
 4 467

USER'S GUIDE TO THE

ALTERNATIVE FUELS DATA BANK

APRIL 1979

TABLE OF CONTENTS

INTRODUCTION 1
DATA BASE DESCRIPTION 1
AFDB ACCESS PROCEDURE 2
SOURCE DOCUMENT COVERAGE- 3
APPENDIX I - AFDB KEYKORD GLOSSARY 5
APPENDIX II - SAMPLE SEARCH OF PUBLICATION FILE 14
SAMPLE SEARCH OF CURRENT RESEARCH FIIE 18
SAMPLE SEARCH OF TOPICS FILE- 22

ALTERNATIVE FUELS DATA BANK

Introduction

The Department of Energy's Bartlesville Energy Technology Center (BETC) with the support of the Transportation Energy Conservation Division has established an information system that is designed to provide rapid access to information concerning alternative fuels for transportation uses. This information system is in the form of a data base which operates on the PDP 11-70 computer located at BETC. This document is intended to provide the user with sufficient instructions to effectively use the system via remote terminal/commercial telephone access.

Data Base Description

The Alternative Fuels Data Bank (AFDB) contains bibliographical information of publications and summaries of current research activities that deal with the use of fuels from non-petroleum sources and nonconventional fuels from petroleum sources in transportation applications. The information that is to be stored in the data base is collected by BETC personnel; screened to assure the material pertains to the subject area; coded by assigning keyword statements that characterize the information; and entered into the central computer at BETC. The stored information can then be retrieved by matching the descriptive keyword statements, supplied by the individual requesting the information, with the keyword statements stored with each item of data in the data base. The response from the information system is in the form of printed reports that list bibliographical information, and a short synopsis of pertinent publications, and/or summaries of current research activities. The information in the data base is divided into three major areas: publications, current research, and topics. The method for coding and retrieving the information in each of these areas is slightly different. The information in the "publications" file is coded and retrieved by selecting the appropriate keywords in the following categories:
a. Type of fuel (methanol, ethanol, etc.--listed in Table 1 of Appendix 1)
b. Type of application or investigation (engine tests, fleet study, etc.-listed in Table 2 of Appendix I)
c. Object of investigation (fuel economy, emissions, etc.--listed in Table 3 of Appendix I)
d. Degree of detail (review, bibliographical survey, etc.--1isted in Table 4 of Appendix I)
e. Last name of primary author (Adelman, Adt, Allsup, etc.--open to search for any author specified)
f. Year of printing (00-99--open to any year specified)
g. Author's affiliation (ARCO, Argonne, APIUC, etc.--listed in Table 5 of Appendix I)

The information in the "current research" file is coded and retrieved by selecting the appropriate keywords in the following categories:
a. Type of fuel (ethanol, broadcut, methanol, etc.--listed in Table 1 of Appendix I)
b. Type of investigation (engine tests, fleet study, etc.--listed in Table 2 of Appendix I)
c. Objective of investigation (fuel economy, emissions, combustion characteristics, etc.--listed in Table 3 of Appendix I)
d. Performing organization (ARCO, Argonne, BETC, etc.--listed in Table 5 of Appendix I)
e. Last name of principal investigator (Adt, Adelman, Bernhardt, etc.-open, no listing)
f. Sponsoring organization (DOE-TEC, State of California, APIUC, etc.-listed in Table 6 of Appendix I)
g. Level of funding (dollar amount listed for the current fiscal year; e.g., \$400,000, \$200,000--open, no listing)

The third information file "topics" is comprised of a collection of information on a particular subject. The information is not coded or retrieved using keywords, but rather once the program to select a topic is called, a display of topic titles with serial numbers is displayed. The user selects the serial number associated with the particular topic of interest, and the computer will produce a copy of the preloaded discussion of that particular subject.

AFDB Access Procedure

Remote terminal access to the data base can be made using a computer terminal that will operate at 300 baud rate (30 characters per second) and is equipped with an acoustical coupler. The access procedure is outlined as follows:
a. Turn terminal on and set the terminal for 300 baud rate, full duplex.
b. Dial 918-336-1051.
c. Check for carrier signal tone after your call is answered.
d. Place receiver into the acoustical coupler cradle; carrier signal light should be on, signifying that your terminal is on line.
e. Sign onto the computer using your assigned user identification code by typing "Hello XXXXXX" (substitute the assigned user identification code for "xxxxxx").
f. The computer will then prompt the user for a password. (The password and appropriate user identification code will be supplied upon request.)
g. Call the appropriate program for the particular file you wish to access. (i.e., "@BILDIT" for publication and current research, or "@PRTSELTOP" for topics)
h. Conduct your search according to the procedure illustrated in Appendix II using keyword codes specified in Appendix I. The computer will prompt the user to select keywords in each subject area.
i. Once the search is complete, sign off by typing "BYE" and pressing the carriage return key.
j. Remove the telephone receiver from the acoustical coupler and replace the receiver on the telephone.

Access to the data base via remote terminal access is available 24 hours a day, seven days a week, except for Monday morning from 8:00 a.m. to 12:30 p.m. CST (or CDT), or in the event of a computer outage. Any difficulties encountered when trying to access the system or when making a search, should be referred to Ken Stamper at 918-336-2400, ext. 258 (FTS: 735-4258).

Source Document Coverage

Data, announcements of new publications, announcements of new contracts, publications, and information describing research activities pertinent to the Alternative Fuels Data Bank are gathered from a number of diverse sources. Those source documents that are reviewed on a regular basis include:
a. Periodicals

1. Chemical and Engineering News
2. Commerce Business Daily
3. Automotive Engineering
4. $O 11$ and Gas Journal
5. Progress in Energy Combustion Science
6. Fuel
7. Combustion
b. Abstract Service Publications
8. Energy Conservation Update
9. Fossil Energy Update
10. SAE Transactions
11. Petroleum Refining and Petro Chemicals Section of API Abstracts/ Literature
c. Technical Society Papers
12. Society of Automotive Engineering Papers
13. American Chemical Society Papers
d. Symposium and Conference Proceedings
14. International Alcohol Fuel Technology Symposia
15. DOE Highway Vehicle Systems Contractor Coordination Meetings
e. Newsletters
16. Air and Water News
17. Energy Digest
18. Energy Research Digest
f. Project Progress and Final Reports
19. DOE-TEC Contractors
20. Co-operative Contractors working in related areas

APPENDIX I

AFDB GLOSSARY OF KEYWORDS

TABLE 1: Type of Fuel - Keywords for Category "a" of the Publications File and Category "a" of the Current Research File.

1. Broadcut Keyword Code: BROADCUT. Any petroleum derived, or nonpetroleum derived hydrocarbon liquid with a boiling range wider than conventional distillate fuels; i.e., $150^{\circ} \mathrm{F}$ to $600^{\circ} \mathrm{F}$.
2. Coal
3. Emulsion
4. Ethanol
5. Ethanol-Blend
6. Ethers
7. Hydrogen
8. Methanol
9. Methanol-Blend
10. Synthetic Fuels from Coal

Keyword Code: ETOH BLEND. A blend of petroleum derived or non-petroleum derived hydrocarbon fuel and ethyl alcohol; i.e., either blended and stored in a single tank or dynamically blended from two tanks.

Keyword Code: ETHER. Any ether used in pure form or blended with hydrocarbon liquid; typically, methyl-tertiary butyl ether.

Keyword Code: MEOH. Neat (pure) methyl alcohol.
Keyword Code: MEOH BLEND. A blend of petroleum derived or a non-petroleum derived hydrocarbon fuel and methyl alcohol; either blended and distributed as a single liquid or delivered to the engine as two separated fuels and dynamically blended in the intake system or combustion chamber.
10. Methyl Fuel Keyword Code: METHYL FUEL. A commercial process grade methyl alcohol; typically, the major constituent is methyl alcohol with smaller concentrations of higher alcohols either blended with a hydrocarbon fuel or used in the pure form.
Keyword Code: COAL. Pulverised coal suspended in a hydrocarbon liquid.

Keyword Code: EMULSION. A liquid fuel system containing a hydrocarbon liquid and a water or alcohol (not normally miscible), one of which is dispersed as globules in the other.

Keyword Code: ETOH. Neat (pure) ethyl alcohol or fuel grade ethyl alcohol.

> Keyword Code: HYDROGEN. Hydrogen used in pure form.

Keyword Code: SYNFUEL/COAL. Any liquid hydrocarbon fuel derived from coal either in the unrefined form or refined form, straight, or blended with a petroleum derived stock; i.e., Sasol and Fischer-Tropsch liquids.
12. Synthetic

Fuels from Shale
13. Synthetic Fuels from Waste
14. Tertiary Butyl Alcohol

Keyword Code: SYNFUEL/SHALE. Any 1iquid hydrocarbon fuel derived from oil shale, either in the unrefined or refined form, straight, or blended with a petroleum derived stock.

Keyword Code: SYNFUEL/BIOMASS. Any liquid fuel produced from renewable sources; i.e., animal or plant wastes, agricultural or forest materials used in blends with hydrocarbon liquids or in neat form.

Keyword Code: TBA. Tertiary butyl alcohol either blended with a petroleum derived liquid or in the neat form.

APPENDIX I
(cont'd)
AFDB GLOSSARY OF KEYNORDS
TABLE 2: Type of Investigation - Keywords for Category "b" of the Publications File and Category " b " of the Current Research File.

1. Combustion Keyword Code: COMBUSTION. Combustion bomb studies. Characteristics
2. Engine Tests Keyword Code: ENGINE. Engine tests from an engine dynamometer, including tests on multicylinder spark ignition and compression ignition engines, stratified charge engines, gas turbines, single cylinder (CFR, CLR) engines, distinguished from those tests made with the engine in a vehicle.
3. Fleet Study Keyword Code: FLEET STUDY. Chassis dynamometer or road tests in which one or more vehicles are used regardless of engine type.
4. Large Scale Keyword Code: UTILIZATION. Studies in which scenarios of large Utilization Plans
5. Miscellaneous Keyword Code: MISC. Health, safety, toxicological, and environmental impact studies.
6. Physical Keyword Code: PROPERTIES. Alternative fuel chemical and Properties physical properties studies; i.e., solubility in a petroleum blend, corrosion characteristics, sulfur and/or nitrogen content, and boiling range.
7. Production Keyword Code: PRODUCTION. Manufacture and/or processing of alternative fuels.
8. $\frac{\text { Refinery }}{\text { Schemes }}$
Keyword Code: REFINERY. Investigations of the adjustments that must be made in the petroleum processing that will allow addition of the alternative fuel to the finished refinery product. Also, those adjustments which must be made to the processing equipment in the refinery to accomodate the addition of an alternative fuel to the refinery feedstock.

APPENDIX I
(cont'd)
AFDB GLOSSARY OF KEYWORDS

```
TABLE 3: Objective of Investigation - Keywords for Category
    "c" of the Publications File and Category "c" of
    the Current Research File.
```

1. Combustion Keyword Code: COMBUSTION. Basic combustion study results

Characteristics
from tests on alternative fuels; i.e., flame speeds, peak temperatures, flame luminosity, heating value, and com-bustion-chamber-pressure measurements.
2. Development Keyword Code: DEVELOPMENT. Engine, fuel or fuel production, or fuel processing developments or innovations that promote the effective utilization of alternative fuels.
3. Distillation Keyword Code: DISTILLATION. Distillation data or distillation curves generated from tests on alternative fuels or alternative fuel blends.
4. Distribution Keyword Code: DISTRIBUTION. Fuel distribution in the intake system of a particular engine or bulk fuel distribution in shipping fuels from manufacturers and processors to distribution points.
5. Driveability Keyword Code: DRIVEABILITY. User assessment vehicle performance, both those from CRC driveability tests and routine vehicle operation, using alternative fuels.
6. Durability Keyword Code: DURABILITY. Assessments of engine, vehicle, or emission control component life when using alternative fuels.
7. Economics
8. Efficiency
9. Emissions
10. $\frac{\text { End-Use }}{\text { Influences }}$

Keyword Code: ECONOMICS. Relative costs associated with the production, processing, and/or utilization of alternative fuels.

Keyword Code: EFFICIENCY. Engine fuel consumption and power characteristics, engine thermal efficiencies, or manufacturing and process efficiencies.

Keyword Code: EMISSIONS. Engine or vehicle exhaust pollutant emissions.

Keyword Code: END-USE. Effects of using alternative fuels in engines or vehicles on vapor lock tendencies, cold start difficulties, and engine deposits.

11.	$\frac{\text { Environmental }}{\text { Impact }}$	Keyword Code: ENV IMPACT. Assessments of the environmental impact of processing and using alternative fuels; i.e., the impact of fuel spills, or pollutant emissions associated with use of alternative fuels.
12.	$\frac{\text { Evaporative }}{\text { Emissions }}$	Keyword Code: EVAP. Evaporative hydrocarbon emission test results from EPA shed tests.
13.	Fuel Economy	Keyword Code: ECONOMY. In use fuel economy or fuel economy data from chassis dynamometer tests of one or more vehicles operating on alternative fuels.
14.	$\frac{\frac{\text { Hydrocarbon }}{\text { Characteri- }}}{\text { zation }}$	Keyword Code: HC. A detailed analysis of the hydrocarbon composition of unburned fuel in the exhaust of an engine or vehicle operating on alternative fuels.
15.	$\frac{\text { Materials }}{\text { Compatability }}$	Keyword Code: MATERIALS. Assessments of corrosion, swelling, hardening, etc. of materials in the fuel supply and distributing systems that come into contact with the alternative fuel.
16.	Octane Numbers	Keyword Code: OCTANE. Octane ratings (research and/or motor) of neat alternative fuels or alternative fuels blended with petroleum base stocks.
17.	$\frac{\text { Parametric }}{\text { Studies }}$	Keyword Code: PARAMETRIC. A study of the influence of engine operating parameters (i.e., for a spark ignition, spark timing, A/F and/or exhaust gas recirculation rate) on fuel consumption and emissions characteristics of an engine or vehicle operating on alternative fuels.
18.	Road Octane	Keyword Code: ROAD OCTANE. Octane measurements made with the vehicle operating either on a chassis dynamometer or on a test track on an alternative fuel (usually using the modified Uniontown technique).
19.	Safety	Keyword Code: SAFETY. Studies of special precautions and procedures necessary to insure the safe handling and experimentation of alternative fuels.
20.	Solubility	Keyword Code: SOLUBILITY. A study of the solubility of alternative fuels in petroleum based fuels; i.e., methanol/ gasoline/water solutions, etc.
21.	$\frac{\text { Temperature }}{\text { Effects }}$	Keyword Code: TEMPERATURE. A study of the influence of ambient temperature on the fuel economy and emissions consequence of using alternative fuel in vehicles. Also a study of the temperature drop in the intake air fuel charge due to evaporative cooling of the fuel.
22.	Toxicology	Keyword Code: TOX. A study of the health hazards associated with exposure to alternative fuels; i.e., TLV's, comparative toxicity values, etc.
23.	Vapor Pressure	Keyword Code: PRESSURE. A study of the vapor pressure characteristics of alternative fuels blended with petroleum based stocks.

```
APPENDIX I
(cont'd)
AFDB GLOSSARY OF KEYWORDS
```

```
TABLE 4: Degree of Detail - Keywords for Category "d" of
    the Publications File.
```

1. Review Keyword Code: 1. A review of published material from a limited number of sources.
2. Bibliographical Keyword Code: 3. A comprehensive review of published Survey material on a particular subject area from a wide range of sources.
3. Analytical Keyword Code: 5. Computer modeling or simulation of or Study prediction of test results from models.
4. Original Keyword Code: 7. Original data taken in an investigation. Experiment
5. Original Keyword Code: 9. Original data taken in an investigation In-Depth Experiment in which the experimental techniques were well defined and established, the equipment used, and the analyses of the data reflect the state of the art.

APPENDIX I
(cont'd)
AFDB GLOSSARY OF KEYTORDS

TABLE 5: Author's Affiliation or Performing Organization Keywords for Category " g " of Publications File and Category " d " of the Current Research File.

AFFILIATION OR PERFORMING ORGANIZATION KEYNORD CODE

1. Chrysler Corp. CHRYSLER
2. Ford Motor Co. FORD
3. General Motors GM
4. Volvo VOLVO
5. Volkswagen VN
6. Cummins CUMMINS
7. Carter Corp. CARTER
8. AMOCO - AMOCO
9. Chevron CHEVRON
10. Continental 011 Co. CONOCO
11. Exxon- EXXON
12. Getty -GETTY
13. Gulf GULF
14. Mobil -MOBIL
15. Phillips Petroleum Co. PHILLIPS
16. Shell SHELL
17. Sun Oil Co. SUN
18. Suntech- SUNTECH
19. Texaco TEXACO
20. Union Oil Co. UNION
21. Arco ARCO
22. Ashland ASHLAND
23. Agricultural Products Industrial Utilization Committee APIUC
24. Marathon- MARATHON
25. University of California, Berkley UCB
26. University of California, Livermore UCL
27. University of California, Los Angeles UCLA
28. University of Nebraska UN
29. Harvard -HARVARD
30. Massachusetts Institute of Technology -MIT
AFFILIATION OR PERFORMING ORGANIZATION KEYWORD CODE
31. University of Miami MIAMI
32. University of Michigan- MICHIGAN
33. University of Missouri MISSOURI
34. Santa Clara University SCU
35. Stanford University STANFORD
36. Texas A \& M TEXAS A \& M
37. Pennsylvania State University penn state
38. University of Minnesota -MINNESOTA
39. Society of Automotive Engineers SAE
40. American Petroleum Institute- API
41. Battelle Laboratories BATTELLE
42. Engineering Foundation EF
43. Institute of Gas Technology IGT
44. Math Science Northwest MSNW
45. Southwest Research Institute- SWRI
46. Southern Research Institute- SRI
47. U.S. DOE Argonne National Laboratory ARGONNE
48. California Air Resources Board- CARB
49. U.S. Environmental Protection Agency EPA
50. Brookhaven National Lab BNL
51. Mueller Associates MUELLER
52. Other OTHER
Work done in countries other than the U.S.A. by corporations that have not been specified above can be retrieved by the name of the country; i.e., keyword codes: BRAZIL, GERMANY, NEW ZEALAND, SWEDEN, JAPAN, ENGLAND, etc.
APPENDIX I(cont'd)AFDB GLOSSARY OF KEYWORDS
TABLE 6: Sponsoring Organization - Keyword Code for Category "f" of the Current Research File.

1. Agricultural Products Industrial Utilization	Keyword Code: APIUC
2. American Petroleum Institute	Keyword Code: API
3. Department of Energy, Transportation Energy	Keyword Code: DOE-TEC
Conservation Division	Keyword Code: EPRI
4. Electric Power Research Institute	Keyword Code: FRG
5. Federal Republic of Germany	Keyword Code: CAL

APPENDIX II

SAMPLE SEARCH OF PUBLICATIONS FILE

Once the link from the remote terminal is made with the computer (see AFDB access procedure) in Bartlesville, the information retrieval process for the publication file proceeds by the following:

1. Signing on the computer using the assigned user identification code
2. Typing the assigned password.
3. Calling the information retrieval program for the publications file "@BILDIT".

Once the retrieval program has been called, the user is asked to code his/her request using the keyword codes outlined in Appendix I. For example, if the user were looking for original published information on the subject of fuel economy of vehicles operating on methanol/gasoline blends, the coding process would go as follows:

Category a: Type of Fuel - Methanol blends implies MEOH BLEND.
Category b: Type of Application or Investigation - Vehicles implies FLEET STUDY.
Category c: Objective of Investigation - Fuel economy implies ECONOMY.
Category d: Degree of Detail - Original data implies 7 or 9 ; use 7. (since only one degree of detail can be used at one time, this keyword statement will use 7, the following will use 9)

Category e: Last Name of Primary Author - Unspecified.
Category f: Year of Publication - Unspecified.
Category g: Author's Affiliation - Unspecified.
OR (since two degree of detail classes were specified, the search will be made using two keyword statements linked with the Boolean logic expression "OR" which will collect records that satisfy either keyword statement)

Category a: Type of Fuel - Methanol blends implies MEOH BLEND.
Category b: Type of Investigation - Vehicle implies FLEET STUDY.
Category c: Objective of Investigation - Fuel economy implies ECONOMY.
Category d: Degree of Detail - Original experimental data; use 9.
Category e: Last Name of Primary Author - Unspecified.
Category f: Year of Publication - Unspecified.
Category g: Author's Affiliation - Unspecified.

The information retrieved with this coded request would appear as follows: (the underscored portions denote the user's response)
/HELLO XXXXXX (use the assigned user identification code in place of "XXXXXX") PASSWORD: \qquad

RSX-11M BL22 MULTI-USER SYSTEM

GOOD MORNING
20-APR-79 10:11 LOGGED ON TERMINAL TT25:
/@BILDIT
/PIP RETRIEVE.CMD/PU /!
/* RETRIEVE PUBLICATIONS [1] OR ONGOING RESEARCH [2]? [0 R:1-2]: $\underline{1}$
/RUN [225,1]BLDPUB
Enter TYPE OF FUEL: MEOH BLEND
Enter TYPE OF INVESTIGATION: FLEET STUDY
Enter OBJECTIVE OF INVESTIGATION: ECONOMY
Enter DEGREE OF DETAIL: 7
Enter LAST NAME OF PRIMARY AUTHOR:
Enter YEAR OF PUBLICATION:
Enter AUTHOR'S AFFILIATION: ENTER LOGICAL CONNECTOR FOR NEXT LINE. ENTER BLANK IF FINISHED.
OR
Enter TYPE OF FUEL: MEOH BLEND
Enter TYPE OF INVESTIGATION: FLEET STUDY
Enter OBJECTIVE OF INVESTIGATION: ECONOMY
Enter DEGREE OF DETAIL: 9
Enter LAST NAME OF PRIMARY AUTHOR:
Enter YEAR OF PUBLICATION:
Enter AUTHOR'S AFFILIATION:
ENTER LOGICAL CONNECTOR FOR NEXT LINE.
ENTER BLANK IF FINISHED.

DO YOU WANT THE BIBLIOGRAPHIES PRINTED IMMEDIATELY AFTER THEY ARE FOUND? [Y/N]:Y /!

```
/DTR @RETRIEVE
FINISH;READY FESR-PUBLICATIONS-DATA
FIND FESR-PUBLICATIONS-DATA WITH SERIAL NE "9999P" AND ((
((FUEL-01="MEOH BLEND" AND TYPE-01="FLEET STUDY" AND OBJ-01="ECONOMY" AND DEG-01="7") 0
(FUEL-02="MEOH BLEND" AND TYPE-02="FLEET STUDY" AND OBJ-02="ECONOMY" AND DEG-02="7") OR
(FUEL-03="MEOH BLEND" AND TYPE-03="FLEET SIUDY" AND OBJ-03="ECONOMY" AND DEG-03="7') OR
(FUEL-04="MEOH BLEND" AND TYPE-04="FLEET STUDY" AND OBJ-04="ECONOMY" AND DEG-04="7") OR
(FUEL-05="MEOH BLEND" AND TYPE-05="FLEET STUDY" AND OBJ-05="ECONOMY" AND DEG-05="7") OR
(FUEL-06="MEOH BLEND" AND TYPE-06="FLEET STUDY" AND OBJ-06="ECONOMY" AND DEG-06="7") OR
(FUEL-07="MEOH BLEND" AND TYPE-07="FLEET STUDY" AND OBJ-07="ECONOMY" AND DEG-07="7") OR
(FUEL-08="MEOH BLEND" AND TYPE-08="FLEET STUDY" AND OBJ-08='"ECONOMY" AND DEG-08="7")))
```

```
((FUEL-01="MEOH BLEND" AND TYPE-01="FLEET STUDY" AND OBJ-01="ECONOMY" AND DEG-01="9") OR
(FUEL-02="MEOH BLEND" AND TYPE-02="FLEET STUDY" AND OBJ-02="ECONOMY" AND DEG-02="9") OR
(FUEL-03="MEOH BLEND" AND TYPE-03="FLEET STUDY" AND OBJ-03="ECONOMY" AND DEG-03="9") OR
(FUEL-04="MEOH BLEND" AND TYPE-04="FLEET STUDY" AND OBJ-04="ECONOMY" AND DEG-04="9") OR
(FUEL-05="MEOH BLEND" AND TYPE-05='FLEET STUDY" AND OBJ-05="ECONOMY" AND DEG-05="9") OR
(FUEL-06="MEOH BLEND" AND TYPE-06="FLEET STUDY" AND OBJ-06="ECONOMY" AND DEG-06="9") OR
(FUEL-07="MEOH BLEND" AND TYPE-07="FLEET STUDY" AND OBJ-07="ECONOMY" AND DEG-07="9") OR
(FUEL-08="MEOH BLEND" AND TYPE-08="FLEET STUDY" AND OBJ-08="ECONOMY" AND DEG-08="9"))))
[12 records found]
SORT BY SERIAL:
! END OF FIND/SORT COMMANDS
:PRINT-SELECTED-BIBLIOGRAPHIES;
```


ALTERNATE FUELS DATA BANK
 BIBLIOGRAPHIES

SERIAL \# 0077P
bernhardt, W.e., and lee, w., "Engine performance and exHAUST EMISSIONS CHARACTERISTICS OF A METHANOL FUEL AUTOMOBILE," CHAPTER IN FUTURE AUTOMOTIVE FUELS, COLUCCI, J.M., AND GALLOPOULOS, N.E., ED., PLENUM PRESS, NEW YORK, 1977, PP 214-234.
SYNOPSIS: A SERIES OF ENGINE TESTS AND VEHICLE TESTS WERE RUN TO EVALUATE THE POTENTIAL OF METHANOL AS aN AUTOMOTIVE FUEL. THE ENGINE TESTS (WITH SPECIAL INTAKE MANIFOLD AND CARBURETOR) SHOW INCREASED POWER, THERMAL EFFICIENCY, REDUCED NOx EMISSIONS AND INCREASED ALDEHYDE EMISSIONS, WITH NEAT METHANOL COMPARED TO GASOLINE. THE COMPRESSION RATIO OF THE ENGINE WAS INCREASED FROM 9.7 TO 14 TO 1. THE RESULTS SHOWED INCREASED EFFICIENCY BUT ALSO REDUCED NOx AND ALDEHYDE EMISSIONS.

SERIAL \# 1004P
RICHARDSON, D., "EXHAUST EMISSIONS AND FUEL ECONOMY FROM VEHICLES USING ALCOHOL/GASOLINE BLENDS UNDER HIGH ALTITUDE CONDITIONS," U.S. EPA, OCT. 1978, 25 PP.
SYNOPSIS: THIS REPORT PRESENTS THE RESULTS OF CHASSIS
DYNAMOMETER TESTS OF 10 CURRENT PRODUCTION AUTOMOBILES OPERATING ON GASOLINE AND ALCOHOL/GASOLINE BLENDS. THE TEST FUELS INCLUDED INDOLENE, 10\% ETHANOL/INDOLENE BLEND, 20\% ETHANOL/INDOLENE BLEND, AND 10\% METHANOL/INDOLENE BLEND. EVAPORATIVE EMISSIONS TESTS SHOWED INCREASED evaporative losses during the hot-soak portion of the test.

BYE

/@ [EOF]
/BYE
HAVE A GOOD MORNING
20-APR-79 10:16 TT25: LOGGED OFF
/
TOTAL TIME : : 1644 MINUTES
CONNECT TIME : : 5 MINUTES
I/O COUNT : : 1482
CPU TIME : : 13S-43T
MEM. DEMAND : : 499E+3 KW*TICKS

APPENDIX II
 (cont'd)
 SAMPLE SEARCH OF CURRENT RESEARCH FILE

The information retrieval process for the current research file proceeds in a manner very similar to that for the publications file. The retrieval program for the current research file is called by typing "@BILDIT" after the user has established the link and has properly logged onto the system. As is the case with the publications file, the user is asked to code his/her request using the keyword codes outlined in APPENDIX I.

For instance, if the user were interested in knowing of projects that were developing information on fuel economy of vehicles operating on methanol/ gasoline blends, the coding process would proceed as follows:

Category a: Type of Fuel - Methanol/gasoline blends implies MEOH BLEND.
Category b: Type of Investigation - Vehicles inplies FLEET STUDY.
Category c: Objective of Investigation - Fuel economy implies ECONOMY.
Category d: Performing Organization - Unspecified.
Category e: Principal Investigators - Unspecified.
Category f: Sponsoring Organization - Unspecified.
Category g: Level of Funding - Unspecified.
[If the request had been more complicated, this keyword statement could have been linked with other keyword statements (the program allows for a maximum of three keyword statements per search) using the Boolean logic expressions "and" or "or". Linking the keyword statements with "and" produces an intersection of the two sets of records satisfying the requirements of the first keyword statement and the second keyword statement (using "or" would produce a union of the two sets of records).]

The retrieval request and resulting information from the search would appear on the remote terminal as follows:
/HELLO XXXXXX (use the assigned user identification code in place of "XXXXXX") PASSWORD: \qquad
RSX-11M BL22 MULTI-USER SYSTEM
GOOD MORNING
20-APR-79 10:11 LOGGED ON TERMINAL TT25:

/@BILDIT

/PIP RETRIEVE.CMD/PU
/!

```
/*RETRIEVE PUBLICATIONS [1] OR ONGOING RESEARCH [2]? [0 R:1-2]: 2
/RUN [225,1]GENRES
Enter TYPE OF FUEL: MEOH BLEND
Enter TYPE OF INVESTIGATION: FLEET STUDY
Enter OBJECTIVE OF INVESTIGATION: ECONOMY
Enter PERFORMING ORGANIZATION:
Enter PRINCIPAL INVESTIGATOR: . (if category unspecified, depress
Enter SPONSORING ORGANIZATION:
Enter LEVEL OF FUNDING:
    ENTER LOGICAL CONNECTOR FOR NEXT LINE.
    ENTER BLANK IF FINISHED.
DO YOU WANT THE DESCRIPTIONS PRINTED
IMMEDIATELY AFTER THEY ARE FOUND? [Y/N]:Y
/!
/DTR @RETRIEVE
FINISH;READY ONGOING-RESEARCH-DATA
FIND ONGOING-RESEARCH-DATA WITH SERIAL NE "999R" AND ((
((FUEL-01="MEOH BLEND" AND PURP-01="FLEET STUDY" AND OBJ-01="ECONOMY") OR
(FUEL-02="MEOH BLEND" AND PURP-02="FLEET STUDY" AND OBJ-02="ECONOMY") OR
(Fue1-03="MEOH BLEND" AND PURP-03="FLEET STUDY" AND OBJ-03="ECONOMY"))))
[2 records found]
SORT BY SERIAL;
! END OF FIND/SORT COMMANDS
:PRINT-SELECTED-RESRCH-OBJCTVS;
```


ALTERNATE FUELS DATA BANK ONGOING RESEARCH ACTIVITIES

```
SERIAL \# 004R
PROJECT TITLE: METHANOL BLEND FLEET STUDY
RESEARCH ORGANIZATION: FUEL/ENGINE SYSTEMS RESEARCH BETC, DOE
PRINCIPAL INVESTIGATORS: R. W. HURN
SUPPORTING ORGANIZATION: DOE TRANSPORTATION ENERGY CONSERVATION
CONTRACT NUMBER:
PERIOD OF RESEARCH FROM: 7/77
TO: PRESENT
LEVEL OF FUNDING: 100 k
PROJECT OBJECTIVE
IN AN EFFORT TO EVALUATE THE EFFECTS OF USING ALCOHOL/GASOLINE BLENDS IN CURRENT PRODUCTION AUTOMOBILES, THE FUEL/EN-
```

SERIAL \# 005R

PROJECT TITLE: METHANOL/GASOLINE BLEND DEMONSTRATION

```
RESEARCH ORGANIZATION: DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY
    OF SANTA CLARA
```

PRINCIPAL INVESTIGATORS: RICHARD PEFLEY (JIM MCDONALD)

SUPPORTING ORGANIZATION: CALIFORNIA STATE ENERGY COMMISSION

CONTRACT NUMBER: UNKNOWN
PERIOD OF RESEARCH FROM: 2/24/78
TO: PRESENT
LEVEL OF FUNDING: UNKNOWN

PROJECTIVE OBJECTIVE

THE MECHANICAL ENGINEERING DEPARTMENT OF SANTA CLARA UNIVERSITY IS CONDUCTING A FLEET STUDY INVOLVING FOUR HONDA
\square
: PRINT-SELECTED-RESRCH-STATUS;

Serial \# 004R

PROJECT STATUS

FOUR 1977 MODEL YEAR VEHICLES WERE INVOLVED IN THE FLEET STUDY FROM ITS BEGINNING IN JULY 1977. EACH OF THESE VEHI-

SERIAL \# 005R

PROJECT STATUS

THE FOUR VEHICLES HAVE BEEN PURCHASED AND BASELINE TESTING OF THE FOUR VEHICLES HAS BEEN COMPLETED. THE SANTA CLARA

THAT THE THREE METHANOL/GASOLINE VEHICLES WILL BE OPERATING ON A 10\% METHANOL BLEND. THE CYCLE WILL REPEAT AGAIN TO ALLOW THE EVALUATION OF A 15% METHANOL BLEND.

```
BYE
/@ [EOF]
/BYE
/
HAVE A GOOD MORNING
20-APR-79 10:15 TT25: LOGGED OFF
/
    TOTAL TIME : : 1649 MINUTES
CONNECT TIME : : 5 MINUTES
    I/O COUNT : : 704
        CPU TIME : : 4S-56T
    MEM. DEMAND : : 414E+3 KW*TICKS
```


APPENDIX II

(cont'd)
SAMPLE SEARCH OF TOPICS FILE

The information retrieval process for the topics file differs considerably from that of the publications and current research files. The user will establish a link with the computer in Bartlesville, sign on using the proper user identification code, and give the password. The user will then call the topic file program by typing in "@PRTSELTOP". The response to the user will be in the form of an index of topics, giving the topic serial number and corresponding descriptive title. The user will then type in the serial of the desired topic. The response from the computer will be to produce a copy of text associated with the selected topic.

A sample search of the topics file from a remote terminal would appear as follows: (underscored portions denote the user's response)

HELLO XXXXXX (use the assigned user identification code in place of "XXXXXX") PASSWORD: \qquad
RSX-11 BL22 MULTI-USER SYSTEM
GOOD MORNING
20-APR-79 10:11 LOGGED ON TERMINAL TT25:
@PRTSELTOP
/:PRINT-SELECTED TOPICS;
TOPIC SERIAL
TOPIC TITLE
$01 T$ EFFECTS OF FUEL NITROGEN LEVEL ON NOX EMISSIONS FROM STRATIFIED CHARGE ENGINES

SOURCES OF 200 PROOF ETHYL ALCOHOL
VALUE OF ETHANOL AND METHANOL AS OCTANE IMPROVING ADDITIVES
03 T

997
OPEN
/IF YOU WISH TO REVIEW A TOPIC PLEASE SUPPLY THE APPROPRIATE SERIAL NUMBER OTHERWISE SPACE ONCE AND DEPRESS THE CARRIAGE RETURN KEY. OIT

ALTERNATIVE FUELS DATA BANK TOPICS

SERIAL OIT EFFECTS OF FUEL NITROGEN LEVEL ON NOX EMISSIONS FROM STRATIFIED CHARGE ENGINES

EXPERIMENTS WERE CONDUCTED WITH A DIRECT-INJECTION STRATIFIED-CHARGE Engine using fuels of different nitrogen levels. the engine,

THE RESULTS OF ESTIMATES ARE SHOWN IN FIGURE 2. THE DIFFERENCE BETVEEN NOX EMISSION RATES FOR THE TWO FUELS IS ON THE ORDER OF 3 GRAMS/LB. FUEL. THIS CORRESPONDS TO A 20 PCT EFFICIENCY FOR CONVERSION OF FUEL-BOND NITROGEN TO NOX.

IF YOU WISH TO REVIEW ANOTHER TOPIC PLEASE SUPPLY THE APPROPRIATE SERIAL NUMBER OTHERWISE SPACE ONCE AND DEPRESS THE CARRIAGE RETURN KEY.

BYE

/C [EOF]
/BYE
I
HAVE A GOOD MORNING
20-APR-79 10:15 TT25: LOGGED OFF
/
TOTAL TIME :: 1649 MINUTES
CONNECT TIME :: 5 MINUTES
I/O COUNT :: 704 CPU TIME :: 4S-56T
MEM. DEMAND :: 414E+3 KW*TICKS

The American Association of Petroleum Geologists Buth: V. 53, No. 11 (November, 1969), P. 2324-2340, 16 5:

Contouring by Machine: A User's Guide ${ }^{1}$

UNUMERSTYY OF ETMA RESEAMCH PRESTETHE EARTM Sciairee ias. RICHARD F. Waltexs

Abstract Several general purpose contouring programs are available. Their effective use requires a knowledge of ways in which the programs operate and the types of opplications most suited to machine-contouring techniques.

Machine contouring is nol applicable to most ane-pass jobs involving the use of considerable scientific judgment or combinations of different types of data; e.g., gradient and point values derived from data that have not been put in machine-readable form. By contrast, machine contouring is a valuable lechnique in analyzing large masses of data or in routine updating, in analysis of data that do not require a scientific bias for inferpretation, in moking a suite of maps that is to be made internally consistent; and in further analysis of resulting surfaces.

Most general purpose contour progroms foliow similar steps in the generation of a map. These steps include (1) specification of map size and accuracy desired, (2) entering raw data to be contoured, (3) generation of a grid from irregularly spaced points, (4) creation of confour lines, and (5) special annotation and other additional features in certain programs. Grid generation is the most important camponent of the program and there are several techniques for generating grids.
Familiarity with these principles will enoble the user to interact more effectively with the program at his disposal, and to creote, store, combine, and analyze the surfaces generated in a way which will enhance his scientific investigation.

Introduction

Contours have been used by scientists for years to represent geographic, biologic, political , and other data. Geologists in particular have developed interpretive contouring into an important and valuable predicting tool. In pe:

[^0]troleum geology, contour maps are used to de pict structure, isopachs, gravity data, and man: geochemical and other geological parametert Much of a geologist's time is spent collectis: these data and maintaining a current suitec maps.

The advent of computers has led to attem. to duplicate interpretive contouring techniqi. by machine methods. Considerable progress h. been made in developing an understanding i : the human logic of contouring; several com: puter programs have been written which ::capable of making "reasonable" contour mar, of data points with an even distribution. An ei. tensive review of the literature describing th: development of such programs can be found.. Harbaugh and Merriam (1968). Some of t : available programs are described in Mcinu:: et al. (1968), Assiter (1967), and Caliform: Computer Products, Inc. (1968). Key disct: sions of basic principles are contained in IB!' (1965), Tobler (1965), and McIntyre at : (1968).

To be effective, such a program must ailod the user to make judgments during the prepai:tion or modification of the contoured map: enable the specialist to introduce his basi ground into generation of the final contor: The process of interaction between man an: machine requires a general purpose cont:program and a trained user to derive optim:results. This paper provides the potential u*: with an understanding of the basic steps inci: porated in several contour-programs; in herat that knowiedge of these principles will incres: the effectiveness of such programs.

Applications

Before reviewing contour program desiz:one should first consider what situations $\mathfrak{k r}$: lend themselves to automatic contouring.

Cases Not Lending Themselves to Machine Contouring

Many "one shot" interpretations are not s.: able for machine preparation, partly ber.-4 the problems of initial data preparation in $:^{\circ "}$ chine form may be excessive for a singl: terpretation. A second example atises ii
basic data control points are so sparse that realistic mechanical interpretation is impossible, and the investigator's judgment is essential to produce a meaningful interpretation.

Frequently, more information is available than the location and values of each control point. This knowledge, both subjective and objective, appears in the researcher's judgment decisions as he contours such maps. It would be difficult to introduce all such information into a program; and the labor involved in creating a machine interpretation might not be justified.

Oiten factual information exists in varied forms which complicate its correlation into map form. For example, geologic trends, gravity or aerial photographic gradients, and magnetic data all require skilled interpretation in the contouring process.

Applications of Single-Purpose Machine Contouring

There are certain single purpose jobs for which machine contouring might well be justified.

First Approximations of Voluminous Data

Frequently, the researcher is confronted with a large mass of data to which he can add little supplemental information. Only a few of these data sets may prove to be revealing, and it is govd practice to examine a preliminary ma-chine-contoured version to see whether the resulis warrant additional investigation. Geochemical data, for example, can best be analyzed in map form. Commonly, however, several geochemical maps must be reviewed to find one with significant parameters. Manual preparation of many such maps would be a waste of the researcher's time. Similarly, a few lithologic mappable relations usually suffice to depict the critical factors that the investigator wishes to make in stating his conclusions.
Other situations where machine contouring might be useful concern tightly controlled surfaces in which the data points are too dense to permit latitude in human interpretation. In such cases the process becomes one that is larsely "mechanical"; hence, it should be left to a machine.

A third situation calling for machine contouring arises when the user-wishes to assure himself that no conversion errors exist in the data. Automatic contouring will provide instandy a visual check for transcription errors, giving assurance of their absence in areas showing expected contour values.

Contouring for Subscquent A nalysis

The most important potential applications for machine contouring involve the subsequent analysis of the completed graph. Some typical examples of potentially fruitful application follow.

Updating.-When new information is obtained that affects part of an existing map. it is convenient to correct only the part of the map directly affected by the new control points; the map can then be redrawn by machine for future reference. Updating oil-field maps during active development programs is so time-consuming that manual map suites are rarely kept current.

Consistency of a suite of maps.--Frequently, when three or more interrelated contour maps of the same area are needed for geologic interpretation, two maps determine a third surface. A deep structure map (Fig. 1c), for example, can be drawn by adding the appropriate isopach (Fig. 1b) to a shallow structural surface (Fig. la). Manual "cross contouring" of such maps is tedious, particularly if updating is required, and deep control is less- reliable for structure than stratigraphy (Fig. 1d). Hence, the most logical approach would be for the user to create the independent surfaces, and then allow the contour program to generate for him those values which are dependent.

Analysis.-Contour maps are created commonly as'a vehicle for future analysis, such as isolating residuals by removing regional gradients (Fig. 2a, b, c) or calculating volumetric relations (Pruner, 1966). In such applications, an automatic contour map can facilitate analysis. The full potential of this approach cannot be appreciated until the user has had experience with the method. Once a user becomes accustomed to this approach, however, he is likely to become increasingly dependent on the computer as a major support for his research.

Basic Requiremients

A general purpose program should contain several elements enabling the user to adapt the program to a variety of situations. Although programs differ in the features provided, some of the options listed below should be contained in any general purpose package.

Acceptance of Irregularly Spaced Data

Many programs accept regularly spaced data points for contour generation. Usually, however, geologic data observations are irregularly spaced, and judgment is required to extend

Fig. 1.-Use of machine-generated maps to create deep structure map (hypothetical example). A. 5tstructure map. Structure has been affected by post-depositional faulting. B. Isopach, showing limited it: and generally smooth northwesterly thickening. C. Machine-generated deep structure map, made by cort.-; maps shown in A and B. D. Deep structure contoured only from available structural points at base of in:s?

contours between the points. Irregular data spacing problems include: 1) irregular boundaries to the area covered by data; 2) significant gaps in control points within the general area of coverage; and 3) unusual clusters of data points in an otherwise less densely controlled configuration. These spacing problems are partially resolved in all general purpose programs. Certain distribution problems require additional special programming effort to generate reasonable maps.

Simplicity of Utilization

A fundamental assumption made by most contour program designers is that the average user is not a specialist in computers. For such a user, the control cards should be simple, data input requirements should be straightforward, and the program should include routine checks; so that major errors in sequencing, keypunching, or specifications will be automatically detected and brought to the user's attention, and the computer run terminated or adjusted accordingly.

Simplicity is helpful in overcoming the communications problem between man and machine, and this barrier is reduced as a user becomes familiar with the program. Many programs will offer variation in complexity, and the seasoned user can specify complex options that give him increased flexibility, whereas the novice can use the same program without being aware of the options.

Basic (Minimum) Flexibility

The user should have considerable latitude in adapting the general program to his particular needs. Among the choices is the description of the map-its vertical and horizontal dimensions, its scale, and, if need be, the position where it should be spliced. It is also useful to be able to specify the degree of precision required. This option enables a user to make quick estimates for preliminary examination or detailed analyses where economic or other factors justify additional computational costs. A related option in contour programs requires selection of appropriate contour spacing. Many programs provide for special annotation, such as the ability to post original data points, to indicate special scale or other reference marks. and to add other lines or symbols that contribute to the clarity of the finished map.

Economy

The widespread operational use of machine
contouring will occur only if programs can ta run at a reasonable cost. Computer cosis io: contour generation are affected by the com. puter, the program, and the plotuer used for th: operation. The figures produced for this repor: for example, were made on an IBM 7044 con:puter. This machine rents in commercial oper: tions for approximately $\$ 1 \$ 0.00$ per hour. Fi: ures 3-5 required approximately 2.5 , 3 , and" minutes, respectively, to generate a tape f: offline plotting, at a cost ranging from $\$ 7.50$ is $\$ 12.00$ for machine time. These times at representative for many "second generation" computers. On most modern high-speed digiti computers, however, the time for grid geneertion would be reduced to seconds, and the cosicut substantially despite the larger hourly reni.: for such machines. The time taken to write the offline plotter magnetic tape would not be re duced significantly by introduction of a high. speed computer because the speed at which a tape is written depends on the speed of the tap: drive.

The plotter used in Figures 3-6 was a Cal. comp 563, driven by a 750 magnetic tap: drive. Plotting Figure 3 required approximate: 8 minutes at a cost of $\$ 4.00$ assuming plote rental of $\$ 30.00$ per hour; the total cost of thas map was thus $\$ 11.50$ for both generation an. plotting. Figures 4 and 5 required only 6 min. utes ($\$ 3.00$) for plotting because data points were not spotted. Newer plotting devices ani tape drives have been manufactured whis. greatly reduce the time required to create : plot tape.

In summary, costs for an average map migh: run between $\$ 5.00$ and $\$ 25.00$ run on modern equipment at a commercial service bureat. These costs could be reduced by inhouse oper2tions or by stacking several maps in the same rus

"Smoothness" of Contours

Acceptance of automatic contours also is: pends in part on the production of natur.: smooth lines. Early machine contour proman: tended to be angular and were unacceptabe t. the average user despite their overall accura Experjence has shown that in all but the roushest first appproximations it is essential that $i t:$ output be pleasing to the specialist's eve. Initiai user acceptance of smooth lines is onton greater, even though a map with angular lin:may agree more closely with the original a^{-}points. Generation of smooth lines can achieved by straightforward interpolative to:niques and should be available in any progran:
programs can be omputer costs for ted by the com. lotter used for the ed for this report, a IBM 7044 com . ommercial opera00 per hour. Figely $2.5,3$, and + erate a tape for ng from $\$ 7.50$ to These times are :ond generation ligh-speed digital for grid generaids, and the costs ger hourly rental aken to write the vould not be rection of a high. peed at which a ipeed of the tape

3-6 was a Calmagnetic tape d approximatels issuming plotter total cost of this generation and red only 6 minuse data points ing devices and factured which ed to create a
rage map might run on modern iervice bureau. inhouse operain the same run.
ours
itours also de. on of natural itour programs. inacceptable to erall accuracs: but the roughential that the st's eye. Initial ines is often angular lines original data lines can be polative techany program.

Fig. 3.- Temperature variations with time and depth, Lake Maggiore, Italy. Information obtained from Goldman et al. (1968). Contour grid 11×7.

Sequence of Program Operatiós
Basic organization of contouring routines is dictated by operation logic and machine efficiency. An understanding of this sequence is
useful in optimal utilization of program options. The basic steps include (1) map specification, (2) data input, (3) generation of a grid, (4) contour-line generation, (5) annotation, and other special optional operations. A

Fig. 4.-Same map as Figure 3, contoured on 21×16 grid.

Fig. 5.-Same map as Figure 3, contoured on 41×61 grid.
few programs which allow several separate jobs to be run together have an additional step which recycles for the next job.

Fig. 6.-Same map as Figure 3, contoured on 61×101 grid.

Map. Specifications

Job Title Information

Most programs begin the control c.: quence with identifying information, we. the name of area, the date, or other title \cdot.. mation. These facts are usually copiec s....... from the control card to the output.

Map Dimensions

Just as a draftsman selects his paper. the illustration, so the computer prouram -... know the map dimensions and scale in cem the original coordinate units. In some the, cal and horizontal scales may be diaitere! ; ure 3, for example, depictṣ variations of \because temperature with respect to time and ter is usually necessary, therefore to specity for both X and Y axes. The values requ:r: provide this information are the min:-maximum, and scale values for both : r . (horizontal) and Y (vertical) dimensions. program uses these parameters to $2 \ddot{3} \mathrm{~b}$ memory for certain tasks and to set the for plotting.

Grid Specification

Automatic contour generation $c::$ achieved by several techniques, such as: $\because \%$ interpolation, polynomial surface fitin: 'monic analysis, etc. It is necessar: generate a series of regularly spaced vale

Contouring by Machine
xifunction to be contoured. This "grid" proides a consistent framework for the generation fi contour lines. The use of gridding techniques roughly approximates the interpretive pproach used by a specialist contouring the sme data points, but human interpretive techtiques are more flexible.
It is necessary in most programs to allocate suputer memory space for the retention of he gridded values. For example, a map 20 in . :quare with grid values every $1 / 4 \mathrm{in}$. would re, inire 6.651 words of memory $(\$ 1 \times 81)$ for he gridded values. A $1 / 2-\mathrm{in}$. grid for the same map would take up only 1,681 locations $1+1 \times 41$). In practice, the limitations of avail.bie memory can be overcome by subdividing tee area into separate sections.
An example of the effect of grid spacing is fown in Figures 3-6, in which temperature bata collected at different depths from Lake Vaggiore, Italy, during a period of several months were used (Goldman et al., 1968). Water temperatures (${ }^{\circ} \mathrm{C}$) are contoured to show thanges with depths (Y axis) and time (X axis). Figure 3 shows the location of the original data finis and the contours generated by using an $\therefore 1 \times 7$ grid. Figures 4, 5, and 6 depict the same
spacing is allowed in many programs. This provision can be used to accommodate different scales in the X and Y directions (Figs. 3-6) or to achieve special effects whose description lies beyond the scope of this report.

Special Instructions
Some contour programs offer special conveniences to the user, such as (1) allowing for oversized maps, (2) relocating, rotating, or skewing the plotted output on the page (Fig. 7), and (3) constructing a stereoscopic pair of illustrations for three-dimensional viewing. It is necessary to specify these options at the inception of the job. If these options are not used, the program should follow certain pre-set standard specifications by default, unless an overriding option is specified.

Data Definition
Irregularly Spaced Dita
Three general parameters are required as minimum input for each data point: the x coordinate, the y coordinate, and the " z " value to be contoured. Some programs also allow for certain qualifying information, such as the dip at a single data point. Some observations may be questionable and should be weighted less heavily than others. Certain programs do accept weighting and/or slope qualifications for individual data points.

Raw data must be converted to machinereadable form. If the data are new, it may be necessary to keypunch each point. Retrieval of one data set from an information system requires special programs which may include specific screening options. It is usually best to preprocess such data by means of a separate pro- of wate ! fepth. I: y scale uired nimum. the x, 75. The illoc:te

Fig. 7.-Isometric projection of Figure 5.
gram; in certain applications, however, the contour program itself may be used as a screening program.

Most programs permit latitude in the position of the x, y, and z coordinates on data cards. Each job has its own format. specified by a control card: all cards in that data set must conform to that format.

Routine use of data obtained from an information system is more efficient if the contour program can accept data tape or disk format to avoid punching new cards for data already in machine-readable form. One way to utilize large data files is to generate a data tape processable by the contour program.

Efficient program execution is improved by geographic sorting of data. Although programs sort data internally for calculation purposes, the points are plotted as they appear in the input; hence pre-sorting will improve program efficiency if data points are posted.

Gridded Data

Although geologic observations are generally irregularly distributed, it is nonetheless important to be able to introduce regularly spaced information in a contour program. This option is used to contour data collected on a grid, to modify or update portions of the grid, and to combine or transform previously gridded data. Ideally, the program should accept either gridded or irregular data, depending on the user's needs. The program should also allow the user to override certain generated grid values, so that he can modify the initial map, storing the result for future reference.

Grid Generation

It is important to understand in a general. way the manner in which grid values are generated and the relative merits of a few ways that can be used to generate such a grid. Because of the importance of this step, some programs even permit user option in selecting a grid-generating technique. The merits of any specific gridding technique depend on the use(s) intended for the program; a general purpose program should, however, attempt to satisfy as many users as possible, either by providing user options or by adopting a gridding approach which satisfies most users.

Alternative Approaches to Contour Gencration

Automatic contouring is dependent on creation of a grid; that process should develop a set of lines which are similar to contours drawn
by a specialist. The formal steps leading ie ' such grid generation could be designed io im: tate as exactly as possible the human approas: to contouring, or they could take a complete. different approach. Most specialists start draa ing contours in areas of dense contiol. the join those separate areas through a process. adjustment in the sparsely controlled map it gions. The process usually involves erasures: intervening areas to fit one set of lines 10 a. other. Analysis of the overall pattern cor. monly results in further erasures and adju: ments to emphasize trends and other ieatit: not originally derected. Some researchers hewthe process by making a scries of straightion interpolations between data points, so as to a: ate an "objective" interpretation which it. can subsequently adjust according to their onjudgment.

To imitate the preceding processes in. chine, one should design a program that cres. grid points in areas of control. then moves $\mathrm{c}:$: ward to uncontrolled grid values until the :tire map surface has been calculated. Imitatioof the "erasure" approach to fitting such ares" is awkward by machine, requiring many rege. tive instructions that can be anticipaied ar. compressed. Creation of straight-line interpi. tions, although easy to calculate, results in :: regular straight-line contour segments wh:are dependent on the original distribution'. data points. Moreover, there is no way to eralize the scientific judgments involved in :recting such lines.

An alternative approach to generating on- $^{-}$ tours is to create a grid without attemptin: imitate the human approach to the proti:-: Examples of programs that tend towari ©... of these philosophies are illustrated below.

Examples of Contour Logic

Numerical approximation.-In this meibr• used by one available program. ${ }^{2}$ the dan pr. ${ }^{-2}$ (Fig. 8) are projected onto a grid (Fie : The four grid points surrounding each point are selected for first pass analysi: : order to obtain values for these grid poir::-. plane is passed through each data point. T: plane is determined by searching for the \because est data point in each octant around the \therefore point (Fig. 10). The plane is derived as a \because squares function of these values, weighte:

ACI Contouring Package available throush F. Assiter, President. Applications Consultants Int.

Contouring by Machine

Fig．8．－Data points to be used in generating contours． （Reproduced by permission of E．Assiter．）
cording to their distance from the data point． The plane must pass through the central data point（Fig．11），and it must agree as closely as possible with the selected data points surround－ ing it．A weighting function for distance is in－ troduced so that closer points will exert greater influence in the fitting process．
The intersection of this plane with the grid point determines its value and slope（Fig．12）． Similar calculations are made around each data point resulting in the determination of several grid values．The slopes of the planes at calcu－ hated grid points are then used to determine the grid values one grid spacing away from the original data points（Fig．13）．The original data points are not used in these or subsequent cal－
crent心
es out－ he en． itation
1 areas repeti． dana srpol：－ in ir 4×4 which 0 gen．

：c．\quad－Data points projected onto orthogonal grid． 1R：produced by permission of E．Assiter．）

Fig．10．－Search for nearest well in each octant around each grid intersection adjoining a data point． （Reproduced by permission of E．Assiter．）
culations．After the second set of grid values is made，a third group and a fourth group are cal－ culated by use of slopes from the outermost cal－ culated points until all the values have been de－ termined．

The logic used in this method closely ap－ proximates manual methods in certain impor－ tant aspects，such as working away from con－ trol points and using established dips to extrap－ olate new ones in areas of poor control．This approach represents one of the most successful techniques in contour programs．It does，how－ ever，have two potential limitations：（1）the searching required to generate the values is po－ tentially cumbersome，requiring an octant search at each data point，keeping track of cal－ culated and blank grid values，and adjusting for data clusters in single cells；and（2）because of the extrapolation technique，large gaps in con：

Fig．11．－Creation of plane passing through nearest data point and representing weighted least squares fit of selected adjacent points．（Reproduced by permission of E ．Assiter．）

Fig. 12.-Determination of grid values adjacent to each data point. (Reproduced by permission of E. Assiter.)
trol sometimes result in gradients increasing sharply away from control. Because the program moves sequentially away from data points, the tendency to develop steep gradients is not strictly controlled.

A technique used in another program ${ }^{4}$ begins by creating a plane through each data point (Fig. 11), using much the same approach as described above. One major difference is the location of points used: instead of requiring that the nearest control value in each octant be located, the program selects the 8 nearest points (the user can modify this number from 5 to 20) and weights them by distance, but does not check their distribution around the data point. This technique is safe in most circumstances; where data points are clustered or rectilinear, however, unnatural gradients may occur.

After a plane is passed through each data point by use of the weighting techniques described; the program then begins at one corner of the area to be mapped and proceeds sequentially to evaluate each grid point. This evaluation is accomplished (Fig. 14) by determining

[^1]Fig. 13.-Extrapolation of surface to adjoining grid intersections. (Reproduced by permission of E. Assiter.)

Fig. 14.-Grid generation function used in Calition:. Computer Products, Inc., GPCP program, All values calculated from intersection of planes calculite: for 8 nearest data points.
the intersection at that grid point of each plan: of the 8 nearest data points (again, 5 to 3 points can be chosen as desired); the weights of the plane intersections are again a function of their distance, and a weighted average val:: is determined.

This technique is unlike manual approache: the map is essentially evaluated from bottom to top, in that planes are calculated independent: for each data point and then used to generati all grid values. However, this approach usumf: gives a satisfactory solution to the grid gens:ated, particularly in areas of no control. he. cause the extrapolation technique places a tistter restriction on areas of poor control by :eferring back to original data points and, in \because fect, extending a linear extrapolation rahe: than one whose slope might increase with f . tance.

In a slightly different grid generation technique utilized by another program (Mclnis: et al., 1968) the data point distribution is ir: analyzed to determine the average spacing: the radius of a circle which would enclosi :" points as an overall average is determined. The program then proceeds to evaluate grid poinis sequentially. Each grid value is taken to be ihic center of a circle whose radius fits the descria. tion given above. If enough (10 or murr' points are available, a quadratic surface is inter through these points, and its intersection wh. the grid point is used as the value for thas: point. If less than 10 points are present. the $5 \cdot$ dius is doubled, and, if 10 poinis are thea found, the same procedure is used. If fur: than 10 points lie in this larger circle, the $=:$ value is flagged and no contours are drawa ..: its immediate surroundings.
A further check is made on the reasonsis.
ness of the utilized are $:$ if the calc: than 20 pere also ignored. ary conditio quadratic fic

This pro $=$ ion to adjus ior distance a grid evalu! ihan 6), or blanking

One facto
is the distan tion could by smooth sur:: increasing : somplex cor had on the range of we anatable ce enhance th: "noisy" suri variations. f local coritic situations, al fot may wi. 1 points and weishting it though suct user sophisi;

The pree although sot manly to i ? erams. As . machine co his knowles retise his rid interp:

Once a may wish ti nhis matris awer interve「pecific should be ading cala oin choo: recirvins: \therefore ahece un - Aleer to b Strirnec awe man for
ness of the calculated values: the data points utilized are evaluated for their range of values. If the calculated grid intersection lies more than 20 percent above or below this range, it is also ignored. This provision eliminates boundary condition problems which can arise in a quadratic fit of data points.

This program can be modified at its inception to adjust such parameters as the weighting ior distance, the number of points required for a grid evaluation (this number must be more than 6), or the range limitation on automatic blanking.
One factor important to all these techniques is the distance weighting function. This function could be designed to produce an extremely smooth surface, if little difference is attached to increasing distance, or it could create a more complex configuration if heavy weighting is laid on the nearest points. The selection of a range of weighting functions is not offered in available contour programs but would greatly enhance their generality. Certain inherently "noisy" surfaces require emphasis on the local variations. In such cases a strong weighting for local control points should be used. In other situations, also involving "noisy" data, the analyst may wish instead to smooth out the local points and view regional changes, so that the weighting function should be minimized. Although such an option requires considerable user sophistication, it should be made available.

The preceding grid generation discussions, although somewhat detailed, contribute imporiantly to the understanding of contour progranis. As a user becomes more familiar with machine contouring, he will wish to increase his knowledge of the way in which he can exercise his judgment to improve the machine grid interpolation.

Operations on Grid Values

Once a grid has been generated, the user
*- may wish to intervene so as to modify or store this matrix of points. Several reasons for such user intervention may be noted.

Specific grid value alteration.-The user should be allowed to adjust certain areas over-

- ribing calculated grid values with points of his own choosing. This choice could be made by speifying, by row and column, the value or talues which he wishes to change, and the new values to be inserted.

Storage and retrieval of entire grids.-The
1 unir may wish to store the grid which was genrested for future reference, in either the card
or tape format. Grids frequently contain several thousand points, hence punch card storage of a group of such values becomes unwieldy and a tape format is essential. The program should also have a retrieval option whereby a complete grid can be recalled. It is likely that the retrieval operation will become more commonplace as machine contouring gains acceptance. Hence, the storage and retrieval process should be facilitated by including on the tape additional parameters that should aid the user by providing shortcuts to control card preparation.

Combinations of arrays.-A major use of machine contouring lies in further utilization of the grid values generated. Two surfaces can be added or subtracted (Fig. 1), the volume between them calculated (see Pruner, 1966), or they could be combined in other ways. Grid manipulation is just beginning to be explored by users and by contour program designers. In the future, the provision to add and subtract arrays will probably be included in many programs.

Grid combination requires that the grids have the same dimensions and spacing, a restriction that facilitates a simple point by point processing. One program includes a volume calculation routine which takes into account an upper and lower surface, as well as other discontinuities on the boundaries. This routine is especially useful in petroleum reservoir calculations, where faults, tilted water tables, and unconformities often truncate the reservoir in complex geometric relationships.

Transformation of data. -Simple data transforms should be provided within, or allied to, the program. More complex, special purpose routines should be developed independently. Residual calculations (Fig. 2) are fairly commonplace, but computer adjustment of reservoir volume by a variable porosity factor probably would have to be specially designed.

Contour Generation

The preceding discussions have described steps preparatory to drawing contour lines. The program has read-in data points, calculated a grid, laid out the map, and perhaps posted data points. It is ready to start drawing the contours. The user now faces a new set of decisions.

Blanking

First, he will want to determine whether he really needs contours throughout the rectangle to be mapped, or whether certain areas should
be blanked because of lack of control or the need for local special treatment.

Specification of the blanking area can be accomplished in two ways. In some programs (e.g., McIntyre et al., 1968) blanking is automatic a given distance away from the original control points.

Other programs allow the user to specify each area to be contoured by giving its boundaries. In Figure 1, for example, the combination of two fault segments on one map was accomplished by specifying boundaries for each segment. The addition of dotted lines in Figure 1 a was likewise accomplished by first blanking the southeast corner of the map and then drawing only that area with the use of dashed instead of solid lines. Figure 15 shows a similar situation in which data from four fault blocks, where contoured together, give a distorted picture (Fig. 15a). Contoured independently, however, as shown in Figures $15 b$ and 15 c , the individual configuration of each fault block is revealed. This blanking method is somewhat more complex, but it is also considerably more fiexible than automatic blanking techniques.

Spacing

Contour spacing is an essential user specification. A constant spacing factor between lines is usually sufficient; however, some maps may require other types of spacing for contour values. In data that show a lognormal distribution, for example, it is desirable to change the spacing so as to emphasize this characteristic. Alternatively, the user may wish to highlight certain data ranges and generalize others. Certain programs skip lines when they come too close together. Hence, a general purpose program should have a certain amount of flexibility in contour spacing. Incorporation of such options makes automatic contouring adaptable to a wide variety of uses.

Smoothness

Contouring involves an attempt to present isolines which are accurate and also pleasing to the eye. Angular lines are not accepted in manual interpretations, nor are they necessary in automatic routines. Analog plotters may be used to provide smooth contours (McIntyre et al., 1968, p. 1) and digital interpolation techniques are now standard in most packages. The degree of smoothing should be a factor to consider, because it is related to the time required
to generate the lines and because critical detail may be missed by smoothing lines.

Digital smoothing of contours can be created in two ways: first, by adjusting the grid spacing (denser for smoother lines) and, second, by the number of intermediate points used in interpo. lation between the grid points. Figure 16. fo: example, illustrates a smoothed version of Fig. ure 3. In general, when the grid spacing is larger, the lines will be angular unless more intermediate interpolating points are used.

Efficiency

The question of efficiency in drawing the contours is important from the machine-tinie standpoint. If a plotter is online to a batch process main computer, the time becomes of ex. treme importance. Even in offline plotting, the time used to draw lines is important when many maps are drawn.

Efficiency in drawing lines is mainly a funetion of the type of plotter used. In pen and ir: plotters, the speed at which the pen moves is independent of whether the pen is on the pape: or in the air; hence, a minimum of "pen-up" time is desirable. Other devices, which paint lines with a moving light source or by an electrostatic method, are not restricted to pen movements. Some of these devices, however. move only once across a band of paper, so thas: all information for that area must be tranc. ferred at one time.

Pen-plotting efficiency derives from minimiz. ing pen-up time. This can be accomplished b : covering a square of the paper completely, then moving on to the next. This technique is efficient if the square is moderate in size and i: the lines are drawn alternately from left os right and then vice versa so that the pen has the shortest distance to move to a new line. Other techniques follow one contour over th: entire page before moving to the next contour. This approach is efficient when few local closei anomalies exist, but becomes decreasingi: efficient when numerous small closed contou:must be drawn.

The use of a band pass approach to the d:s is unquestionably one of the least efficien: methods for pen and ink plotters, unless ster: are taken to alternate direction of drawing and ensure a wide band at each pass. This approa: is used in certain cathode ray tube plotters and results in the rapid depiction of such inform:tion once the basic data have been stored. !such CRT devices, the speed of the conto::
generation part of the program is independent of the density of lines to be drawn, which is certainly not the case with pen and ink methods.

Certain programs offer both band pass and continuous line generating techniques. This selection would not change until the plotter is replaced by one with dissimilar plotting characteristics.

Special Types of Contour Lines

Certain programs allow the user to choose which contour lines are to be labeled, which lines should be heavy, and whether tick marks are desired in closed minimum contours. These ieatures, which add to the visual acceptance of the presentation, are usually part of the standard specifications.

Annotation

Special map annotations are useful in preparing finished illustrations (e.g., Figs. 1, 6). The user should be able to draw a line across the graph by giving the end point- coordinates. Character information can likewise be specified, giving the starting location of the character string, the angle, size of lettering and char-
! acters which make up the string. Most plotters' instructions are designed to facilitate user control of special annotation. Although this feature is not essential in some uses, it is quite useful in producing a finished product.

Multiple Job Runs

The most common first approach to contouring by machine involves a single set of data. Sometimes, however, one may wish to draw two sets of contours on a single map (Fig. 15), whether the contours represent two separate areas or a second superimposed set. From a program standpoint, each of these operations reyuires passing through the data point input, grid generation, blanking, and contouring piases. but the lines will be drawn on the same map. Other applications require having two or mure separate maps in one computer run, cycling through the entire program from map sfecification through contour generation and amotation.

Two types of job combinations, therefore, should be available: it should be possible to proceed to a new, separate map, initiating the program and starting afresh; one should also be able to modify a map by adding new contours. Many contour programs allow the first option; at least one program permits stacking maps on
one surface. If the latter capability is not present, the sequential maps should be plotted on clear film so that they can be overlaid.

Summary

This report on the common applications for machine contouring considers the design of a general purpose contour program from the viewpoint of a user unfamiliar with the programming aspects of complex general purpose systems. Emphasis is placed on developing user familiarity with those factors which primarily affect the results he is likely to obtain.

There is no substitute for experience in the use of automated programs. A trained user can reproduce most of the judgmental factors in his final interpretation with a minimum of experimentation. In order to gain some insight into this process, however, a few guidelines might be useful.

Many people using machine contour programs expect a perfect result the first time the program is run on a new set of data. Failure on the part of the program logic to produce such a result is often taken as an indication that "machine contouring is no good." This notion can be compared with instructing a specialist to contour all his information with a felt pen, allowing no erasures. Brisk electric eraser sales in technical research situations provide mute testimony to the unlikelihood of such a requirement.

Similarly, the machine may be regarded as fallible, but capable of being instructed to produce a better map. Contouring by machine is rarely a one-pass effort if the map is to be stored or used in subsequent operations. The user will often wish to adjust his input and control cards, override certain calculated array values, shift contour spacing in certain areas, etc., before storing the results for future reference. This is a natural process which can be achieved if the researcher has ready access to the machine.
Often it is necessary to consider the reasons for the failure of a map to agree with preconceived notions: data may be too irregularly distributed, clusters of data may need to be thinned, or a real anomaly may exist which had not been suspected. This type of interaction allows the user to apply his expert judgment and the machine to do the drudgery of producing the result based on that cooperative effort. The experience of interaction can be exciting when performed in this way, and the benefits truly

Fict. 15:-Use of blanking provision to create isopach map of several fault blocks. Hypothetical exam: typical of Gulf Coast Tertiary simigraply. A. Isppach uncercected. Original data points from four fault blea contoured as single map. B. Contoks of lowermost fault block separately, Data points for this fault block ert reád in, a grid generated for entire map, then aréa above falt is blanked out, using special blanking provisie: provided in GPCP progran. C: Combination isopach map of four fault:blocks. Same technique is used for ent fault block; contours are drawn separately but on same map to produce finished result.

而

 HTh whatw

Fig. 16.-Same map as Figure 3, using same grid spacing (11×7) but utilizing a smoothing technique for drawing lines between data points.
unexpected in terms of generating ideas and maintaining a consistent suite of graphs for any particular project.

Selected References

Assiter, E., 1967, Surface approximations and contour mapping: Unpub. ms. available from Edward J. Assiter, President. Appl. ataions Consultants Inc., 3431 West-Hoicombe Boulevard, Houston, Texas 77025.
Batcha, J. P., and -1 rR.Rëése, 19.64, Surface determination and automatic contouring for mineral exploration, extaction and processing: Colorado School Mines Quart., v. 59, no. 4, p. 1-14.
Cain, J. C., and J. R. Neilon, 1963, Automatic mapping of the geomagnetic field: Jour. Geophysical Research, r. 68, no. 16, p. 4690.
Calcomp, Inc., 1968, GPCP: General purpose contouring program: Preliminary manual, Anaheim, California.
Goldman, C. R., M. Gerletti, U. Javornick; and E. de Amezaga, 1968, Correlations and relationships between primary productivity and numerous ecological
factors in Lago Maggiore: Lago Maggiore, Italy.
Harbaugh, J. W., and D. F. Merriam, 1968, Computer applications in stratigraphic analysis: New York, J. Wiley \& Sons, Inc.
IBM, 1965, Numerical techniques and contour ma? plotting: IBM Data Processing Application, White Plains, N'ew York.
McIntyre, D. B., D. D. Pollard, and R. Smith, 1965. Computer programs for automatic contouring: Kansas Geol. Survey Computer Contr. 23, 75 p .
Ojakangas, D. R., and W. L. Basham, 1964, Simplified computer contouring of exploration data: Stanford Univ. Pubs. Geol. Sci., v. 9, no. 2, p. 757-770.
Pruner, Harold, 1966, Computer cuts unit mappis: and calculation time for Shell: Oil and Gas Jour. v. 64, no. 28, p. 80-81.

Rens, F. J., 1965, A FORTRAN program for coord. nate mapping using IBM 7090 computer: U.S. Of. fice Naval Research Geography Branch Tech. Repr. 10, ONR Task No. 389-135, 94 p.
 thematic maps: Cartographic Jour., v. 2, no. 1. F. 32-38.

Structural A plains of So

Abstract Elevali $10 \div, 000 \mathrm{mi}$ (250, one centrol Albert meps of four stra: carbonole rocks, s Fish Scales Sandsh Shale. Eoch map. a) undulotions, mc c! sinusoid surfor pheses, and orient cesented moinly b : - srasler undulatior fitcring permits it st sw only those un the: foll within o prosess requires o mi-ing the spotiol the desired unduli
: the irequency dom these in the desi flter into the disto the digitized inpu: In this study on showing undulolion The dominant lren southeast, parallel basement. Relief, unconformity and I of the undulations bounded by sieepl - northwest-frendir plorement of 10 m dent with known P
limpoduction
Digital comp larse amounts c the geologist of
'Manuscript res May 5, 1969.
: Union Oil Con
' University of A
The writers gral
A. J. Broscoe, R.
G. V'. Smith, C. I

Lniversity of Alb
E. K. Shaw of Ir c: Stanford Univa shi advice during tho paper. Finan N:ional Researcl Survey of Canad

- Lis., and the Un supplied the infor w:e-contour map

SPSS - STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES

The SPSS program consists of a collection of statistical programs which can be called into operation to perform any of a number of predefined statistical tasks. Before any of the statistical programs are called, it is necessary that the user's data be defined.

Two basic units of data are "cases" and "variables". The term "case" refers to the information corresponding to an individual person, place or thing (a rock sample, for example). A variable name (8 A) of the user's choice is assigned to each information item to be processed. Both data definition and task assignment are specified by means of SPSS control statements, prepared in the following form

control field	specification field (columns 1-15)
(columns 16-80)	

The control field contains a unique control word or word set which specify a type of declaration or directive to be utilized by the SPSS system. The specification field provides the specifics pertaining to the named declaration or directive.

The SPSS control statements are in general arranged in the following sequence:
RUN NAME STATEMENT
DATA DEFINITION STATEMENTS
TASK DEFINITION STATEMENTS (first task)
DATA RECORDS
AdDITIONAL TASK DEFINITION STATEMENTS

DATA DEFINITION STATEMENTS

Data definition statements inform SPSS of the variable names, their input format, and the number of cases. They are also used to put labels on variables and values for the user's convenience.

examples:

VARIABLE LIST POROUS, DENSE, TYPE, COLOR
INPUT FORMAT FIXED (1X,F4.0,1X,F3.0,1X,F1.0,1X,F1.0)
N OF CASES 180
INPUT MEDIUM CARDS
VAR LABELS POROUS, POROSITY/DENSE, ROCK DENSITY/TYPE, ROCK TYPE/COLOR, ROCK COLOR
VALUE LABELS TYPE (1) SANDSTONE (2) MARBLE (3) GRANITE

TASK DEFINITION STATEMENTS

The task definition statements activate, define, and control the calculations performed on the data. More than one task can be defined in one program run.

For most tasks, 3 statements are required; a procedures statement, an options statement, and a statistics statement. The procedures statement selects the SPSS subprogram. Columns $1-15$ contain a specific control word; columns 16-80 contain the variables to be entered into the calculations as well as parameters and arguments required for the specified computation.
examples:

CROSSTABS	TABLES $=$ ROCK BY DENSITY/POTASH BY SILICA
PEARSON CORR	SODA, LIME, TITAN, COPPER, URANM
REGRESSION	VARIABLES $=$ SODA TO ZINC
FACTOR	VARIABLES $=A, B, C, D /$ TYPE $=$ RAO/
	ROTATE $=$ VARIMAX

The options statements specify various options available for each subprogram, usually dealing with output format, treatment missing data, etc.
The statistics statements specify which of available statistics the user wants calculated.
examples:
OPTIONS $\quad 1,3,7$
STATISTICS 1,2,4

SEVEN BASIC SPSS STATEMENTS

There are seven basic statements which must occur. in any SPSS program. These are shown in the examples below

RUN NAME YOUR RUN NAME HERE
VARIABLE LIST VAR1, VAR2, VAR3
INPUT FORMAT FIXED (T4,F1.0,T8,F1.0,2x,F5.3)
N OF CASES 81
INPUT MEDIUM CARDS
--procedures card--
READ INPUT DATA

FINISH

DATA
Data may be entered into SPSS either in a fixed or free format. For small cases, the data is simply included in the program file. Provisions are available, however, for calling data from tapes, disc, other files etc. In general, format specifications are consistent with FORTRAN usage.

TASK DEFINITION SUMMARY

The following table presents a summary of the control fields for all task definition statements. The first two provide the procedures and information on where raw output data should be written and what cases should be processed together. Each of the next 16 activate one of the SPSS routines.

RAW OUTPUT UNIT
RUN SUBFILES
CONDESCRIPTIVE
FREQUENCIES
AGGREGATE
CROSSTABS
BREAKDOWN
T-TEST
PEARSON CORR
NONPAR CORR
SCATTERGRAM
PARTIAL CORR
REGRESSION
ANOVA
ONEWAY
DISCRIMINANT
FACTOR
CANCORR
GUTTMAN SCALE
OPTIONS
STATISTICS
READ INPUT DATA

```
(statistics of continuous data)
(statistics of discrete data)
(statistics of aggregated characteristics)
(crosstabulation)
(statistics of continuous variable by discrete groups)
(T-test of difference of means of subgroups)
(Pearson correlation)
(nonparametric correlation)
(scattergram)
(partial correlation coefficients)
(multiple regression analysis)
(analysis of variance)
(ANOVA with one independent variable)
(discriminant analysis)
(factor analysis)
(canonical correlation analysis)
(Guttman scales)
```


OTHER POWERS

MISSING VALUES - there are options supplied for most programs to deal with missing data values by ignoring them, assigning them etc.

SUBFILES - if data can be divided into subfiles (such as thermal conductivity measurements from 3 geographic areas) the subfiles can be run alone, or in groups, or together, or may for some programs be run against each other.

RECODING - data may be changed easily by simple recode statements-for example, all "graywackes" could be lumped together with "shale" by one statement.

COMPUTE - compute statements may be used to modify data or compute new variables, for example.

$$
\text { COMPUTE } \quad \text { POTLOG }=\text { LGIO }(P O T A S H)
$$

will log transform the variable POTASH to create a new variable POTLOG which may be used in subsequent operations (for example, such a transform is necessary in order to calculate Pearson correlations from log normal data distributions).

Operators include all standard FORTRAN operations: $+,-, /, *, * *, S Q R T$, LN, ABS, SIN, etc. IF statements can also be used for variable transformation. In general, these look like FORTRAN without the periods.
examples:
IF (POTASH EQ SODA) INDEX $=7$
If (SILICA/60.0 GT 5 AND SODA+POTASH LE LIME) CLASS=1

ERRORS
Fortunately, SPSS was created for DUMMIES and is very forgiving. The diagnostics are quite good, and default options cover many omissions (and usually inform the user politely of the coverage).

EXPERTS
UUCC has personnel who have worked extensively with SPSS and can answer many questions related to the program. Short courses on SPSS are taught quarterly, and documentation is available from the consultants. Carol Withrow will be implementing. SPSS on PRIME and will be knowledgeable about JCL. Carol, Bev Miller, and Odin Christensen have taken the SPSS course and used the program. Ultimately, refer to

Nie, N.H., Hall, C.H., Jenkins, J.G., Steinbrenner, K., and Bent, D.H. SPSS-Statistical Package for the Social Sciences, McGraw-Hill. available in one of the ESL computer people's offices or at the UU bookstore.
\qquad

Val	Value Label ${ }_{\text {(max }}=16$ char)						Card 1 Columns	Format	Var. Type
(1)		$A L$	E				2	FI	nom
(2)		EM	A	I	E				
		-							
(1)	F	$R E$	5	H	M	$\bar{A} N$	5	F/	Ond
(2)	510	$\theta 1 p$	H	θ	M	θR			
	E								
(3)		UN	I	θ	R				
(4)		$E N$	I	$\theta \mid R$	R				
(5)		R A	D	$\cup 1$	A 1	TE			
Lan	ega	: 0.	100	-	4.0	00	8-10	F3.2	Ratio
	,								
	,	-				T			

Vor.

Rules for forming variable names:

Must begin with alphabetic character.
May use up to 8 alpha or num chars.
No blanks or special characters allowed.

This form is a worksheet for the following SPSS control cords: VARIABLE LIST/VAR LABELS/VALUE LABELS/INPUT FORMAT
FILE NONAME (CREATION DATE = 78/10/19.)

DEPENDENT UARIARLE.. PERFORM JOE PERFORMANCE INIEX
SUMMARYTAELE

Step	UARIABLE		F TO	SIGNIFICANCE	MULTIPLE R	R SQUARE	R	souare	SIMPLE R	duERALL F	SIGNIFICANCE
	ENTERED	REHOVED	ENTER OR REMOUE					CHANGE			
1	TEST2		15.58907	. 001	. 68126	. 46411		. 46411	. 68126	15.58907	. 001
2	TEST 1		16.00402	. 001	. 85086	. 72397		. 25986	. 13560	22.29372	. 000

FILE NONAME (CREATION IIATE $=78 / 10 / 19$.)
*** (CREATION Mate =
OFSERVATION Y VALUE FESTIMATE - FSIDUAL 0.0 ITSG

1.	130.0000	109.1615	20.83849
2.	108.0000	159.7743	8.025713
3.	158.0000	143.9905	14.00948
4.	37.00000	17.68794	19.31206
5.	189.0000	148.7424	40.25757
6.	160.0000	225.4201	-65.42008
7.	144.0000	141.2903	2.709654
B.	176.0000	155.2762	20.72376
9.	170.0000	132.4891	37.51090
10.	184.0000	162.3502	21.64976
11.	i67.0000	165.4818	-58.48183
12.	57.00000	86.9684 ?	-29.96842
13.	111.0000	104.5714	6.428557
14.	11.00000	77.46461	-66.46461
15.	217.0000	232.3322	-15.33224
16.	80.00000	101.4396	-21.43959
17.	223.0000 .	238.3800	-15.37997
18.	299.0000	231.6299	67.37007
19.	154.0000	103.1679	20.83211
20.	109.0000	116.1814	-7.181382

NOTE - (*) indicates estimate calculated with means suhstituted R indicates point out of range of flot

NUMREF OF CASES PLOTTEG NUMEER OF 3 S. II OUTLIER NUMEEK OF 2 S.II. OUTLIERS

$$
20 .
$$

NUMBER OF FOSITIUE RESIIUALS NUMPEF OF NEGATIUE RESIIIUALS NUMBEF OF RUNS OF SIGNS 12.
8.

NORMAL AFPROXIKATION TO SIGN IISTRIEUTION IMFOSSIELE. USE A TABLE FOR EXFECTEG VALUES

This form is a worksheet for the following SPSS control cards: VARIABLE LIST/VAR LABELS/VALUE LABELS/INPUT FORMAT

\qquad

1. COMOUTPUT or COMO files are used for saving terminal output. See notes from previous lecture.
2. COMINPUT files cause input command stream to be read from the file rather than the terminal.
3. PHANTOM files initiate a long-running program that need not be associated with a terminal.

Prima= Victual Mranong:

Example of SEG Loader Use

OK, FOR PROGRAM1
0000 ERRORS [. 6. MAIN. >FTN-REV17. 2]
OK, FOR SUB
0000 ERRORS [くSUB >FTN-REV17.2]
OK, SEG
[SEG rev 17.1]
\# LOAD \#PROGRAM1
\$ LO B PROGRAM1

* LO b_SUb
\$ LI ESL
\$ LI VAPPLb
\$ LI
LOAD COMplete
\$ SAVE
\$ QUIT

SEG Loader MAP Command

```
OK, SEG
[SEG rev 17.1]
# LOAD #PROGRAM1
$ LO B_PROGRAM1
$ LO B SUB
$ LI VAPPPLB
$ LI
$ MA 3
##TYPA 4002 000052
$ LI ESL
LOAD COMPLETE
$ SAVE
$ MA 1
*START 004002 000000 #STACK 004001 001122 #SYM 000025
SEG. # TYPE LOW HIGH TOP
004001 PROC 001000 001121 001121
004002 DATA 000000 000103 000103
$ QUIT
```

OK, CO C KCOBW
OK, * CREATE \#KCOBW
OK, * COMPILE AND LOAD
OK, \# USE LOADER DEFAULTS
OK, *
OK, ED
INPUT
EDIT
LDAD KCOBW
EDIT
LOAD PASSWD
EDIT
file source
OK, FOR SOURCE
0000 ERRDRS [〔. MAIN.)FTN-REV17.2]
0000 ERRORS [GDATAS $>F T N-R E V 17.2]$
0000 ERRORS [GDATAM >FTN-REV17.2]
0000 ERRORS [GGRAPHSンFTN-REV17. 2]
0000 ERRORS [GPASSWDYFTN-REV.17.2]
OK, C 7
OK, FILMEM ALL
OK, SEG
[SEG rev 17.1]
\# LOAD \#KCOBW
\$ La b_source

- LI ESL
\$ LI vapplb
\$ LI
load complete
\$ SAVE
\& MA 3
\$ MA M_KCOBW
© QUIT
OK, DELETE SOURCE
OK, DELETE B_SOURCE
OK, CD -END
OK,


```
\begin{tabular}{|c|c|}
\hline 1) & \begin{tabular}{l}
* CREATE \#KCObW \\
* COMPILE AND LOÄD
\end{tabular} \\
\hline 3) & * use loader defaults \\
\hline 4) & * \\
\hline 5) & ED \\
\hline 6) & \\
\hline 7) & LOAD KCOBW \\
\hline 8) & LOAD PASSWD \\
\hline 9) & FILE SOURCE \\
\hline 10) & FOR SOURCE \\
\hline 11 ) & C 7 \\
\hline 12; & FILMEM ALI \\
\hline 13) & SEG \\
\hline 14) & LOAD \#KCCOBW \\
\hline 15) & LO b SOURCE \\
\hline 16) & LI VAPPLB \\
\hline 17) & LI \\
\hline 18) & Save \\
\hline 19) & MA 3 \\
\hline 20) & MA M_KCOBW \\
\hline 21) & QUIT \\
\hline 22) & DELETE SOURCE \\
\hline 23) & DELETE B_SOURCE \\
\hline 24.) & CD -END \\
\hline
\end{tabular}
OK, CO C_KCOBW
OK, # CREATE #KCOBW
OK. * COMPILE AND LOAD
OK, # USE LOADER DEFAULTS
OK, *
OK. ED
INPUT
EDIT
LOAD KCOBW
EDIT
LOAD PASSWD
EDIT
File source
OK, FOR SOURCE
0000 ERRORS [G.MAIN. OFTN-REV17. 2]
O000 ERRORS [GDATAS >FTN-REV17.2]
0000 ERRORS [GDATAM >FTN-REV17. 2]
0000 ERRORS [GGRAPHS`FTN-REV17.2]
0000 ERRORS [氏PASSWD\FTN-REV17.2]
OK, C 7
OK, FILMEM ALL
OK, SEG
[SEG rev 17.1]
# LOAD #KCOBW
$ LO b_SOURCE
* LI VAPPLB
q; LI
$ SAVE
$ MA 3
#*OPNINRT 4002 002424 ##CLOSEF 4002 002504 ##TYPA 4002 0025
$ MA M_KCOBW
$ QUIT
OK, DELETE SOURCE
OK, DELETE B_SOURCE
OK, CO -END
```

*START	004.002	000010	*STACK	004001	013	$3360 * 5$	YM	0047		
SEG. \#	TYPE	LOW		HIGH	TO	P				
004001	PROC\#\#	\# 00010		013356	013	3356				
004002	DATA	00000	00	011053	011	1053				
*BASE	004001	000100	000111	000777	000	0777				
ROUTINE		ECB	PROC	CEDURE	ST	T. SIZE	LINK			
挑\#\#\#	4002	000010	4001	001000		000042	001004	4002	177400	
DATAS	4002	002220	4001	007054		000040	000152	4002	001610	-
DATAM	4002	002370	4001	010170		000040	000150	4002	00176	
GRaphG	4002	002534	4001	011276		000062	.006226	4002	002132	
PASSWD	4002	010762	4001	012536		000024	000046	4002	010360	
E\$こ7	4001	012672	4001	012712		000042	000000	4002	010426	
ABS	4002	011026	4001	013026		000016	000020	4002	010426	
F\$ERX	4001	013060	4001	013034		000020	000006	4002	010446	
DIRECT ENTRY LINKS										
EXIT	4001	1013102	TNO	SOU	4001	013106	6 TINO		4001	013112
F\$WA	4001	1013116		RA	4001	013122	F F\$		4001	013126
F\$A2	4001	1013132	F\$	A7	4.001	013136	6 Fi		4001	013142
COMIMON BLOCKS										
4002		001004.001204								
QTHER SYMBOLS										
- AL109	$\times \quad 4001$	1013146		OG S $^{\text {P }}$	4001	013150	-		4002	002424)
**CLOSE	4.002	$2002504 \text { HTYPA }$			4002002530				[002	

OK, SEG \#KCOBW
Please enter password.
Hocus
Password is correct. Program continuing.
Error: condition "POINTER_FAULT末" raised at 6(0)/4.0116.
Entry to inner ring was from call at $4001(3) / 1002$.
ER! PM
$S A, E A, P, A, B, X, K=$
10054146100200014000
PB, SE, LB, XB:
$64001 / 100264001 / 13644$ 4002/1774006/30342
OK, SLIST M_KCOBW
*START 004002000010 *STACK 004001013632 *SYM 000057

SEG. \#	TYPE	LOW	HIGH	TOP
004.001	PROC\#\#	000100	013630	013630
004002	DATA	000000	011201	011201

\#BASE $004001000100 \quad 000111000777000777$

ROUTINE	ECB		PRDCEDURE		ST. SIZE	LINK FR.		
\#\#\#\#	4002	000010		4001	001000	000042	001010	4002
DATAS	4002	002224	4001	007042	000040	000152	4002	001614
DATAM	4002	002374	4001	010156	000040	000150	4002	001766
GRAPHE	4002	002540	4001	011264	000062	006226	4002	002136
PASSWD	4002	010766	4001	012524	000024	000046	4002	010364
OPNWRT	4002	011042	4001	012660	000036	000042	4002	010432
CLOSEF	4002	011102	4001	013016	000032	000036	4002	010474
TYPA	4002	011132	4001	013114	000034	000022	4002	010532
E\$27	4001	013130	4001	013150	000042	000000	4002	010554
ABS	4002	011154	4001	013264	000016	000020	4002	010554
F\$ERX	4001	013316	4001	013272	000020	000006	4002	010574

DIRECT ENTRY LINKS

ERRPR	4001	013340	EXIT	4001	013344	SRCH\$	4001	013350
TNDU	4001	013354	TNOUA	4001	013360	TSRC\$\$	4001	013364
F£WA	4001	013370	FFRA	4001	013374	F\$A1	4001	013400
F\$A2	4001	013404	F\$A7	4001	013410	F\$GB	4001	013414

COMHON BLOCKS
$4002001010 \quad 001204$
QTHER SYMBOLS
$\begin{array}{llllll}A L 10 \$ X & 4001 & 013420 & A L O G \$ X & 4001 & 013422\end{array}$

1. Purpose: To obtain a load map

SEG
LOAD * \#PROGRAM1
MA M_programi
QUIT
2. Purpose: To reload a portion of a runfile

SEG
LOAD * \#PROGRAM1
RL B_SUB
save
QUIT

.	UNIT NUMBERS	
Fortran Unit Number	Primas Unit Number	$\begin{gathered} \text { Reserved } \\ \text { Use } \end{gathered}$
1		User terminal
2		
3		
4.		Line printer
5	1	Input
6	2	Listing
7	13	Binary
8	- 4	
9	5	
10	6	cominput
11	7	
12	8	
13	9	
14	10	
15	11	SEG's Load Map
16	12	
17	13	
18	14	Statos Printer/Plotter
19	15	ESL Contour Routine
20	16	ESL Plot
21	17	Comb Files, Mag Tape

Advanced COMINPUT file usage:

Invocation of one COMINPUT file from another. The file C_PATH invokes C_COMPILE and C. LDAD.

The following is a listing of C_PATH. Lines beginning with $\#$ and a space are comments.

* C_PATH COMPILES AND LOADS \#PATH
* PRIMOS UNIT 7 IS USED BY
* THE NESTED COMPINPUT FILES.
*

CO C_COTFILE 7
CLOSE 7
CO C_LDAD 7
CLOSE 7
DELETE B SDURCE
CD -END

This is the end of the listing of C PATH. Listings of C_COMPILE and C_LOAD follow.
The editor is used to concatenate all routines, so they may be compiled and loaded with single statements.

```
C_COHPILE FOR PATH
```

*

FILMEM
E.L)
LOAD MAIN
LOAD PASSWD
LDAD BEGIN
LOAD DIFSUB
LOAD LEAVE
LOAD ACTIV
LOAD HIT
LOAD SCALE
LOAD FASMOL
LOAD HTVOL
LOAD LIST
LOAD ACTIV

```
LOAD ASKFIL
LOAD DERIV
LDAD MATPRI
LOAD INVLV
LOAD REMIVE
LOAD SCALE
LOAD MININ
LOAD DECMP
LOAD REFINE
LDAD SETUP
LDAD ADD
LOAD BYE
FILE SOURCE
FOR SOURCE
DELETE SDURCE
CO-CONTINUE
    The file C_COMPILE has created a binary
    file, B_SDURCE, which is input to C_LDAD.
* C_lDAD FOR PATH
* CREATE #PATH
FILMEM
SEG
LDAD #:PATH
LO B_SOURCE
LI ESL
LI VAPPLB
L.I
gave
MA 3
MMA 1
MA M_PATH
QUIT
CO -CONTINUE
```


SOURCE LEVEL DEDUGOER

Typically the way to debug a Foriran progran ie to input print statements and see what values are printed during execution. ihis usually necessitates repetitive editing compiling. loading and executing. The source level detugger (DDG) puts an end to that. It allows interactive examining of variables and program floul without changing the FORTRAN source.

To use the debugger,

- compile source code with the - - bebue option \leftarrow
- load normally; (must be a U-mode program; e.g. compiled with $F O R$ and loaded with SEG)
- obtain listings of the source code uith the $-L$ option on the groul command (for lime numbers of the source code statements)
- create a COMO file (optional)
- invoke the debugger by

DBG filename
$>$ is Dolog anotrol
where "filename" (or pathname) is the name of the executable program being debuggedi the debugger responds uith a prompt character "こ"

- issue commands to the debugger ok, como save
- terminate the debugging session with ok. DBG \#tbst

QUIT
(control will return to PRIMOS)

- end the como file (if used) with
COMO -ERDD

After having entered DBG, the user must give some commands directing the debugger to monitor some part of the program being debugged. Typically, it will be

- set breakpointsi. an area of the pregrem where the user uants to halt execution and examine some variable or path
- cause some variable(s) to be monitored whenevor it: change's value
- step thris the program instrurtion by instruction
- trace values, entry/exit to subroutines, or statement number

Once the initial instructions to the debugger are given, the program to be detugged is started exccuting by

SRESTART or YRST
This command can be given to restart the frogram at the beninning after execution has begun. (Variables initialized by bafA statement mill not be reinitialized if RST is given after execution has begun.)

When the program has halted after a breakfoint or stop, the user can resume execution to the next breatpoint (or erid of tho proaram) but tuping

$$
\text { SCONTINUE or } \mathrm{C}
$$

The user can stop executing and exit from the debugger at any time bul typing.
YQUIT OT OQ
(Commands to the debugger can be given only when the prompt character, "っ", эppears.)

GOIFE DBG COMMANDS

Setting Breakpoints
A breakpoint is set in the program where tife user wishes to stop execution temporarily to examine something. lhe conmand is

こBRK break-id or PBREAKFOMNT brrak-id
where
break-id = the breakpojnt identifier for that breakpoint: It consistes of procedure name (thialn for main); ; \iline \#
e. 9.

OURK qMAAIN\?

The program halts at source code.line \#g. lho line \# refers to the source code line \#'s obtained from the spojul. - listing. The line number on the break-id inust be an exacutable line (no Comment lines or Forilar lines) The haltoceurs before thati line is executed. In the above example, line Ho would. have executed, but not line \#9 when lhe brfM occurs.

A BRK is usually. set immediately after entering DBG. The breakpoint is set at a point iri the propram where things are suspected of going wrong.

BRK's can be set any timo one is under control of the debunger (whenever the prompt is given).

After a Bifk is set, every time the program exerutes: the code at: the BRK will halt and the user will enter sone DBG command or CONT INUE.

BRK's can be cleared (removed) so that a hajt no lunger ocrurs there. This is useful if a HRK her been set in a lonf and the user no longer wants to halt there. The command to clear Blak's is

> CLEAR break-id or oCLR break-id
where break-id is the 5 ame as that in the BRK statement
e. 9.

ЭCLEAR WMAINT?

To list all the current RRK's tupe
NLIGTALL
or I_STA

Evaluate

Orice a BRK has occured, the user usually uants to examine some variable. That is done with the evaluate command, :

For example,
j: J will evaluate the current value of variatile J (the space after : is necessery)

To evaluate a variable as an ASCIT string, tupe
Э:A varjable
e. 1.

э:A TTTLE
TJTLE will be printed as a string of chararters rather than ar a flogting pointi number.

Expressions can also be evaluated. For example,
\therefore ItJ the sum of integers I and J will. be output

When evaluating an array, the range of the array can be specifige by tuping the beginning and ending value of the index
soparated by＂．．．＂．

For example
given DIMENSION D（10OO，lOOO）
3 B outputs 1000＊1000 mumbers
$\because B(1,3) \quad$ outputs element $3(1,3)$
ン：$B(I, J)$ outputs gement li（i， 1$)$
？：B（1．．．100，20）outputs 1．00 numbers starting with element $B(1, ~ 20), ~ L(E, ~ 巳 O)$, B（3，20）．．．日（70，20），日（100，20）

Stepping

The user can step through a segtion of code instruction bul instruction starting from the beginning or from a previously set． BRK．This is useful for tracimg program flow．The step command is given by

SSTEP or 3
and executes one statement everu time it is ofven．

A variation of this command is

2STEP n or 25 n
which causes the execution of n conserutive statements before the riext halt．

〔． 9 ．
STEP 4
causes the next 4 statemente to execote before returing to the $0 B G$ command level．

EXA MPLE

OK，FDR DRIVER－DERUG－L
0000 ERRORS［：．MAIN．SFTN－REV17．こ1

OK，FOR TEST－DEQUG－OOOO ERRORS［ऽTEST ふFTM－REVI7．ᄅ］

OK，SLIST L DRIVER
（OOO1）DJHENCJDN C（10）
（0002）$\quad D 010 \quad I=1,10$

```
(0003).. C(I)=F1_1]AT(I)
(0004) 10 CONTINUE
(0005)
(0006)
(0007)
(0000)
(0009) 2O FORMAT(I5,F10.3)
(0010)
(0011)
FROGRAM SIZE: PROCEDURE - OOOLJ'S . LINKAGF .. OOOO&4 GTACK
- ODOODG
OOOO ERRORS [.:MAIN. FFTN-REV17. こ]
OK, ELIST L_TEST
(0001) GUBRCUUTINE TEGT(N, (N,N)
(0OO2) DIMENGIONV V(100)
(0003) SUM=O.
(0004) NN1=NMN-1
(0005) . DO 10 I=, NN:
(0006) SUN:=EUM+V(1).
(0007) 10 COMTJNUE:
(000e) v(v)=心0NF
(0009) . RETURN
(0010) END
PRCIGRAN SIZE: FIROCEDURE - OOOOTG L.INKNGE - 00OORG GTACK
- 00003\measuredangle
OOOO ERRORS [`TEST FFTN-REV17.2]
OK, SEG
rgEg rev 17.1.1
# LOAD 非EGT
# LO B ORTVER
* LO B TEST
生 LIB VAPPl.B
q; L.IB
LOAD COIFPLETE
$ SAVE
* QUIT
OK, COMO NUTTER
OK, DGG #TEST
**Dbg** revision 17.3 (EG\cdotsJanuary-19日0)
` BRK DRIVER\G
No such procedurg.
# BRK $NAIN\G
= BRK कणNIN\7
`.RST
#** breakpointed at frimiN\b (s.0-%)
`: I
I=1
Y : C(I.)
```

```
C=1.0
3:c
C(1)=1.0
C(2)=2.0
C(3)=3.0
C(4)}=4.
C(5)=5.0
C(6)=6.0
C(7)=7.0
C(Q)= 日.0
C(%)=9.0
C(10)=10.0
C
*** breakpointed at qivAIN\% (4)O+3)
>: (i(1...4)
C(1)=0.0
C(2)=0}
C(3)}=3.
C(4)=4.0
3C
    1.6.000
*H* breakpointed at कMAIN\6.($10+2)
2 : C(1...5)
C(1)=6.0
C(2)=?0
C(3)=0.0
C(4)=4.0
C(5)=5.0
う: C(1)
C=20
C
*** breakpointed at कMATN\% ($10+%)
> :C(1...5)
C(1)=t.0
C(2)=0.0
C(3)=12.0
C(4) = 4.0
C(5)=5.0
` RST`BRK TEST\5
? BRK TEST\G
` BRK TEST\E
O LSTA
Type Loration
brk कMAIN\G($10+ミ), count:= %
brk क\AAIN\7 ($10+`3), count=2
brk TEST\5, count =0
brk TEST\G, count=0.
brk TEST\& ($10+1), count =0
RST
*** breakpointed at. 特AIN\t ($10+N)
```

```
% : I
I}=
> :.C(1...5)
C(1)=1.0
C(2)= 2.0
c(3)=3.0
C ( 4 ) = 4 . 0
C.(5)=5.0
CO
*** breakpointed at 'TESTiG
\geqslant: V
v=1
`.: JN1
JN1 = 3
; C
* #### breakpointed at rEST\o
y : v(l)
v=1.0
C
** breakpointed at TEST\o
う:V(I)
v=3.0
y : GU|
SUM = 1.0
OC
*** breakfointed at TEST\G
v:V(J)
v=3.0
3: SUM
SUM = 3.0
C
*** breakgoinlied at: TEST\日 ($10+1)
y: SuN
SUM =6.0
C
**** breakpointed ati 4|AIN\% ($1O+3)
3 : C(1...5)
C(1)=A.O
C(2) = O.0
C(3)=3.0
C(4)=4.0
C(5)=5.0
C
    6 6.000
#** breakpointed at mMAIN\O (%10+a)
y: I
I}=
```

```
y C C(1...5)
C(1) = 6.0
C(己)}
C(3)=3.0
C(7)=4.0
C(5)=5.0
` : C(I)
C:O
C C.
**H: broakpointed at TEST\O
`: \
v=2
2 : NN1
NN1=4
> : V(1)
v=20
C
#*** bregkpointed at TESTVG
V:V(I)
v = 3 . 0
` : l
I=2
C
*** breakpointed at TEST\B
\therefore:V(1)
v=4.0
> : SUM
SUM = 3.0
C
#### breakpointed at: resr\a
` : V(J)
v=5.0
`C
**** breakpointed at IEST\& (%10.1)
`: SUi|
SUM = 1r.0
`QUIT
OK, COHD -END
```


REFERENCES

1. The Source Level Debugger Cuide; IDR 1033. (Chapters $1,2,5$ and Appendix \dot{A}, B).

ASCII FORTRAM IV Compiler

Gome Lefirmiticus

source code	An text file consisting of FORTRAN IV statements; usually created with the Elitur.
binary file	Translation of a source code file generated by a compiler and in a format required bu the loador
short integer	integer using 16 bits (J word ar Z butes); with a range of -32769 to +3e760
long integer	integer using 32 bits (2 words or 4 bytes); with a range of - 247483648 to +214749364日
R-mode	expecutes in rearical memory spoce; program size limitied by site of one segment (bak worde)
$V-\bmod =$	executes in virtural memorull space; frogram size can be larget than anount of physicis. nemory

There are two versions of the same compiler on the Plllle
FDR - (system standard; recommended)
-uses long integer and V-mode as default options
-all application libraries are compiled using this versjon

FTN -uses short intieger amd R-mode as default options

```
~
```

A source code file is compilen by fyping.
FOR fillename

The compiler generates abinary file called "B..filename" that will reside in the current UFD (or sub-UFe). Error messages from the compilation will be printed at the user torminal.

The compiler has a number of options which are used to override the system defaults or produce additional information. Some of the most frequently used optinns are listed belous.
-L or -LISTING
$-B I G$
-DERUC
creates a listing file called "L_filename", which contains source code arid error messages
(- L. SPGOL directis the listing file to the printer immediately and deletes, it from the UlD)
used whenever the source code has arrats larger than $64 k$ octal words (c4k octal : 64 *1024 decima1=65,536) Long intiegere and real numbers are $\tilde{\sim}$ words long, so arrays larger than
 require the use of this option.
generates appropriate code for using the source level debugger (Dom(:)

The format for using options on the compiler is

FOF filename optionl optionc
e. 7 .

FOR fillename - $\mathrm{BIC}-\mathrm{DI} \mathrm{BNG}$

Note that the "-" is part of the option name.

EXNIIFLE

The following source code file is ramed rest.

DIMENGIDN A(10)
DO $10 \quad \mathrm{I}=1,10$
$A(I)=10$. OUSIN(FLOAT(I) $)$
10 CONTINUE
WRITE (1, 400) (A($\mu), J=1,10)$
CALL EXIT
END

The results of compilation are
OK. FOR TEST -DEDUG -IL
(6007) FEND
*** LI'NE 0005 [END] $\$ 400$ - UNDEFINED ETAT NE.
0001 ERRDRS [GMAIN OFTN-REVI7. 2]
The message refers to the forgotter FQRMAT statement referenced in line 5.

The format of the compilen error messages is
$x \times x$ E ERRORS CGYYYYYOFTN-FEVZz. z.
where
$x x x x=\#$ \#f ertors; 0000 indicates mo ertort
YYYYYY = MAIN for a main routime subroutine name for a subroutine (or function)
zz.z $=$ PRIMDS rev mumber

REFERENCES

2. The FORTRAN Programmers Guide: Rev.. 16 e FRIME FDR 3057-101.
3. The FQRTRAN Programer's Companion: Revib; PRIME FDR 3330.

Some extensions to ASCII FORTRAN IV on the FRJFE are listed belong.
\$INSERT

\$INSERT filename
and starts in column 1. It inserts into the source code, at compilation time, the file whose name is "filename" (or pathname). I he \$INSERT command should not be misted. It is commonly used for COMMON block specification or blocks of PARAMETERE.

For example, filename COM contains

COMMON / BLDCK1/A(10,20), D(10,20),C(10, 20)
COMMON / BLOCKs/ E(5O), AST(2)
and filename DRIVER has the following code,

C————DRIVER PROGRAM
DIMENSION W(100)., T(100)
\$INSERT COM
results in the following code after compilation
C- ---DRIVER PROGRAM
DIMENSION W (100), T(100)
COMMON $/$ BLOCK 1/ A $(10,20), \mathrm{D}(10,20), C(10,20)$
COMMON / BLDCKD/E(50), AST(シ)

FARAMETER statement

The PARAVETER statement allows a constant to be assigned to a variable name. The variable can be used any place a constant can (e xrept in FORMAT statements). .This is handy for use in DIff:rsigun statements. If changing the'size of arrays, only the FARAMETER value ne ads to bu changed

For example.
DIMENSION A (100), B(100), C(100), D(LOO)
DIMENSION E $(100,100), F(100,100)$
can be replaced with

PARAMETER $N=100$
DIMENSION $A(N), B(N), C(N), D(N)$
DIMENSIUN E (N,N), F (N,N)

FREE FORMAT I/O (called List-directed READim mamma)
Free format frees the programmer from including format statements for READs from freo format input devicos such og ifo user termiral. Values in a fron format: input are separated by a comma ar a carriage return. A freg format READ uill read ariy number of records until all items in the I/Olist have been satisfied or aslash is encountered. The format statement \# is replared by a "女" in the READ statement.

For example.

Generalized Subscripts
The compiler allous any integer-valued expressjori as ari array subscript. It may contain constatris, variables, function references or other array references.

Some Additional Comments

-READ/WRITE unit numbers for tetminals is "l." (standert Foktranme 4 or 5)
-use the CALL EXIT statement instead of siof

REFERENCEG

1. The FORTRAN Programmers Gujde; Flev. lo; FRIME FDR 3057-101.
2. The FORTRAN Programmer's Gompanioni Revib; PRIME FFDR 3338.

FORTRAN PROGRAIMMING MANUALS

1. A FORTRAM IV Primmer, E. I. Drgarick, Addisum-hesley.
2. A Guide to FORTRGN IV Programming. D. McCrackem,

Wiley
3. A Short Course in Fortran lv progranming. R.M. Loes McGram-Hill.

COMO files

There is .a PRIMOG command called

COMDUTPUT pathname options
affectionately knout as

COMO pathname options
that sends the output stream to file "pathname" falsoro the terminal unless told; mot to . 1 f the outputifile is afilemame instead of a pathnmaer it will be placed in the current fra

This action is halted by typing

$$
\mathrm{COHO} \text { - END }
$$

Usually this command is used when a hardeppy (or. listing) of the terminal session is desired far later reference.

This can be a very useful command when using the Source Level Debugger, especially when debugging programs with many jorge arrays whose values need to be examined.

For example,
OK, COMO filename

3 QUIT

At this point, the file carl be SPOOLed uij:h
Spool filename
or examiryed with the editor

ED filename.
Р 23

$$
\begin{aligned}
& \text { Togotnd of }=\text { como file } \\
& \text { ox, DELETY flem }
\end{aligned}
$$

QUIT

SPOOLing the file does mot delete it from the UFD.
COMQ files: are usually used to obtain hatid copu of the terminal session (of part of it) and are not generally gaved. After spubling it, it should be deleted.

REFERENCES

1. PRIMDS Commands Reforenee Guide; FDR 3 oge
2. The Programmer's Companion - PRIVOS Commands; FDR 3250-000

Policies:
All tape handing must be done through one of the computer staff. Exceptions are those who have been trained and given special permission by Terry Killpack. Without this permission no one is to go into the machine room. If you need a tape mounted, one will be mounted for you by John Atwood or one of the other computer staff. Data backups are done entirly by computer staff. This can be accomplished by submitting an ACTION REQUEST FORM to Terry Killpack with the proper information.

Procedure:
After a tape has been mounted for you, the tape drive must be assigned to the terminal at which you are logged in. This is done be entering the command:

AS MTO

The computer will then respond with a message stating that the unit has been assigned, or that it is.in use.

Tape Writing:
Tape uriting is accomplished by one of two methods depending on the tape format. If the tape is to be written as a backup tape or if it is to be used to transfer data to another Prime Computer, MAGSAV should be used. If the tape is to be used on anything other than a Prime, then MAGNET must be used with the WRITE option.

Tape Reading:
Tape reading is accomplished by one of two methods depending on the tape format. If the tape has been written using MAGSAV, then MAGRST must be used. If the tape has been written by anything other than Prime's MAGSAV utility, then MAGNET must be used with a READ option.

Finishing:
When finished with the tape, the user should either log out, or if there is to be more work done in the session, the user should release the tape drive with the command:

UN MTO

MAGRST / MAGSAV labled, unformatted tape read/write utilities.

-MAGRST [-7TRK]
Restores files, directory-trees or partitions from a magmelic tape created with MACSAV. The tape unit must be ASSICNED. The MAGRST dialog is as follows:

MAGSAV [options]
Writes a PRIMOS disk file, directory-tree or partition to 7 or 9 -track magnetic tape. The tape unit must be ASSIGNed.

The MAGSAV dialog is as follows:

MAGNET: unlabled, formatted tape read/write utility.

MAGNET

MAGNET is an interactive magnetic tape utility that transfers non-Prime-format magnetic tapes to and from PRIMOS disk files. MAGNET prints a release number and a date and then requests the user to enter an option.
The user may then issue one of the option commands. Each option conducts a dialog. The queries and responses are described below.

POSITION

Positions the tape to a specified file and record
-number. Absolute position rewinds tape before spacing. Relative position allows tape to be moved forward or backward from the current position. READ
Transfers a file from magnetic tape to disk, optionally providing unblocking and. EBCDIC or BCD translation.
WRITE
Similar to READ but transfers file from disk to tape. WRITE also provides facilities for blocking and character translation.
COPY
Copies a file (or files) from one magnetic tape to another. No character translation is provided for this operation. QUIT
QUIT
Returns to PRIMOS command lave

MAGNET DIALOG QUERIES

REQUESTOR:
UURI ACCOUNT:
URGENCY:
GENERAL DESCRIPTION:

ASSIGNMENT: COMPLETED:

UURI/ESL Computing Facility Guide
by
Terry J. Killpack
March 1981

Table of Contents

COMPUTING FACILITIES 1
Tektronix Graphics Terminals. 1
PLOTTING SYSTEMS 2
Introduction. 2
Statos Plotting. 2
SPLDT Command 3
Zeta Plotting 3
ZPLOT Command 4

COMPUTING FACILITIES

There are three rooms located in the building at 420 Chipeta Way that contain the computing facilities for UURI/ESL. The rooms are called the machine room, the peripheral room and the user room. The machine room contains the Prime 400 CPU , memory, disks, tape drive, and system terminal. Users are not generally allowed access to the machine room. The peripheral room contains various peripherals such as the line printer, the Statos electrostatic plotter, the Zeta pen plotter, a DOE Tektronix 4014 terminal and a DOE Tektronix 4081 system. Users are allowed access to this room during working hours and some ESL users working on DOE contracts are given access to the peripheral room during nonworking hours. The user room contains a CRT terminal, a Tektronix 4014 graphics terminal with a tablet and a DECuriter terminal. Users are given access to the user room 24 hours a day. The combination to the user room door is II and IV pushed together and then III.

After hours (after 5 pm) the last user to exit the user room must pull the door closed, securing the room with the combination lock. The normal lock should not be used. The power on the Tektronix 4014 graphics terminal should also be turned off before securing the user room.

No food or drink should be taken into any of the three computer facility rooms at any time. Smoking should be avoided in the machine room.

There are three telephone lines into the computer that may be accessed 24 hours a day from remote sites. There are two 300 BAUD lines (581-5402 \& 6711) and one 1200 BAUD line (581-6645).

Tektronix Graphics Terminals

The UURI/ESL computer facility has several Tektronix storage tube terminals. These terminals require some special care in their use. The screens on these storage tube terminals can become permantly damaged (burned) if certain steps are not taken to protect them. After loging out of a job on a Tektronix terminal the user should erase all writing from the screen before leaving the terminal. This is done by pressing the page reset key on the keyboard of the terminal. The screen should not be overuritten. The programmer or user should not allow vectors or characters to be drawn in the same place on the screen over and over again. This can burn the screen. The power on the Tektronix terminals should be turned off if the room that they are in is being secured for the night.

PLOTTING SYSTEMS

Introduction

The UURI/ESL computing facility has several plotters that are available for use in application programming or production jobs. The UURI/ESL Prime system has a device-independent plotting. system that can be used to direct plots to any of three devices. The plotting system is interfaced to the Tektronix 40XX graphics terminals, the Statos electrostatic plotter, and the Zeta pen plotter. The UUPLT manual (ESL-46) contains information on how to direct plots to different devices. The basic subroutine that is used to open plots and direct them to a specific device is called OPNPLT. There are other routines that can be used to open plots and they are discussed in the plot manual.

Tektronix plots are generated directly and the user must be logged into a Tektronix terminal to perform Tektronix plotting. The Statos and Zeta plots are generated indirectly by sending plot files to plot queves. When a Statos plot is generated the system sends a message to the user terminal that a statos plot has been generated and that it contains a certain number of vectors. This plot will not actually be plotted until the user powers on the Statos plotter and then sends the plot to the Statos queue with the SPLOT command. When a Zeta plot is generated the system sends a message to the user terminal that a zeta plot has been generated and that it contains a certain number of pen movement inches. This plot is actually produced by using the ZPLOT command and then waiting for the system operator to process the Zeta plot queue. The Zeta plot queue will be processed once a day.

Statos Plotting

The Statos electrostatic plotter is controled by a system phantom job that continually processes the Statos queue much like the system spooler processes print files. plots are sent to the queue with the SPLOT command. Plot files are generated by user or production programs using the UUPLT library subroutines.

Plots are sent to the Statos plotter with the SPLOT command much like print files are sent to the spool queve with the SPOOL command. However, the SPLOT command does not require a file name like the SPOOL command.

When the user types the SPLOT command at the user terminal the system looks for any Statos files that have been generated under the current login name and if any are found, the files are placed on the Statos plot queve where the Statos phantom job will process them on a first come first serve basis.

The user may obtain a summary of the plots that are on the queue by using the LIST token, (SPLOT -LIST). This command will produce a list of the plots that are on the Statos queve (plots that have been "SPLOTed") at the user terminal.

If the phantom job has not started processing the user's plot, it is possible to cancel the plot from the queve with the cancel token, (SPLOT -CANCEL PLSXXX). PLSXXX is the queue name of the plot that was given to the user at the time the SPLOT command was used and is the name that is displayed with the LIST token.

If the user generates a plot that has some known problem, it is possible to delete the the plot file from the system before it is sent to the queue by using the SPLOT command with the DELETE token, (SPLOT -DELETE). The system will respond with a verification request and the user answers yes or no.

The default "pens" on the Statos plotter are vector thicknesses of $1,3,5$, and 7. The PENSEL or THICK subroutines in the UUPLT library may be used to seclect vector thicknesses.

Zeta Plotting

The Zeta pen plotter is controlled by operator software Gin: rarosses the Zeta plot queue. Once a day the system operator will used the operator software to actually produce all the zeta plots that have been sent to the queue with the ZPLOT command. Plot files are generated by user programs or production jobs that use the UUPLT subroutines in the plot library.

Plots are sent to the Zeta queve with the ZPLOT command. No file name is required.

When the user types the ZPLOT command at the user terminal the system looks for any Zeta files that have been generated under the current login name and if any are found, the files are placed on the Zeta queue where the operator software will process them.

The user may obtain a summary of the plots that are on the queue by using the LIST token. Zeta plots may be canceled with the CANCEL token and they may be deleted with the DELETE token.

The default pens on the Zeta plotter are ball point. Turret number 1 contains black, 2 contains red, 3 contains blue, and 4 contains green. The pens may be changed by sending an operator request using the CALOPR subroutine in the UUPLT library. There are extra charges for operator requests.

FILE STRUCTURE

There are two types of files on the PRIME. One type is a directory; a file that contains information about and pointers to other files. The other type is a file that contains information (usually a data file or a program file).

Directory files will be referred to as "directories" and information files will be referred to simply as "files".

SAM files

SAM files have records that must be accessed sequentially. Some examples of SAM files are

- source code files (created by ED)
- binary files (created by FDR)
- map files (created by SEG MAP)
- Iisting files (created by FOR)
- CO files (CDMINPUT)
- data files (created by ED)

DAM filles

DAM files have records that can be accessed randomiy or directly uithout having accessed the previous records. Some examples of SAM files are

- COMD files (CDMOUTPUT)
- direct aceess files (from FORTRAN DEFILE subroutine)

SEGSAM files
SEGSAM files are the segment directories created by the SEG loader. These segment directories contain information about where the run image is stored.

source files	filename
binary files	B_filename
listing files (from FDR)	L_filename
$\begin{aligned} & \text { map files } \\ & \text { (from SEG) } \end{aligned}$	M_filename
Runfiles (from SEG)	\#filename
Cuminmut files	C_filename
comoutput files	filename
Phantom command files	PH_filename
RUNOFF files	R_filename

PRIMOS FILE COMMANDS

The following is a list of PRIMOS commands dealing with files (data/program and directories).

Command	Usage Example	Purpose
ATTACH	A UFD. NAME	Change current directory
	A * 3 SUB	
	A Sub 12	
CLOSE	C ALL	Close all files
	pathname	Close file called
		"pathname"
	funit	Close file open on PRIMOS unit "funit"
CMPF	CMPF Filei files	Compare two files and show differences
CNAME	CNAME OLDFILE NEWFILE	Change filename
COMINPUT	coc_stuff	Execute a command file
COMOUTPUT	COMO LOOKY	Create a copy of the output stream
CREATE	Create new. Subufd	Create a new SubuFd
DELETE	delete filename	Delete a file
ED	ED FILE1	Edit a file
FOR	FOR FILEI	Compile source file
FUTIL	FUTIL	Invoke the File UTILity processor
LISTF	LISTF	List current directory (gives name of current directory)
LUFD	LUFD	List current directory
OPEN	OPEN DATA1 81	Open file on PRIMOS file unit
PH	PH PH_JOB	Execute a phantom

job

RUNOFF	RUNOFF	Invoke the RUNDFF processor
SEG	SEG \#PROG SEG	Execute a runfile Invoke the SEG loader
SIZE	SIZE PROGRAM. NAME	Display size of file
SLIST	SLIST SDURCE	Display a source file
SPOOL	SPOOL FILE1	Produce line printer listing of a file

FUTIL PROCESSOR

FUTIL is a file utility whose subcommands permit the user to copy and delete files and directories on a per-file or directory basis. FUTIL has an ATTACH subcommand that allows attaching to subdirectories by giving a pathname.

INVOKING FUTIL FROM PRIMOS

To invoke FUTIL, input the command
FUTIL

When loaded, FUTIL prints the prompt character ">", and awaits a command from the user terminal.

FUTIL COMMANDS

ATTACH directory-pathname

ATTACH moves the home UFD to the directory defined by pathname. The first directory in the pathname may be *.

TO pathname
TO defines the TO directory for subsequent copying commands. The pathname in the command is where things will be copied to. The default T0 directory is the home UFD. The TO command does not change the home UFD.

FROM pathname
FROM defines the FROM directory for subsequent copy and delete commands (e.g., COPY, DELETE, CLEAN, TRECPY, TREDEL, UFDCPY, and UFDDEL). The pathname in the command is where things are copied or deleted from. The default FROM directory is the home UFD. Use of FROM never changes the home UFD.

The FROM (and TO) directories remain in effect until changed. Be careful when deleteing files or directories after having set the FROM directory to something other than the home UFD.
e.g.,

OK, FUTIL
>FROM YOURS
>TO MINE
>COPY YOURFILE
>DELETE FILEA

Abstract

Results in copying file YOURS YOURFILE to MINE YOURFILE and deleting YOURS $>$ FILEA if it exists. The probable intention was to delete MINEPFILEA, but the FROM directory was not updated.

COPY from-name [to-name]

Copies the named SAM or DAM file from the FROM directory to the TO directory. If the "to-name" is ommitted, the copies have the same name. If the "to-name" already exits in the TO directory, it is deleted and then "from-name" is copied to "to-name". The type of the two files will be the same.
e.g. $\operatorname{~PCOPY~TEST~TEST-A~}$

TRECPY directory-a [directory-b]
Copies directory tree in FROM directory into the to directory. A directory tree consists of all files and sub-directories that have their root in that directory. "directory-b" must not exist prior to the TRECPY command. If "directory-b" is omitted, the two directories have the same name. Use this command for copying SEGSAM (runfiles) files.

UFDCPY

This command copies all the files and directory trees from the FROM directory to the TO directory. Files already existing in the $T 0$ directory with names identical to those in the FROM directory will be overwritten. SEGSAM files already exiting in the TO directory with names identical to those in the FROM directory are not allowed and will not be copied.

Deletes all files in the $F R O M$ directory beginning with "prefix". This command is usually used to clean all binary files from a UFD by

CLEAN B

DELETE filea [fileb] ...
This command deletes "filea" and optionally, "fileb", from the FROM directory. "filea" and "fileb" cannot be directories.
e.g., DELETE FILEA FILEB
or
DELETE FILEA
DELETE FILEB

TREDEL directory-a
This command deletes the directory tree specified by "directory-a" from the FROM directory. This command is used for deleting SEGSAM runfiles. SEGSAM runfiles are preferably deleted by using the DELETE command in the SEG processor.

UFDDEL
This command deletes the entire FROM directory.

QUIT
This command terminates the FUTIL processor.
Passwords, owner, read and write aceess rights are required for some of the FUTIL commands to execute.

DPENING AND CLOSING FILES

Data files used by FORTRAN IV programs must be explicitly opened and closed by the program or by the user.

UNDER PRIMOS CONTROL

DPEN pathname funit key
where

$$
\begin{aligned}
& \text { pathname - file to be opened } \\
& \text { funit - PRIMOS file unit on which pathname } \\
& \text { is opened (note: PRIMOS file unit } \\
& \text { is not the same as the FORTRAN } \\
& \text { logical unit) } \\
& \text { key - logical OR of Newfile key, Action key, } \\
& \text { and Reference key }
\end{aligned}
$$

For example,
OPEN DATA1 81
means open, on PRIMOS unit 8 (FORTRAN logical unit 12), a file named DATA1 as a "read only" SAM file
(DPEN can be abbreviated by "ロ")

```
CLDSE pathname
            funit
    ALL
where
pathname - name of a previously opened file
funit - PRIMOS file unit that is currently opened
ALL - all files currently opend
For example, to close the file opened in the example
above, any of the following forms would do
CLOSE ALL
CLOSE 8
CLDSE DATA1
(CLOSE can be abbreviated by "C")
```

FROM WITHIN A FDRTRAN PROGRAM
There are several subroutines in the library ESL (UURI) that will open and close files from within a FORTRAN IV program. To access these subroutines, the UURI library must be loaded by the SEG loader, so the statement

LIB UURI
must be included when loading the program.

OPNNEW

DPNNEW opens or closes a sequential urite file. This subroutine actually opens the file for reading and writing.

OPNNEW checks for the existence of the file and if the file exists it is closed and then deleted before a new file is opened (created).

Usage
CALL DPNNEW (LU, NAME, LN)

Description of parameters

LU- (int.) FORTRAN logical unit NAME- alphanumeric name of file LN- (int.) \# of characters in NAME

OPNWRT
OPNWRT opens a sequential write file.
The file is actually a read and write file.
Usage
CALL OPNWRT(LU, NAME, LN)
Description of parameters
LU- (int.) FORTRAN logical unit NAME- alphanumeric name of file LN- (int.) \# of characters in NAME

OPNRED

OPNRED opens a sequential read file.
OPNRED checks for the existence of the file.

Usage
CALL DPNRED (LU, NAME, LN)
Description of parameters

$$
\begin{array}{ll}
\text { LU- } & \text { (int.) FORTRAN logical unit } \\
\text { NAME- alphanumeric name of file } \\
\text { LN- } & \text { (int.) \# of characters in NAME }
\end{array}
$$

CLOSEF

CLOSEF closes a FORTRAN logical unit number

Usage

CALL CLDSEF (IU)
Description of parameters
IU- \quad int. (FORTRAN logical unit

The following are some useful subroutines for file handing from within a FORTRAN program.

DEFILE (DEFINE FILE)
Create or access DAM file in user UFD
Usage
CALL DEFILE(IUNIT, FNAME, NC, LR4, ISTAT)
Description of parameters
IUNIT FORTRAN logical unit
FNAME file name
NC \# of characters in FNAME
LR4 fixed length of records (in 4 BYTE words)
ISTAT status returned
0 = existing file opened for
RD/WT
1 = new file opened for
RD/WT
2 = unit already open
3 = unsuccessful open
4 = file in use
This subroutine is used to create the work and merge files associated with some of the interactive programs residing on the PRIME, such as IP2D, MTZD, etc.
These files cannot be examined with the EDITOR or be printed with SPOOL.

DELE

DELE deletes a file given the file name and the number of characters in the name.

Usage
CALL DELE(NAME,LN)
Description of parameters
NAME (alphanumeric) the name of the file that is to be deleted.
LN (int.) \# of characters in NAME

SPOUT
To SPOOL a file from a FORTRAN program

```
Usage
CALL SPOUT (NAME, LNAME, FTN)
LIB VSPODq
```


Routine called

```
SPOOL \(\$\) (VSPOO\$)
Description of parameters
\begin{tabular}{ll} 
NAME & \(=\) \\
filename for spooling \\
LNAME & \(=\) \\
FTN of characters in NAME \\
& \(=\) \\
LOGICAL, TRUE if FORTRAN FORMS
\end{tabular}
```


BASIC EDITOR COMMANDS

The following commands are the simplest and most used of the EDITOR commands:

ED file-name
Where file-name represents the name of the file to be edited.
Command is given while in PRIMOS to start the editing session.
If no file name is given, a new file is created.
(CR)
Carriage Return is used to set the mode from INPUT to EDIT, or from EDIT to INPUT. Either mode is set to the other mode by pressing the RETURN key after a null line centering two <CR>s in a row), or by pressing the RETURN key immediatly following a semi-colon. While in the INPUT mode each line is accepted as data until a change mode sequence is encountered While in the EDIT mode, each line is expected to begin with one of the valid EDITOR commands.

INSERT string

Where string represents the characters in the line to be inserted following the current line. The INSERT command may be abreviated to I.

DELETE

The DELETE command is used to delete the current line. The DELETE command may be abreviated to D.

Aternate uses of the DELETE Command are:
D n
Where n is an integer number designating the number of lines including the current lime, to be deleted.

D TO string
Where string represents a string identifying the first line following the current line not to be deleted.

LDCATE string
Where string represents the text to be located. Checking is performed below the current line only. The LOCATE command may be abreviated to L.

FIND(n) string
Where n represents the column in which string is required to begin, and string represents the text to be searched for. The search is performed below the current line only. If (n) is left off of the command, the column is assumed to be column one. The parenthesies are required when specifying a column number. The FIND command may be abreviated to F.

NFIND(n) string
Where n represents the column in which string is required to begin, and string represents the text to be searched on. NFIND searches for the first line below the current line which does not contain the specified string in the specified column. If (n) is left off of the command, the column is assumed to be column one. The parenthesies are required when specifying a column number. The NFIND command may be abreviated to NF.

PRINT n

Where n represents the number of lines including the current line, to be printed. The PRINT command may be abreviated to P.

WHERE
WHERE is used to query the editor for the current line number. The WHERE command may be abreviated to W.

TOP
TOP is used to position the current line pointer at the top of the file. The TOP command may be abreviated to T.

BOTTOM

BOTTOM is used to position the current line pointer at the bottom of the file. The BOTTOM command may be abreviated to B.

NEXT n
Where n is the number of lines to move the current line pointer up or down. If the number is negative, the pointer is moved up. If the number is positive, the pointer is moved down. If no number is specified, the pointer is moved down one line. The NEXT command may be abreviated to N.

POINT n
Where n represents the line number to position the current line pointer. n must be specified, and must be greater than 0 . The POINT command may be abreviated to PD.

CHAVGE /string-1/string-2/ G n
Where / can be any character not included within either string, and string-1 represents the present string, and string-e represents the string to which string-1 is to be changed. If the optional parameter G is specified, all occurances of string-1 will be changed, otherwise only the first occurance will be changed. n represents an optional integer specifying the number of lines including the current line, to be changed. The CHANGE command may be abreviated to C.

APPEND string
Where string represents the string of characters to be appended to the end of the current line. The APPEND command may be abreviated to A.

RETYPE string
Where string represents the text to replace the current line. The RETYPE command may be abreviated to R.

UNLDAD file-name
Where file-name represents the file to which the current line is to be copied. The UNLDAD command may be abreviated to U.

Two variations of the UNLOAD command are also available.
These are:
U file-name n
and
U file-name to string
The explanations are as with DELETE above.
LOAD file-name
Where file-name is the name of a file to be loaded after the current line. The LOAD command may be abreviated to LU.

FILE file-name
Where file-name is the name of the file to place the contents of the editing session. If file-name is omitted, the file is placed over the file from which it was read. If no file-name was specified upon entry to the EDITOR, one must be specified in the FILE command. The FILE command may be abreviated to FIL.

QUIT
QUIT is used to exit from the EDITOR without saving the contents of the EDITOR session.

pause

PAUSE is used to temporarily leave the EDITOR without saving the EDITOR work space. This allows you to check your UFD for duplication of names before filing. To return to the EDITOR, type in START. The command PAUSE may be abreviated to $P A$, and the START command may be abreviated to S.
!!!!! WARNING !!!!! You will destroy the work space if you type ED again, or if you log out, or if you type in any command other than an internal PRIMOS command. To check for duplicate file names use LISTF. Do Not Use LUFD. !!!!!

The following symbols have special meaning to the editor:
" is the erase character symbol. To input a " into the text you must precede the " with the character ".
? is the kill line symbol. To input a ? into the text you must precede the character ? with the character .
; is used by the EDITOR to signal the end of a command line. This allows the user to input multiple commands on the same line. To input a semi-colon into the text you must input some other character and then use the CHANGE command to change it to the semi-colon. If the semi-colon is encountered while in the INPUT mode, the text following the semi-colon will be input on a new line. If a semi-colon is encoutered while in the EDIT mode in any command other than the CHANGE command, the EDITOR will expect another command to follow.

For more information about these and other commands, see the PRIME manual entitled: The New User's Guide to EDITOR and RUNOFF. This manual is located in the manual rack in the user's room.

The following is a sample session with the editor. I have added comments to the right of commands where needed. Lines preceded with a "ン" are user input lines; all others are computer response.

```
    OK, ED
                                    [PRIMOS prompt and command to enter EDITOR.]
    INPUT
>A
> B
C
OD
3 E
F
O
O
I
3 [Input a RETURN to change to EDIT mode.]
EDIT
> T
> P 23
    .NULL.
    A
    B
    C
    D
    E
    F
    G
    G
    I
    BOTTOM
> W
LINE 10
> PO 1
    A
>PO 3
    C
>LA
    BOTTOM [The "A" is above the current line.]
> T
\LA
    A
\LG
    G
3N
    G
> C /G/H/
    H [The computer responds with the change.]
> T
>P 23
    NULL.
```

```
    A
    B
    C
    D
    E
    F
    G
    H
    I
BOTTOM
9PO6
    F
# A IND
    FIND
>T
3 F(2) I
    FIND
>D
> T
3 P 23
    NULL.
    A
    B
    C
    D
    E
    G
    H
    I
    BOTTOM
\N-4
E
3 IF
3 T
>P23
        NULL.
    A
    B
    C
    D
    E
    F
    G
    H
    I
    BOTTOM
3 FILE TEST
[File the session in a file named TEST.]
OK,
```

Report No. 73/6

Computer mapping of drift lithology

from borehole records

 EARTH SCAEJTE LAB.

D.W. Rhind, BSc, PhD

The Institute of Geological Sciences was formed by the incorporation of the Geological Survey of Great Britain and the Museum of Practical Geology with Overseas Geological Surveys and is a constituent body of the Natural Environment Research Council.
© Crown copyright 1973

It is recommended that reference to this report be made in the following form:
Rhind, D. W. 1973. Computer mapping of drift lithology from borehole records. Rep. Inst. Geol. Sci. No. 73/6. 12 pp.
INTRODUCTION 1
PROCEDURES AND CONVENTIONS 2
In Outline 2
In Detail 2
RESULTS AND CONCLUSIONS 3
REFERENCES 11
ILLUSTRATIONS
Fig. 1. Distribution of ground surface data points within BNG square NT 27 SW
Fig. 2a. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 0.1 m
Fig. 2b. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 1.0 m
Fig. 2c. Distribution of drift lithologies within BNG square NT 27 SW at a depth of $3.1 \mathrm{~m}(10 \mathrm{ft})$
Fig. 2d. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 5.0 m
Fig. 2e. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 10.0 m
Fig. 3. Ground surface geology within BNG square NT 27 SW 9
Fig. 4a. Hypothetical cross-section of geological strata to be 10 reconstructed from borehole data alone
Fig. 4b. Maps produced of distribution of strata in section at.three 10 selected levels, using techniques described in the text

D. W. Rhind, ${ }^{1} \mathrm{BSc}$, PhD

Introduction

The Institute of Geological Sciences produces one medium-scale series of geological maps for most areas of the United Kingdom, the one-inch series at a scale of 1:63 360 until 1971, and subsequently at a scale of 1:50 000. While the advent of some 1:25000 scale special sheets, the publication of $1: 10560$ scale sheets in coalfield areas and the production of a few hydrogeological, geophysical and geochemical maps are additional to this basic coverage, they extend, in the main, over extremely limited areas. The primary reasons for this limitation of output would appear to be the considerable expense and staff requirements in producing maps by conventional cartographic and printing techniques, as there seems little doubt that a wide-ranging demand exists for graphic displays of many geological variables. Thus the published maps must attempt to have a multiplicity of functions.

Three criticisms of substance can be levelled at most of the Institute's existing maps of drift geology in glaciated parts of northern Britain; these criticisms result partly from cost constraints and the limitations in the methods of output. .

1. The drift classifications chosen may be hybrids of genetic, chronological, lithological and morphological factors. Thus the maps are of limited value for researchers who require either homogeneity in the nature of the classification criteria or a different combination of factors to those used in the published map.
2. Little attempt is made on the maps to illustrate anything other than those deposits at the ground surface, except by implication, by exaggerating the extent of lower materials outcropping in valleys, and by the use of horizontal sections. In one area near Edinburgh, for example, 'boulder clay' is shown on the Institute's 1:25 000 scale map where extensive exposures show this to vary between only 1 and 2 m in thickness and to overlie up to 16 m of sand with some gravel. However, it may be impossible to represent the often gross variations in drift
${ }^{1}$ NERC Experimental Cartography Unit, 6A Cromwell Place, London SW7 2DE
lithology (where these are known) on any one map, particularly a small scale one.

Because of such gross variations, drift maps often have a generally lower predictive power than solid geology equivalents. This suggests that it might be sensible to include more details (where these are known) of the drift than of solid rocks of comparable importance.
3. The published maps are generally out of date; new sections are borehole evidence are always becoming available and ideally should be immediately incorporated into maps, particularly where they change the pre-existing concepts of the drift character and thickness.

It would be facile to pretend that easy and cheap solutions exist to these and other problems of drift representation and classification, particularly if the printed, multi-colour, 'definitive' map must continue to be produced. The obvious solution would be to store all the field data in a form in which the individual user could access and manipulate it rapidly (and probably repeatedly) to suit his own needs. The case for data files of certain borehole and exposure records has been argued elsewhere (for example, Rhind and Sissons, 1971; Gover and others, 1971) and there is a good basis for believing that computer manipulation of such data can eventually meet at least.some, and probably many, of the individual needs of professional geologists and other users of geological information.

There is also good reason to believe that the use of automated cartographic techniques can produce maps or other displays quickly and in a form usable by the geologist (for example, Rhind, 1971a). This paper describes one technique for automated production of special-purpose maps and draws upon part of an existing computer file (Rhind and Sissons, 1971) for the $40 \times 29 \mathrm{~km}$ Edinburgh area as its input data. Sections of the data have already been mapped in other ways (Rhind, 1971b; Rhind, 1972) but here the aim has been to produce 'quick-look' and cheap maps of drift lithology at any desired depth below the ground from borehole and section records. Thus, if successful, it has direct relevance to criticism 2 noted above; on the understanding that a well-maintained data file
would be updated whenever necessary, it also has relevance to 3. The storage of 'raw', rather than 'heavily-processed', data in the file permits some flexibility in the classification scheme utilised by the individual user (see criticism 1).

Procedures and Conventions

IN OUTLINE

Maps were produced by computer from the National Grid 10-metre coordinates of boreholes or sections in the 5 km square NT 27 SW and their logs. The computer read down each \log until it reached a specified depth and it then extracted the lithology at that level. This lithology was given a numeric code and the three (X, Y, Z) coordinates were stored on a magnetic tape. Arbitrarily chosen points within those areas in which the Institute has mapped rock as exposed at the surface (Zero Drift data, see Rhind and Sissons, 1971) were given the code for rock and were also stored. A second computer program then produced maps from the these coordinates; areas were shaded with specified symbols in relation to the Z value (that is, the lithology) of the nearest data point. The resultant maps (Figs. 2 a to 2 e) are discussed in the results section.

IN DETAIL

Borehole records were extracted from a file which was produced by merging the $F F$ and PFF files described in Rhind and Sissons (1971); this new file was thus constructed of a fixed length summary record for each bore or section, followed by a detailed record (where this exists) of variable length, the length being specified in the summary record. Selection of points from this and from the Zero Drift File was carried out using a point-within-polygon routine to permit any irregular area of interest to be specified.

Relatively little transformation of the data was attempted before mapping. While the use of multi-variate classification techniques for facies definition (for example, Parks, 1969) is an attractive one, the limited and unsystematic recording of drift characteristics in each bore made this approach impossible. Similarly, the absence of accurate altitude values for many bores meant that the simple computation required to produce maps of lithology at a specified altitude, rather than at a specified depth below the ground, could not be carried out.

Mapping of the data was carried out using the proximal option in the SYMAP program (Fisher, 1968). This produces maps shaded with symbols indicating the value of the 'nearest neighbour' data point; thus the geometrical figures defined by the boundaries of the area around each data point are close approximations
to Thiessen polygons (Haggett, 1965, p. 247). This method was chosen because isopleth mapping of the data was impossible (the Z values do not lie on an interval or ratio scale and the distribution cannot be considered continuous).
Choropleth mapping was also impossible as the positions of drift boundaries were unknown, their definition being a prime objective of the study.

In using the proximal option, assignment of Z values on a nominal scale to equate with the lithology encountered at the specified depth would have been sufficient in the vast majority of cases. In SYMAP, the map is produced from characters which are each $2.5 \times 3.1 \mathrm{~mm}$ in size; in a number of cases (the frequency is related to the data-point distribution and the map scale) two or more data points lie within the area of one character and, while these are indicated in the printed output, a mean Z value is used for extrapolation. In the area mapped, 'autocorrelation' of Z data seems high, the vast majority of superimposed data points revealing the same lithology at the same level. The only exceptions to this were the overlap of some bores showing clay and silt at one level mapped. However, this could only be established after producing the maps and it was necessary to allow for circumstances in which variations in lithology were rapid. This was done by coding the lithologies on a mixed ordinal/interval basis (Table 1), the procedure for this being as follows.

Those elements of the lithology which are conventionally defined by their position on a particle size range were placed on an arbitrarily chosen scale commencing at 1.0 for clay and ending at 5.0 for boulders. It was considered important to invest some element of 'reality' here but the need to keep this part of the scale compressed (see below) and the crudity of estimation of particle sizes in the original records (mostly compiled by a boring supervisor and unchecked by geologists) were such that it seemed unnecessary to use any of the conventional classification scheme thresholds for the class limits. Subsequent experiments showed that, for this data set, the numerical values of the limits chosen were not critical as the 'autocorrelation' in the data was high (see above). All clays (for example, lacustrine clays, glacial tills) were lumped into the same category at this stage, despite the well-known differences in their physical constitutions and strengths.

Undifferentiated drift was given the value 0.0 .

Peat and other organic deposits were given the code - 10000.0 , and the map class intervals chosen such that even if coincidence of one bore containing organic deposits with many others

Table 1. Numerical codes and symbolism for drift lithology

'Lithology'	Code	Mapped class interval	Symbol	Data point symbol
Peat and other organic deposits	- 10000.0		.	1
Undifferentiated drift	0.0	-0. 5	,	2
Clay	1.0	0.5	-	3
Silt	2.0	1.5	=	4
Sand	3.0	2.5	+	5
Sand and gravel	3.5	3.25	I	6
Gravel	4.0	3. 75	X	7
Boulders	5.0	4. 5	θ	8
Madeground	1000.0	5. 5	\otimes	9
Rock	10000.0	1005. 5	\square	*

containing clay, silt, sand, etc., was encountered, the symbol for organic materials would be mapped. This convention was utilised both because of the high practical and academic importance of buried peat layers and because of their scarcity.

Rock was given the code 10000.0 . Thus, taken with suitable map class intervals, coincidence of anything other than rock and organic deposits (a low probability combination) would result in the extreme value member being represented at that position.

Made ground was given the code 1000.0. This, while a genetic rather than a strictly lithological term, had to be included by virtue of its frequency (many bores contained it, without defining its physical constitution) and because of its practical importance in construction works.

Many other classifications could be mapped by varying the groupings and class intervals within the data which is stored on tape.

Results and Conclusions

Fig. 1 illustrates the distribution of control points in the 5 km British National Grid square NT 27 SW. Distributional characteristics of the total data set for this area have already been published (Rhind, 1971a). At most, 841 of the bores and 'zero drift' locations in this area were utilised. As one of the categories of records scanned was that in which bores did not reach rock but attained depths below that specified, the numbers of control points diminished with increase in the specified depth. To this extent, reliability of the results
diminished with increasing depth, although the probability of encountering bedrock obviously increases with depth.

Figs. 2a to 2 e indicate the supposed drift distribution at depths, respectively, of 0.1 , $1.0,3.1$ (10 feet), 5.0 and 10.0 m below the ground. The areas shaded with a symbol ' N ' in Figs. 2a, 2b, 2d and 2e indicate those areas more than 0.5 km from the nearest borehole. Numerics on these maps indicate the position of a borehole and the class into which its value falls. The tenth level is indicated by an asterisk. Where more than one bore lies within a print character location, the symbol 's' is inserted. Fig. 2c is a coloured equivalent of these maps and was produced from black, red, blue and yellow colour separations. Multiple printouts from the same stored map were used to produce the separations, the symbolism being suppressed when the lithology was not to be printed in that colour. The white areas are those more than 0.5 km from a data point. It is possible to get acceptable registration of superimposed colours when the maps are photo-reduced to approximately one-half of their original size. Fig. 3 illustrates the field-mapped portrayal of the drift types in this area, taken from the appropriate published 1:10 560 scale geological map.

Comparisons of the computer output with the published drift geological map for this area are complicated by the following factors.

1. The surveys were made at different times. The published map is based on a survey completed in 1962, while some bores used in the 'computer map' were drilled as late as 1967.

[^2]

Fig. 1. Distribution of ground surface data points (that is, borehole and 'Zero Drift' locations) within BNG square NT 27 SW
available to the geologist by virtue of his ability to shallow auger wherever he felt more information to be necessary on the drift distribution.
3. The variability in depth to which the published map refers (frequently the areal extent of a thin drift deposit will also determine whether it is mapped). As most of the area is covered by drift disturbed by man at very shallow depths (see the distribution of made ground and undifferentiated drift at the 0.1 m depth in Fig. 2a) and as areas with a drift cover of up to 1 m are known to have been mapped as drift-free, the
most appropriate of the computer maps for the comparison seems to be Fig.2b. Given that the area was mapped by a number of geologists, however, it is unlikely that any real consistency exists in the 'depth mapped'.
4. The classifications used in the published map are significantly different from those used in the computer-generated map. This was unavoidable with the available data.
5. The drillers' lithological interpretations are not always the same as that of the field geologist.

Fig. 2a. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 0.1 m

Fig. 2b. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 1.0 m

Fig. 2d. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 5.0 m

Fig. 2e. Distribution of drift lithologies within BNG square NT 27 SW at a depth of 10.0 m

Fig. 3. Ground surface geology within BNG square NT 27 SW (reduced from the $1 / 10560$ scale geological map)

Key	1	Rock
	2	Boulder clay
	3	'Glacial' sand and gravel

4 'Flood plain' alluvium
5 'Lake' alluvium
6 High raised beach (late Glacial)

Despite these complications, the correlation between Figs. 2b and 3 is not trifling. The main south-west orientated band of non-clay deposits and a number of other common features are obvious. Apart from the angularities of the Thiessen polygons, perhaps the most disconcerting aspect of the maps is the 'cliff effect'. In some areas the boundaries of rock are the same
at $3.1,5.0$ and 10.0 m . Such features are artifacts, caused by the nearest neighbour criterion; unless lithological changes occur with increasing depth such that both members of a pair of bores indicate a lithology of type X, or unless one bore becomes unusable through not penetrating to that depth in drift, no extension of the limits of distribution of that lithology from those at a higher level is possible. An examination of a fairly common sequence of strata, illustrated in Fig. 4, emphasises the crudity of the 'nearest neighbour' approach when unqualified by either the geometry or the age relationships of the beds. Fig. 4a illustrates a hypothetical cross-section, while Fig. 4b consists of 'maps' of the plotted and actual boundaries at three levels below the ground surface. The distribution of rock at 5.0 and 10.0 m down should correspond to the isarithms of these thicknesses already published in Rhind (1971a) or Rhind (1972). Many similarities do exist; the differences must be attributed to the quite different computational method used to obtain results and the slightly different data sets used.

Given that (in this country) field mapping of the uppermost drift is extensive and is likely to produce more accurate maps than any scheme relying entirely on a borehole data base, it is highly desirable to incorporate data on known ground surface distributions of formations which, in association with that derived from boreholes and recorded sections, are used to produce subsurface maps. In the simplest (and least realistic) sense this involves a projection downwards of these formations from the surface and some assessment of the more probable drift type, based on quantified descriptions of the horizontal and vertical components of rate of change of drift lithology. For example, is the drift at a point X metres below sand at the ground surface around the borehole and Y metres from a borehole containing clay at the depth X more likely to be sand or clay? Programming of this decision-making process would not be complex, nor would execution time be excessive providing the amount of data used to describe the formations was not substantial and was held in a suitable ('raster') fashion. The assessment of reasonable values of rate of change across the map would, however, be difficult, the degree of difficulty being related to the complexity of the area of study and its size. More realistically, and particularly for solid-rock data (to which the technique is generally applicable), it is desirable to include not merely a projection of the surface distributions but data on the geometry and age relationships of the beds. These data may be

Fig. 4a (above). Hypothetical cross-section of geological strata to be reconstructed from borehole data alone. Fig. 4b (below). Maps produced of distribution of strata in section at three selected levels, using techniques described in the text

obtained either in bores or at the surface. Outline plans to do this have been drawn up but the procedures involved are highly complex, particularly if discontinuities in strata are permitted.

In the present study; one type of 'vertical projection' and the most simple stratigraphic relationship detectable at the ground surface (that between drift and rock) are already utilised in the adoption of the solid rock code with termination of searching at rockhead (even if the specified depth is considerably below that point) and by virtue of the use of 'pseudo-bores' from the Zero Drift File. Other stratigraphic information could not be incorporated in this' study as non-lithological attributes were not available for this data set.

Indeed, the highly tenuous nature of virtually all the drift stratigraphies yet worked out for northern Britain suggests that, ex̃cept as an aid to hypothèsis testing, additional sophistication would be unusable.

Another improvement in the capabilities of the program which at first sight appears trivial is the substitution of a fixed datum (for example, Ordnance Datum) for that of the ground surface; in certain circumstances it might be useful to produce large scale maps at, say, 50 m above: sea level (where this altitude might be the base of building foundations). Nonsensical results might be produced by the current program interpolating between two bores which commenced at ground surface altitudes of 60 and 20 m - rock would probably be shown to exist. far out into the air at the 50 m level. The simple palliative for such circumstances would be to create a mask from the intersections of the 50 m plane with a digital model (or figurefield) of the ground topography, and use this mask to delete all nonsensical parts of the distribution of lithologies.

A further improvement of the technique could also be effected by recognising that the exposed morphology of geological strata is highly elongate in a broadly east-west orientation in the Edinburgh area (Sissons, 1967; Burke, 1969; Sissons, 1971) and this probably holds true for much of the buried morphology. Thus the probability of encountering a different lithology in travelling a unit distance is not isotropic and a relaxation of the simple 'shortest distance ${ }^{1}$ rule to encourage the formation of boundaries with this orientation should prove worth investigating. The 'anisotropic' nature of the drift also provides difficulties in the specification of a map-wide distance constraint for interpolation or extrapolation from data points. Given the same control, it'is clearly more reasonable to exträpolate or interpolate in a raised estuarine mudflat area (like the Carse

Lands) than it is in a complex area of nuvioglacial deposits. Similarly, it should be statistically possible to extrapolate or interpolate (with a given confidence) over greater distances east-west than north-south, because of the landscape moulding.

Since the initial project was completed in 1969, other data have become available for the area but have not been encoded: thus the maps illustrated cannot be considered definitive. In addition, it must be stressed that these naps are only examples of possible output. Many other maps could also be created; these include those from selections of bores for plotting on the basis of such criteria as age (for example, ơnly those bored since 1955), method of boring or contractor (for example, exclude all those by contractor Y). A modification to the program would permit the production of crude 'quick-look' versions of profile-type maps. These, widely produced and used by the Dutch and West German Geological Surveys, represent not one but a fixed succession of lithological or stratigraphic units by one colour or tone.

References

Burke, M.J. 1969. The Forth Valley: An ice-moulded lowland. Trans.Inst. Br. Geogr. Vol. 48, pp. 51-59.

Fisher, H. T. 1968. Reference manual for synagraphic computer mapping: SYMAP V. Laboratory for Computer Graphics, Graduate School of Design, Harvard University.

Gover, T. N. , Read, W. A. and Rowson, A. G. 1971. A pilot project on the storage and retrieval by computer of geological information from cored boreholes in central Scotland. Rep. No. 70/13, Insti geol. Sci. 30 pp .

Haggett, P. 1965. Locational Analysis in Human Geography. (London: Arnold).

Parks, J. M. 1969. Multivariate facies maps. In Symposium on Computer Applications in Petroleum Exploration. Ed. D.F. Merriam, Kansas Geological Survey Computer Contribution 40.

Rhind D. W. 1971a. The production of a multi-colour geological map by automated means. Nachr. Kart. -u. Vermess Wes. Reihe 1, Heft 52, pp. 47-51.
————1971b. Automated contouring: empirical comparisons of some differing techniques. Cart, Jnl, Vol. 8, pp. 145-158.

[^3]automated contouring of drift thickness.
Bull. geol. Soc. Am. , Vol. 83, pp. 2525-2532.
and Sissons, J.B. 1971. Data banking of drift borehole information for the Edinburgh'Area: Rep. No. 71/15, Inst. geol. Sci., 19 pp.

Sissons, J. B. 1967. The Evolution of Scotland's Scenery. (Edinburgh: Oliver and Boyd).
1971. The geomorphology of central Edinburgh. Scott. geogr. Mag., Vol. 87, pp. 185-196.

Comp-Gcuchem
Chemical Modeling of Trace Metal Equilibria in Contaminated Soil Solutions Using the Computer Program GEOCHEM
SHAS V. MATTIGOD and GARRISON SPOSITO
Department of Soil and Environmental Sciences, University of California, Riverside, CA 92521

The study of trace metal chemistry in soils has assumed added importance recently because of the possible deleterious effects on soil organisms, plants, and human beings that could result from the accumulation of these metals to toxic levels in soils contaminated, egg., by the land disposal of sewage sludge or by the seepage of geothermal brine lost accidently from storage lagoons. Although the soil solution is an open, dynamic, natural water system whose composition reflects many reactions occurring simultaneously among its aqueous constituents and between those constituents and the assembly of mineral and orgenic solid phases present, a knowledge ul' tho follotal toalluma of soil trace metal equilibrial is expected to be a useful guide to predicting what will occur in nature if contamination takes place. These general features cannot be assessed conveniently by laboratory experiments because of the complexity of soil solutions. A more viable alternative is assessment by a computer model that is based on thermodynamic association and solubility product constants.

The computer program GEOCHEM is adapted and being developed for soil solutions from the REDEQL2 program created originally by Morel and Morgan and their coworkers at Caltech (1). The principal ways in which GEOCHEM differs from REDEQL2 are: i) it includes thermodynamic data for a few hundred additional soluble complexes and solids that are particularly relevant to trace metal equilibrial in soil, 2) it contains a subroutine for cation Nexchange on constant charge surface a that is based on thermosDynamic model, and 3) it contains a subroutine for the astimation of single -ion activity coefficients at ionic strengths up to 3 M .

A number of important theoretical problem a have arisen in connection with the development of GEOCHEM. These problems may be classified broadly into four categories: (a) stability constanta for trace metal complexes with inorganic ligands; (b) stability constants for trace metal complexes with organic ligands; (c) solubility product constants for soil clay minerals. and (d) thermodynamic cation exchange constants and exchanger
phase activity coefficients. Any reasonably accurate computation of trace metal equilibria in a soil solution must be preceded by. a successful attack on these four problem areas.

Stability Constants for Soluble Inorganic Complexes of Trace Metals

Studies involving trace metal speciation in soil solutions require the values of stability or association constants of complexes of the trace metals with a number of inorganic and organic ligands which exist in these environments. Much of these data can be obtained readily from published compilations (2-7). However, experimental data on association constants for complexes of the trace metals with ligands such as $\mathrm{CO}_{3}{ }^{-}$ $\mathrm{HCO}_{3}{ }^{-}, \mathrm{PO}_{4} 3^{-}, \mathrm{HPO}_{3} 2^{-}, \mathrm{H}_{2} \mathrm{PO}_{4}$ are not often available. In view of this lack of experimental data, modeling studies of chemical equilibrium in natural water systems have typically followed two approaches. One of the approaches, represented by computer programs such as SOLMNEQ and WATEQ (8, 9), is to include only those complexes for which the values of experimental association constants are available. The second approach consiats of including in the equilibrium calculations estimates of the values of the association constants of complexes that are believed to form, but for which experimental data do not yet exist, along with experimentally derived values of association constants (10, 11). The latter approach seems preferable because it tends to include in the calculations all known interactions of metals and ligands through complex formation and thus provides results which are expected to be qualitatively more reliable than the results obtained through the former approach.

The methods available for calculating ion association constants consist of theoretical methods based on electrostatics (12, 13) and empirical methods based on correlations of association constants with properties of ions such as electronegativity, charge, radii, coordination number, etc. (14, $15,16,17,18$). Recently, Mattigod and Sposito (19) estimated the association constants for complexes of a number of cations of the first transition metal series with many of the inorganic ligands conaidered to be of importance in the trace metal chemistry of soil solutions. The association constants calculated by Mattigod and Sposito (19) with the method of Kester and Pytkowicz (13), for carbonate and phosphate complexes appear to be syotematically different from those estimated recently with the correlation method of Nieboer and McBryde (17). The latter method has a firmer empirical basis and, therefore, has been preferred. Values of the revised estimated and measured association constants for some trace metal-inorganic ligand complexes are listed in Table I. These and other estimated values have been incorporated into GEOCHEM. They will be replaced when reliable experimental values become available.

There is some experimental evidence which indicates that mixed-ligand complexes of trace metala may be very otable and dominant in soils (20). In modeling the speciation of elements in sea water, Dyrssen and Wedborg (10) found that mixed-ligand complexes of certain trace metals were significant. At present, experimental data on mixed-ligand complexes are rather sparse. However, stability constants can be estimated by a statistical method suggested by Dyrssen, Jagner and Wengelin (21). Currently, GEOCHEM includes eatimated stability constants of hydroxy-chloro complexes of a few trace metals. Lack of data on many mixed-ligand complexes is clearly one of the aignificant shortcomings in modeling studies at present.

Talile 1.
Eatmatod and menaurad common lumatithm or annoclallon constants for some trace metal-Inorganle Inanil luil palim at $25^{\circ} \mathrm{C}, 1 \mathrm{~atm}$

	Mn^{2+}	HO^{2+}	CO^{2+}	$N \mathrm{IL}^{2+}$	Sin^{2+}	7110^{2+}
Ligand						
$\mathrm{CO}_{3}{ }^{2-}$	4.52	5.31	5.53	5.78	6.73^{1}	$4.76{ }^{2}$
$\mathrm{HCO}_{3}{ }^{-}$	$1.95{ }^{3}$	2.72	2.89	3.08	-4.29	2.79
$\mathrm{PO}_{4}{ }^{3-}$	7.19	7.93	8.13	8.37	9.85	8.02
$\mathrm{HPO}_{4}{ }^{2-}$	$3.58{ }^{4}$	$3.60{ }^{5}$	3.04	$2.93{ }^{6}$	$3.20{ }^{6}$	$3.30{ }^{7}$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	1.35	2.70^{5}	1.49	1.53	1.76	$1.60{ }^{7}$

${ }^{1}$ Schindler et al (22), ${ }^{2}$ Bilinski, Huston and Stumm (23)
${ }^{3}$ Morgan (24), ${ }^{4}$ Smith and Alberty (25), ${ }^{5}$ Nriagu (26),
${ }^{6}$ Sigel et al (27), ${ }^{7}$ Nriagu (28)

Stability Constants for Soluble Organic Complexes of Trace Metals

The soluble, metal-complexing, organic fraction of sewage sludge is a heterogeneous assembly of molecules that is characterized by wide ranges of chemical composition, molecular
weight, and functional group acidity (29). This complexity poses a difficult problem for the chemical modeling of soil solutions contaminated by the incorporation of trace metalbearing sludges. A succesful model will require, in particular, information about the many possible reactions of trace metals with the fulvic acid fraction of sludges.

The dissociation of protons from fulvic acid (FA) extracted fromanaerobically-digested sewage sludge has been investigated by potentiometric titration (29). In that study, a number of important facts was brought tolight which suggest that the behavior of fulvic material in a soil solution will indeed be complex. According to Sposito and Holtzclaw (29), there appear to be four separate classes of dissociable functionsl groups that range in acidity from very strong (ionized at pH < 2) to very weak (ionized at pH > 10). (These classes are just four out of a continumm of classes of functional group acidity in sludge-derived $F A$, since no acid or alkaline final end points appear in the titration curve between pH 1 and ll.) Based on this evidence, Sposito et al. (30), suggested that the acidic functional group classes in sludge-derived FA be designated I, II, III and IV for those groups that titrate approximately in the pH ranges $\langle 3,3-5,5-8\rangle$,8 , respectively.

The reactions between sludge-derived fulvic material and trace metals are poorly understood and, at present, no reliable rhermodynamic stability constants are available. A provisional approach to resolving this difficulty, which has been employed often in modeling studies, is to identify. carefully certain classes of known organic acids whose. proton dissociation constants fall into the ranges observed for the soil solution organics and which can be expected to be present or to simulate closely the organic acids present (whether "natural" or from contamination) in a soil solution. Table II lists a set of. aromatic, aliphatic, and amino acids that are frequently observed in soil leachates, together with the relative concentrations of each in a mixture of model water-soluble soil organics that provides the total of 2.2 meq of H^{+}found per gram of sludgederived FA (30). It has been observed that the functional groups in these acids are oimilar to the functional.groups present in sludge fulvic material. The measured stability constants for trace metal complexes with these model organic acids are assumed to be good approximations to the unknown stability constants for the assembly of soil solution organics, in the sense that a mixture of the model organic acids whose proton titration curve semiquantitatively simulates that of sludge-derived FA (Figure 1) will also produce a comparable distribution of various trace metals among organic and inorganic species in a soil solution. The several obvious limitations and dangers in this provisional approach, presently used in GEOCHEM, are not considered to be as serious as completely neglecting che organic speciation of trace metals in a soil

Figure 1. Comparison between the potentiometric titration curve for a sewage. sludge-derived fulvic acid (-) and the simulated titration curoe for a model fulvic acid (---)
solution whose organic conatituente may approach $10^{-3} \mathrm{M}$ in total conceatration (e.g., a coil solution affected by aewage gludge application).

Table II.
Organic acids used as a model for sludge-derived fulvic acid

	Acid	Concentration (pW)
	Benzenesulfonic	4.27
,	Salicylic	4.27
	Phthalic	3.97
.	Citric	4.14
	Maleic ,	3.97
	Ornithine	4.36
	Lysine	4.36
	Valine	4.36
	Arginine '	4.49

Solubility Product Constente for Sail Clay Minerals

Solid phases compriae the dominant fraction of the soil volume and, as such, the dissolution, precipitation and ion exchange properties of the aoil minerals have a profound influence on the composition of soil solutions. Therefore, it is easential to include the reactions these solide may undergo in ooils in simulation studies of chemical equilibrium. Reliable thermodynamic datia on the atability of many of the important oxides, hydroxides, carbonates, phosphates, and silim cates are available and can be incorporated into a computer program such as GEOCHEM. In many soils, phyllosilicates domitiate the clay-size fraction. Smectites as a group of the phyllosilicates are ubiquitous in soils and sediments. Because of their large surface areas and high cation exchange capacities, smectites, when preaent, play a aignificant part in influencing the composition of soil solutions. Unlike other clay minerals, smectites also exhibit a broad range of chemical compositions and, therefore, it is unlikely that the standard free energy of formation of every naturally-occurring smectite will be determined experimentally. This difficulty has prompted a
number of attempte to estimate $A C_{f, 298.15}^{0}$ for silicates in general (31, 32, 33) and amectiteo in particular (34, 35). These methods are based on simple phyical modela which are related primarily to elassical electrontatics. The aucceas of these methods is based on the observation that the ohort-range coordination environment of a cation that is found in ailicate minerala does not tend to vary much from one wineral to another. Since covalency plays its most important role in neareat neighbor interactions, it follows that its contribution to the structural energy of a mineral will be about the aame among ailicatea and, therefore, that the relative stabilitiea of the minerals largely will be determined by longer-ranged ionic interactiong.

Nriagu (34), in comparing his method with the method of Tardy and farrels (35), concluded that the accuracy of estimation of $\Delta \mathrm{G}_{\mathrm{f}, 298.15}^{\mathrm{o}} \mathrm{values}$ of phyllosilicates in either method was about the same. But, each of these methods contains a critical, ad hoc asgumption that is difficult to justify on geochemical grounds. Tardy and Garrels (35) had to asoume that the hydroxyl ions in Mg-bearing layer silicates are associated only with magnesium ions, insofar as thermochemical calculationa are concerned. Nriagu (34) was forced to decrease the values of $\Delta G_{f}^{\circ}, 298.15$ For solid KOH and NaOH by about 15 percent from the measured values in order to obtain agreement between the results of his method and experimental data for Na and K -containing clay minerals. These problems with the methods of Tardy and Garrels (35) and Nriagu (34) prompted the development of a method by Mattigod and Sposito (36) for estimating the $\Delta G_{f}, 298,15$ values of smectites which not only shows a slight improvement in prediction, but also is Eree of the arbitrary assumptions inherent in some of the other methods. This method employs the concept of ionic bonding as applied to clay minerals, mentioned earlier, along with a atatiacical equation to relate the charge on a smectite due to isomorphous aubatitution and the valence and radius of the interlayer cation to the free energy changes brought about by changes in coordination environment. These changes in free energy occur in transferring a cation from relatively high-potential sites in a hydroxide to a relatively low-potential interlayer site in a smectite. The relationship developed by Mattigod and Sporito (36) is:

$$
\begin{equation*}
\Delta G_{f}^{0}=\Sigma n_{i} \Delta \dot{G}_{f}^{0}\left(n_{i}\right)-\left(\Sigma n_{i} Z_{i}=12\right) \Delta G_{f}^{0} H_{2}^{0}(1){ }^{\vdots}|\delta| \tag{1}
\end{equation*}
$$

and $\quad \ln |\delta|=1.9283 C+0.3501 R=0.2819 z+3.5427$
where, $\Delta G_{f}^{\circ}=s t a n d a r d$ free energy of formation of a gmectite
$\Delta G_{f}=$ reaction coefficient of the $i^{\text {th }}$ hydroxide
$\mathfrak{n}_{i}=$ reaction coefficient of cherge on the $i^{\text {th }}$ cation (includiag $S i$)

```
\(\Delta G_{f}^{0}\) - atandard free energy of formation of the \(i^{\text {th }}\) hydroxide component
C - cation exchange capacity (due to isomorphous subatitution) of the smectite per formula unit, in eq/Ew
\(R=\) Pauling radius ( \(A\) ) of the exchangesble (interlayer) cation.
2 - valence of the exchangeable cation
```

Equation 1 provided estimates of $\Delta G_{f, 298.15}^{0}$ for maectites which ghowed better agreement with the experimentally derived valuea than the other two methods (34, 35). A comparison among the methoda is given in Table III.

Cation Exchange Phenomena

The tagk of calculating the composition of a soil exchanger phase in equilibrium with a soil solution has two distinct parts: the thermodynamic exchange equilibrium constants must be deterwined and the activity coefficients of the components of the exchanger phase must be estimated. The first part of the problem, that of obtaining exchange equilibrium constants, is nof particularly difficult since a number of measurements of $\Delta G_{\text {ex }}$ for the common clay minerals (e.g., smectites, vermiculiteb, and kaolinites) has been published. Alternatively, a semiempirical approach auch as the James-Hesly model included in REDEQL2 (1) may be employed to eatimate a atandard free energy of adsorption for a cationic species.

Smectites are one of the most important soil clay minerals at regarda cation exchange. The reversible exchange reactions of these minerala with metal cations may be pictured as kineticallyfavored (i.e., rapid) precipitation-dissolution reactions (44). From this point of view, it is meaningful to write the "exchange half-reaction":

$$
\begin{equation*}
M X_{m}(s, a q)=M^{+\pi a}(a q)+m X^{-1}(s ; a q) \tag{2}
\end{equation*}
$$

where X refers to one equivalent of the anionic portion of a smectite exchanger and $\mathcal{A}^{+\dagger}$ is an exchangeable cation. The typical exchange reaction then ia pictured as a set of paira of reactions such as Eq. 2, with each reaction pair involving two different metal cations. The analogy between Eq. 2 and the disaolution reaction for a solid is evident.

However, there are oome important differences between the equilibrium conatant for Eq. 2 and the usual Ko. First, the compound on the left-hand aide of Eq. 2 is not a dry solid at atandard temperature and pressure, but instead io a homoionic amectite in contact with an aqueous solution. The atandard state for $\mathrm{MX}_{\mathrm{m}}(\mathrm{a}, \mathrm{aq})$ accordingly is the homoionic clay mineral at standard temperature and oresaure in eavilibrium with an infin-

itely dilute solution containing the cation $M^{+(m)}$ (45). In addition, the species $X^{-1}(s, a q)$ is the anionic part of the smectite exchanger, considered as a (charged) solid at standard temperature and pressure that is in contact with an infinitely dilute aqueous solution. Thus X^{-1} is not a dissolved species, as it would be if Eq. 2 referred to an ordinary dissolution reaction. Lastly, it should be noted that the equilibrium constant for Eq. 2 cannot be determined easily because of the difficulty of measuring the activity of $\mathrm{X}^{-1}(\mathrm{~s}, \mathrm{aq})$. This fact need not undermine the utility of Eq. 2, however, because one may write

$$
\begin{equation*}
\mu^{0}\left(X^{-1}(s, a q)\right)=\frac{1}{m}\left[\mu^{0}\left(M X_{m}(s, a q)\right)-\mu^{0}\left(M^{+m}(a q)\right)\right] \tag{3}
\end{equation*}
$$

for any M and X for which the equilibrium constant in Eq. 2 may be taken to be unity. With the free energy of formation of $\mu\left(X^{-1}(s, a q)\right)$ so determined, the values of the equilibrium constants of all other exchange half-reactions can be found, given the available values of the free energies of formation of one mole of the aqueous metal cations and one equivalent. of the homoionic clay minerals.

There is evidence $(46,47)$ to suggest that the halfreaction

$$
\begin{equation*}
\overline{H X}(s, a q)=H^{+}(a q)+X^{-1}(s, a q) \tag{4}
\end{equation*}
$$

may be assigned an equilibrium constant near unity, as may be the exchange reaction between Na^{+}and H^{+}on a amectite. The lack of selectivity between H^{+}and Na^{+}is the more firmly established hypothesis of the two (46). If Eq. 4 truly had an equilibrium constant of unity, then H-smectites would behave as very strong electrolytes in aqueous solutions (e.g., a 1\% suspension of H-montmorillonite with a CEC equal to 1 meq/g would exhibit a pH value of 2). The available published data on $\mathrm{H}-\mathrm{smectite}$ suspensions are not conclusive, but they suggest strong electrolyte behavior. Given this hypothesis, it follows that

$$
\begin{equation*}
\mu^{0}\left(X^{-1}(s, a q)\right)=\mu^{0}(H X(s, a q)) \tag{5}
\end{equation*}
$$

for any smectite.
The direct measurement of $\mu^{0}(H X(s, a q))$ is difficult because pure H -smectites are not easy to prepare. But this free energy of formation can be estimated using the accurate correlation technique. discussed previously (36) and the hypothesis of no selectivity in $\mathrm{H}^{+}-\mathrm{Na}^{+}$exchange. Thus

$$
\begin{equation*}
\mu^{0}(\operatorname{HX}(s, a q))=\mu^{0}(\operatorname{NaX}(s, a q))+\mu^{0}(\mathrm{Na}(a q)) \tag{6}
\end{equation*}
$$

where $\mu{ }^{0}(\operatorname{NaX}(a, a q))=\Delta G_{f}^{0}, 298.15$ for one equivalent of $N a-$ amectite, estimated according to Eq. 1. It then follows that the equilibrium constant for Eq. 2 is given by the expression

$$
\begin{align*}
\log K_{M e x}=\frac{1}{5.707} & {\left[\mu^{0}\left(M_{m}(s, a q)\right)-\mu^{0}\left(M^{+m}(a q)\right)\right.} \\
& \left.=H^{0}(H X(s, a q))\right] \tag{7}
\end{align*}
$$

at 298.15 K , where $\mu^{0}\left(\mathrm{MX}_{\mathrm{m}}(\mathrm{s}, \mathrm{sq})\right)=\Delta \mathrm{G}_{\mathrm{f}, 298.15}^{0}$ for m equivalents of M-smectite. The values of $\mathrm{K}_{\text {Mex }} / \mathrm{K}_{\text {Naex }}$ for two montmorillonites and several exchangeable cations of interest in soils are listed in Table IV. These equilibrium constants may be treated in much the same way as are ordinary solubility product constants in the GEOCHEM program. Aside from understanding that the $K_{\text {Mex }}$ values are relative, there is a need to modify the equilibrium calculation for a soil solution so as not to permit $X^{-1}(s, a q)$ to contribute to the ionic strength of a solution in contact with the exchanger phase.

Table IV.
$\log K_{\text {Mex }} / \mathrm{K}_{\text {Naex }}$ values for the dissociation of various cations from two smectite surfaces

		Coctite
Cation	Camp Berteau	Chambers
Mg^{2+}	-1.81	-3.51
Ca^{2+}	-2.12	-3.37
Na^{+}	0	0
$\mathrm{~K}^{+}$	-1.41	-1.04
Ni^{2+}	-6.52	-8.18
Cu^{2+}	-11.61	-13.26
Zn^{2+}	-10.67	-9.85
Cd^{2+}	-21.09	-11.95
$\mathrm{~Pb}^{2+}$		-22.01

The problem of estimating the activity coefficients of the opecies $M X_{\mathrm{m}}$ which make up the exchanger phase is quite formidable. Fundamentally, what is needed is an equation for the activity coefficient that is comparable in simplicity and generality with the Davies equation. Unfortunately, the measurements of exchanger activity coefficienta that are available apply only to two-component systems and exhibit no parameters of the same generality as is the ionic strength in the case of aqueous solutions. On the other hand, there is evidence that two-component smectite exchangers containing cations such as $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$, and the trace metals are nearly ideal solutions (48, 49). This fact and the absence of information concerning multicomponent exchangers suggest that a good, working first approximation is to set all activity coefficients in a smectice exchanger equal to unity. This approach assumes that exchange selectivity will in most cases of interest be dominated by the interaction between the exchangeable cations and the exchanger instead of by interactions among the exchangeable cations themselves. Clearly, much work remains to be done on this important problem. This ion exchange model is being tested presently for its reliability, in predicting the exchangeable ion composition on smectites.

Ionic Strength Corrections

In the computer program REDEQL2 (and GEOCHEM), the activity coefficients for aqueous species are calculated from the Davies equation. Generally, this equation is used for the computation of activity coefficients of ions in aqueous solutions up to an ionic strength of 0.5 M , even though Dyrasen et al. (21) indicate that this equation cañ be used for ionic strength up to 1.0 M . In saline soils and soils contaminated with geothermal brines, the ionic strengths of the soil solution may exceed 0.5 M . This fact poses the necessity of using equations which have been developed to describe the activity coefficients of ions in concentrated, multicomponent electrolyte solutions. As part of a study on the chemistry of ore-forming fluids, Helgeson (50) has proposed that the true individual ion activity coefficients for ions present in small concentrations in multicomponent electrolyte solution having sodium chloride as the dominant component be approximated by a modified form of the StokesRobinson equation. The equation proposed is:

$$
\begin{equation*}
\log Y_{1}=-\frac{A Z_{1}^{2} I^{\frac{1}{2}}}{1+a_{1} B I^{\frac{1}{2}}}+B^{O} I \tag{8}
\end{equation*}
$$

where,
$Y_{1}=$ individual activity coefficient of the $i^{\text {th }}$ trace ion 2_{i} = charge on the i th trace ion
I = true ionic strength

A and B^{\prime}	$=$ the Debye-Hückel Parameters
a_{1}	$=$ "Distance of closest approach" of the $i^{\text {th }}$ ion (cm)
B^{0}	$=$ Deviation function $\left(0.041\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

- Deviation function (0.041 at $25^{\circ} \mathrm{C}$)

According to Helgeson (50), equation 8 can be used to estimate the individual ion activity coefficient for ions present in small concentrations in sodium chloride solutions of crue ionic strength up to 3.0 M. . Since saline soils and geothermal brines are often dominated by sodium chloride, it will be appropriate to use the equation proposed by Helgeson (50). Therefore, in GEOCHEM, ionic activity coefficient calculationa for such syatems are performed by equation 8.

The "distance of closest approsch" parameters for many of the ions and complexea included in GEOCHEM are not available. This lack of data has been circumvented by assigning arbitrarily 4,5 , and 6 A for mono-, di- and tri- (and higher) valent ions respectively. A similar assumption has been made previously by Truesdell and Jones (9).

Applications

At present, there is a serious effort being made to assess the impact of geothermal power development on agriculture in the Imperial Valley of California. One aspect of the problem involves the possible contamination of agricultural soils from accidental spills of geothermal brine. A good semi-quantitative guide to trace metal solubility and mobility in contaminated soils can be compiled from results obtained from GEOCHEM.

As an example, one of the possible means of contamination of soils is from irrigating them with water accidentally contaminated with brines. GEOCHEM can be used to simulate the change in trace metal speciation when varying quantities of brine mix with irrigation water. One example of a computed metal speciation in a mixture of brine and irrigation vater is shown in Table V. The computations predict that the alkali metals will be present wainly as free ions. Among the alkaline earth metals, Ca, Mg, and Sr are present principally as free ions; a minor part of these metals is predicted to be present as the $\mathrm{CaSO}_{4}^{\circ}, \mathrm{MgSO}_{4}^{\circ}$, and $\mathrm{SrSO}_{4}^{\circ}$ species. Also, a minor portion of Mg is predicted to be in the form of a solid borate. However, the bulk of Ba is predicted to precipitate as barite (BaSO_{4}), with some as solid BaAsO_{4}. The metals present in trace quantities such as $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Zn}$, and Pb , are predicted to be present principally as MHCO_{3}^{+}and MCO_{3}^{-}complexes, the exceptipn being the metal Cd, which is present mainly as Cd^{2} and CdCl^{+}. Re^{-} garding boron and arsenic, the calculations predict that the solution concentrations of these elements would be controlled by the solubility of solid phases such as $\mathrm{Mg}_{2} \mathrm{~B}_{2} \mathrm{O}_{5} \cdot \dot{\mathrm{H}}_{2} \mathrm{O}$ and BaAsO_{4}. (In simulating the trace metal speciation when soils

Table V.
Calculated metal and ligand apeciation in a aixture of brine and frigation water

Component	Total Analytical Cone: $(-\log \dot{M})$	Dowinant Species*
Ca	2.63	$\mathrm{Ca}^{2+}, \mathrm{CaSO}_{4}^{\mathrm{O}}$
H_{8}	3.08	$\mathrm{Mg}^{2+}, \mathrm{Hg}_{2} \mathrm{~B}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ (solid); $\mathrm{MgSO}_{4}^{\circ}$
St	5.18	$\mathrm{Sr}^{2+} ; \mathrm{SrSO}_{4}^{\circ}$
Ba	6.08	BaSO_{4} (Solid), BaABO_{4} (Solid)
k	3.28	k^{+}
Na	1.82	$\mathrm{Na}{ }^{+}$
c*	6.59	ca^{+}
Li	4.18	Li ${ }^{+}$
Fe	6.19	Fe(COj) ${ }_{3}^{3-}$
Mn	6.59	$\mathrm{Mn}^{2+}, \mathrm{MnHCO}_{3}^{+}, \mathrm{MnSO}_{4}^{\circ}$
Cu	6.76	$\mathrm{CuHCO}_{3}^{+}, \mathrm{CuCO}_{3}^{\circ}$
cd	7.92	$\mathrm{Cd}^{2+}, \mathrm{CdSO}_{4}^{\circ}, \mathrm{CdCl}{ }^{+}$
$2 n$	6.82	$\mathrm{Zn}^{\mathbf{2 +}}, \mathrm{ZnHCO}_{3}^{+}, \mathrm{ZnSO}_{4}^{+}$
Ni	6.64	Mi^{2+}, $\mathrm{NiCO}_{3}^{\circ}, \mathrm{NiHCO}_{3}^{+}$
Pb	6.63	$\mathrm{Pb}^{2+}, \mathrm{PbCO}_{3}^{\circ}, \mathrm{PbHCO}_{3}^{+}$
${ }^{1}$	7.00	$\mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}(\mathrm{SOLid}), \mathrm{Al}(\mathrm{OH})_{3}^{\mathrm{O}}$
CO_{3}	2.49	$\mathrm{HCO}^{-} \mathrm{H}^{-} \mathrm{H}_{2} \mathrm{COO}_{3}^{\circ}$
SO_{4}	2.48	$\mathrm{SO}_{4}^{-}, \mathrm{CaSO} \mathrm{C}_{4}^{\circ}, \mathrm{NaSO}_{4}^{-}$
Cl	1.97	Cl^{-}
F	4.66	${ }^{-}$
PO_{4}	6.72	$\mathrm{CaHPO}_{4}^{\circ}, \mathrm{HgHPO}_{4}^{\circ}, \mathrm{NaHPO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
si	3.59	Si(OH) ${ }_{4}^{\circ}$
B	4.05	$\mathrm{Mg}_{2} \mathrm{~B}_{2} \mathrm{O}_{5} \cdot \mathrm{H}_{2} \mathrm{O}$ (Solid)
As	6.80	BeAs O_{4} (Solid)
Se	1.10	$\mathrm{CaSeO}{ }_{3}^{\circ}, \mathrm{MgSeO}_{3}^{\mathrm{O}}, \mathrm{HSCO}_{3}^{-}$
NO]	4.61	NO_{3}^{-}

- only those apociea which constitute greater chan 38 of the respective cotal analytical concentrations are listad.
are irrigated with these contaminated waters, additional reactions such as ion exchange and adsorption would have to be included, of course.) It is envisioned that these types of computations of the speciation of metals and ligands would be helpful in predicting the effects of brine spillage on the trace metal solubility and mobility in the soils of the Imperial Valley.

There is also an urgent need to know the possible deleterious effects of sewage sludge application on agricultural land. One of the potential problems arising out of the disposal of sewage sludge is the likelihood of accumulation of trace metala to toxic levels in soils. This concern is reflected in a recent report by Page (51), which examines the multiplicity of fates for trace elements introduced into agricultural soils by the land application of municipal wastes. One possible means of assessing the effects of sewage sludge application would be to simulate the probsble speciation of the various elements with a computer program such as GEOCHEM. Table VI lists a part of the result of a simulation, using GEOCHEM, regarding the probable trace metal distribution in soil solutions extracted from soils

Table VI.
Distribution of metals and ligands ($\%$ of cotal) in saturation extracts of some sewage sludge amended soils

	San Miguel*					
	$-\log$ Total conc.	Free metal	CO_{3}	SO_{4}	Cl	"Fulvate"
Cu	5.69	19	14	5	<1	62
Cd	3.73	57	-	11	29	2
Zn	4.67	78	2	19	<1	<1
	Holtville ${ }^{\dagger}$					
Cu	5.36	-	-	-	-	100
Cd	7.01	56	<1	8	27	8
2n	4.67	70	9	13	-	5

Note: Other components included in the simulations were: $\mathrm{Ca}, \mathrm{K}, \mathrm{Na}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{PO}_{4}, \mathrm{NO}_{3}, \mathrm{OH}$.
These computations are based on "equilibrium" soil solutions and therefore, ion exchange and adsorption modeljng are not included in the simulation.
${ }_{\mathrm{pH}}=5.1 \quad \dagger_{\mathrm{pH}}=7.6$
amended with sewage sludge. These results subsequently were used in interpreting the observed patterns of Cd uptake by plants which were growing in these soils. It is seen from Table VI that $C u$ is present predominantly as a soluble organic complex in both soils, but roughly a fifth of total solyble copper in the San Miguel soil ($\mathrm{pH}=5.1$) is present as Cu^{2+} ion. The computations indicate that, in the same soil, about half the soluble Cd would be free, whereas a third would be present as complexes with Cl. Even though the total soluble Cd in the Holtville Soil is very much smaller than the total soluble Cd concentration found i_{2}, the San Miguel soil, the predicted relative proportion of $\mathrm{Cd}^{2}{ }^{2}$, Cd bound to SO_{4} and Cd bound to Cl are similar for both soils. In either soils, it is predicted that soluble cd-organic complexes would not be aignificant. Similarly, soluble $2 n$-organic complexes are insignificant in either soil. It is also predicted that approximately 78% of the + soluble 2 n in the San Miguel soil would be in the form of $2 \mathrm{n}^{\mathrm{L}^{+}}$ion and the rest would be present as $\mathrm{znS} 0_{4}^{\circ}$. But, in the Holtville soil, about 70% of the soluble zn is in the free ionic form and about 92 and 132 of soluble 2 n is predicted to be in the form of $2 \mathrm{nHCO}_{3}^{+}$and $2 \mathrm{nSO} 0_{4}^{+}$, respectively.

An interesting aspect of these simulations is that the apeciation of Cu , Cd and Zn with respect to inorganic and organic ("fulvate") 1 igands were qualitatively similar to what was observed in gel filtration studies (52). In these studies it was noticed that Cu was predominately bound to organics whereas Zn_{n} and Cd were observed to be predominately bound.to inorganics.

The two examples of simulation of metal-ligand speciation in boil systems suggests that such studies will be a useful adjunct to the examination of trace metal chemistry in soils.

Acknowledgements

This research was supported in part by a grant from Kearney Foundation of Soil Science, in part by a contract from The Laurence Livermore Laboratory as a contribution to its Imperial Valley Environmental Project, and in part from the Environmental Protection Agency under grant number R804516010. The contenta of this paper do not necessadrily reflect the views and policies गf EPA. GEOCHEM will be available from the authors, on request, ifter January 1979.

Abstract

The computer program GEOCHEM is adapted and being developed for soil solutions from the REDEQL2 program originally created by Morel and Morgan at Caltech. GEOCHEM differs from REDEQL2 in its inclubion of 1) data for a few hundred additional soluble complexes and solids that are relevant to trace metal studies, 2) a subroutine for cation exchange that is based in thermodynamics, and 3) a subroutine for the estimation of single-ion activity coefficients at ionic strengths up to 3 M . Four categories of important theoretical problems were confronted in connection with the development of GEOCHEM. These problems were the lack of data regarding (a) stability constants of trace metal complexes with many important inorganic and mixed ligands and (b) stability constants of trace metal complexes with naturally occurring organic ligands; (c) solubility product constants for soil clay minerals, and (d) thermodynamic exchange constants and exchanger phase activity coefficients. The resolution of these problems has been discussed. Two representative applications of GEOCHEM in its current form to the calculation of trace metal equilibria in a mixture of irrigation water and a geothermal brine and In the aqueous phase of a sewage sludge amended soil are presented and discussed.

Literature Cited

(1.) McDuff, R.E., and Morel, F.M.M. Description and use of the chemical equilibrium program REDEQL2. Tech. Rpt. EQ-73-02. W.M. Keck Lab, Caltech 75 p. (1974).
2. Baes, C.F., Jr., and Mesmer, R.E. "The Hydrolysis of Cations." 489 p. John Wiley and Sons, New York, 1976.
3. Bjerrum, J.; Schwarzenbach, G., and Sillen, L.G. "Stability Constants of Metal-Ion Complexes, with Solubility Products of Inorganic Substances." 131 p . The Chem. Soc., No. 17, London, 1958.
4.i Martell, A.E., and Smith, R.N. "Critical Stability Constants," 257 p. Plenum Press, New York 1976.
5. Sillen, L.G., and Martell, A.E. "Stability Constants of Metal-Ion Complexes." 754 p., The Chem. Soc. London, 1964.
6. Sillen, L.G., and Martell, A.E. "Stability Constants of Metal-Ion Complexes." 865 p. The Chem. Soc. London, 1971.
7. Yatsimirskif, K.B., and Vasilev, V.P. "Instability Constants of Complex Compounds. 214 p. Consultants Bureau, New York, 1960.
8. Kharaka, Y.K., and Barnes, I. SOLMNEQ: Solution-mineral equilibrium computations, NTIS \#PB215899, 75 p. 1973.
9. Truesdell, A.H., and Jones, B.F. WATEQ, A computer program
have for calculating chemical equilibria of natural waters, NTIS \#PB-220464, 73 p. 1973.

Dyrssen, D., and Wedborg, M. Equilibrium calculations of the speciation of elements in sea water, p. 181-195, in Goldberg, E.D., ed., "The Sea," John Wiley and Sons, New York, 1974. Zirino, A., and Yamamoto, S. A pH-dependent model for the chemical speciation of copper, zinc, cadmium, and lead in sea water. Limnol. Oceangr. 17, 661-671 (1972).
12. Fuoss, R.M. Ionic association III. The equilibrium between 1on-pairs and free ions. J. Amer Chem. Soc. 80, 5059-5061 (1958).
13. Kester, D.R., and Pytkowicz, R.M. Theoretical model for the formation of ion-pairs in sea water. Mar. Chem. 3, 365-374 (1975).
14. Garrels, R.M., and Christ, C.L. "Solution, Minerals, and Equilibria." 450 p., Harper and Row, New York, 1965.
Nieboer, E., and McBryde, W.A.E. Free energy relationships in coordination chemistry I. Linear relationships among equilibrium constants. Can. J. Chem. 48, 2549-2564 (1970). Nieboer, E., and McBryde, H.A.E. Free energy relationships in coordination chemistry II. Requirements for IInear relationships. Can. J. Chem. 48, 2565-2573 (1970). Nieboer, E., and McBryde, W.A.E. Free energy relationshipo in coordination chemistry III. A comprehensive index to complex stability. Can. J. Chem. 51, 2512-2524 (1973).
18. Van Panthaleon Van Eck, C.L. On the mutual stability relationship of MeA complexes consisting of a metal ion Me and a ilgand A in aqueous solution, for consequetive values of n.
(19) Recl. Trav. Chim. Pays-Bas. 72, 529-537 (1953).

Mattigod, S.V., and Sposito, G. Estimated association constants for some complexes of trace metals with inorganic ligands. Soll Sci. Soc. Am. J. 41, 1092-1097 (1977).
20.) Ramamoorthy, S., and Manning, P.G. Equilibrium studies of metal-ion complexes of interest to natural waters - VIII. J. Inorg. Nucl. Chem. 36, 695-698 (1974).
21. Dyrssen, D., Jagner, D., and Wengelin, F. "Computer Calculation of Ionic Equilibria and Titration Procedures." 250 p. Almquist and Wiksell, Stockholm, 1968.
22. . Schindler, P., Reinert, M., and Gamsjager, H. "Loslichkeitkonstanten und Breie Bildungenthalpie von $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ (Malachit) and $\mathrm{Cu}_{3}(\mathrm{OH})_{2}\left(\mathrm{CO}_{3}\right)_{2}$ (Azurit) bei $25^{\circ} \mathrm{C}$. Helv. Chim. Acta. S1, 1845-1856 (1968).
23. Bilinski, H., Huston, R., and Stumm, W. Determination of the stability constants of some hydroxo and carbonate complexes of Pb (II), Cu (II), Cd (II) and Zn (II) in dilute solutions by anodic stripping voltammetry and differential pulse polarography. Anal. Chim. Acta. 84, 157-164 (1976).
24. Morgan, J.J. Chemical equilibris and kinetic properties of manganese in natural waters. p. 561-624, in Faust, S.D., Hunter, J.V., eds. "Principles and Application of Water Chemistry." John Wiley and Sons, New York, N.Y., 1965.
25. Smith, R.M., and Alberty, R.A. The apparent atability constants of ionic complexes of various adenosine phosphates with divalent cations. J. Amer. Chem. Soc. 78, 2376-2380 (1956) 26. Nriagu, J.O. Stability of vivianite and ion-pair formation in the system $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}-\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{H}_{2} \mathrm{O}$. Geochim. Cosmochim. Acta. 36, 459-470 (1972).
27. Sigel, H., Becker, K., and McCormick, D.B. Ternary complexes in solution. Blochem. B1ophys. Acta. 148, 655-664 (1967).
28. Nriagu, J.O. Solubility equilibrium constant of α-Hopeite Geochim. Cosmochim. Acta. 37, 2357-2361 (1973).
29. Sposito, G., and Holtzclaw, K.m. Titration studies on the polynuclear, polyacidic nature of fulvic acid extracted from sewage sludge-soil mixtures. Soil Sci. Soc. Amer. J. 41, 330-336 (1977).
30. Sposito, G., Holtzclaw, K.M., and Keech, D.A. Proton binding in fulvic acid extracted from sewage sludge-soil mixtures.
Soil Sci. Soc. Amer. J. 41, 1119-1125 (1977).
31. Chen, Chao-Hsia. A method for estimation of standard free energles of formation of silicate. minerals at 298.15 K . Amer. J. Scx. 275, 801-807 (1975).
32. Karpov, I.K., and Kashik, S.^. Computer calculation of atandard labometc-inuthormal potentiala or allicolem liy multiple rugcusatun irom a eryntallochomfleal vlasalrlanl hill. Geochem. Int. 5, 706-713 (1968).
Tardy, Y., and Garrels, R.M. Prediction of Gibbs energies of formation of compounds from the elements. II. Monovalent and divalent metal silicates. Geochim. Cosmochim. Acta. 41, 8792 (1977).
(34.) Nriagu, J.O. Thermochemical approximations for clay minerals. Amer. Mineral. 60, 834 (1975).
35. Tardy, Y., and Garrels, R.M. A method for estimating the hove Gibbs energies of formation of layer silicates. Geochim. Cosmoch1m. Acta. 38, 1101-1116 (1974).
(36.) Mattigod, S.V., and Sposito, G. Improved method for estimating the standard free energies of formation of smectites. Geochim. Cosmochim. Acta. (In press).
37. Kittrick, J.A. Montmorillonite equilibria and the weathering environment. Soil Sci. Soc. Amer. Proc. 35, 815-820 (1971).
38. Kittrick, J.A. Stability of monmorillonites: II. Aberdeen Kittrick, J.A. Stability of monmorillonites: II. Aberdeen
montmorillonite. Soil Sci. Soc. Amer. Proc. $35,820-823$ (1971).
39. Carson, C.D., Kittrick, J.A., Dixon, J.B., and McKee, T.R. Stability of soil smectite from a Houston black clay. Clays and Clay Min. 24, 151-155 (1976).
40. Misra, V.K., and Upchurch, W.J. Free energy of formation of beidellite from apparent solubility measurements. Clays and Clay Min. 24. 327-331 (1976).
41. Weaver, R.M., Jackson, M.L., and Syers, J.K. Magnesium and silicon activities in matrix solutions of montmorilionite coritaining soils in relation to clay mineral stability. Sotl Sci. Soc. Amer. Proc. 35, 823-830 (1971).
42. Weaver, R.M., Jackson, M.L., and Syers, J.K. Clay mineral stability as related to activities of aluminum, silicon and magnesium in matrix solution of montmorillonite-containing soils. Clay and Clay Min. 24, 246-252 (1976).
43. Huang, W.H., and Keller, W.D. Gibbs free energies of formation calculated from dissolution data using specific mineral analysis. III. Clay minerals. Amer. Mineral. 58, 1023-1028 (1973).
44. Sposito, G., and Mattigod, S.V. On the chemical foundation of the sodium adsorption ratio. Soil Sci. Soc. Amer. J. 41, 323-329 (1977).
Gaines, G.L., Jr., and Thomas, H.C: Adsorption studies on clay minerals. II. A formulation of the thermodynamics of exchange adsorption. J. Chem. Phy. 21, 714-718 (1953).
46. Foscolos, A.E., and Barshad, I. Equilibrium constants between both freshly prepared and aged H montmorillonites and chloride salt solutions. Soil Sci. Soc. Amer. Proc. 33, 242-247 (1969).
47. Peigneur, P., Maes, A., and Cremers, A. Heterogenefty of charge density distribution in montmorillonite as inferred from cobalt adsorption. Clays and Clay Min. 23, 71-75 (1975).
48. Gast, R.G. Alkali metal cation exchange on Chambers montmorillonite. Soll Sci. Soc. Amer. Proc. 36, 14-19 (1972).
49. Sposito, G., and Mattigod, S.V. Ideal behavior in Na trace metal cation exchange on Camp Berteau montmorillonite. Clays and Clay Min. (In press).
50 Helgeson, H.C. Thermodynamics of hydrothermal systems at
nive elevated temperatures and pressures. Amer. J. Sci. 267 , 729-804 (1969).
51. Page, A.L. Fate and effects of trace elements in sewage sludge when applied to agricultural lands. A literature review study. Rept. Office Res. Dev. U.S. Environ. Protection Agency, Cincinnati, Ohio, 97 p., 1974.
52. Sposito, G., Holtzclaw, K.M., and Baham, J. Analytical properties of the soluble, tetal-complexing fractions in sludge-soil mixtures: II. Comparative structural chemistry of fulvic acid. Soil Sci. Soc. Amer. J. 40, 691-697 (1976).

Received November 16, 1978.

A Comparison of Computerized Chemical Models for

 Equilibrium Calculations in Aqueous Systems ${ }^{1}$D. K. NORDSTROM', L. N. PLUMMER', T. M. L. WIGLEY' T. J. WOLERY' J. W. BALL' E. A. JENNE' R. L. BASSETT', D. A. CRERAR', T. M. FLORENCE', B. FRITZ", M. HOFFMAN", G. R. HOLDREN, JR.", G. M. LAFON "
S. V. MATTIGOD", R. E. MCDUFF ", F. MOREL", M. M. REDDY", G. SPOSITO", and J. THRAILKILL'

The interpretation of chemical processes in aqueous systems requires the use of modern electronic computers, particularly in the calculation of multicomponent, multiphase equilibria. Commorily, the first concern of solution chemists and aqueous geochemists is to calculate the distribution and activities of species on the assumption that equilibrium exists throughout the aqueous phase. Species distribution can then be used in several areas of analytical and applied chemistry, e.g. to examine the availability of free and reactive ions, to test solubility hypotheses, and to determine the potential bioavailability of nutrients or toxic substances. Species distribution also forms the basis for more complex computations involving solutions which change composition by reaction with other solutions and with gases and solids. Equilibrium calculations of this type are particularly helpful in solving interpretive problems encountered in such fields as chemical and environmental engineering, geochemistry, biochemistry and aquatic ecology.

This symposium demonstrates quite clearly that we depend heavily on chemical models, especially computerized models, to interpret aqueous chemical processes. Several computer programs which solve problems of simultaneous chemical equilioria are being used by a rapidly increasing number of investigators and it is necessary to review the inherent assumptions and limitations of these aqueous models. There is a temptation to use these models as ready-made interpretations

[^4]by
William M. Turpin
Manager, AI Applications
Texas Instruments Data Systems Group Austin, Texas

URHERSITY OR UTAM RESEARCH Iffertitit

During the past year and a half since the introduction of Personal Consultant in 1984, we at Texas Instruments have had an opportunity to work with and observe what many customers have done with the product. Additional customer understanding has been gained through our training classes and knowledge engineering services. These observations, plus our own involvement in expert system creation, have helped us to better understand the product features and management techniques which. contribute to successful projects.

This paper presents four case histories of how actual expert system applications were created using Personal consultant. They were selected from actual customer applications as being representative of various issues involved in expert system creation. These case histories show how varied expert system applications are in terms of their problem domain and intended user commaity. They also show different strategies for learning about and managing expert system technology.

CASE HISTORY \#1 - CAMPBELL SOUP COOKER DIAGNOSIS

The first case history involves a traditional application of expert system technology. It involves a diagnostic domain which is well suited to rule-based backward chaining systems. It was also produced using a knowledge engineer working in conjunction with a single domain expert.

This application was done for manufacturing plants at the Campbell Soup Company. These plants use giant product sterilizers, commonly called cookers, in the production of soup products. Each cooker processes several hundred cans of soup at a time. So when one malfunctions, it is very important to get the problem diagnosed and fixed quickly. If a fix for the cooker is not found soon enough, then you "lose the soup".

Many routine cooker problems can be handled by plant operators on a day-to-day basis. Occasionally, however, difficulties arise that require the advice of an expert-someone who understands the design, installation, and operation of the equipment. Unfortunately, there are not enough human experts to go around. This can result in long delays while an expert is located and flown in. To make matters worse., Campbell's best expert was nearing retirement.

Campbell's management decided to use this problem situation as a test of the viability of expert systems. They contracted with Texas Instruments to provide knowledge engineering in the creation of this expert system. Campbell supplied the domain expert, while TI provided the knowledge engineer. The two would meet three to four days a month to design and review the evolving system.

After several months, a prototype system of about 30 rules was developed. It did not have much depth of knowledge, but it demonstrated that the expert system approach was feasible. It also served as a catalyst for adding additional knowledge to the system. After about 150 rules had been entered, the system was ready for production use. At the time of this writing, the system is being used at eight of campbell's manufacturing facilities.

The Campbell Soup expert system was created using the Personal Consultant Expert System Tools to run on IBM PC-XT computers. The Personal Consultant provides several features which were important in this application:

- An easy-to-use interface so that plant maintenance personnel can quickly learn to use the system
- English explanation facilities help facilitate working with the domain expert and provide ongoing training for the maintenance personnel
- Multiple runtime versions have been created to distribute the system to several plants while maintaining central control of the knowledge base

Another important aspect of this application was Campbell's decision to get help in the creation of their first expert system application. By using a low-cost, pC-based expert system shell and the consulting services of a knowledge engineer, they were able to significantly increase their chances for success. They were also able to get involved with expert system technology in a very timely manner. This has allowed them to prove the feasibility of an expert system approach and stay competitive in their product market.

CASE HISTORY \#2 - TEXAS INSTRUMENTS EPI REACTOR DIAGNOSIS

The second case history involves the use of an expert system for a similar diagnostic task. However, it is quite different in the manner that it was produced. It was created using multiple domain experts and a self-taught knowledge engineer.

This system is an equipment diagnosis situation at a semiconductor manufacturing facility within Texas Instruments. The manufacturing process for semiconductors uses many different machines to produce
silicon "wafers" with intricate patterns etched in layers to produce complex electronic circuits. Each machine is very expensive and operates with very small tolerance levels.

At the TI manufacturing facility in Sherman, Texas, one such machine, called an epitaxial reactor, is an essential step in the production of semiconductors. These reactors use very high temperatures and controlled mixtures of gases to grow a very thin silicon film (the epitaxial layer) on silicon wafers. Since the reactors process several wafers at a time, an equipment failure can produce a large amount of material scrap and hold up the rest of the manufacturing process.

In September 1984, this machine was selected as the most serious bottleneck in the manufacturing process, and an expert system approach was selected to help reduce downtime. It was felt that there were a large number of problems that the machine operators and local maintenance staff could remedy with appropriate help from an expert system. If successful, such a system could save thousands of dollars.

The programmer/analyst assigned to this project had no previous AI or LISP programming experience but was willing and anxious to learn. After selecting the Personal Consultant system as her programming tool, the new knowledge engineer attended a one-week course on the system. This gave her the initial training necessary to go back to the work enviromment and concentrate on her application.

To obtain the necessary expertise about the epi reactors, two committees were formed. The first was a technical committee charged with defining the scope of the system, the problems to attempt to diagnose, and the diagnostic procedures. It was composed of the knowledge engineer, a manufacturing engineer, several service technicians, and a service representative from the manufacturer of the epi reactor. They decided to initially focus on common problems which a reactor could help identify through its operator panel.

The second committee was formed of the planned users of the system. It included the knowledge engineer, service technicians, and machine operators. They helped determine how the system would fit into the actual work environment and how users would be trained. They would go in on weekends to test the operation of the prototype system in the production environment.

After six months, the development team had created a 400 rule system called the Intelligent Machine Prognosticator (IMP) which could suggest solutions to 25 common problems. By the time of this writing, the system had grown to about 1000 rules (segmented into seven knowledge bases) covering about 300 reactor problems. This system has been installed on a portable TI Professional Computer which is
rolled to the epi reactors as needed on a moveable cart. The results so far have been an outstanding forty-four percent increase in average time between reactor failures. Work is also in progress on creating expert systems for other selected machines at this facility.

This application was facilitated by several Personal Consultant features. The easy-to-use interface and ability to make runtime versions for delivery were both essential. The product training also helped the new knowledge engineer gain experience and confidence more quickly. The English explanation of the system's operation also helps train the maintenance personnel and instill user confidence in the system.

The use of two committees was also a key element in the success of the IMP system. The pooling of several experts' knowledge helped make the system more intelligent. The inclusion of the system's eventual users during the design phase was also instrumental in getting the system accepted in the work environment. Many people overlook the fact that an expert system is useless unless the people it is intended to help come to it for advice.

- PERSCNAL CONSUHEANT APPLTCATICN SUMNARY

CASE HISIOR	$\underline{1}$	2	3	4
HHO	Camball Soup	Texas Instruments	Westinghouse	Purdue/USEA
DOARN	Soup Marufacturing	Semicanductor Manufacturing	Powerplant Design	Grain Marketing
TDASK	Equipment Diagnosis	Equipment Diagnosis	Material Selection	Marjoeting Advise
PROBIPM	Expent Petiring	Expert Not Available	Knowledge Transfer	Nnowledge Transfer
END USER	Tecturician	Tecruician	Enginear.	Farmer
kNOMLEDGE ENGDEER	Hired Cansultant	Programmer/Analyst	Domain Expert	Graduate Students
SIZE	150 Rules	1000 Pules	300 pules	150 Fulles
featuris	Ramtim	Runtime	LISP functions Frames Graphics	LISP functions Data Access Graphics
STATUS	Production Uasga	Production Usaga	Refinement	Refinewent

CASE HISTORY \#3 - WESTINGHOUSE CORROSION EXPERT

The next case history involves a domain in which the expert system gives design advise. It was produced by the domain expert himself who
learned the necessary computer programing skills. The resulting system is intended to help engineers design better, longer lasting products.

This expert system was created in the Research and Development labs at Westinghouse. The subject of the system is the selection of metal alloys for the construction of steam generators in nuclear power plants. A researcher there had discovered how to combine dissimilar metal alloys to produce a component with specific corrosive properties--which were sometimes different from either of the metals alone. He was faced with the choice of how to disseminate this information to the appropriate engineers at westinghouse. His solution was in the form of an expert system that could help further his research while providing a good medium to transfer the knowledge.

This metalurgical expert had an interest in computers but did not have any formal computer education. Therefore, after selecting Personal Consultant as his expert system tool, his first step was to attend training classes on the product. With this training, he was able to go back to Westinghouse and create several small expert systems--one of which helped salespeople configure electrical panel boards. During this period, he also started teaching himself LISP so that he could add custom features into his expert systems.

At the time of this writing, this system is still being expanded and refined. In particular, the researchers are studying the discrepancies between theoretical relationships and empirical evidence--both of which have been encoded into production rules. When these two systems of logic produce conflicting advice, it helps suggest an area needing further research.

This project has used several features of Personal Consultant in order to achieve its results:

- Reliance on certainty factor calculations to incorporate and report imprecise knowledge
- Extensive use of graphics has been employed to enhance the display of conclusions
- The problem domain was structured into modular components (frames) to make it more manageable
- User defined LISP functions have been written to extend the functionality of the system
- The symbolic form of the rules (not compiled) has been useful in finding and reporting conflicting knowledge.
other features, such as the easy-to-use interface and explanation facilities, will help the transfer of knowledge to other engineers at Westinghouse.

This application also demonstrates that it is sometimes possible to train the domain expert on expert system creation. The nonprocedural style of rule-based expert systems can simplify the knowledge encoding process much like computer spreadsheets simplify the manipulation of tabular, numeric data. If the domain expert is willing and able to learn about expert systems, he can be very effective at creating applications in his domain.

CASE HISTORY \#4 - PURDUE GRAIN MARKET ADVISOR

The last case history involves an application in the domain of marketing. It was produced in a university setting by a team of knowledge engineers and domain experts. It adds some new features to an expert system in order to make the system more capable.

In 1985, Purdue University received a grant from the United States Department of Agriculture (USDA) to study improvements that could be made in the US farm industry. As a result of this study, purdue has created several expert systems which can help individual farmers become more productive. One of these systems, called the Grain Market Advisor, helps farm operators determine the best method of marketing the grain they produce.

The grain marketing process is a confusing problem to many farmers because of price uncertainties, commodity markets, and joint marketing alternatives. Yet, the marketing strategy employed by the farmer can have a tremendous impact on the selling price of a crop. A good marketing strategy can also help reduce some of the risk involved in farming. In order to give good, consistent advise on grain marketing, Purdue decided to create an expert system.

During a consultation with GMA, grain price history information is retrieved from a commercial data base via a dial-up telephone line. This price information is used to help predict future price trends. Graphics are produced from this data to help convey these price trends to the user. Given these trends, the system helps decide which risksharing strategies, such as selling grain futures, are relevant. These strategies are then tested to see if they can be used in the current situation.

Before starting work on GMA, Purdue sent a graduate student from the project to live and work with the Personal Consultant development team. During the Spring of 1985, the student was able to learn about the product and develop user interface routines which would be helpful to the profect. This cooperative effort proved to be beneficial to both parties involved. Back at Purdue, this student became the lead knowledge engineer for the project. The resulting expert systems, including the GMA, were presented to the USDA last December.

Custom IISP functions were used extensively in GMA to perform the data base access and present graphical information. These additional
features allow the system to be more capable and easier to understand. When combined with the standard explanation facilities, the system becomes very transparent and capable of explaining its reasoning. This will be very important to the user of the system who will be pricing an entire year's crop production based on advise from the system.

Certainty factors were employed to represent imprecise knowledge, determine default values, and rank competing grain marketing alternatives. The easy-to-use interface will be essential when dealing with users who do not work with computers on a day-to-day basis. The price point and availability of personal computers coupled with the ability to make runtime versions of the application make this system feasible for mass distribution within the farming industry.

SUMMARY:

In addition to being successful, these four case histories share several common themes relating to PC-based expert system development. These projects, along with others, can be used to generalize the following observations:

- Many organizations are getting involved with and creating expert system applications
- Useful, cost-effective expert systems are being produced for use on personal computers
- Current expert system technology can be applied in many different problem domains
- Many successful projects start with a small prototype which is extended and refined over time
- Companies without prior AI experience are being successful by getting assistance

These case histories also demonstrate that the creation of expert systems is no longer limited to high-tech, early adopter companies. The availability of powerful PC-based tools, such as Personal Consultant, have significantly reduced the risk and training involved in creating useful applications in many problem domains. The development of expert systems is quickly moving from AI research labs into business practice at many companies. Soon, they will be a standard method of improving quality and managing flow of knowledge within an organization.

COMPUTER SEARCHABLE

BIBLIOGRAPHIC DATABASES

IN THE

PHYSICAL AND LIFE SCIENCES

AND ENGINEERING

AVAILABLE

AT THE

MARRIOTT LIBRARY

UNIVERSITY OF UTAH

Compiled by
Ann Marịe Breznay

September 1979

EgUERAEREGSTER, March 1977-present, weekly updates.
Corresponding to Federal Register Abstracts, this file covers rules, reguagions, notices, meetings, and hearings of the Federal Government on a range of subjects, ingluding defense, environment, technology and transportatHow See also PTS PGOERAL.INDEX.

FOUNDATION DIRECTORY, current file, semiannual revisions. LR'S (26)

This file provides descriptions of nonprofit, nongovernmental foundations, which make grants of $\$ 100,000$ or more annually or which have assets of $\$ 1$ million or more. Grants are given primarily in education, health, welfare, sciences, international activities and religion, in that order. Corresponds to the printed Foundation Directory.

FOUNDATION GRANTS, 1972-present, bimonthly updates.

 LRS (27)Also published by the Foundation Center, this file contains information on grants awarded by major American philanthropic foundations in many fields, including health and the sciences. Grants of less than $\$ 5,000$ and grants to individuals are not included.

GPE MONTHLY CATALOG, 1973-present, monthly updates.
LRS (66)
This file corresponds to the printed Monthly Catalog of U.S. Government Publications and is an index of public documents generated by the U.S. Federal Government. It covers Congressional documents, Senate and House hearings on private and public bills and laws, as well as documents from other government agencies and departments on every major issue.

GRANTS, 1977-present, monthly updates and revisions. SDC

In addition to grants awarded by private foundations, this file includes information on grants offered by federal, state and local governments, commercial organizations and associations in over 88 academic disciplines. Its print counterparts are Grant Information System (GIS) and Faculty Alert Bulizetin.

LIBCON, 1968-present (MARC), 1969-present (MET), weekly updates. SDC:

This file includes Library of Congress English language records from MARC. tapes and MET (main entry/title) records from LC depository card sets. Covers all subject areas.

MAGAZINE INBEX, 1977-present, monthly updates. LRS (47)

This file provides coverage of over 370 popular magazines, including the 173 indexed in the Reader's Guide to Periodical Literature, on virtually eveny subject foom current events, editorials, and fiction to consumer products, nutrition and teehnology.

MIS, 1964 present, biweekly updates. BRS, 12 RS 6., SDC

The National Techical Information Service database consists of teche nicap reports on both hard and soft sciences which result irom research sponsoged. or fanded by any branch or agency of the U.S. Govemmente Includes analysespme pared. by federal agencies, their contractors or grantees, and nonclassffed Dof. reports. Corresponds to the printed Weekly Govemment Abstropts and Govemment Reponts Announcements:

NATLONGE FOUNATIONS, 1975-present, annual updates and revisions, LRS (78)

Records of all 20,000 U.S. foundations which award grants are proveded in this fle. Approximately 17,000 small foundations which are excluded frent coverage In the FOCNDATION DIRECTORY because their assets total less than $\$$ ghe millionare listed in NATIONAL FOUNATIONS, including those foundations, whererestrict thelr donations to local or regional recipients. This file over lapsande supplements the FOUNDATION DIREGTORY file (LRS 26), where more complete datard: the larger foundations are available.

SeISEARCI, 1974 -present, biweekly updates.
LRS (34:1978-present; 94:1974-1977)
This file, a multidisciplinary index to the literature of scienee, techology and medicine, contains all the records published in the soteroe of totyont
 90 percent of the world's significant scientific and technical literature.

SSE, fiscal year 1974 -present, monthy updates.
LRS (65, last two fiscal years only), SDC
The Smithsonian Science Tnformation Exchange file covers researehyanprogness and recently completed research sponsored primarily by agencies Dof dhen federal govemnent. Provides sumaries of the research projects includugg ofinderes and appled research in all areas of the life, physical, social, behavonalyangr, engneertig sciences.
U.S, GONHRACI AWAROS, June 1978-present, monthly updates. SDC

This file corresponds to the printed title and provides infomation. about contracts awarded by the U.S. Government in various fields.

WORLD RATENT INDEX, 1977-present, monthly updates. SDC

Central Patents Index and World Patents Index are the printed comem, spondents of this file, whec contains data related to patent specificationspessieg by the Patent Offices of the major industrial nations. Subjects covered ingidgetys phamaceuticals, agricultural chemicals, plastics, chemistry, mechanical and: electrical.

AGRICOLA, 1970-present, monthly updates.
BRS, LRS (10), SDC
Produced by the National Agricultural Library of the U.S. Dept. of Agriculture, this database provides comprehensive worldwide coverage in the field of agriculture and such related fields as rural sociology, agricultural econemics, veterinary medicine, plant science, agricultural chemistry, entomology, soils, water management, food and nutrition. Corresponds to the printed Bibziography of Agriculture.

ACLACUTURE, 1970-present, irregular updates. ERS (12)

This file includes information on growing water organisms.

ACUATIC: SCIENCES AND EISHERIES ABSTRACTS (ASFA), 1975-present, monthly updates. LRS (4:4)

ASFA is a comprefensive database on life sciences of the seas and iniand waters, as well as related legal, political and social topies, such as biological and ehemical oceanography, law of the sea, water pollution, geological and physical oceanography and limology.

BTOCODES, 1969-present, irregular updates. SDC

Dictionary file of the biosystematic (taxonomic) codes and cross (concept) codes used in Biological Abstracts and BIOSIS PREVIEWS.

BIOSTS PREVIEWS, 1969 -present, monthly updates. BRS, LRS (5:1972-present; $55: 1969-1971$), SDC

This file, which corresponds to the printed Biological Abstracts and Btonesearoh Index, covers all areas of the life sciences, including bioengineering, biophysics, genetics, behavioral sciences, pharmacology, public health, veterinary science and virology.

CAB ABSTRACTS, 1973 present, monthly updates, LRS (50)

This comprehensive file of agricultural information contains all records in the journals published by the Comonweal th Agricultural Bureaux. Significant papers are abstracted and less important works are reported with bibliographic details only in every branch of agricultural sciences, including education, genetics, pest control and taxominy,

CACQNDENSATES/CASIA, 1967 -present, biweekly updates. BRS, LRS $(2,2,4)$, SDC

Corresponding to the printed Chemical Abstracts minus the abstracts; this file provides cemprehensive coverage of the literature of chemistry and its applications. Patents, 60 oks, reference proceedings and government research teports are included, subject divisions Include applied chemistry and chemical engineering, biochenistry, macromolecular chemistry, organic chemistry physical and analytical chemistry.

EXCERPA MEDICA, 1975-present, weekly updates.
LRS (22,73)
This database of wor1dwide research literature in the medical sefenest ancludes anl records in the printed Eiccerpta Medioa plus an additional 100,0000 on recorbs annually that do not appear in the printed joumals. Covers all fadeds. of mediche, as well as literature in pharmaceutics, forensic science, health economies, hospital management and public health.

FOOD SCIENEE AND TECHNOLOGY ABSTRACTS (FSTA), 1969 -present, monthy upeates LRS (51), SDC

This file, which corresponds to the printed Food Setence ond Temote
 food processing except the production of raw foods. Allied disciplines subhuase agrieulture, chemistry, biochemistry, physics, home economics and engseefighaget also covered.

MEDLARS, 1966-present, monthly updates.
$\overline{\mathrm{BRS}}$
Corresponds to the print Index Medicus, Index to Dental Entengemathadex the Intemational mursing Index and covers all types of medical scienees literadumeg

NAL SERTALS, 1978-present, monthly upaates. $\overline{\mathrm{BRS}}$

This file provides a listing of all serial records of the Nationat Agicultural Library.

USDA/GRIS, July 1974-present, quarterly updates. TRS (60)

The Current Research Information System of the U.S. Department off. Agricuiture database provides infomation about cument research in agreviluge and related sciences; sponsored or conducted by USDA research agencies, Staterter agncultaral experiment stations, State forestry schools, and other coopentung y State 酝stutions.

CHEMICAL SCIENCES

APILTT, 1964-present, monthly updates. SDC
 relating to the petroleum refining and petrochemical industry, includag sedentafiter and technical developments and engineering work.

APIPAT, 1964-present, monthly updates. SDC

Also produced by the American Petrolem Institute, this database, edorgs patents telated to the petroleum refining and petrochemical industry what whesibed. Assuedybythe Unted States, Belgium, Canada, France, Gemany, Great Bpatannowdyard, rtaly, Japan and South Africa.

CA, CQDENSAUS/CASIA, 1967-present, biweekly updates.
BRS , $\operatorname{gRS}(2,3,4$, SEG
This file comesponds to the printed Chemical Abstracts and provides comprehensive coveroge. the literature of chemistry, Patents, books, reference proceedings and govemnent, research reports are included. Subject divisions are: appled chemstry and Ghenical engineering, biochemistry, macromolecular chemistry, organic chemistry, physical and analytical chemistry. From 1972 onward, the CASIA files are integrated inte the LRS and SDC files, providing additional index entries and CAS Registry Numbers.

CA BATENT CONCORDANCE, 1972 -present, semiannual updates. LRS.(43)

This file correlates patents issued by different countries for the same basic invention. The first patent is published in chemzat Abstracts; subsequent patents for the same invention are entered in CA PATENT CONCORDANCE.

CHEMEX, 1972 -present, quarterly updates. SBC

This dictionary file covers all compounds cited in the literature. It can be searched by chenceal name, molecular formula, or by group or row within the periodie chart.

CHMMAME, 1972-present, irregular updates. LRS (31)

This file contains a listing of chemical substances in a dictionary-type, nonbibliographic file, For each substance listed, the CAS Registry Number, molecular formbla, CA Substance Tndex Name, available synonyms, ring data and other chemical substance data are 1isted.

CHEMEAL INDUSERY NOTES CNS, 1974-present, weekly (SDC) and biweekly (LRS) updates. LRS (19), SDC

Comesponding to the printed Chemical Industry Notes, this database contains articles which cover the following chemical industry areas: production, pricing, sales tacilities, products and processes, corporate activities, government activities, and people in the chemical industry.

CLAMS/CHM, 1950-1970, closed file. CLAMSTU.S. PATENTS, 1971 present, quarterly updates.
$\operatorname{LRS}(23,24)$
These databases contain chemical and chemically related patents from the official cazette of the U.S. Patent Office. Foreign equivalents from Belghm, France, Great Britain, West Gemany and the Netherlands are included for approximately 20% of the U.S. Patents in the file.

CLGMS/CLASS, 1977 -present, irregular updates. LRS (25)

Intended for use In conjunction with the CLAMS/CHEM and CLAIMS/US. PATENTS Gies. this database ts a classification code and title dictionary for all classes and selected subclasses of the U.S. Patent Classification System.

COMPENBEX, 1970-present, monthly updates.
LRS (8), SDC
This machine-readable version of the Engineering Index provides hiforms ation from the world's significant literature in engineering and related subjeft areas, including chemical engineering, materials' properties and testing. It: covers about 3,500 journals, publications of engineering societies and organizaditonsy papers. from the proceedings of conferences, and selected government reports and booss.

PAPERCHEM, 1969-present, monthly updates. SDC

This database, which corresponds to the printed publication Abstacet Butzetin of the Institute of Paper Chemistry, provides comprehensive wordew coverage of the scientific and technical literature that deals with the the ored deat principles, technologies, raw materials, products, and practices of the pdepreqagr-, and board-manufacturing and -utilizing industries.

ENGINEERING

BHRA FLUID ENGINEERING, 1974-present, quarterly updates.
This file provides indexing and abstracting of world-wide infomathontent all aspects of fluid engineering, including theoretical research as wel as techedregy and applications. Fields covered include civil engineering, hydraulics, fluyid sidwher fluidics feedback and tribology. No print counterpart.

CLATMS/U.S. PATENTS, 1971-present, quarterly updates.
LRS (23,24)
This database contains all patents listed in the general, chemeap, electrical and mechanical sections of the Official Gazette of the U.S. Patent O. .f.ge

COMPENDEX, 1970 -present, monthly updates.
LRS (8), SDC
Engineering Index is the printed version of this file, which covers the worlds sagificant engineering and technological literature. It includes eovedeg of approximately 3,500 journals, publications of engineering societies and orghingate, tions, papers, conference proceedings, government reports and books.

INTERNATIONAL AEROSPACE ABSTRACTS, 1968-present.
NASA
This file is the same as the printed version and covers all literative related in any way to the aerospace industry.

INSPEC, 1969-present, monthly updates. BRS, TRS $(12,13)$, SDC

The online INSPEC file corresponds to the printed Physics Abstragts, Electmeal and Electronics Abstracts, and Computer and Control Abstracts ajdeporor vides ceverage of the world's literature in physics, electrical and electronies: engineering.

ISMEC, 1973-present, monthly updates. LRS (14), SDC

The ISMEC BULLETIN is the print counterpart of this database, which covers leading international journals and conferences on all aspects of mechanical engineering, production engineering, and engineering management.

METADEX (METALS ABSTRACTS/ALLOYS INDEX), 1966-present, monthly updates. LRS (32)

This file provides comprehensive coverage of international literature on the science and practice of metallurgy. Six basic categories of metallurgy are covered: Materials, processes, properties, products, forms, and influencing factors. The print versions are: Review of Metal Literature (1966-67), Metals Abstracts (1968-present), and Alloys Index (1974-present).

MRIS ABSTRACTS, 1970-present, monthly updates. LRS (63)

The Maritime Research Information Service Abstracts database provides information on technical reports and journal articles in the maritime field, including marine engineering, corrosion, naval engineering and strength of materials and structural analysis.

PIRA, 1975-present, monthly updates.
LRS (48)
PIRA is a machine-readable version of Paper and Board Abstracts, Printing Abstracts, Packing Abstracts, and Management and Marketing Abstracts. It includes periodicals, books, standards, specifications, legislation, conference papers, research reports and other information in the fields of paper and board manufacturing.

RAPRA ABSTRACTS, 1972-present, monthly updates. LRS (95)

RAPRA (Rubber and Plastics Research Association) is a comprehensive database covering the commercial, technical and research aspects of the rubber and plastics industries. Subjects covered include: synthesis and polymerization, processing technology, properties and testing.

SAE, 1965-present, quarterly updates.
$\overline{S D C}$
This database, produced by the Society of Automotive Engineers, provides access to a select number of technical papers on the technology of the automotive and automotive-related industries.

SAFETY, June 1975-present, bimonthly updates.
SDC
Safety Science Abstracts Journal iṣ the printed publication corresponding to this database, which covers periodicals, government reports, conference proceedings, books, dissertations and patents dealing with general safety, industrial and occupational safety, transportation safety, aviation and aerospace safety, environmental and ecological safety and medical safety.

STAR, 1962-present.
NASA.
The Scientific and Technical Aerospace Reports file provides accessyto uclassified scientific and technical reports published by NASA on any aspecterofer the aerospace industry. STAR reports are available on microfiche in the Documents. division.

TITUS, 1970-present, monthly updates.
SDC
This file, which has no printed counterpart, provides comprehenstiveworde wide coverage of topics relating to the textile industry. It includes fngermathent about processes and machines, analysis and testing of products andrtextile efgeneening.

WELQASEARCH, 1967-present, monthly updates.
LRS (99):
The WELDASEARCH database provides coverage of the internationar giterature on all aspects of the joining of metals and plastics and related areas such gaspmedals spraying and thermal cutting. Information is extracted from several thousand pouarals, research reports, books, standards, patents, theses and special publicationso

WORLD TEXTILES, 1970-present, monthly updates. LRS (67)

This is the machine-readable version of World Textile Abstracts agdeandexes world literature on the science and technology of textile and related matedgavisidicluding the synthesis, physics and chemistry of polymers for fibers. Its eoverage ts roughly the same as that of the TITUS file.

ENVIRONMENT

APTIC, 1966-September 1978, closed file. LRS (45)

The Air Pollution Technical Information Center database covers alyaspects: of air pollution, its effects, prevention and control, including the socizatodisideal, legal and administrative aspects of the field. Includes all entries from Aicepevehtuon abstracts (no longer published).

ENVIROLINE, 1971-present, monthly updates.
LRS (40), SDC
Environment Abstracts is the printed title corresponding to this file which covers the world's environmental information. Over 5,000 source publicationswaysevered in such fields as management, law, economics, geology, biology, and chemistrys as they; relate to the environment.

ENVIRONMENTAL IMPACT STATEMENTS, 1977-present, monthly updates. BRS

This file indexes all environmental impact statements required by ghaw Enviromental Protection Agency. It includes information on the agency or opgandicie tion finolved, positive or negative impacts of the action and the altematiges deder sidered.

LRS, (68)
The Environmental Periodicals Bibliography is the printed version of this file, which indexestover 250 periodicals to provide information about general human ecology, atmospherle studies, energy, land resources, water resources and nutrition and health.

OCEANIC ABSTRACTS, 1964-present, bimonthly updates. LRS (28), SDC

This database, the online version of Oceanic Abstracts, covers worldwide technical literature on oceans, seas, and marine-related subjects, including geology, opties, mining, diving, ships, and laws and regulations.

POLLUTION ABSTRACTS, 1970-present, bimonthly updates. BRS, LRS (41), SDC

Pollution Abstracts is the printed publication corresponding to this file, which contains references to environmentally related literature on pollution, its sources and its control.

ENERGY

APILIT, 1964-present, monthly updates. SDC

This file, produced by the American Petroleum Institute, covers literature relating to the petroleum refining and petrochemical industry, including scientific and technical developments and engineering work.

APIPAT, 1964-present, monthly updates. SDC

Included in this file, which is also produced by the American Petroleum Institute, are patents related to the petroleum refining and petrochemical industry.

CA CONENSATES/CASIA, 1967-present, biweekly updates. BRS, $\operatorname{LRS}(2,3,4)$, SDC

This file corresponds to the printed Chemical Abstracts and provides comprehensive coverage of the literature of chemistry, including energy chemistry liiterature and patents.

COMPEDEX, 1970-present, monthly updates.
LRS (8), SDC
This machine-readable version of the Engineering Index provides information from the world's significant literature in engineering and related subject areas, including transportation, mining engineering, petroleum engineering, nuclear technology, heat and thermodynamics.

ENERGYME, 1971-present, bimonthly updates.
LRS (69), SDC
Energy Information Abstracts is the print version of this filew when
 on seientific, technical, socioeconome, govemintal policy and planning anddedecont affalrs aspects of energy.

INSPEC, 1969 -present, monthly updates.
$\overline{B R S}, \mathrm{LPS}(2,13), \mathrm{SDC}$
The online INSPEC file corresponds to the printed Phystes Abstracts. Electricat and Electrontes Abstracts and Computer and Control Abstracts and peydes coverage of the applied energy literature in physics, electrical and electiongest engineering: Journal articles, government reports, patents, techical reports; books, conference proceedings and theses are included.

ISMEC, 1973 -present, monthly updates.
LRS (14), SDC
ISMEC (Information Service in Mechanical Engineering) covens Iedang international journals and conferences on mechanical engineering subjects, mechanical, nuclear, electrica1, electronic, civil, optical, medical and andested process englnesting, mechanics; production processes, energy and power. Its pont Version is the ISMEC Bulletin.

P/E NEWS, 1975-present, weekly updates. SDC

This database, which has no printed correspondent; covers energy and petroleum business news from five major sources: Middle East Eeonomte suacuy, the Ott Datzy, The Petroleum Economist, Petroleum Inteltigence Weekty and Ptattor gitgram News sempte.

TULSA, 1965 -present, quarterly updates. SDC

This database corresponds to the printed Petroleum Abstracts and privdess coverage of leterature and patents related to exploration, development and produeficit of petroteum and other fossil fuels, including natural gas and coal.

GEOSCIENCES

CA CONDENSATES/CASIA, 1970-present, biweekly updates.
BRS; ZRS $(2,3,4), \operatorname{SDC}$
This file corresponds to the printed Chemical Abstracts and provides access to the technical literature for chemistry and chenicai engineering, geoghemptat and related fields.

GEORCHME, 1969 present, monthly updates. LRS (58)

Geophystcs, geochemistry, geology, paleontology, and nathematical geology are covered thents database which indexes books, conferences, serials, dissertations, maps and tednical reports. It has no printed equivalent, but among the pubilcations printed from the information contained in the database are Geotitles Weekly, Geocom Bultetin, Geoscience Docunentations and the Bibliography of Vertebrate Paleontology.

Geafer, 1961-present, monthiy updates.
SBE.
This geological reference database, produced by the American Geological Institute, provides coverage of the literature in about 30 different geoscience areas, Includang extraterrestrial geology, petrology, marine geology and geophysics. The file eorresponds to several printed publications: Bititography and Index of North Amenvoan Geotogy (1961-70), Bwbliography and Index of Geology Exctusive of Nonth Amentea (1967-68); Geophystcal Abstracts (1966-71); Bibltognaphy of Theses in Geology (1965-66); and Bibltography and Index of Geology (1969-present).

METECROLOGICAL AND GEOASTROPHYSICAL ABSTRACTS, 1972-present, irreguiar updates. LRS (29)

The MGA data file provides current citations in English for the most inportant meteorologicai and geoastrophysical research published in both foreign and donestic literature; Joumals, monographs, proceedings and reviews are covered. Subjects include meteorology, astrophysics, hydrology, glaciology and related areas. Comesponds to the printed title.

CCEANLC ABSTRACTS, 1964-present, bimonthly updates. LRS (28), SDC

This database, as does its print counterpart, covers the literature of ofeanography and marine related subjects, including geology, pollution, meteorology, coastaty resources, minting and laws and regulations.

HEALMH SCIENCES

ALCOHOL USE AND ABUSE, 1968 -present, monthly updates. BRS

This database provides an index to literature covering alcoholism and the effects of alcohol on the body. It deals primarily with the evaluation of treatment, the chemically dependent fenale, family therapy, and the MMP, with minor emphasis on the elderly and the adolescent, No print counterpart.

DRUGUNF, 1968-present, monthly updates: BRS

The Iiterature on drugs, their chemistry and effects on the body is covered in this database, which focuses on the educational, sociological and psychological aspects of alehol and drug use/abuse. Monographs, Journals, conference papers; instructional guides and films are included.

EXGEPTA MEDICA, 1974-present, weekly updates. MSS $(72,73)$

This file covers, as does the printed title, the biomedical liternquges

 extensive and health-related sciences such as pollution control, forensle sciteves amd public health are included.

INTERNATIONAL PHARMACEUTICAL ABSTRACTS (IPA), 1970-present, bimonthly updates. LRS (74)

The IPA file, which corresponds to the printed title, covers infonation: on the pharmaceutical profession and the development and use of drugs. Covenagedyr ranges from elinical, practical and theoretical to the economic and seientificaspedes of the interature.

MEDLARS, 1966 present, monthly updates. BRS.

Corresponds to the printed Index Medicus, Index to Dental titeratudend Internationat Nursing Index and covers all types of medical literature, ineludghery psychiatry and pharmacology.

PHARMACEUTCAL NEWS INDEX (PNI), 1974-present, monthly updates. BRS, LRS (42), SDC

This database covers the following industry newsletters to proviedydeve mation about the pharmaceuticals industry, cosmetics, medical devices andreejatade health fields: FDC Reports (The Pink. Sheet); Drug Research Reports (The, BZuen Medical Devtces, Diagnostics and Instrumentation Reports. (The Gray Sheets, Weekivikw. Pharmacy Reports (The Green Sheet), Quality Control Reports (The Gold Sheet)s inder Newsiletters and Washington Drug and Device Letter.

POPUAAION BIBLIOGRAPHY, 1966-present, bimonthly updates. LRS (104)

Although more coverage is given to socioeconomic aspects, bienedgedubs. aspects of population, abortion, demography, family planning, fertility stuantesy population research are also covered. Journals, monographs, technican reedg goveminent, documents, conference proceedings, dissertations and umpublished fep are included; emphasis is on developing countries and the United States.

DAIABASE	VENDOR	SUBJECT
APIPAT	SDC	Petroleum refining, petrochemical industry.
BHRA FLUID ENGINEERING	LRS (96)	Fluid engineering.
CA CONDENSATES/CASIA	$\begin{aligned} & \text { BRS } \\ & \text { LRS }(2,3,4) \\ & \text { SDC } \end{aligned}$	Chemistry and related areas.
CA PATENT CONCORDANCE	LRS (43)	Chemistry (cross-indexes chemical patent numbers.)
CLATMS/CHEM	LRS (23)	Chemical and chemically related patents issued from 1950-1970.
CLAIMS/CLASS	LRS (25)	Classification code and title dictionary for all classes and selected subclasses of the U.S. Patent Classification System.
CLAAIMS/U.S. PATENTS	LRS (24)	Chemical and chemically related patents issued from 1971-present.
ENVIROLINE	$\begin{aligned} & \text { LRS (40) } \\ & \text { SDC } \end{aligned}$	Environment and related fields.
FOODS ADLIBRA	LRS (79)	Food technology and packaging.
FSTA	$\begin{aligned} & \text { LRS } \\ & \text { SDC } \end{aligned}$	Food science and technology.
TNSPEC	$\begin{aligned} & \text { BRS } \\ & \text { LRS }(12,13) \\ & \text { SDC } \end{aligned}$	Physics, electrotechnology, computers and control
PAPERCHEM	SDC	Paper, pulp and board manufacturing and utilizing.
SAFETY	SDC	Safety topics in all fields.
TITUS	SDC	Textile and allied industries.
TULSA	SDC	Exploration, production and development of oil, coal and natural gas.
WELPASEARGH	LRS (99)	All aspects of the joining of metals and plastics:
WORLD ALUMINM	LRS (33)	Aluninun, from ore processing through end uses.
WORLD TEXTILES	LRS (67)	All aspects of textile selence and technology.
WPI	SDC	All patents issued by the world's major industrial nations.

PHYSTCAL SCIENCES

CA COMDENSATES/CASIA, 1970-present, biweekly updates. BRS, LRS $(2,3,4)$, SDC

This file corresponds to the printed Chemical abstracts and provides access to the technical literature for chemistry, chemical engineering, macromolecular chemistry, and physical and analytical chemistry.

COMPNDEX, 1970 -present, monthly updates. LRS (8), SDC

The computerized engineering index is the machine-readable version the Enghneeming Index which covers the significant engineering literature of the world. Joumals, publications of societies, proceedings and govermment reports.
 flow, heat and thermodynamics, light and optical technology, sound and acoustiederit technology, and engineering physics.

INSPEC, 1969-present, monthly updates. BRS, LRS (12,13), SDC

This database, which covers all areas of pure and applied physics, ghs the machine-readable counterpart of. three abstracting journals: Electrical and Electronics Abstracts and Computer and Control Abstracts.
 included to provide information in such areas as atomic and molecular physiosis ad elementary particle physics.

METEOROLOGICAL AND GEOASTROPHYSICAL ABSTRACTS, 1972-present, irregular Updayespux LRS (29)

The MGA file, which corresponds to the printed title, provides elumentiv citations in English for the most important meteorological and geoastrophysedym research published in both foreign and domestic literature. Subjects coveredgijedigeb astrophysics, physical oceanography and glaciology.

SPIN, 1975-present, monthly updates.
LRS (62)
SPIN (Searchable Physics Information Notices) covers all major a physics, emphasizing American and Russian physics research. Subjects Covenedinchuduex elementary particles, atomic and molecular physics, fluids, plasmas, matery physical cfiemistry, and such related areas as geophysics, astrophysics, bigphyses , and biomedical engineering.

TECHNOLOGY

FOODS ADLIBRA, 1974-present, monthly updates. LRS (79)

This database covers new developments in food technology and packagang, including information on the food Industry, nutrition, research in processing medededs, and packaging, government guidelines and regulations, marketing and statistics, some U.S. and British patents are also included.

FSIA, Mo9,present, monthly updates.
LRS (5)
FSTA (Food Science and Technology Abstracts) covers research and new development literature in areas related to food science and technology, including agriculture, biochemistry, engineering, and home economics. It indexes journals, patents and books, as does the printed version.

FROST AND SULLIVAN DM ${ }^{2}$, 1975-present, quarterly updates. LRS (59)

This database provides information about U.S. Government contract awards, request-for-proposals, planing estimates, $R \& D$ sources sought and advanced planning procurement information for the engineered systems and services market. It covers fields such as aircraft, commications, data processing, missiles and space and basic research.

PAPERCHEM, 1959-present, monthly updates. SDC

Abstract Bulletin of the Institute of Paper Chemistry is the printed counterpart of this file, which covers the scientific and technical literature that deals with the theoretical principles, technologies, raw materials, products and practices of the pulp, paper and board manufacturing and utilizing industries.

PIRA, 1975-present, monthly updates. LRS (4.8)

The PIRA file is the online counterpart of four abstracting journals: Paper and Board Abstracts, Printing Abstracts, Packaging Abstracts and Management and Marketing Abstracts. It is useful for information in the field of paper and board mills and manufacturing, printing, photography, bookbinding, packaging and shipping materials, advertising, retailing and industrial relations.

RAPRA ABSTRACTS, 1972-present, monthly updates. LRS (95).

Rubber and Plastics Research Association Abstracts covers the conmercial, technical and research aspects of the rubber and plastics industries. It includes information on materials (including synthesis and polymerization), processing technology, applications of polymers, toxicity reports, economic and commercial information.

TITUS, 1967-present, monthly updates.

SDC

This database, which has no printed counterpart, covers the textile and allied industries including: processes and machines for fabric production, fibers, yams, textile finishing including bleaching and dyeing, information about judustrial fabries ancluding tire cord and carpets, analysis and testing of textile products and equipment, and textile engineering.

WQRUE TEXTIES, 1970-present, menthly updates. GRS (6\%)

This database is the machine-readable version of World Textile Abstacts and eovers the world literature on the science and techology of textile ondegenated meterads, technical economics, production, and management of the textien godsty; and on the consumption of and international trade in textile materials andmedoucts.

REF	$\begin{aligned} & \text { PROGRAM } \\ & \text { NAME } \end{aligned}$	PROGRAM TITLE(or PURPOSE)	NUMERICAL METHOD(s)	DOCUMENTATION AVAILABLE	$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { MACHINE } \\ \text { USED } \end{gathered}$	$\begin{aligned} & \text { OPER. } \\ & \text { SYS. } \end{aligned}$	AUTHOR OR CONTRIBUTOR ADDRESS and PHONE NO.
001	EMFIN	EM fields about a finite electric wire source. (computes all E, H fields for layered models in freq. and time domains)	Num. integration by convolution or Gaussian quadrature	NTIS Report $\begin{aligned} & P B-238-199 \\ & (1974) \end{aligned}$	Fortran	DEC-10	$\begin{aligned} & \text { TOPS - } \\ & 10 \end{aligned}$	Walter L. Anderson U. S.Geological Survey Mail Stop 964 Box 25046 , Den. Fed.Ctr. Denver, Colorado 80225 (303) 234-3139
002	-	Improved digital filters for evaluating Fourier and Hankel transform integrals.(subr.package)	Num. integration by convolution and lagged-convolution methods	NTIS Report PB-242-800 (1975)	Fortran	DEC-10	$\begin{aligned} & \text { TOPS - } \\ & 10 \end{aligned}$	Walter L. Anderson (address in REF 001)
003		An optimal method for evaluating a class of convolution integrals with related kernels.	Num. Integr. subr. by convolution for integrals with related kernels	NTIS Report PB-251-156 (1976)	Fortran	DEC-10	$\begin{aligned} & \text { TOPS - } \\ & 10 \end{aligned}$	Walter L. Anderson (address in REF 001)
004	MARQHZ	Marquardt inversion of vertical magnetic field measurements from a grounded wire source. (inverts freq and/or dist Hz soundings from ele. dipole or bipole)	Modified Marquardt nonlinear least squares using num. integration by convolution and adaptive quadrature over finite interval	NTIS Report (in press)	Fortian	$\begin{aligned} & \text { CYBER- } \\ & 74-28 \\ & (\text { CDC- } \\ & 6600) \end{aligned}$	$\begin{aligned} & \text { NOS- } \\ & 1.1 \end{aligned}$	Walter L. Anderson (address in REF OOI)
005	SCATPW	EM scattering by multiple conductors in earth due to a plane wave source. (2D rectangular models, constant conductivity contrast w/r half-space)	Integral eq. approx. and num. integration by convolution	NTIS Report PB-261-183 (1976)	Fortran	DEC-10	$\begin{aligned} & \text { TOPS - } \\ & 10 \end{aligned}$	Walter L. Anderson (address in REF 001)
006	SCATLN	EM scattering by multiple conductors in earth due to a line-source. (2D rectangular models. constant conductivity contrast w/r half-space)	Integral eq. approx. and num. integration by convolution	USGS internal documentation	Fortran	DEC-10	$\begin{aligned} & \text { TOPS - } \\ & 10 \end{aligned}$	Walter L. Anderson (address in REF 001)
007	EMTRANI	Transient tangental ele. and vert.mag.fields about vert.mag.dipole for m-layer stratified earth.	Num. Integration by Gaussian quadrature	NTIS Report PB-221-240 (1973)	Fortran	$\begin{aligned} & \text { IBM- } \\ & \text { Sys/ } 360 \\ & \text { model } 65 \end{aligned}$	$\begin{aligned} & \text { OS } 360 \\ & \text { with } \\ & \text { HASP2 } \end{aligned}$	Walter L. Anderson (addrese in REF OOL)

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PROGRAM } \\ & \text { NAME } \end{aligned}$	PROGRAM TITLE(or PURPOSE)	NUMERICAL METHOD(s)	DOGUMENTATION AVAILABLE	$\begin{aligned} & \text { SOURCE } \\ & \text { CODE } \end{aligned}$	$\begin{gathered} \text { MACHINE } \\ \text { USED } \end{gathered}$	$\begin{gathered} \text { OPER. } \\ \text { SYS. } \end{gathered}$	AUTHOR OT CONTRIBUTOR ADDRESS and PHONE NO.
008	EMTRAN 2	(same title as REF 007)	Num. Integration by convolution and spline interpolation	NTIS, Report (see REF 007)	Fortran	$\begin{aligned} & \text { TBM- } \\ & \text { Sys/360 } \\ & \text { model } 65 \end{aligned}$	$\begin{aligned} & 0 S 360 \\ & \text { With } \\ & \text { HASP2 } \end{aligned}$	Walter L. Anderson (address in REF 001)
009		Calc. of Schlumberger sounding curves by convolution.	Num. integration by convolution	NTLS Report PB-232-056 (1974)	Fortran	$\begin{aligned} & \text { IBM- } \\ & \text { Sys } / 360 \\ & \text { model } 65 \end{aligned}$	$\begin{aligned} & \text { OS } 360 \\ & \text { with } \\ & \text { HASP2 } \end{aligned}$	Adel Zohdy U.S. Geological Survey Mail Stop 964 Box 25046 , Den. Fed.Ctr. Denver, Colorado 80225 (303) 234-5465
010		Calc. of bipole-dipole apparent resistivity maps over horiz.strat. media.		NTIS Report PB-232-727 (1974)	Fortran	$\begin{aligned} & \text { IBM- } \\ & \text { Sys/360 } \\ & \text { model } 65 \end{aligned}$	$\begin{aligned} & \text { OS } 360 \\ & \text { With } \\ & \text { HASP2' } \end{aligned}$	Adel Zohdy, W.D.Stanley (address in REF 009)
011		Automatic interpretation of Schlumberger sounding curves over horizontally stratified media.	Modified Dar Zarrouk and num. integration by convolution	NTIS Report PB-232-703 (1973)	Fortran	$\begin{aligned} & \text { LBM- } \\ & \text { Sys/360 } \\ & \text { model } 65 \end{aligned}$	$\begin{aligned} & \text { OS } 360 \\ & \text { W1th } \\ & \text { HASP } 2 \end{aligned}$	Adel Zohdy (address in REF 009)
012		Forward calc. \& automatic inversion of Wenner sounding curves.	Modified Dar Zarrouk and num. integration by convolution	NTIS Report PB-247-265 (1975)	Portran	DEC-10	$\begin{aligned} & \text { TOPS - } \\ & \text { ió } \end{aligned}$	Adel Zohdy,R.J.Bisdorf (address in REF 009)
013^{*}	TOTAL	Finite element modeling of IP-resistivity 2-D earth.	Finite elemento	"none yet"	Fortran	$\begin{aligned} & \text { UNIVAC } \\ & 1108 \end{aligned}$	EXEC8	Luiz Rifo Dept.of Geol. δ Geophygica University of Utah 709 Mineral Science Bldg. Salt Lake City,Utah 84112 (801) 581-5026
014	SCH LUM- BERGER	```Finite element modeling of 2-D Schlumberger soundinge.```	Finite elementa	"none yet"	Fortran	UNIVAC 1108	EXEC8	Luiz Rijo (address in REF OI3)
015	$\begin{aligned} & \text { LINE- } \\ & \text { SOURCE } \end{aligned}$	Finite element modeling of 2-D earth in the presence of a line-source	Finite elementa 1	"none yet"	Fortran	$\begin{aligned} & \text { UN IVAC } \\ & 1108 \end{aligned}$	EXEC8	Luiz Rijo (address in REF Ol3)
016	TEPW	Finite element modeling of $2-$ D magneto-telluric problems.	Finite elements	"none yet"	Fortran	UNIVAC 1108	EXEC8	Luiz Rijo (address in REF 013)
017	RDINV	Inverts dipole-dipole resistivity data.	Linear leaast square inveraion with Marquardt otabilization	"none yet"	Fortran	$\begin{aligned} & \text { UN IVAC } \\ & 1108 \end{aligned}$	EXEC 8	Bill Petrick Dept.of Geol.s Geophysics University of Utah 709 Mineral Science Bldg. Salt Lake City, Utah 84112 (801) 581-8713

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PROGRAM NAME	PROGRAM TITLE(Ot PURPOSE)	NUMERICAL METHOD(s)	DOGUMENTATION AVATLABLE	SOURGE CODE	MACHINE USED	OPER: SYS.	AUTHOR OE CONTRTBUTOR ADDRESS and PHONE NO.
018	RSINV	Invertg Schlumberger reslstluity data.	Least squarea fuvergion with Marquarat stabilization	"none yet"	Eortitan	UNEVAC. 1108	ExEc8	Bill Petrick (address in REF O17)
019	RSEMV	Simultaneously inveres finite source EM and Schlumberger registivity data.	Least squares: inveraion with Marquarde stabilization	"none yet"	Fortran	$\begin{aligned} & \text { UNIVAC } \\ & 1 H 08 \end{aligned}$	EXEC8	Bill Petrick (address in REF.017)
020	RSEMV	Simuitaneously inverts finite source EM and dipole-dipole restictuity data.	```Least equares. Inversion with Marquardt stablliza- ton```	"none yet"	Fortran	$\begin{aligned} & \text { UNTVAC. } \\ & \text { IIO } \end{aligned}$	EXEC8	```Binl Petrick (addresg in REF 017%)```
021	MTINV	Inverts MT data.	Least gquares. with Marquardt method	"none yet"	Fortran	$\begin{aligned} & \text { UNLNAC } \\ & 1108 \end{aligned}$	EXEC 8	Bifilpetrick (address In REF 01.7)
022.	MTRES	Sfotitaneously invertá HT and Schlumberger reatativity data.	Learat equares, with Marquardt method	"none yet"	Fortran	UNIVAC 1108°	EXEC8	$\begin{aligned} & \text { Rill Petrick } \\ & \text { (addreso fin REF O17) } \end{aligned}$
023	ROCK3	Inversion for efther reaistivity or dielectric measurementa.	-	"nore yet"	Fortran	bnivac 1108	EXEC6	William Pelton Dept.of Geol.s Geophysice University of Utah. 709 Mineral Sclence Bldg. Salt Lake City, Utah 84112 (801) 581-5026
024	HtLBTT	Performs: Hilbert trangformation.	\cdots	"none yet"	Fortran	$\begin{aligned} & \text { UNIVAC } \\ & 1.08 \end{aligned}$	EXECB	Rarlph Shuey Dept of Geoled Geophysics University of Utah 709 Mineral Science Bldg. Sait Lake C1ty, Utah 8.4112 (801) 581-7750
025		Analystis of electrical measurementis on rocka:	1	"none yet"	Portran	$\begin{aligned} & \text { UNTYAC } \\ & 1108^{+} \end{aligned}$	EXECS	Raliph Shuey, Wes Wilison (address in REF 024)
026		Fields about a polnt electrode on a latered earth.	- .	"none yet"	Fortran	$\begin{aligned} & \text { UNIVAC } \\ & 1108^{\circ} \end{aligned}$	EXECB	Don Pridmore Deptrof Geol. Ge Geophysice toiversity of Utah 709 Mineral Science Bldg. Salt Lake City, titah 84112 (801) 581-5026,582-0859.

	.	** ELECTR	ICAL-METHODS COMPUTER SUMMARY REPORT by ** $01 / 24 / 77$	$$	* *			Page 4
$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { PROGRAM } \\ & \text { NAME } \end{aligned}$	PROGRAM TITLE (OE PURPOSE)	NUMERICAL METHOD(a)	DOCUNENTAT ION AVAILABLE	$\begin{gathered} \text { SOURCE } \\ \text { CODE } \end{gathered}$	MACHINE USED	$\begin{aligned} & \text { OPER. } \\ & \text { SESS. } \end{aligned}$	AUTHOR Or CONTRIBUTOR ADDRESS and PHONE NO.
027	:	Magnetic fields from a pofrit dipole in or on a 2-1ayered earth.	Num, integration by convolution	"falt"	Fortran	$\begin{aligned} & \text { UNIVAC } \\ & 110 B \end{aligned}$	EXECB	Don Pridmore (address in REF 026)
028		3-D reaistivity algotithim	Finite elements	"fatr"	Fortran	$\begin{aligned} & \text { UNIVAC } \\ & 1108 \end{aligned}$	$\begin{aligned} & \text { EXECS } \\ & \text { Véz } 1 \end{aligned}$	Don Pridmore (addresa in REF 026)
029	BOSTICK LNVERSE	Concinuous magnetotelluric inverse. (convergion of MT appar. restistivity curve tó tesistivity veraus deptof	(See Boetfek; Universfty of Texag)		other	TI $\mathrm{SR}-52$		
030	MTMODEL	Magneto-telluric modeling (MT layered model appar* resistivity b contintiout Inverse)	\cdots		Other	$\begin{aligned} & H P-9810 \\ & \text { plus } \\ & \text { ploter } \end{aligned}$		$\begin{aligned} & \text { GL. Hoeha } \\ & \text { c/o Mobil R \& } \\ & \text { PO Box } 900 \\ & \text { Daliag, Texas } 75221 \\ & (214) 331-6531 \end{aligned}$
031	$W \mathrm{~F}-\mathrm{L} L 2 \mathrm{~B}$	Sommerfeld package For antenna/ground fnteraction. (fielde by Hertztan and finfte-sized antennar in pregence of ground)	Num. Integration and approximate methods	NTES Report ; UCRL-51821 (1975)	Fortran	$\begin{aligned} & C D C-7600 \\ & 6 \mathrm{~g} \\ & \operatorname{cDC}-6600 \end{aligned}$		R.J. Lytle, D.L. Lager Lawrence Livermore Lab. POO Box 808 Livermore, Calif. 94550

FORTRAN IV PROGRAM FOR INTERPOLATING IRREGULARLY SPACED DATA USING THE DIFFERENCE EQUATIONS FOR MINIMUM CURVATURE

C. J. Swain
Department of Geology, The University, Leicester, U.K.
- (Received 28 February 1975; revised 11 July 1975)

Abstract

The interpolation of potential field data is a common problem in geophysics. It is accomplished each time a contour map or profile is drawn. These operations can be difficult and subjective if the data points are irregularly spaced. The method described here produces a "numerical surface", or grid of values, that approaches the smoothest surface passing through the control points. Such a grid can be contoured automatically by standard routines, producing acceptable results. Alternatively, sections can be drawn through the surface on any azimuth-a more satisfactory procedure for constructing profiles than projecting the data points onto straight lines.

Key Words: FORTRAN, Interpolation, Contour maps, Geophysics.

INTRODUCTION

This program is based on a paper by Briggs (1974) using the difference equations derived from the requirement of minimum total curvature for the surface at the grid points. The equations are solved iteratively. The method uses the equations for data points both on and off the grid. They are described adequately by Briggs and therefore are not given here. The iterative method of solution requires that initial values be assigned to the grid points. Whereas in theory any values (e.g. zero) could be used, in practice the starting values should be as close as possible to the assymptotic values (i.e. the solution) in order to minimize the number of iterations required.

development

From the beginning, the method was determined to be highly successful for data that were not too irreguiarly spaced. In quantitative terms, if the ratio of the closest data spacing to the largest gaps is not more than ca. 5 or 10 to 1 then all the required detail could be shown in the solution in less than about 100 iterations, starting with values found by a weighted means method (Crain and Bhattacharyya, 1967). Starting with an overall mean may require many more iterations. Slightly faster convergence of the solution may be obtained by initially fitting weighted paraboloids at each grid point, but this can give extreme values in large gaps and at the edges where all the data are on one side of a grid point. In fact this method alone can be used successfully in interpolating fairly evenly spaced data (Falconer, 1971; La Porte, 1962). However, the problem to be solved was the interpolation of gravity data from Kenya for which the spacing is uneven, the ratio of largest to smallest distance between data points being greater than $100: 1$. Clearly a development of the basic methods was needed as the requirement of a close grid (of the order of the closest data spacing) for showing the detail conflicts with that of a large grid to enable a solution to be obtained in a reasonable number of iterations. The development was remarkably simple both in concept and application: it involves a progressive
reduction of the grid spacing by factors of two, an iterative solution was obtaired for each spacing. The number of points changes by a factor of four at each stage so only the final stage with the full number of grid points is significant as regards computer time.
The weighted means formula used here is the same as that used by Falconer (1971, p. 5). For a grid point at (A, B) only those data points within S of (A, B) are considered. A quadratic weighting function is used:

$$
\text { WEIGHT }(I)=\left[\frac{S-D(I)}{D(I)}\right]^{2} \text { for } S>D(I)
$$

where D is the distance of a data point from (A, B).
The value assigned to the grid point is:

where $(X(I), Y(I))$ are the coordinates of the I th data point and H is its value. The summations are over all points (I) for which $S>D(I)$.
Initially every L th element of the $N \times M$ array $U(I, J)$ is given a value using weighted means ($L=1,2,4,8 \ldots$). Thus, $M-1$ and $N-1$ musi be multiples of L. An itcrative solution of the difference equations for this grid spacing is determined', then L is reduced to $L / 2$ and the value $U(I, J)$ is assigned to the points $(I+L, J)(I, J+L)$ and $(I+L, J+L)$. A new iterative solution for these grid points is determined with the values at (I, J) fixed by setting the appropriate elements of the reference array to -1 . As one in four grid puints is fixed, convergence proceeds rapidly at this stage. A new iterative solution based only on the control points is determined. This method guarantees that at every stage reasonable values will be assigned to each grid point and that therefore convergence will occur as rapidly as possible in the solution of the difierence equations. The proeedure is repeated until $L=1$. Convergence is tested by retaining the largest change in $U(I, J)$ that uccurs in one iteration. It
is halted when this goes below a certain value (1). In trial data sets from a gravity survey of Kenya, with a grid spacing of $0.02^{\circ}(2.2 \mathrm{~km})$ and a starting L of 4 or 8 convergence to a Δ of 0.05 mgal could be obtained usually within 100 iterations (Fig. 1).

PROCRMM DFSCRIPTION

The program consists of a short main routine and 5 subroutines (Appendix). The main program first reads the data, calculates N. M and various control parameters, then calls SORT followed by the main subroutine MINC. SORT rearranges the station order to give faster access to the data by HEIGHT, which is the function used to give starting values to the points on the preliminary grid. SORT and HEIGHT are hoth direct conversions of ALGOL procedutes given by Falconer (1971), the tatter modified to enable weighted mean interpolation to be accomplished. Together they constitute a rapid means of obtaining initial interpolated values.
The next section of MINC determines the nearest grid point (subscripts I, J) to each data point (subscript K). The value K is assigned to $I U(I, J)$. If there is more than one data point within a grid square centered on a particular grid point, the closest is selected; if none, $I U(I, J)=0$. In earlier versions of the program, the
weights $B 1-B 5$ (used in the "offgrid-point" equations) were calculated and stored in five-arrays, but due to lack of core storage this was modified and the weights are recalculated at eath iteration. This is at the expense of time but not seriously as only perhaps one in ten grid points is close to a data point. The other information (besides K) used in the difference equations is stored in $I U$, namely an integer $1-4(\times 10,000)$ determining how the weights $B 1-B S$ are to be calculated. If $X I$ and ETA (the X and Y distances that a data point lics off the grid) are less than SMALL (an arbitrary iraction of the grid spacing. e.g. $1 / 10$) the data point is taken to coincide with the grid point, which has the value of the data point assigned to it and this is not recalculated at each iteration. This applics also if the data point lies in the outer two rows or columns as these data points cannot be used with the offgrid-point equations. In these situations $I U(I, J)=$ $-K$: again the closest data point is selected.
In subroutine ITERAT a new value $U(I, J)$ is calculated for each grid point in turn, starting with (1,1), from the surrounding values. There are seven different equations, depending on where the grid point lies and whether it is close to a data point (see Briggs, 1974). The values are calculated row by row. After the first two iterations, DUIJ, the largest change in U in one complete pass, is printed

Figure 1. Gravity data from Rift Valley (Kenya) comoared on 10 mgal interval. Grid spacing $2.2 \mathrm{~km}\left\{0.02^{\circ} \mathrm{j}\right.$. Result afler 40 iterations $\{\Delta=0.05$ maials.
after every iteration, together with the slope B of the graph of $\log _{m}\left(\right.$ DUIJ) against $\log _{n}(I T E R)$ for the previous two iterations, and also the required number of iterations required for DUIJ to become less than DELTA, predicted from the slope B. It seems that the largest change (DUIJ) tends to occur in one particular area (or anomaly) within the array for a number of iterations during which B usually decreases implying that the values are converging to a solution. B may increase sharply after a certain number of iterations, if DUIJ moves to another area, but then should start to decrease again. This sequence may be repeated several times before DUIJ becomes less than DELTA. Values for DELTA have been selected empirically; it is not critical except in regard to computer time.
At the end of iteration, control is returned to MINC, L is replaced by $L / 2$, the values at $(I+L, J),(I, J+L)$ and ($I+L, J+L$) are assigned before returning to the point at which the data points are selected so that the whole process is repeated. If $L=1$ at the end of iteration, the array U is printed by PRINTX in integer form (to save space) and written to the local file TAPE 3, so that (if the file is saved) it can be contoured later.

RESULTS

The map shown in Figure 1 took 40 iterations (at $L=1$) for a DELTA of 0.05 mg gl. With DELTA reduced to 0.02 mgal ., 115 iterations were required. The only significant differences between the contour maps produced by these two runs occur at edges and in areas of poor control, namely the northwest and southeast corners.

Language

The program is written in ANSI FORTRAN IV with the following nonstandard features:
(1) The PROGRAM statement (in main program).
(2) Mixed arithmetic is used extensively.
(3) In Format statements ", " is omitted after " ρ ".
(4) Nonstandard subscripts (e.g. $U(I-L I, 1)$) are used on lines $40,61,88,116,143$ and 164 of subroutine ITERAT.

These features are supported by most FORTRAN compilers.

Time

The array U which is contoured in Figure 1 has dimensions 101×101. 1029 control points were used and the time taken by the interpolation program was 25.7 min on an ICL 4130. This is a rather old machine, said to be about one hundredth the speed of modern computers.

conclusions

This is the most satisfactory method that the author has investigated in interpolating the type of data commonly produced by reconnaissance surveys-namely detailed, widely spaced traverses. Results are considered superior to those of standard packages such as:Calcomp's GPCP because the surface produced has the minimum curvature property.

Achinowledgment-This work has been supported by the Natural Environment Research Council grant No. GR3/1486. I should like to thank I. C. Briggs for helpful correspondence.

Contouring

Figure I was produced by a simple' standard contouring routine (part of the GHOST package (Prior, 1973) which draws straight-line segments and employs linear interpolation. In this example a closely spaced grid was required to show all the detail and the results are acceptable. A more. sophisticated approach would be to use a contour following routine (e.g. proccdure "followcontour" of Falconer, 1971) using the offgrid-point equations to calculate the value at any point. It is intended to try this approach in the future. The method should overcome the problem, mentioned by Briggs, of contour lines not precisely honoring control points.

REFERENCES

Briggs, I. C., 1974, Machine contouring using minimum curvature: Geophysics, v. 39, no. 1, p. 39-48.
Crain, I. K., and Bhattacharyya, B. K.. 1967. Treatment of non-cquispaced two-dimensional data with digital computer: Gcoexploration, v. 5, no. 4, p. 173-194.
Falconer, K. J., 197.1, A general purpose algorithm for contouring over scattered data puints: National Physical Lab., Div. Numerical Analysis and Computing Rept NAC6 (September 1971), 44 p.

La Porte, M., 1962, Elaboration rapide de cartes gravimetriques deduites de l'Anomalic de Bouguer à l'aide d'une calculatrice electronique: Geophysical Prospecting, v. 10, nu. 3, p. 238-259.
Prior, W. A. J., 1973, The GHOST graphical output system users manual: UKAEA Research Group (Culham). CLM-PDN 8/71, 104 p.
apidendix


```
        PROGPAM MINCURV(INPUT, OUTPUT, TAPET=INPUT, TAPEZ=OUTPUT)
C C------INTERPOLATION OY THE METHOO OF BRIGGS (GEOPHYSICS,APRIL,1974).
    C-------PROGRAMMED BY C J SHAIN ,LEICESTEQ UNIVERSITY.
    DIMENSION U(49,89), IU(49.89), MAP(49)
    OIMENSION X(962),Y19621,H(962),DATAA(3,962)
    DIMENSION. MARK(9;9)
    COMMON/BLKI/XMIN,YMIN,PN,PM
    COMMON /OLKR/XMAX,YMAX,NLX,NLY,LX,LY,IMAX,SOS,S,SS,EPS
    COMMON /BLKJ/L
    EOUIVALENCE (U(1,1),DATA(1,11)
    INTEGER SOLS
    REAL LX,LY'
    REAL LX,L
C-O-----S=SEARCH RAOIUS
```

```
    C-------DELTA=LIMIT FOR DUIJ AT HHICH ITERATION STOPS
    C-------L*XINC,L"YINC = STARTING GRID SIZE
    C=-=---MARK HASS OIMENSIONS NLXXNLY SO THAT N-1,H-1. ARE MULTIPLES OF L
    C-----NU,MUU = DIMENSIONS OF U.IU
    C-----NC=OIMENSION OF X,Y,H,OATA
        REAO(7,10:1)S,L,OELTA
        HRITE(2,2CG1)S.L,OELTA
        PEAD (7,1: (14)XMIN,XMAX,YMIN,YMAX,XINC,YINC
        REAO(7,1OC2)NC,NU,MU
        LI=L
    EPS=(XMAX-XMIN)*J.OOZCO1
        SOS=4
        NLX=INT((XMAX-XHIN)*SOS/(2.*S)*.0001)
        NLY=INT((YMAX-YMIN)*SOS/(2:*S) +.0001)
        IF(NLX.EQ.E)NLX=1
        IF(NLY.EQ.\hat{P}}\mathbf{NL}Y
        LX=(XMAX-XMIN)/NLX
        SS=S*S
        N=INT((XMAX-XMIN)/XINC+.CO1) +1
        N=((N-1)/L)*L+1
        XMAX=XMIN+(N-1)*XINC
        M=INT((YMAX-YMIN)/YINC+.OD1)+1
        M=((M-1)/L)*L+1
        MMAX=YMIN+(M-1) =YINC
        HRITEE(Z,2C(C4)XHIN,XINC,XHAX,N,YHIN,YINC,YMAX,M
    C
        READ(5)IMAX
        94 READ(5)iDATA(I;J),I=1,3)
        95 FORMAT(IX/19HNO. OF DATA POINTS=,I4/)
    C
            CALL SORT(MARK,NLX,NLY,X,Y,H,DATA,NG)
            CALL MINC (U,IU,NU,MU,N,M,X,Y,H,NC,MARK,NLX,NLY, HAP,XINC,YINC,
            1
            IFIIERROR
    CALLPRINTX(U,NU,MU,N,M,O,MAP)
    WRITE(3)N,M
    HRITE
    STOP
f10(1 FORMAT(F5,G,I5,F5.G)
    1GO2 FOPMAT(5I5)
    10C4 FORMAT(9F5.2)
```



```
    20044FORMATTSX,10HLONGITUOE=,F5.2,3H BY, F5.2,3H TO, F6.2.BH.DEGREES
    2 1H(,I3,7HPOINTS)/
```



```
            SUQROUTINE PRINTX(A,NU,MU,N,M,NSPACE,MAP)
C
`C--------PRINTS ARRAY A IN INTEGER FORM
C------NSPACE=0 FOR CLOSE SPACING
C-------NSPACE=1 FOR SQUARE GRIO WITH MALF INCH SPACING FOR HANO CONTOUR
C
            OIMENSION A(NU,MU);MAP(NU)
            COMMON /BLKJ/L
            IN=25*L
            IF(NSPACE)3,3,4
        3 IN=30*L
        400100IB=1,N,IN
            IE=IR+IN-1
            IF(IE-N)2,2,1
        1 IE=N
        2 IF (NSPACEI5,5,6
        5 HRITE(2,2000)(I,I=IB,IE,L)
        GOrO7
        6 WRITE{2,2010)(I,I=IB,IE,L)
        7 D0101LL=1,H,L
            J=M-LL+1
            00102I=TB,IE,L
    102 MAP(I)=INT(A(I,J)+.5)
            IF(NSPACEIB,8.9
            B HRITE(2,2001)J,(MAP(I),I=IO,IE,L)
            GOT0101
            9 WRITE{2,2011)J,(MAP{[),I=IB,IE,L)
    101 CONT INUE
    100 CONTINUE
        RETURN
2000 FORMAT(1X/////5x,30I4/)
2001 FORHAT(1X,I3,1X,30I4).
2010 FORMAT(1M1,4X,2515%)
2011 FORMAT(1H//I3,2X,25I5)
            ENO
            SUBROUTINE SORTIMARK,NA,NB,X,Y,H,DATA,NC)
C------SOPTS OATA INTO RECTANGLES ANO STORES IN X,Y,H, TO ALLOW FASTER
C ACCESS TO DATA BY FUNCTION HEIGHT. THE FIRST POINT IN RECTANGLE
C (I,J) HAS SUBSCRIPT MARK(I.J).
```



```
    DIMENSION MARK(NA,NB),X(NC),Y(NC),H(NC),DATA(3,NC)
    COMMON /BLK1/XMIN,YMIN,PN,PM
    COMMON /BLKZ/XMAX,YMAX,NLX,NLY,LX,LY,N,SQS,S,SS,EPS
    PEAL LX,LY
    INTEGER SQS
    INTEGER R
    R=1
    M=1
    006I=1,NLX
    002K=1,N
    IF(INT((OATA(1,K)-XMIN)/LX).EO.I-1) FOTO1
    IF(I.EQ.1.AND.DATA (1,K).LE.XMINIGOTOI
    IF(I.EQ.NLX.AND.DATA(I,K).GE.XMAXIGOTOI
    GOroz
    1 X(M)=OATA(1,K)
    Y(M)=OATA (2,K)
    M(M)=OATA(3,K)
    M=M+1
    2 CONTINUE
    005J=1,NLY
    MARK(I,J)=R
    M1=M-1
    DO4L=R,M1
    IF(INT((Y(L)-YMIN)/LY).EQ.J-1)GOTO3
    IF(J.EO.1.AND.Y(L).LE.YMIN)GOTOS
    IF(J.EQ.NLY.AND.Y(L).GE.YMAX)GOTOZ
    GOTO4
    3 TEMP=X(L)
    X(L) =X(R)
    X(R)= TEMP
    TEMP=Y(L)
    Y(L)=Y(R)
    Y(R) =TEMP
    TEMP=H(L)
    H(L) =H(R)
    H(R)= TEMP
    Q=R+1
    4 \text { CONTINUE}
    5 \text { CONTI:IUE}
    6 CONTINUE
        RETURN
        END
        FUNCTION HEIGHT(A,B,MARK,NA,NB,X,Y,H,NC, IERROR)
C
C-------GOMPUTES VALUE AT A,B AS HEIGHTEO MEAN OF DATA INSIDE qADIUS S
C
    DIMENSION MARK(NA,NQ),X(NC),Y(NC),H(NC)
    COMMON /BLKI/XMIN,YMIN,PN,PM
    COMMON /BLXZ/XMAX, YMAX,NLX,NLY,LX,LY,N,SQS,S,SS,EPS
    REAL LX,LY
    INTEGER SQS
    SH=U.
    SW=0.
    NPTS =0
    IR=INT((A-S-XMIN)/LX)+1
    JR=INT((B-S-YMIN)/LY)+1
    IS =IR+SQS
    JS=JR+S\capS
    IF(IR.LT.1)IP=1
    IFIIR.GT.NLXIIR=NLX
    IF(JR.LT.1)JR=1
    IF(JR.GT.NLY) JR=NLY
    IF(IS.LT.1)IS=1
    IF(IS.GT.NLX)IS=NLX
        IF(JS.LT.1)JS=1
    IF(JS.GT.NLY)JS=NLY
    004I=IR.IS
    LAST=MARK(I,JS+1)-1
    IF(JS.GE.ALY)LAST=MAPK([ +1,1)-1
    IFIJS.GE.NLY.ANO.I.GE.NLXILAST=N
    KM=MARK(I,JR)
    003K=KM,LAST
    U=X(k)-A
    V=Y(k)-B
    OO=U*U+V*V
    IFIDO.GE.SSIGOTOZ
    IF(DD.GE.EPS)GOTOL
    HEIGHT =H(K)
    PETUON
```

```
    2 D=SQRT (OO)
            WEIGHT=(S-0)*(S-0)/DO
            SH=S4+HEIGHT*H(K)
            SW=SW+WEIGHT
            NPTS=NPTS+1
        3 CONTINUE
        4 CONTINUE
        IF(NDTS)5,5,12
        12 HEIGHT=SH/SW
        RETUQN
        5 HRITE(2,5)
        6 FORMAT(IX,23HSEARCH RADIUS TOO SMALL)
        HEIGHT=0.
        IERROR=1
        RETURN
        END
        SUBROUTINE MINC\U,IU,NU,MU,N,M,X,Y,H,NC,MARK,NA,NB,MAP,XINC,YINC.
        1 OELTA,IERRORI
        DIMENSION U{NU,MU},IU(NU,MU),MAP(NU)
        DIMENSION X(NC),Y(NC),H{NC)
        DIMENSION MARK(MA,NB)
        COMMON /BLK1/XMIN,YMIN,PN,PM
        COMMON /BLKZ/XMAX,YMAX,NLX,NLY,LX,LY,IMAX,SQS,S,SS,EPS
        COMMON /BLKJ/L
    REAL LX,LY
    INTEGER SOS
    SMALL=0.05
    C SET IHITIAL U VALUES HITH GRIO SIZE XINC*L BY YINC*L
    C B=YMIH
    OOR1J=1,M,L
    A=XM[N
    0080I=1,N,L
    U(I,J)=HEIGHT(A,B,MARK,NA,NB,X,Y,H,NC,IERROR)
    IFIIERROR.EQ.1)GOTO65
    80 A=A+XINC*L
    81 B=B+YINCFL
    CALL PRINTX(U,NU,MU,N,M,O,MAP)
C
C-------MOOE=O WHILE FITTING SURFACE TO DATA POINTS
C-------MODE=1 WHILE FITT-ING SURFACE TO ALTERNATE:GRID POINTS AFTER
C
    64 MODE=0
        D0106J=1,M,L
        D0106I=1,N,L
    106 IU(I,N)=0
        PN=1./(XINC*FLOAT(L))
        PM=1./(YINCFFLOAT(L))
    C
    SELECT NEAREST GRID SQUARE,CENTRED ON (I,J),CONTAINING EACH OATA PT
    0077K=1, IMAX
    XI=PN*(X(K)-XMIN)+1.
    ETA= PM* (Y(K)-YMIN) +1.
    I=INT(XI+.5)
    J=INT(ETA&.5)
    XI=XI-I
    ETA=ETA-J
    I=L=(I-1)*1
    J=L*(J-1)+1
    IF(I-LT.1.OR.I.GT.N.OR.J.LT.1.OR.J.GT.M)G0T077
    IF(I.LE.L+1.OR.I.GE.N-L)GOTOT5
    IF(J.LE.L+1.OR.J.GE.N-L)GOTO75
    IF(ABS(XI).LT.SMALL.ANO.ABS(ETA).LT.SMALL)GOTO76
    IF(IU(I,J))77,102,101
    IF mORE THAN ONE DATA POINT WITHIN GRIO SQUARE THEN SELECT CLOSEST
101KK=IU(I,J)
    KUK=KK/10000
    KK=KK-KUK*10000
    OIST2=(PN*(X(KK)-XMIN) +1.-I)**2*(PN*(Y(KK)-YMIN) +1.-J)**2
    OISTI=XI*XI*ETA*ETA
    LF(DIST1-OIST2)102,77.77
-102 CONTINUE
```

STATION NUMBER INTO REFERENCE ARRAY PACKED WITH INTEGER 1 TO 4 - SPECIFYING .WHICH QUADRANT POINT IS IN
$\operatorname{IU}(I, J)=K$
IF(XI.GT.O..ANO.ETA.GT.O.IIU(I,J)=10000+IU(I,J)
IFIXI.LT.O..ANO.ETA.GT.G.IIU(I,J)=2000G+IU(I,J)
IF(XI.LT.0..AND.ETA.LT.0.IIU(I,J)=30000+IU(I,J)
IF(XI.GT.O..AND.ETA.LT.O.)IU(I,J) $=40000+I U(I, J)$ GOTOT7
75 KK=-IU(I,J)
[F(KK)77,76.74
$74 \operatorname{DISTR}=\left(\mathrm{PN}^{*}(X(K K)-X M I N)+1:-I\right) * * 2+\left(P M^{*}(Y(X K)-Y M I N)+1,-J\right) * * 2$ OISTI=XI*XI+ETA*ETA
IF(DIST1-OIST2)76,77,77
76 IU(I,J) $=-K$
U(I,J) $=H(K)$
77 CONTINUE
78 CALL ITERAT (U,IU,NU, MU,N, K, DELTA, X,Y,H,NC)
IF(MODE.EO.1)GOT064
IF(L.EQ.1)GOTO65
$\mathrm{N} 1=\mathrm{N}-\mathrm{L}$
$M 1=M-L$
L1 $=\mathrm{L}$
halve grid spacing and assign new u values
$L=L / 2$
D0111J=1,M1,L1 |
$\mathrm{JL}=\mathrm{J}+\mathrm{L}$
OO110I=1.N1.L1
$I L=I+L$
UIJ=U(I,J)
U\{IL,J\} = UIJ
$U(I, J L)=U I J$
U(IL, JL) =UIJ
$\operatorname{IU}(I, J)=-1$
IU(IL, J) $=0$
IU(I,JL)=0
IU(IL, J): = 0°
110 CONTINUE
$U(N, J L)_{i}=U(N, J)$
$\operatorname{IU}(N, J):=-1$
IU(N, JLi) $=0$
OO112I=1,N1, L1
$I L=I+L$
$U(I L, M)=U(I, M)$
$I U(I, H)=-1$
$\operatorname{IU}(I L, M)=0$
$112 \cdot$ CONTINUE
$\operatorname{IU}(N, H)=-1$
MODE $=1$
Goro78
65 RETURN
ENO
SUBROUTINE ITERAT(U,IU,NU,MU,N,M,DELTA, $X, Y, H, N B)$
C---APPLIES FINITE DIFFERENCE EQUATIONS FOR MINIMUM CURVATURE TO ARRAY U
6 CONTROLLED GY STATIONS VALUES $X(K)$, $Y(K)$.H(K). STATION NUMBERS K
ARE CONTAINED IN REFERENCE ARRAY IU TOGETHER WITH AN INTEGER 1 TO
4 HHICH DETERMINES HON THE OFF-GRIO POINT EQUATIONS ARE APPLIED
OIMENSION U(NU, MU), IU(NU,MU), X(NB),Y(NB), H(NB)
COMHON /8LKI/XHIN, YMIN,PN, PM
COMHON /BLK3/L
L1=2*L
L1=2*L
L2=L+1
L2=L+1
L3=2*L+1
L3=2*L+1
L4=3*L+1
L4=3*L+1
N1=N-L
N1=N-L
N2=N-2*L
N2=N-2*L
N3=N-3*L
N3=N-3*L
M1 = M-L
M1 = M-L
M2=M-2*L
M2=M-2*L
M3=M-3*L
M3=M-3*L
ITER=0
ITER=0

```
        GOTO99
    98 WRITE(2.2005)
        OUIJ2=OUIJ
    99 CONTINUE
    DUIJ=G.
                FIRST ROW J=1
            IF(IU(1,1))2,1,2
    1U(1,1)=(-.5*(U(1,L3)+U(L3,1))+U(1,L2)+U(L2,1))
    2 IF(IU(L2,1))4,3,4.
    3 U(L2,1)=(-U(L2,L3)-U(L3,L2)-U(1,L2)-U(L4,1)+2.*U(1,1)+4.*(U(L3,1)+
    1 U(L2,L2)1!/6.
    4 DO6I=L3,N2,L
        I1=I+L
        I2=I-L
        IF'IU(I,1))6,5,6
    5U(I,1)=(-U(I-L1,1)-U(I+L1,1)-U(I,L3)-U(I1,L2)-U(I2,L2)+4.*(U(I2,1)
    1+U(I,(2)+U(I1,1)))/7.
    6 CONTINUE
        IF(IU(N1,1))3,7,8
        7U(N1,1)={-U(N1,L3)-U(N2,L2)-U(N,L2)-U(N3,1)+2.*U(N,1)+4.*(U(N2,1)+
    1 U(N1,L2):]/6.
    8 IF(IU(N,1))10,9,10
    9U(N,1)=(-.5*(U(N,L3)+U(N2,1))+U(N,L2)+U(N1,1))
C
            SECONO ROA 
10 IF(IU(1,L2)112,11,12
11U(1,L2)=(-U(L3,L2)-U(L2,L3)-U(L2,1)-U(1,L4)+2.*U(1,1)+4.*(U(1,L3)+
    1 U(L2.L2)l//6.
12 IF(IU(L2,L2)114,13,14
13U(L2,L2)={-U(L2,L4)-U(L4,L2)-U(1,L3)-U(L3,1)-2.*U(L3,L3)+8.*(U(L2,
    1 L3)+U(L3,(2))+4.*(U(L2,1)+U(1,L2)))/18.
140016I=L3,N2.L
    II=I+L
    I2=I-L
    IF(IU(I, (2))16,15,16
    15 U(I,L2)=(-U(I-L1,L2)-U(I+L1,L2)-U(I,L4)-2.*(U(I2,L3)+U(I1,L3):-
    1 U(I2,1)-U(I&,1)*8.*(U(I2,L2)+U(I,L3)+U(I1,L2I)+4.*U(I,1))/19.
16 CONT IMUE
    IF(IU(N1,L2))18,17,18
    17U(N1,L2)={-U(N1,L4)-U(N3,L2)-U(N,L3)-U(N2,1)-2.*U(N2,L3)+8.0(U(N1,
    1 L3)&U(N2,L2))*4.*(U(N1,1)+U(N,L2)))/18.
    18 IF{IU(N,L2)/20,19,20
    19U(N,L2)=(-U(N2,L2)-U(N1,L3)-U(N1,1)-U(N,L4)+2.*U(N,1)+4.*(U(N,L3) +
    1 U(N1,L2I)!/6.
C
C
20 0038J=L3.H2.L
    J1=J&L
    J2=J-L
    JJ=J = L1
    J4=J-L1
    IF(IU(1,J))22,21,22
    21U(1,J)=(-U(1,J4)-U(1,J3)-U(LJ,J)-U(L2,J2)-U(L2,J1)+4.*(U(1,J2)*
    1U(L2,J)+U(1,2J1)))/7.
    22 IF(IU(L2,J))24,23,24
    23 U(L2,J)={-U(L2,J4)-U(L2,J3;-U(L4,J)-2.* (U(L3,J2)*U(L3,J1))
    1-U(1,J2)-U(1,J1)+8.*{U(L2,J2)+U{L3,J)+U(L2,J&)}+4.*U(1,J))/19.
24 0034I=L3,N2,L
    II=I+L
    12=I-L
    IF(IU{I,0))34,25,26
25UKJ=.05*(-U(I*L1.J)-U(I,J3)-U(I-&1,J)-U{I.J4)-2.*(U(II%J゙)*
    1.U([2,J1)+U(II,J2)+U([2,J2))+8.*(U(II,J)+U{I2,J)+U(I,J1)+U(I,J2)!)
        roT03.3
C
26K=IU(I,J)
    KUK=K/10000
        K=K-KUK*10000
        XI=PN*(X(K)-KM[N)+1.
    cr TA=PM*(Y(K)-YM[H)+1.
    XI=ABS(XI-AINT(XI+.5):
```

```
    ETA=ABS(ETA-ATNTEETA+.51)
    XY:=2./(XI+ETA+1.)
    B5={2./(XI+ETA) ) *YY 
    BE=1--XI*(1.+XI)+85*.5
    B4=1.-ETA*(1. +ETA) *B5**5
    B2=(1.+XI-ETA)*XY{
    AB= (1.+ETA-XY I+XYS
    IF(KUK-2)2s,29.27
27 IFikuk-4130.31;999
2s 0SUH=B1*U(I1;J2) + &2*UtI, J2)*B3*U(I2,J) +84*U(I2.J1,
    g07032
```



```
        GOTO32
30 BSUM=日1*U(L2,JI1 +B2*U(1,J1)+83*U(I1,J)+B4*U(I1,J2)
    G0T032
31. ASUH=81*U(II,N1)+B2*U(I,J11+B3*U(T2,J)+B4*U(I2,.J21
32 UIJ=(-U(I+LI,JI-U(I,J3)-U(I-L1,J)-U(I,J4)-2.*iU(II,J1)+U(I2,J1)+
    1 U(I1,J2)+U(I2,J21)+4_*(U(I{,J)+U(I2,J)+U(I;J1)+U(I;J2!)+
    2 4.*(BSUM+85*H(K)\)/(4.*(1.+81+82+83+84*85)
3300UJt=ABS(UTJ-U(I,J)!
        IFgOUTJ1.GT.DUIJ)DUIJ=DUIJ1
        U!I*J|=UM.J
34 CONTINUE
    IF(IU(N1,J))36,35,36
35U(N1;J)={-U(N1;J4)-U(N1,J3)-U(N3,J)-2.*(U(N2,J2)*U(N2,J1))
    1-U(N,J2I-U(N,J1)+B.* (U(N1,J2) +U(N2,N) +U(N1*J11)+4.+U(N,J1)/19:
36 IFITU(N,JI)38,37;38
37U(N,J)=(-U(N,J4)-U(N,J3)-U(N2,J)-U(N1;J2)-U(N1,J1) +4:*(USN,J2)+
    & U(N1,J)+U(N,J1)!%/7.
38 continue
```

 \((\mathrm{H}-1) \mathrm{TH}\) ROW \(\quad \mathrm{J}=\mathrm{H}-\mathrm{I}\)
 IFIU(1, M1) \(140,39,40\)

4 U(LZ,M1) $1 / 6$.
40 IF(IU(L2, M1)/42,41,42
$41 U(L 2, M 1)=(-U(L 2, N 3)-U(L 4, M 1)-U(1, M 2)-U(L 3, M)-2, * U(L 3, M 2)+$.

$420044 \mathrm{I}=\mathrm{L} 3, \mathrm{~N} 2, \mathrm{C}$
$\mathrm{I} 1=\mathrm{I}+\mathrm{L}$
$12=1-L$
IFIIU(I, M1 I) $44,43,44$
$43 \cup\left(I, M_{1}\right)=\left(-U(I-L 1, M 1)-U(I+L 1, M 1)-U\left(T, H_{3}\right)-2 . *(U(I 2, H 2)+U(I 1, M 21)-\right.$,

44 continue
IF(IUMN1, KI) $46,45,45$
$45 \mathrm{U}(\mathrm{N} 1, \mathrm{M1})=(-\mathrm{U}(\mathrm{N} 1, \mathrm{M} 31-\mathrm{U}(\mathrm{N} 3, \mathrm{M} 1)-\mathrm{U}(\mathrm{N}, \mathrm{M} 2)-\mathrm{U}(\mathrm{N} 2, \mathrm{M})-2 .+\mathrm{U}(\mathrm{N} 2, \mathrm{H} 2)+$.

46 IFIU(N, M1) $1 / 48,47,48$
$47 U(N, M 1)=\{-U(N 2, M 1)-U(N 1, H 21-U(N 1, M 4-U(N, M 3)+2, * U(N, H)+4+*(U T N, H 2\} *$
1 U(N1,M1)!/E.
- MTH ROW $\quad J=M$

50 IF(IUIL2,M) $52,51,52$
$51 U(L 2, M)=(-U(L 2, M Z)-U(L 3, H 1)-U(1, M 1)-U(L 4, H)+2, * U(1, M)+4, *(U(L 3, M) *$
1 U(LZ.M1H)/G.
$520054 \mathrm{r}=\mathrm{L} 3, \mathrm{N2}, \mathrm{~L}$
I $1=\mathrm{I}+\mathrm{L}$
$12=\mathrm{I}-\mathrm{L}$
iFITUSI.M1154.53:54
$53 U(I, M)=(-U(I)-L 1, M)-U(I+L I, M)-U(I, H 2)-U(I 2, M I)-U(I 1, M 1)+$
$14, *(U(I 2, M)+U(I, H 1) * U(I 1, B) 1 / 7$.
54 continue
IFIIU(N1.,M1I56,55,56

1 UM1, M1:1)/E.
56 IFIU(N+M)I5a,57,58
$57 U(N, H)=(U(N, H 1)+U(N 1, H)-.5 *(U(N, H 2)+U(N 2, H 13)$
53 ITER=TTER+1
ONE COMPLETE ITERATION
TER $=$ TER+1. 0
IF(ITER.EQ.1)GOt098

SLOPE=ALOGIOUIJZ/DUIJJ/ALOG(TTER-1.1/TER:
$\theta=A L O G(D U I J)-S L O P E=A L O G(T E R)$
$T E S T=(A L O G(D E L T A)-B H / S L Q P E$
IFITEST.CT. 15.5 IGOTOSG
HRITEIZ,2002ITTER, OUIJ,SLIPE
GOTO60
59 ITEST=INT(EXP(TEST))
HRITE42,200£ITTER, OUIJ,SLOPE,ITEST
60 DUTJZ $=00 \mathrm{IJ}$
IFIDUTJ.LT. DELTA, OR. ITER.GE.SGOPRETURN
Gotoge
999 HRITET2,20121
RETURN
2001 FORHAT(3X,T4,4X, 2 (F10. $4,4 x, 4 x,[8)$
2002 FORHATi3X, $54 ; 4 \times, 2$ (F10.4; $4 \times 1,5 \times, 7 H T O O$ 日IGI
2005 FORMATI3X, 6 HNO. OF, $5 \mathrm{X}, 7 \mathrm{HLARGEST}, 4 \mathrm{X}, 14$ HRATE OF CHANGE. $4 \mathrm{X}, 13$ HPROJEGT 1ED NO. 110 HITERATIONS, 4 X , 6 HCHANGE, $6 \mathrm{X}, 9$ (ILOG-LOGI, 7 X , IJHOF ITERATION
2012 FORHAT, 1 K/SHERROR,11H KUK G.T. 4/3 ENO

Appare half-sp: erable । Van N problen by Lips Alexan structe ary col half-spa howeve the res conduct method (1972) c the num large al conjunc number. reduces of the s FORTR ity for electrod
The ri ($\rho,=0$) is grecte perfect error (M target ga than in rock.

Consi radius a ceater o surface sending
($x_{10}, y_{0} 0$ in $z>0$: curten '

A FORTRAN PROGRAM FOR PLOTTING MINERAL STABILITIES IN THE Fe-Cu-S-O SYSTEM IN TERMS OF LOG ($\Sigma \mathrm{SO}_{4} / \Sigma \mathrm{H}_{2} \mathrm{~S}$) OR LOG $f \mathrm{O}_{2}$ vs pH OR T.

Edward M. Ripley
Geology Department, Indiana University. Bloomington, IN 4740I, U.S.A.
and

Hiroshi Obmoto
Department of Geosciences, The Pennsylvania State University. University Park, PA 16802, U.S.A.

(Received II November 1978)

Abstract

A computer program for the generation of mineral-stability diagrams in terms of $\log \left(\mathrm{SSO}_{4} / \mathrm{SH}_{2} \mathrm{~S}\right) \mathrm{us} \mathrm{pH}$ or T is presented. Simple modifications of the program to produce \log / O_{\geq}vs pH or T diagrams also are documented. Such diagrams are useful particularly in the geochemical interpretation of hydrothermal sulfide ore deposits. Plotting of other geochemical parameters such as \log / S_{2}, mole fractions of aqueous sulfur species, sulfur isotopic compositions, and metal complex solubilities also is possible utilizing the mineral-stability diagram as a base. Both line-printer and digital-plotter methods are explained.

Key Words: FORTRAN, mineral-stability diagrams, $\mathrm{Fe}-\mathrm{Cu}-\mathrm{S}-\mathrm{O}$ system, $\log \left(\Sigma \mathrm{SO}_{4} / \Sigma \mathrm{H}_{2} \mathrm{~S}\right), \mathrm{pH}, \mathrm{T}$.

introduction

$\mathrm{Log} \mathrm{SO}_{2}$ (or $a \mathrm{O}_{2}$) vs pH diagrams, first computed by Barnes and Kullerud (1961) following methods outlined by Garrets and Naeser (1958) are valuable aids in the geochemical interpretation of many hydrothermal sulfide ore deposits. More recently, Ripley and Ohmotto (1977) have introduced $\log \left(\Sigma \mathrm{SO}_{4} / \Sigma \mathrm{H}_{2} \mathrm{~S}\right)$ (ratio of total oxidized to total reduced sulfur in an ore fluid) vs pH or T diagrams. Such diagrams are useful particularly where changes in the $\Sigma \mathrm{SO}_{4} / \Sigma \mathrm{H}_{2} \mathrm{~S}$ ratio of the fluid have influenced geochemical parameters such as sulfur isotopic composition. For both $\log \mathrm{fO}_{2}$ and $\log \left(\Sigma \mathrm{SO}_{4} / 2 \mathrm{H}_{2} \mathrm{~S}\right)$ vs pH or T diagrams, mineral stability fields are dependent on the molality of total aqueous sulfur (m_{E}), cation molality ($\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na} . \mathrm{K}$), ionic strength (I), and T or pH (depending on which variable is plotted as the abscissa). Because changes in these variables can influence strongty diagram topology, it maybe necessary to construct several diagrams in order to arrive at possible interpretations of collected data. The purpose of this paper is to present a FORTRAN program which generates mineral-stability fields in terms of $\log \left(\mathbf{\Sigma S O}_{3} / \mathbf{\Sigma} \mathrm{H}_{2} \mathrm{~S}\right)$ or $\log \mathrm{fO}_{2} \mathrm{vs} \mathrm{pH}$ or T. In addition to mineral stability fields. parameters such as mole fractions of aqueous sulfur species, $\log f S_{2}, \delta^{4} S$ values, and solubility data may be plotted on the diagrams.

METHOD OF DAGAN CONSTRUCTION

For both types of diagrams the basics of construction essentially are those described in Ohnoto (1972). Retevant equations for construction of stability fields of aqueous sulfur species and minerals in the Fe-Cu-S-O system are given in Table 1 . The equilibrium constants for these reactions have been fit as functions of absolute temperature by the method of least squares (see Ripley

Table 1. Reactions used in constructing $\log \left(\right.$ S SO $\left._{4} / \mathrm{SH}_{2} \mathrm{~S}\right)$ or $\log \mathrm{O}:$ vs pH or T diagrams
(1) $\mathrm{H}_{3} \mathrm{~S}(\mathrm{aq})=\mathrm{H}^{+}+\mathrm{HS}^{-}$
(2) $\mathrm{HS}^{-}=\mathrm{H}^{+}+\mathrm{S}^{2=}$
(3) $2 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-}=\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+2 \mathrm{O}_{2}{ }^{-}$
(4) $\mathrm{HSO}_{4}^{-}=\mathrm{H}^{+}+\mathrm{SO}_{4}^{--}$
(5) $\mathrm{KSO}_{4}^{-}=\mathrm{K}^{+}+\mathrm{SO}_{4}{ }^{2-}$
(6) $\mathrm{NaSO}_{4}^{-}=\mathrm{Na}^{+}+\mathrm{SO}_{4}{ }^{2-}$
(7) $\mathrm{CaSO}_{4}{ }^{\circ}=\mathrm{Ca}^{2 \cdot}+\mathrm{SO}_{4}{ }^{2-}$
(8) $\mathrm{MgSO}_{4}{ }^{\circ}=\mathrm{Mg}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
(9) $\mathrm{H}_{2} \mathrm{~S}($ aq $)+\frac{1}{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}(1)+\frac{1}{2} \mathrm{~S}_{2}$
(10) $\mathrm{FeS}_{2}=\mathrm{Fe} \dot{\mathrm{S}}+\frac{1}{2} \mathrm{~S}_{2}$
(II) $3 \mathrm{FeS}_{2}+2 \mathrm{O}_{2}=\mathrm{Fe}_{3} \mathrm{O}_{4}+3 \mathrm{~S}_{2}$
(II) $2 \mathrm{FeS}_{2}+\frac{3}{2} \mathrm{O}_{2}=\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{~S}_{2}$
(13) $3 \mathrm{FeS}+2 \mathrm{O}_{2}=\mathrm{Fe}_{3} \mathrm{O}_{4}+{ }_{2}^{3} \mathrm{~S}_{2}$.
(14) $6 \mathrm{Fe}_{2} \mathrm{O}_{3}=4 \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{O}_{2}$
(iS) $3 \mathrm{FeS}_{2}+\mathrm{Fe}_{3} \mathrm{O}_{4}=6 \mathrm{FeS}+2 \mathrm{O}$:
(16) $4 \mathrm{FeS}_{2}+\mathrm{Cu}_{4} \mathrm{FeS}_{4}=5 \mathrm{CuFeS}_{2}+\mathrm{S}_{2}$
(17) $\mathrm{CaSO}_{4}=\mathrm{Ca}^{3+}+\mathrm{SO}_{4}{ }^{2-}$
(18) $\mathrm{BaSO}_{4}=\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-}$
and Ohmoto. 1977). Activity coefficients of ionic species were calculated initially between ionic strengths of 0.25 and 3.0 using Helgeson's (1967) Della approximation (Ohmoto, 1978, unpublished data), and then fit as fundlions of T and ionic strength by a multiple regression program (PSU Computation Center, 1968). The concenrations of $\mathrm{Ca}, \mathrm{Mg} . \mathrm{K}, \mathrm{Na}$, and Ba are read into the program from a dat: card. The molality of total sulfur is specified in the main program.
The first step in the construction of the diagrams is to determine the stability fields of the aqueous sulfur sinedies considered (here $\mathrm{H}_{5} \mathrm{~S} . \mathrm{HS}^{-}$. $\mathrm{SO}_{4}{ }^{-}$. $\mathrm{HSO}_{4}{ }^{-}$, $\mathrm{CaSO}_{4}{ }^{\circ}$. MeSOn_". KSO4. NaSO_{4}). Mole fractions of each aqueous sulfur species relative to the mental sulfur content of the ore fluid may te computed from cautions given in Ohmoto (1972), and presented as statements following
the f(), calculation in the main prugram (Appendix). It should be noted that mole fractions camnot te comperted withous numerical values of log/0. Nlthough this presents no problem for log fO, vs nH or T diagrams. \log / O_{2} must first be computed for $\log \left(\right.$ I SOs $\left._{3} / \mathrm{SH}_{2} \mathrm{~S}\right)$ diagrams. The mole ratio of total sulfate to total sulfide in an ore-forming fluid may be defined as:

R may be specificd in terms of pH and cation concentration by utilizing activity coefficients (y) and equilibrium constants (K) for reactions 1 and 4 through 7 in Table 1:

$$
R=\frac{m_{\mathrm{sO}_{4}}{ }^{2} \cdot B}{m_{\mathrm{H}_{2} \mathrm{~S}} \cdot A}
$$

where

$$
A=1+\frac{\left(K_{1}\right)\left(\gamma_{H_{H}, 5}\right)}{\left(\gamma_{H^{5}}-\right)\left(a_{H^{\prime}}\right)}
$$

and

$$
\begin{aligned}
& B=1+\gamma_{\mathrm{SO}_{4}^{2}}-\left(\frac{a_{\mathrm{H}^{+}}}{\left(\mathrm{K}_{4}\right)\left(\gamma_{\mathrm{HSO}_{4}^{-}}\right)}+\frac{\left(m_{\mathrm{K}^{+}}\right)\left(\gamma_{\mathrm{K}^{+}}\right)}{\left(\mathrm{K}_{5}\right)\left(\gamma_{\mathrm{KSO}_{4}}\right)}\right.
\end{aligned}
$$

The $m_{\mathrm{SO}_{4}}{ }^{-}$may be expressed as a function of $m_{\mathrm{H}_{2}} \mathrm{~s}$ and $\int \mathrm{O}_{2}$ by use of reaction 4, Table 1:

$$
m_{\mathrm{sO}_{2}-2}=\frac{\left(\gamma_{\mathrm{H}_{\mathrm{S}}}\right)\left(m_{\mathrm{H}_{2} \mathrm{~S}}\right)\left(\mathrm{fO}_{2}\right)^{2}}{\left(\mathrm{~K}_{3}\right)\left(a_{\mathrm{H}^{+}}\right)^{2}\left(\gamma_{\mathrm{SO}_{4}-}\right)^{-}}
$$

R may now be related to $\mathrm{fO}_{2}, \mathrm{pH}$, and cation concentration by the equation:

$$
R=\frac{\left(\left(\mathrm{O}_{2}\right)^{2}\left(\gamma_{\mathrm{H}_{\mathrm{S}}}\right)(B)\right.}{\left.\left(\mathrm{K}_{3}\right)\left(a_{\mathrm{H}}\right)^{-}\right)^{2}\left(\gamma_{\mathrm{SO}}^{4} \mathrm{~A}^{2}\right)(A)}
$$

Given R, pH, γ, and cation molality values, $\log \mathrm{fO}_{2}$ may be calculated and used in computing mole fractions of aquenus sulfur species. For $\log \mathrm{fO}_{2}$ or $\log R$ vs T diagrams pH is fixed, or varied with temperature according to an appropriate buffer reaction. In the partial program listed in the Appendix pH is varied according to neutrality.

With all appropriate variables defined, $\log f S_{2}$ values may be computed from:

$$
\begin{aligned}
\log _{10} f S_{2}= & 2\left[\log K_{9}+\log X_{\mathrm{H}_{2} \mathrm{~S}}+\log m_{2 \mathrm{~S}}+\log \gamma_{\mathrm{H}_{2} \mathrm{~S}}\right. \\
& \left.-\log a_{\mathrm{H}_{2} \mathrm{O}}+\log f \mathrm{O}_{2}\right]
\end{aligned}
$$

[see Ohmoto (1972) for a similar expression].
Mincral-stability fields now may be constructed as functions of $\log \mathrm{jO}_{2}$ (sce Table 1), $\log \mathrm{fO}_{2}$ (magnetitehematite boundary), or $X_{\text {sod }}$ - (barite-anhydrite ficlds).

[KKX:RAMI IHFTAllS

Molc fractions, loge S : and log $f(O$, for log R diagrams) values are callomand a ach pH or T and $\log f O$: or $\log R$ interscetion, and thus define twodimensional arrays. Mineral-stability fields are determined initially by scarching these arrays. and locating the houndary between two given mineral species. Consider, the pyrite-pyrrhotite houndary. The equilibrium constant for equation (10) (Tahle 1) defines the f $S_{:}$value at the boundary. At higher $f S_{2}$ values pyrite is stable, and at lower values pyrrhotite is stable. At each point of higher than boundary $f S_{2}$ values. a " I " is assigned to that Incation in the array, and indieates pyrite stability. A "0" is assigned for pyrrhotite stability. At this stage the pyrite-pyrrhotite array may be printed on a line printer (Fig. 1). and a curve or line drawn between the " 0 's" and "I's". Although the pyrite-pyrrholite boundary is determined. it is possible that when other $\mathrm{Fe}-\mathrm{S}-\mathrm{O}$ phases (masnetite and hematite) are considered. some or all of this boundary may be metastable. It is possible to print " $0-1$ " arrays for all mineral pairs (pyrite (py)-magnetite (mi), pyrite-hematite (hm), pyrrhotite (po)-magnetite, and hematite-magnetite), and by uilizing traced overlays determine specific mineral-stability fields. If the line printer is to be utilized it is perhaps more efficient to print only the boundary curve (defined by a particular symbol) for each mineral pair on one output sheet. The boundary between the " 0 's" and " $I s$ " can be determined by a routine similar to that discussed later. The approach described in this paper is utilization of a digital plotter (Calcomp or Versatec at Indiana University) to produce a composite diagram with metastable boundaries eliminated.
Once the " 0 - 1 " arrays have been computed for all mineral pairs, the stability fields of each mineral may be determined by summing atiays. For example, if pyrite stable is labeled " 1 " in the array plots of py-po, py-mt and $p y$-hm, then the stability field of pyrite will be where the sum of the arrays equals 3 . The summation method accomplishes the same end as traced overlays. If a particular mineral is labeled " 1 " in one array and " 0 " in another, the subroutine CHANGE reverses the values for one array, and allows the normal summation to proceed. For ease in later stability boundary plotting, all array values are reconverted to " 0 ' s " and " 1 ' s ". The pyrite field denoted by " 3 ' s " is switched back to " l ' s ". and all other numbers in the array given the value " 0 " (Fig. 2).

It should be noted that only one array denotes the stability boundaries of anhydrite, barite, and pyrite + bornite going to chalcopyrite. This is because no other Ba, Ca, or Cu -bearing minerals are involved in the calculations.

The final step in the diagram construction is plotting via the digital plotler (Figs. 3 and 4). The subroutine MINPLOT searches for changes in each array, and plots a given symbol where a change from " 0 " to " 1 " or " 1 " to " 0 " occurs. The search begins at the top of each column and continues downward until a change is detcrmined. When a change is detected the symbol is ploticd one-half distance between the " 0 " and " 1 ". The search then

E. MI. Rivil: and II. Dhamio

Figure 2. Stability field of pyrite (1) relative to pyrrhotite, magnetite, and hematite in terms of $\log \left(\Sigma \mathrm{SO}_{2} / \Sigma \mathrm{H}_{2} \mathrm{~S}\right)$ vs pH. Line printer.
begins from the boltom of the same column until a change occurs. This method nutlines fields where at one given pH , or T, the stability boundary crosses iwo $\log f \mathrm{O}_{2}$ or $\log R$ values (c.g. pyrite ficld). If there is only one \log / O_{2} or $\log R$ values for a given pH or T, the assigned symbol is simply overprinted (e.g. hematite field).

Figure 3. $\log \left(\mathrm{ISO}_{4} / \mathrm{SH}_{2} \mathrm{~S}\right)$ vs pH diagram, drawn using Calcomp plotter.

Diagram axes and individual mincral-stability fields are babeled in accordance with Calcomp or ather digital plotter specifications |subroutincs SYMBOL. NUMBER. AXIS, cte.-see California Computer Products. Inc. (1976)]. It is of importance to note that individual sym-

Figure 4. $\log \left(\mathrm{SS}_{\mathrm{S}} \mathrm{O}_{4} / \Sigma \mathrm{H}_{3} \mathrm{~S}\right)$ vs T diagram. drawn using Calcomp plotter.

Figure 6. Generalized flow diagram for main SO4H2S-PH program.
bols drawn by the plotter are connected by straight lines. In some instances it is necessary to smizoth these lines. Where both upper and lower boundary lines exist it is necessary to manually draw a smooth, rounded curve between the last plotted symbols in order to complete the nose of the stability field (normally necessary only for the bornite + pyrite field, see Figure 3). The need for line smoothing diminishes as smaller increments of pH or T are employed, thereby increasing the number of values in the array.

Programs (Appendix) are written for $\log R$ vs pH or T. Generalized flow diagrams are presented in the Appendix. In order to generate $\log f_{2}$ vs pH or T diagrams it is necessary to initialize and change $\log f \mathrm{O}_{2}$ rather than $\log R$. This step eliminates the calculation of $\log \mathrm{fO}_{2}$ as a function of R. All other calculations remain the same.

admitional data output

Values of mole fractions of each aqueous sulfur species, $\log f \mathrm{~S}_{2}$ (Fig. 5), and $\log \int \mathrm{O}_{2}$ at each given pH or T and $\log R$ or $\log f \mathrm{O}_{2}$ intersection can be output using the line printer. The values may be either computer or hand contoured. Only the input for mincral stability determinations is necessary. The Calcomp plot of mineral stabilities is drawn at the same scale as the line printouts for easy overlaying and tracing. Given appropriate equations for the sulubility of each mineral, solution ppm

Figure 7. Generalized flow diagram for subroutine MINPLOT.
values also may be plotted \{e.g. ppm FeCl^{+}in the pyrite field-see Ripley and Ohmolo (1977) for further details]. Combining aqueous equilibria and sulfur isotopic fractionation factors allows for the calculation and contouring of $\delta^{34} S$ values for various aqueous and solid sulfur species [see Ohmoto (1972) and Ripley and Ohmoto (1977), for methods].

Acknowledpments-The authors wish to thank Dr. Robert F. Blakely, Indiana University, for his helpful suggestions during the develupment of the ploter routines, and a critical review of the manuscript. Financial suppont for use of an 18M- 360 computer (PSU) and CDC-6,00 compuler (IU) was provided by The Pennsylvania State University, Indiana University, and NSF grant EAR 76.03724 to H . Ohmoto.

RIFT:RFNCFS

Barnes. H. L., and Kullerud. C... 19n). Fquilibrium in sulfurconlaining aqueous solutions in the syvem Fe-S-O. and their correlation during ore deposition: Econ. Gcology, v. 56, no. 4. p. 648-688.

California Computer Products, Inc.. 1976, Programming Calcomp clectromechanical plotters: Calcomp. Anaheim, California, 32 p.

Garrels, R. M., and Naeser, C. R., 1958, Equilibrium distribution of dissolved surfur species in water at $25^{\circ} \mathrm{C}$ and 1 atm total pressure: Gcochim. et Cosmochim. Acta, v. 15, no. 1/2, p.-113-131.

Helgesson. H. C., 1967. Solution chemistry ind metimorphism. in Ahelson. P. H., ed., Rescarches in geochemistry (v. 2): John Wilcy \& Sons, New York, p. 362-A(14.
Ohmoto. H., 1972, Systematics of sulfur and cartonn isotores in hydrothermal ore deposits: Eicon. Gcology, v. 67, no. S. p. 551-578.
Pennsylvania State University Computation Center, 1968. Stepup multiple lincar regression, FORTRAN/360. 6 p.
Ripley, E. M., and Ohmolo, H., 1977. Mineralogic, sulfur isotope. and fluid inclusion studies of the stratabound copper deposits at the Raul mine, Peru: Econ. Geology, v. 72, no. 6. p. 1017-1041.

```
C
    MC(L)=MOLALITY OF CATIONS,1=K,2=NA,3=CA,4=HA,5=MG
    MS=MOLALITY OF TOTAL SULFUR
    T=TEMFEKATURE(TEGREES C)
    TK=TEMFERATURE(IEGREES K)
    K1-K1S,K2G,ANI NIOO = LOG OF ERUILIFRIUM CONSTANTS - COMFLETE
    REFERENCES GIVEN IN KIFLEY ANI OHMOTO(1977)
    K1=H2S-HS-NAUMOU,ET AL. 1974
    K2=HS--S2-, NAUMOU, ET AL. 1974
    K3=SO42--H2S,HELGESON,1969
    K4=H5O4--5OJ2-,HELGESON,1969
    KS=NSO4--SO42-,HELGESON,1969
    K6 =NASD4--SO42-,HELGESON,1969
    K7=CASO40-SO42-,HELGESON.1969
    K日=H2S-S2,HELGESON,1969
    KP=FYY-FO,HELGESON.1969
    K10=FY-MT,HASS ANLI ROFIE,1973-KORIE ANII WALIEAUM,1968
    K11=FY-HM,HASS ANII ROHIE,1973-RONIE ANII WAL!IFAUH,1968
    K13=FN+FY-CF,SCHNEEFEKG,1973
    K14=FAKIIE,HELGESON,1969
    K1S=ANHYIRITE,HELGESON,1969
    K26=MT-HM, HASS ANL KOFIE,1973
    K30=MGSO40-SOAZ-,HELGESON,1969
    G1-GP=LOG OF ACTIUITY COEFFICIENTS
    G1=K'+,CL-,H2CO3(AF)
    G2=H5-,OH-
    G3=NA4, HSO4-, KSO4-,NASO4-
    G4=5042-
    G5=C032-
    G6=S2-,FA2+
    G7=CA2+,FE2+,MG2+
    G8=H+
    G9=H25
    GIO= ACTIUITY OF WATER
    R=LOG(TOTAL SULFATE/TOTAL SULFIDE)
    AA,FH,C,CC,I,E,F,W,Y =ERUATIONS FROM OHMOTO(1972) USEII IN
    CALCULATING MOLE FRACTIONS
    XH2S,XSOA,ETC. = MOLE FFIACTIONS OF AGUEQUS SULFUF SFECIES
    FYFO THKOUGH HMMT = STAFILITY FIELII AKFAYS
    FYFO=FYKITE-F.YFFHOTITE
    FYMT=F-YEITE-MAGNETITE
    FYHM=FYKITE-HEMATITE
    FOMT-FYFRHOTITE-MAGNETITE
    HFCFF=EOKNIJE-F.YKITE-CHALCOFRITE
    FAK=FAKITE
    ANH=ANHYLIRITE
    HMMT = HGMATITE-MAGNETITE
    ISUMFY, ISUMFO, ISUMMT, ISUMHM=SUMMELI ARRAYS FOR FY-FO-MT-HM TO
    mETEGMINE STAFILITY LGUNIAGIES WITH METASTAHLE EXTENSIONS: ELIMINATEL
    FACT,AXSLEN,ANG IOFTS FEFER TO AXES &FAWING IN THE CALCOMF FOUTINE
        DIHENSION MC(5),FS2(59,15),XH2S(59,15),XSO4(59,15),FYHT(59,15),FYYP
        10(59,15),FYHM(59,15),FDHT(E9,15),HMMT(59,15),FO2(59,15)
            DIHENSION IOFTS(4)
            COMMON ISUMFO(59,15),1SUMFY(59,15),1SUMMT(59,15),ISUMHM(59,15),FPC
            1F(59,15),ANH(59,15), BAR(59,15)
        REAL HC,HS ,N1,K2,K3,K4,K5,K6,K7,K日,K%,K10,K11,N12,K13,N14,K15,K3O
    INTEGER FYFO,FYMT, RYHM,FOMT, HFCF,GAR,ANH,HMHT
C SET IONIC STRENGTH
    KI=3.0
c
    REAII MOL.ALITY OF CATIONS
    KEAD 33.(MC(L).L-1.5)
33 FORMAT(EFS.3)
C SET MOLALITY OF TOTAL SULFUR
```

 MS=. 01
 SET BEKHEKATUKE
 Y \(=250.00\)
 TḰT 1273.15
 CALCULATI: ED. CDNSTANTS ANI ACTIUITY CDEFFICIENTS

1*2)
N2=-22.4021714.89790304*(10:*4)*(1/TK)-.019499693*(((1/TN)*10**4)
2:21
N $3=51.097150-6.2207626 *(10 * * 4) *(1 / T K)+.029504445 *((1 / 1 / K) * 10 * * 4) * *$
32)
k4=-19.04772941.0026124*(10**4)*(1/TK)-.014948992*(((1/TK)*10**4)
4:21
KS=-14.7076744.94694370*(10**4)*(1/TN)-.016400237*(((1/TK)*10**4)*
542)
K6=-14.707674t.94694370*(10**4)*(1/TN)-.016400237*(((1/TK)*10**4)*
6:2)
к7=-16.2092794.91061942*(10**4)*(1/TK)-.015048042*((1/1/K)*10**4)
7*2)
$\kappa 8=-3.9972601+1.0278291 *(10 * * 4) *(1 / T \kappa)-.00060586260 *((11 / T \kappa) * 10 \neq \# 4$
8) * $\ddagger 2$)
K30 $=-1.4339642101+6.748545411-01 *(20 * * 4) *(1 / T K)-9.39668420-03 *(1($
(11(K) (10*\#4)**2)
G1=-.116275[1-01*1N+.2541491-04*(1K**2)-.2127731-07*(TK**3)-.370492

2**2)-.7343201-04*(RI**2*TK)-.9848:41-06*(RI**2*TK**2)-.72780111-01*
3(KI**3) +.171191年-03*(KI**3*TK) +0.134309n 01
G3=-.78810011-02*TKt.181313п-04*(TK**2)-.15666411-07*(TK゙**3) t.222665
1I OOKRI-.25953日I-02*(RI*TK) +.468092n-0S*(RI*TK**2)t.231635D 00*(RI
2**2)-.773887IーO4*(RI**2*TK)-.102592ロー05*(R1**2*TK**2)-.744076n-01*
$3(R I * * 3)+.176906 \mathrm{I}-03 *(\mathrm{FI} * * 3 * T K)+0.107458 \mathrm{II}$ o1
G4*-.67327451~01*TKt. 157173n-03*(TK**2)-.124776[1-06*(TK**3)-.525777

$G S=-.604050 \mathrm{I}-01 * T K+.141201 \mathrm{~V}-03 *(\mathrm{TK} * * 2)-.112610 \mathrm{D}-06 *(T K * * 3)-.422920$

2**2)-.163622n-03*(R1**2*TK)-.217548年-06*(R1**2*TK**2)-.56日750D-01*
$3(K 1 * * 3)+.8175961-04 *(F 1 * * 3 * T K)+0.807875001$

1n 00*RI-.793606IT-03*(KI*TK) +. 1218351-05*(KI*TK*\#2)+.2525220 00*(RI
2**2) -. 539835n-04*(FI**2*TK)-.433122n-06*(RI*\#2*TK**2)-.5891100-01*
$3(R I * * 3)+.9266491-04 *(R I * * 3 * T K)+0.735019 \mathrm{D} 01$
G7=-.462285リ-01*TKt. 108475I-03*(TK**2)-.8749891-07*(TK**3)-.984740
15-01*KI-.144465IT-02*(KI*TK)+.240432D-05*(FI*TK**2)+.244967D 00*(RI
2*\#2)-.438033[-04*(KI**2*TK)-.6306251-06*(KI**2*TK**2)-.638577【1-01*

G8=-.1244S41-0こ*TK゙+.9129561-06*(TK**2)-.12フ7571-08*(TK**3)-.189045
1L OO*RI-.967654I~03*(RI*TK) +.380400II-05*(RI*TK゙**2)+.4627231) 00*(RI

$3(k-1 * * 3)+.26671511-03 *(k I * * 3 * T K)+0.3032851100$
69at.12518411-01*TK-.2915341-04*(TK**2)+.2199991-07*(TK**3)+.602681

2**2) +.356240Iー03*(R1**2*TK)-.654073ए~06*(R1**2*TK**2)-.801604U-02*
3(KI丰*3) +.1818981-04*(Fi**3*TK)-0.1752515 01

102036T1-01*RI-0.33371111-04*(KI*TN)+0.8000071-07*(RI*TK**2)+0.867395

3177471 [1-02*(Fl**3) $+0.466669[1-05 *($ R1**3*TK) $+0.102555 \mathrm{~L} 01$
SET INITIAL LOG(SO4/H2S),R VALUE
$\mathrm{R}=10.00$
THERE ARE $N=59$ KOWS ANI $M=15$ COLUMNS FOR F US FH OR T HIAGRAMS
$\mathrm{N}=1$
$15 M=1$
SET INITIAL PH
$\mathrm{FH}=2.0$
CALCULATE TOTAL SULFITIE TEFH A ANI TOTAL SULFATE TERH B
$17 A=1+((10 * * K 1) *(10 * * G 9)) /((10 * * G 2) *(10 * *(-F H))))$
$H=1+((10 * * G 4) *((10 * *(-F H)) /((10 * * K 4) *(10 * * G 3)))+($ (MC(1)*(10**(G1)
$F=1+(110 * * G 4) *(((10 * *(-F H)) /((10 * * K 4) *(10 * * G 3)))+((K C(1) *(10 * *(G 1)$
$1)) /((10 * *(K 5)) *(10 * *(G 3))))+((K C(2) *(10 * *(G 3))) /((10 * *(K 6)) *(10 * *)$
2G3))) $)+(\operatorname{MC}(3) *(10 * *(G 7))) /((10 * *(K 7)) *(10 * *(G 3)))+(1$ MC(5)*(10**
167))) 月(10**((30)))))
CALCULATE FOZ AS FUNCTION OF F,FH,A, AND B
FO2 (N, H) $=.5 \geqslant(K+K 3-(2 * F H)+G 4+A L O G 10(A)-A L O G 1 O(B)-G 9)$

OHMOTO(1972)
$A A=K 1+G 9+P H-G 2$
$A A=10 . \pm \pm A A$
$A A^{2}=10.12 A A$
$H H=K 2+G 2+F \cdot H-G 3$
$\mathrm{HK}=10$. $\mathrm{F}_{\mathrm{*}} \mathrm{HE}$
$\mathrm{C}=(12 \ddagger \mathrm{FD} 2(\mathrm{~N}, \mathrm{H})+G 9+(2 * \mathrm{FH}))-(\mathrm{K} 3))$
C=10.*\#C
$C=10, * *$
$C C=-G A$
$C C=-G 4$
$C C=10.72 C C$
$C C=10.7 \pm C C$
$H=r(F-H+K 4+G 3)$
IIR (FH+K4+G3)
t: $=10, * * 0$

```
        E=(G) &AL.OG1O(HC(2)))-(KE4G3)
        E=10.0.E
        F=(G3+ALOG1O(MC(2)))-(NG+03)
        F-10.**F
        N=(G7+ALOG10(MC(3)))-K7
        W=10.**H
        Y=(G7+ALOG1O(MC(5)))-K30
        Y=10.E:Y
        SUA=1+AA*(1+EE)+C*(CC+D+E+F+U+Y)
        XH2S(N,M)=1./SUM
        XSO4(N,M)=(C&CC)/SUM
C CALCULATE EO. CONSTANTS FOK MINEKALS
```



```
        9#2)
```



```
        1午こ)
```



```
        2言)
        K12=-7.675240743.3988816*(10*#4)*(1/TK)-.00192BE453*(((1/TK)*10%*4
        3)年2)
        K13=12.560-1.1067*(10**4)*(1/YK)
        K14=-25.9175760+1.25912こ7*(10**4)*(1/TN)-.023535797*(((1/TN)*10**4
        4)**2)
        K15=-25.29221041.2931973*(10**4)*(1/TK)-.020329233*(((1/TN゙)*10**4)
        8*#2)
        K26=14.894B74-2.6110181*(10#*4)*(1/TK)+.0017536020*(((1/TK)*10**4)
        4**2)
            CALCULATE LOG FSZ
            FS2(N,H)=((NB+ALOG10(HS*XH2S(N,M))+G9+(.S*FO2(N,M)))-(ALOG1O(G1O))
        1)*2
C TEST FOR STAHILITIES DF FY,FO,MT,HM,EN,CF,HAK,ANH
    IF(FS2(N,M)-(2*N゙9))こ7,18,18
    27 F'YFOO(N,M)=0
    GO 10 19
    1B FYYFO(N,H)=1
    19 IF(FS2(N,H)-((K1O+(2&FC2(N,M)))/3))20,21,21
    20 F.YMT (N,M)=0
        GO TO 22
    21 F.YHT (N,M)=1
    22 IF(FS2(N,H)-((K11+(1.5*FO2(N,M)))/2))23,24,24
    23 FYHM(N,M)=0
        GO 10 25
    24 F.YHM(N,M)=1
    25 IF(FS2(N,H)-((K12+(2*F02(N,H)))/1.S))26.37.37
    26 FOMT(N,M)=0
    GD TO 38
    3) FOHT (N,M)=1
    38 IF(rS2(N,M)-N゙13)29,30,30
    29 WFCF
    GO TO 71
    30 [FFCF(N,M)=1
    71 IF(XSO4(N,M)-(10#*N14/(MC(4)*(10**G6)*(10**G4)*M5)))772,73.73
    72 HAR (N,M)=0
    GD TO 34
    73 HAK(N,M)=1
    34 IF(XSO4(N,M)-(10*#N15/(MC(3)*(10##G7)*(10##G4)*MS)) 35,36,36
    35 ANH(N,M)=0
        GO TO 3
    36 ANH(N,M)=
        3 IF(FO2(N,M)-K26)1,2,2
        HMMT (N,M)=0
            GO TO 39
        2 HMMT (N,N)=1
    39 IF(F.H-9.0)7,16.18
        INCEEASE FH EY O.S
    7F\cdotH=F.H+.S
        M=H+1
        GO TO 17
        IECFEASE R EY O.S
    16 K=K-. 50
        IF(F+19.50)99.99.28
    2B N=N+1
        IF(N-60)15,99,90
        IETENMINE STAEILITY FIELIS OF FY,MT,HM,ETC.
        FYY SIAGLE = 3
    99 n0 211 I=1.59
        100 210-J=1.15
        ISUMFY(I,J)=FYFOO(I, j) +FYMT(I,J)+FYHM(I,J)
    210 CONIINUE
    211 CONTINUE
        SURROUTINE CHANGE CONUERTS O TO 1 ANR 1 TO O-SIMFLIFIES STABILITY
        FIELII DETERHINATIONS
        PO STAFLE - 1
        HM STARLE =1
        CALL CHANGE(FYFO)
        110 221 I=1.59
        10 220 J=1,15
        JSUMFO(I,J)=FYFO(I,J)+FOMT(I,J)
    220 CONTINUE
    221 CONTINUE
```


CALL CIANNGE (TYHM)

IID 231 1=1.59
In $230 \mathrm{~J}=1.15$
ISIMMM(I,J)FHMHT(I,J) +FYHM(IPJ)
230 COMTINUE
231 CUNTINUE
CIIANGE 3 DF F-YRITE TD 1,AND OFIIDR2 ALL TO O
CIHANGE 2 DF FDTO 1 AND 1 TO O
CHANGE 2 OF HM TO 1 . ANII 100
no 43 101.59
$11042 \mathrm{~J}=1.15$
IF(1SUMFY(1.J).NE.3) GO TO 45
ISUMFY(1,J) $=1$
GO TO 46
45 ISUMFY $(1, J)=0$
46 1F(ISUMF•Q(1,J).NE.2) GO TO 47
ISUMF•O(I:J) at
G0 1050
$47 \operatorname{ISUMFO}(I, J)=0$
50 IF (ISUMHM (I,J).NE.2) GO TO 51
1 SUMHM $(1, J)=1$
GO TO 42
51 ISUMHM (I,J) $=0$
42 CONTINUE
43 CONTINUE
IIO $233 \quad \mathrm{I}=1.59$
$110232 \quad J=1,15$
$I \operatorname{SUMMT}(I ; J)=I \operatorname{SUMFY}(I, J)+I \operatorname{SUMFO}(I, J)+I \operatorname{SUHHM}(I ; J)$
232 CONTINUE
233 CONTINUE
AT THIS FOINT HAY FLOT FIELIIS (INCLUIIING METASTAELE FROJECTIONS)
OF MINEKALS
AFRAYS SUCH AS PYFO OR FYMT MAY HE FRINTED, OR ONLY STARLITY
FIELISIIE ISUMFO,ETC.)
THE AFFIAYS HAY ALSO HE SEARCIEL ANI ONLY AN ASSIGNED CHARACTER
FFINTEII AT THE CHANGE FFOM O TD 1 OR UICE UERSA
THE CALCOMF FLOTTER KOUTINE MAY ALSO GE CALLED, AS IS IONE HELOW
LABEL FLOT
CALL IIENT(3)
CALL SYMHOL $(8,0,4,00,0.15,5 H T E M F=0,0,5)$
CALL NUMEER(9.10,4.00.0.15,T,0.00.0)
CALL SYMFOL (8.0.3.75,0.15,3HMS $=0.0 .0,3)$
CALL NUMEER(9.10,3.75,0.15,MS,0.00.4)
CALL SYMHOL (8.0,3.50,0.15,3HMK=,0.0.3)
CALL NUHEER(9.10,3.50.0.15,MC(1).0.00.3)
CALL SYMFOL ($0.0,3.25,0.15,4 H M N A=0.0,4)$
CALL NUMEEF(9.10,3.25,0.15,MC(2),0.00,3)
CALL SYMHOL (8.0.3.00,0.15, $4 \mathrm{HMCA}=0.0,4$)
CALL NUMFEF(9.10,3.00,0.15,MC(3),0.00,3)
CALL SYMEOL (8.0.2.75,0.15,4MHEA=,0.0.4)
CALL NUKEER (9.10.2.75,0.15.MC(4),0.00,3)
CALL SYMFOL (8.0.2.50,0.15,4HMMG $=0.0 .0,4)$
CALL NUMEER (9.10,2.50,0.15, HC(5),0,00.3)
FACT $=7.0 /(11.0+7.0 / 32.0)$
AXSLEN=11.0+7.0/32.0
IOFTS(1) $=-1.0$
IOFTS (2) $=1$
IOFTS(3)=1
10FTS(4) =0
CALL IUAXIS(0.0.2.0.FACT,0.5,2HFH,-2,1.0.1.0,AXSLEN,0,+2,+0.10.10P 1TS(1))
FACT $=29.0 /(9.0+21.0 / 32.0)$
AXSLEN=9.0+21.0/32,0
CALL IUAXIS $90.0,-19.0, F A C T, 1.00,12 H L O G(S O 4 / H 2 S),+12,1,0,1.0, A X S L . E$
2N,0,+2,+0.10,IOF゙TS(1))
SUHROUTINE HINFLOT SEARCHES ARKAYS AND PLOTS STAEILIYY EDUNIAARIES
CALL MINFLOT (ISUMFY, 1 , 1)
CALL MINFLOT (ISUMFD,2,2)
IFIHS.LE.0.001) GD TO 94
CALL MINFLOT (1SUMMT,3,3)
94 CALL MINFLOT (ISUMHM, 5,5)
call Minflet (afep,6.6)
CALL MINFLLT(GAK,7,7)
CALL MINFLOT (ANH, 8,8)
CALL CLOSEPF

199 STOP

END
SUFROUTINE CHANGE (ARFAY)
IIHENSION AFRAY (S9.15)
TYFE INTEGER AKKAY
LO $101 \quad I=1.59$
$10100 \quad J=1.15$
IF(AFFAY(I,J).EQ.1) GOTO 1
AKHAY(I $1, J)=1$
GO TD 100
1 AKFAY(I,J)=0
100 CONTINUE
101 CONTINUE
RETUKN
END

SUFEDUTIHE HYAFLDT AFEAY，ISTMRIDL IFLAG）
FAES AN ASHAY A SYHFUL．TO HE PLOTTEV＇AN［I AN ILENTIFICATIGN ［IMENSIGN AFFFAY（EP：IF）

TYPE JMTEGER ARFAY
TYPE INTEGEK EAK，ANH，EPCP
$\mathrm{N}=0$
KHTROL＝－1
TEST FDR CHANGES IH AKRAY，IF OJI THEN 【IFAW A SYHEDL HALF HAY
EETVEEN THE O AND 1 AND GD TO THE NEXT COLUHM
START THE SEAKEH AGAIN FKOM THE FOTTOH．THIS IS IOAE JN DRLHER TO
UFAN LINES HETEEEN SYMLDLS．TF ONLY ONE FOUNIAKY LINE OECURS AT QNE FH THEN OUEKFKINTING SIHFLY DECORS
ALSO TEST FOF CHANGES FFFDH ONE CDLUMN TO THE NEXT．THIS IS
IMFOFTANT FOF GAFITE ANII ANHYLIFITE AS TIUEIK FOUNIAKIES HAY HE
NEARLY UEFTICAL．TEST HEGIHS WHEN I．GE F 2
IU $1001=1.15$
ITEST＝AKKAY（1．I）
I口 110 J＝1， 59
IFiI．EE，2）GD TO 600
GO TD 900
600 IFIJ＋EOB1 GD T0 700
GO T0 900
700 KこI－1
IF\｛AFFAY（III），NE．ARAAY（I，K）） 60 TD 800.
GOTG FOO
SYMROL IS STANEARII CALCOHF FROCEIUIE
THE FOLLGWING STATEMENTS ALLOW FOK LAWELLING DF STAFILITY FIELLIS
XINEH ANL YINCH GIVE X ANI Y CODFIINATES FOR FLOTTIAG FELATIVE
FD O－O LLOWEF LEFT COFNER，OF FLOT

$X I N C H=1+0+(I-1+5) \neq(11.0+7+0 / 32,0) / 14.0$

IF（IFEAG．ETR．3）GO TO G99
KNTFDL $=-2$
900 IF（ITEST．NE，AFFAY（J．I））GDTD 120
110 CONTINUE
100．CDNTINUE
8 品 K゙NRロL＝－1
［10 $130 \quad 1=1.515$
$J=59$
ITEST二ARFAY（57rI）
150 IF \｛ITEST．NE．ARRAY（J．I） GO TO 140
$J=ل 1$
IF（S．EQ，O）TOTD 130
GD TD 150
130 CGMT゙エNUE
EETUF゙N
140 N＝NH：1
$X I N C H=1.0+(I-1) *(11.0+7: 0732.0) / 14.0$

CALL SYMEDL（XINCH，YINCH，0．1．ISYMEOL，O；OFKNTROL）
KNTRDL $=-2$
C LAFEL STALILITY FIELEIS
C IFLAG IS IIENTIFICATIDA NUHFER FDE EACH AFRAY
C LAFELLING IS FEFEKENEE［I FFOM SEAFCH LEGINAING AT FMTJOM

IF（N：EQ． 7 G G TO 75
60 TO 130
10 IF（N．E日．B\} GO TO 11
Gロ 70130
11 KNTROL＝－1
YINCH＝YINCH干O．10
1F\｛IFLAG．FG．7）60 TO 60
1F（IFLAG．EA．日）GO TO 61
75 KidTROL＝－1
YINCH＝YINCHHO，2S

IF（IFLAG．ER．1）GO TD 63

IF（IFLAG．E日，5）GO TO 6\＆
IF\｛IFLAG．EA， 3 G GD TO 67
60 CAIL GYMFGL：（XIACH，YINCH，O． $2,3 H F A R, 0.0,3$ ）
Y 1 NCIf＝YINC；H－O＊ 10
［1］Tu 69

YINEH＝YINCH－0． 10
GOTO 69

YINCHFYINCHOO． 50

YINCH＝YINCH1 0.50
GO T0． 67

50 1067

 YJHCH: Y INCH4O. JO

(0) TO 67

 XJACHeXINCH+A.O

67 YINCHनYINCH-D. 25

ANTRILIE-Z
00 TO 130

 KNTKDL=-2
COTO 100
END

LEAST SQUARES POLYNOMIAL FITTING TO GRAVITATIONAL DATA AND DENSITY PLOTTING BY DIGITAL COMPUTERS*

STEPHEN M. SIMPSON, Jr. \dagger

ABSTRACT
The fitting of a nth order polynomial in x and y to gravity data by least squares is discussed. A consideration of the normal equations for the general case shows certain simplifications resulting from rectangularity in data distribution. Some sample residual maps are constructed. Density plotting, made possible by the digital computer, is described and illustrated. It is shown that this process can serve as a substitute for contouring when only a qualitative picture is desired.

INTRODUCTION

There is some question whether or not the removal of regional effects from gravity may be effectively accomplished by the method of least squares. One of the basic assumptions in its application is that the regional be a relatively low order effect. By this is meant that, over the area analyzed, the true regional could be well approximated by a low order polynomial while other anomalies could not. In gravity work this is almost by definition a justified assumption. Agocs (1951) sets up an artificial example in which this is the case. He uses a plane surface, or first order polynomial, for the fitting, and demonstrates how the residual anomaly is better determined by least squares than by the use of the "arithmetic mean regional" procedure. Perhaps the strongest argument in favor of least squares residuals as opposed to methods in which the regional is estimated locally (by integration or summation of Bouguer gravity in a neighborhood of the point considered) is that the user has a tight control on the order of the approximating function. High local anomalies or blunders in observation must give locally unrealistic estimates of the regional from local summation methods. It may be argued that these very anomalies are weighted by their squares in the least squares method, thereby causing undue effects in the overall picture. However, if a reasonably large number of data points is considered, the actual effect is a slight shifting or warping of the polynomial surface, without materially affecting the relative residual contours. In any event, for the purposes of this paper it is assumed that the method deserves further study.

For practical application it is desirable to use polynomials of various orders. Computation and data handling become a serious problem as the polynomial order increases, which probably tends to hinder experimentation with the least squares method. It is the principal aim of this paper to discuss the use of poly-

- Manuscript received by the Editor December 29, 1953.
\dagger Instructor, Department of Geology and Geophysics, Massachusetts Institute of Technology, Cambridge, Mass.
nomials of general order and the possibilities of reducing the computational problem. In addition the author wishes to present a possible alternative to contour mapping as a means of examining residuals. This new method, made possible by the high speed digital computer, has very general application to contouring problems. Special applications of the technique to other geophysical data reduction problems are being investigated at MIT.

TEE NORMAL EQUATIONS
Gravity values $g(x y)$ are given at discrete points over a pattern P in the $x y$ plane, and it is desired to approximate these values by a polynomial such as

$$
G(x y)=c_{00}+c_{10} x+c_{01} y_{1}
$$

with c_{00}, c_{10}, and c_{01} taking those values which will make

$$
I\left(c_{00}, c_{10}, c_{01}\right)=\sum_{P}[\dot{g}(x \dot{y})-G(x y)]^{2}=\sum_{P} R^{2}(x y)
$$

assume a minimum value. $R(x y)$ may then be considered as the gravity value corrected, in this case, for a linear regional trend.

For a polynomial of order n,

$$
\begin{equation*}
G(x y)=\sum_{i=0}^{n} \sum_{j=0}^{n-i} c_{i j} x^{\prime} y^{i} \tag{x}
\end{equation*}
$$

I(c,'s) may be expressed as

$$
\begin{aligned}
I\left(c_{i j}^{\prime} s\right)= & \sum_{P}\left[\sum_{i=0}^{n} \sum_{j=0}^{n-i} \sum_{k=0}^{n} \sum_{l=0}^{n-k} c_{i j} c_{k l} x^{k+i} y^{l+j}\right] \\
& -2 \sum_{P} g(x y) \sum_{i=0}^{n} \sum_{j=0}^{n-i} c_{i j} x^{l} y^{j}+\sum_{P} g^{2}(x y) .
\end{aligned}
$$

To minimize I we differentiate partially with respect to $c_{i j}$ and equate with zero.

$$
\frac{\partial I}{\partial c_{i j}}=2 \sum_{k=0}^{n} \sum_{i=0}^{n-k} c_{k l} \cdot \sum_{P} x^{k+i} y^{l+j}-2 \sum_{P} g x^{i} y^{j}=0
$$

or

$$
\sum_{k=0}^{n} \sum_{l=0}^{n-k} c_{k l} \sum_{P} x^{k+i} y^{l+}=\sum_{P} g x^{i} y^{\prime}
$$

where

$$
\begin{align*}
& j=0, r, \cdots,(n-i) \\
& i=0,1, \cdots, n . \tag{2}
\end{align*}
$$

There are the standard normal equations. It is useful to use matrix notation to discuss the properties of this system of equations. In this notation the system becomes:

$$
\begin{equation*}
\left[\sum_{P} x^{k+i} y^{i+j}\right]\left[c_{k l}\right]=\left[\sum_{P} g x^{i} y^{j}\right] \tag{3}
\end{equation*}
$$

The formal solution is

$$
\begin{equation*}
\left[c_{k l}\right]=\left[\sum_{P} x^{k+i} y^{i+i}\right]^{-1}\left[\sum_{P} g x^{i} y^{i}\right] . \tag{4}
\end{equation*}
$$

discussion of the normal equations
The first feature to notice about equation (3) is that the matrix [$\left.\sum x^{k+1} y^{l+\eta}\right]$ is a function only of n and P. The inverse matrix therefore does not depend on gravity values and may be found for any polynomial order once the pattern P is given. If the same pattern P is used in various geologic areas the same inverse applies and the solution is obtained by finding the column vector and premultiplying by a known inverse matrix. This is significantly simpler than inverting matrices for each set of data.

It is particularly fortunate that the patterns used in taking gravity data not only are repeated but in addition are frequently rectangular (excluding subsurface studies). Fr. A. Willers (1948, p. 322) demonstrates features resulting

Fio. 1. The rectangular pattern of observations.
from the (normalized) rectangular pattern in the continuous case. In the discrete case axes may be chosen so that the rectangle is symmetrical about them, and ordinates and abscissae taken to be integers as in Figure 1. For this pattern an element of the matrix [$\sum x^{k+i} y^{l+i}$] becomes

$$
\begin{equation*}
\sum_{P} x^{k+i} y^{l+j}=\sum_{\alpha=-N}^{N} \sum_{\beta=-M}^{M} \alpha^{k+i \beta^{l+j}}=\left[\sum_{-N}^{N} \alpha^{k+i}\right]\left[\sum_{-M}^{M} \beta^{l+j}\right] . \tag{5}
\end{equation*}
$$

When either $k+i$ or $l+j$ is odd the corresponding summation vanishes and the element is zero. Only when $k+i$ and $l+j$ are both even is an element non-zero. Now the element $\sum x^{k+i} y^{l+j}$ is the coefficient of $c_{k l}$ in the equation specified by i and j (equation (2)). Divide the c_{k} 's and the equations into four groups each as follows:

$$
\begin{aligned}
& \text { I } k \text { odd, } l \text { odd } \\
& \text { II } k \text { odd, } l \text { even } \\
& \text { III } k \text { even, } l \text { odd } \\
& \text { IV } k \text { even, } l \text { even }
\end{aligned}
$$

IA i odd, j odd
IIA i odd, j even
IIIA i even, j odd
IVA i even, j even.

All equations in group IA have non-zero coefficients only for $c_{k l}$ in class I since for groups II, III, and IV either $k+i$ or $l+j$ is odd. Similarly group IIA involves only $c_{k l}$ in class II, etc. Furthermore, since $\{k l\}$ and $\{i j\}$ assume the same range of values, there are as many members of a particular equation group as there are members of the corresponding $c_{k l}$ group. In other words, the original system of normal equations has broken down into four independent systems, each sufficient to determine all the $c_{k l}$ in one of the four groups of these unknowns. As might be expected by symmetry, equation groups IIA and IIIA have identical coefficient matrices in the case of a square grid.

The above statements apply to a polynomial of any order. Between polynomials of consequetive order there exists a relationship which may be stated as follows: if the order n of the polynomial is odd (even), all $c_{k l}$ for which $k+l$ is odd (even) will be the same as for the polynomial of order $n+1$. This follows from the fact that, if n is odd the extra c_{k} 's dealt with in the $(n+1)$ th polynomial must all have even $k+l$ so that only equation groups IIA and IIIA are affected. A similar statement holds if n is even.

Summary of Properties of Normal Equations When a Rectangular Grid is Used

I. The normal equations break down into four independent systems corresponding to four classes of coefficients. (Two of these systems have identical coefficient matrices for a square grid.)
2. Specifying the rectangular grid specifies all four inverse matrices regardless of gravity values on the grid.
3. Two of the four systems for an nth order polynomial must be equivalent to two of the four systems for the ($n+1$)th order polynomial.

$\therefore \quad$ Fro. 2. The solutions in matrix form of the normal equations for various polynomial orders n. Solutions are for a square grid of 121 points.
4. All independent systems have coefficient matrices which are positive definite and symmetric, so that non-singularity is guaranteed. ${ }^{1}$

FORMATION OF THE NORMAL EQUATIONS

The symmetry properties of rectangular grids which reduce normal equations to four separate systems, further simplify the computation of the elements of the coefficient matrix. Limiting the polynomial to order four or less, the relevant elements are

$$
\begin{array}{lllllllll}
\sum x^{0} y^{0} & \sum x^{2} & \sum x^{4} & \sum x^{6} & \sum x^{8} & \sum y^{2} & \sum y^{4} & \sum y^{0} & \sum y^{8} \tag{6}\\
\sum x^{2} y^{2} & \sum x^{2} y^{4} & \sum x^{2} y^{6} & \sum x^{4} y^{2} & \sum x^{4} y^{4} & \sum x^{6} y^{2}
\end{array}
$$

where the summations are taken over the grid considered.
Referring to Figure I it is evident that $\sum x^{k}$ over the grid equals $\sum x^{k}$ on a single horizontal line times the number of lines. Thus

$$
\sum x^{k}=(2 M+1) \sum_{a=-N}^{N} \alpha^{n},
$$

but since k is even

$$
\begin{equation*}
\sum x^{k}=2(2 M+1) \sum_{\alpha=1}^{N} \alpha^{k} . \tag{7}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
\sum y^{l}=2(2 N+1) \sum_{a=1}^{M} \alpha^{l} \tag{8}
\end{equation*}
$$

From equation (5) .

$$
\begin{equation*}
\sum x^{k} y^{l}=\left[\sum_{-N}^{N} \alpha^{k}\right]\left[\sum_{-M}^{M} \beta^{l}\right]=4\left[\sum_{a=1}^{N} \alpha^{k}\right]\left[\sum_{\beta=1}^{M} \beta^{i}\right] . \tag{9}
\end{equation*}
$$

Hence the sums (6) are easily derivable from relations (7), (8), and (9) if the quantities $\sum_{\alpha=1}^{N} \alpha^{k}$ are tabulated. Using this method the elements (6) were computed for six representative grids measuring 10 by 10 , 10 by 20,20 by 20,30 by 30,40 by 40 , and 50 by 50 . They are shown in Table I.

EXAMPLES
From Table I the normal equations were set up for a square grid of 121 points ($N=5, M=5$). The solutions, in matrix form, to these equations are shown in Figure 2 for polynomials of order 1, 2, 3, and 4. Figure 2 illustrates graphically

[^5]Table I
2x $x^{k} y^{l}$ over Various Grids Measuring $2 N \times 2 M$
for $k=0,2,4,6,8 l=0,2 \cdots(8-k)$

.	$N=5, M=5$	$N=5, M=10$	$N=10, M=10$	$N=15, M=15$	$N=20, M=20$	$N=25, M=25$
$-\sum x^{0} y^{0}=$	121	231	441	961	1,681	2,601
$\Sigma x^{2}=$	1,2io	2,310	16,170	76,880	235,340	563,550
$\Sigma x^{4}=$	21,538	41,118	1,063,986	11,055,344	59,258,612	219,671,790
$\Sigma x^{0}=$	451,330	861,630	83,093,010	1,889,941,040	17,749,376,420	101,885,895,150
$\sum x^{s}=$	10,185,538	19,445,118	7,044,715,986	351,321,903,344	5,784,339,914,612	51,429,792,671,790
$\Sigma \boldsymbol{y}^{\mathbf{2}}=$	1,210	8,470	16,170	76,880	235,340	563,550
$\Sigma y^{4}=$	21,538	557,326	1,063,986	11,055,344	59,258,612	219,671,790
$\underset{\Sigma}{\boldsymbol{\Sigma}} \boldsymbol{y}^{0}=$	451,330	43,524,910	83,093,010	1,889,941,040	177,749,376,420	101,885,895,150
$\sum y^{8}=$	$\because 10,185,538$	3,690,089,326	7,044,715,986	351,32I,903,344	5,784,339,914,612	51,429,792,675,790
$\sum x^{2} y^{2}=$	12,100	84,700	592,000	6,150,400	32,947,600	122,102,500
$\sum x^{2} y^{4}=$	215,380	5,573,260	39,012,820	884,427,520	8,296,205,680	47,595,554,500
$\sum x^{2} y^{8}=$	4,513,300	435,249,100	3,046,743,700	151,195,283,200	2,484,912,698,800	22,075,277,282,500
$\sum x^{4} y^{2}=$	215,380	1,507,660	39,012,820	884,427,520	8,296,205,680	47,595,554,500
$\Sigma x^{6} y^{2}=$	4,513,300	31,593,100	3,046,743,700	151,195,283,200	2,484,912,698,800	22,075,277,282,500
$\boldsymbol{\Sigma} \boldsymbol{x}^{4} \boldsymbol{y}^{4}=$	3,833,764	99,204,028	2,567,043,556	127, 180,677,376	2,088,984,590,224	18,552,747,144,100

the various simplifying properties associated with rectangular distributions. The elements of the solution vectors are arranged according to the groups I, II, III, and IV to show the independence of these groups.

Figure 2 is used in the following way. Suppose it is desired to fit gravity data over such a grid by a plane surface

$$
G(x y)=c_{00}+c_{10} x+c_{01} y .
$$

It is necessary to compute the quantities $\sum g, \sum g x$, and $\sum g y . G(x y)$ may then be written immediately as

$$
G(x y)=\frac{\sum g}{121}+\frac{\sum g x}{1,210} x+\frac{\sum g y}{1,210} y .
$$

Fig. 3. Raw gravity to be analyzed.

Fig. 4. Residual gravity with second order polynomial.
Following this, the equation must be solved at each point on the grid to determine the residuals. For higher order polynomials the determination of the $c_{k l}$'s is also quite rapid.

Figure 3 is a contour of gravity readings taken over a grid of this type. For these data ${ }_{1}$ topographic corrections were known to be low order effects (approximately second order) and were not removed. Because of this, a first order polynomial was not used. Instead the data were fitted successively by polynomials of order 2,3 , and 4 as an experiment in removing the regional and topographic effects simultaneously. The resulting residual contours are shown in Figures 4, 5, and 6.

Without evaluating the contours individually, it seems that there is a closer similarity between them than might be expected. This similarity is better illustrated in Figure 7, which represents contours of the three polynomials themselves.

Fig. 5. Residual gravity with third order polynomial.

The figure points out that the regional (plus topographic) anomaly approximations were not rapidly affected by the addition of higher order terms. The indication here is that the true regional anomaly is lower than fourth order and that other anomalies are considerably higher order effects. In this situation the second or third order contours are probably to be preferred.

MACEINE COMPUTATIONS AND THE DENSITY PLOT

The preceding discussion has been concerned with reducing the problem of finding the solutions of normal equations to a minimum. There still remain the formation of the vector [$\sum g x^{i} y^{i}$], the computation of the residuals, and the contouring of the results. These are all time consuming tasks. The author has been privileged to have the use of the Whirlwind I computer in his work at MIT and

Fig. 6. Residual gravity with fourth order polynomial.
would like to illustrate ways in which machines of this nature can handle such problems.

Whirlwind I is a high speed digital computer of high reliability. It is equipped with a "delayed printer" form of output, by which computational results may be transferred rapidly to magnetic tape. Then, while the machine is computing on another problem, a Flexowriter types out the results from the tape. Results may also be removed on an oscilloscope, photographs being taken of the displays. These are especially useful features in problems where there is a high ratio of output to computation, such as the problem under discussion.

Figure 8 is a reproduction of the output form of a "program" which computes residuals over rectangular grids. The residuals are automatically typed out over the same rectangular pattern to allow contouring without transcribing. The

Fio. 7. Contours of the polynomials for Figures 4, 5, and 6.
machine time used in this case (these are the residuals of Figure 6) including input, computation, and recording the residuals on magnetic tape is less than one minute.

Using the oscilloscope it is possible to do a form of contouring directly. However, it is also possible to present the results in what might be called a density plot display. Within each little square surrounding a point on the scope (representing a point on the $x y$ plane) is displayed a number of spots corresponding to the residual value at the point. Actually the number of spots displayed is logarithmically proportional to the residual because of the non-linearity of eye response to light intensity. The result is a shaded diagram in which the residual peaks stand out as white areas. Using a "program" which does this, a photograph of the residuals for the second order polynomial used elsewhere in this paper was

Fic. 8. Sample output of a program which computes residuals.
taken. It is shown in Figure 9 alongside of the corresponding contour map for comparison. The display takes about 25 seconds of machine time.

Residuals presented as density plots as in Figure 9 have immediate visual appeal and do not require the close examination that contours do. Furthermore the plot is unique and wandering contours in flat areas are avoided. It is apparent that the technique is not confined to gravity residuals but applies equally well to magnetic data or to any other problem involving two dimensional contours.

Further descriptions of Whirlwind are found in various issues of Digital Computer News Leller. Other features and coding details are described in Report R-rg6 of Electronic Computer Division, Servomechanisms Laboratory, MIT.

CONCLUSIONS

The foregoing review of least squares polynomial fitting suggests a method of bringing polynomials of order greater than one within practical range. This is accomplished by a standardization of the pattern on which data are taken. For any pattern which is rectangular the solutions may be represented in the form of Figure 2.

As for density plotting, the authoris convinced that digital computers have great versatility in treating geophysical problems. He presents this technique as an application of the digital computer which may not have been previously considered.

ACKNOWLEDGMENTS

The author is grateful to T. R. Madden for suggesting the least squares study. He wishes to acknowledge the assistance of M. K. Smith in developing the idea of density plotting. Thanks are due also to the personnel of the MIT Digital Computer Laboratory for their cooperation.

REFERENCES

Agocs, W. B., 1951, Least squares residual anomaly determination: Geophysics, v. 16, p. 686-6go. Cramer, Harold, 1946, Mathematical methods of statistics: Princeton, Princeton Univ. Press.
Frazer, R. A., W. J. Duncan, and A. R. Collat, i946, Elementary matrices: New York, The MacMillan Company.
Willers, Fr. A., 1948, Practical analysis: New York, Dover Publications, Incorporated.

SUBJ COMP LAW

UNPVERSITY OF UTAH RESEARCH WNSTITUTE EARTH BREMCE LAES. the dtah computer LAW AND BUSNESS REPORT
a publication of
(a nonprofit corporation)

Spring 1986 Issue

CONTEMTS

Feature Articles. 1
Cericor - Another Success Story. 1
FASB Issues Final Regulations on Accounting
for Internally Developed Computer Sof tware 3
Utah News and Business Developments 5
New Product Announcements 13
Recent Legal Developments 16
The Computer Law Corner 20
Application Form 22

> The Utah Computer Law and Business Report is published on a quarterly basis. Information and news relevant to or of interest to computerrelated Utah businesses or Utah computer professionals (technical, management, marketing, public relations, sales, financial, etc.) is welcome. Communications should be should be directed to: Jon C. Christiansen, Van Cott, Bagley, Cornwall \& McCarthy, P.O. Box 45340 Salt Lake City, Utah 84145 or (801)532-3333.

DISCLAIMER

The contents of this Report are for general informational purposes only and the Report and its authors disclaim any liability for any use thereof. This Report is not a substitute for your legal, accounting, financial and business advisors.

FEATUREARTICLES

CERICOR - ANOTHER SUCCESS STORY

We are pleased to report an additional inside view of the sale of assets of Cericor, Inc. to Hewlett-Packard Company ("HP"). Cericor was a local high tech company competing in the computer aided engineering marketplace. Public announcements have indicated that $B P$ proposes to maintain the Cericor operation in Salt Lake City. HP paid $\$ 30,800,000$ for Cericor. HP is a six billion dollar company with worldwide operations and 85,000 employees. Cericor is $2-1 / 2$ years old and has 64 employees.

For a better picture of what happened and what is expected, we arranged for this interviow with James U. Jensen, who was Cericor's Chief Financial Officer at the time of the acquisition. Jim is a founding partner in Jensen \& Swinton, a local law firm, emphasizing start-up and high growth representation. Jim is the founder of the Mountain West Venture Group, a local venture capital club. He previously served as Vice President and General Counsel of Dictaphone Corporation in Rye, New York and has advanced degrees in law and business from Columbia University. He lectures widely on high-tech and start up matters.

UCL\&BR: Jim, how did you first become involved with Cericor?

Jensen: I began working with Cericor as outside counsel in the fall of 1983. The company had previously been started and through my affiliation with Van Cott, Bagley, I was privileged to work on Cericor matters.

UCL\&BR: Could you tell from the beginning that the company had the potential growth shown by the sale to HP?

Jensen: Perhaps the single most important ingredient in success of a high-tech start up is the people. This company was lead by a very capable CEO, David L. Bailey. With him were several other key players who formed the founding team. Other talented people were added regularly. As the team grew, it seemed to continue to work well together. The company had two other ingredients which I found attractive. First was a commitment to have all employees share in the equity of the company. Second was a sense of urgency in completing the product and getting it to market.

UCL\&BR: Speaking of product, what is the product and why didn't you mention that as a key ingredient?

Jensen: The company's other founders, Stan Coleby, Mike Forster and Ed Allred had worked together at Evans \& Sutherland and had developed an understanding of object-oriented data-bases and a system for handling complexity which Cericor applied to computer aided engineering. Many people have recognized this field as providing considerable growth opportunities. Certainly, the product is important in any start-up. The product in this instance was a reflection cf the founders' vision that newly developed technology could be applied to a growing market need. In the hands of a less talented or committed team, the "product" may never have received the recognition of its value shown by the HP deal.

UCL\&BR: Could Cericor have achieved its goal without RP?

Jensen: At this point we will never know. It is clear that $H P$ had become an important Cericor customer and that $H P$ wanted to purchase the Cericor assets before considerable sales had occurred. Any high-tech start-up must realize that one important avenue for the technology to make its way to the market is through combining the company's product with products of one or more larger established companies.

In the final analysis, $H P$ decided that it wanted to apply the technology more directly to HP's product line and wanted all of the attention of the founders; the HP offer was sufficiently attractive that the stockholders of Cericor decided to accept.

UCL\&BR: Speaking of stockholders, did the company have venture capital backing and did it have many Utah stockholders?

Jensen: Perhaps it is a comment on the availability of risk-oriented Utah investors that only a handful of original investors were from Utah. The company had raised over 7 million dollars from several rounds of financing prior to selling to HP, but the presence of a so called Venture Capital fund came relatively late in the company's history. Nonetheless, four outside investors had seats on the seven-member board of directors; directors from HP and Data General joined the company in midyear 1985. The two other outside directors joined the company previously. Each outside director brought to the company considerable experience, knowledge, contacts and judgment -leadership depth which is often seen lacking in other startups.

UCL\&BR: It was previously announced that Cericor had sold stock to HP and to Data General in equal amounts totaling about 22% of the company. How did it come about that these two large computer companies bought into a start-up at the same time?

Jensen: As you know, the high-tech field has its ups and downs just like any other industry. Many large companies see smaller start-ups as a valuable window on new technology and a way to stay ahead of the technical advances of competitors.

UCL\&BR: Was it a handicap to Cericor that it was located here in Utah?

Jensen: Yes and no. This is where the founders lived, so it was natural to start the company here. Utah has a very supportive environment for entrepreneurs, and the government is becoming more supportive. It is a long plane ride, however, to many markets, including the capital markets. Competent employees can be attracted here (although not everyone would choose to move from Boston or Palo Alto to Salt Lake City). Competent outside professionals and experts are also available; and our outside directors were regularly available in person or by phone.

UCL\&BR: How did you move from outside counsel to chief financial officer and what is in store for you now?

Jensen: Throughout my career I have worked on a variety of finance and comercial matters. I had worked with Cericor on a variety of matters and on its several financings, so 1 had a pretty good idea what Cericor looked like before 1 joined the company. HP is a very fine company but probably doesn't need a chief financial officer or general counsel in
its Salt Lake City Division. I was still having fun when the stockholders decided to accept $H P$'s offer. After we closed the deal and I decided to look at other opportunities. I have found that Utah has a growing number of high quality start-ups and that its universities are very cooperative in licensing new technology into growth oriented companies. I am now back working in other venture situations in various capacities and regularly look at a variety of other exciting opportunities here in our community.

UCL\&BR: In a world of specialization, is a move such as your exceptional?

Jensen: Perhaps, but I have been fortunate over the years to enjoy a broad range of experiences applicable to the growth of companies. I enjoy new challenges and the excitement of helping to bring together all the various areas of expertise required to help a product make its way to the marketplace.

UCL\&BR: Werè you disappointed to see the company sold so soon after you joined it?

Jensen: Of course. I had looked forward to a longer relationship with Cericor, but I believe the HP deal was in the best interest of the stockholders. I will miss the close association with the people of Cericor (now HP), but life moves on. I am confident our community will see more successes like this in the future.

UCL\&BR: Thank you.

FASB ISSUES FINAL REGULATIONS ON ACCOUNTING FOR INTERNALLY DEVELOPED COMPUTER SOFTWARE

By Michael B. Malan, C.P.A. Senior Consultant
Deloitte, Haskins and Sells Salt Lake City, Utah

In August, 1985, the Financial Accounting Standards Board (FASB) published new guidelines that will hopefully end the controversy about accounting for software started in 1969 when IBM first began separately marketing its hardware and software products.

Consistent with prior accounting pronouncements, the statement requires that all research and development costs for developing new software products be expensed as incurred. However, this statement provides definitive project milestones that, when reached, will allow further production costs to be capitalized on the Company's balance sheet as an asset.

Statement of Financial Accounting Standards No. 86: Accounting for the Costs of Computer Software to be Sold, Leased, or Otherwise Marketed states that, "costs incurred internally in creating a computer software product shall be charged to expense when incurred as research and development costs until technological feasibility has been established for the product."

After the technological feasibility of the product has been established, all costs of producing a
product master, including coding and testing costs, should be carried as an asset on the Company's balance sheet and written off over the product's useful life.
"The technological feasibility of a computer software product is established when all planning, designing, coding and testing activities that are necessary to establish that the product can be produced" is completed. At a minimum, the Company must be able to demonstrate that it has completed and tested a detail program design or it has completed a working model of the product. The Statement defines a detail program design as "the detail design of a computer software product that takes product function, feature, and technical requirements to their most detailed, logical form and is ready for coding." A working model is defined as "an operative version of the computer software product that is completed in the same software language as the product to be ultimately marketed, performs all the . major functions planned for the product, and is ready for initial.customer testing."

The statement becomes effective for all fiscal years beginning after December 15, 1985 and earlier application is permitted.

The new pronouncement may be helpful to computer software companies pursuing additional debt or equity financing. By carrying some software development costs of an internally developed software product as an asset, a Company will have a stronger balance sheet and income statement. In turn, this will make the Company much more attractive to prospective lenders and investors.

UTAB NEHS AND BUSINESS DEVELOPMENTS

EVANS AND SUTHERLAND FINANCIAL UPDATE

Evans and Sutherland Computer Corporation of Salt Lake City, Utah has announced financial results for 1985 and the first quarter of 1986.

Sales for 1985 were $\$ 79,588,316$ as compared to 1984 sales of $\$ 70,116,171$. New earnings for 1985 were $\$ 6,190,576$ ($\$ 0.72$ per share) as compared to 1984 net earnings of $\$ 7,309,118$ ($\$ 0.83$ per share). It should be noted that research and development expenditures for 1985 were $\$ 17,480,555$, an increase of more than \$7,000,000 over 1984 R\&D expenses.

Sales during the first quarter (ending March 28) of 1986 were $\$ 23,305,000$ as compared to $\$ 15,591,000$ for 1985 first quarter sales. Net earnings for the 1986 first quarter were $\$ 1,228,000$ as compared to $\$ 349,000$ for the previous year. R\&D expenditures for the first quarter of 1986 were $\$ 4,817,000$.

Evans \& Sutherland designs, builds and sells special-purpose digital computers which are used to create visual images of data bases stored in computer memory. Such systems are used for computer-aided engineering and design (CAE/CAD/CAM), training simulation, engineering simulation, scientific research, education, graphic arts, entertainment, etc. The Company also produces, sells, and services software for such computing systems.

Dr. David C. Evans, President, stated: "The order rate for Simulation products has continued to be very good,
with approximately $\$ 23$ million booked during this first quarter. Our CT (Continuous Tone) line, especially the new CT6, has been very strong, and we are pleased with its success in competitive situations. Another new product, the SPX, has been introduced and is being bid on selected proposals. In addition, NOVOVIEW bookings from civil aviation and military customers continue at a very good rate. In Interactive Systems, sales of the PS 300 products are currently running ahead of last year, although we are facing increasingly strong competition in this very mature product line. Our new product offerings, Romulus-D and our new graphics hardware technology, are well along in development, and initial orders should be seen before the end of the year. This advanced graphics hardware technology will also be marketed by other firms, such as Digital Equipment Corporation, with whom we signed a joint technology agreement in March of this year."

EVANS AND SUTHERLAND ANNOUNCES NEW CONTRACTS WITH GENERAL DYNAMICS AND GOODYEAR AEROSPACE

Evans and Sutherland announced 1985 contracts with the Fort Worth Division of General Dynamics Corporation and Goodyear Aerospace Corporation of Akron, Ohio. The General Dynamics contract is for CT5A and CT6 Computer Image Generation (CIG) Systems and is valued at $\$ 12,600,000$. The Goodyear contract is for a CT6 Computer Image System and is valued in excess of \$2,600,000.

General Dynamics will use the advanced $F 16$ aircraft as well as next generation tactical fighter aircraft. General Dynamics manufactures the F16, the tactical aircraft used by the U.S. Air Force and NATO. The CT6 from Evans \& Sutherland is the latest model in the CT series of computer image generation systems. The CT6 offers new effects and patterns, including a feature called Advanced Surface Texturing. This technology significantly enhances image details to provide a more "real world" appearance.

Goodyear will use the CT6 system to produce electro-optical and infrared sensor imagery in an engineering flight simulator for the development of tactical fighter aircraft simulation systems. The CT6 system is Evans \& Sutherland's next generation system, following in the footsteps of its successful predecessor, the CT5/5A.

BRIGHAM YOUNG UNIVERSITY TEACHES ENTIRE COURSE VIA COMPUTER

Brigham Young University has become the first major university to teach an entire college course via computer. Drs. Gordon Stokes and Larry Christiansen, of BYU's Computer Science Department, have been using WICAT Systems hardware and software to teach Computer Science 103, a Pascal programing course, since January 1985. 'We had so many students signing up for our introductory computer courses," said Dr. Christiansen, "that we decided to create a computer
program to ease the load on teachers. About three years ago, our enrollment for such courses just skyrocketed, jumping from 100 students to 500, then 700 and then 1,000 students. Dr. Stokes explained that the original intent in developing the course was to "use the computer course as a fill-in or part-time substitute for a teacher. But now that we have used it several times, we believe that it is better than a teacher for this type of class, so we use it to teach the entire course."

Although other universities are using computer-assisted instruction at the college level, none of them have used a computer to teach an entire course. "As far as we know, BYU is the only major university that has totally replaced the lecture with a computer as the teacher," Dr. Stockes said. "This course was designed as a curriculum, a two-hour semester course that would replace the normal classroom situation. Other courses, especially languages, use computers as a training tool but not as a teacher."

At the beginning of the course, students are given a ten-minute overview explaining the 25 modules in the course, showing how to begin on their computer terminals, and detailing computer-lab procedures. After that, students get all their instruction from "Elrond" (the name given to the program), though they can get help from a lab assistant, who is always on hand during computer-lab hours. According to the chief lab assistant Gary Stokes, a graduate student in computer science, "The 36 student terminals in the computer lab are connected to two System 220s, each of which runs the Elrond program. During the course, students are required to take four regularly scheduled exams at their terminals in order to keep them from
procrastinating until the last two or three weeks of the course. Elrond automatically grades the exams and records the grades."

Brigham Young University and WICAT Systems plan to jointly market the Pascal course to other universities and colleges in the near future.

DAYNA NOW SHIPPING MacCRARLIE

 IBM COMPATIBILITY FOR APPLE'S MACINTOSHDayna Communications of Salt Lake City is now shipping MacCharlie, a hardware and software product which enables the popular Apple Macintosh personal computer to use software written for the IBM PC. Until now, the Apple Macintosh was limited to software written specifically for the Macintosh since it was not originally designed to be IBM PC compatible.

MacCharlie permits Macintosh users to access the large library of IBM PC-compatible software, to connect to IBM serial networks, to. exchange PC and Macintosh data files, and to use IBM peripheral devices such as letter quality printers. It also serves as a printer buffer to the Macintosh. 'With MacCharlie, you can have the best of both worlds; the ease of use, portability and innovative features of the Macintosh as well as the extensive software library and expandability of the IBM PC, all in a single, compact system," said Dayna Communications' Chairman, William K. Sadleir. "MacCharlie provides a sudden and complete bridge over the gap between the Macintosh and the IBM PC."

MacCharlie functions as a co-processing device. It consists of two primary components: a keyboard extension that has 10 function keys on the left side and 18 keys on the right side and an expansion unit that physically connects to the right side of the Macintosh, which contains the electronics and the disk drives. In the Macintosh mode, the 18 keys function as a normal Macintosh numeric keypad. In the PC mode, they function as a numeric entry pad and perform cursor control and editing functions as do the corresponding keys on the IBM PC keyboard. The user simply connects MacCharlie to the Macintosh with the provided cables and it is ready to use. Virtually anything a monochrome IBM PC can do, MacCharlie can do.

The unit comes standard with two 5.25-inch, double-sided, double density disk drives with 360 kilobytes (K) of storage and with 340 K of random access memory (RAM). MacCharlie causes the Macintosh to act like an IBM PC or standard Macintosh, depending on the mode the user selects.

MacCharlie sells at a suggested retail price of $\$ 1,795$. The system comes complete with MS DOS 3.1 and GWBASIC. The company is marketing MacCharlie through computer retail stores. "The interest is absolutely incredible, particularly among our large corporate customers," says Thomas A. Guttschow, owner of TZ Computers in Bloomington, Illinois. "MacCharlie is a shoe-in for 1985's Product of the Year. It's certainly a product that will find ample shelf space in our store." Dayna began shipping products in August 1985.

In creating MacCharlie, Dayma's primary motivation was not to cause the Macintosh to behave like the IBM PC, but rather to make the Apple Macintosh more appealing to IBM-biased computer users. "We recognized when Macintosh was introduced in early 1984 that it was technologically superior to the IBM PC. However, potential users, particulary business users, would be reticent to make the purchase decision if it meant abandoning their IBM PC-compatible software and hardware investment. The decision should new be easy. Buy a Macintosh and MacCharlie and use the software that best suits your particular application," Sadleir said.

Computer industry experts seem to agree. Since the computer market is software driven, MacCharlie could well be a primary vehicle for making the Macintosh more accepted in the business community. Businesses are intrigued by the enhanced features of the Apple Macintosh but have been reluctant to buy. Many have invested so much money in IBM PC-compatible software and hardware that, in spite of Macintosh's advantages, they just cannot justify the change. MacCharlie, however, should solve that problem since the IBM PC-compatible software and hardware can be used by Macintosh as long as it is connected to MacCharlie.

Existing Macintosh users should also benefit from MacCharlie. 'With MacCharlie, Dayna has virtually announced the availiability of almost 10,000 new software programs for the Macintosh," said Jerry Brereton, former General Manager of Businessland in Salt Lake City, and now Senior Vice President of Marketing and Sales at Dayna. "Even IBM PC-compatible software is enhanced by the
combination of Macintosh and MacCharlie since many of the features which exist on Macintosh, such as the desktop utilities and the clipboard, will still work with MacCharlie while in the IBM PC mode," said Brereton.

Dayna Communications is a privately held corporation headquarted in Salt Lake City, Utah. Dayna, through its affiliates, has been in the software business nearly ten years and, among other products, has developed sophisticated management information systems for large financial institutions.

IOMEGA ANNOUNCES PLANS TO BUILD PLANT IN SALT LAKE AREA

Iomega Corporation President, Gabriel P. Fusco, announced plans at a press conference also attended by Gov. Norman Bangerter to build a Salt Lake area plant to manufacture Iomega's Bernoulli Box disk drive subsystem and disk drive cartridges. The plant will be approximately 140,000 square feet in size and will increase the company's engineering and production space by about 90\%. The plant is expected to employ 300 to 500 persons by the end of 1986. Iomega currently employes over 1,000 persons at its plants in Roy, Utah.

The Boulder, Colorado area had been under serious consideration for the expansion. In the end, however, the efforts of Gov. Bangerter, the Utah Business \& Economic Development Division and others were successful in attracting Iomega to Salt Lake. Iomega sees Utah as a high-tech center of research and development, production and support services.

The Bernoulli Box is a high storage (20 megabytes) disk drive subsystem compatible with the IBM PC, XT, AT, the TI Professional and the Apple Macintosh. The Bernoulli Box is a unique product in that its operation is based upon Bernoulli's Law of fluid dynamics. According to Mr. Fusco, this technology is protected by patents which in turn protect Iomega against competitive inroads which have plaqued most other U.S. disk drive manufacturers.

IOMEGA DISCLOSES 1985

 FINANCIAL RESULTSIomega Corporation of Roy, Utah achieved 1985 sales of $\$ 115,515,000$ which is more than double the sales performance of $\$ 51,117,000$ for 1984. Net income reported for 1985 was $\$ 14,894,000$ ($\$ 1.01$ per share) as compared to $\$ 2,521,000$ ($\$ 0.19$ per share) for 1984. Research and developement expenditures for 1985 were $\$ 6,189,000$, an increase of $\$ 2,441,000$ over 1984.

Gabriel P. Fusco, President, has projected sales in excess of $\$ 200,000,000$ for 1986.

WICAT SYSTEMS, INC. REPORTS PROFITS FOR ITS THIRD FISCAL QUARTER

WICAT Systems (NASDAQ:WCAT) of Orem, Utah reported results for its third fiscal quarter, ended December 29, 1985. Revenues were $\$ 8,849,000$ up 26% over the
$\$ 7,009,000$ reported for the same period one year ago. Profit for the quarter was $\$ 54,000$ or less than one cent per share, compared with the third quarter loss a year earlier of $\$ 2,184,000$ or eleven cents per share. Revenues for the nine months ended December 29 were $\$ 29,681,000$ up 48% from $\$ 20,067,000$ for the nine months a year earlier. The profit for the nine months of $\$ 377,000$ or two cents per share, compares to a loss of $\$ 5,807,000$ or twenty-eight cents per share for the nine months last year. The Company's cash reserves increased during the quarter by nearly $\$ 2,000,000$ to more than $\$ 32,000,000$. WICAT Systems, Inc. designs, produces, markets and services educational computer systems and curicula for schools and homes, computer-based training systems for industry and government, and general purpose multi-user supermicro computer systems.

WICAT ANNOUNCES PROMOTIONS

The following personnel changes have been announced by WICAT Systems during the first quarter of 1986:

1. Derin Ford to Manager of Sales Administration.
2. Joe Staples to Director of Quality.
3. Mark Nelson to Director of Sales Support.
4. Jerry Geiger to Vice

President of Manufacturing.
5. Terry Young to National Depot Manager.
6. Don Stephens to Production Manager, Manufacturing Division.
7. Dan Hostetter to Production and Inventory Control Manager, Manufacturing Division.
8. Dr. Peter G. Fairweather to Corporate Product Manager for Education and Training.
9. Bob Larsen to Manager of WISE Runtime Software Development Group.

SPIELBERG, HARVARD AND WICAT SYSTEMS JOIN IN SEARCH FOR E.T.

It sounds like another episode of "Amazing Stories," but this one is true. Hollywood director Steven Spielberg ("Close Encounters" and "E.T."), Harvard University and WICAT Systems are partners in a search for the real E.T.

The search began in March of 1983, when Paul Horowitz, an astronomer at Harvard University, hooked up a WICAT Systems computer to a giant radio telescope to listen for alien signals. Grants from Carl Sagan and the Planetary Society kept the project going, but a recent donation of $\$ 100,000$ from Spielberg has turned it into the world's biggest search for extraterrestrial life. "Its's the most comprehensive search that I know of," Horowitz said. "By the fall of 1986 we will have finished a complete scan of the sky."

Called Project META (Megachannel Extra-Terrestrial Assay), the search uses an 84 -foot diameter radio telescope to scan the sky for distant radio signals and evidence of intelligent life in outer space. Spielberg's grant allowed Horowitz, the project's developer, to expand the search to 8.4 million radio frequencies. Previously, the telescope could scan only 128,000 channels.

The upgraded antenna can now reach the outer edges of the Milky Way Galaxy, some 80,000 light years away from Harvard's Oak Ridge Observatory, where the search continues around the clock. The stationary dish works as the Earth's rotation sweeps it around the sky. The antenna automatically adjusts itself one-half degree every 24 hours so that it sweeps in a 100 -degree-wide band around the sky every 200 days.

The radio telescope, located about 30 miles northwest of Boston, methodically "listens" to millions of radio frequencies while a computerized spectral analyzer, developed by Horowitz, examines the channels for anything unusual. Spielberg's donation helped Horowitz build the analyzer, which uses 144 processors, each with a 68000 CPU running at 10 MHz . Each processor is dedicated to a specific range of frequencies. "The 144 independent processors are all essentially slaves to a WICAT System 150," Horowitz said. "It's the same old machine, the unmapped single-user 150 we've been using since March of 1983." The Harvard astronomer is using two System 150s with Project META. One is used to control the real-time acquisition and storage of data and to adjust the frequency of the receivers. The other is used to look at the data from the on-line machine and develop software for the project. Horowitz praised the performance of the WICAT Systems computer. "It's worked 100 percent of the time, 24 hours a day," he said. "It has worked remarkably reliably."

The upgraded Project META was initiated September 29, 1985 at a ceremony attended by Spielberg, Sagan and Horowitz at the observatory. It costs
about $\$ 25,000$ a year to run the operation, and funding comes from outside sources such as the Planetary Society and private donations. Although the search hasn't picked up any extraterrestrial signals yet, Horowitz said there is a high probability that intelligent life exists elsewhere in our galaxy, and that it is within "hearing distance" of Project META. "Within 50 light years of Earth, there are 150 stars similar to our sun. Within 1,000 light years of Earth, there are a million sunlike stars," he said. But that doesn't mean he'll be hearing from E.T. anytime soon. "It could take years, even decades, for a message to reach us. That's why the search is automatically monitored," he said.
$\$ 10,000,000$ CONTRACT BETWEEN
WICAT AND SYSCON CORFORATION FOR
U.S. NAVY

WICAT Systems, Inc. has announced that it will be providing a large quantity of its computer systems to SYSCON Corporation as part of a production contract recently won by SYSCON to provide NAVTAG Training Systems to the U.S. Navy. In addition to the systems, WICAT will provide support and maintenance service. The total agreement has an estimated value in excess of ten million dollars, according to company officials.

The Naval Training Equipment Center commissioned SYSCON to develop computer-based strategic "war games". for training tactical officers on-board naval vessels. The resulting Naval Technical Game (NAVTAG) Training System enables
officers to give sensor, maneuvering, or weapon employment commands in hypothetical, life-like situations.

The U.S. Navy chose the WICAT System 150WS as the microcomputer delivery system for NAVTAG. The 150 's mass disk storage will support the prompted, interactive program where the "game" director chooses a scenario already stored in the system or creates one of his own. He then monitors play from the 150's integrated CRT while the players interact though two connected video terminals. The results of their tactical decisions are reflected in a graphic screen display over one minute intervals of real time. The result is a sophisticated training system that closely resembles actual combat engagements.

NOVELL RELEASES 1985 FINANCIAL DATA

AND ANNOUNCES SUCCESS OF $\$ 20,000,000$ STOCK OFFERING

Financial statements released by Novell, Inc. of Orem, Utah for fiscal year 1985 (ending October 26) show sales of $\$ 33,618,000$ and income of $\$ 4,159,000$ ($\$ 0.41$ per share). These figures are up impressively from the previous year in which Novell reported sales of $\$ 10,862,000$ and income of $\$ 585,000$ ($\$ 0.06$ per share). Novell designs, manufactures and markets a family of local area network (LAN) and communication products which allow personal computers to share files, data and resources. Novell's operating results for the first quarter ended January 25, 1986 have also been announced. Sales in the first
quarter of fiscal 1985 were $\$ 14,472,000$ compared with $\$ 4,821,000$ in the same period in fiscal 1985, an increase of 200\%. Novell's income before extraordinary credit in the 1986 first quarter increased 329% to $\$ 2,071,000$, compared with $\$ 483,000$ one year ago. Earnings per share in the current quarter were $\$ 0.20$, versus $\$ 0.05$ for the first quarter of fiscal 1985.

Raymond H. Noorda, President of Nove11, stated, "Sales of both LAN systems and LAN software were strong in the quarter. Novell's sales increased substantially through all major channels of distribution. Novell distributed product through five channels: 1. Distributors. 2. Original equipment manufacturers. 3. Computer retail chains. 4. Value added resellers. 5. Directly to end-users."

In February 1986, Novell completed the sale of $1,192,000$ shares of its Common Stock to the public. Net proceeds of the offering, approximately $\$ 20$ million, were used to repay all of Novell's debt and to increase working capital.

NOVELL, 3COM ANNOUNCE AGREEMENT

TO IMPROVE ETHERNET PERFORMANCE

Nove11, Inc., a personal computer networking and data communications company, has announced a marketing agreement with 3Com Corporation, under which Novell will sell the EtherLink Plus network adapter board designed by $3 C O M$ with Novell's own Advanced NewWare/286 operating system. Novell's reason for offering Advanced NetWare/286 with the Etherlink Plus board is to provide a more efficient, higher
performance network for Ethernet users. "With Advanced NetWare/286 in combination with the Etherlink Plus board," explained Craig Burton, vice president of marketing for Novell, "we believe that we are providing the best possible package for the Ethernet niche. As the premier operating system company, we feel that it is an important step to team up the most popular Ethernet hardware with the most sophisticated, widely used network operating system available."

Burton emphasized the significance of the agreement. "Novell and 3 Com have worked together to provide this product combination. The Etherlink Plus board is much more efficient and provides better network performance than the original Etherlink board. End users who want the strongest performance will benefit by using the new board in the file server, and even more by using the Novell Server 286A rather than an IBM PC AT." The Etherlink Plus board is designed for use with an IBM PC AT or compatible server, added Burton.

Novell will begin shipping NetWare/E + in all its configurations during the first quarter of 1986. The board and operating system together will sell for $\$ 2,495$.

SATELLITE SOFTWARE INTERNATIONAL REPORTS GROWTH IN 1985

Satellite Software International of Orem, Utah, well known for its Word Perfect software product, reported sales of $\$ 23,000,000$ for 1985, up from $\$ 9,000,000$ in 1984. The company also reports a 20% increase in earnings. Strong sales of Word Perfect 4.1 and a site licensing plan have been credited as the basis for this strong growth.

NEM PRODUCT ANNOUNCEMENTS

LOW COST TERMINAL NOW AVAILABLE FROM WICAT

WICAT Systems is now offering its customers a cost-competitive computer terminal, the T7100. The T7100 terminal replaces, the T7000 terminal. The new terminal can be used with the following WICAT Systems supermicro computers: System 1250, System 1255, System 1260 and System 2220. Most WICAT Systems software applications, with a minimum number of modifications. will run on the T7100 terminal. Graphics applications will run on the MG8000 and WIT terminals; which the company will continue to produce.

The T7100 is an ANSI-compatible, desktop video display terminal that is capable of interfacing with a variety of computer systems and peripheral devices. The terminal consists of a keyboard and display unit. The keyboard attaches to the display unit via a coiled cable extending to a maximum of six feet. It has a step-sculptured profile with an adjustable slope of 7,11 and 15 degrees. Sixteen programmable function keys are available for sending user-developed or default codes to the screen or the host computer. Forms or command sequences are stored in a 256-byte nonvolatile memory. It also has a separate numeric keypad, separate editing keys, and four $P F$ (general purpose function) keys.

The display unit features a 14-in. viewing screen that is seated on a pedestal which allows the unit to tilt and swivel. The screen can display 24 horizontal lines of 80 or 132 characters. In addition, a programmable user line on the last row of the screen
and a status line on the first row of the screen may be selected for display by the user.

A unique feature of the T7100 is the CRT saver. After about 10 minutes, if no information is sent to the terminal by either the user or host computer, all displayed information (except for the user line) disappears from the viewing screen. It reappears as soon as a key is pressed or a prompt is received from the host computer. This feature prolongs the operating life of the video display.

Other features of the display unit are extended page mode, selectable scrolling rates, spit screen, auto-paging, and double-high/double-wide character display.

IBM ANNOUNCES NEW EDUCATIONAL
SOFTWARE PRODUCTS, INCLUDING PROGRAMS DEVELOPED BY WICAT

International Business Machines Corporation (IBM) has announced thirty-five educational software products for use on the IBM PC family, twenty-five of which were developed by WICAT Systems of Orem, Utah. The WICAT Systems products offer individualized instruction in the basic skill areas for grades kindergarten through eight. Courses in reading, language arts and math have been designed to run on the entire family of IBM Personal Computers. "WICAT Systems is delighted to have IBM marketing our PC courseware products," said Dr. Dustin H. Heuston, Chariman of WICAT Systems. "We believe the announced curricula will not
only be used by schools but in the future may be a significant product for use in the home." The announced software products were developed over the past three years as part of a $\$ 15$ million Limited R\&D Partnership for which WICAT Systems serves as general partner.

WICAT AND TWA DEVELOP

TRAINING SYSTEM FOR PILOTS
WICAT Systems and Trans World Airlines (TWA) have completed joint development of a computer-simulated training system for new DC-9 pilots. The course covers operating procedures for a Flight Guidance System (autopilot) and includes demonstrations and practice exercises. Expenses of developing the training package were shared by WICAT Systems and TWA, according to Andy Gibbons, WICAT Systems. development consultant for the project.

WICAT Systems will market the training package to DC-9 users worldwide. TWA is already using the course and expects it "to pay for itself within less than a year;" according to Glen Hersch, TWA's Director of Operations Training, who coordinated the development project. McDonnell-Douglas Aircraft plans to use the system for training pilots of Scandanavian Airways Systems (SAS).

According to Hersch, trainees use the WICAT Systems computer-based course after they receive two hours of classroom instruction. Following the course, trainees must fly a full-motion platform flight simulator, or simulated cockpit. The experience gained through. the computer-based course reduces the time the trainees must spend in the
simulated cockpit. This reduces training costs because operating the simulated cockpit it expensive.
"Although similar pilot-training systems are available from other vendors," said Gibbons, "ours is the oniy one created by nonprogrammers. The WISE (WICAT's Interactive System for Education) authoring program allows us to created the program for the training package without programers-at about half the cost of employing programmers to do so. Furthermore, it took us less than half the time it would have taken a team of progranmers-in all, approximately eight months. This makes our package very cost competitive."

The hardware for the training package includes a System 155; a WIT (WICAT Interactive Terminal) with touchscreen capability, color, and graphics; and a videodisc player.

IOMEGA'S HALF-HEIGHT NETWORK
 SERVER ADDS HIGH PERFORMANCE DATA-STORAGE CAPABILITIES TO THE MACINTOSH OFFICE

Answering the data-storage limitations of the AppleTalk Network ${ }^{\text {Th }}$, IOMEGA Corporation has announced the availability of its 20-megabyte half-height AppleTalk Network Server, an add-on device specially designed to supplement the Macintosh office from Apple Computer, Inc.

The AppleTalk Network Server can back up data at a rate of l-megabyte-per-minute onto rugged 10 -megabyte cartridges. The cartridge can be removed from the drive and locked away for security or transported between different
locations, even by mail. In addition, the network server's storage capacity is virtually unlimited. By adding cartridges in 10 -megabyte increments, users can affordably expand their data-storage system to meet their growing needs.

The system can accommodate as many as 20 Macintosh computers at one time, allowing each user 1 -megabyte of on-line, password-protected data-storage capacity.
network requires a a specialized data-storage system," explained Scott D. McVay, vice president of marketing for Iomega. "By applying our proven Bernoulli technology, we can now bring the power of data independence to the Macintosh Office."

Based on the principle of fluid dynamics, first articulated by 18th century mathematician Daniel Bernoulli, the Bernoulli Box takes the best of both floppy and hard disk technology, combining Winchester drive performance with cost-effective removable-media features.

The 20-megabyte AppleTalk Network Server includes two 10 -megabyte cartridges, AppleTalk support software and Iomega utilities, such as whole disk copying, partitioning, password protection and formatting. The suggested retail price is $\mathbf{\$ 3 , 7 5 0}$.

ADVANCED NETWARE 2.0:
ENHANCED OPERATING SYSTEM SOFTWARE
FROM NOVELL
Novel1, Inc., announces the release of Advanced NetWare 2.0. This
enhanced operating system software offers several pówerful features: DOS 3.1 compatibility, enhanced user utilities, a NetWare tutorial, an Auto-Spool feature, internal and external bridging capabilities, generic operating system software, network diagnostics software, NETBIOS emulation, and an internetwork communication protocol.

According to Craig Burton, Novell's vice president of marketing, Novell's release of Advanced NetWare 2.0 "marks several major breakthroughs in networking software operating system technology. This new product marks the sixth iteration of major file server release software from Novell. No other company has the experience and technology base that these releases represent:"

The feature of the new operating system are designed to simplify networking for the end user.

becent legal developments
 OF IMPORTANCEAND INTEREST

SOFTWARE PIRACY SUIT SETTLED

The Association of Data Processing Service Organizations; Inc. (ADAPSO) and Mícropro International reached a settlement last year with American Brands, Inc., and its subsidiary, Wilson Jones Company, in a software copyright infringement suit filed by ADAPSO and Micropro last January. The suit alleged unauthorized copying of three Micropro programs marketed under the trademarks MailMerge, SpeliStar and WordStar. In a joint statement issued by the parties, American Brands and Wilson Jones agreed that the MicroPro programs. had been "improperly duplicated by some Wilson Jones personnel." The defendants further agreed to institute $"$ appropriate procedures. .to ensure against such improper duplication in the future".

Editor"s Comments: Settlement of the Micropro suit was a very practical and reasonable resolution to this dispute, but a disappointment to those computer lawyers, including myself, who were looking forward to a judicial resolution of the copyright and contract issues involved in the case. Such issues include the scope of fair use, backup and adaption rights of the owner of a copy of a computer program and the enforceability of "shirink-wrap" license contracts. The lesson to be learned from the Micropro suit is that companies who fail to take measures to prevent unauthorized copying by employees are vulnerable to copyright infringement suits. The problem, without doubt, is wide spread, as many employees do not hesitate to make unauthorized copies of licensed software. The best way for a company to protect itself against a costly and embarrassing suit is
to require all of its employees having access to computer software to read and sign a policy statement on software use. The company must also enforce the policy statement. A copy of a sample policy statement suggested by ADAPSO can be obtained from the Utah Compiter Law and Business Report by contacting me at the address or telephone number given on page 22. Software developers and vendors should encourage their customers to adopt and use such policy statements.

OWNER OF INFRINGED SOFTWARE COPYRIGHT DENIED RECOVERY OF ATTORNEYS FEES

In the case of Whelan Associates, Inc. v. Jaslow Dental Lab, a federal district court found that Jaslow had willfully and intentionally infringed a computer software copyright of Whelen. The court originally ordered Jaslow to pay Whelan its attorneys" tees. Upon reconsideration, however, the court held that it could not award attorneys' fees to Whelan becaise the infringement of the copyright began prior to the effective date of the registration of the copyright. Section 412 of the Copyright Act prohibits the award of attorneys fees under such circumstances.

Editor's Coments: This case illustrates one reason why any company, which develops or markets software should promptly register its copyrights with the United States Copyright office. If a copyright is not registered before the infringement begins, the copyright owner will not be allowed to recover its attorneys. fees from the infringer. The legal fees incurred in a copyright infringement suit can. be substantial. It is also noted that the Copyright Act does not allow a
court to award "statutory damages" in lieu of actual damages and infringer's "profits" if the copyright was not registered before the infringement began. Actual damages and infringer's profits are difficult to prove: This difficulty often means that "statutory damages" (which require no proof and are awarded at the discretion of the court) represent the copyright owners only means for recovery of a monetary award. Prompt registration of all software copyrights is an essential cornerstone to an effective and successful plan for the protection of software.

SOFTWARE PIRATE FOUND GUILTY OF CRIMINAL VIOLATIONS OF COPYRIGHT ACT

Thomas Taylor Francisco jury has found criminal action brought against Taylor for copying and distributing computer software and manuals belonging to Stenograph Corporation. Taylor faces up to four years in prison and a $\$ 50,000$ fine.

Editor's Comments: When faced with a blatant case of software piracy, the software owner should always give consideration to filing crimínal claims with federal prosecutors.

DEC DENIED PRELIMINARY INJUNCTION IN VIDEO DISPLAY TERMINAL CASE

Digital Equipment Corporation (DEC) was denied preliminary injuctive relief in its suit against C. Itoh and Co., Ltd. DEC sought a court order prohibiting C. Itoh from duplicating many of the design features of DEC's VT220 terminal. Such duplicated features.
include keyboard design (placement, arrangement and spacing of keys, shape, dimension and color scheme) and wedge-shaped monitor. Even though the terminal design was original with DEC and obviously copied by C. Itoh, the court held that the design features were unprotectable. Many of the features were deemed to be functional and therefore unprotectable under the trademark and unfair competition laws. These functional features were not patented by DEC. The nonfunctional features had not attained secondary meaning and therefore were also unprotected under the trademark and unfair competition laws. Secondary meaning is attained after extensive and substantially exclusive use sufficient to establish in the minds of the relevant purchasing public an association between the feature and a single source for the goods (i.e., the feature must distinguish the goods from goods sold by all others).

Editor's Comments: An important factor in the cout's decision that many of the features were functional and therefore unprotectable was DEC's own advertisements which placed great emphasis on the functionability of the features. A company's advertising. strategies should be in harmony with its trademark protection policies. This is simply a matter of communication between advertising/marketing personnel and the company's trademark attorney. It should also be noted that for many products with unique design features an aggressive policy to procure design patents may prove to be an effective means of protecting those features against copying.

ADAPSO PROPOSAL FOR SOFTWARE PROTECTION PASSES MUSTER WITH JUSTICE DEPARTMENT

A proposal for a software protection system made by the Association of Data Processing Service Organizations (ADAPSO) has been reviewed by the U.S. department of Justice. A business review letter issued by the Department concluded that the system proposed by ADAPSO would not be in violation of U.S. antitrus.t laws because the system would be an unreasonable restraint of trade. The Department recognized that the software protection system has the potential of fostering, rather than restricting, competition.

ADAPSO is an organization comprised of software developers. The software protection system proposed by ADAPSO consists of a key, a key ring and a lock. The "lock" is made a part of the software. The "key ring" plugs inte, the computer. The three components work together to protect the software against unauthorized use. Software vendors would receive hardware and software serial numbers through a clearinghouse.

COMPUTER PROGRAM COPYRIGHT CASES PRODUCE DIFFERENT RESULTS

Two recently decided cases illustrate the uncertainty, imprecision and inconsistency which shroud the resolution of computer program copyright infringement claims. The cases were brought by different owners of different copyrighted computer programs. In each case the copyright owner sought apreliminary injunction against the alleged copyright infringer. In one case, brought before a Minnesota federal
district court, a preliminary injunction was granted. In the other case, brought before a New York federal district court, a preliminary injunction was denied. A preliminary injunction is a court order issued prior to the trial. A preliminary injunction will be issued only if the party seeking the injunction can establish a likelihood of success on the merits and irreparable injury if relief is delayed until after trial. In computer program infringement cases, the injunction sought is typically an order prohibiting the infringer from further production, sale or distribution of the infringing program.

In the Mininesota case, the E.F. Johnson Co. convinced the court that Uniden Corporation of America had infringed certain copyrighted computer programs embodied in an Intel 8049 microprocessor chip which was the heart of Johnson's "clear channel LTR" communications systems product, Uniden engineers produced an LTR-compatible product, the Uniden FTS-250T, by disassemblying Johnson's computer program and preparing flow charts which were used to create a computer program for the Hitachi microprocessor employed in the Uniden FTS-250T. "Substantial similarity" is an essential element of copyright infringement. The court used an "interative" approach to resolve the issue. Under this approach there is infringement if the alleged infringer used the copyrighted program in preparing the infringing program and if the alleged infringer's program was produced by duplication of substantial portions of the copyrighted program. The analysis is accomplished by looking for specific quantitative and qualitative similarities between the two programs.

Guided by expert testimony and other evidence the court found many similarities between the programs. Johnson's LTR "sample error table" was duplicated in the Uniden program. Both programs employed a 56 bit sampling technique even though Uniden's Hitachi microprocessor could have sampled bits at a much high rate. Superfluous code in Johnson's LTR program was included in the Uniden program. Many LTR subroutines were duplicated in the Uniden program. Uniden's manuals also included portions that were copied verbatim form Johnson's manuals. This was enough to convince the court that the programs were "substantially similar" even though a line-by-1ine comparison of the Johnson LTR code (translated into Hitachi language) to the Uniden code showed that the programs were not identical.

In the New York case, Q-Co. Industries, Inc. brought suit against two former employees, Sidney Hoffman and Dilip Som, who had developed for Q-Co. a prompter computer program (the "VSP-500") for the Atari 800-XL microcomputer, A prompter is a device which scrolls text on ta television screen for the benefit of a speaker or performer. Suit was filed after Hoffman and Som left Q-Co: and formed a new company to develop a similar prompter computer program (the "CPC-1000") for the IBM PC microcomputer. Notwithstanding many structural and design similarities between the VSP-500 program and the CPC-1000 program, the court held that there could be no copyright infringement because VSP-500 was written in Basic and Atari assembler whereas CPC-1000 was written in Pascal and IBM assembler. The court viewed the similarities as similar "ideas" rather than similar "expression." The distinction is important because ideas are not
protectivible under copyright law. The court did not appear to use the approach or analysis used in the Johnson case. Under the Johnson case, the structural and design similarities between VSP-500 and CPC-1000 might have supported the copyright infringement claim.

Even though the Q-Co. court was not receptive to the copyright infringement claim, it did find merit in the allegation that trade secrets had been misappropriated by Hoffman and Som. This is an example of a case where trade secret protection is broader than copyright protection. Companies which develop software (as well as other intellectual property) should be certain that they have in place a trade secret program (including company policies and employee agreements) which maximizes protection under the trade secret laws. The court probably would have granted a preliminary injunction in view of the trade secret claim had it not been for the fact that the CPC-1000 program was not yet ready for commerical distribution and, therefore, Q-Co. was not yet facing immediate irreparable harm.

THE COMPUTER LAH CORNER

"WHY MANY COMPANIES MAY NOT OWN 'THEIR' SOFTWARE'

by
Jon C. Christiansen
B.S. Engineering, J.D. Law
development of a new 32 bit supermicrocomputer. XYZ determines that it is desirable from both a technical and marketing perspective to develop. a new operating system for its computer. Lacking experience and expertise in the development of operating systems, XYZ engages the services of Messrs. A, B and C.as independent contractors to develop and code the operating system. After an eighteen month development period and after the payment of a substantial sum of money to A, B and C, version 1.0 of the operating system is completed. TUV, Inc., a competitor of XYZ , subsequently undertakes to develop a clone of the XYZ computer (i.e. an XYZ-compatible computer). TUV engages the services of Messrs. A, B and C to provide TUV with an operating system. Within ten days an operating system virtually indentical to the one developed for XYZ is delivered to TUV. Does XYZ have a valid claim against A, B and C or TUV?

The answer is probably no: Because the operating system consists of computer programs, it is a copyrightable work. The copyright to this or any other work is owned by the author. XYZ would be deemed the author only if the operating system qualified under Section 101 of the Copyright Act as a "work made for hire." There are two categories of works made for hire: (1) works made by
employees and (2) works specially ordered or commissioned. The first category requires that the work be made by an employee within the scope of his employment. If A, B and C were employees of $X Y Z$ and if the operating system were developed within the scope of their employment, the operating system would be a work made for hire and XYZ would be the author of the operating system (and therefore the owner of the copyright). A, B and C, however, were not employees of $X Y Z$ and therefore the first category is inapplicable. A specially ordered or commissioned work is a work made for hire under the second category only if the parties agree in writing that the work will be considered a work made for hire and even then only if the work is to be used "as a collective work, as part of a motion picture or other audiovisual work, as a translation, as a supplementary work, as a compilation, as an instructional text, as a test, as answer material for a test, or as an atlas." There was no written agreement by A, B and C that the operating system was a work made for hire. Furthermore, even if there were such a written agreement the operating system would still not be a work made for hire because it does not fit within any of the types of works identified above.

Because the operating system was not a work made for hire, A, B and C jointly own the copyright. Under the circunstances, XYZ would almost certainly be deemed to hold an implied nonexclusive license to reproduce and distribute the operating system in connection with the new XYZ computer. XYZ would own the copyright only if A, B and C were to assign in writing the copyright to XYZ.

Being neither the owner of the copyright nor an exclusive licensee under the copyright, XYZ has no claim against A, B and C or TUV for copyright infringement. XYZ may try to improve its position by asserting that there was an implied exclusive license from A, B and C or that there was an implied contractual obligation on the part of A, B and C to assign the copyright to XYZ. XYZ chances of success on such issues would be highly uncertain at best and would depend upon the specific facts of the case.

The above discussion is directed only to copyright issues. The operating system programs almost certainly embody trade secrets or were developed with the use of trade secrets. Trade secrets are intangible property which are owned by the individuals who create the trade secrets. Ownership may be transferred by assignment. A, B and C did not expressly assign or agree to. assign these trade secrets to XYZ. To prevail on this issue, XYZ would have to establish that, under the circumstances, there was an implied contractual obligation on the part of A, B and C to assign their trade secrets. At best, substantial uncertainty clouds the resolution of this issue. A, B and C may have brought many trade secrets with them to the $X Y Z$ project. For example, A; B and. C may have used previously developed subroutines or algorithms in the operating system code. Such pre-existing trade secrets almost certainly remain the property of A, B and C in the absence of a clear contractual obligation of assignment to XYZ. XYZ would have a stronger (but still uncertain) claim with respect to trade secrets (e.g. subroutines and code) developed during the $X Y Z$ project. Very possibly, XYZ would be left with no more than an
implied, nonexclusive license to use the trade secrets as embodied in the operating system.

It is possible, but not probable, that the operating system is an embodiment of one or more patentable inventions. Similar to trade secrets, patent rights are held by the inventors unless and until assigned by them. A, B and C would retain ownership of any patent rights because XYZ failed to contractually protect its interests.

The bottom line is that whenever a company contracts for the development of computer programs it must be certain that copyright, trade secret and patent ownership and license issues are satisfactorily resolved in a written agreement. The party performing the development should also ensure that the written agreement resolves these issues in a satisfactory manner. Leaving these issues unresolved is to invite uncertainty, dispute and litigation. The foregoing also applies to joint projects for the development, enhancement or integration of computer programs. In my experience, I have repeatedly found that the absence of a written agreement (or worse, the use of an inadequate written agreement) to properly resolve these and many other related issues results in serious problems which are resolved later only with great difficulty or at great cost or not at all.

UTAA COMPUTER IAW AND BUSINESS REPORT

Editor

Jon C. Christiansen
Van Cott, Bagley, Cornwall
\& McCarthy
50 South Main St., Suite 1600
Salt Lake City, Utah 84144 (801) 532-3333

Assistant Editor

Michael B. Malan
Deloitte, Haskins \& Sells

Technical Advisor

Advisory Board

Lee Hollaar, University of Utah Susan Mickelson, Evans \& Sutherland David Norton, Iomega Corporation Randall Romrell, Beehive International Lynn Blodgett, Unibase Systems, Inc. Jack Spigarelli, The Company Company Joseph Brame, Sperry Corporation Mark Nelson, Wicat Systems

Administrative Assistants

Jennifer Jensen
Rosalie Parr
Carol Booth

Eric Christiansen

MAILING LIST

To be placed on the mailing list for the Utah Computer Law and Business Report, complete the form below (or a photocopy thereof) and mail it to Jennifer Jensen, c/o Van Cott, Bagley, Cornwall \& McCarthy, P.O. Box 45340, Salt Lake City, Utah 84145. There is no charge or fee.

Mailing List Application Form (UCL\&BR)
(please type or print clearly)
NAME:
ADDRESS:
TELEPHONE:
PROFESSION:
COMPANY:
POSITION WITH COMPANY: PCES

PERSONAL COMPUTER EXPERT SYSTEM FOR ELASTOMER SELECTION

E. H. Schmauch, W. H. Thomason, and T. L. Pugh
Conoco Inc.
P. O. Box 1267
Ponca City, OK 74603

Abstract

Proper selection of elastomers for application in oilfield environments can be very difficult because of the great variation in physical and chemical conditions that are encountered. In an effort to better utilize existing elastomer expertise, a personal computer expert system to aid in elastomer selection is under development at Conoco. Expert systems are a form of artificial intelligence which imitate the decisionmaking processes of experts. This elastomer expert system will enable an expert to share his knowledge and skill with nonexperts via a personal computer. This paper discusses the expert system development and its main features, and provides examples of its use.

ELASTOMER SELECTION FOR OIL FIELD APPLICATIONS IS DIFFICULT

The premature failure of elastomer seals in production equipment can be expensive and hazardous. In order to assist Conoco's operating divisions in making the optimum initial selection of an elastomer seal, we have conducted
during the past few years a myriad of tests to determine the chemical compatibility of many commercial elastomer materials with various oil field environments and also acquired similar test data from the literature and contract research. Because of the great variation in physical and chemical conditions that are encountered in oil field environments, the efficient utilization of this data to identify an elastomer that will provide good performance in a specific environment can be very difficult.

Effective elastomer seals in oil field service must perform over large temperature and pressure fluctuations and resist degradation by solvents, acids, gases, corrosion inhibitors, biocides, scale inhibitors, and other chemicals. In many applications, an elastomer may be exposed to several treating chemicals in addition to the produced fluids. Further, variations in temperature and/or chemical concentrations may change the environment from one where a given elastomer performs well to an environment in which the elastomer will fail prematurely.

In an effort to better utilize our elastomer data base for the selection of an optimum elastomer product for a specific oil field environment, we are developing a computer expert system that will aid in elastomer selection. A portion of our present data was converted into a "rule base" for use by the expert system. This initial effort which is described in this paper has produced very favorable results, and we plan to incorporate our total and future elastomer data base into this system.

INTRODUCTION TO EXPERT SYSTEMS

We are all aware of the value of a human expert. The ability to permanently capture his expertise in the form of computer software is potentially of equal value. The goal of an expert system is to enable a user to obtain a solution to a problem through an interactive session with a computer. The computer expert system first asks the user questions about his problem, similar to the questions a human expert would ask during a consultation. An example of a portion of the queries along with the user's responses for the elastomers expert system is shown in Figure 1. When the expert system has received sufficient input to draw conclusions, the conclusions are displayed on the computer monitor, as is shown in Figure 2.

In general, the greater the similarity between a computer session with an expert system and a person-to-person session with a human expert, the more useful an expert system becomes. Many expert systems allow the user to inquire why a certain question is asked. The expert system will respond by explaining its current line of reasoning. Another feature which makes the computer session more friendly is outputting deductions and/or partial conclusions at various points through the session. This is equivalent to a human expert saying, for example,
"With what you have told me so far, we can narrow it down to these three elastomers: Viton GF, Viton A, and Aflas GT-787." The expert system then continues until it reaches its final conclusions. Both the why function and the outputting of deductions and partial conclusions help make the computer session with the expert system more closely resemble a conversation with a human expert.

Expert systems have been utilized in a number of disciplines, ${ }^{1,2}$ including oil well drilling, mineral exploration, diesel locomotive repairs, medical diagnosis and treatment, chemical analysis, organic chemical synthesis, and computer system configuration. Development of specialized, limited-in-scope expert systems has been the most successful, while development of more generalized, all-encompassing expert systems has been more difficult. ${ }^{3}$ Therefore, although personal computers may be limited to smaller, specialized expert systems, it is these expert systems that are often the most useful.

An expert system is distinguished from a traditional computer program by its separation of the control logic from the problem logic. Control logic refers to the programming which controls the sequence of program execution. The problem logic contains the data and information which is specific to a given problem. It is possible to write a traditional computer program which would act as an expert in a certain field, but the intermingling of the control logic and problem logic would make the program very difficult to develop and maintain. In an expert system, the control logic is referred to as the inference engine and the problem logic as the rule base. The rule base contains the expertise. The inference engine makes logical deductions based on the expertise in the rule base. The same inference engine is usable in any number of expert systems, while the rule base must be developed for each different expert system application.

The main components of an operational expert system are the rule base, inference engine, and user interface. The required interactions between these components are illustrated in Figure 3. Also illustrated is the rule compiler which is required for the development of an expert system.

The rule compiler converts rules to a usable rule base. The human expert (or experts) must express his expertise as a series of IF-THEN rules. An example of an IF-THEN rule from an expert system for corrosion failure analysis is shown in Figure 4. An IF-THEN rule states that, if a certain statement or group of statements is true, then a second statement or group of statements is also true. The statements in the IF portion of a rule are referred to as antecedents and those in the THEN portion as consequents. A typical expert system contains hundreds of rules. The rule compiler translates the rules from a form that humans understand to a form that the inference engine will understand. The compiled rules make up the rule base. The role of a rule compiler in expert systems is analogous to the role of a FORTRAN compiler in traditional programming, translating source code that is understandable by humans to executable code that is understandable by the computer hardware.

The inference engine is the heart of an operational expert system. It communicates with the user through the user interface and makes logical deductions based on the rule base. Utilizing the expertise expressed in the rule base, the inference engine determines which questions to ask the user. Combining the user's responses with the expertise of the rule base, the inference engine makes logical deductions and eventually draws conclusions. To extend the analogy, the inference engine's role in an expert system is the role of the machine hardware in traditional programming. In the future, hardware
implementations of inference engines are likely to be developed which will greatly enhance the power of expert systems. Presently, inference engines are implemented in software. It is important to note that the inference engine does not operate on the rule base in a sequential manner but calls upon pieces of expertise as they are needed. The inference engine can store and recall facts as it searches for the problem's solution. This keeps it from asking the same question or performing the same logical deductions more than once. The facts are analogous to variables in traditional programming. The inference engine queries the user through the user interface. An interaction with the user interface should be as similar to a conversation with a human expert as practically possible.

The goal of an inference engine is to prove or disprove hypotheses in the expert system's domain of expertise. For example, in our elastomer expert system, the hypotheses are that each elastomer in the rule base can withstand the environment of interest. Any hypothesis that the expert system proves to be true corresponds to an elastomer that can withstand the given environment. A hypothesis is expressed as a consequent in one or more of the rules in the rule base. Not all consequents are hypotheses; some are only intermediate facts used in proving or disproving one or more hypotheses. Any consequent which is not a hypothesis will be an antecedent in another rule. An inference engine proves and disproves hypotheses by ope of two alternative control strategies. ${ }^{5}$ The first is forward chaining or antecedent reasoning. The inference engine starts with the antecedents in the rule base and, by asking questions and making deductions, proves or disproves the various hypotheses. In backward chaining or consequent reasoning, the inference engine starts with the hypotheses. It scans the rule base for
rules with the first hypothesis as a consequent. Each antecedent in a rule with the hypothesis as its consequent is considered a subgoal. The inference engine continues to recursively ${ }^{6}$ set subgoals until it has an antecedent as a subgoal that is not a consequent for any rule. Then the user is queried about this antecedent. The inference engine continues in this manner until the hypothesis is proven or disproven. Then it proceeds to the next hypothesis and continues until all have been considered. The goal of some inference engines is to find a single true hypothesis and, in this case, execution stops after one hypothesis is proven. Some inference engines combine antecedent and consequent reasoning into a sophisticated mixed control strategy.

EXPERT-3

In our laboratory, we have written EXPERT-3, an expert system development tool for the IBM PC and compatibles. EXPERT-3 is an enhancement of EXPERT-2 by Jack Park and is written 8 in the computer language FORTH. ${ }^{8}$ The inference engine uses the backward chaining control strategy. Table 1 summarizes the valid user responses for EXPERT-3. Expert system development systems for the PC are commercially available, but we chose to develop our own so we could modify the rule compiler, inference engine, and user interface to fine-tune them for the types of applications we are interested in--namely, materials selection.

Each EXPERT-3 rule contains one or more antecedents and one or more consequents. There are three types of antecedents. The first is the standard IF clause common to most expert systems, as is shown in Figure 4. If the user must be queried about this antecedent, possible responses are "yes," "no," or "I don't know." The second type of antecedents allows comparisons of a variable-for example, temper-ature-as is shown in Figure 5.

Supported comparisons are equal (EQ), not equal (NE), less than (LT), and greater than (GT). The user will be queried about the variable, and the response can be either an integer or "I don't know," as is demonstrated in Figure 6. The third type of antecedent allows facts to be categorized. In our applications, the elastomer might be exposed to one or more members of a category of downhole chemicals-for example, alcohols. Each category must be defined, as is shown in Figure 7, before it is used in a rule. Categories are used in antecedents with the operators ONLY, EXACTLY, or INCLUDE. The antecedent is true if the members of the category present are a subset of (ONLY), exactly equal to (EXACTLY), or a superset of (INCLUDE) the list of members given in the antecedent. A rule using the category defined in Figure 7 is shown in Figure 8. Figure 9 illustrates the user queries with responses for the same category.

EXPERT-3 has two types of consequents. The first is the basic THEN clause common to all expert systems and as was shown in all figures thus far. The second is THENHYP, which specifies that this consequent is a hypothesis, a goal for the inference engine. This is demonstrated in Figure 10. Any EXPERT-3 operator (IF, THEN, AND, ONLY, etc.) can be suffixed with NOT (IFNOT, THENNOT, ANDNOT, ONLYNOT, etc.) to denote negative logic.

EXPERT-3 allows the user to respond with "I don't know" to queries he is uncertain about by inputting a question mark. The inference engine will attempt to prove or disprove each hypothesis without this piece of information. When the conclusions are output, the inference engine indicates any hypotheses that could not be proven or disproven because of one or more "I don't know" responses. An example of this is shown in Figure 11. The " I don't know" response is a very
important feature of EXPERT-3. Without it, the user would be forced to guess when he was uncertain and guessing can obviously lead to incorrect conclusions.

A consultation with an expert system developed by EXPERT-3 is divided into stages. Each stage tests rules pertaining to a certain subtopic in the expert system's domain of expertise. For example, the elastomers expert system's domain of expertise is the ability of different elastomers to withstand varying oil patch environments. It is divided into three stages: temperature and pressure, produced fluids, and completion and injection fluids. Conclusions are output following each stage as is shown in Figures 2 and $11 . \quad$ The user can also request the inference engine to output partial conclusions at any point during a stage by inputting a "C". Hypotheses that are disproven in one stage are not considered in the next stage. After the conclusions are output following each stage, the user can continue to the next stage, repeat the current stage if he wishes to change some of his answers, or restart the consultation from the beginning. The final conclusions are those output after the last stage.

Unlike some expert systems, EXPERT-3 does not stop after the first hypothesis it proves to be true but tests every hypothesis in the rule base. This is necessary in an expert system for materials selection since, for example, we do not just want to know one elastomer that can withstand a given oil patch environment, we want to know all that can. EXPERT-3 attempts to minimize the number of questions asked the user during a consultation. When considering a hypothesis, the inference engine first checks if it can be proven or disproven with the facts it already knows. The user will be queried only if the hypothesis cannot be proven or disproven with the existing facts.

We attempted to make the user interface as friendly as possible. The user's responses are just one character (Y for yes, N for no, ? for I don't know, etc.), except for numerical values, which are entered as integers. The valid user responses are summarized in Table 1. After each question, the valid responses are displayed in parentheses. If the user depresses a key that is inappropriate for the current query, the user interface will sound a "beep" and ignore the character. Therefore, illegal input to the inference engine is impossible. The user can ask the system why it is following a certain line of questioning by inputting a " W ". The expert system will indicate its current line of reasoning by outputting the hypothesis it is currently considering and the rule it is testing, as is shown in Figure 12. The user can also request information about an item in the system's domain of expertise by inputting an "I". For example, in the elastomer expert system, the user can request information about a certain elastomer, its properties, and what testing it has undergone, as is shown in Figure 13.

ELASTOMERS EXPERT SYSTEM

The initial goal of the elastomers expert system was to select which elastomer or elastomers would withstand a certain oil patch environment. As the system was developed, it became obvious that this goal was too ambitious for our elastomers data. Not every elastomer was tested in every type of environment. So the goal was modifjed to selecting candidate elastomers for a given environment. The candidates would be elastomers that were not known to fail because of any of the conditions of the given environment. This is not the same as being known not to fail in the given environment. We had to follow this candidate selection approach because of the incompleteness of our elastomer data. After the expert system selects candidates for a given
environment, the user can then select one of the candidates for his application or perform further testing on the candidates in conditions corresponding to his environment. If he chooses the latter, the results of the tests can be added to the rule base to improve the expert system.

The elastomers expert system contains three stages: temperature and pressure, produced fluids, and completion and injection fluids. The stages were ordered so the data in which we had the most confidence, temperature and pressure, was first and the data in which we had the least confidence, completion and injection fluids, was last. All three types of antecedents (basic IFs, variables, and categories) were utilized in the elastomers expert system.

CONCLUSIONS

A major conclusion is that it is feasible to develop and operate a useful expert system on a personal computer. Personal computers obviously have much less processing power than main frames, but for specialized expert systems, such as materials selection, PCs are more than adequate. An expert system with a broader domain of expertise--for example, a consultant in all areas of corrosion--might require more processing power than a PC offers. In the development of the elastomers expert system, we were limited by our expertise about elastomers, not by the PC hardware or the EXPERT-3 software.

From the development of the elastomers expert system, we learned that the coding of a human expert's expertise into rules can be difficult. It is not always obvious how to express an expert's intuition in the required IF-THEN syntax. The development of an expert system forces the expert to examine his expertise in a systematic
manner which, in many cases, such as the elastomers expert system, provides a clearer picture of the extent of the expertise and where holes exist in the data. The coupling of expert system development with experimental design could lead not only to better expert systems, but also to better expertise.

REFERENCES

1. Offshore Computers, June 1985, p. 10 .
2. R. E. Dessy, Anal. Chem., Vol. 56, No. 11, p. 1200A (1984).
3. R. O. Duda and E. H. Shortliffe, Science, Vol. 220, No. 4594, p. 261 (1983).
4. S. P. Ennis, Oil and Gas Journal, Vol. 81, No. 30, p. 184 (1983).
5. R. O. Duda and J. G. Gasching, Byte, Vol. 6, No. 9, p. 238 (1981).
6. A. Ralston, Ed., Encyclopedia of Computer Science, Van Nostrand Reinhold Company, New York, New York, p. 1209 (1976).
7. J. Park, MVP-FORTH Expert System Toolkit, Mountain View Press, Mountain View, California (1983).
8. J. S. James, Byte, Vol. 5, No. 8, p. 100 (1980).

TABLE 1--EXPERT-3 User Responses

```
Y - Yes
N - No
C - Draw conclusions at this point
I - Give me information
W - Why are you asking this question?
? - I don't know
```

Variables are input as integer values.
ENTER VALUES --- Must be integers
Enter ? if gou don't know value
Enter C for conclusions at this point
Carbon dioxide (psi) 25
Hydrogen sulfide (ppm) 5
Is there acid (pH (2) present? ($Y, N, C, I, W, ?$) N
Is there caustic ($\mathrm{pH}>13$) present? (Y,N,C,I,W,?) Y
Is there a sulfite oxygen scavenger present? (Y,N,C,I,W,?) Y
Are there aromatic hydrocarbons present? (Y,N,C,I,W,?) N
FIGURE 1--Example of expert system queries.
After the final stage, the following elastomer(s) are candidates: Aflas 100 H 75 Buna N MPI Buna N (National C90)
After the final stage, the following elastomer (s) are not sugges
Viton (National V23) Viton GF (National V34) Aflas GT-787 Aflas GT-797
Aflas 100 H 85

FIGURE 2--Example of expert system conclusions.

FIGURE 3--Diagram of an expert system.

IF Is there a scale
AND Does corrosion scale react with HCl/As solution
AND Does reaction with HCl/As solution produce yellow residue THEN Sulfur is involved

FIGURE 4--Example of a rule.

FIGURE 5-EXPERT-3 rule using variables.
ENTER VALUES --- Must be integers
Enter ? if you don't know value Enter C for conclusions at this point.
Maximum temperature (F) 200
Minimum temperature (F) 0
Maximum pressure (psig) ?

FIGURE 6--EXPERT-3 variable queries.

CATEGORY ALCOHOLS Are there any alcohols present
 Please indicate which alcohols: Methanol
 Ethylene glycol
 Any other alcohol

END

FIGURE 7--EXPERT-3 definition of category.
alcohols ONLY
Ethylene glycol
END
ANDNOT Maximum.temperature (F) GT 250 THEN Viton A can handle the alcohols

FIGURE 8--EXPERT-3 rule using category.

Are there any alcohols present? ($Y, N, C, I, ?) Y$
Please indicate which alcohols:
Methanol? ($Y, N, C, I, ?) Y$
Ethylene glycol? (Y,N,C,I,?) ?
Any other alcohol? ($\mathrm{Y}, \mathrm{N}, \mathrm{C}, \mathrm{I}, ?$) N

FIGURE 9--EXPERT-3 category queries.

IF Is there a scale
AND Does corrosion scale react with HCl/As solution
AND Does corrosion scale fizz when HCi/As solution is added ANDNOT Sulfur is involved
AND Are there pits
AND Do the pits have sharp edges
THENHYP Carbon dioxide corrosion

FIGURE 10-EXPERT-3 rule using THENHYP.

After the final stage, Aflas 100H 75	the following elastomer(s) are candidates: Aflas 100H 95
After the final stage	I need more data for the following elastomer(s):
Viton A (National V23)	Viton GF (National V34) Aflas GT-787
Aflas GT-797	Aflas GT-799 Aflas GT-791
Aflas 100H 85	Buna N (Parker) Buna N MPI

Buna N (National C90)

FIGURE 1l--EXPERT-3 conclusions with insufficient data.

```
Will the production be mostly liquid? ( Y,N,C,I,W,? ) W
I am trying to prove: Viton A (National V23)
I am testing rule #3
IFNOT Maximum pressure (psig) GT 15000
IF Will the production be mostly liquid
THEN Pressure ok for Viton
Will the production be mostly liquid? ( Y,N,C,I,W,? )
```

FIGURE 12--EXPERT-3 why feature.

Will the production be mostly liquid? (Y,N,C,I,W,?) I
Information is available on:
A)Viton A (National V23)
B)Viton GF (National V34)
C) Aflas GT-787
D) Aflas GT-797
E)Aflas GT-799
F) Aflas GT-791
G)Aflas 100 H 75
H)Aflas 100 H 85
I)Aflas 100 H 95
J)Buna N (Parker)
K)Buna N (National C90)
L) Buna N MPI

Enter letter: A
Viton A (National V23)
Temperature (F) range: -30 to 350
Maximum pressure (psig); dynamic service in gas: 10,000
dynamic service in liguid: 15,000
static service in gas: 15,000
static service in liguid: 20,000
Fails in CO2 > 250 psig with H2S > 5\% above 300 degrees.
Fails in bromine salts above 250 degrees.
Fails in caustic.
Fails in acid without lead oxide filler.
Fails in aromatic hydrocarbons above 250 degrees.
Biocides: compatible with XC-102.
Inhibitors: compatible with Milchem Brine Pak. Alcohols: compatible with ethylene glycol.

Will the production be mostly liquid? ($\mathrm{Y}, \mathrm{N}, \mathrm{C}, \mathrm{I}, \mathrm{W}, ?$)

FIGURE 13--EXPERT-3 information feature.

MINEQL
A COMPUTER PROGRAM FOR THE CALCULATION OF CHEMICAL EQUILIBRIUM COMPOSITION OF
 (6ESERRCM OMSTITUTR EA RTE PCBENGE AA

SUBJ COMP
AQUEOUS SYSTEMS

John C. Festal
Joseph L. Zachary Francois M.M. Morel

Water Quality Laboratory
Ralph M. Parsons Laboratory
for Water Resources and Environmental Engineering: Department of Civil Engineering
Massachusetts Institute of Technology

Technical Note No. 18
1976

Sponsored by
EPA Grant No. R-803738

Acknowledgement

The authors wish to acknowledge Dr. James M. Westall, Jr. and the Clemson University Computation Center for consultation and technicad support; Mr. Patrick Wong for programming assistance; and Mrs. Jean Coleman for preparation of the manuscript.

CONTENTS

PART I Page
A. Evolution of MINEQL 6
B. Methodology for Chemical Equilibrium Problems 8
PART II - MINEQL-1 USER'S MANUAL
A. Definition 12
B. Description of the Program 15
C. Input 17
D. Output 20
E. Redox 23
F. Gases at a Fixed Partial Pressure 24
G. Special Usage 25
H. Error Messages 27
I. Storage 29
Appendix 1. Mathematical Description 44
Appendix 2. Example of a Chemical Equilibrium Problem 64
Appendix 3. Description of Subroutines 75Wist of Tables
Table I Description of Principle Variables. 32
Table II List of Components 35
Table III List of Species 36
Table IV Organization of Input
38

- V Sample Input Table V 39
Table VI Job Control Language 40
Table VII Redox Reactions
List of Figures
Flow Chart of MAIN and Listing of MAIN 41
43Figure 2. Flow Chart of INPUT

Introduction

This report describes the computer program for the computation of chemical equilibria in aqueous systems, MINEQL. The purpose of the report is to present the program in sufficient detail that the reader not only can use the program exactly as it is written, but also can modify it to suit whatever his particular needs may be.

The evolution of the program, examples of its use, and general approach to the chemical equilibrium problem are described in Part I of the report. Part II presents a "MINEQL-1 User's Manual".

A detailed mathematical description of the solution to the chemical equilibrium problem used in MINEQL appears in Appendix 1. It was felt that the solution could best be presented by an abstract description of the mathematical problem (without any reference to its chemical analog), followed by a very simple example of a chemical problem (which is given in Appendix 2). This avoids the intermingling of chemical and mathematical concepts which is sometimes confusing. Appendix 3 gives a description of the program itself.

The three appendices are related in that they present the same concepts - the actual theory and its application in MINEQL - from three different viewpoints: mathematical, chemical, and computational. They should be read in conjunction with one another. First the concepts Involved in the basic chemical equilibrium problem, (i.e., where there are no solid phases present) should be mastered, and then the extension to the consideration of solid phases, which is somewhat more complicated, should be undertaken.

This report contains a complete description of all of the concepts employed in the program MINEQL. However, a working knowledge of the program is obtainable without attention to all of the details.

It is hoped that this roadmap through MINEQL will enable the reader to maximize his use of the program without becoming bogged down in the details of the report.

A. Evolution of MINEQL

The program MINEQL has evolved from ideas and experience gained from the use of the series of programs $\operatorname{REDEQL}(7,8)$. The original aim in the creation of MINEQL was a compact program, necessarily of limited flexibility and problem size, but suitable for execution on small ($16 \mathrm{~K}-64 \mathrm{~K}$) computers. However, it soon became apparent that the programming approach used in these early versions of MINEQL could profitably be applied to the larger chemical equilibrium problems as well. In the expansion of MINEQL, as in the development of any large program, trade-offs had to be made between compactness and efficiency of execution on the one hand, and clarity of programming and ease of use on the other. The foremost of these considerations observed in the design of MINEQL are clarity of programming and reasonable ease of use. In some cases, the flexibility of the program through input of control cards has been sacrificed for the sake of maintaining compactness, but it is intended that the clarity of programming should enable even a minimally competent programmer to modify the program to suit his needs.

Experience gained in the use of the program REDEQL has given guidance in the selection of input and output features. Studies for which REDEQL has been used and for which the I/O of MINEQL is particularly suited include both laboratory and natural systems. For example, REDEQL has been used to study the speciation of metals in algal culture media, the stability constants for metal chelates in complex media, the degradation of NTA in natural waters, the speciation of trace metals in sewage oxidized and diluted by seawater, and the pH stability of
the oceans.

The version of MINEQL presented here is designed for the large scale problems mentioned above and requires a full size computer (128K) for execution. It can be conveniently modified for smaller computers if necessary.

Recent publications which include material relevant to the computation of chemical equilibria in aqueous solution begin with the program HALTAFALL by Sillen and co-workers (5). Then there follows a collection of papers by Morel and co-workers (8-10) which discuss many facets of the chemical equilibrium problem.

Zirino and Yamamoto (11) have considered the speciation of trace metals in seawater and give a discussion of activity coefficient corrections for that medium. Truesdell and Jones (12) in the description of their program WATEQ give another good discussion of activity corrections and present a well documented table of thermodynamic data including ΔH for temperature correction.
B. Methodology for Chemicil Equilibri.u" Problems

The problem of finding the equilibrium composition/speciation of an aqueous system is a programming problem which in its most general form can be expressed as follows: minimize the Gibbs free energy of the system subject to the constraints of mass balance: All of the many methods for computation of chemical equilibria are but variations on this theme, but as Zeleznik and Gordon have suggested (1), it is just these variations that convert the theory into a program useful for a particular application.

Two basic approaches exist to the chemical equilibrium problem. One which has been developed extensively in a series of reports from the Rand Corporation ($2-4$), involves the following procedure: from an initial guess of the solution, a positive feasible solution to the mass balance equations is found without consideration of the Gibbs Free Energy of the system; then subject to the constraint of the mass balance equations the Gibbs free energy is minimized. Another approach, the so-called equilibrium constant approach, begins with an initial guess for a set of components from which the minimum Gibbs free energy composition is readily calculated from equilibrium constants, then the mass balance equations are solved by iteration. This is the approach used in the programs of Sillen (5), Perrin (6), and Morel (7), and others.

Thus in the first case, mass balance equations are the constraints as the Gibbs free energy function is minimized, and in the second case, the Gibbs free energy function is directly minimized and the mass
balance equations are solved, Zeleznik and Gordon present a complete discussion of this topic (1).

While the former "direct minimization of the Gibbs free energy function" method seems more elegant in a thermodynamic sense, the latter "equilibrium constant" method appears to be more an extension of chemists' intuition, and thereby more useful and more tractable in many ways. The equilibrium constant method is used in MINEQL.

One may view the equilibrium constant approach in the following way: at every step in the iteration towards the final solution a chemical equilibrium problem is solved (i.e., the computed composition represents the minimum Gibbs free energy for a set of mass balance conr. straints); the task is to iterate to the correct chemical equilibrium problem (i.e., the chemical equilibrium problem with the desired set of mass balance constraints).

Similarly, one may consider a computation involving solid phases as an iteration toward the correct problem, but at a higher level of hierarchy: for a given set of solid phases in equilibrium with the aqueous phase, a chemical equilibrium problem can be solved, as described above. But then it is necessary to find the correct set of solid phases in equilibrium with the aqueous phase, (i.e., that set for whlch no solubility products are exceeded and no mass balance conditions are less than zero). This is achieved by successively redefining the stst of solid phases considered to be in equilibrium with the aqueous; phase and -solving the resulting equilibrium problem until the conditions specified above for solid phases are met.

At this point it is recommended that the reader branch to Appendix 1, "Basic Problem" for a description of the mathematics of MINEQL, before proceeding to the User's Manual.

PART II MINEQL-1 USER'S MANUAL

A. Definitions
B. Description of the Program
C. Input
D. Output
E. Redox
F. Gases at Fixed Partial Pressure
G. Special Usage
H. Error Messages
I. Storage
3. Soluble species - include every species in the aqueous phase. These can be simple ions: $\mathrm{Ca}^{2+}, \mathrm{H}^{+}, \mathrm{OH}^{-}$; ion pairs: CaCO_{3} (aq); chelates Ca EDTA; etc. Soluble species can be both the soluble components and complexes (products of reactions involving components). The concentration (activity) of every soluble species is variable, being a function of the concentration of the components of which the species is composed.
4. Solids - are species of a fixed activity (for normal solid phases such as $\mathrm{CaCO}_{3}(\mathrm{~s}), \mathrm{Ca}\left(\mathrm{OH}_{2}(\mathrm{~s})\right.$, this fixed activity is equal to one). However, gases at a fixed partial pressure are also solids according to this definition. Solids may be in two states, dissolved or precipitated.
5. Dissolved solids play no direct role in a chemical equilibrium computation. The fact that a dissolved solid exists indicates simply that the solubility data for the solid is present, and after an equilibrium computation has been made, the solubility of this solid phase may be checked. If the solubility product is exceeded, the solid may be precipitated and become directly involved in the computation.
6. Precipitated solids are those solid phases which are present at a fixed activity. This implies a certain fixed relationship among the components with the result that the chemical equilibrium problem loses one degree of freedom. This is equivalent to transforming the set of components to include the solid phase, which is then set at fixed activity. If, after a chemical equilibrium computation has been made with a given solid phase, the amount of that solid phase is caiculated
II. MINEQL-1 User's Manual
A. Definitions

There are a number of terms used throughout this report which have a particular significance outside of their normal English language, chemical, or mathematical use. These terms will be defined.

1. Components - in a mathematical sense this is the independent basis set from which every species can be defined and upon which the mass balance equations are based. In a chemical sense, the components are a set of chemical entities such that every species can be represented as the product of a reaction involving only these components, and no component can be represented as the product of a reaction involving only the other components. The particular set of components for a given problem is certainly not unique, but once a set of components has been chosen, every species has a unique representation'in terms of this set. There has been a tendency to consider only neutral entities for the set of components; however, there is no reason for the exclusion of ionic entities from this set, (nor are there any such restrictions in Gibbs original definition of components (15)) and in this discussion ionic entities will be included as components.
2. Species - mathematically, a species represents a log linear combination of the components; chemically, a species is the product of a chemical reaction involving the components as reactants. The species include every chemical entity to be considered in a chemical equilibrium problem. Species are of two kinds: soluble species and solids.
to be negative, the solid may be dissolved, i.e., removed from the computation and the fixed relationship among the constituents disestablished.

The six definitions given above are applicable to chemical equilibrium problems in general. For the purpose of presenting the program MINEQL, these definitions will further be used to define six types of species which have significance within the program.

Type I Species - are the soluble species which correspond to the components.

Type II Species - are the complexes (all soluble species which are not components).

Type III Species - are precipitated solids which are not allowed to dissolve, even if the amount of these solids becomes negative. Examples are gases at a fixed partial pressure, or simply a solid phase which is specified to be present. In addition, if the concentration (activity) of any soluble species is to be fixed, i.e., set to a certain value (for example, fixed pH), this fixed soluble species is included as a Type III species.

Type IV Species - are precipitated solids which are subject to dissolution if the amount present becomes less than zero.

Type V Species - are dissolved solids which are subject to precipitation if the solubility product is exceeded.

Type VI Species - are species which are not to be considered at all (e.g. dissolved solids which are not subject to precipitation, or the electron which does not exist in solution).
B. Description of the Program

MINEQL, as outlined in the following description; is relatively straightforward. Execution is controlled by the main program which calls a series of subroutines (Figure 1). A description of the principle variables is found in Table I.

MAIN begins by initializing the program varịables ITMAX, EPS, THRSH, ITER \& XMU. Then INPUT is called which combines the user supplied data for the components to be included and their analytical concentrations with the thermodynamic data for all of the species formed from these components. INION reads the ionic charge data for ionic strength correction and IONCOR performs the ionic strength correction. The problem is then totally defined and OUTPUT (entries IONCMP and IONSPC) prints these data for verification. Subsequently SOLID is called to modify the problem for the existence of the solid phases, then SOLVE solves the resulting problem for the soluble species. SOLIDX solves for the amounts of the solid species, performs precipitation and dissolution, and "un-modifies", or restores, the matrices to the state in which they were before SOLID was called. If no precipitation or dissolution occurred, OUTPUT prints the results (entries OUTCMP, OUTSPC, OUTPC); if precipitation or dissolution did occur, the solution sequence is restarted with the new set of solids by a return to subroutine SOLID.

An fmportant principle of MINEQL worthy of further comment is the various types of species. Each species is handled computationally according to its type. The program keeps track of the type of a species by its storage location in the A and K matrices and the index array $N N$:
the species are stored contiguously by types (Type I, Type II, etc.), and $N N(L)$ specifies how many species of Type L there are. The initial assignment of storage locations and indexing is done in subroutine INPUT. Further exchange of storage locations and indexing is done in subroutine SOLIDX as solids are precipitated or dissolved by changing the type of a species.
C. Input

The input data which defines a problem for MINEQL is read in several groups. The first group of data contains the information for the components to be included in the computation: one card for each component, followed by a blank card to delimit the group. After all of the components have been read in, the input subroutine retrieves from the thermodynamic data set (see the end of this section for description) data for all of the species which are formed from the given set of components. The default type specification for these species are:

Compunents:	Type I	soluble species
Complexes:	Type II	soluble species
Solids:	Type V	dissolved solids subject to precipitation

Then follows several groups of data in which the type specification of a species may be modified: the first card of one of these groups defines the species type being considered; it is followed by one card for each species to be assigned to that type, and finally a blank card to delimit that group of data. The input is completely general: there may be any number of cards in any group and there may be any number of groups to define species types. All input is terminated by a final blank card.

A diagram of the exact format of the input data is given in
Table IV. Input in all cases is grouped in format fields of seven characters to simplify data preparation. The identification numbers of the components are given in Table II. There are 91 chemical entities listed: cations have identification numbers $1-50$, the electron is number

99, and anion and neutral ligands have identification numbers 101-199. Ligands are generally given in their least protonated form. The identification numbers of the species are given in Table III.

The input for species type allows for great flexibility in modifying formation constants for species or for adding new species: 1) if only IDYT is specified (the rest of the card-left blank), species IDYT is simply assigned to the indicated type; 2) if only IDYT and GKT are specified (the rest of the card left blank), species IDYT is assigned to the indicated type and the formation constant is set equal to GKT; 3) if IDYT is an identification number not previously included in the computation, and GKT and (IDXT(J), IAT(J), $j=1,4$) are included on the card, a new species is generated with the data and assigned to the indicated type. (If less than four components are all that are necessary to specify the new species, only the necessary number need be specified and the rest of the card left blank). A flow chart of the process is given in Figure 2.

One further comment is necessary concerning specification of Type III species, (components at a fixed activity): Since computationally these species are equivalent to solids (for which $\left[\mathrm{X}_{1}\right]^{\mathrm{a}_{1}} \cdot\left[\mathrm{X}_{2}\right]^{\mathrm{a}_{2}} \ldots \mathrm{~K}=1$), to specify a component present at a concentration X, the \log formation constant must be $\log K=-\log [X]$. For example, the foilowing input group fixes $\mathrm{pH}=8$:

00003
$00050 \quad 8.00$
blank card

Type III species
I.D. \# of H ; $-\log [\mathrm{H}]$
termination of group ${ }^{-}$..

In addition to the input data described above (which is normally supplied through the card reader), there are two data.sets which are normally stored on disc or tape. These data sets, the files to which they are directed, and their contents are:

THRM. DATA • FT10F001 Thermodynamic data
IONC. DATA FTllFOOI Ionic charge data for ionic strength correction

Appropriate job control statements must be included to allocate these data sets to the files (Table VI).
D. Output

The output for MINEQL is broken down into three areas, each of which is accessed by ENTRY statements in subroutine OU'IPUT.

1. Input data for verification:
ENTRY OINCMP* • . Data for components

ENTRY OINSP Thermodynamic data for species
2. Output data for a solved problem

ENTRY OUTCIP	Data for components
ENTRY OUTSP	Species

3. Percentage Distribution of components ENTRY OUTPC*

* Produces a new page and page heading

OINCMP prints for each component: IDX $=$ component identification number NAME = name of component $X \quad=$ guess of concentration of component $\mathrm{GX}=\log$ of X $\mathrm{T}=$ total (analytical) concentration of component

OINSPC prints for each species:
IDY = species identification number GK $=\log$ of stability constant of species $\operatorname{NAME}(J), A(I, J)=$ name and stoichiometric coefficient of each component j in species

OUTCMP prints for each component:
IDX = component identification number
$\mathrm{X}=$ equilibrium concentration of component
T = total (analytical) concentration of component
Y = remainder of component (amount not accounted for in mass balance equation)

NAME = name of component
OUTSPC prints for each species:
IDY = species identification number
C = equilibrium concentration of species
$\mathrm{GC}=\log$ of C
GK $=\log$ of stability constant for species
NAME(J),A(I,J) = name and stoichiometric coefficient of each component j in species

For the solid phases the values C and GC assume a slightly different meaning:

1) For solids which are dissolved (Type V and Type VI), C and GC are the values of the solubility expression ($C=k \cdot x_{1}{ }^{a_{1}} x_{2}^{a_{2}} \ldots \cdot x_{n}^{a}$) and its log.
2) For solids which are precipitated (Type IV), C and GC represent the amount of solid per liter of solution and the \log of that number.
3) For fixed solids and fixed soluble species (Type III):
a) if C is positive, C and $G C$ represent the amount of that species per liter of solution that must be removed to achicve the desired "fixed" conlition.
b) if C is negative, C and $G C$ represent the amount of that species per liter of solution that must be added to achieve the desired "fixed" condition

The percentage distribution (OUTPC) gives, for each component, its distribution among the species (subject to a threshoid; if the fraction of a component in a species is less than the threshold, this species is not listed in the distribution)
$\mathrm{PC}=$ percentage of the component in the species
IDY = identification number of the species
NAME (J), A(I,J) = name and stoichiometric coefficient of each component \mathbf{j} in the species

There is an anomaly in this output which should be mentioned: for the component H^{+}, some species have negative as well as positive stoichiometric coefficients. Thus the percentage distribution for H^{+}is not always a meaningful concept.

E. Redox Reactions

To include redox reactions in a computation it is necessary to include the electron, component identification number 99. Normally the $p \varepsilon\left(p \varepsilon=-\log _{10} \varepsilon ; E_{H}=0.59 \log _{10} \varepsilon @ 25^{\circ} \mathrm{C}\right)$ will be fixed at a given value for a computation: thus species 99 should be included as a Type III (fixed component) species. If the $p \varepsilon$ is to be calculated,species 99 must be included as a Type .VI (species not included) species since the free electron does not exist in solution.

A list of the Redox reactions is given in Table VII. The default type specification for redox complexes is Type. II; for redox solids it is Type V (dissolved solids subject to precipitation), and for redox reactions which relate two components, e.g. $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ or $\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}$, Type III.
F. Gaseous Phases

To include a gas phase at fixed partial pressure, it is necessary to include the gas as a Type III species (fixed solid) and to specify its partial pressure. An example using $\mathrm{CO}_{2}(\mathrm{~g})$ will be given.

The formation expression for $\mathrm{CO}_{2}(\mathrm{~g})$ is, under ideal conditions,

$$
\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{K}=\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=\mathrm{P}_{\mathrm{CO}_{2}} . \quad \log \mathrm{K}=10^{18.0}
$$

Since computationally every solid phase has an activity of one, the expression is rearranged to

$$
\left.\left[\mathrm{H}^{+}\right]\right]\left[\mathrm{CO}_{3}^{2-}\right] \cdot\left[\frac{\mathrm{K}}{\mathrm{P}_{\mathrm{CO}}^{2}}{ }^{2}\right]=1
$$

and the effective constant for the phase at a fixed partial pressure $\mathrm{P}_{\mathrm{CO}_{2}}$ becomes

$$
\log \mathrm{K}^{\prime}=\log \mathrm{K}-\log \mathrm{P}_{\mathrm{CO}_{2}}
$$

Then to define a problem where an aqueous phase is in equilibrium with the atmosphere $\left(\mathrm{P}_{\mathrm{CO}}^{2} 1010^{-3.5}\right)$

```
log K' = 18.0-(-3.5) = 21,5
```

and the following input group makes that specification:

00003	Type III species
$25000 \quad 21.5$	ID $\#$ of $\mathrm{CO}_{2}(\mathrm{~g}) ; \log \mathrm{K}^{\prime}$
blank card	termination of group

The default species type for gases is Type VI, species not considered. Thus if the gas is not explicitly specified, it will not be considered.
G. Special Usage

MINEQL has been written in such a way that the user has great flexibility in specification of his problem by simply making a few . modifications in the MAIN; that is, the subroutines are available from which one may construct his own program. (The basic version of MAIN is presented in Figure 1):

There are numerous ways in which the MAIN of MINEQL can be modified to solve particular problems. Two cases will be given as examples which can be used as patterns for other modifications.

1) Simulate a titration with strong acid with increments from 1 to 20 mm acid.

MAIN
\vdots
CALL INPUT
CALL INION
CALL IONCOR (XMU)
CALL OINCMP
CALL OINSPC
DO $100 \mathrm{~J}=1,20$. \downarrow
ITER $=0$
$T(\operatorname{IADX}(50))=T(\operatorname{IADX}(50))+1.0 \mathrm{E}-3$
10 CONTINUE
CALL SOLID
CALL SOLVE
CALL SOLIDX (K)
IF (K.NE.O) GO TO 10
CALL OUTCMP
CALL OUTSPC
CALL OUTPC(THRSH)
100 CONTINUE
STOP
END
2) Run a series of computations with pH fixed from $\mathrm{pH}=2$ to $\mathrm{pH}=1.0$. MAIN

```
:
CALL INPUT
CALL INION
CALL IONCOR(XMU)
CALL OINCMP
CALL OINSPC
DO 100 J = 1,20
ITER = 0
GK(IADY(50)) = J
10 CONTINUE
    CALL SOLID
    CALL SOLVE
    CALL SOLIDX(K)
    IF (K.NE.0) GO TO 10
    CALL OUTCMP
    CALL OUTSPC
    CALL OUTPC(THRSH)
100 CONTINUE
STOP
END
```

Note that species number 50 must have previously been specified as Type III (fixed soluble species) through input data.

H. Error Messages

There are several errors which cause an error message to be printed and execution to be terminated. The error messages, the subroutine from which they are called, the probable cause and corrective response are given below.

1. "COMPONENTS > NXDIM", SUBROUTINE INPUT:

The number of components in the problem is greater than the dimension of the arrays allocated for their storage. Response: Either remove non-essential components from the computation or increase the dimension of the arrays (See Section I, "Storage").
2. "SPECIES > NYDIM", SUBROUTINE INPUT:

The number of species in the problem is greater than the dimension of the arrays allocated for their storage. Response: Either remove non-essential components from the computation or increase the dimension for the arrays (See Section I, ,"Storage").
3. "ID NOT FOUND: INPUT", SUBROUTINE INPUT:

The species identification number used to re-specify an existing species type was not found, and the stoichiometry was not valid for generating a new species. Response: Check (a) input format; (b) whether the indicated species was included in the computation
4. "ID NOT FOUND: IADY" FUNCTION IADY

A species identification number was not found. Response: Verify that the identification number is valid, and that the species is included in the computation
5. "ID NOT FOUND: IADX" FUNCTION IADY

A component identification number was not found. Response:
Verify that the identification number is valid, and that the component is included in the computation.
6. "PHASE RULE VIOLATION" SUBROUTINE SOLID

More solid phases have been specified than there are allowed by the Phase Rule. Response: Restart computation with an alternate set of Type III and/or Type IV solids.
7. "ITERATIONS > ITMAX" SUBROUTINE SOLVE

The number of iterations allowed in subroutine SOLVE has been exceeded. Response: Check a) the value of ITMAX; b) whether ITER has been reinitialized if solving several problems within the same computation; c) whether initial guesses have been properly entered; d) if Type III and Type IV solids have been chosen wisely.
8. "SINGULAR Z MATRIX" SUBROUTINE SIMQ

The Jacobian has been found to be singular. Response: Check for an input error; the Jacobian is very rarely singular if the problem has been correctly specified.

I. Storage

The approximate storage requirements for MINEQL are given below. The data are based on 8 bit bytes, 4 byte words, 1 word variables for FORTRAN IV G-1 on an IBM 370/168. To change the dimensions of the arrays only two major changes are necessary:

1) Change NXDIM and NYDIM in MAIN
2) Change all of the dimensions in all of the COMMON/VAR/t. statements. This can be done conveniently with a TSO editor. PASSIVE STORAGE
1. Thermodynamic Data Deck 1500 cards 120K
2. Source Program Deck . . 600 cards 48K

ACTIVE STORAGE

1. Object Program minus

Storage for arrays 18K
2. Storage for Arrays
a) 10 components 7 K

100 species
b) 25 components 38 K

300 species
c) 30 components

59K
2000 species
d) 35 components 84K

500 species
3. Auxịlliary Subprograms 24K

Called by linkage editor
4. I/O Buffers

24K

TOTAL CORE 「OR EXECUTION:

COMPONENTS		SPECIES	CORE	
10		100	73 K	
25		300		104 K
30		400		125 K
35		500		150 K

Table I

Description of Principle Variables

$A(I, J)$	- the stoichiometric coefficient of component J in species I
C(I)	- the concentration of species (I)
EPS	- the tolerance in the convergence test (EPS $=10^{-4}$ is a convenient value)
GC (I)	- the $\log _{10}$ of $C(I)$
GK (I)	- the $\log _{10}$ of the stability constant for species I
GX (J)	- the $\log _{10}$ of $X(J)$
IDX (J)	- the identification number of component J
IDY (I)	- the identification number of species I
ITMAX	- the maximum number of iterations allowed for a problem
	(for a single case ITMAX $=40$ is usually sufficient to
	achieve convergence, if the problem is to converge at all)
ITER	- the counter for number of iterations
NN (L)	- the number of species of type L
NXDIM	- the X (component) dimension of the arrays
NYDIM	- the Y (species) dimension of the arrays
T (J)	- analytical (total) concentration of component J
THRSH	- threshold for percentage distribution output
	(THRSH $=0.01,1 \%$ is a convenient value)
X (J)	- concentration of component J
XMU	- Ionic strength
Y(J)	- the remainder in the mass balance equation for component J
Z (J, K)	- the element of the Jacobian representing $\partial Y_{J} / \partial X_{K}$

TABLE II
List of Components ${ }^{*}$ and Identification Numbers

101	CO_{3}^{-2}	120	TART ${ }^{-2}$	139	ALA ${ }^{-}$
102	SO_{4}^{-2}	121	EN ${ }^{\circ}$	140	TYR ${ }^{2-}$
103	Cl^{-}	122	DIP ${ }^{\circ}$	141	MET ${ }^{-}$
104	F^{-}	123	SUSAL ${ }^{-3}$	142	VAL ${ }^{-}$
105	Br^{-}	124	GLY ${ }^{-1}$	143	THR ${ }^{-}$
106	I^{-}	125	GLU^{-2}	144	PHE ${ }^{-}$
107	NH_{3}	126	PIC ${ }^{-1}$	145	ISO^{-}
108	. S^{2-}	127	NTA ${ }^{-3}$	146	LEU^{-}
109	PO_{4}^{3-}	128	EDTA ${ }^{-4}$	147	PRO^{-}
110	$\mathrm{P}_{2} \mathrm{O}_{7}^{4-}$	129	DCTA ${ }^{-4}$	148	$\mathrm{B}(\mathrm{OH})_{4}{ }^{-}$
111	$P_{3} O_{10}^{5-}$	130	CYST ${ }^{-2}$	149	$\mathrm{SO}_{3}{ }^{2-}$
112.	$\mathrm{SiO}_{2}(\mathrm{OH})_{2}^{2-}$	131	NOC ${ }^{-3}$	150	SCN^{-}
113	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	132	PHTH ${ }^{2-}$	151	$\mathrm{NH}_{2} \mathrm{OH}$
114	CN^{-}	133	ARG^{-}	152	$\mathrm{MoO}_{4}{ }^{2-}$
115	AC^{-}	134	ORN^{-}	153	$\mathrm{WO}_{4}{ }^{2-}$
116	ACAC^{-}	135	LYS ${ }^{-}$	154	$\mathrm{AsO}_{4}{ }^{3-}$
117	CIT ${ }^{-3}$	136	HIS ${ }^{-}$	155	$\mathrm{HVO}_{4}{ }^{2-}$
118	$0 \mathrm{X}^{-1}$	137	ASP^{-}	156	SeO_{3}^{2-}
119	SAL ${ }^{-2}$	138	SER ${ }^{-}$	157	$\mathrm{NO}_{3}{ }^{-}$
				158	TRIS

AC	$=$ acetate	NOC	$\begin{aligned} & =\text { nocardamine } \\ & \quad \text { (desferri-ferrioxamine) } \end{aligned}$
ACAC	= acetylacetone		
		PHTH	$=$ phthalate
CIT	$=$ citrate		
		ARG	$=$ arginine
OX	= oxalate		
		ORN	= ornithine
SAL	= salicylate		
		LYS	$=1 y s i n e$
TART	$=$ tartrate		
		HIS	$=$ histidine
EN	= enthylenediamine		
		ASP	= aspartate
DIP	= dipyridyl		
		SER	$=$ serine
SUSAL	= sulfosalicylate		
		ALA	= alanine
GLY	= glycine		
		TYR	$=$ tyrosine
glut	= glutamate		
		MET	= methionine
PIC	$=$ picolinate		
		VAL	= valine
NTA	= nitrilotriacetate		
		THR	$=$ threonine
EDTA	$=\text { ethylenediamine - }$ tetraacetate	. PHE	$=$ phenylalanine
DCTA	$\begin{aligned} &= 1,2 \text {-diaminocyclohexane } \\ & \text { tetraacetate } \end{aligned}$	ISO	= isoleucine
		LEU	$=$ leucine
CYST	$=$ cysteine		
		PRO	$=$ proline
	.	TRIS	$\begin{aligned} &= \text { tris (Gydroxymethyl)- } \\ & \text { aminomethane } \end{aligned}$

Table III

Because of its length, Table III is included as computer output.

TABLE IV. ORGANIZATION OF INPUT

Description of Data

 Format one group for components
one group for each type of species
$\left[\begin{array}{c}\text { LTYPE } \\ \text { IDYT,*GKT, } \\ \cdot \\ \cdot \\ \cdot \\ \text { blank card }\end{array}\right.$
(I5)
($\mathrm{I} 5,2 \mathrm{X}, \mathrm{F} 7,2,4(\mathrm{I} 4, \mathrm{I} 3)$)
one card to terminate all input
[blank card

[^6]+ Description of Symbols
For each component a card where: IDXT $=$. component identification number GXT : $=$ guess for the $\log _{10}$ of the concentration (molar) of the free component TT = analytical (total) concentration (molar) of the component

For each species type to which spectes are to be asstgned a card where:

LTYPE $=$ type of species
'followed by a card for each species to be assigned to that type where:
IDYT = species identification
*GKT $=\log _{10}$ of formation constant for the spectes *($\operatorname{IDXT}(J), \operatorname{IAT}(J), J=1,4)=$ stoichiometry of the species: IDXT $=$ component identification number, and IAT $=$ stoichiometric coefficient of that component

* Optional Input. See text

Table V. Sample Input Data

01	-3.0	$1.00 E-3$
02	-3.0	$1.00 E-3$
05	-4.0	$1.02 E-4$
50	-7.0	$1.02 \mathrm{E}-4$
06	-20.0	$1.00 \mathrm{E}-6$
07	-20.0	$0.00 \mathrm{E}-6$
101	-6.0	$1.00 \mathrm{E}-4$
102	-3.0	$1.00 \mathrm{E}-3$
103	-3.0	$2.00 \mathrm{E}-3$
128	-10.0	$1.00 \mathrm{E}-6$
099	-12.0	$0.00 \mathrm{E}-6$

03
$25000 \quad 21.5$
0009912.0

04
20310
06
20000

For a solution of the following composition

$$
\begin{array}{ll}
\mathrm{MgSO}_{4} & 10^{-3} \mathrm{M} \\
\mathrm{CaCl}_{2} & 10^{-3} \mathrm{M} \\
\mathrm{NaHCO}_{3} & 10^{-4} \mathrm{M} \\
\mathrm{FeCl}_{3} & 10^{-6} \mathrm{M} \\
\mathrm{Na}_{2} \mathrm{EDTA}^{-2} & 10^{-6} \mathrm{M}
\end{array}
$$

under the following conditions:

1. The solution is in equilibrium with atmospheric CO_{2}
2. $\mathrm{p} \varepsilon$ fixed at 12 ; the redox reaction $\mathrm{Fe}^{I I I} / \mathrm{Fe}^{I I}$ is to be considered
3. The solid phase $\mathrm{Fe}(\mathrm{OH})_{3}$ is presumed to be present
4. The solid phase CaCO_{3} is not to be considered (because of unfavorable kinetics, for instance).

Table VI. Job Control Language for MINEQL at M.I.T.

```
// 'USERID'
/*MITID
/*MAIN LINES=4
// EXEC FORCLG
//C.SYSIN DD *,DCB=BLKSIZE=2000
```


INSERT MAIN HERE

```
/*
//L.SYSIN DD DS:H=U.M10924,P11428.MINI.OBJ,DISP=SHR,LABEL=(,,,IN)
//G.FT1OF001 DD DSN=U.M10924.P11428.THRM.DATA,DISP=SHR,LABEL=(,,,IN)
//G.FT11F001 DD DSN=U.M10924.P11428.IONC.DATA,DISP=SHR,LABEL=(,,,IN)
//G.SYSIN DD *,DCB=BLKSIZE=2000
```

INSERT PROBLEM DATA HERE
/*
//

Table VII. Redox Reactions

Figure 1. Flow Chart of MAIN *

* Listing of MAIN

```
00010 C MAIN
00020 COMMON/PARM/NXDIM,NYDIM,ITMAX,ITER,EPS,NN(6),NNN
00030 COMMON/VAR/GX(30),X(30),T(30),Y(30),Z(30,30),
00040 IC(400),GC(400),GK(400),A(400,30),IDX(30),IDY(400)
00050 C
00060 NYDIM=400
00070. NXDIM=30
00080 ITMAX=30
00090 . EPS=1.E-4
00100 ITER=0
0 0 1 1 0 ~ T H R S H = . 0 1 ~
00120 XMU=0.5
00130 C
00140 CALL INPUT
00150 CALL INION
00160 CALL IONCOR(XMU)
00180 CALL OINCMP
00190 CALL OINSPC
00200 10 CONTINUE
00210 CALL SOLID
00220 CALL SOLVE
00230 CALL SOLIDX(K)
00240 F (K.NE.O) GO TO 10
00250 CALL OUTCMP
00260 CALL OUTSPC
00270 CALL OUTPC(THRSH)
00280 STOP
00290 END
```

Figure 2. Flow Chart of Species Type Specification


```
                    Appendix 1
                    Mathematical Description
1. Basic Problem* (aqueous phase only, no solid phases)
    1.1 General Description of Problem
    1.2 Computation of Complexes
    1.3 Computation of Mass Balance Equations
    1.4 Computation of Jacobian
    1.5 Iteration by the Newton Raphson Method
        1.5.1 Application to Matrix Equations
        1.5.2 Avoidance of Convergence to Negative Solutions
    1.6 Convergence Test
    1.7 Summary
```

2. Transformation of Basis
2.1 Transformation of C
2.2 Transformation of Y
2.3 Computation of Mass Balance for new constituent
2.4 Formulation of Transformation
3. Computation of Solids**
3.1. One Solid Phase
3.1.1 Modification of C

- 3.1.2 Modification of Y
3.1.3 Solution for Amount of Solid

$$
\begin{aligned}
& 3.2 \text { Multiple Solid Phases } \\
& 3.2 .1 \text { Review } \\
& 3.2 .2 \text { One Solid Phase } \\
& 3.2 .3 \text { Condensed Notation } \\
& 3.2 .4 \text { Condensed Notation: One Solid Phase } \\
& 3.2 .5 \text { Condensed Notation: Two Solid phases } \\
& 3.2 .6 \text { Many Solid Phases } \\
& \text { * Corresponds to Subroutine Solve } \\
& \text { ** Corresponds to Subroutine Solid and Soling }
\end{aligned}
$$

1.1 General Description of the Problem

The problem of chemical equilibrium in an aqueous system can be described in mathematical terms as the set of equations

$$
\begin{aligned}
& C_{i}=K_{i} \prod_{j=1}^{n} x_{j}^{a(i, j)} \\
& \text { for } i=1, m \\
& Y_{j}=\sum_{i=1}^{m} a(i, j) c_{i}-T_{j} \\
& \text { for } j=1, n
\end{aligned}
$$

for which the solution is the set $\left\{X_{j}: j=1, n\right\}$ such $\operatorname{that}\left\{Y_{j}: j=1, n\right\}=$ \{0\} given $\left\{K_{i}, a(i, j), T_{j}: j=1, n, i=1, m\right\}$. The significance of $\mathrm{X}, \mathrm{Y}, \mathrm{K}, \mathrm{a} \& \mathrm{~T}$ will be discussed below.

The solution to the problem is found by making an initial guess for the $\left\{X_{j}\right\}$ and iterating by the multidimentional Newton Raphson method to the root of the equation. The method converges over a wide range of initial guesses.

1.2 Computation of Complexes

$$
c_{i}=k_{i} \prod_{j=1}^{n} x_{j}^{a(i, j)}
$$

C_{i} is the concentration of the complex of stoichiometry

$$
x_{1_{a(i, 1)}} \cdots x_{n_{a(i, n)}}
$$

K_{i} is the stability constant of the complex C_{i}
X_{j} is the concentration of component C_{j}^{-}
$a(i, j)$ is the stoichiometric coefficient of X_{j} in C_{i}

1.3 Computation of Mass Balance Equation

$Y_{j}=\sum_{i=1}^{m} a(i, j)\left(C_{i}\right)-T_{j}$
T_{j} is the total analytical concentration of component j
Y_{j} is the difference between the imposed total analytical concentration of component $j\left(T_{j}\right)$, and the amount of component j in all of the complexes as computed from the X_{j} 's. The solution to the problem is, of course, the set of X_{j} 's such that all $Y_{j}{ }^{\prime} s=0$.

1.4 Computation of the Jacobian

$Z(j, k)=\sum_{i=1}^{m} a(i, j) a(i, k) c_{i} / X_{k}$
$Z(j, k)$ is the element of the Jacobian representing ($\left.\partial Y_{j} / \partial X_{k}\right)$.
It is derived as follows:
$\frac{\partial Y_{j}}{\partial X_{k}}=\sum_{i=1}^{m}\left(\frac{\partial Y_{j}}{\partial C_{i}}\right)\left(\frac{\partial C_{i}}{\partial X_{k}}\right)$
(1) $\left(\frac{\partial Y_{i}}{\partial C_{i}}\right)=a(i, j)$
(2) $\left(\frac{\partial C_{i}}{\partial X_{k}}\right)=\left(a(i, k) x_{k}^{a(i, k)-1}\right) K_{i} \prod_{\substack{\ell=1 \\ \ell \neq k}}^{n} X_{\ell} a(i, \ell)$ $=\frac{a(i, k)}{X_{k}}\left(K_{i} X_{k}^{a(i, k)} \prod_{\substack{l=1 \\ \ell \neq k}}^{n} X_{\ell} a(i, \ell)\right.$

$$
=a(i, k) \frac{c_{i}}{X_{k}}
$$

$$
\left(\frac{\partial Y_{i}}{\partial X_{k}}\right)=\sum_{i=1}^{m} a(i, j) a(i, k) c_{i} / X_{k}
$$

1.5 Iteration with the Newton Raphson Method

The Newton Raphson method for the determination of the root of the equation

$$
y(x)=0
$$

yields the following iterative formula for the $N+1$ iteration for x, given the value of x and $\frac{d y}{d x}$ at the $N^{\text {th }}$ iteration

$$
x^{N+1}=x^{N}-y^{N} \cdot\left[\left.\left(\frac{d y}{d x}\right)\right|_{x}{ }^{N}\right]^{-1}
$$

1.5.1 Application to matrix equations

In order to avoid matrix inversion the equation above is modified to:

$$
y^{N}=\left[\left.\left(\frac{d y}{d x}\right)\right|_{x^{N}}\right]\left(x^{N}-x^{N+1}\right)
$$

and the matrix equation

$$
\overline{\mathrm{Y}}^{\mathrm{N}}=\overline{\overline{\mathrm{Z}}}^{\mathrm{N}}\left(\overline{\mathrm{X}}^{\mathrm{N}}-\overline{\mathrm{X}}^{\mathrm{N}+1}\right)
$$

(where $\overline{\bar{Z}}$ is the Jacobian of $\overline{\mathrm{Y}}$ with respect to $\overline{\mathrm{X}}$) is solved for ($\overline{\mathrm{X}}^{\mathrm{N}}-\overline{\mathrm{X}}^{\mathrm{N}+1}$) by Gaussian elimination. Then

$$
\overline{\mathrm{x}}^{\mathrm{N}+1}=\overline{\mathrm{X}}^{\mathrm{N}}-\left(\overline{\mathrm{x}}^{\mathrm{N}}-\overline{\mathrm{X}}^{\mathrm{N}+1}\right)
$$

1,5.2 Avoidance of Negative Convergence

If for some $X_{j}, X_{j}{ }^{N+1}=X_{j}^{N}-\left(X_{j}^{N}-X_{j}^{N+1}\right)<0$
(i.e. the equation begins to converge to a physically meaningless negative solution), X_{j}^{N+1} is set to $X_{j}^{N} / 10$.
1.6 Test for Convergence

In theory, the system of equations

$$
\begin{aligned}
C_{i} & =K_{i} \prod_{j=1}^{n} x_{j}^{a(i, j)} \\
i & =1, m \\
Y_{j} & =\sum_{i=1}^{m} a(i, j) c_{i}-T_{j} \\
j & =1, n
\end{aligned}
$$

is "solved" when the set $\left\{X_{j}: j=1, n\right\}$ is found such that $\left\{Y_{j}: j=1, n\right\} \equiv 0$. In practice some criterion must be established such that when, by iteration, each Y_{j} becomes sufficiently close to zero, the system of equations is said to be "solved". Since each Y_{j} is the sum of terms which vary widely in order of magnitude, the convergence criterion is chosen to reflect the magnitude of Y_{j} relative to the maximum of the terms of which Y_{j} is the sum. Thus, the criterion for convergence is

$$
\frac{\left|Y_{j}\right|}{\max \left(Y_{j}\right)}<\varepsilon \quad \text { for } j=1, n
$$

where $\max \left(Y_{j}\right)$ is the maximum of the absolute values of the set of terms $\left\{\left(a(i, j) C_{i}\right), i=1, m ; T_{j}\right\}$ of which Y_{j} is the sum.

In the case where $a(i, j) \geq 0$ for all $1, j, \max \left(Y_{j}\right)$ is clearly equal to T_{j}, and the convergence criterion

$$
\frac{Y_{j}}{\max \left(Y_{j}\right)}<\varepsilon
$$

has the physical interpretation that all of element j within $\varepsilon \times 100 \%$ can be accounted for; in cases where some $a(i, j)<0$ (as is often encountered when solid phases are present, see Appendix 1) this physical interpretation is no longer valid, but the criterion for convergence certainly is.
1.7 Summary

The problem can be visualized in the following way

1. The C_{i} 's are a function of the X_{j} 's

$$
C_{i}=K_{i} \prod_{j=1}^{n} \quad x_{j}^{a(i, j)}: \quad I=1, m \text { or } \bar{C}=\bar{f}\left(x_{1}, \ldots, x_{n}\right)
$$

2. The Y_{j} 's are a function of the C_{i} 's

$$
Y_{j}=\sum_{i=1}^{m} a(i, j) C_{i}-T_{j}: j=1, n \text { or } \bar{Y}=\bar{g}\left(C_{1}, \ldots ; C_{m}\right)
$$

3. Then $\overline{\mathrm{Y}}$ is a composite function of $\overline{\mathrm{X}}$.

$$
\bar{Y}=\bar{g}(\bar{f}(x))
$$

or

$$
\left[\begin{array}{c}
\mathrm{Y}_{1}=\mathrm{Y}_{1}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{N}}\right) \\
\mathrm{Y}_{\mathrm{N}}=\mathrm{Y}_{\mathrm{N}}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{N}}\right)
\end{array}\right]
$$

4. Then the Jacobian of \bar{Y} with respect to \bar{X} is

$$
\overline{\bar{Z}}=\left[\begin{array}{cccc}
\left(\frac{\partial Y_{1}}{\partial X_{1}}\right) & \cdot & \cdot & \cdot \\
\vdots & \cdot & & \\
\vdots & \cdot & & \\
\left(\frac{\partial Y_{N}}{\partial X_{1}}\right) & & & \\
{ }^{2} & & & \\
\left.\frac{\partial Y_{N}}{\partial X_{N}}\right)
\end{array}\right]
$$

5. And the value of \bar{X}^{N+1} (at the $N+1$ iteration) is found from the solution (by Gaussian elimination) to the matrix equation

2. Transformation of Basis

In order to improve the efficiency of computation, the basis $\left\{X_{1}, \ldots, X_{n}\right\}$ can be transformed such that the resulting Z matrix appraoches a diagonal matrix. This transformation is carried out by substitution of one of the C_{i}, say $C_{i i}$, for one of the X_{j}, say $X_{j j}$, in the basis. $C_{i i}$ then becomes basis element X_{n+1}.
2.1 Transformation of $C_{i}{ }^{\prime} s$

In the basic problem

$$
c_{i}=K_{i} \prod_{j=1}^{n} x_{j}^{a(i, j)}
$$

Now solve for $X_{j j}$ in terms of $C_{i i}$, and substitute this expression for $X_{j j}$ in the $C_{i}{ }^{\prime} s$.
a) Separate terms in $C_{i i}$

$$
C_{i i}=K_{i i} \prod_{j=1}^{n} x_{j}^{a(i 1, j)}=K_{i i} \prod_{\substack{j=1 \\ j \neq j j}}^{n} x_{j}^{a(i i, j)} x_{j j}^{a(i i, j j)}
$$

b) Solve for $\mathrm{X}_{\mathrm{j}} \mathrm{j}$

$$
x_{j j}=c_{i i} \frac{1}{a(i i, j j)} \cdot\left[k_{i i} \prod_{\substack{j=1 \\ j \neq j j}}^{n} x_{j}^{a(i i, j)}\right]^{\frac{-1}{a(i i, j j)}}
$$

c) Substitute for $X_{j j}$ in the expressions for the C_{i} 's.

$$
c_{i}=K_{i} \prod_{\substack{j=1 \\ j \neq j j}}^{n} x_{j}^{a(i, j)} \cdot\left[c_{i i}^{\frac{1}{a(i i, j j)}}\left[K_{i i} \prod_{\substack{n=1 \\ j \neq j j}}^{n} x_{j}^{a(i i, j)}-\frac{-1}{a(i i, j j)}\right]^{a(i, j j)}\right.
$$

2.2 Transformation of the Y_{j} 's

In the basic problem

$$
Y_{j}=\sum_{i=1}^{m} a(i, j) C_{i}-T_{j}
$$

Now solve the equation $Y_{j j}=0$ for $C_{i i}$ and substitute the expression for $C_{i i}$ into the other Y_{j} 's.
a) Separate terms in $Y_{j j}=0$

$$
Y_{j j}=\sum_{\substack{i=1 \\ i \neq i i}}^{m} a(i, j j) c_{i}+a(i i, j j) C_{i i}-T_{j j}=0
$$

b) Solve for $C_{i i}$

$$
c_{i i}=-\left(\sum_{\substack{i=1 \\ i \neq i i}}^{m} a(i, j j) C_{i}-T_{j j}\right) / a(i i, j j)
$$

c) Substitute for $C_{i i}$ in the expressions for the Y_{j} 's

$$
\left.\underset{j \neq j j}{Y_{j}}=\sum_{\substack{i \neq i i}}^{m} a(i, j) C_{i}-T_{j}-\left[\frac{a(i i, j)}{a(i i, j j)} \underset{\substack{i=1 \\ i \neq i i}}{m} a(i, j j) C_{i}-T_{j j}\right)\right]
$$

2.3 Computation of Mass Balance for $C_{i i} \equiv X_{n+1}$

In the place of $Y_{j j}$ (which is now trivial), a new Y_{n+1} which is based on the new basis element, $C_{i i} \equiv X_{n+1}$, must be computed:

$$
Y_{n+1}=\frac{Y_{j j}}{a(i i, j j)}=\sum_{\substack{i=1 \\ i \neq i 1}}^{m} \frac{a(1, j j)}{a(i i, j j)} c_{i}+c_{i i}-\frac{T_{j j}}{a(i i, j j)}
$$

2.4 Formulation of Transformation

When the expressions of $2.1(c), 2.2(c)$ and 2.3 are rearranged, a similarity is seen which suggests a simple formula for the modification of the a, T, and K matrices.
eqn. 2.1(c)

$$
-\frac{a(i i, j j)}{a(i i, j j)}
$$

$$
\prod_{a-1}^{n} X_{j}\left(a(i, j)-\frac{a(i i, j) a(i, j j)}{a(i i, j j)}\right)
$$

$$
j=1^{j}
$$

$$
\mathbf{j} \neq \mathbf{j} j
$$

$$
\begin{gathered}
\cdot C_{i i} \frac{a(i, j j)}{a(i i, j j)} \\
\text { eqn. } 2.2(c) \\
Y_{j}=\sum_{\substack{i=1 \\
j \neq j j}}\left(a(i \neq j)-\frac{a(i i, j) a(i, j j)}{a(i i, j j)}\right) C_{i} \\
\\
\left.-T_{j}-\frac{a(i i, j)}{a(i i, j j)} T_{j j}\right)
\end{gathered}
$$

eqn. 2.3

$$
Y_{n+1}=\sum_{i=1}^{m} \frac{a(i, j j)}{a(i i, j j)} c_{i}-\frac{T_{j j}}{a(i i, j j)}
$$

Now. consider the following transformation

$$
\begin{aligned}
& \text { New Old } \\
& a^{\prime}(i, j) \quad a(i, j)-\frac{a(i i, j) a(i, j j)}{a(i i, j j)} \\
& T_{j}^{\prime} \quad T_{j}-\frac{a(i i, j)}{a(1 i, j j)} T_{j j} \\
& K_{i}^{\prime} \quad k_{i} \cdot K_{i i} \frac{a(i, j j)}{a(i i, j j)} \\
& \text { and for the new basis element } X_{n+1} \equiv C_{i i} \\
& a^{\prime}(i, n+1) \\
& \frac{a(i, j j)}{a(i i, j j)} \\
& T_{n+1}^{\prime} \\
& \frac{T_{j j}}{a(i i, j j)}
\end{aligned}
$$

Then equations $2.1(c), 2.2(c)$ and 2.3 now read, in terms of the transformed variables,

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{i}} \quad=K_{i=1, m} \prod_{\substack{j=1 \\
j \neq j}}^{n+1} X_{j}{ }^{a^{\prime}(i, j)}
\end{aligned}
$$

The above two equations are of course similar in form to the equations for the basic problem discussed in section I. Then it can be shown by induction that these transformations can be carried out successively any number of times.

3. Computation of Solids

The method for computing chemical equilibrium in the presence of solid phases will be shown as follows: Computation where one solid phase is present, introduction of a generalized notation, computation for two solid phases, and extension to an arbitrary number of solid phases.

Again we will denote the solid phase as $C_{i i}$ (where $C_{i i}=$ the activity of the solid phase $\equiv 1$), the amount of solid present as $S_{i i}$, and will eliminate basis element $X_{j j}$ as the constraint $C_{i i}=1$ is put on the system.
3.1 One Solid Phase
3.1.1 Eliminate $X_{j j}$ via solid $C_{i i}$

In the basic problem

$$
C_{i}=K_{i} \prod_{j=1}^{n} X_{j}^{a(i, j)}
$$

Now since solid C_{ii} exists

$$
1=C_{i i}=K_{i i} \Pi x_{j}^{a(i i, j)}=K_{i i} \prod_{\substack{j=1 \\ j \neq j j}}^{n} x_{j}^{a(i, j)} \cdot x_{j j}^{a(i i, j j)}
$$

Solve for X_{jj}

$$
x_{j j}^{x_{j j}}=\left[K_{i i}^{\substack{j=1 \\ j \neq j j}} x_{j}^{a(i i, j)}\right]^{-\frac{1}{a(i i, j j)}}
$$

and substitute into the C_{i} 's

$$
\left.c_{i}=k_{i} \prod_{\substack{j=1 \\
j \neq j j}}^{n} x_{j}^{a(i, j)} \cdot\left[k_{i i}^{\substack{\begin{subarray}{c}{j=1 \\
j \neq j j} }}\end{subarray}}\right]^{a(i i, j)}\right]^{-\frac{a(i, j j)}{a(i i, j j)}}
$$

or rearranging terms (compare Section 2.4)

$$
\left.c_{i}=k_{i} \cdot k_{i i}^{-\frac{a(i, j j)}{a(i i, j j)}\left[\sum_{\substack{n \\ j=1 \\ j \neq j j}} \quad x_{j} . a(i, j)-\frac{a(i i, j) a(i, j j)}{a(i 1, j j)}\right]}\right]
$$

3.1.2 Eliminate $Y_{j j}$ via $C_{i i}$

In the basic problem

$$
Y_{j}=\sum_{i=1}^{m} a(i, j) C_{i}-T_{j}
$$

Now, since there exists an amount of solid S_{ii} then

$$
Y_{j}=\sum_{\substack{i=1 \\ i \neq i i}}^{m} a(i, j) C_{i}+a(i i, j) S_{i i}-T_{j} .
$$

and in specific for $Y_{j j}$,

$$
Y_{j j}=\sum_{\substack{i=1 \\ i \neq i j}}^{m} a(i, j j) C_{i}+a(i i, j j) S_{i i}-T_{j j}
$$

Set $Y_{j j}=0$ and solve for $S_{i i}$

$$
s_{i i}=-\left(\sum_{\substack{i=1 \\ i \neq i i}}^{m} a(i, j j) c_{i}-r_{j j}\right) / a(i i, j j)
$$

Substitute $S_{i i}$ into the Y_{j} 's

$$
\begin{aligned}
Y_{j} & =\sum_{\substack{i=1 \\
i \neq i i}}^{m} a(i, j) C_{i}-T_{j} \\
& \left.-a(i i, j) \underset{\substack{i=1 \\
i \neq i i}}{m} a(i, j j) C_{i}-T_{j j}\right\} / a(i i, j j)
\end{aligned}
$$

And rearranging terms (compare Section 2.4)

$$
Y_{j}=\sum_{\substack{i=1 \\ i \neq i i}}^{m}\left(a(i, j)-\frac{a(i i, j) a(i, j j)}{a(i i, j j)}\right) C_{i}-\left(T_{j}-\frac{a(i i, j)}{a(i i, j j)} T_{j j}\right)
$$

Now all of the $\mathbf{Y}_{\mathbf{j}}{ }^{\prime} \mathbf{s}$ are independent of S_{ii}.
j $\neq \mathbf{j} j$

The problem has been reduced to an
($n-1 \times n-1$) problem in X and Y and a
(, 1×1) problem in S and Y.
3.1.3 Solution for $S_{\text {ii }}$

After the ($n-1 \times n-1$) problem has been solved for \bar{X}, \bar{C} can be computed and S_{ii} is readily found from

$$
s_{i i}=-\left(\sum_{\substack{i=1 \\ i \neq i j}}^{m} a(i, j j) c_{i}-T_{j j}\right) / a(i i, j j)
$$

3.2 Solution for Numerous Solid Phases

The solution for numerous solid phases is simply an extension of that for one solid phase. With the computation of each solid phase the matrices are transformed successively, each time as before.

3.2.1 Review

To review, in the basic problem (no solids) a solution to the following set of equations was found:

$$
Y_{j}=\sum_{i=1}^{m} a(i, j) C_{i}-T_{j}
$$

where

$$
C_{i}=K_{i} \prod_{j=1}^{n} x^{a(i, j)}
$$

3.2.2 One Solid Phase

In the case of one solid phase the set of equations below ($\mathrm{n}-1 \times \mathrm{n}-1,1 \times 1$) was solved;

and

$$
\left[s_{i i}=-\left(\sum_{\substack{i=1 \\ i \neq i i}}^{m} a(i, j j) c_{i}-T_{j j}\right) / a(i i, j j)\right]
$$

3.2.3 Notation

For the case of many solids, it is necessary to introduce a new condensed notation:

for no solids:

$$
\begin{array}{ll}
\text { new } & \text { old } \\
a^{\circ}(i, j) & =a(i, j) \\
T_{j}^{0} & =T_{j} \\
K_{i}^{\circ} & =K_{i}
\end{array}
$$

for one solid

$$
\begin{aligned}
& a^{\prime}(i, j)=a^{0}(i, j)-\frac{a^{\circ}\left(i i^{\prime}, j\right) a^{\circ}\left(i, j j^{\prime}\right)}{a^{\circ}\left(i i^{\prime}, j j^{\prime}\right)} \\
& T_{j}^{\prime}=T_{j}^{\circ}-\frac{a^{0}\left(i i^{\prime}, j\right)}{a^{0}\left(i i^{\prime}, j j^{\prime}\right)} T_{j j}^{\prime} \\
& K_{i}^{\prime}= \\
& =K_{i}^{\circ}-\frac{a^{0}\left(i, j j^{\prime}\right)}{a^{\circ}\left(i i^{\prime}, j j^{\prime}\right)} K_{i i^{\prime}}^{\circ}
\end{aligned}
$$

and in general

$$
\begin{aligned}
& a^{\ell+1}(i, j)=a^{\ell}(i, j)-\frac{a^{\ell}\left(i i^{\ell+1}, j\right) a^{\ell}\left(i, j j^{\ell+1}\right)}{a^{\ell}\left(i i^{\ell+1}, j j^{\ell+1}\right)} \\
& T_{j}^{\ell+1}=\dot{T}_{j}^{\ell}-\frac{a^{\ell}\left(i i^{\ell+1}, j\right)}{a^{\ell}\left(i i^{\ell+1}, j j^{\ell+1}\right)} T_{j j^{\ell+1}}^{\ell} \\
& K_{i}^{\ell+1}=K_{i}^{\ell}-\frac{a^{\ell}\left(i, j j^{\ell+1}\right)}{a^{\ell}\left(i i^{\ell+1}, j j^{\ell+1}\right)} K_{i i^{\ell+1}}^{\ell}
\end{aligned}
$$

where in every case $(1,2, \ldots \ell+1 \ldots)$ solid $S_{1 i^{\ell+1}}, C_{i i^{\ell+1}}$ and basis element $Y_{j j^{\ell+1}}$ are considered in defining $a^{\ell+1}, K^{\ell+1}, T^{\ell+1}$ in terms of a^{ℓ}, K^{ℓ}, and T.

3.2.4 Condensed Notation: One Solid

Then the set of equations in part 3.2 .2 (one solid) can be written in the new notation:

$$
S_{i i}^{\prime}=-\left(\sum_{\substack{i=1 \\ i \neq i i}}^{\underline{m}} a^{0}\left(i, j j^{\prime}\right) c_{i}-T j_{j}^{\prime}{ }^{\circ}\right) / a^{\circ}\left(i i^{\prime}, j j^{\prime}\right)
$$

3.2.5 Condensed Notation: Two Solids

The argument used in Section 3.1 can be used to consider two solids
and

Note that in the expression for $\mathrm{S}_{1 \mathrm{i}} 1^{1}$, the summation over i does not exclude ii^{2}; thus $\mathrm{C}_{\mathrm{ii}}{ }^{2}$ in the summation is equivalent to $\mathrm{S}_{\mathrm{if}}{ }^{2}$, or,

$$
\begin{aligned}
& S_{i i^{1}}=-\left(\underset{i=1}{\sum} \quad a^{0}\left(i, j j^{1}\right) C_{i}+a^{0}\left(i i^{2}, j j^{2}\right) S_{i i^{2}-}^{T_{j j}^{1}} / / a^{0}\left(i i^{1}, j j^{1}\right)\right. \\
& i \neq i i^{1}, i i^{2}
\end{aligned}
$$

3.3.6 General Expression for Solids

It is now possible to write the general expression for an arbitrary number of solids ns.

$$
\begin{aligned}
& {\left[\begin{array}{l}
Y_{j}=\sum_{i \neq j j}^{m}(1, \ldots n s) \\
\sum_{i \neq 1 i}(1, \ldots n s)
\end{array} a^{n s}(i, j) C_{i}-T_{j}^{n s}\right]} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} n-n s \times n-n s \text {) }
\end{aligned}
$$

and

$$
\left[\sum_{\substack{i i^{\ell} \\ \ell=n s, \ldots 1}}=-\left(\sum_{i \neq 1 i}^{n}(\ell \ldots 1) \quad a^{\ell-1}\left(1, j j^{\ell}\right) C_{i}-T_{\left.j j^{\ell-1}\right) / a^{\ell-1}\left(i i^{\ell}, j j^{\ell}\right)}\right]\right.
$$

(ns $\times \mathrm{ns}$)

Appendix 2.

Example of a Chemical Equilibrium Problem

A very simple problem will be solved in order to demonstrate the principles on which MINEQL functions. The chemical approach to the problem is emphasized.

The equilibrium composition ofea solution to which 10^{-3} moles/liter of CaCO_{3} has been added is to be determined. The aqueous phase and two possible solid phases will be considered, but the gas phase will not. The species to be considered in this computation and their respective stability constants are given in Table I. A schematic presentation of these data, similar to their representation in MINEQL, is given in Figure 1. The entities $\mathrm{Ca}^{2+}, \mathrm{H}^{+}$, and $\mathrm{CO}_{3}{ }^{2-}$ have been chosen as components; every species can be written as a linear combination of these components. It is assumed initially that no solid phases are present. The solubility of each of the possible solids will be tested after the equilibrium speciation for the soluble species has been computed.

An initial uneducated guess for $\left[\mathrm{Ca}^{2+}\right],[\mathrm{H}]$, and $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ is made:

$$
\begin{aligned}
& {\left[\mathrm{Ca}^{2+}\right]^{\circ}=10^{-3}} \\
& {\left[\mathrm{H}^{+}\right]^{\circ}=10^{-10}} \\
& {\left[\mathrm{CO}_{3}^{2-}\right]^{\circ}=10^{-4}}
\end{aligned}
$$

and the concentration of each of the complexes is calculated:

$$
\begin{aligned}
{\left[\mathrm{Ca}^{2+}\right] } & =\left[\mathrm{Ca}^{2+}\right] \cdot 10^{0.0} \\
{\left[\mathrm{H}^{+}\right] } & =\left[\mathrm{H}^{+}\right] \cdot 10^{0.0} \\
{\left[\mathrm{CO}_{3}^{2+}\right] } & =\left[\mathrm{CO}_{3}^{2-}\right] \cdot 10^{-3.0} \\
-10.0 & =10^{-4.0}
\end{aligned}
$$

$$
\begin{array}{rlrl}
{\left[\mathrm{CaCO}_{3}\right]} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-} 2\right] \cdot 10^{3.0} & & =10^{-4.0} \\
{\left[\mathrm{CaHCO}_{3}^{+}\right]} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \cdot 10^{11.6} & =10^{-5.4} \\
{\left[\mathrm{CaOH}^{+}\right]} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{H}^{+}\right]^{-1} \cdot 10^{-12.2} & & =10^{-5.2} \\
{\left[\mathrm{HCO}_{3}^{-}\right]} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \cdot 10^{10.2} & & =10^{-3.8} \\
{\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right]} & =\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right] \cdot 10^{16.5} & & =10^{-6.5} \\
{\left[\mathrm{OH}^{-}\right]} & =\left[\mathrm{H}^{+}\right]^{-1} \cdot 10^{-14.0} & & =10^{-4.0}
\end{array}
$$

The "calculated analytical concentrations" of $\mathrm{Ca}^{2+}, \mathrm{H}^{+}$, and $\mathrm{CO}_{3}{ }^{2-}$ as determined from the concentration of complexes is then computed:

$$
\begin{aligned}
{\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}} \mathrm{calc} } & =\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{CaCO}_{3}\right]+\left[\mathrm{CaHCO}_{3}\right]+\left[\mathrm{CaOH}^{+}\right]=1.11 \times 10^{-3} \\
{\left[\mathrm{H}^{+}\right]_{\mathrm{T}} \mathrm{calc} } & =\left[\mathrm{H}^{+}\right]+\left[\mathrm{CaHCO}_{3}^{+}\right]-\left[\mathrm{CaOH}^{+}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\star}\right]-\left[\mathrm{OH}^{-}\right] \\
& =5.62 \times 10^{5}
\end{aligned}
$$

$$
\left[\mathrm{CO}_{3}^{2-}\right]_{\mathrm{T}}^{\mathrm{calc}}=\left[\mathrm{CO}_{3}^{2-}\right]+\left[\mathrm{CaCO}_{3}\right]+\left[\mathrm{CaHCO}_{3}{ }^{+}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]
$$

$$
=3.62 \times 10^{-4}
$$

Then the difference function between the imposed analytical concentration ${ }^{[x]} T_{T}$ and the calculated ${ }^{[x]} T{ }^{\text {call }}$ is evaluated:

$$
\begin{aligned}
\mathrm{Y}_{\mathrm{Ca}^{2+}} & =\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}}^{\mathrm{calc}}-\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}}=1.10 \times 10^{-4} \\
\mathrm{Y}_{\mathrm{H}}{ }^{+} & =\left[\mathrm{H}^{+}\right]_{\mathrm{T}} \mathrm{calc}-\left[\mathrm{H}^{+}\right]_{\mathrm{T}}=5.62 \times 10^{-5} \\
-\quad \mathrm{Y}_{\mathrm{CO}_{3}}{ }^{2-} & =\left[\mathrm{CO}_{3}{ }^{2-}\right]_{\mathrm{T}} \mathrm{calc}-\left[\mathrm{CO}_{3}\right]_{\mathrm{T}}=6.37 \times 10^{-4}
\end{aligned}
$$

According to the Newton-Raphson Method, the difference functions (Y's) and their derivatives may be used to find improved values for $\left[\mathrm{Ca}^{2+}\right],\left[\mathrm{H}^{+}\right]$, and $\left[\mathrm{CO}_{3}{ }^{2-}\right]$, such that the calculated analytical concentrations, $[x] T{ }^{\text {calc }}$, more closely approach the imposed analytical concentrations, $[x]_{T}$. If the inftial guesses for $\mathrm{Ca}^{2+}, \mathrm{H}^{+}, \mathrm{CO}_{3}{ }^{2-}$ are denoted by $[x]^{\circ}$ and the. improved values by $[x]^{\text {calc }}$, the Newton-Raphson Method for this case yields the three simultaneous equations:

1. $\frac{\partial \mathrm{Y} \mathrm{Ca}^{2+}}{\partial\left[\mathrm{Ca}^{2+}\right]}\left(\left[\mathrm{Ca}^{2+}\right]^{\circ}-\left[\mathrm{Ca}^{2+}\right]^{\mathrm{calc}}\right)+\frac{\partial \mathrm{Y} \mathrm{Ca}^{2+}}{\partial\left[\mathrm{H}^{+}\right]}\left(\left[\mathrm{H}^{+}\right]^{\circ}-\left[\mathrm{H}^{+}\right]^{\mathrm{calc}}\right)$

$$
+\frac{\partial \mathrm{Y} \mathrm{Ca}^{2+}}{\partial\left[\mathrm{CO}_{3}{ }^{2-}\right]}\left(\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\circ}-\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\mathrm{calc}}\right)=\mathrm{Y} \mathrm{Ca}^{2+}
$$

2. $\begin{aligned} & \frac{\partial Y H^{+}}{\partial\left[\mathrm{Ca}^{2+}\right]}\left(\left[\mathrm{Ca}^{2+}\right]^{\circ}-\left[\mathrm{Ca}^{2+}\right]^{\mathrm{calc}}\right)+\frac{\partial \mathrm{H}^{+}}{\partial\left[\mathrm{H}^{+}\right]} \\ & +\frac{\partial Y}{\partial\left[\mathrm{CO}_{3}{ }^{2-}\right]}\left(\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\circ}-\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\mathrm{calc}}\right)=\mathrm{Y}{ }_{\mathrm{H}^{+}}\end{aligned}$.

$$
+\frac{\mathrm{CO}_{3}{ }^{2-}}{\partial\left[\mathrm{CO}_{3}{ }^{2-}\right]}\left(\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\circ}-\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\mathrm{calc}}\right)=\mathrm{Y} \mathrm{CO}_{3}{ }^{2-}
$$

The derivatives are readily calculated:

$$
\begin{aligned}
& \frac{\partial \mathrm{Ca}^{2+}}{\partial\left[\mathrm{Ca}^{2+}\right]}=1+\frac{\left[\mathrm{CaCO}_{3}\right]}{\left[\mathrm{Ca}^{2+}\right]}+\frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left[\mathrm{Ca}^{2+}\right]}+\frac{\left[\mathrm{CaOH}^{+}\right]}{\left[\mathrm{Ca}^{2+}\right]}=1.11 \\
& \frac{\partial \mathrm{Ca}^{-}{ }^{2+}}{\partial\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{CaHCO}_{3}\right]}{\left[\mathrm{H}^{+}\right]}-\frac{\left[\mathrm{CaOH}^{+}\right]}{\left[\mathrm{H}^{+}\right]}=-2.33 \times 10^{4} \\
& \frac{\partial \mathrm{Y}_{\mathrm{Ca}}{ }^{2+}}{\partial\left[\mathrm{CO}_{3}{ }^{2-}\right]}=\frac{\left[\mathrm{CaCO}_{3}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}+\frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}=1.04 \\
& \frac{\partial \mathrm{Y}}{\mathrm{H}^{+}} \frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left.\partial \mathrm{Ca}^{2+}\right]}-\frac{\left[\mathrm{CaOH}^{+}\right]}{\left[\mathrm{Ca}^{+}\right]}=-2.33 \times 10^{-3} \\
& \frac{\partial \mathrm{H}^{+}}{\partial\left[\mathrm{H}^{+}\right]}=1+\frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{\left[\mathrm{CaOH}^{+}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{4\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\star}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}^{+}\right]} \\
& =2.67 \times 10^{6} \\
& \frac{\partial \mathrm{Y}^{+}}{\partial\left[\mathrm{CO}_{3}{ }^{2-}\right]}=\frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}+\frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}+\frac{2\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\star}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}=1.63 \\
& \frac{\mathrm{CO}_{3}{ }^{2-}}{\partial\left[\mathrm{Ca}^{2+}\right]}=\frac{\left[\mathrm{CaCO}_{2}\right]}{\left[\mathrm{Ca}^{2+}\right]}+\frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left[\mathrm{Ca}^{2+}\right]}=0.104 \\
& \frac{\mathrm{CO}_{3}{ }^{2-}}{\partial\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{\left[\mathrm{H}^{+}\right]}+\frac{2\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\star}\right]}{\left[\mathrm{H}^{+}\right]}=1.63 \times 10^{6} \\
& \frac{\mathrm{CO}_{3}{ }^{2-}}{\partial\left[\mathrm{CO}_{3}{ }^{2-}\right]}=1+\frac{\left[\mathrm{CaCO}_{3}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}+\frac{\left[\mathrm{CaHCO}_{3}{ }^{+}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}+\frac{\left[\mathrm{HCO}_{3}{ }^{-}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}+\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\star}\right]}{\left[\mathrm{CO}_{3}{ }^{2-}\right]}=3.62
\end{aligned}
$$

Then the system of simultaneous equations

$$
\begin{aligned}
1.11 & x_{1}-2.33 \times 10^{4} \\
x_{2}+10.4 & x_{3}=1.10 \times 10^{-4} \\
-2.33 \times 10^{3} & x_{1}+2.67 \times 10^{6} \\
x_{2}+1.62 & x_{3}=5.62 \times 10^{-5} \\
0.104 & x_{1}+1.63 \times 10^{6} \\
x_{2}+3.62 & x_{3}=6.37 \times 10^{-4}
\end{aligned}
$$

is solved for x_{1}, \dot{x}_{2}, and x_{3} where.

$$
\begin{aligned}
& \mathrm{x}_{1} \rightarrow\left[\mathrm{Ca}^{2+}\right]^{0}-\left[\mathrm{Ca}^{2+}\right]^{\mathrm{calc}}=3.54 \times 10^{-4} \\
& \mathrm{x}_{2} \rightarrow\left[\mathrm{H}^{+}\right]^{0}-\left[\mathrm{H}^{+}\right]^{\mathrm{calc}}=1.83 \times 10^{-10} \\
& \mathrm{x}_{3}+\left[\mathrm{CO}_{3}{ }^{2-}\right]^{0}-\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\mathrm{calc}}=2.68 \times 10^{-4}
\end{aligned}
$$

Then the known values for $\left[\mathrm{Ca}^{2+}\right]^{\circ},\left[\mathrm{H}^{+}\right]^{\circ}$, and $\left[\mathrm{CO}_{3}{ }^{2-}\right]^{\circ}$ are substituted in the equations above and

$$
\begin{array}{ll}
{\left[\mathrm{Ca}^{2+} \mathrm{calc}\right.} & =6.45 \times 10^{-4} \\
{\left[\mathrm{H}^{+}\right]^{\mathrm{calc}}} & =-8.33 \times 10^{-4} \\
{\left[\mathrm{CO}_{3}^{2-}\right]^{2-\mathrm{calc}}} & =3.68 \times 10^{-4}
\end{array}
$$

It is seen that the new value for $\left[\mathrm{H}^{+}\right]^{\mathrm{calc}}<0$; this is physically meaningless. Therefore, by use of an empirical algorithm, $\left[\mathrm{H}^{+}\right]$calc is set to $\left[\mathrm{H}^{+}\right]^{\text {calc }}=\left[\mathrm{H}^{+}\right]^{\circ} / 10$, and the iterative process is resumed with the values $\left[\mathrm{Ca}^{2+}\right]=6.45 \times 10^{-4}$

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right] } & =10^{-11} \\
{\left[\mathrm{CO}_{3}^{2-}\right] } & =3.68 \times 10^{-4}
\end{aligned}
$$

This iterative process is carried out six times. until the value of each difference function is small compared to the terms in the difference

- function. (The actual convergence criterion is that Y divided by the maximum of individual terms in Y is less than ε; here $\varepsilon=10^{-4}$).

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{Ca}}{ }^{2+}=\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}} \mathrm{calc}^{2}-\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}} \\
&=\left[\mathrm{Ca}^{2+}\right]+\left[\mathrm{CaCO}_{3}\right]+\left[\mathrm{CaHCO}_{3}{ }^{+}\right]+\left[\mathrm{CaOH}^{+}\right]-\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}} \\
&=6.87 \times 10^{-4}+2.97 \times 10^{-4}+4.58 \times 10^{-6}+1.12 \times 10^{-5}-10^{-3} \\
&=-2.29 \times 10^{-10} \\
& \mathrm{Y}_{\mathrm{H}^{+}}=\left[\mathrm{H}^{+}\right]_{\mathrm{T}}^{\mathrm{calc}}-\left[\mathrm{H}^{+}\right]_{\mathrm{T}} \\
&=\left[\mathrm{H}^{+}\right]+\left[\mathrm{CaHCO}_{3}{ }^{+}\right]-\left[\mathrm{CaOH}^{+}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+2\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{H}^{+}\right]_{\mathrm{T}} \\
&=3.87 \times 10^{-4}+4.58 \times 10^{-6}-1.12 \times 10^{-5}+2.65 \times 10^{-4}+4.09 \times 10^{-8} \\
&=4.07 \times 10^{-10}-2.59 \times 10^{-4}-0 \\
& \mathrm{Y} \\
& \mathrm{CO}_{3}^{2-}=\left[\mathrm{CO}_{3}{ }^{2-}\right]_{\mathrm{T}}^{\mathrm{Calc}^{2}-\left[\mathrm{CO}_{3}{ }^{2-}\right]_{\mathrm{T}}} \\
&=\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{CaCO}_{3}\right]+\left[\mathrm{CaHCO}_{3}{ }^{+}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\star}\right]-\left[\mathrm{CO}_{3}{ }^{2-}\right]_{\mathrm{T}} \\
&=4.33 \times 10^{-4}+2.97 \times 10^{-4}+4.58 \times 10^{-6}+2.65 \times 10^{-4} \\
&=-2.02 \times 10^{-10}+2.05 \times 10^{-8}-10^{-3}
\end{aligned}
$$

The full solution to this problem is given in the first column of
Table II.
Now it is necessary to compute the solubility of the solid phases: $\mathrm{Ca}(\mathrm{OH})_{2}$ (s) $\left[\mathrm{Ca}^{2+}\right][\mathrm{H}]^{-2} \cdot 10^{-21.9}=10^{-4.24}$ CaCO_{3} (s) $\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}\right] \cdot 10^{8.3}=10^{+1.78}$

It is seen that the solubility product of CaCO_{3} (s) is exceeded, i.e. $\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{K}>1$; the problem must be modified according to the description given in Appendix I to include the solid phase CaCO_{3} (s). The schematic representation of the "modified" problem is given in Figure 2. Note that by modification the basis element $\mathrm{CO}_{3}{ }^{2-}$ has effectively been eliminated from the computation; now the computation includes only Ca^{2+} and H^{+}.

The previously calculated values for $\left[\mathrm{Ca}^{2+}\right]$ and $\left[\mathrm{H}^{+}\right]$are used as initial guesses, and the modified problem is solved as before for the soluble species. The computation converges after five iterations, and the results are given in Table II. The amount of CaCO_{3} (s) is calculated from
$-\left[\mathrm{CO}_{3}{ }^{2-}\right]_{\mathrm{T}}=\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{CaCO}_{3}\right]+\left[\mathrm{CaHCO}_{3}{ }^{+}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3} *\right]$ $+\mathrm{CaCO}_{3}$ (s).
CaCO_{3} (s) is found to be 8.73×10^{-4}; this is checked to insure that it is greater than 0 .

The solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ (s) is then checked:

$$
\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{H}^{+}\right]^{-1} \cdot 10^{-6.00}<1
$$

and found to be soluble.
The problem is solved.

Figure 1. Schematic Representation of Data

> Calcium Carbonate Problem

\because		Ca^{2+}	H^{+}	$\mathrm{CO}_{3}{ }^{2-}$	$\log \mathrm{K}$
1.	Ca^{2+}	1	0	0	0.0
2.	H^{+}	0	1	0	- 0.0
3.	$\mathrm{CO}_{3}{ }^{2-}$	0	0	1	0.0
4.	$\mathrm{CaCO}_{3}(\mathrm{aq})$	1	0	1	3.0
5.	$\mathrm{CaHCO}_{3}{ }^{+}$	1	1	1	11.6
6.	CaOH^{+}	1.	-I:	0	-12.2
7.	$\mathrm{HCO}_{3}{ }^{-}$	0	1	1	10.2
8.	$\mathrm{H}_{2} \mathrm{CO}_{3}$	0	2	1	16.5
9.	OH^{-}	0	-1	0	-14.0
10.	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$	1	-2	0	-21.9
11.	$\mathrm{CaCO}_{3}(\mathrm{~s})$	1	0	1	8.3
		$\left[\mathrm{Ca}^{2+}\right.$	$\left[\mathrm{H}^{+}\right]$	$\left[\mathrm{CO}_{3}{ }^{2}\right.$	
		10^{-3}	0	10^{-3}	

The analytical concentrations according to this representation are

$$
\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}}=10^{-3},\left[\mathrm{H}^{+}\right]_{\mathrm{T}}=0,\left[\mathrm{CO}_{3}^{2-}\right]_{\mathrm{T}}=10^{-3}
$$

Figure 2 Schematic Representation of Data for Calcium Carbonate Problem: Modified for $\mathrm{CaCO}_{3}(s)$

$$
\begin{array}{cl}
{\left[\mathrm{Ca}^{2+}\right]_{\mathrm{T}}} & {\left[\mathrm{H}^{+}\right]_{\mathrm{T}}} \\
0.0 & 0.0
\end{array}
$$

TABLE I Species Considered in
Carbonate Problem

1. Ca^{2+}
2. H^{+}
3. $\mathrm{CO}_{3}{ }^{2-}$
4. $\mathrm{CaCO}_{3} \quad\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{K}=\left[\mathrm{CaCO}_{3}\right] \quad \log \mathrm{K}=3.0$
5. $\left(\mathrm{CaHCO}_{3}\right)^{+} \quad\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{K}=\left[\mathrm{CaHCO}_{3}{ }^{+}\right] \quad \log \mathrm{K}=11.6$
6. $(\mathrm{CaOH})^{+}$
$\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{H}^{+}\right]^{-1} \mathrm{~K}=\left[\mathrm{CaOH}^{+}\right]$
$\log \mathrm{K}=-12.2$
7. $\mathrm{HCO}_{3}{ }^{-}$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{K}=\left[\mathrm{HCO}_{3}{ }^{-}\right]$
$\log \mathrm{K}=10.2$
8. $\mathrm{H}_{2} \mathrm{CO}_{3}$
$\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2+}\right] \mathrm{K}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{\star}\right]$
$\log K=16.5$
9. OH^{-}
$\left[\mathrm{H}^{+}\right]^{-1} \mathrm{~K}=\left[\mathrm{OH}^{-}\right]$
$\log K=-14.0$
10. $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \quad\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{H}^{+}\right]^{-2} \mathrm{~K}=\left[\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})\right] \quad \log \mathrm{K}=-21.9$
11. $\mathrm{CaCO}_{3}(\mathrm{~s})$
$\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right] \mathrm{K}=\left[\mathrm{CaCO}_{3}(\mathrm{~s})\right]$
$\log \mathrm{K}=$
8.3

The following conditions are assumed: temperature $=25^{\circ} \mathrm{C}$, ionic strength $\mu=0$, concentration \equiv activity

Species	TABLE II Solution of the Calcium Carbonate Problem	
	```Solution l no solid phases -log[x]```	$\begin{aligned} & \text { Solution } 2 \\ & \mathrm{CaCO}_{3}(\mathrm{~s}) \\ & \text { present } \\ & -1 \mathrm{log}[\mathrm{x}] \end{aligned}$
$\mathrm{Ca}^{2+}$	3.16	3.91
$\mathrm{H}^{+}$	10.41	9.91
$\mathrm{CO}_{3}{ }^{2-}$	3.36	4.38
$\mathrm{CaCO}_{3}$	3.53	5.30
$\mathrm{CaHCO}_{3}^{+}$	5.34	6.61
$\mathrm{CaOH}^{+}$	4.95	6.21
$\mathrm{HCO}_{3}{ }^{-}$	3.58	4.09
$\mathrm{H}_{2} \mathrm{CO}_{3}$ *	7.69	7.70
$\mathrm{OH}^{-}$	3.59	4.09
$\mathrm{CaCO}_{3}(\mathrm{~s})$	-	3.13
$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$	-	- .

## Appendix 3

Description of Subroutines ${ }^{*}$

1. SUBROUTINE ERROR
2. SUBROUTINE EXCOL

ENTRY EXROW
3. FUNCTION IADY

ENTRY IADX
4. SUBROUTINE INION

ENTRY IONCOR
5. SUBROUTINE INPUT

ENTRY INTYPE
6. SUBROUTINE OUTPUT

ENTRY OINCMP
ENTRY OINSPC
ENTRY OUTCMP
ENTRY OUTSPC
ENTRY OUTPC
7. SUBROUTINE SIMQ
8. SUBROUTINE SOLID
9. SUBROUTINE SOLIDX
10. SUBROUTINE SOLVE

* This section of the report is useful only when a listing of the program is at hand. Because of its length, the program has not been included as part of the text, but it should be available as computer output.

1. SUBROUTINE ERROR(I)

This subroutine prints error message $I$, prints output data (OUTCMP, OUTSPC) and terminates execution. Description of the error messages is found in the MINEQL User's Manual.
2. SUBROUTINE EXCOL (JO, JJ), EXROW (IO, II)

EXCOL exchanges columns in the IDX, A, X, GX and T arrays; EXROW exclanges rows in the IDY, $A$, and $K$ arrays:
3. FUNCTION IADY (IDY), ENTRY IADX(IDX)

IADY finds the address (storage location) of species IDY in the $K$ array; if species IDY cannot be found, an error message is issued and execution is terminated. IADX finds the address of component IDX in the $\mathrm{X}, \mathrm{GX}$, and T arrays; if component IDX cannot be found, an error message is issued and execution is terminated.
4. SUBROUTINE INION, ENTRY IONCOR

IONCOR performs ionic strength correction according to the Davies (14) approximation. INION reads the ionic charge data and initializes the variables for IONCOR.

Mathematical Treatment: The Davies approximation for the activity coefficient $f$ of an ion in medium of ionic strength $\mu$ is
$\log f=Z^{2} \in T\left(\frac{\mu^{1 / 2}}{1+\mu^{1 / 2}}-0.2 \mu\right)$
where: .
Z = ionic charge
$\varepsilon=$ dielectric constant of solution ${ }^{*}$
$T=$ temperature
$\mu=$ ionic strength, is defined by:

$$
\mu=\frac{1}{2} \underset{i}{\Gamma_{i}} Z_{i}^{2} C_{i}
$$

1: all species in solution
where:

$$
\begin{aligned}
& \mathrm{Z}_{1}=\text { ionic charge of species } 1 \\
& C_{i}=\text { concentration of species } i
\end{aligned}
$$

The thermodynamic equilibrium constant $K$ for a reaction

$$
a_{1} X_{1}+\ldots+a_{n} X_{n}=C
$$

where $X_{j}=$ reactant

$$
a_{j}=\text { stoichiometric coefficient of } X_{j}
$$

is defined by

$$
\left\{x_{1}\right\}^{a_{1}} \ldots\left\{x_{n}\right\}^{a_{n}} \cdot k=\{c\}
$$

where $\}$ represents activity. This can also be written

$$
\left[X_{1}\right]^{a_{1}} f_{1}^{a_{1}} \ldots\left[X_{n}\right]^{a_{n}} f_{n}^{a_{n}} \cdot K=[C] f_{c}
$$

where [.] represents concentration and $f$ the activity coefficient.
Upon rearrangement,

$$
\left[x_{1}\right]^{a_{1}} \ldots\left[x_{n}\right]^{a_{n}} \cdot \frac{\dot{f}_{1}^{a_{1}} \ldots f^{a_{n}}}{f_{c}}=[C]
$$

Then we can define a constant "corrected for ionic strength"

$$
K^{\prime}=\frac{f_{1}^{a_{1}} \ldots f_{n}^{a_{n}}}{\mathbf{f}_{c}} K
$$

Using the fact that $Z_{c}=\sum_{j} a_{j} Z_{j}$ and the expression for $\log f$ given above, we can express the corrected constant

$$
\begin{aligned}
\log K^{\prime} & =\left[\sum_{j} a_{j} z_{j}^{2}-\left(\sum_{j} a_{j} z_{j}\right)^{2}\right] \cdot \varepsilon T\left(\frac{\mu^{1 / 2}}{1+\mu^{1 / 2}}-0.2 \mu\right) \\
& +\log K
\end{aligned}
$$

Description of INION and IONCOR:

INION initializes $G F O=0, X M U=0$, and reads the data for ionic charge $10 \%(J)$. See bclow for a description of program variables in terms of the previously defined mathematical variables.
rONCOR sets $E T=0.5$ (valid for water at $25^{\circ} \mathrm{C}$ ) and computes GF for the new ionic strength.. The difference between the ionic strength functions for the new and the old ionic strengths is computed, $D G F=G F-G F \emptyset$, and this difference is used to compute the GK's for the new ionic strength relative to the GK's for the old ionic strength. IONCOR [rints the value of the ionic strength $X M U$, and the $\log f$ for an ion with $Z=1$.

To maks ionice strength corrections in MINEQL, INION is called first and only one time; IONCOR (XMU) can then be called any number of times with any desired ionic strength XMU.

Description of Variables
$\mathrm{CF}, \mathrm{GF} \emptyset: \quad \varepsilon \quad \mathrm{T}\left(\frac{\mu^{1 / 2}}{1+\mu^{1 / 2}}-0.2 \mu\right)=\log \mathrm{f} / \mathrm{Z}^{2}$

XMU: $\quad \mu$
$\operatorname{IONZ}(J): \quad Z_{j}$
ET: $\quad \varepsilon T$
5. SUBROUTINE INPUT, ENTRY INTYPE

INPUT performs the following task: l)reads the data to specify the components to be included in the computation, nn initial guess for their free concentrations, and their analytical (total) concentrations;
2) retrieves the relevant thermodynamic data for that set of components;
3) reads the data to specify species types.

The loop on 20 initializes the IADXT array. IADXT(IDX) contains the array storage location of the component identified by IDX. Thus as each component, the guess for its concentration, and its analytical concentration are read in statement 10 , $\operatorname{IADXT}$ (IDX) is set equal to the index $J$ and the data are stored in $\operatorname{IDX}(\mathrm{J}), G X(J), X(J)$ and $T(J)$. All other elements in IADX remain equal to zero.

The loop on 200 then generates the Type $I$ species in the $A$ and $K$ matrices. The loop on 400 reads each of the species in the thermodynamic data base. If all of the components of that species are included in the problem (as indicated by a non-zero entry in the IADXT array), the species is entered by species type into the $A$ and $K$ arrays.

The manipulation of species type is described in the MINEQL User's Manual. The ENTRY INTYPE allows for the manipulation of species type from MAIN after the initial specification has been made. If the type or stoichiometry data is entered incorrectly an error message is issued and execution is terminated.

## 6. SUBROUTINE OUTPUT

OUTPUT has five separate entry points, each of which produces a particular output, as described in the MINEQL User's Manual. Each of the output functions are called by their ENTRY names; a call to OUTPUT is meaningless. The programming is straightforward and will not be described further here.

## 7. SUBROUTINE SIMQ(Z,Y,N,NXDIM)

This is a subroutine for the solution of $n$ linear equations in $n$ unknows by Gaussian elimination and each substitution. The methodology is discussed in many numerical analysis texts, e.g. (13). If the system is singular, an error message is issued and, execution is terminated. For the solution of linear equations. the arguments are:

Z - two dimensional array containing the matrix of coefficients in rows and columns 1 - through $N$. ( $Z$ is written over during compiutation).
$Y$ - one dimensional array containing the values of the non-- homogeneous equations in rows 1 through $N$ : the root of the equation is returned in $Y$.

N - the order of the matrix stored in $Z$
NXDIM - the actual dimension of 2 .

## B. SUBROUTINE SOLIT:

SOLID modifies the $A_{3} \cdot K$, and $T$ matrices for the set of precipitated solids (Figire 1). SOLID issues an immediate RETURN if there-are-no precipitated solids (Type III and Type IV species). If there are precipitated solids, modification begins with the last Type IV species as the pivotal species, and works upward to the first Type III species..

To modify for a given solid species, the row in the A matrix which represents that species is searched for a non-zero $A(I, J)$ : the component responsible for the non-zero $A(I, J)$ is to be used as the pivotal component. (If no non-zero coefficient can be found, the situation corresponds to a violation of the Gibbs Phase Rule. An error message is issued and
execution is terminated). When the pivotal component has been found, the column of the pivotal component and the rightmost column of the A matrix (or, more precisely, the rightmost column of that part of the $A$ matrix which does not already contain pivotal components) are interchanged then the pivotal row and pivotal colum are on the outside of the $A$ matrix and modificaiton can conveniently be performed on the inside elements.

The mathematics of the modification operation are described in Appendix 1, "Computation of Solids".

## 9. SUBROUTINE SOLIDX (KK)

The function of SOLIDX is to solve the chemical equilibrium problem for the amount of solids, "unmodify" the $A, K, T, G X$ and $X$ matrices (i.e., restore the stoichiometry to reflect the original set of components) and to dissolve or to precipitate solids as necessary (Figure 2).

The loop on 440 computes the mass balance equations for those constituents which were eliminated from the computation as the arrays were modified for the solids. The loop on 460 solves for the amount of solid, and performs the inverse of the modification procedure used in subroutine SOLID. The loop on 220 computes the solubility expression for all of the dissolved solids.

Then the precipitated solids subject to dissolution (Type IV species) are tested for a negative amount. If the amount of a solid is found to be negative, or if more than one solid is present in a negative amount, the solid with the most negative amount is dissolved and KK, the return code of the subroutine, is set to -1 to indicate dissoluation.

Dissolution is actually accomplished by moving the solid to be dissolved from the range of the Type $I V$ species to the range of the Type $V$ species: Execution returns to MAIN and the chemical equilibrium problem with this new set of solids is restarted at subroutine SOLID.:

A similar procedure is used to test dissolved solids for precipitation: the solid which most exceeds its solubility product is precipitated and return code $K K=1$ is used to indicate precipitation.

By testing the solids first for dissolution, and dissolving solids one at a time, then testing for precipitation and precipitating the solids one at a time, the program minimizes the chance of creating a system which violates the Gibbs Phase Rule.

If solids are neither precipitated nor dissolved by SOLIDX, return code $K K=0$ is given and the equilibrium problem is solved.
10. SUBROUTINE SOLVE

Subroutine SOLVE solves the chemical equilibrium problem for soluble species, performing all of the operations described in Appendix 1 , "Basic Problem". SOLVE is indifferent to whether solid phases have modified the chemical equilibrium problem or not - it simply solves the problem for the given constraints.

The loop on 2 computes the concentration of the soluble species; the loop on 201 computes the mass balance equations; the loop on 400 computes the Jacobian; and the loop on 800 checks for convergence.

If the number of iterations is greater than the maximum allowable, an error message is issued and execution is terminated. Otherwise the system of linear equations given by the Jacobian, $Z$, and the mass
balance equetions, $Y$, is solved by SIMQ, and the solution is returned in Y. The "Enproved" values for the components are computed $(X(J)=X(J)-Y(J))$ and checked whether they are greater than zero. If the "imprived" value is found to be less than zero, the "improved" value is set equal to the old value divided by ten $(X(J)=(X(J)+$ $\mathrm{Y}(\mathrm{J}) /(10)$ by an empirical algorithm.

Executim then reverts to statement 1000 for another iteration.

# Figure 1 Modification of $A, K \& T$ for Solids* <br> (Subroutine SOLID) 


1.a. Exchange columns
i. Find non-zero $\cdot$ lement in row $\mathrm{I} \varnothing$ of $A$ array: call its column JEX
ii. Interchange columns JEX and Jø

1.b. Modify interior elements of $A, K, \& \dot{T}$ arrays (see Appendix 1 ). The hatch pattern denotes those array elements which have been modified according to Appendix 1:

$$
\begin{gathered}
A(I, J)=A(I, J)-\frac{A(I \emptyset, J)}{A(I \emptyset), J \emptyset)} \\
\because \quad \\
T(J)=T(J)-\frac{A(I \emptyset, J)}{A(I \emptyset, J \emptyset)} T(J \emptyset) \\
K(J)=K(J)-\frac{A(I, J \emptyset)}{A(I \emptyset, J \emptyset)} K(I \emptyset)
\end{gathered}
$$


1.c Increment $I \varnothing$ and $J \varnothing$, and repeat steps $a \& b$. array elements modified for first solid phase $\square$ (preceding step)
array elements modified for second solid phase
 (this step)

2.a Compute mass balance (y) for constituents which were eliminated from computation during modification for solids:

```
\(Y(J)=\sum_{I=} A(I, J) C(I)-T(J)\)
 Type I
 Type II
```

The range of the indicies $I$ and $J$ are given by the double headed arrows.

Array elements modified for first solid phase $\square$
Array elements modified for second solid phase $\square$

2.b Solve for constituent in coluon $J \emptyset$
i. Solve for amount of solid in row $I \emptyset$ from mass balance condition in column $J \emptyset: C(I \emptyset)=Y(J \emptyset) / \Lambda(I \emptyset, J \emptyset)$
ii. Add amount of solid in row $I \emptyset$ to mass balance equations
in columns to the right of current $J \emptyset: Y(J)=Y(J)+A(I \emptyset, J) C(I \emptyset)$
iii. Solve for concentration (activity) of constituent in colurn $J \emptyset$

Array elements modified for first solid phase $\square$ Array elements modified for second solid phase $\square$


SPECIES TYPE C

I\&II.

III \& IV

$\pm \rightarrow \square$
2.c Complete un-modification

1. Un-modify interior elements of $A, K, \& T$ according to Appendix 1:

$$
\begin{aligned}
& A(I, J)=A(I, J)+\frac{A(I \emptyset, J) A(I, J \emptyset)}{A(I \emptyset, J \emptyset)} \\
& T(J)=T(J)+\frac{A(I \emptyset, J)}{A(I \emptyset, J \emptyset)} T(J \emptyset) \\
& K(I)=K(I)+\frac{A(I, J \emptyset)}{A(I \emptyset) J \emptyset)} K(I \emptyset)
\end{aligned}
$$

ii. Increment $I \emptyset$ and $J \emptyset$ and repeat a \& b

Array elements modified for first solid phase $\square$

* The specific examples shown in the figures are only representative of the manipulations performed: the exact number of components and species of each type will of course vary from case to case.


## References

1. Frank J. Zeleznik and Sanford Gordon, Industrial and Engineering Chemistyy, 60, 27, (1968).
2. N.Z. Shapiro and L'.S. Shapley, "Mass Action Laws and the Gibbs Free Energy Function", RM-3935-PR, The Rand Corporation, Dec., 1960.
3. R.J. Clason, "The Numerical Solution of the Chemical Equilibrium Problem: RM-4345-PR, The Rand Corporation, January, 1965.
4. Marian Shapley and Leola Cutter, "Rand's Chemical Composition Program: A Manual", R-495-PR, The Rand Corporation, June, 1970.
5. N̂. Ingri, W. Kakolowicz, L.G. Sillen, B. Warnquis5 Talanta, 14 , 1261, (1967).
6. D.D. Perrin and I.G. Sayce, Talanta, 14, 833, (1967).
7. F.M.M. Morel and J.J. Morgan, Environmental Science and Technology, 6, 58 (1972).
8. R.E. McDuff and F.M.M. Morel, Technical Report EQ73-02, Keck Laboratory, Caltech, 1973.
9. F.Morel, R.E. McDuff, and J.J. Morgan, in Trace Metals and MetalOrganic Interactions in Natural Waters, Ann Arbor Science Publishers, 1973.
10. F. Morel, R. MeDuff, and J.J. Morgan, Marine Chemistry, 4, 1 (1976).
11. Alberto Zirinio and S. Yamamoto, Limnology and Oceanography, 17, 661, (1972).
12. A.H. Truesdell and Blair F. Jones, Jour. Res. U.S.G.S..; 2, 233, (1974).
13. Joan R: Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, Wiley, New York, 1968.
14. C.W. Davies, Ion Association, Butterworths, Washington, 1962.
15. J.W. Gibbs, The Collected Works of J.W. Gibbs, Yale University Press, 1957. DEPARTMENT OF GEOLOGICAL SCIENCES

1006 C. C. LItTLE BUILDING ANN ARBOR, MICHIGAN 48109
(313) 764-1435

> Multiple Data Set Analysis Contract DE-FC07-79ID12064
> ERIM -- University of Michigan
> Ann Arbor, Michigan
> Investigator: P. L. Jackson

Digital modeling and analysis of different types of geophysical data are being developed using computer graphics. The development is focused toward simultaneously analyzing several different types of geophysical measurements. The approach is to construct one digital model to which parameters (seismic velocities, densities, resistivities, etc.) are assigned. Simulated data measurements are then computed and compared with actual data measurements.

The rationale for simultaneous modeling of different data sets is to obtain greater accuracy and confidence in the interpretation of the subsurface. The solution of a single data set is not unique: a range of subsurface configurations can produce identical data for each kind of geophysical measurement. With multiple data sets the intersection of the configuration ranges can be found. This intersection must conform to each type of measurement, and must be as small or smaller than the smallest range for one of the data sets. Not only is the analysis made more refined, but it is confirmed by the different data sets.

The ultimate goal (not completely unrealistic) is to develop simultaneous inverse modeling in three dimensions, in which models with variances of different confidence levels are produced from experimental
data. This goal will not be achieved during this one-year contract, but a foundation for steps toward that goal will be. It is anticipated that at least one type of inverse geophysical measurement (gravity) will be included in the simultaneous modeling, as will a statistical evaluation procedure.

Currently seismics, gravity, resistivity, and magnetic data are simultaneously simulated and presented graphically. Density, P-wave velocity, resistivity, and magnetic anomalies are configured in a single cross-section, and displayed on a cathode ray tube. Using the various geophysical parameters, the computer displays a gravity anomaly profile, P- and S-wave travel time curves, resistivity curves or pseudo-sections, and a magnetic intensity profile. Seismic rays (including headwaves) for both local and teleseismic sources are drawn on the cross-section. Experimental data is displayed along with the simulated data.

The program was designed with three goals in mind:

1. Simplicity in using and altering the models.
2. The ready acceptance of new geophysical data types (AMT, EM sounding, heat flow) and also of other algorithms to compute the data types now used.
3. Extension to inverse computation and decision making to aid the interpreter.

The algorithms are programed to run on the University of Michigan Amdahl 4701 computer, using a basic interactive graphics package. It is designed to present the model and outputs clearly, and to enable quick alteration of the model.

The following pages are duplicates of hard copies of the menus and drawings which are the graphics output.

```
GENERAL
 COMMAND STRING TERMINATOR
ENTER COMMAND STRING
 MODELLING PARAMETERS (M)
 ZONE CONSTAINTS (C)
 PLOTTIHG PARAMETERS (P)
 ZONE MODEL (Z)
SEISMIC MODELLING
 WITH MODEL CHANGES (S)
 WITHOUT MODEL CHANGES (T)
GPAUIT` MODELLING
 WITH MODEL CHANGES (G)
 UITHOUT MODEL CHANGES (H)
RESISTIUITY MODELLING
 FIHITE DIFFERENCE WITH MODEL CHANGES (R)
 FINITE DIFFERENCE WITHOUT MODEL CHANGES (W)
 FINITE ELEMENT WITH MODEL CHANGES (A)
 FINITE ELEMENT WITHOUT MODEL CHANGES (B)
MAGNETIC MODELLING
 WITH MODEL CHANGES (D)
 WITHOUT MODEL CHANGES (E)
INPUT THE CURRENT DATABASE (I)
FINISHED WITH ALL MODELLING (F)
```

]. !IENU FOR COHIIANDS TO CALL AND CHANGE FOUR TYPES OF GEOPHYSICAL MODELING.





4. tha Alterations of model based on west end of geotherial area refraction lime. X'S INDICATE EXPERIIETITAL DATA.


MODELING PARAMETERS

FLAGS	IPLOT $=T$	IGRAU-T	ISEIS-T	IRESIS-F
	IPLAME=F	METRIC-T	5 WAUES-F	P WAUES-T
	UELIN-T	HWTEST $=T$		
CONSTANTS	DELHW 5 . 0	NREFL- 1	SEGLEN-0.1	FRMIN=0.1
	HLIM-80 0	ULIM $=-40.0$		-
				-

N-NONE
c-CHANGES
H-HELP
COMMAND?
3. LIEHU TO ALTER PARAGETERS.
tos


MTOR2 Dala Tape Formal


MTDRZ Data Worc:, Data Scan Formals
$2 / 3$


MTDR2 Magtape Data Record Format
 depicted in Vie File Formal on page 1 . Each data record is a Time Word followed by an integral number of data scans. The number of sEams per record, NSR is set by the MTDRZ software and is dependent upon the LCH setting.

As indicated in the din wo yd structure e, the MSE of the last crimple of every sean (End of Scan Fling) is se..

Where the number of data records per file is greater than bul not equal to: NSF/NSR (see definitions page 1),
 record. The second world is the first delia word of the scan (Channel $\varnothing$ ). The lime word contains the time this data sample was taken if either of two conditions exist|:
a) The record is the first data record of the file (follows the Hor record)
$\beta$ ) The record is the first data record after a time gap has occurred.
In all other cases, the data in the present record has a Fixed time period from the data in tic previous data vecord defined by the scan rate sty the is the data sampling is continuous. This continuity of sampling betwecp data ufecords is indionicd by the Time word with all bits set.

Time Word Format: $A_{3} A_{2} A_{1} A_{0}$ for $\alpha$ ) oud $\beta$ ): An is 4 pit $B C D$ integer otherwise: An is 4 sit Hexadecimal $F$ for $n=0,1,2,3$

MTDRZ Tape Headier/Trailer Furmst - Standard MUXZ Geotronce: Corp.







目

SHEEOUIINF OUTIADE IITLF．IOS．11．17．131
gavf lact fromay
－－Mf，$A$ DE pfropo－．
VAPIARLF OR ARRAY
FLAGI
HFDEO
105
11
17
17
13
DAlf．
HOU
M14
MEADR（1－500
－－nata decorno．－
VARIABLE OR ARPAY
FLEG？
HFEEO
PaSSLVLS
NSD
DP
nepc
IaNC
DHOC
$1 A C$
$\stackrel{C O}{P C}$
$1 P C$
$C . D C$
PRC
PR
AnC
COHC
ANGC
ARSGC
KMMC
KNMC
ALPC
PTAC
DELC
KZE
cok
AASK
RTAK
$1 \times \times \mathrm{C}$
IXYC
IExxC


1

3－－2？
2．7－－2？ NFREO
23．NF HEO－－22．20NFDEO
23．2ONFREO－－22．27－NFRED 23．270nTDEO－22•290NFREO $23 \cdot 290$ NFPER $-22 \cdot 31$－NFRE $23+31^{\circ} \mathrm{NFREO}-22+33^{\circ} \mathrm{NFREO}$
23.33 NFREO－ 22.350 NFREO $23 \cdot 330 \mathrm{NF}$ REO－－22•350NFREO
$23 \cdot 350 \mathrm{NFDEO}-22.370 \mathrm{NFDEO}$
 23．410NFREO－－22．450NFREO 23．450NFREO－－2？ 4.40 NFREO 22.490 NFREO－$-22 \cdot 530$ NFREO $23.530 \mathrm{NFPEO}-22+580 \mathrm{NFREO}$ 23．5月0NFDEO－23．630NFREO 23．630NFPEO－－2？．68NFREO $23.680 \mathrm{NFPEO}--11 \cdot 710 \mathrm{NFREQ}$ 23．710NFREO－－22．730NFRER 23．75 NFPEO－－23．700NFREO 23．780NFREO－－23．800NFREO 23．BOONFREO－Z2J．ROONFPEO $23.80^{\circ}$ NFREO－ $23.820 N F P E O$
$23 . R 2$ NFPEO－－22．84QNFREO 23．R4ONFPEO－－22．850NFPEO 23．BSaNFPEO－－22•BGONFPEO 23．A6ONFPEO－－22•870NFREO 23．A70NFREO－ $22 \cdot 1050 \mathrm{NFREO}$ $23 \cdot 105$ NFR50－－22＋1230NFR58 23•1230NFREO－－22•124＊NFREO
nulyapr oultanf OUTTADE OUBTAPE nUTIADEf OUTTAPE OUTTAPE OUTTAPE OUTTAPE OUTTAPE OUTTAPF OUTIADE OUTTAPF OUTTAPE OUTTAPE OUTTAPE outtape OUTIAPF OUTTAPE OUTTAPE OUTTAPE OUTTAPE oustape OUTTAPE OUTTAPE OUTTAPE OUTTAPE OUTTAPE OUTTAPE OUTIAPE． OUTTAPE OUTTAPE OUTTAPE OUTTAPF oUTTAPE OUTTAPE OUTTAPF OUTTAPE OUTTAPE OUTTAPE OUTTAPE outtape outtape OUTTAPE OUTTAPE
OUTTAPE outtape OUTTAPE OUTTAPE OUTIAPE outtape
Notes：

NHEEQ Es Daramont ous sumelr of
LHAN PonTh procistcD.
17
18
19 - Tare 2 lleader wouls in order- seem
21

- Daia riccord Sla; fiAgz=0
- nol moment 2 unen
30
33
34
3
35
36
37
38
40
41
42
43
43
44
45
44
46
47
49
50
51
52
53
54
55
- 
- .
. .- --

DUN VEOSION 7.3 --DSO LEVEL 3S3--
$0.3 / 09 / 75$
000010

000010
$c$
$c$
$c$
$c$

## IEXYC

 EPOCOH -23.1240NFAEO--P2.1250NFDES 23•1250NFRED--22•1260NFREO 23•1260NFREO--22•1270NFREO

FR(100).RNSP(100).P(25.140).RP(100.25
OUTTAPF UTTIAPF UTTAPE OUTIAPF OUTTAPE OUTTAPE outtape 1.DEPC(100.?).ELIPC(100.2).RIANC11OO,2).RHOC(100.2).RIAC(1On.2). 2COR(100.2),RC(100,4),FIPC(100,41,CDC(100.4),RRC(100.5),ANC(100.5) OUTTAPE 3 COHC 1109.5$), A N G C(100.3 ;$. PKMMC $(1 \cap 0,2)$, ALPC 1100.2$)$, RTAC 1100.31 , DELC OUTTAPE 4(100.2),RKZE $1100 \cdot 2$ ), AKZ 1100,2$)$, COK (100), ANK (100), ATAK 11001. SPIXXC(100,18). RIXYC(100,181, RIEXXC(100), RIEXYC(100),EPDCOH(100). GHPDCOH(IOD)
COMMON /HEADER/ MEADZ(500)
COMMON MPASSLVL, ARRAY(20)
COMHON PPASSLVL/ ARRAY(20)
INTEGEF BATE,CI.OCK.

OUITAPE OUTTAPE ourtapa outtape OUTTAPF OUTTAPE OUTTAPE

56
$57-$
$58-$
59
59
60
61
62
63
64
65
66
67
68
69
70

-

- Gfotonmics cncp - aUSIIM. TEXAS USA or

SUBPOUTINE MAGTELP. F.HSD.TIILE.:RFEED.NHIAS

MAGTEL magtel MAGTEL MAGTEL MAGIEL MaGTEL MaGTEL MAGTEL MAGTEL MAGTEL MAGTEL MAGTEL MAGTEL MAGTEEL Magtel MAGTEL MAGTEL MAGTEL Magiel MASTEL MARTEL MAGTEL MAGTEL matitel MAGTEL hagtel magtel MAGTEL MAGTEL Magtel HAGTEL MAGTEL MAGIEL MAGTEL Magiel magtel

Note: A primlor code incompatilisity causes the following character missprints:

```
 -HFHEOS - NO. NF fMFOS.
```



```
 MSP{I!) - NO. IVCFENENIAL HARM AVGU)FOD .FN(II)
 -P(J.1)> - ROWED SPFCTPA MATPIX - SEF AROVE NESCR
-OFFC(I.J)>- J=1.2 - pAIJN OF UNONLARIZED POWER TO TOTAL
 POWER OF & AND H FIFLDS HESPFCIIVELY.
*ELIMC(1.J)
 J=1.2 - RATIO OF MIBNO TO MAJDP AXIS NF
 OLARIZATION FLLIPSE FOR POLANIZED COMPONFINTS
 OF E ANO HIHODIZ) FIELOS NESPFCTIVEI,Y.
 * FOD KI HAND POLAOIZ - CLOCKWISE WHEN
 ONKING IH - Z-AXIS OIRECTION
-IANC(I.J)> - afimutm anfle (OEGREES) of majop axis of
 POLAPIZ ELLIPSE FOR E ANO HIHORIZI FIELOS
0.RHOC(I.J)> - J=1.P- APPSREFT PESISTIVITY (APP DES) FOP
Zx AND ZY RESPECTIVELY (OHm-mEIERSI
0 (MC(1,J)> - J=1,2-PHASE OF 2X ANO OY (DEGREES
0
O NHEPE ZX = EX/HY ANU ZY = EY/HX IUNPOTATED CAGNIARD ZI.
 *DC(I,J)> - J=1,4- ADP.PES FOR TENSOR - Z, ELEMENTS
```



```
 COC11 J1> - J=1 PHASOO COHEPFNCY FOO 7xx.7YY.ZXY
HOTE--ROTATE.D +Z> AND *Y> RESULTS --- IN THE FOLLOWINGG THE
 XY-AXES ARE ROTATEO AT EACH FREQ TO ANGLE .A>=.A(Z)\
 FOF - Z> ANO INVERIED - Y> TENSORS SO THAT
 CAES+ZXY(A), ZYX(A)) IS M\DeltaX FOP, A>=+A(Z)>. THF XY-AXES
 ADE ROTATEO FOR *YZ) (EOUATIINN I-7 OF PMAGTANIP) TO
 ANHLGE *A>=OA(YZ)> SO THAT CAQSOYZY(A)> IS MAX (HZ IS
 NOST COHEPENT WITH EYI. THE XY-AXES ADE POTATFO FOP
```



```
 CAHS.RZX(A)> IS MAX (HZ IS MOST COHEPENT WITH HXI.
 FINALLY TME, INPFRANCES STRED (E PADALLEL TO SIRIKEI
```



```
 ISTANLTH OUADRANT PRINCIPLE VALUES OF.AIZI)
 -a(YZ)>-
 IF(ABS+A(Z)-A(YZ)>.LE.45 DEGR) --+7TE)=.ZY年(A(Z))>
 IF(AHS.A(Z)-A(YZ)>.GT.45 DEGR) ---ZTM)=*7XY(A(Z))\
 ZIM>=•ZYX(A(Z))>
*PRC(I.J\ - J=!.Z- APP RES - +ZIE>.4ZTM> - -Z> IENSOD
 3.4- AMP RES - -ZIEP..ZTMS - -Y> IENSOR
 5- APD RES - -YZY(A(YZ))>- -Y) TENSOR
 (I.E.- APP RES FOP EY/HZ AT .A(YZ)>.)
```

agtel	56
MAGTEL	57
magtel	58
Magtel	59
magtel	60
magtel	61
hagtel	62
magtel	63
magtel	64
magtel	65
magtel	66
hagtel	67
magtel	68
magtel	69
MAGTEL	70
magtel	71
magtel	72
magtel	73
MAGTEL	74
magtel	75
magiel	76
magtel	77
magtel	78
magtel	79
magtel	80
magtel	81
Magtel	82
MAGTEL	-83
Magtel	84
magtel	85
magtel	86
magtel	87
magtel	88
magtel	89
magrel	90
MAGTEL	91
magtel	92
magtel	93
Magtel	94
magtel	95
MAGTEL	96
magiel	97
magtel	98
magtel	99
magtel	100
magtel	101
Magtel	102
magiel	103
magtel	104
magtel	105
MAGTEL	106
marjiel	107
MAGTEL	108
MAGSTEL	109
magtel.	110




[^0]:    ${ }^{1}$ Manuscript received, October 26, 1968; revised and accepred, May 5, 1969.
    = School of Medicine, University of Caliifornia at Davis.

    The writer thanks the designers of several general purpose programs for their assistance in discussing the techniques used in each program. These include Donald B. McIntyre, Edward Assiter, George Batten, and representatives of California Computer Products, Inc., particularly David Baikenbush. Permission to use illustrations generated by these programs was generously furnished.

    The manuscript was reviewed critically by J. W. Harbaugh and R. P. Walters. Typing was done by Sylvia King and assistance in preparation of illustrations was provided by W. E. Renner of the School of Medicine, University of California at Davis, and California Computer Products, Inc.

    Computer time was supplied by the Computer Center at the University of California at Davis, operating under support of Public Health Service-Grant FR-00009-06.

[^1]:    - General Purpose Contour Program (GPCP), cop:right Calcomp Inc.
    

[^2]:    2. A superior map-wide coverage of data was
[^3]:    1972. One-sided constraints in.
[^4]:    - Current addresses for authors can be found on page 892

[^5]:    ${ }^{1}$ The matrix [ $\sum x y$ ] may be expressed as $X^{\boldsymbol{T}} X, X$ real, which guarantees symmetry and positive definiteness. The sub-systems may be shown to correspond to principal minors of [ $\sum x y$ ], for which these properties also hold (Frazer, Duncan, and Collar, 1946, p. 33; Cramer, 1946, p. 115 ).

[^6]:    + See following page for description. Sample input data is given in Table V.
    * Optional input. See text

