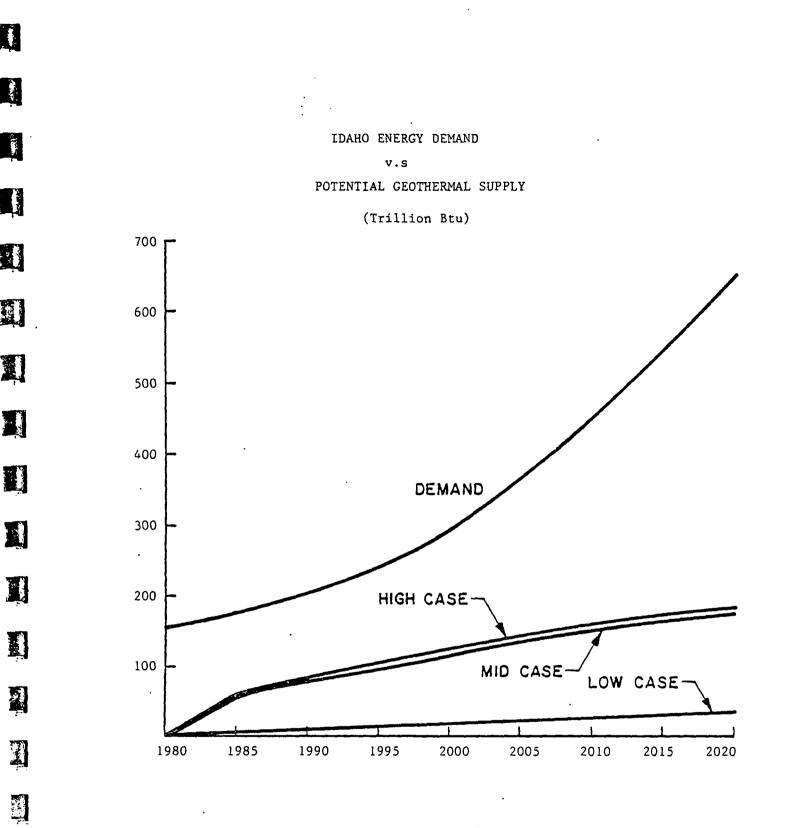
1


.

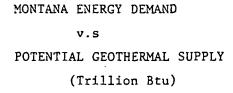
Ŋ

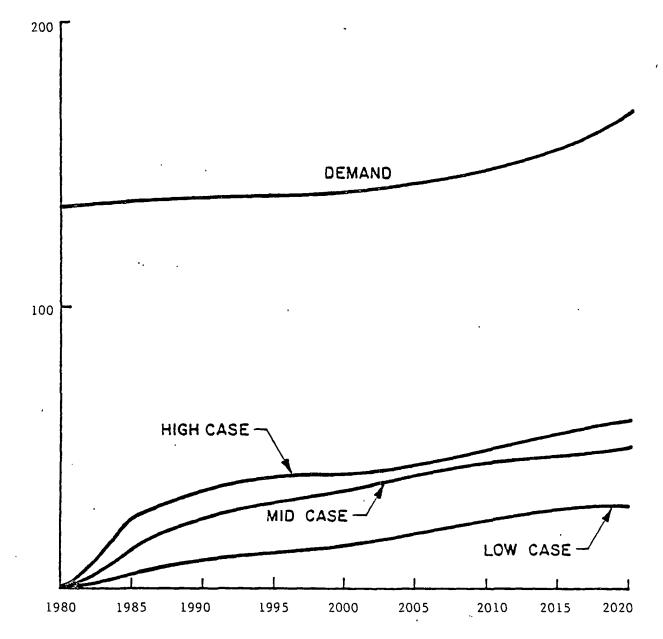

]

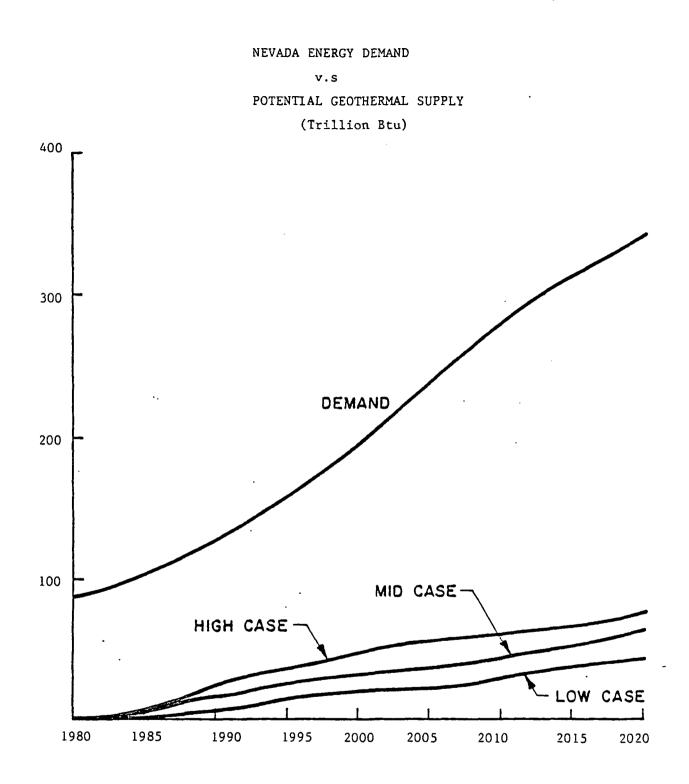
]



٠,

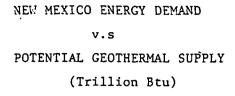


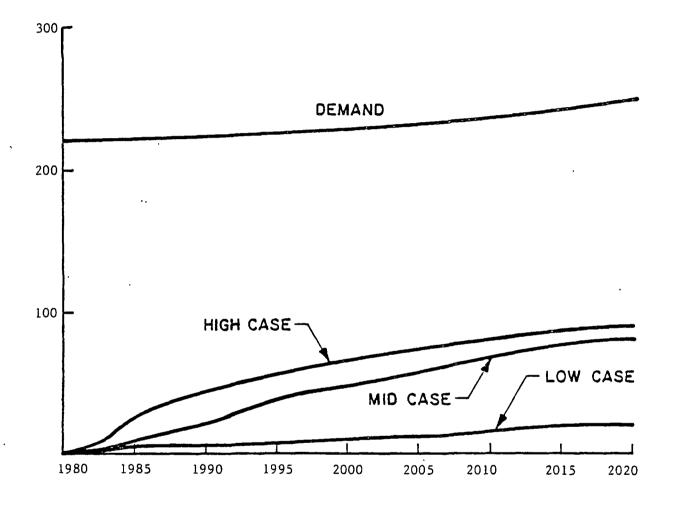




Į.

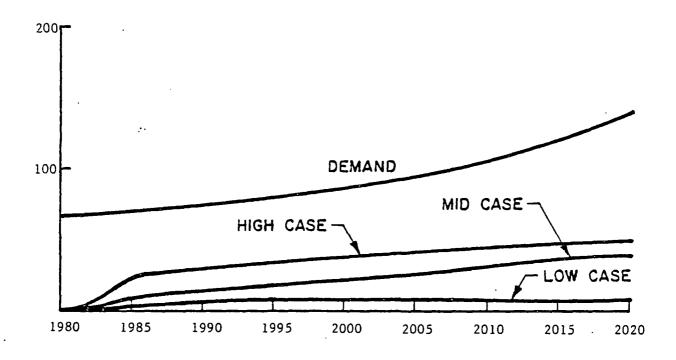
(and the second s




Sec. o

1001 225

A REPORT OF

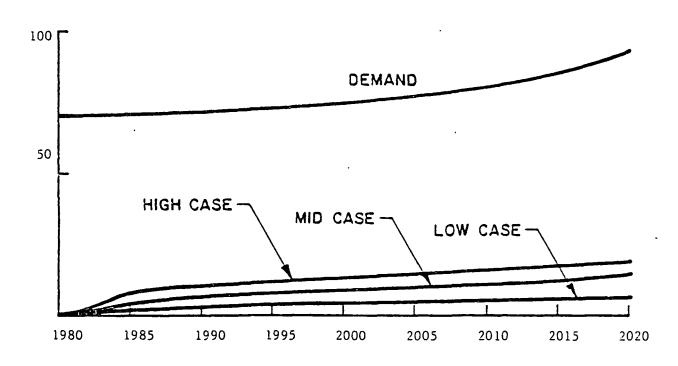

;;

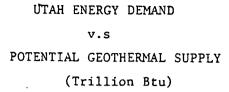
:,

NORTH DAKOTA ENERGY DEMAND v.s

POTENTIAL GEOTHERMAL SUPPLY

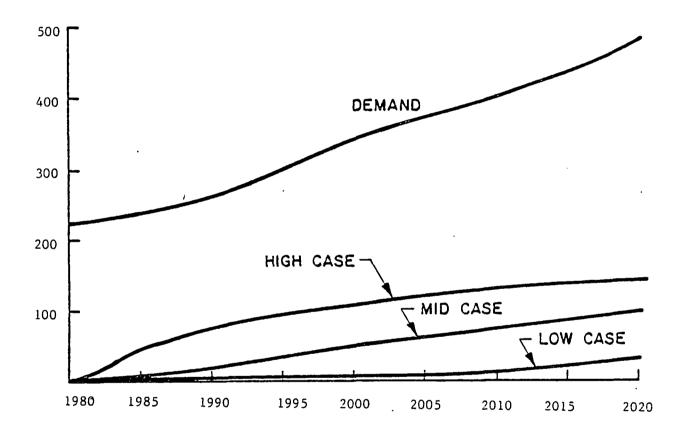
(Trillion Btu)




• •

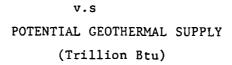
SOUTH DAKOTA ENERGY DEMAND

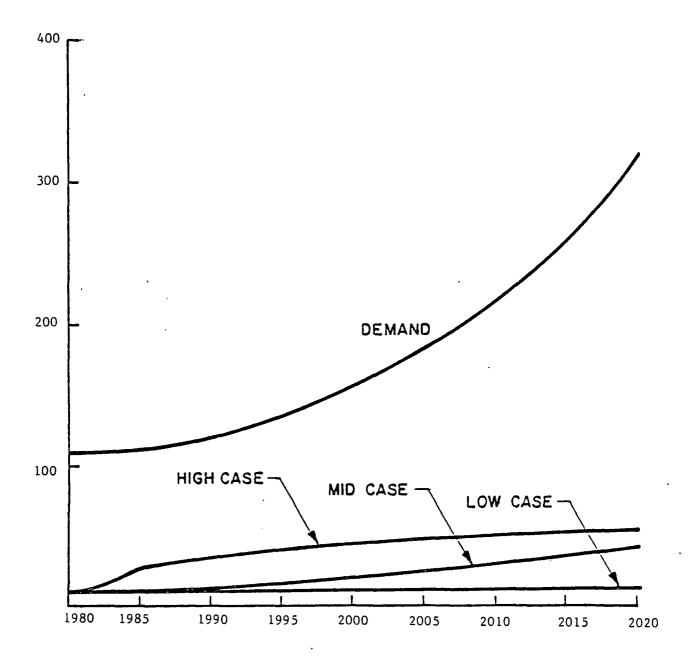
v.s POTENTIAL GEOTHERMAL SUPPLY (Trillion Btu)



A survey of

ATC: ALLER





WYOMING ENERGY DEMAND

]

I

Arizona

Mid-Case

Economically Possible Market Penetration

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	17.1	52.0
	Industrial	38.4	47.8
Inferred	Residential/Commercial	5.8	21.3
	Industrial	22.0	26.8
Total	Residential/Commercial	22.9	73.3
	Industrial	60.4	74.6
	Totals	83.3	147.9

Colorado

Mid-Case

Economically Possible Market Penetration

		Heat on Line	
	·	2000	2020
Potential	Residential/Commercial	41.0	87.7
	Industrial	8.8	9.5
Inferred	Residential/Commercial	27.2	84.6
	Industrial	7.9	11.9
Total	Residential/Commercial	68.2	172.3
	Industrial	16.7	21.4
	Totals	84.5	193.7

Idaho

Mid-Case

Economically Possible Market Penetration

1

(Trillion Btu)

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	16.1	40.1
,	Industrial	8.4	10.3
Inferred	Residential/Commercial	44.1	70.6
	Industrial	46.3	55.1
Total	Residential/Commercial	60.2	110.7
	Industrial	54.7	65.4
	Totals	114.9	176.1

•

Montana

Mid-Case

Economically Possible Market Penetration

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	11.9	16.8
	Industrial	.3	. 4
Inferred	Residential/Commercial	16.0	22.8
	Industrial	6.5	7.4
Total -	Residential/Commercial	27.9	39.6
	Industrial	6.8	7.8
	Totals	34.7	47.4

Nevada Mid-Case

Economically Possible Market Penetration

(Trillion Btu)

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	23.5	57.9
	Industrial	3.2	3.4
Inferred	Residential/Commercial	.3	.4
	Industrial	0.0	0.0
Total	Residential/Commercial	23.8	58.3
	Industrial	3.2	3.4
	Totals	27.0	61.7

•

New Mexico

Mid - Case

Economically Possible Market Penetration

(Trillion Btu)

	• •	Heat on Line	
		2000	2020
Potential	Residential/Commercial	21.3	47.6
	Industrial	8.6	9.7
Inferred	Residential/Commercial	10.4	16.8
	Industrial	8.1	11.1
Total	Residential/Commercial	31.7	64.4
	Industrial	16.7	20.8
	Totals	48.4	85.2

.

. .. .

North Dakota

Mid - Case

Economically Possible Market Penetration

(Trillion Btu)

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	15.8	32.1
	Industrial	4.9	6.1
Inferred	Residential/Commercial	0.0	1.8
•	Industrial	0.0	.3
Total	Residential/Commercial	15.8	33.9
	Industrial	4.9	6.4
	Totals	20.7	40.3

.......

South Dakota

Mid - Case

Economically Possible Market Penetration

(Trillion Btu)

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	7.8	9.6
	Industrial	.3	.4
Inferred	Residential/Commercial	2.3	4.8
	Industrial	. 04	. 05
Total	Residential/Commercial	10.1	14.4
	Industrial	. 34	. 45
	Totals	10.44	14.85

٠

Utah

Mid - Case

Economically Possible Market Penetration

(Trillion Btu)

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	7.6	10.7
	Industrial	2.0	4.3
Inferred	Residential/Commercial	25.0	53.3
	Industrial	17.1	28.8
Total	Residential/Commercial	32.6	64.0
	Industrial	19.1	33.1
	Totals	51.7	97.1

£

•

•

Wyoming

Mid - Case

Economically Possible Market Penetration

(Trillion Btu)

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	2.1	3.6
	Industrial	10.8	11.5
Inferred	Residential/Commercial	4.0	23.0
	Industrial	3.6	5.2
Total	Residential/Commercial	6.1	26.6
	Industrial	14.4	16.7
	Totals	20. 5	43.3

·

.

Arizona

High Case

Economically Possible Market Penetration

(Trillion Btu)

		Heat on Line	
		2000	2020
Potential	Residential/Commercial	45.2	72.2
	Industrial	42.8	49.1
Inferred	Residential/Commercial	19.8	26. 6 [.]
	Industrial	24.7	28.4
Total	Residential/Commercial	65.0	98.8
	Industrial	67.5	77.5
	Totals	132.5	176.3

Colorado

High Case

Economically Possible Market Penetration

(Trillion Btu)

	- · · ·	Heat on Line	
		2000	2020
Potential	Residential/Commercial	54 . 2	96.8
	Industrial	10.3	11.8
Inferred	Residential/Commercial	79.5	120.0
	Industrial	13.7	15.8
Total	Residential/Commercial	133.7	216 . 8 [.]
	Industrial	24.0	27.6
	Totals	157.7	244.4

.

Idaho

High Case

.

Economically Possible Market Penetration

(Trillion Btu)

		Heat o	n Line
		2000	2020
Potential	Residential/Commercial	24. 2	40.2
	Industrial	6.9	7.8
Inferred	Residential/Commercial	51.6	80.7
	Industrial	43.2	49.6
Total	Residential/Commercial	75.8	110.9
	Industrial	<u> </u>	_ 57.4
	Totals	125.9	178.3

-•. ,

Montana

High Case

Economically Possible Market Penetration

(Trillion Btu)

.

		Heat o	n Line
		2000	2020
Potential	Residential/Commercial	14.1	16.8
	Industrial	.5	.6
Inferred	Residential/Commercial	20, 5	24.1
	Industrial	8.3	9.6
Total	Residential/Commercial	34.6	40.9
	Industrial	8.8	10.2
	Totals	43.4	51.1

Nevada

High Case

Economically Possible Market Penetration

		Heat o	n Line
		2000	2020
Potential	Residential/Commercial	42.3	71.4
	Industrial	3.3	3.8
Inferred	Residential/Commercial	.3	.4
	Industrial	0.0	0.0
Total	Residential/Commercial	42.6	71.8
	Industrial	3.3	3.8
	Totals	45.9	75.6

New Mexico

High Case

Economically Possible Market Penetration

		Heat o	n Line
		2000	2020
Potential	Residential/Commercial	39.0	56.4
	Industrial	9.1	10.2
Inferred	Residential/Commercial	13.1	18.1
	Industrial	5.3	6.1
Total	Residential/Commercial	52.1	74.5
	Industrial	14.4	16.3
	Totals	66.5	90.8

North Dakota

High Case

Economically Possible Market Penetration

		Heat o	n Line
		2000	2020
Potential	Residential/Commercial		
	Industrial	32.9	42.2
Inferred	Residential/Commercial	5.2	5.9
	Industrial	2.3	2.5
Total	Residential/Commercial	.3	.4
	Industrial	35.2	44.7
	Totals	5.5	6.3
	ισιαιο	40.7	51.0

South Dakota

••

High Case

Economically Possible Market Penetration

	-	Heat o	n Line
		2000	2020
Potential	Residential/Commercial	8.19	9.93
	Industrial	. 43	. 49
Inferred	Residential/Commercial	4.51	4.99
	Industrial	. 05	.06
Total	Residential/Commercial	12 .7 0	14.92
	Industrial	. 48	. 55
	Totals	13.18	15.47

Utah

High Case

Economically Possible Market Penetration

		Heat o	n Line
		2000	2020
Potential	Residential/Commercial	9.2	11.9
	Industrial	6.0	8.6
Inferred	Residential/Commercial	56.9	74.2
	Industrial	39.1	50.4
Total	Residential/Commercial	66.1	86.1
	Industrial	45.1	<u> </u>
	Totals	111.2	145.1

Wyoming

High Case

Economically Possible Market Penetration

		Heat o	n Line
		2000	2020
Potential	Residential/Commercial	2.9	3.9
	Industrial	11.5	11.7
Inferred	Residential/Commercial	26.6	35.2
	Industrial	4.7	5.4
Total	Residential/Commercial	29.5	39.1
	Industrial	16.2	17.1
	Totals	45.7	56.2

Part III. Data for Discussion at State Team Caucus.

, **i**

ŀ

The second second

ġ,

in the second

(areas)

Ĭ

I

2

BTHERM MODEL Sensitivity Analysis

- Large Impact on Cost
 - • Grants (City Share of Money)
- 🗕 🔹 Distance
 - Resource Depth 7
 - Population
 - Industrial Demand and Annual Hours of Operation
 - Retrofit and Hookup Costs
 - Time (Years), Duration of Investment
 - Rate of Return on Investment
 - Flow Rate
 - Research Investment 🚣
- Moderate Impact on Cost
 - Population and Industrial Growth Rates
 - Heating Degree Days
 - Resource Temperature
 - Well Life
 - Investment Tax Credit
 - Royalty Rate (Within Normal Limits)
- Low Impact on Cost
 - Bond Rate (Within Normal Limits)
 - Depletion Allowance
 - State Tax Rate •
 - Froperty Tax Rate

Production Sucress Ratio

CITY SHARE OF MONEY (CSM)

1.

CSM	· •	PRICE	% CHANGE	
50% goit .5		3.21		0.1/2
.6		4.38	36.4	112
.7		5.55	26.7	3,30%
. 8		6.72	21.0	0000
-19		7.89	17.4	
0% govt finding 1.0		9.06 -	14.08	·J00 °7,

CSM (City Share of Money) is a variable which allows the BTHERM model to take into account the possibility of a grant. At CSM = 1.0 the private or city developer covers all investment costs himself and the price per million BTU's charged to consumer is indicative of this. At CSM = 0.5, it is assumed that 50 percent of the required investment is obtained from grants, and therefore the price charged will drop accordingly. The example shown above is of Avondale, Arizona, a city which because of its depressed economic state, has been indicated by H.U.D. as being eligible for an Urban Development Action Grant. At a 50% matching grant, the city of Avondale could get geothermal energy at a price competitive with current natural gas prices.

For the High Case (10-State Region), CSM was set at 0.75, which is the case in which one dollar of Federal money is granted for three dollars of private or city funds.

		NLE.	1	• •		1	•		•		!. :	• •	•		•	•		•
	CGM	 	PRICE	PER	MMBT	u .	` ·	•	:		• •		i		;		• •	
	0.5	1 ·	i :				. '	•	i			• ·		:				
	0.6	۱.		4.3				•		•	i .		•		1	J	11	
	0.7. 0.0	ì	۱. ۲	5.5		·		•	1		•		÷					•
	0.9 1	•	, ,		ģ				,		i .	•	. •		•	۰.		• •
	•		1		•	•		•			i 1	•				• ·	• .	
			DERTH									·36 ¤	DEGD+	1550	м,	•		
			N POP													• • •	•	
iΠΛ	ra Or	• .•	CSM .	· V	EKSUB	PRIC		'151C •		ru 7	7 i J	ES	·	•		1	•	
			· • •		•	•		•			•			•		ł	•	
	•	•	•		•••			• ,		•	•	• .		•	i. •	·		
, 9	.06E0	+	;	ι.	•	•		• ;		CSM		ERSU	S PRIC		MMBT	ה [:]		
	•	-			•	•		•	•		1		;	i .			•	
์ อ	.48E0	v +		• •	• •: •	:		•	• •			L	, ; '	/	· i :		1	
			i	•	• ,	•	•	•			11.	1	\sim			• •	÷	
7	.8920	· +	i .	• •	• • •	•	' '	•••				,	. (*)		· ·	1		
		4			•										• •		• •	
		s d	i	•	•		•, •	•	•		1,			, -	1 · · ·		•	
	.31E0	• +	i • • • •	÷ ·	• •	•	•	• •	•		ي ا ب : ب	<u> </u>		, -			•	
,	.31 <i>E</i> 0	• +	i	: ·	•	•	•	• • •	•	(•	· · ·	•	•	
6	.31E0	• + •	i 	2 * - 	•	• •	• •	• • •	• • • • • •					•		•	•	
6	.31E0 .72E0	• + • • + •	i · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•	•	• · ·	• • • •						•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	· · ·
6 6	.31E0 .72E0	• + • • + •	i		• • • • • • • •	•		•					· · · · · · · · · · · · · · · · · · ·	•	i	•	· · ·	· · · , ·
6 6 5	.31E0 .72E0 .14E0	• + • - • - • - • - • -	; ; ; ; ; ; ; ; ; ; ; ; ; ;		•	•							· · · · · · · · · · · · · · · · · · ·	 		• • • •	· · ·	· · · , · ·
6 6 5	.31E0 .72E0 .14E0 .55E0				•	•							· · · · · · · · · · · · · · · · · · ·	•		•	· · · · · · · · · · · · · · · · · · ·	 , .
6 6 5	.31E0 .72E0 .14E0		; ; ; ; ; ; ; ; ;										· · · · · · · · · · · · · · · · · · ·	 		, , , , ,	· · · · · · · · · · · · · · · · · · ·	· · · • · ·
6 5 4	.31E0 .72E0 .14E0 .55E0 .97E0												· · · · · · · · · · · · · · · · · · ·	• • • • •			· · ·	· · · • · ·
6 5 4	.31E0 .72E0 .14E0 .55E0													•		· · · ·	· · · · · · · · · · · · · · · · · · ·	
6 6 5 4	.31E0 .72E0 .14E0 .55E0 .97E0 .30E0	"一下,""""""""""""""""""""""""""""""""""""""												 		•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
6 6 5 4	.31E0 .72E0 .14E0 .55E0 .97E0	"一下,""""""""""""""""""""""""""""""""""""""											· · · · · · · · · · · · · · · · · · ·	•		•	• • •	· · · · · · · · · · · · · · · · · · ·

1

ĩ

. . . .

2. PSS (Production Success Ratio)

	out g10		
<u>PSS</u>	Dry	Price	<u>%</u>
.3	7	8.82 -	
.5	5	6.44	2.7
.7	3	5.43	15.6
.9	1	4.86 🔔	10.4

The price per MMBTU's charged to consumers in a geothermal district space heating system is highly dependent on the success ratio of drilling efforts. The policy conclusions are that, if through reservoir confirmation programs or resource assessment programs the number of dry holes out of every 10 that are drilled can be reduced from 7 to 1 in the case mentioned above, a 45% reduction in the price per MMBTU's could be achieved.

ENTER THE MULTIVALU	CC 1979, TIME 8:34 VED VARIABLE AND ITS VALUES
PSS+.3 .5 .7 .9	O THE BASE CASES DESIRED
TUCSON	
•••NG+1	
	PER MMBTU 0.02
	6.44
	5.43
0.9	4.86
8.82E0 (*)	PSS VERSUS PRICE PER MMBTU
1 1 8.42E0 +	PSS VERSUS PRICE PER MMBTU.
7 8.42E0 + 7 1	PSS VERSUS PRICE PER MMBTU.
B.42E0 +	PSS VERSUS PRICE PER MMBTU .
7 8.42E0 + 1 8.03E0 + 1 1	PSS VERSUS PRICE PER MMBTU .
7 8.42E0 + 7 8.03E0 + 1 7.63E0 + 1 7.63E0 + 1	PSS VERSUS PRICE PER MMBTU .
8.42E0 + 1 8.03E0 + 1 7.63E0 + 1 7.63E0 +	PSS VERSUS PRICE PER MMBTU .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSS VERSUS PRICE PER MMBTU .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSS VERSUS PRICE PER MMBTU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSS VERSUS PRICE PER MMBTU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSS VERSUS PRICE PER MMBTU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSS VERSUS PRICE PER MMBTU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSS VERSUS PRICE PER MMBTU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PSS VERSUS PRICE PER MMBTU

``

•

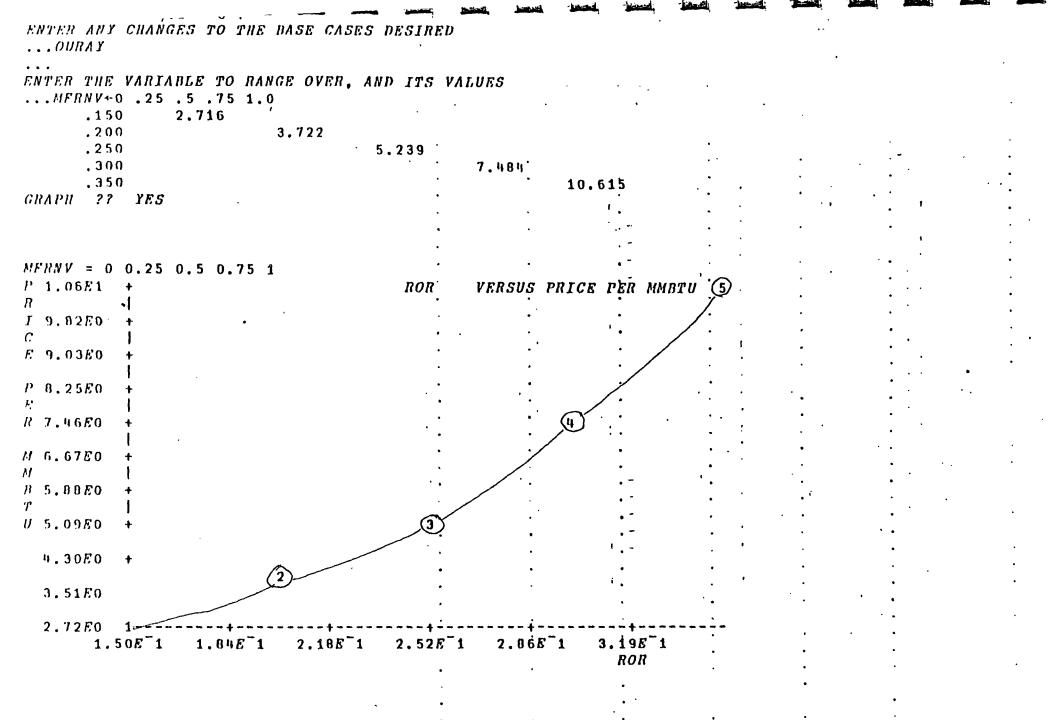
÷

.

Physical Science I disciplination

۰.

INVESTORS RESOURCE INVESTMENT (MFRNV) vs. INVESTORS RATE OF RETURN ON INVESTMENT (ROR)


One of the many considerations which a developer must take into account when considering an investment is what the rate of return requirements will be for a given investment level. In theory, the higher the investment for a particular developer, the higher the perceived risk, and hence the higher the required rate of return. The output here shows the possible impact on the price charged given that an increasing research investment induces a higher rate of return requirement. The policy conclusion is that, if through publicly financed reservoir confirmation a lower return on investment to the developer can be effected, the required price may drop by as much as 290%.

The MFRNV multiplier is used to act on a preset Research Investment of \$1.0 million per site. Thus, a 0.5 value is translated into an investment of \$500,000, and 1.0 is \$1.0 million. For some of the sites we analyzed, we used as much as \$2.5 million for the Research Investment.

MRFNV	ROR	PRICE S IMMBTU
.0 .5	. 15 . 25	2.716 5.239
1.0 A Divestrunt in Resource by Por Dev.	.35 Rate of Return for Put Deo R. and I	10.615

3.

Physical Series

4. GEOCRED (Geothermal/Tax Credit)

GEOCRED .I	Price 9.60	<u>%∆</u>
. 2	8.79	8.4
.3	8.19	6.8
. 4	7.49	8.5
.5	6.82	8.9

GEOCRED is defined in BTHERM as the tax credit rate which applys to the geothermal investment. The obvious policy conclusion is that public sector adjustments or increments in this tax credit rate would serve to diminish the effective price to consumers and thereby maximize the potential savings to consumers.

	CHANGES	το τμε. Ι	BASE CASE	rs. des	IRFD	<u>ب</u>	• •	4 I	ı	• .		1 · · ·		
GLOBE	- •		•	•	•	Ŧ		•	•	· . *		· · ·		
GEOCR	E PRIC	E PER MMI	nTU .	•			•	•		• •		• •	·	
0.1	•	9.6 .		•	:	•	,		•	••	,	• •		
0.2		8.79 ·			•	•	•		;					
0.3		8.19 .	:	• .				. •	;	11	i 1			
0.4	• •	7.49.		•	. •	ι.	;	. :		; :	. :	• •		
0.5	. 1	6.82		•	•	: •	, , , ,	÷ :	1	1 2 1	•			
■ TEMP+8		#+µ200 ₽	POP+7800	י. ת שר	57+21	w <i>T.</i> /	, T+29'1	. nEch+	3010	н. М.				
PHDI+.96										[~] i.	,	1.		
GRAPH OF	GEOC	RE VERS	US PRICE	PER M	MBTU ?	2 1	YES	• - r :	•	* : 	• •	1	1	
				• .	•		, ,		•••		;			
				• •				••	ι.	· · ·		i		
		•		•	aroa	nr	Venclu		neb		i .	4 J		
P 9.60E0 R	- *	. •	:	•	<i>GEOCI</i>	nn;	VERIOL	F PRICE	PRIC	ммвти		1.7		
I 9.32E0						•) (ì			••		
C		\sim $^{+}$	۰ د		•	1.	i.		1		•			
C E 9.04E0	+	·· 🔪 .				:		:			•			
				• •				1		1	•			
P 8.76E0	÷ ;	•	*	. •	1.4	1 .	. :		•	,		i	-	
E .	.1 ;	. •		•	۰.	• i	1	i.	:			11		
R 8,49E0	. +			· ·	1 - 1	• •	•	.	:	• • *	:		•	۰.,
M 8.21E0		•		• >			•		•	•••	•	11 2		
4 0.2180 M		•	:						J	•	. .	• •	•	
R 7.93E0	·' i		:	•		~		1 1.	•	1.	• 2	i I . I I	ς.	
7.*		•	•	• • •	•			• •	•	, : [•			•	
U 7.65Ė0	+	•	•	•	ι.				1.	11.	i .			
		•	i	•.;	:	,	. i	*	1 .					
7.38 <i>E</i> 0	+ :	. I •		•		•	• •		<u> </u>			•		
	. ! •	· ·	•	•	: .	· ·	•			i .	j	1.1		
7 1000				•	•		•	•	. `	<u> </u>				
7.10E0	+ .	•		_	•	-								

Priyacal Logince Lab. water y

...

N

``

1

۰.

5. RI (Real Price Increase)

RI	2020 Savings (000)	<u>%∆</u>
.04	21,992	
. 05	36,366	65.3
.06	55,536	52.7
.07	76,450	37.6
.08	97,523	27.5

The savings which accrue to consumers is a function of the price of geothermal energy, the price of the alternate fuel, the rate of real increase in the price of the alternate fuel, and the quantity consumed. At a slower real growth rate in the price of alternate fuels the savings which accrue as a result of the price differential are much smaller than they would be at a higher growth rate. Where,

Savings 2020 = (PALT₂₀₂₀ x Q₂₀₂₀) - (PGEO₂₀₂₀ x Q₂₀₂₀)

and $PALT_{2020}$ is a direct function of R.I.

Also, given that RI is the main determinant of PALT in time period t $(PALT_t = PALT \times (1 + RI)^t)$ the RI is the main determinant of the year in which geothermal will become price competitive and hence "on line". Note: "Year on Line" in the Cost and Benefit Summary's.

ENTER THE MULTIVALUED VARIABLE AND ITS VALUES RI+.04.05.06.07.08 (Fried or Rat Discrede) ENTER ANY CHANGES TO THE BASE CASES DESIRED DURANGO PALT+2.80 PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$5,866,000 \$2,020,000 \$2,425,000 \$617,000 \$0' \$2,014,000 NET SAVINGS THROUGH YEAR: 1990 2000 2020 \$0 \$5,991,000 \$21,992,000 PRICE OF GEO: \$3.94 PRICE OF ALT FUEL: \$2.80 YEAR ON LINE: 1991 PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$6,554,000 \$2,256,000 \$2,733,000 \$690,000 \$0 \$2,249,000	
PALT+2.80 PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$5,866,000 \$2,028,000 \$2,425,000 \$617,000 \$0' \$2,014,000 NET SAVINGS THROUGH YEAR: 1990 2000 2020 \$0 \$5,991,000 \$21,992,000 PRICE OF GEO: \$3.94 PRICE OF ALT FUEL: \$2.80 YEAR ON LINE: 1991 PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$6,554,000 \$2,256,000 \$2,733,000 \$690,000 \$0 \$2,249,000	
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$5,866,000 \$2,028,000 \$2,425,000 \$617,000 \$0' \$2,014,000 NET SAVINGS THROUGH YEAR: 1990 2000 2020 \$0 \$5,991,000 \$21,992,000 PRICE OF GEO: \$3.94 PRICE OF ALT FUEL: \$2.80 YEAR ON LINE: 1991 PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX 'TAX CREDIT ROYALTY' STATE TAX ST SALES TAX PROPERTY TAX \$6,554,000 \$2,256,000 \$2,733,000 \$690,000 \$0 \$2,249,000	
FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$5,866,000 \$2,028,000 \$2,425,000 \$617,000 \$0' \$2,014,000 NET SAVINGS THROUGH YEAR: 1990 2000 2020 \$0' \$5,991,000 \$21,992,000 PRICE OF GEO: \$3.94 PRICE OF ALT FUEL: \$2.80 YEAR ON LINE: 1991 PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$6,554,000 \$2,256,000 \$2,733,000 \$690,000 \$0' \$2,249,000	
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226 COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$6,554,000 \$2,256,000 \$2,733,000 \$690,000 \$0 \$2,249,000	
COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$6,554,000 \$2,256,000 \$2,733,000 \$690,000 \$0 \$2,249,000	
COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX * TAX CREDIT ROYALTY * STATE TAX ST SALES TAX PROPERTY TAX \$6,554,000 \$2,256,000 \$2,733,000 \$690,000 \$0 \$2,249,000	
NET SAVINGS THROUGH YEAR: 1990 2000 2020 \$499,000 \$10,784,000 \$36,366,000 1 PRICE OF GEO: \$3.94 PRICE OF ALT FHEL: \$2.80 YEAR ON LINE: 1990	
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226	~~
COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX '\$8,166,000 \$2,790,000 \$3,460,000 \$860,000 \$0 \$2,801,000 NET SAVINGS TUROUGH YEAR! 1990 2000 2020 PRICE OF GEO: \$3,94 PRICE OF ALT FUEL: \$2.80 YEAR ON LINE: 1988	
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.226	
COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL. FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERTY TAX \$8,166,000 \$2,790,000 \$3,460,000 \$860,000 \$0 \$2,801,000 NET SAVINGS THROUGH YEAR: 1990 2000 2020 \$3,133,000 \$24,049,000 \$76,450,000	i L

••• •

1

 $\sum_{i=1}^{n}$

 γ

~

-

 $\overline{}$

 $\hat{}$

7

 $\hat{}$

۰,

.``

Ņ

ĥ

`; `

۰.

(ر

6. Syn (Synthetic Price Limit)

٢

The price competetiveness of synfuels is highly dependent upon the price of oil. Speculations indicate that when the price of oil reaches \$50 per barrel then the synfuel will become economically competitive and hence on line. The model B-THERM makes provision for the introduction of synfuels into current energy markets and assumes that whatever value that a particular user desires as a "synfuel limit" thereafter the savings growth rate ceases for geothermal users. Also, at the interception in time of the price growth rate of oil and the assumed price floor where synfuels become competitive, retrofitting and conversion to utilize geothermal energy will cease.

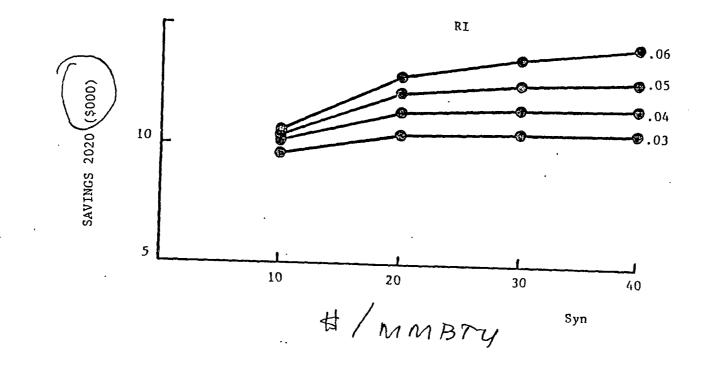
Savings 2020 (\$000)

	Syn			
RI	10	20	30	40
.03	4,795	5,407	5,410	5,410
.04	5,095	6,346	6,508	6,510
.05	5,305	7,203	7,676	7,820
.06	5,456	7,958	8,799	9,179

RUN THE DATE IS 20 DEC 1979, TIME 10:25 ENTER THE MULTIVALUED VARIABLE AND ITS VALUES	
ENTER THE MULTIVALUED VARIABLE AND ITS VALUES	
•••SYN+10 20 30 40 ENTER ANY CHANGES TO THE BASE CASES DESIRED	
EASTMILLCREEK	
···PALT+7.12	
	,
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.123	
COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL.	
FED TAX TAX CREDIT ROYALTY STATE TAX ST SALES TAX PROPERT.	Y TAX
\$34,840,000 \$11,075,000 \$7,584,000 \$2,905,000 \$8,039,000 \$11,583,0	000
NET SAVINGS THROUGH YEAR: 1990 2000 2020	
\$19,130,000 \$32,696,000 \$40,293,000 PRICE OF GED: \$8.21 PRICE OF ALT FUEL: \$7.12 YEAR ON LINE: 1984	
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.123	
COST AND BENEFIT SUMMARY (1980 - '2020), DISCOUNTED AT COST OF CAPITAL.	
FED TAX TAX CREDIT ROYALTY 'STATE TAX ST SALES TAX PROPERT'	Y TAX
\$34,840,000 \$11,075,000 \$7,584,000 \$2,905,000 \$8,039,000 \$11,583,0	000
NET SAVINGS THROUGH YEAR: 1990 2000 2020	1
\$59,078,000 \$148,042,000 \$198,056,000 ' PRICE OF GEO: \$8.21 PRICE OF ALT FUEL: \$7.12 YEAR ON LINE: 1984	•
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.123	
COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL.	
FED TAX TAX CREDIT ROYALTY' STATE TAX ST'SALES'TAX PROPERTY	Y TAX
\$34,840,000 \$11,075,000 \$7,584,000 \$2,905,000 \$8,039,000 \$11,583,0	000'''
NET SAVINGS THROUGH YEAR: 1990 2000 2020	
\$59,078,000 \$185,209,000 \$277,640,000 PRICE OF GED: \$8.21 PRICE OF ALT FUEL: \$7,12 YEAR ON LINE: 1984	
PENALTY FACTOR FOR LOW TEMPERATURE IS: 1.123	
COST AND BENEFIT SUMMARY (1980 - 2020), DISCOUNTED AT COST OF CAPITAL.	
FED TAX TAX CREDIT .ROYALTY 'STATE TAX ST SALES TAX' PROPERTY	Y TAX
\$34,840,000 \$11,075,000 \$7,584,000 \$2,905,000 \$8,039,000 \$11,583,0	
NET SAVINGS THROUGH YEAR: 1990 2000 2020	م ^م م ^م م
\$59,078,000 \$189,591,000 \$322,426,000 PRICE OF GEO: \$8.21 PRICE OF ALT FUEL: \$7.12 YEAR ON LINE: 1984	
THEOD OF HEDE 40.21 STATUS OF AND FUENT AT.12 JEAN ON DINET 1904	i Apartei Physical Seneri Laboratisty

7. 2020 SAVINGS, RI Versus Syn

11


Given a very high real growth rate in the price of conventional fuels the savings to consumers of geothermal energy will also be very high. These savings however will be checked by the introduction of synfuels into energy markets. Savings being equal to

Savings =
$$P \times Q_{(Alt, t)} - P \times Q_{(GEO, t)}$$

and $P \times Q_{(Alt, t)} = P \times Q_{(Alt, o)} \times (1 + RI)^{t}$

where Alt is the conventional or alternate fuel. The simplifying assumption is made that Q is relatively inelastic with respect to P. At some point in time after PALT is grown at some real rate a less expensive synfuel may enter the market. At this point savings to geothermal users are assumed to cease.

FINANCIAL FACTORS

ACIW = Required acreage for injection well ACPW = Required acreage for production well AHD = Average heat demand, residential and commercial AHE = Area of heat exhanger (Ft^2) AMOR = Amount of principal repaid in year t (amortization schedule) BR = bond rate (interest rate on borrowed money) CBA = Cost and Benefit summary (taxes, credits, consumer savings) CC = Total Conversion Costs CCC = Commercial conversion costs CCPCF = Commercial conversion cost per firm (used for pure commercial application only) CCRED = Commercial credit (20% of total geo-conversion costs) CHE = Cost of heat exchanger CITY = A combination of parameters used to show city developed geothemal energy CON = Construction time (years) CPIPF = Industrial hookup costs (per inch diameter per foot) CRHUC = Commercial ratio for hookup costs CRRFC = Commercial ratio for retrofit costs CSM = Citys share of money, i.e. not loan or grant DEPAMT = Amount of depreciation claimed in year t DEPRD = Depreciation schedule DES = Percent of investment for design costs DEV = Factor to allow selection of city developer or private developer D = Period of depreciation for drilling investment DINV = Distribution investment DF = Discounting Factor (Set to zero to get nominal values, otherwise cost of capital) DK = Debt portion of capital investment DNV = Drilling investment DPAC = Leasing cost per acre (dollars) DVP = Development time (years)

ELECQ = Electricity quantity per year, Kwh EK = Percent of equity financing EXP = Exploration time (years)

FTXRT = Federal tax rate (currently 46% minimum)

GEOCRED = Geothermal (energy) tax credit rate (terminates by 1986) GR = Growth rate of geothermal price

HEC = Heat exchanger coefficient HUC = Hookup cost to bring hot water from street into building HUCC = Total commercial hookup cost HUCI = Industrial hookup costs HUCPA = Hookup cost per apartment HUCPH = Hookup cost per home HUCR = Total residential hookup cost

ICRED = Total investment tax credit IDE = Intangible drilling expense in year t INV = Equity portion of total project investment ITRNV = Intercept of transmission investment curve INTP = Interest costs per year IWCOST = Injection well cost (function of production well cost)

LAMDA = Royalty rate (percent of gross income) LNV = Leasing investment

MC = Factor to compute management fee for city development as a function of investment MFC = Multiplication factor for hookup and retrofit costs (scaling factor) MFCCC = Multiplication factor for commercial conversion cost MFCCPCF = Multiplication factor for commercial application cost per commercial firm (used only for pure commercial application) MFCHE = Multiplication factor for cost of heat exhanger MFDINV = Scaling factor DINV MFRNV = Multiplication factor for research investment MFSAVE = Multiplication for savings


```
NEGFEE = Negotiable fee as a percentage of ROI
NG = New growth flag, NG = 1 for new growth only, NG = 0 for all population
NPVCB = Net present value of investment, discounted at capital cost
```

OCE = Percent of drilling costs which constitute operating expenses OCP = Percent of drilling and plant costs which constitute operating expenses OCTAX1 = Other taxes during period T1 OXTAX2 = Other taxes during period T2

PALT = Price of cheapest available conventional fuel PC = Base year percentage of operating cost as a function of investment PCD = Operating costs as a percent of drilling investment PCI = Operating costs as a percent of total industrial investment PCOC = Percent operating cost (function of TNV) PDCRED = Private developer credit PFFLT = Penalty factor for low temperature resource PIWCR = Production injection well cost ratio PLV = Plant investment (does not include drilling) POPG1 = Population growth for the period of T1 POPG2 = Population growth for the period of T2 POPGIT = Multiplier for population growth POPI = Estimated industrial growth/year PPKWH = Price per kilowatt hour PPY = Preproduction years PREG = Price of regulated fuel PRINP = Principal payments per year (loan repayment) PRIV = Private developer PR1 = Price based on R1P is based on PR2 = Price based on R2weighted average PTX = Property taxes PTXR = Property tax rate R1 = Rate of return required by developer for first 15 years R2 = Rate of return required by developer for remaining years

RC = Gross revenue REALG = Growth rate for investments REGCRED = Regular tax credit rate

RESCRED = Credit amount per dwelling RFC = Total retrofit costs RFCC = Commercial retrofit costs RFCI = Retrofit cost for industry RFCR = Residential retrofit costs RFCMI = Multiplication factor for industrial retrofit RG = Real growth rate in investment and operating costs per year RFCPA = Retrofit cost for apartment RFCPH = Retrofit cost for home RI = Escalation of energy price over time (real price growth) RNV = Research investment ROI = Return on investment (divided into R1 and R2 time periods) ROY = Amount of royalty paid per annum (Divided into R1 and R2 time periods) SKP = Number of years between heating districts SPECCRED = Special tax credit (residential and commercial property owners) SSTXR = State sales tax rate STK = Heating district inclusion flag, STK = 1 do include heating district, STK = 0 no heating district ST1 = State tax paid under R1 ST2 = State tax paid under R2STRNV = Slope of transmission investment curve STXRT = State tax rate SYN = Synfuel price ceiling T = Project life in years TAX = Income tax total (Divided into TAX1 and TAX2 time periods) TCB = Tax cost base for calculating depreciation amount and allowable depletion amount TNV = Total investments TRNV = Transmission investment TSPOPI = Multiplier for industrial growth TVC = Variable costs (maintenance, tax depreiation etc.) T1 = Number of years to apply POPG1 T2 = Number of years to apply POPG2

VARG = REALG as a vector of multipliers VARI = RI as a vector of multipliers

1 1 1 And a second sec (here a Ĩ

WCOST = Production vell cost

Y = Tangible investment percentage YEAR = Year in which PLV occurs (user input, otherwise PPY-1) Z = Depletion allowance rate

> · · · · · · · · · · · ·

ENERGY AND HOT WATER REQUIREMENT

CDR = Commercial demand

and the second

السقطيمية ذ

- CF = Commercial factor for ratio between commercial and residential energy consumption derived separately for each city
- CRHWD = Percent factor for commercial hot water demand, fraction of commercial space heating demand as simplifying assumption

DEGD = Degree days heating required of the community

DEPTH = Depth to hot water resource

DDDEPTH = Drawdown depth during well operation

DESF = Engineering factor, to provide for safety margins

DIST = Distance from resource to use point in decimal miles

DT = Difference between ambient inside temperature (65°F) and LT, lowest mean outside temperature

E = Correction factor for fraction of steam available

FR = Flow rate of each production well (lbs/hr)

HADD = Heat demand for apartments $(BYU's/hr/\Delta^{\circ}F)$ HDS = Heating district size HHDD = Heat demand for home $(BTU's/hr/\Delta^{\circ}F)$ HWD = Total hot water demand, residential plus commercial HWDC = Hot water demand commercial (lbs/hr) HWDR = Hot water demand residential (lbs/hr) HWLBH = Hot water (lbs/hr) needed at given temperature HWLBHI = Industrial hot water demand (lbs/hr)

ISS = Injection well success ratio ITD = Intercept temperature drop ITPD = Intercept of transmission pipe diameter (inch)

LF = Load factor (percent of time system used) LT = Mean low temperature (for specific site)

MFTPD = Multiplication factor for transmission pipe diameter

NHRS = Hours of operation per annum (Industrial only) NIW = Number of new injection wells NPW = Number of new production wells

PA = Percent of population in apartments as opposed to homes PCRHW = Per capita residential hot water demand (lbs/hr) PDROP = Percent drop in temperature per mile of transmission PH = Percent of population in homes as opposed to apartments PHD = Peak space heating demand for residential and commercial sector PHDC = Peak commercial space heating demand PHDI = Industrial heat demand BTU's/year PIR = Ratio of production to injection wells POP = Population of area to be served PPD = People per dwelling PPHD = Peak residential space heating demand (BTU's/hr) PSD = Plant to street distance in feet PSS = Production well success ratio

RIW = Required injection wells RPW = Required production wells

SF = Steam fraction
STD = Slope of temperature drop
STPD = Slope of transmission pipe diameter (inch)

TD = Usable temperature drop TE = Effective temperature TEMP = Temperature of the resource TG = Thermal gradient of site (°F/100 ft) THD = Total average heat demand TPD = Transmission pipe diameter (inch) TPHWD = Total peak hot water demand

UTD = Différence between ground water temperature and required temperature

WL = Well life

1 ⁻¹ -	RUN THE DATE IS 17 JAN 1980, PIM ENTER THE MULTIVALUED VARIABLE AN	
62	 ENTER ANY GHANGES TO THE BASE CAS TAMM BR★.12×MFBNV←.5×R1+R2+.3×DEV+D	
	PENALTY FACTOR FOR LOW TEMPERATURY	7 <i>IS</i> : 1.035
	PRICE OF ADTERNATE FUEL \$10.00 INVESTMENT COS:	rs .
		VET PRESENT VALUE DUNTED AT COST OF CAPITAL
0		
	RÉSEARCH INVESTMENT 🕺	420,148
0	DESIGN	26,440
· · ·	MANAGMENT FRE	0.
	WELLS	103,184
6.	TRANSMISSION	114,211
а.,	DISTRIBUTION:	
	RESIDENTIAL RETROFIT	32,927
	RESIDENTIAL HOOKUP	11,525
	COMMERCIAL CONVERSION	0
	INDUSTRIAL CONVERSION	Õ
$\langle \cdot \rangle$	HEAT EXCUANGERS	15,490
1,1	CENTRAL SYSTEM	32,561
Cr	TOTAL 5	756,483
	PRICE PER MILLION BTU: \$9.55	· ·
٠		■ PA+1 = PH+0 = POP+750 = POPG1+.1 = MFC+.25 = MFDINV+.075 = PCRHV+40 =
<		MFRNV+.5 # R1+R2+.3 * DEV+DPO+1 *
ζ.	ı	-

.

,

4

٠.

•