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MODEL DESIGN IN THE PROSPECTOR CONSULTANT SYSTEM 

FOR MINERAL EXPLORATION* 

Richard Duda, John Gaschnig and Peter Hart 

ABSTRACT 
Prospector is a computer consultant system intended to aid geologists in evaJu-
ating the favorability of an exploration site or region for occunences of ore 
deposits of particular types. Knowledge about a particular type of ore deposit 
is encoded in a computational model representing observable geological features 
and the relative significance thereof. We describe the form of models in Pros
pector, focussing on inference networks of geological assertions and the Bayesian 
propagation formalism used to represent the judgmental reasoning process 
of the economic geologist who serves as model designer. FoUowing the initial 
design of a model, simple performance evaluation techniques are used to assess 
the extent to which the performance ofthe model reflects faithfully the intent 
of the model designer. These results identify specific portions of the model 
that might benefit from "fine tuning", and establish priorities for such revisions. 
This description ofthe Prospector system and the model design process serves 
to illustrate the process of transferring human expertise about a subjective 
domain into a mechanical realization. 

I. INTRODUCTION 
In an increasingly complex and specialized world, human expertise about diverse 
subjects spanning scientific, economic, social, and political issues plays an 
increasingly important role in the functioning of all kinds of organizations. 
Although computers have become indispensable tools in many endeavors, we 
continue to rely heavily on the human expert's ability to identify and synthesize 
diverse factors, to form judgments, evaluate alternatives, and make decisions -
in sum, to apply his or her years of experience to the problem at hand. This is 
especially valid with regard to domains that are not easily amenable to precise 
scientific formulations, i.e., to domains in which experience and subjective 
judgment play.s a major role. 

The precious resource of human expertise is also a fragile and transient one: 
the departure ofa crucial expert from an organization may cause serious dis
locations; senior people impart their knowledge to younger colleagues, but the 
demand for their talents may not leave sufficient time for such educational 
efforts. 

• This work was supported in part by lhe Office of Resource Analysis of Die U.S. Geological 
Survey under ConUact No. 14-08-0001-15985, and in part by the Nonrenewable Resources 
Section of the National Science Foundation under Grant AER77-04499. Any opinions, 
findings, conclusions, or recommendations expressed in this publication are those of the 
authors, and do not necessarily reflect the views of either the U.S. Geological Survey ot the 
National Science Foundation. 
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During recent years research in the field of artificiiJ intelliger.ee has produced 
effective new techniques for representing empirical judgmental knowledge and 
using this knowledge in performing plausible reasoning. The best known appli
cation of these techniques has been in the area of medical diagnosis, where 
computer programs have achieved high levels of performance (Pople et al., 
1975;ShortUffe, 1976,Weisset al., 1977; Yu, 1978;Szolovits, 1976). Other 
applications include plaruiing experiments in molecular genetics (Martin 1977) 
and monitoring instruments in intensive care units (Fagan 1978). This paper 
concems a similar computer program, called Prospector, that is being developed 
to help geologists in exploring for hard-rock mineral deposits. The characteristic 
of plausible reasoning shared by the domains of medical diagnosis and mineral 
exploration is common, to some degree, to many other diverse evaluation tasks 
as well. Hence the purpose of this paper is to illustrate, by a case study for the 
domain of mineral exploration, the general process of capturing and encoding 
human expertise into a mechanical realization. 

II. OVERVIEW OF THE PROSPECTOR SYSTEM 
The Prospector system is intended to emulate the reasoning process of an 
experienced exploration geologist in assessing a given prospect site or region 
for its likelihood of containing an ore deposit ofthe type represented by the 
model he or she designed. Here we use the term "model" to refer to a body 
of knowledge about a particular domain of expertise that is encoded into the 
system and on which the system can act. The empirical knowledge contained 
in Prospector consists ofa number of such specially encoded models of certain 
classes of ore deposits. These models are intended to represent the most authori
tative and up-to-date information available about each deposit class. 

In Prospector's normal interactive consultation mode, the user is assumed 
to have obtained some promising field data and is assumed to desire assistance 
in evaluating the prospect. Thus, the user begins by providing the program 
with a list of rocks and minerals observed, and by inputting other observations 
expressed in simple English sentences. The program matches these data against 
its modek, requests additional information of potential value for arriving at 
more defmite conclusions, and provides a summary of the fmdings. The user 
can ask at any time for an elaboration of the intent of a question, or for the 
geological rationale for including a question in the model, or for an ongoing 
trace of the effects of his answers on Prospector's conclusions. The intent is 
to provide the user with many of the services that could be provided by giving 
him telephone access to a panelof senior economic geologists, each an authority 
on a particular class of ore deposits. 

The performance of Prospector depends on the number of models it contains, 
the types of deposits modeled, and the quality and completeness of each model. 
Because the Prospector program is primarily a research project, its coverage 
is still incomplete. It currently contains five prospect-scale models, one regional-
scale model, and one drilling site selection model. The prospect-scale models 
consist ofa Kuroko-type massive sulfide model contributed by Charies F. Park, Jr., 
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a Mississippi-Valley-type carbonate lead/zinc model contributed by Neil Campbell, 
a near-continental-margin porphyry copper model contributed by Marco T. 
Einaudi, a Komatiitic nickel sulfide model contributed by Anthony J. Naldrett, 
and a Western-states sandstone uranium model contributed by Ruflln I. Rackley. 
The regional scale model is a variation of Mr. RackJey's model. The drilling 
site selection model, for porphyry copper deposits, was contributed by Mr. 
Victor HoUister, and differs somewhat from the otlier models: it derives its 
inputs from digitized maps of geological characteristics, and produces as output 
a color-coded graphical display ofthe favorability of each cell on a grid corres
ponding to the input map. These models were selected for a variety of reasons, 
including their economic significance, the extent to which they are weU under
stood scientificaUy, the availability of expert geologists who could coUaborate 
with us in the model development, and the new research issues that their im
plementation would raise. 

Each model is encoded as a separate data structure, independent of the 
Prospector system per se. Thus, the Prospector program should not be confused 
with its models. Rather, Prospector should be thought of as a general mechanism 
for delivering relevant expert information about ore deposits to a user who 
can supply il with data about a particular prospect or region. 

This paper describes briefly the process of developing and encoding such 
models for Prospector. General overviews of the technical principles are given 
in Hart, Duda and Einaudi (1978), mathematical aspects in Duda el al. (1976. 
1978a),and detailed expositions in Duda el al.(l977, I978b)and Hart, Duda 
and Konolige (1978). 

III. FORMALISM FOR ENCODING EXPLORATION MODELS 
A. Inference Networks of Assertions 
For use in Prospector an ore deposit model must be encoded as a so-called 
inference network, a network of connections or relations between field evidence 
and important geological hypotheses. Since we sometimes do nol wish to distin
guish between evidence and hypotiieses, we shall refer to either one as an asser
tion. To illustrate these ideas, we shall draw upon examples taken from M.T. 
Einaudi's porphyry copper model, which we shall denote by PCDA. Typical 
assertions in PCDA are "Hornblende has been pervasively altered to biotite" and 
"The alteration suggests the potassic zone ofa porphyry copper deposil." The 
former would normally be thought of as field evidence, the latter as a geologicai 
hypothesis. A small portion of the PCDA inference network is shown in Figure I. 
Here the terminal or "leaf nodes correspond to field evidence asked of the user, 
while the other nodes represent hypotheses. The text in tlie boxes in Figure 1 is 
concise for reasons of graphical display; the actual questions asked of tlie user 
are more definitive. 

Although assertions are statement that should be either true or false, in a given 
situation there is usually uncertainty as to whether tliey are true or false. Initially, 
the state of each assertion is simply unknown. As evidence is gathered, some 
assertions may be definitely established, whereas others may become only more 
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Figure I. Portion ofa Prospector model for porphyry 
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or less likely. In general, we associate a probability value with every assertion. 
The "connections" in the inference network determine how a change in the 
probability of one assertion wiU affect those of other assertions. 

The principal or top-level assertion in an inference network for a model is the 
assertion that the available evidence matches that particular model. To establish 
this assertion, it is usually necessary to estabUsh several major factors. For 



338 / EXPERT SYSTEMS AND Al APPLICATIONS 

example, fo establish the top-level assertion in PCDA, we must establish the 
following hypotheses: 

1. The petrotectonic setting is favorable for PCDA; 
2. The regional evironment is favorable for PCDA; 
3. There is an intrusive system that is favorable for PCDA. 
Were any of these assertions field-observable evidence, they could be established 

merely by asking the user of the program whether they were Irue. However, 
since all of these factors are hypotheses, each must be further relaled to other 
factors. For example, the favorabiUty of the petrotectonic setting can be estab
lished through the following three factors, each of which happens to be deter
minable (at least in principle) from observational evidence: 

1. The prospect lies in a continental margin mobile belt; 
2. The age ofthe belt is post-Paleozoic; 
3. The prospect is subjecl to tectonic and magmaric activity related to 

subduction. 
In general, the ore deposit models in Prospector have this type of hierarchical 

structure. The top-level assertion is determined by several major second-level 
assertions, each of which may be determined by third-level assertions, wilh this 
refinement continuing until assertions are reached that can be established directly ' 
from field evidence. This is iUustrated in Figure 1, which shows graphically that 
portion of the PCDA model that describes the regional environment. In addition 
to this "top-to-bottom" development in terms of successive levels of assertions, 
the models also often exhibit a "left-to-right" organization in terms of spatial 
scale, from the petrotectonic setting on the left to the local details of mineral
ization and texture on the right. Exactly how these considerations inieraci is 
determined by the relations that exist among the assertions. The following 
section explains the nature of these relations and illustrates their occurrence 
in Figure I. 

B. Relations 
Three basically different kinds of relations are used in Prospector to specify how 
a change in the probability of one assertion affects the probabilily of oihcr 
assertions. We distinguish these as logical relations, plausible relalions. and 
contextual relations. | 

1. Logical Relations. Willi logical relalions, the truth (or falsity) of a hypo- ! 
thesis is completely determined by the truth (or falsity) of the assertions that | 
defuie it. Such relations are composed out ofthe primitive operations of con- I 
junction (AND), disjunction (OR), and negation (NOT). When several assertions 
must all be true for a hypothesis to be true, the hypothesis is the conjunction of 
the assertions. When the hypothesis is true if any of the assertions is true, the 
hypothesis is the disjunction of the assertions. Negation merely complements 
an assertion, interchanging truth and falsity. As an example of a logical relation, 
the PCDA model says that alteration of plagioclase is indicative of the barren-
core zone if 
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1. Plagioclase has been altered to 
a. albite 
or 
b. minor sericite (or both) 

and 
2. Plagioclase has not been altered to major epidote. 

Other examples of logical relations are shown in Figure 1. 
Of course, in general we do not know whether the assertions are true, but 

can only estimate a probability or degree of belief that they are true. With logical 
relations, to compute the probability ofa hypothesis from the probability of its 
component assertions we employ the fuzzy-set formulas of Zadeh (1965). Using 
these formulas, the probability of a hypothesis that is defmed as the logical 
conjunction (AND) of several pieces of evidence equals the minimum of the pro
bability values corresponding to the evidence. Similariy, a hypothesis defmed as 
the logical disjunction (OR) of its evidence spaces is assigned a probabUity value 
equal to the maximum of those values assigned to the evidence spaces. One 
property of this procedure is that it often gives no "partial credit." In particular, 
if aU but one of the assertions have been estabUshed, but the user can not even 
guess about the last, then the probabiUty of their conjunction often remains at 
the value it had when the states of none ofthe assertions were known. This may 
be the appropriate conclusion. When it is not, one has the option of using plaus
ible relations. 

2. Plausible Relations. With plausible relalions, each assertion contributes 
"votes" for or against the truth of the hypothesis. This would be expressed by 
relating the assertions to the hypothesis through a set of plausible inference rules. 
Each rule has an associated rule strength that measures the degree to which a 
change in the probabiUty ofthe evidence assertion changes the probabUity ofthe 
hypothesis. This change can be positive or negative, since as assertion can be 
either favorable or unfavorable for a hypothesis. As with all parts of a model, 
these rule strengths are obtained by interviewing an authority on the correspond
ing class of ore deposits. IniriaUy he may express the strengths in verbal terms, 
such as "rather discouraging" or "very encouraging." This is ultimately translated 
into numerical terms (as shown in Figure 1), the changes in probabUity being 
computed m accordance with the rules of Bayesian probabUity theory, as 
outlmed below and described in detaU in Duda et al. (1977). 

Prospector's plausible reasoning scheme is based on Bayesian decision theory 
(Raiffa, 1968), exploiting an elementary theorem of probability known as 
Bayes' rule. For our purposes, the so-called "odds-UkelUiood" form of the rule 
is most convenient. This form relates three quantities involving an evidence 
assertion E and a hypothesis assertion H: the prior odds 0(H) on the hypothesis, 
the posterior odds 0(H I E) on the hypothesis, given that E is observed to be 
present, and a measure of sufficiency LS. Then Bayes' rule can be stated as 

0(H I E) = LS • 0(H) (1) 
Odds and probabilities are freely interchangeable through the simple relation 

0 = P / ( l - P ) , where P denotes probabUity, and hence P = 0 / ( l •»• 0). The suffi-
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ciency measure LS is a standard quantity in statistics called the likelihood ratio, 
and is defmed by 

P(E|H) 
LS = -=^- ' -^ (2) 

P(E|~H) 

where ~H means "not H." 
Equation (1) prescribes a means for updatmg the probabiUty (or odds) on 

H, given that the evidence E is observed to be present. An inference rule for 
which LS is large means that the observation of E is encouraging for H - in 
the extreme case of LS approaching infmity, E is sufficient to estabUsh H in 
a strict logical sense. On the other hand, if LS is much less than unity, then 
the observation of E is discouraging for H, inasmuch as the observation of E 
diminishes the odds on H. 

A complementary set of equations describes the case in which E is known 
to be absent, that is, when ~E is true. In this case, we can use Bayes' rule to 
write 

0 ( H | ~ E ) = L N * 0 ( H ) (3) 

where 

P(~E I H) 
LN = -^ (4) 

P(~E 1 ~H) 
The quantity LN is called the necessity measure. If LN is much less Uian 

unity, the known absence of E transforms neutral prior odds on H uito very 
smaU posterior odds in favor of H. In the extreme case of LN approaching 
zero, E is logically necessary for H. On the other hand, if LN is large, tlien 
the absence of E is encouraging for H. 

Hence to define an inference rule 
IF E 
THEN (lo degree LS, LN) H. 

the model designer must articulate E and H, and must supply numerical values 
for LS.LN, and 0(H). 

In general, the user may nol be able to state that E is either defuiitely present 
or definitely absent. In this case, the updating formulas (I) and (3) cannot be 
apphed directly, but can be extended to accommodate the uncertainty in the 
evidence. The extension used in Prospector involves a linear interpolation 
between the extremes of E's being definitely present or defmitely absent. 
See Duda (1976, 1977) for details. The user expresses his certainly aboul E on 
an arbitrary —5 to 5 scale, where 5 denotes that the evidence is definitely present. 
-5 denotes Ihal il is definitely absent, 0 indicates no information, and inter
mediate values denote degrees of certainly. 

We illustrate this plausible inference scheme with examples taken from 
Figure 1. The two numbers associaied wilh each inference rule in Figure 1 
are its LS and LN values, respectively. The number appearing above each box 
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representing a nonterminal node is the prior probabUity of that assertion's 
being true. For example, the figure indicates that the existence of stocks is a 
more higlily sufficient indicator of "suggestive morphology of igneous rocks" 
(i.e.,LS= 300) than is the existence of either dUces, intrusive breccias, or volcanic 
plugs (i.e., LS = 75, 20, and 4, respectively). SimUariy, "favorable level of 
erosion" (FLE) is a highly sufficient and highly necessary factor for estabUshing 
"favorable regional environment" (i.e., LS = 5700 and LN = 0.0001), whereas 
the existence of a "preintrusive throughgoing fault system" (OTFSYS) is only 
mUdly sufficient and mUdly necessary for estabUshing "favorable regional 
environment." Hence the positive (LS) or negative (LN) votes of FLE are 
weighted much more heavily than those of OTFSYS. 

The section of tlie model concerned with estabUshing "suggestive morphology 
of igneous rocks" (SMIR) illustrates how logical and plausible relations can be 
combined as buUding blocks to accomplish the intent of the economic geologist 
designuig the model. This section of the PCDA model can be described as 
foUows. "There are four positive indicators for estabUshing a suggestive mor
phology for igneous rocks (SMIR), namely intrusive breccias, stocks, dUces, 
and volcanic plugs. Each of these factors contributes mdependently to estab
lishing SMIR, although to differing degrees. The absence of any one of these 
four factors individually is unimportant [i.e., LN = I for those rules]. However, 
if il is known lhat none of these factors is present (Implying that the disjunction 
node SMIRA is false), then the probabUity ofa suggestive morphology of 
igneous rocks is essentially zero (LN = 0.0002 for SMIRAJ." In defining an 
inference network for a model, the object is to induce the model designer to 
articulate such statements, and then to translate the statements into network 
constructions. 

To see how the effect of a piece of evidence propagates upward through 
the model, suppose that the user has indicated only that intrusive breccias are 
present, but this is definite. This fact multiplies the odds of SMIR by a factor 
of 20, hence raising its probabilily from 0.03 to 0.382. (The prior odds on 
SMIR are 0.03 / (1 - 0.03) = 0.030927, giving posterior odds on SMIR equal lo 
20 • 0.030927 = .61855, which corresponds to a probabUity of 0.61855 / 
(I-t-o.61855) = 0.382.) This in turn increase the odds on HYPE by a factor of 
300 weiglited by the degree to which SMIR has uicreased from its prior pro
babilily, i.e, by the factor 300 * (0.382-0.03) / (1-0.03) = 108.866. Hence 
the posterior probability of HYPE is 0.52373, which in tum increases the odds 
of FLE by a factor of 200 * (0.52373-0.01) / (1-0.01) = 103.78, giving a 
posterior probabUity for FLE of 0.34276. The propagation continues in this 
manner upward through the network. 

It should be noted that Prospector expresses its concluaons to the user 
on the same -5 to 5 certauity scale that the user employs to express his certainty 
about evidence requested by the system. Prospector maps internal probability 
values to external certainty scores in a piecewise linear fashion, such that the 
posterior certainty is proportional to the difference between the posterior 
probabilily and the prior probabUity. For example, since the prior probabUity of 
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FLE is 0.005, a posterior probabUity of 0.34276 conesponds to a posterior 
certainty of 5 • (0.34276-0.005) / (I-O.OOS) = 1.697. SimUariy, a posterior 
probabiUty of 0.001 corresponds in this case to a posterior certainty of 5 * 
(0.001 -0.005)/0.005 = - 4 . See Shortliffe (1975) for a description ofthe 
subjective certainty scale used in the MYCIN medical diagnosis system. 

3. Contextna! Relations. It sometimes happens that assertions cannot be 
considered in an arbitrary order, but must be considered in a particular sequence. 
For example, one should determine that there is a relevant continental margin 
mobUe belt before considering its age. This is more than a matter of preference, 
since it would be meaningless for the program to ask about the age of a non
existent belt. 

To treat such situations we employ the third class of relations, contextual 
relations. In general, we use contexts to express a condition thai must be estab
Ushed before an assertion can be used in the reasoning process. In the above 
example, the existence ofa continental margin mobUe belt would be specified 
as a context for asking about the age of the belt. Thus, before inquiring about 
the age, the system would employ all its resources to estabUsh the existence 
of the belt, and would not ask about its age unless the probabUity of the belt 
were greater than its initial value. 

Contextual relations are also used when one assertion is geologicaUy signifi
cant only if another assertion has already been estabUshed. In such instances it 
would not be nonsensical to ask the former question withoul first estabUshing 
the laiter, but it is the case that the former evidence is geologically irrelevant 
without the latter to estabUsliing a match to the model. Two such instances 
are depicted by dashed arrows in Figure I. In one of these instances, the entire 
"favorable regional environment" section of PCDA model wUI not be pursued 
unless it has first been determined lhat there are granitic intrusives in the regibn. 

IV. OVERVIEW OF THE MODEL DEVELOPMENT PROCESS 
Althougli the development and encoduig of a model for Prospector is not a 
routine process, it does progress through several distinct phases whose general 
nature can be described. The four most important phases are summarized below. 

A, Initial Preparation 
Model development is a cooperative enterprise involving an exploration geologist, 
who is an authority on the type of deposit being modeled, and a computer 
scientist who understands the operation ofthe Prospector system. The first step 
in developing a model is one of introducing the exploration geologist (model 
designer) to the inference network formalism, and introducing the computer 
scientist (model implementor) to the general nature of the class of deposils 
being modeled. In particular, this includes the identification of several known 
deposits that should fit the model well, and several known deposits tliat may fil 
partially, but that lack certain important characteristics. These specific cases 
help to estabhsh the various factors that must be taken into account. 
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B. Initial Design 
The uiitial design of the inference network is the most creative phase of the pro
cess, ll requires the identification of the various assertions, the organization of 
the assertions mto a hierarchical structure (as iUustrated in Figure 1), the deter
mination of the types of relations (logical, plausible, and contextual) that exist 
among assertions, and the estimation of values for the parameters (the voting 
strengths and initial probabilities). The magnitude of this task depends upon the 
size and complexity ofthe model being developed; as a point of reference, the 
smallest model currently in Prospector contains 28 assertions and 20 inference 
rules, whUe the largest contains 212 assertions and 133 inference rules. The 
initial design is usually faciUtated by considering factors in the "top-down" and 
"left-to-right" sequence described eariier. DeUcate refinement is best avoided at 
Ihis lime, since subsequent revision often causes significant sections of the model 
to be reorganized, enlarged, or otherwise modified. 

In addition to the connections between assertions exhibited directly by the 
inference network, there are connections that exist because of the geological 
meaning of the assertions. For example, the statement that there are sulfide 
minerals is obviously related to the statement that there is pyrite in quartz veUis; 
assertion of the latter implies tlie former, and denial of the former denies the 
laiter. Recognition of such connections within a model avoids redundant or fooUsh 
questioning; recognition of such connections between different models allows 
the program to consider more than one deposit class at a tirne. Prospector can 
automatically recognize many of these assertions if each assertion is properly 
articulated. This articulation, which is described in more delail in Duda (1978b), 
should also be completed during the initial design. 

C. InstaUation and Debugging of the Model 
At the end of Phase B, the model exists in a "pencUand-paper" form. To be 
incorporated into the program, the encoduig must be given a formal description. 
This is done through the use ofa model description language (see Duda, 1978b). 
The details of this language are nol particulariy imporiant here. However, the 
task itself is important; upon its completion the program can be run, and acci
dental blunders or bugs can be corrected. In addition, the program can produce 
a questionnaire for the model that is useful in gathering data for subsequent 
testing and revision. 

D. Performance Evaluation and Model Revision 
Given the questionnaire data for a number of actual deposits, it is possible to 
make a serious quantitative evaluation of how well particular deposits match the 
model. In our experience, this evaluation inevitably exposes various shortcomings 
of Ihe model as encoded, requiring revision of the work done in Phases B and C. 
Some care must be exercised here to avoid "overfitting" Ihe model lo the data. 
In general, the goal is to produce a model that can discriminate different types 
of deposits without losing the abUity to generalize, so as to aUow for tlie vari
ations one would expect m new situations. Achievement of that goal currently 
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remains as much an art as a science. The foUowing section describes in some 
detail the use of simple performance evaluation techniques as an aid to refuiing 
a model. 

V. USE OF PERfORMANCE EVALUATION IN REFINING A MODEL 
To demonstrate that the performance of an expert knowledge-based system is 
(or is not) comparable to that ofthe experts it emulates, it is useful to subject 
the system to an appropriate objective evaluation. The simple performance 
evaluation experiments reported in this secfion serve several purposes: (1) to 
provide an objective, detailed, quantitative measure ofthe current performance 
ofa model; (2) to pinpouil those sections ofthe model that are not performing 
exactly as intended, thereby establishing priorities for future revisions; (3) to 
assess consistency of performance across different exploration sites. 

We now evaluate a model for a class of porphyry copper deposits (PCDA) 
designed by Prof Marco Einaudi of Stanford University. Input data were avail
able for three test cases, namely, the known deposits called Yerington (Nevada), 
Bingham (Utah), and Kalamazoo (Arizona), each of which is considered an 
exemplar of the PCDA model.^ On the -5 to 5 certainty scale described earlier, 
the overall certainty scores computed by Prospector are 4.769 for the Yerington 
deposit, 4.721 for Buigham, and 4.756 for Kalamazoo, indicating a good match 
of these sites lo tlie PCDA model. 

To sliow performance in detaU, we give below the hierarchical structure of 
the major sections of the PCDA model. Included at tlie right in this enumeration 
is the total number of questions that may be asked by Prospector for each of the 
major sections of the model, thus showing the relative dislribuUon of these 
questions. (The questions in tlie FAMR section may be asked several times 
during a consultation session, once for each geographicaUy distinct zone wiihin 
the prospect area. Each such zone has relatively homogeneous geological charac
teristics, as determined by the user.) 

( . . • " • • " 

Total Number of Questions Defined 
Ul PCDA Model (Version 2) 

Porphyry Copper deposit, type A (PCDA) 81 
Favorable petrotectonic setting (FPTS) 4 
Favorable regional environment (FRE) 9 
Favorable PCDA intrusive system (FPCDAIS) 68 

Favorable composition in differentiated sequence 4 
(FCDS) 
Favorable intrusive sysiem (FIS) 9 
Favorable alteration and mineralization relations 
(FAMR) 56 

2 The queslionnaire inpul dala used In the present lesls are reported in 
Duda el al.. 1978h. pp.185-93. 
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As a calibration exercise. Prof Einaudi offered a target value for the certainty 
score that should be assigned to each of the three deposits for each of the major 
components of the model listed above, based on the yalues in the input data 
set for each prospect site. The target values are given either in the form of a 
single number (on a —5 to 5 scale), or as two numbers estabUshing an upper and 
lower bound on a certainty mterval. The estimates are listed in Table 1 on the left 
for each site in tum, with the scores as determined by execution of Prospector 
recorded on the right. (We informed Prof Einaudi of the values on the right 
only after he had given us those on the left.) 

Yerington Deposit 

Name of Model Node 

PCDA 
FPTS 
FRE 
FPCDAIS 

FCDS 
FIS 
FAMR 

Einaudi's Estimate 

4.5 to 5.0 
4.5 to 5.0 
4.5 
4.5 to 5.0 

5 
5 
4.5 to 5.0 

Prospector Score 

4.769 
4.528 
4.540 
4.787 

4.524 
4.744 
4.225 

Bingham Deposit 

Name of Model Node 

PCDA 
FPTS 
FRE 
FPCDAIS 

FCDS 
FIS 
FAMR 

Einaudi's Estimate 

4.5 
3.5 to 4.0 
4.0 to 4.5 
4.5 to 5.0 

5 
5 
4.0 

Prospector Score 

4.721 
4.449 
4.829 
4.729 

2.407 
4.744 
4.225 

Kalamazoo Deposit 

Name of Model Node 

PCDA 
FPTS 
FRE 
FPCDAIS 

FCDS 
FIS 
FAMR 

Einaudi's Estimate 

4.0 to 4.5 
4.0 to 4.5 
3.5 
4.5 to 5.0 

5 
5 
4.0 

Prospector Score 

4.756 
4.449 
1.784 
4.791 

4.722 
4.744 
4.225 

Table I. Prospector Scores for Several Levels ofthe PCDA Model 
(Version 2) 
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The data in Table 1 show that Prospector scores each of these sections of 
the model with high certainty for each site, with the exception that model 
node FCDS for the Bingham deposit and model node FRE for the Kalamazoo 
deposit are scored somewhat lower. In most cases shown in Table 1 Prospector 
agrees very closely with Prof Einaudi's estimate. These conclusions can be 
expressed quantitatively by first identifying the values in Table 1 with a concise 
notation, then defming a simple formula for the relative error of Prospector in 
predicting Prof Emaudi's estimates. Thus: 

Let C(X, Y, Z) = Certainty score given to model node Z by agent X for site 
Y. 

where X denotes either Prospector or Einaudi 
For example, C(Prospector, Yerington, FPCDAIS) = 4.787. When Einaudi 

gave an inlerval of certainty values instead ofa single value, we use the mid
point of the interval as the value of C. Then an error measure is given by 

E(Y, Z) 
C(Einaudi, Y, Z) - C(Prospector, Y. Z) 

C(Einaudi, Y, Z) 

For example, E(Yerington, FPCDAIS) = (4.75 - 4.787) / 4.75 = -0.008, meaning 
that Prospector's prediction is accurate to within 0.8% in this case. Since Table I 
gives values for seven nodes of the model for each of three known deposils, we 
can compute the value of E for 21 different instances. For 5 of the 21 data 
points Prospector predicted Einaudi's estimate to within 1%, whUe 15 of the 
21 data points show agreement to withui 10%. The grand average over the 21 
data pouits is 10.3%. For convenience, we list these 21 values of E Ui Table 2, 
expressed as percentages. 

PCDA 
FPTS 
FRE 
FPCDAIS 

FCDS 
FIS 
FAMR 

Average of 
Absolute values: 

Yerington 

- . 3 % 
4.7 
- .9 
- .8 
9.5 
5.1 

11.1 

4.1 

Bingham 

-4.9 % 
-18.6 
-13.6 

.4 
51.9 

5.1 
5.6 

14.3 

Kalamazoo 

-11 .9% 
-4.7 
49.0 
- .9 
5.6 
5.1 
5.6 

11.8 

Average of 
Absolute Values 

5.7% 
9.3 

21.2 
.7 

22.3 
.5.1 
7.6 

10.3 

Table 2. Relative Error (E) of Prospector Scores as Predictors of Einaudi's 
Estimates (derived from data in Table 1) 

Inspection of Table 2 indicates that efforts to revise the PCDA model should 
focus on the FRE and FCDS sections. When such revisions are completed, an 
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updated version of Table 2 wiU indicate the extent to which the revisions achieved 
the objectives that motivated them. 

The small number of cases tested, and the fact that all the present test cases 
are exemplars of the PCDA model, and the fact thai the model designer himself 
supplied the input dala concerning Ihe test cases, are limitations; the present 
tests are more necessaiy than sufficient conditions for good performance. Despite 
these lUnitations, the preliminary results reported here have proved useful in the 
ongoing model refinement process. More extensive performance evaluation results 
are reported in Duda et al. (1978b). 

VI. REMARKS 
This paper has outlined the typical procedures used to develop an exploration 
model for the Prospector system. We have described the inference network and 
Bayesian propagation scheme underlying Prospector models, and we have illus
trated the use of sunple performance evaluation techniques in "fine-tuning" a 
model systematicaUy. Our experience indicates that the model design process 
inherently requires feedback. Although different problem solving domains 
differ in many detaUs, we believe the process of constructing Prospector-lUce 
plausible reasoning systems follows certain general pattems and stages of develop
ment such as are described here. Hence we have presented a concrete case study, 
in the domain of mineral exploration, that may credibly suggest what might be 
expected in attempts to apply a simUar methodology to other domains of 
expertise. 

Besides the running program, there appear to be several other benefits to 
this type of expert system approach. The model design process chaUenges the 
model designer to articulate, organize, and quantify his expertise. Without 
exception, the economic geologists who have designed Prospector models have 
reported that the experience aided and sharpened their own thinking on the 
subject matter ofthe model. In addition, most ofthe geologists we know who 
have had experience with Prospector have remarked about its potential value 
as an educational tool. In this regard, the models in the system contain expUcit, 
detaUed information synthesized from the literature and the experience of 
expert explorationists, together with explanatory text that can be obtauied 
upon request. Furthermore, a typical consultation session with Prospector 
cosls only about $10 at current commercial computer rates. 
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September 6, 1984 

Dr. Mike Wright 
UURI/ESL 
391 Chipeta Way, Suite C 
Salt Lake City, UT 84108 

EXPERT SYSTEMS READING MATERIAL - BWD-5-84 

Dear Mike: 

I enjoyed meeting you yesterday to discuss expert systems applications 
in geology. As promised, I'm sending you some additional reading material, 
along with a reading guide to help you budget your time. The enclosed 
material will augment the papers you already have in providing background 
information for your discussions with Marshall Reed. 

Very truly yours. 

Brent Dixon 
Advanced Methods Branch 

ts 
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Enclosures: 
As Stated 
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October 15, 1984 

Marshall Reed 
Forrestal Building 
1000 Independence Ave. S.W. 
CE 32A 5H081 
Washington, D.C. 20585 

GEOTHERMAL "EXPERT" SYSTEM WRITE-UP - RAM-6A-84 

Dear Mr. Reed: 

Enclosed is a brief write-up describing the potential advantages for a 
geotherinal "expert" system. We have been working for several years in 
house at EG&G developing a capability in expert systems and I believe 
geothermal is an ideal application for this concept. I have discussed the 
idea with Mike Wright, Sue Prestwich and Clay Nichols and they all agree 
geothermal is a good application. 

Mike indicated he has talked with you about the concept and that you were 
interested. Some of our people with expertise in expert systems will be 
in Washington on November lAth and 15th. If you are interested, they 
would be glad to stop by your office and give you a more complete 
presentation on the background of expert systems and our ideas for their 
use in geothermal systems. 

If you have any questions, give me a call at 526-9688. 

Sincerely, 

J. H. Ramsthaler 
Hydropower/Geothermal Programs . 

ks 

Enclosure: 
As Stated 

S. M. Prestwich, DOE-ID 
M. Wright, UURI 
J. 0. Zane, EG&G Idaho (w/o Enc.) 



GEOTHERMAL EXPERT SYSTEM 

The Problem: 

Geothermal exploration and site development require integration 
of expertise from the fields of geology, geochemistry, geophysics, 
and reservoir engineering. Typically, a team of experts from each 
field are brought together to interpret the data. The results can 
vary, depending oh the true level of expertise of each member, biases 
of the team leader toward a particular field, "political" biases, and 
variances in human performance versus potential. Even with the same 
data, two teams (or one team on two occasions) will derive different 
conclusions on million dollar decisions. A case in point is the Bacca 
geothermal project in New Mexico: Using the same data the exploration 
team was 8 for 8 on successful wells while the development team was 
0 for 8. 

Expert Systems: 

Expert systems are an application of artificial intelligence research 
in which computer programs are designed to mimic the problem solving 
methods of human experts. Human experts tend to solve problems by 
using "hunches" and "rules of thumb" developed from their many years 
of experience. Expert systems use this same approach, using logic 
and heuristics to make educated guesses when nectessary, to recognize 
promising approaches to problems, and to deal effectively with erroneous 
or incomplete data. Expert systems consist of a "knowledge base" containing 
thumb rules, along with control and user interface programs. The rules 
are "taught" to the system by human experts, much like they would groom 
an apprentice. For example, a geothermal rule might look like this: 

IF The target area contains several thermal springs, and 
The spring discharge temperatures vary, and 
The spring discharge rates vary, and 
Geothermometers indicate an at-depth temperature x, and 
The spring geochemistry correlation with temperature x 

is high, 

THEN Increase the confidence level of the geothermometers. 

The actual building process consists of repeated teaching and testing. 

Expert systems are capable of documenting their reasoning process, 
both from the aspect of how a piece of data will be used and, later, 
how a solution was obtained. They are consistent, thorough, and won't 
become susceptible to biases or boredom. Because of the modularity 
of their programs (the rules), they can easily be changed to reflect 
changes in the state-of-the-art in their field. 



Geologic Expert Systems: 

Geology is a good expert system problem domain-becaus'e it is an 
ever-changing field with few governing equations, lots of uncertainty,-
high data acquisition costs, and a small number of truly expert people. 
A number of geologic expert systems have been built to date to help 
disseminate the knowledge of these rare experts, including: 

PROSPECTOR - a mineral exploration expert system which uses surface 
geology and well logs to find ore bodies, 

WAVES - an oil exploration expert system which interprets seismic 
data, 

DIPMETER ADVISOR - a specialist in modeling strata from dipmeter 
logs, 

DRILLING ADVISOR - a drilling trouble-shooter which diagnoses 
problems and recommends both preventative and corrective measures. 

The Geothermal Expert System: 

A geothermal expert system could be used to locate unknown fields, 
find drilling sites within known fields, aid in field development, 
or aid in the actual drilling. The actual problem to be targeted would 
depend on need and the availability of experts. Ideally, the system 
would be designed and built and then turned over to the private sector 
for additional training and "maintenance" (in a changing field such 
as geology a system must remain current to be of use). Required personnel 
would include experts in each required discipline, knowledge engineers 
(people who design expert system internals and aid in their training), 
and support staff. A proposed implementation plan is as follows: 

Phase 1 -- Select target problem (field location, site selection, 
field development, drilling aid, etc.) 
Build and assess prototype for selected problem 
1 year, $200K 

Phase 2 -- Train and test system -
2 years, $400K/yr 

Phase 3 -- Final system polishing -
Technoloqy transfer 
1 year, $400K 

Phase 4 -- Transfer complete, consultation support -
1 year, $100K 



FY-85 Geothermal Expert System - Phase T 

Target Problem Selection 20K 

A target problem within the geothermal arena will be chosen based on 
discussions with field experts,"potential users, and the program management, 
The selected problem must be addressable, by expert system technology, 
experts must be available, and the solution of the problem must be 
non-trivial and useful to the potential end user. 

Expert Team Selection 15K 

Individual personnel with acknowledged expertise in the required fields 
will be contacted and a system training team formed. The team will 
meet to draw up the initial scope of the system and the basic knowledge 
structure will be mapped out. 

Expert System Software Selection 25K 

The system internal requirements will be developed by the knowledge 
engineers based on the problem scope and knowledge structure. The 
requirements will be compared against the capabilities of commercially 
available expert system building tools. Either a tool will be acquired, 
or in-house tool development will begin. 

Prototype Development 125K 
I 

The expert team will develop rules and a seed knowledge base will be 
built. A set of test problems will be developed and the expert team 
will begin the test and train loop. The knowledge engineer will provide 
guidance in rule composition, hybridize the building tool as required, 
and search the knowledge base for holes and inconsistencies. 

Prototype Demonstration and Assessment 25K 

Toward the end of the year development will be stopped and a demonstration 
of the system held for program management. At this time the system 
will be assessed and the development effort redirected as needed. 
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EXPERT SYSTEHS 

DEFINITION: A COMPUTER PROGRAM WHICH USES EXPERT KNOWLEDGE 
AND INFERENCE PROCEDURES TO SOLVE LOGIC 
PROBLEMS. 

• CAN ACT AS INTERMEDIARY BET>*EEN AN EXPERT 
AND A USER OF THE EXPERTISE TO MAKE THE 
EXPERTISE MORE WIDELY AVAILABLE. 

EXAMPLES: MEDICAL DIAGNOSIS 
DATA ANALYSIS (EG. REACTOR ACCIDENT DIAGNOSIS) 

DESIGN PROBLEMS 
PROSPECTING 
LAW CONSULTANT 



ARTIFICIAL INTELLIGENCE VS. NATURAL INTELLIGENCE 

Al 

PERMANENCE 

EASE OF DUPLICATION 

LESS EXPENSIVE 

CONSISTENT AND THOROUGH 

DOCUMENTABLE 

UNINSPIRED 

TAILORED KNOWLEDGE 

SYMBOLIC INPUT 

NARROW FOCUS 

NATURAL 

PERISHABLE 

APPRENTICESHIP 

CAN BE COSTLY 

ERRATIC 

DIFFICULT TO REPRODUCE OR RECALL 

CREATIVE 

LEARNS 

USES SENSORY DATA AS WELL AS SYMBOLS 

USE WIDE CONTEXT OF KNOWLEDGE 
(COMMON SENSE) 



EXPERT SYSTEMS FOR 
RESOURCE EXPLORATION 

t PROSPECTOR: 

§ DIPMETER ADVISOR: 

t WAVES: 

• HYDRO: 

0 DRILLING ADVISOR: 

AN EXPERT SYSTEM THAT EVALUATES 

SITES FOR POTENTIAL MINERAL DEPOSITS 

AN EXPERT SYSTEM THAT ANALYZES 

INFORMATION FROM OIL WELL LOGS 

AN EXPERT SYSTEM THAT ADVISES ENGINEERS 

ON THE USE OF SEISMIC DATA ANALYSIS 

PROGRAMS FOR OIL INDUSTRY 

A COMPUTER CONSULTATION SYSTEM FOR 

SOLVING WATER RESOURCE PROBLEMS 

AN OPERATIONAL EXPERT SYSTEM FOR 

DIAGNOSING OIL WELL DRILLING PROBLEMS 

AND RECOMMENDING CORRECTIVE AND 

PREVENTIVE MEASURES 



PROSPECTOR 
DEVELOPED AT SRI 

AIDS GEOLOGIST IN EVALUATING THE MINERAL POTENTIAL OF A SITE 
OR REGION 

ACCEPTS FIELD OBSERVATIONS^ PROVIDES FINDINGS AND REQUESTS 
ADDITIONAL INFORMATION 

INTENDED TO PROVIDE SERVICES LIKE TELEPHONE ACCESS TO A PANEL 
OF SENIOR GEOLOGISTS^ EACH AN AUTHORITY ON A PARTICULAR CLASS 
OF ORE DEPOSITS 

INCLUDES MODELS FOR PORPHYRY COPPER AND MOLYBDENUM DEPOSITS^ 
SANDSTONE URANIUM DEPOSITS^ KOMATIITIC NICKEL^ SULFIDE DEPOSITS^ 
MASSIVE SULFIDE DEPOSITS AND MISSISSIPPI VALLEY'TYPE CARBONATE 
LEAD/ZINC DEPOSITS 



DIPMETER ADVISOR 

DEVELOPED BY SCHLUMBERGER-DOLL RESEARCH 

• EMULATES HUMAN EXPERT PERFORMANCE AT DIPMETER INTERPRETATION 

• DIPMETER MEASURES CONDUCTIVITY OF ROCK AS IT GOES DOWN A DRILL 
HOLE—DATA USED TO CHARACTERIZE WELL 



PROPOSED GEOTHERMAL EXPERT SYSTEM 

• WOULD DRAW FROM MANY SOURCES OF KNOWLEDGE 

- GEOLOGISTS 

- GEOCHEMISTS 

- GEOPHYSICISTS 

- RESERVOIR ENGINEERS 

• BEST CONFIGURATION CAN'T BE PREDICTED AHEAD OF TIME 

• IMPLEMENTATION PLAN 

PHASE 1 - FEASIBILITY STUDY^ BUILD PROTOTYPE -

1 YEAR. $200K 

PHASE 2 - TRAIN AND TEST SYSTEM -

2 YEARS. S'tOOK/YR 

PHASE 3 - FINISHING WORK, TECHNOLOGY TRANSFER -

1 YEAR. $400K 

PHASE 4 - TRANSFER COMPLETE, CONSULTATION SUPPORT 

1 YEAR. $100K 



Rl Revisited: 
Four Years in the Trenches 

Judith Bachant 

Intelligent S-ystema Technology Group 
Digital Equipment Corporation 
Hudson, Massachtisetts 01749 

John McDermott 

Department of Computer Science 
Carnegie-Mellon University 

Pittsburgh, Pennsylvania 1521S 

Abs t rac t 

Xli £.980, Digiczd Ek]uipment Corporation began to use a rule-based 
ss^stem called R l by some and XCON by others to configure VAX-
11 ccanputer systems. In the intervening years, R l ' s knowledge has 
j.ti'.f^aseii substantially and its usefulness to Digital continues to grow. 
Tl'joarticle describes what is involved in e.xtending R l ' s knowledge bjise 
W=i e\'aluatcs R l ' s performance during the four year period. 

IN THE SUMMER 1981 ISSUE ofthe AI Magazine, an 
-̂.a^cic entitled "Rl: the formative years" described how a 

Hik^-based configurer of computer systems had been devel-
»P«' and put to work (McDermott, 1981). At the time that 
'•ri.de wa-s written, Rl had been used for only a little over 
a )5ar and no one had much perspective on its use or use-
• iiiness. Rl has now been configuring computer systems for 
Wf'f four years. This experience has provided some insight 
"•io the ease and difficulty of continuing to grow an expert 
'»>"i'em iu a production environment and into the kind of per-
••>njuuice expectations it might be reasonable to have about 
^ v''im:nt generation rule-based system. 

The approach Rl takes to the configuration task and the 

-wse nuraber of people have played critical roles in R l ' s development. 
•̂ ».r,g those who deserve special mention are John Barnwell, Dick 

K ^ ' i r ° ' ^ " ^ Gilbert, Keith Jensen, Allan Kent, Dave Kiernan, Arnold 
N,"-^''i '^'•""'^ O'Connor, and Ed Orciuch. We want to thank Allen 
i-ti ' "" '^ O'Connor, and Ed Orciuch for their helpful comments 

' "^'' '-' ' ' drafts of this article. 

way its knowledge is represented have been described else
where (McDermott, 1980) and (McDermott, 1982). Briefly, 
given a customer's purchase order, Rl determines what, if 
any, substitutions Jtnd additions have to be made to the or
der to make it consistent, complete, and produce a num
ber of diagrams showing the spatial and logical relationships 
among the 50 to 150 components that typically constitute a 
system. The program has been used on a regular basis by 
Digital Equipment Corporation's manufacturing organiza
tion since January, 1980. Rl has sufficient knowledge of the 
configuration domain and of the peculiarities of the various 
configuration constraints that at each step in a configuration 
task it is usuedly able to recognize just what to do; thus it 
ordinarily does not need to backtrack when configuring a 
computer system. 

At the beginning of Rl's development, no clear expecta
tions existed about how long it would take to collect enough 
knowledge to make Rl an expert. We did expect that at some 
point the rate at which Rl would acquire new knowledge 
would at least slow, if not stop. VVe even thought that 
Rl would be done eventually (that is, Rl would enter a 
maintenance mode of well-defined and minor additions, in
terspersed with occasional bug fixes.) It is difficult now 
to believe Rl will ever be done; we expect it to continue 
to grow and evolve for as long as there is a configuration 
task. It may be that if Rl's domain were less volatile, 
Rl would not require perpetual development. But it is 
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NUMBER OF RULES 
3250 — 

VAX-ll/785 I J J 2 
VAX-ll/725 ( i , v | 
PDP-11/44 ( i j ^ ^ 
PDP-11/24 (uJ 

MICROVAX-1 (10^ 
MICRO-PDPii (7-ii 

VAX-11/730 (3/82) 

VAX-11/750 (3/81) 

1/1/80 1/1/81 1/1/82 1/1/83 

Rl's Growth 

Figure 1. 

probably also true that if thedomain were less volatile, the 
task would not require a knowledge-based system. 

The early expectations about Rl's performance were 
likewise vague, except just as Rl was beginning to be used, 
a Digital employee responsible for the configuration process 
predicted that for Rl to be useful, 90% to 95% of its 
configurations would have to be perfectly correct. This per
formance goal is interesting, not so much because Rl took 
three years to reach it, but because it turned out to be com
pletely wrong. Rl's task is just one small part of a process 
designed to ensure that high quality computer systems cire 
built. Significant redundancy exists in the process precisely 
because historically no individual has both known enough 
about configuration and been able to pay close enough at
tention to eeich order to be entrusted with the total respon
sibility. Rl was able to provide significamt assistance even 
when it knew relatively little because the people who used Rl 
did not demand more of it than of its humem predecessors. 
The one definite performance expectation ctlmost everyone 
had about Rl in its early days was that it would always 
configure the same set of components in the same way. It 
is obvious now and should have been obvious then that this 
expectation could have been satisfied only if Rl had been 
discouraged from becoming more expert. 

These expectations about Rl's developmental and per

formance histories introduce the two parts of the article. W;.; 
the next section, the focus will be on the kind of involvemenp 
required to extend Rl's knowledge base. The final section's, 
focus will be on the kinds of erroneous behavior Rl has ex-̂  
hibited. 

Rl's Developmental Historj' 

This section provides a somewhat anecdotal trip through! 
Rl's past. Although it mentions the first year, when most o^ 
the activity was at Carnegie-Mellon University [CMU], thej 
priraary focus is on the four following years, after Rl began^ 
to be used at Digital. When CMU handed over the initialj 
version of Rl to Digitjil in January 1980, Digital scrambled,| 
to put an organization in place that could continue its de-l 
velopment. This orgcinization, currently known as the Intel-| 
ligent Systems Technologies group, began with only five in
dividuals, none of whom had any background in AI. Over tbe^ 
past four years, the group has grown to 77 people responsible 
for eight difl"erent knowledge-based systeras, one of which is ii 
Rl. As Rl was developed, an attempt was made to effect jvj 
a division of labor between those people responsible for rep- ^ 
resenting Rl's knowledge and those responsible for collect
ing and validating that knowledge. Of the initial technical 
people, one was an engineer who played the roles of both 

22 THE AI MAGAZINE Fall 1984 



a domain expert and of an interface to other domain ex
perts outside the group; the other three people took the 
knowledge collected by the engineer and formulated it so it 
^•as compatible with Rl's other knowledge. When the or
ganization was a Uttle over two years old the technical group 

-•) had grown to eight people, five of whom were responsible for 
encoding the knowledge collected and validated by the other 
three. The size of the Rl technicad group is still about eight. 
iSi'ow, hovvever, less of a distinction exists between the people 
responsible for knowledge encoding and those responsible for 

• knovvledge collection. 

The Knowledge Rl Acquired 

Over the past four years, the amount of effort devoted 
' to adding knowledge to Rl has remained relatively constant 

at about four worker-years per year. And Rl's knowledge 
has grown at a relatively constant rate, though the focus has 
shifted around. At times the task of eliminating inadequacies 
in Rl's configuration knowledge has received the most atten
tion: at other times, the group's energies have been directed 
primarily at broadening Rl's abiUties in various ways. Figure 
1 shows the rate at which Rl's knowledge has grown: the 
points in time at which Rl became able to configure new sys
tera types are marked. Figure 1 does not show the amount 
of product information to which Rl has access. This infor
mation, which is stored in a data base, is a critical part 
of the body of information needed to configure a computer 
sj'Stera correctly. Rl retrieves the description of each com
ponent ordered before it begins configuring a system; while 
configuring the system, if it determines some piece of re
quired functionality is missing, it searches the data base for 
components that will provide that functionality. Rl currently 
has access to almost 5500 component descriptions. We do 
nor, have good data on the rate at which the data base has 
grown, but what data we have suggest the growth rate is 
quite irregular. 

In this article, Rl's growth is measured in number of 
rules. The following values hint at the amount of knowledge 
fin Rl rule contains. The average conditional part of one 
of Rl's rules has 6.1 elements (the minimum number is 1 
ejid the maximum 17). Each element is a pattern that can 
he instantiated by an object defined by as many a.s 150 at
tributes. On the average, a pattern will mention 4.7 of those 
ftitributes (the minimum is 1 and the raaxiraura 11) and 
f''Strict the values vvhich will satisfy the pattern in various 
w.iys. The tests are mostly simple binary functions that 
determine whether some value in the object has the specified 
•"'•'latioiiship to some constant or to some other value in that 
"r another object. The action part of an average rule has 2.9 
L l̂crtients (the minimum is 1 and the maximum 10). Each 
'••lenient either creates a new object or modifies or deletes 
•'" existing object. A rule can be applied when all of its 
'•''iidition elements are instantiated.' 

''•tr additional information about the nature of R l ' s rules as well as 
th.^so of other systems written in 0 P S 5 , see (Gupta, 1983). 

Work on Rl began in December 1978. During the -first 
four months, most of the effort was on developing an ini
tial set of central capabilities. The initial version of Rl was 
irapleraented in 0PS4, a general-purpose rule-based language 
(Forgy, 1979). By April, Rl had 250 rules. During the same 
period, a sraall amount of effort was devoted to generating 
descriptions of the most common coraponents supported on 
the VAX-11/780. After this deraonstration version of Rl had 
been developed, most ofthe effort during the next six months 
was divided between refining those initial capabilities and 
adding component descriptions to the data base; in October 
1979, Rl had 750 rules and a data base consisting of 450 com
ponent descriptions. During the following six months, little 
development work was done on Rl either at Digital or CMU 
because the meiin focus was on defining a CcU-eer path for Rl 
within Digital. But beginning in April 1980, three months 
were spent at CMU in rewriting the 0PS4 version of Rl in 
0PS5 (Forgy, 1981). Given that the knowledge was already 
laid out in the OPS4 version, a variety of generahzations 
emerged and the resulting system, though raore capable, had 
only 500 rules. 

By the end of 1980, Rl had 850 rules, raost of which 
were added by people at CMU to provide Rl with additional 
functionality; the primary focus at Digital during the second 
half of 1980 was on adding component descriptions to the 
data base and providing a group of people with the skills 
to take over the continued development of Rl. Most of the 
work on Rl since ecirly in 1981 has been done by people at 
Digital. By March 1981, the group at Digital had extended 
Rl so it could configure V.\X-11/750 systems. During the 
remainder of 1981, most of the group's effort was focused 
on refining Rl's knowledge of how to configure VAX-11/780 
Emd VAX-11/750 systems. In 1982, the focus changed to ex
tending Rl to cover more systems. While some effort was 
spent in improving Rl's performance, substantial effort was 
spent in extending its scope. By March, a few months be
fore the VAX-11/730 was aimounced. Rl was able to configure 
VAX-11/730 systems, and by July, Rl was able to configure 
PDP-ll/23-i- systems. At that point, Rl's knowledge base 
consisted of about 2000 rules. The remainder of 1982 and the 
first few months of 1983 were devoted primarily to refining 
that knowledge. At that point, a concerted effort was made 
to extend Rl's capabilities so it could configure all the sys
tems sold b}' Digital in significant volume. When that task 
was finished in November 1983, Rl had about 3300 rules 
and its data base contained about 5500 component descrij>-
tions. While a significant amount of time will continue to be 
devoted to e.xtending Rl's capabilities to cover new systenis 
as they are announced, effort will also be spent in continuing 
to deepen Rl's expertise in the configuration domain. 

As Digital has become more dependent on Rl, it has be
come increasingly important that Rl be highly reliable. Thus 
substantial attention has been paid to the question of how to 
combine the demands of reliability with those of continuous 
development. Early on, little attention was paid to formaliz
ing the developmental process; as problems were reported. 

THE AI iVIAGAZINE Fall 1984 23 



T H E I N I T I A L R l 

T H E C U R R E N T R l 
VAX-1 J/785 
VAX-lJ/780 
VAX-11/750 
VAX-11/7.30 
VAX-11/725 
MIGROVAX-1 
MrCRO-PDPl l 
PDP- l l /23- f 
PDP-11/24 
PDP-11/44 

NU.MBER 
OF RULES 

777 

3303 
2883 
2883 
2801 
2810 
2788 
1516 
1516 
1516 
2786 
2786 

AVERAGE 
RULES PER 

SUBTASK 

7.6 

10.3 
9.8 
9.8 
9.7 
9.7 
9.7 
7.3 
7.3 
7.3 
9.7 
9.7 

-A comparison of the 

.AVERAGE 
NUMBER 

OF PARTS 
ORDERED 

8S 

78 
103 
171 
111 
85 
34 
34 
44 
49 
43 
43 

.AVERAGE 
RULE 

FIRINGS 

1056 

1064 
2654 
J 925 
1300 
1141 
622 
546 
546 
608 
567 
733 

initial and current versions of Rl 

Figure 2. 

PERCENT OF 
KNOWLEDGE 
FREQUENTLY 

USED 

44% 

47% 
24% 
31% 
29% 
29% 

8% 
18% 
18% 
20% 
13% 
15% 

NUMBER 
OF PARTS 

IN THE 
D.ATABASE 

420 

5481 
3398 
3398 
2915 
2439 
1981 
1490 
1S2S 
1894 
1763 
1764 

individuals would collect the needed knowledge, add it to the 
sj'Stem, and depending on the press of other problems, do 
more or less testing to determine that the overall capability 
of the sj'stem -had not worsened. As time passed, the de
velopmental process acquired substantially more structure. 
Planned release dates are now preceded by extensive testing 
of the sj'stem. 

The article describing the initial version of Rl (McDer
mott, 1982) provides some insight into the nature of Rl's 
knowledge by presenting a variety of measurements. Figure 
2 compares the nieasurements from the initial version of Rl 
with corresponding measurements from the current version. 
Since a significant amount of the knowledge in the current 
version is specific to just a subset of the system types it can 
configure, Figure 2 provides the measurements for system-
specific configurers as well as for the union of those config
urers. Until recently, instead of a single version of Rl that 
could configure all system types, there was a version of Rl for 
each system type. Each of these versions consisted of a set of 
from 50 to 100 rules specific to a system type and two much 
larger sets of rules; it shared one of these rule sets with all of 
the other system types and the other with the system types 
having the same primary bus. About 300 of the shared rules 
v*'ere themselves specific to just one of the system types; each 
of these rules was included with the shared rules because it 
was relevant to a shared subtask. 

Rl's rules are grouped together on the basis of the 
subtask to which they are relevant; the "number of rules" 
column displays the total number of rules available to Rl 
in performing^ the configuration task, and the "average num
ber of rules per subtask" column displays the mean number 
of rules in a group. The 3303 rules the current Rl has is 
the union of the rules of each system-specific configurer; the 
10.3 rules per subtask is the union of the groups of rules the 
system-specific configurers bring to bear on a particular task. 
The "average number of parts ordered" column displays the 
number of components Rl has to configure. This number 

is significantly larger than the number of components listed 
on a purchase order since those line items actually refer to 
bundles of configurable components. 

The numbers in the "average rule firings" and "percent 
of knowledge frequently used" columns are based on small 
sets of runs. For the initial RI, the numbers came from run
ning R] on 20 typical orders. For the current R.l, the num
bers came from running each system-specific version of Rl 
on about 20 orders of comparable complexity. The "average 
rule firings" coluran shows that substantially more is done 
in configuring a VAX-l 1/780 order now than was done ini
tially; almost twice as many rules are applied. Two factors 
contribute to this increase. The configuration task has been 
enlarged by definition (i.e. there is now more to do), and 
second, there has been an increase in the average number of 
components per order.^ 

The "percent of knowledge frequently used" column 
shows what percentage of the rules are used at least once 
in at least one of the saraple runs. Thus for the initial Rl, 
44% of the 777 rules were applied at least once over the 20 
sample runs, and for the current Rl, 47% of the 3303 rules 
were applied at least once over the approximately 200 sample 
runs. The fact that a substantial fraction of Rl's knowledge 
is used only rarely is, of course, just what we would expect 
of a knowledge-based system. But the percentages for the 
system-specific versions are somewhat misleading. We would 
expect the percentage for each version to be lower than the 
overall percentage because each was run on only about 20 
orders. However, because each version has knowledge that 
is not relevant to its tasks, the percentages for the versions 
are lower than they otherwise would be. The percentages for 
the VAX-11/780, the VAX-11/750, and the VAX-11/730 are 
the most accurate, but even they are too low by several per
centage points. Since the nature of the knowledge used by 

' O n the average, 1.67 VAX-11/78Q cpu minutes are required to 
configure an order. 
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each version is quite similar, it is likely that the percentage 
of the knowledge frequently used by each is pretty much the 
game—somewhere between 35% and 40% . 

About 65% of the 2526 rules added to Rl since 1980 
extend Rl's general configuration capabilities; only about 
35% of the rules are specific to a single system type. Of the 
65% ^t least 15% were added to correct or refine knowledge of 

''. how to perform sorae subtask. This lower bound is suggested 
••' ' by the fact that the "average number of rules per subtask" 

..-.-• increased by 30% during the past four ycctrs (i.e., about 230 
- rules were added to the groups of rules applicable to the 

'•'•" • subtasks the initied Rl knew how to perform); adding a rule 
to the group applicable to some subtask is almost invariably 
done to correct or refine the knowledge of how to perforra 

; that subtask. The 15% is a lower bound because as the 
knowledge required to perform some subtask grows, it may 
become evident that what was viewed as a single subtask 
can be viewed as two or more simpler subtasks; what we 
do not know is how much the average number of rules per 
subtask would have grown if this subtask splitting had never 
occurred. 

The Kinds of Changes R l Has Undergone 

As it turned out, the task of developing Rl had just 
begun when it was first put into use. In this section, vve 
attempt to give a flavor of the kinds of changes that have 
been made to Rl over the past four years by examining a few 
examples in some detail. Our primary purpose in examining 
the growth of Rl's knowledge is to better understand what 
is involved in adding knowledge to such a system. We can 
identify four reasons why knowledge was added to Rl: 

• To make minor refinements (adding knovViedge to 
improve Rl's performance on am existing subtask); 

• To make major refinements (adding the knowledge 
required for Rl to perform a new subtask); 

• To e.xtend the definition of the configuration task in 
significant ways. 

Ordinarily when people talk about why knowledge is 
•iiided to an expert system, they seem to have the first reason 
in mind. As vve have seen, of the more than 2500 rules 
added to Rl during the past four years, the data in Figure 
2 suggest that more than 10% have been added to make 
minor refinements, fewer than 40% have been added to make 
major refinements, at least 35% have been added to provide 
•'iMctionality needed to deal with new system types, and 
i^'Thaps as many as 15% have been added to extend the 
dofinition of the task in significant ways. 

Minor Refinements. A knowledge addition of the first 
l-yi'io is required when Rl cannot perform some subtask that 
It was thought to be able to perform. For example, over the 
years Rl has made several errors involving the placement 
i'>i backplanes in boxes. One instance of such an error has 
•̂0 do with a backplane's location. In one variety of a 24 

Slot box, because of povver considerations, a backplane is 

not permitted to cover slot 10. Rl knew that if it covered 
slot 10 when placing a backplane, it needed to move that 
backpleme toward the back of the box so the backplane's front 
edge would be in slot 11. Rl's knowledge was incomplete 
because it did not know it had to move any previously placed 
backplane frora the front of the box toward the raiddle so 
that its bsw;k edge would be in slot 9. This backplane has to 
be raoved toward the middle because leaving a larger space 
between the two backplanes would mean the standeu-d cable 
used to connect backplanes could not be used (since it is not 
long enough). Fixing Rl was a straightforward task, but it 
required a certain amount of creativity (i.e., it was not just 
a raatter of "adding sorae more domain knowledge.") What 
Rl lacked was any notion of "deliberately vacant space." 
In order to provide rules that could recognize situations in 
which blank space was inappropriately positioned, Rl had 
to have the concept of blank space and an understanding of 
how to make a note that a particular space had been left 
blank on purpose. Given this, it was straightforward to add 
a few rules that recognized when some piece of blank space 
was inappropriately located and swap it with a backplane. 

Major Refinements. A knowledge addition that results 
in a major refinement to Rl can be made in two kinds of 
situations: when Rl does not have any knowledge about how 
to perform some subtask, and when its knowledge of how to 
perforra some subtask becomes so tangled that ways need 
to be found of representing the knowledge more generally. 
Brief examples of both situations are presented below; in the 
following section we provide a more lengthy analysis of one 
attempt to rewrite a set of rules, initiated almost purely to 
increase generahty and imderstandability. 

Most of the modules Rl configures on a UNIBUS consist 
of one or more boards that plug into backplanes which go 
in boxes. If multiple boards are required, they are usually 
placed next to each other in the same backplane. A situation 
unfarailiar to Rl arose when a module was designed with 
boards on two buses. Its first board was to be configured 
in an SPC backplane while the three remaining boards were 
to be configured in a special backplane that had to be lo
cated in the same box as the first board, but not in the same 
backplane. One way of extending Rl to handle this nevv 
component would have been to use a look-ahead strategy-, 
Rl would have checked for space, povver, and cabling con
straints on the special backplane before configuring the first 
board. An alternative would have been a simple backtrack
ing strateg}'. The approach Rl actually took involved a com
bination of both look-ahead and backtracking. Rl applies 
the same rules it uses for other modules to configure the 
first board; a few special rules then try to foresee abstract 
constraint violations involving the rest of the boards. If a 
problern is found, the first board is unconfigured. If no con
straints are violated, povver and space are reserved for the 
remaining boards. 

Early in Rl's history, only two types of panels needed to 
be considered. A few rules were sufficient to guard against 
the possibility of trying to configure two panels in the same 
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space in a cabinet. Templates were used to describe panel 
placement possibilities; the rules recognized when some par
ticular space was already occupied and avoided that space. 
As Digital introduced new products the situation became 
increasingly complicated until five different types of panels 
as well as disk drives and boxes could potentially occupy 
the same space with differing degrees of overlap. Because 
the original approach required all possible conflicts to be 
enumerated, it became increasingly unwieldy as the prob
lem grew in complexity. The new solution involved redesign
ing the templates so the information they contained could 
be manipulated by a small number of more general rules 
and by making minor changes to the action parts of about 
60 already existing rules that dealt with cabinet space deci
sions. This strategy worked well for about a year until Digital 
redesigned its cabinets to comply vvith new FCC regulations. 
. \ t that point, the templates became too unwieldy because of 
the sheer number of possible individual locations; since the 
redesign Eilso eliminated most of the irregularities of the pre
vious problem, it became possible to simplify the templates 
and keep track of potential conflicts with a few verj' general 
rules. 

New System Types. Providing Rl with the functionality 
it needed to deal with new system types has constituted a 
significant portion of the development effort. Since raajor 
configuration differences exist among the various buses sup
ported by different CPU types, it was not clear initially 
how much configuration knowledge is common across sys
tem types. When a VAX-11/750 configurer was developed, 
the V.\X-ll/780 configurer was used as a model, but the 
knowledge bases were initially completely separate. Once 
the VAX-11/750 configurer had enough knowledge to be use
ful, it was merged with the VAX-11/780 configurer. On the 
other hand, the VAX-11/730 configurer was integrated, from 
the beginning of its development, with the older Rl; the new 
version was developed by creating a small knowledge base 
(consisting of about 100 rules) specific to the VAX-11/730, 
adding sorae rules specific to the VAX-11/730 to the common 
knowledge base, and generalizing several of the rules in that 
common knowledge base. This approach worked well for the 
VAX-11/730, but when we turned our attention to the PDP-
11/23-)-, we reverted to the approach we had used for the 
V.AX-11/750. Several factors were involved in this decision. 
Rl, up to this point, knew only of VAX-11 systems, which 
are UNIBUS and MASSBUS based, while the PDP-11/23-1- is 
based on the LS122 bus. The rules for configuring these buses 
have little in common. Moreover, the PDP-ll/23-f supports 
a variety of operating systems, requires a completely different 
paneling structure, and assumes different power and capacity 
chjiracteristics for its boxes and backplemes. Since the PDP-
11/23-i- is quite dissimilar to the VAX-11 systems, a separate 
version of Rl was developed for this task. Each of the sub
sequent system configurers was integrated with either the 
VAX-11 or the PDP-ll/23-f system (depending on whether 
it had a UNIBUS or a LSI22 bus). Recently, it was decided 
that in a production environment, it would be advantageous 
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to have one single system; by April 1984, all of the system 
configurers had been merged. Future system type additions 
vvill be part of this single version of Rl from the beginning' 
of their development. 

.Adding the knowledge required to deal with new system 
types is non-trivial even when the new type is quite sirailar to 
types Rl already knows how to configure. Part of the effort, of 
extending Rl's configuration capabiUties to cover a new typ^ 
is due siraply to the added amount of knowledge. For each 
of the types, we have had to add a great deal of data to the 
data base as well as mivke extensive rule changes and addi
tions. Many ofthe decisions involve how to represent the new 
knowledge in the rules, but new data base representations 
are sometimes also required. The fu.Il extent of the effort 
varies, depending on the degree of similarity between the 
added system type and the types Rl can already configure. 
When there is a high degree of similarity, the form in vvhich 
the existing knowledge is represented provides substantial 
guidance for how to represent the new knowledge. When the 
new system is quite dissimilar, substantial amounts of design 
are required. 

Extending the Task De&iution. As Rl's role in Digi
tal's manufacturing process has evolved, knowledge has been 
added to Rl that extends the definition of its task. For 
example, Rl vvas extended in January of 1983 to handle 
"multiple-CPU" orders. Rl was originaUy designed to deal 
with orders containing a single CPU. But multiple-CPU or
ders have become increasingly common, especially with the 
advent of smaller system types where multiple identical sys
tems and/or several different systems on the same order are 
the norm. Part of the challenge of extending the definition 
of Rl's task involves finding a way to realize some new 
capability that does not require extensive modifications tg 
Rl. In this case, we avoided the temptation of trying to 
modify Rl to configure multiple, loosely coupled systems 
simultaneously. Instead, a few new rules (originally about-
10) were written to group the components into individual 
systems; eax:h system was then configured in turn. Changes 
had to be made to 5 existing rules that determine what to 
configure and what order.information to save; a few external 
initialization and output routines also had to be modified. 
The hard part was deterraining how Rl's task definition • 
could be extended most simply. 

A substantial change to Rl in July of 1982 modified it to 
deal with a different categorization scheme for components. 
The component descriptions had been developed exclusively 
for Rl and were tailored to the configuration task. As Digital 
developed other knowledge-based systems for other purposes, 
it became desirable to have a common data base, where 
the components were categorized in a less ad hoc fashion. 
Before Rl could use the new descriptions, nearly all of its 
rules (about 2000 at the time) had to be changed, and for 
several hundred of these rules, the task of reformulation took 
considerable thought. 

While the difficulty of making changes of any o/ the four 
types we have just described is highly dependent on the na-
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ture and scope of the knowledge that needs to be added, it 
also appears to be dependent on the amount of knowledge the 
system already has. In the early days, when Rl was small, 
people who joined the project were able, reasonably quickly, 
to acquire enough of an understanding of the configiiration 
task and of Rl's approach to it to become competent devel
opers. But now that Ri has grown substantially, its sheer 
magnitude seems to serve as a barrier to the would-be devel
oper. It takes much longer now for someone who joins the 
group to gain an adequate understemding of how Rl does 

..configuration. 

A Change over the Years 

To provide another view of Rl's development, we have 
analyzed the changes in Rl's knowledge for two closely re
lated tasks. One of the tasks involves deciding what bcick-
plane should hold the next set of modules. The other is a 
subtask that raay or may not be performed depending on 
what the backplane selection possibilities are. The decision 
of what backplane to configure next is constrained by the 
pinning type of the modules, the space and power available 
for them, the current length of the bus and its loading, and 
the number and mix of backplanes that have been ordered. 
A good backplane choice is one that minimizes the number 
of additional components that have to be added, while satis
fying all the constraints. The subtask is performed if the 
pinning type of the next module to be configured is SPC. In 
this case, two different sized backplanes could be used, so Rl 
must do some analysis of the implications of selecting each. 
Figure 3 shows how Rl's knowledge of these tasks has devel
oped; the development can be viewed as a series of minor 
refinements, followed by a major refinement. 

In December 1980, Rl's knowledge of how to perform 
the two tasks consisted of 36 rules, 23 rules for the selection 
task and 13 rules for the subtask. In October 1983, Rl's 
knowledge consisted of 73 rules, 54 for the selection task and 
19 for the subtask. During the intervening three years, 40 
rules were added, 3 rules were eliminated, and 11 rules vvere 
chtuiged. This alteration is consistent with the knowledge-
based approach, where the initial instinct is to solve a prob
lem by adding more knowledge. It suggests that the rules 
eventually formulated are for the most part adequate, but 
'hat it takes a long time to collect the relevant knowledge. 
The fact that only 11 rules were changed may be a little 
misleading since 27 of the added rules were special cases of 
•existing rules, implying that the conditional part of many of 
Uic unchanged rules were inadequately discriminating. Of 
••''C rules that vvere changed, the changes were almost all in 
'•'c conditional part and were in the direction of making the 
files increasingly discriminating. 

In October 1983, one of the people working on Rl ob-
•''Orvcd that if Rl were given more knowledge of how to assess 
' lie likely implications of various decisions, it would need to 
backtrack even less often. In the course of reworking this 
•^•'ipability, the number of rules remained constant, but the 
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level of expertise improved dramatically. Of the rules in 
the October version, 31 were eliminated and, coincidentally, 
31 were added; of the remaining 42 rules, 32 were changed. 
Again, this alteration is what we might expect of a situation 
in which a capability is being substantially extended. When 
the knowledge is all laid out and it is clearer what other 
pieces of knowledge are relevant to the task, it becomes more 
obvious how to represent the knowledge cleanly. In this case, 
the biggest change was the elimination of condition elements. 
This happened because it became clear that the rules were 
too constraining; that is. the rules had typically been added 
to deal with a particular error, and so the October version 
had a small set of overly general rules (from the initial ver
sion) and several more overly specific rules. Seeing all the 
knowledge laid out made it possible to hit the right level of 
specificity. 

Conclufiions about Growth 

The following conclusions purport to provide guidance to 
the developers of emy knowledge-based application system. 
We are of course not at all sure what aspects, if any, of the 
experience with Rl at Digital will turn out to be typical. 
It seems reasonable to believe, however, since Rl's task is 
knowledge-intensive, that the experience vvith Rl relating to 
the rate at which it has acquired knowledge and the difficulty 
of adding that knowledge will at least have relevance to other 
attempts to put knowledge-based systems tb work on real 
tasks. 

Even though the experts claimed in 1979 that Rl had 
most of the knowledge it needed, a great deal of knowledge 
has been added to Rl over the past four years. There is no 
more reason to believe now than there was then that Rl has 
all of the knowledge relevant to its configuration task. This, 
coupled vvith that fact that Rl deals with an ever-changing 
domain, implies its development will never be finished. Thus 
users of systems like Rl will have to be emotionally prepared 
to interact with a less than perfect program. They will have 
to be as forgiving of ignorance in these expert systems as 
they are of ignorance in humans who are ever becoming more 
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expert. 
Though much of Rl's knowledge was added to correct 

or complement existing knowledge, a significant part of t̂he 
additions came as a r^ult'of Rl having to have the knowledge 
to perform new tasks. Some of these were the result of Digital 
introducing new coraputer systeni types and the rest resulted 
frbm the users' bbser^-ations that things would be better if Rl 
could do one more thing. We believe all expert systeras vvill 
ba hounded to continue to grow for both of- these reasons. 
Tasks that expert systems are good for are just those vvhose: 
.objects change significarttly over time. Moreover, in such 
tasks no clear boundaries delimit what should and should 
not be, vvithin the province ofthe expert. Thus, whenever an 
expert system finds itself on a boundrj', its public encourages 
it to extend the bomidary. 

Situations arise in which the task of adding a piece, 
of knowledge is extremely stj-aightforward because the hew 
knowledge needs,to be represented and used in virtually the 
saiiie way as the system's existing knowledge. But, for the 
most part, adding a piece of knowledge involves some amount 
of creativity. In domains other than configuration (of at 
least in diagnostic as opposed to constructive tasks) domain 
knowledge appears to-be substantially more regular and can 
be added roiitinely. Significant, but as yet undiscovered, 
regularities in configuration knowledge may exist that will 
someday allow it to be added more' easily. But for now, it 
is important to at least be open to the possibility that a 
knowledge^based OTstem vyjil forever have to be surrounded 
by people who know how to do development. They will be 
called upon to be innovative and adaptable. Although it may 
be the case that adding knowledge incrementally is easier 
than rewriting or modifying a traditional program, by no 
means can this task be done without.substantial ajiioimts of 
problem .solving. 

It was clear before Ri was a year old that the incremental 
addition of knowledge resulted in a system with a significant 
ariiount of redundancy and a-penchant for qd hoceTy: To the 
extent that adding knowledge to the system involves human 
intervention, this general lack of cleanliness and conciseness 
provides an obstacle, to the system's further develojpment. 
Few expert .systems are likely to be redeveloped (as Rl was 
in 1980, but not since). However, we suspect that from time, 
to time, some part of every expert system's knowledge will 
become so convoluted that its developera will take the time 
to re-represent that knowledge. 

R I ' B Performance 

Before Rl began to be used, each system Digital received 
an order for was configured by a teclinical editor, typi
cally on the day before the system was tp be assembled 
and tested. The technical editor examined each .order to 
determine whether configuration constraints, required addi
tional or diff'erent components and then specified some of the 
relationships, among the components on the order. Though 
the task was performed at a fairly high level of abstraction, it 
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seldom took fewer than 5 or 10 minutes to configure an order ,'̂  
and complex orders took sti bs tan tially more time. When ftj, 
began to be used, it essehtially became a technical editor' 
But-since it was not clear initially how well Rl was going IQ'--
do as a technical editor, some of the people vvho bad beet̂  
technical editors stayed to watch over Rl. In effect, they be,.; 
came Rl's mentors. Every cfrder configured by Rl has becti • 
examined, more or less closely, by a mentor and if the mentot' ^ 
believed the configuration was lacking in anj' respect, he or',; 
she reported the problem to the Rl development group. V 

Although Rl î  an expert system in the sense that thQ-'-
body of knowledge it uses to perforra the configuration task is 
acquired by human experts over a period of years, its task is 
different from the task that used to be performed by the tech
nical editors' because Rl configures systems at a significantly 
greater level bf detail than they did. Because its task is 
niore extensive, it is hard to answer the question; Does R i 
do as well at the technieal editing task as human experts do? 
The task Rl actually performs is the,old technica.! editing.-
task plus part of the task perforraed by tbe tecKniGian who 
physically assembles the systera (since.the technician has to,', 
descend to Rl's level of deta;il to do his job). But the tech- ' 
nician's situation is different from Rl's in tbat the technician 
has the physical components that need to be assembled and 
tested in front of him and can discover when coraponents 
are missing or misconfigured in more direct ways than are 
available to Ri. Thus we have not tried, in this article, to. ' 
compare R-l's performance with that of the-human experts,' 
The closest we come to examining that relationship is with 
the bogus;problems category: A bogus problem is one that ' 
a hurnan expert reports as an Ri error, but. that on further 
examination turns out to have bieen a failure ori the part of' 
the expert to appreciate correctness. 

The data presented in this part df the article leave some- .'• 
thing to be desired; part of the problem is that it was nof ^'S 
clear, at any point during the past four years, how frequently i,;- j 
Rl's performance needed to be sampled. Since knowledge-
based systems continue to be. develpped incrementally as | - | 
they are used, it was obvious that cbllecting performance ~ 
data would be an integral part of usirig the. system. It was.^^;; 
also clear that the more data that were collected, the better # , 
we would understand the extent to which Rl's knowledge was |^;; 
Jricoraplete. But all that is really required to drive the devel- ̂ l̂lt; 
opniental process is enough data to give the people collecting '':J^ 
and encoding Rl's knowledge pleiity to do. Since finding in- r'^i 
adequacies in Rl's knowledge has never been very hard, more.^^^ 
attention was given to the task of extending and refining Rl 
than to the- data collection task. As a result, there are a 
few periods, in two c£^es,e>ctending for raonths, in which the' ^J; 
data we have are. incomplete. For the most part, however, 
we have some information about how well Rl performed on 
each order it configured. 

Even if we had infonnatioia about each order RI config
ured, our data would stUl be unsatisfactory because dur un-
deretanding of how to collect the relevant data has grown 
slowly. Since people who have the responsibility of review-

M 

n 

mmm^m 5^ i fsSf*^ r f^^5p?^ l^ ! f 



•̂ •-î S^ ing each of Ri'a configurations have little understanding of 
V '0 ' '^ how Ri does what it does ahd where, and how it can err, 
•' ':0\ they can only report error manifestations. Devising a process 
"'S'"* that makes it fairly straightforward to link manifestations to 
'v'iKi'causes (so, for example, the number of instances of each er-
: 7i> tor type can be determined) took some time. Initially the 
.:* '•',; prociess used paper and- pencil. A second issue, then, was 
• '̂'̂ "^ how to design a program that could assist with the data 
;^S§f#CDilection task. Because it took time to devise such a pro-
feli^' gram (a lot of time since it had low priority), a significant 
•^i'Mi^^p^^ of f̂^̂  task has been to reconstruct, from incomplete 
;;,;}Si^?--Sescription3 of error manifestations, what, the actual errors 
:",ri,2'4-;^ere- We feel relatively confident in the overall results, but 
."'• .!;i^.|are sure, a number of rainor tnaecuracies exist. 
11 '.̂ ,d>:-' .Before presenting the. performance data, we need to 
••'••? (iiscuss briefly bow "percentage of totally correct orders" 

-'4^' c'ame to be accepted early as the metric for measuring Rl's 
-. -->%• performance. The problem vvith this metric, of course, is 
,-••,'.' that it does not discriminate between terrible-performance 

(gargantuan errors) and near perfect performance (tiny, al-
inost insignificant errors). In retrospect, it is clear that bav-

-' .log some idea of tbe.seriousness of each'error would be help-
.;''^U-ful in evaluating Rl. But Wberi Ri first Started to be used, it 
•;• .' ', was with the expectation that there were only a few things 

'",1̂ -. i t did not yet know, and tbe only question in people's m.ind3 
' '̂ ' was how many weeks it was going to take before, Rl knew 
••_, everything. Within that context, it is not at ,aU surprising 
. - • that" the all or nothing metric was selected: anything else 

would have seemed too fine-grained. 

' y ^ 

• - t / - . 

Some Performance Data 

, , Figure 4 provides a detailed account of Rl's performance 
f.^-er the past four years- Tbe informatibn is presented by 
Z «pJ,arter, beginning in January 1980 and ending in Decem-

•ber 1983. Three major problem categories exist: rule prob-
Kias, data base problems, and other problems. For rule and 
lotr data base problems, as well as for total problems, the 
percentage of orders containing that type of error is given. 
.*> ithin each category, information is prpvided about one or 

. niore subcategories. For each subcategory, the number of 
, problem instances as well as the nurnber of distinct prob-

• ''̂ f̂na is reported. The total problem instances percent gives 
^-•^nseof Rl'susefulness, However, since raost errors Rl novv 
fWiiftes are minor, its output, even if there are problems, can 
JJS'iaUy be used, though sometimes only after a bit, pf editing. 

"« distinct problems percent in the parts and rules subto-
'" gives a sense of Rl's competence; this rneasure sbovv's the 

•' *''Tiber of distinct errors Ri has made: due either to missing 
incorrect configuration knowledge or to missing or incor-

ct cortvpohent descriptions. Few, we think, woiild wan t to 
^ -'I'm that Rl was'a competent configurer during its first year 

*J-5e- but for the past two years, its lack of knowledge, has-
Ẑ *" Well within the boundsof respectability. The number 

problem" instances divided by number of distinct problems 

gives an indication of how many time's a problem occurs be
fore it'is fixed. 

The most significant iihpfovement in Ri has conie in 
the percent of problems attributable to missing or incor
rect rules. While missing or incorrect dpmain knowledge 
bas never been the most significant spurce of problems, it 
is now the case that fewer than one in a thousand orders 
is misconfigured because of rule problems. One might ask 
{though we' hope only in jest) how after four years Rl can 
have any missing or incorrect domain knowiedge- There are 
at [east two answers. First, even though Rl has configured 
more than 80,000 orders, it has seen pnly a small fraction 
pf tbe situations it could possibly encounter. Second, new 
products are spmetimes announced before Rl acquires all 
the knowledge it needs to be able to cori figure those new 
products correctly, 

Problerns with parts have been much more troublesonie. 
Incorrect part descriptions have never been much of a prob
lem, but missing part descriptions have been a significant 
problem during.all four years. During the first two years 
R l was used, tbe reason it was sometimes given systeras to 
cbrifigure containing components not described in its data 
base held mostly to do with the fact that tbe people respon
sible, for adding part descriptions to the data base were not 
tbe right people. It was assuraed initially that the component 
descriptions could be created by people vyho knew a lot, about 
the components, butknew little about how Rl would use the 
descriptions. As i i turned out, creating useful descriptions 
is not all tbat straightforward. It often is not clear what 
"configuration level" means, not clear what attributes are 
required, and not clear what knowledge .to put in the rules 
and what in the data base. In order to know what informa
tibn a description should contain, it is neces.sary to know 
how the information is going to be used. In order to know 
bow the information is going to be used, it is necessary to 
know something alaout the^ cpmppnent. After trying various 
strategies for making the middle-men more productive, the 
responsibility for creating descriptions'was taken over by the 
pebpile who encode the configuration knowledge in rules. 

This change would have solved the missing part descrip
tions problem were it not that at about that .time, the 
number of: orders Rl was configuring per quarter began 
to increase substantially. As a consequence, the number 
of differerit parts ordered grew significantly. Since Rl has 
descriptions of only 5,500 of the more than 100,000 parts 
that couM appear on'an order, and since the rate at which 
the as yet' undescribed .parts appear on orders is very low, 
the development group adopted the strategy, for lov̂ ' volume 
parts, of waiting until thepar t shows up on an order before 
adding its description to the data base; This policy is less 
cavalier than it may seem since when one of these low volume 
parts does show up on an order, it usually turns out, to be 
a part tha,t is'not'itself configured {e.g., software or an ac
cessory). Thus-althougb any configuration mentioning a part 
Rl does not know about is'counted as a problem, most ofthe 
time those configurations can be used without modification. 
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The problems not really imder the control of Rl's 
developers—operational problems, controversial issues, desired 
enhancements, and bogus problems—have always been a 
significant part of the problems reported. During the first 
year and a half, a very large fraction of the problems were 
operationd; a number of factors, each by itself not very 
significant, conspired to separate Rl from its user com
munity. During 1983, the number of bogus problem reports 
grew to become a highly encouraging (from Rl's point 
of view) fraction of the total problem reports; from July 
through September, the number of bogus problem reports 
was actually double the number of rule problem instances, 
and during the other three quarters the number of bogus 
problem reports was about half the number of rule problem 
instances. 

Figure 5 presents some of the infonnation from Figure 4 
in graphical form. The relationships among "total orders", 
"^otal problem instances", "total distinct problems" and 
"rule problera instances" are depicted. The "total orders" 
measure provides a context within which the error measures 
can be understood. The "total problem instances" measure 
provides a lower bound on Rl's usefulness. The area under 
that curve indicates the number of orders for which Rl's 
output was possibly not useful; however, as we have seen, in 
most cases the output could be used, though sometimes only 
after being modified. The "total distinct probleras" raeasure 
provides a lower bound on Rl's competence. The area under 
that curve indicates the number of different kinds of situa
tions Rl did not deal eflfectively with. The "rule problem in-
.stances" measure indicates the ext-ent to which Rl's failures 
were due to its ignorance of the domain. 

Conclusions about Performance 

As in the previous section where some conclusions about 
growth vvere presented, the following conclusions purport to 
provide guidance to the developers of any knowledge-based 
application system. Since the conclusions we offer here are 
not very startling, it is quite Hkely that they have some 
general validity. All they really contain is the notion that 
when AI tools confront real tasks, the world is not going to 
obediently conform to all of the hopes of the tool maker. The 
real world treats Al tools with the same disrespect with which 
't treats all other tools and thus a great deal of the effort of 
bringing AI systems into regular use on real tasks involves 
doing things that do not have any special relationship to 
'^'. What undoubtedly makes matters worse for AI tools is 
that the problems they are used to solve are ordinarily more 
•̂ Pen than the problems traditional software tools typically 
iddrcss. 

In the previous section vve argued that an expert system 
Will never have all the knowledge it needs. Thus it will al
ways make mistakes, and it is important for both the devel
opers and the users to expect them. Rl's performance data 
•"•-"ogest something even stronger: To expect anything close 
'<̂  perfection during the first few years a system is being 

NUMBER 
OF RUNS 

20000 

18000 

16000 

14000 

12000 

10000 

TOTAL ORDERS 

8000 ^ " " ^ 

6000 / 

4000 y 
f TOTAL 
/ PROBLEM 

/ INSTANCES 
2000 J \ 

y / \ . j ^ r > ^ ^ ^ 

1 
/ 

/ 
/ 

TOTAL 
DISTINCT 

/ PROBLEMS 

/ / RULE 
/ P R O B L E M 

^ INSTANCES 
_ i^A^ -"-"yC^-,—,_£—'— y 

12/31/80 12/31/81 12/31/82 12/31/83 

Rl 's Performance by Quarter (in Graphical Form) 

Figure 5. 

used (especially if the task is significantly more than toy) is 
probably a very serious mistake. We believe the data also 
suggest that to keep an expert system from regular use un
til its knowledge is complete vvould be a poor idea. It has 
taken 80,000 orders to uncover some of the inadequacies in 
Rl's configuration knowledge, and the configuration task is 
continually redefined as new products are introduced. These 
facts suggest that even if someone had tbe time and energj' 
to try to create a near perfect system before introducing it 
into production, raany inadequacies would become evident 
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witb regular use-
It would be a rnistake to believe tbe major or even a 

primary source bf error in tbe.perfpnnance of an expert sys
tem •will be due to incorreGt or mining domain knowJedge-
Depending on the number and type .of objects the system• 
is intended to deal with, large amounts of effort may be 
needed to collect and maintain the information about these 
objects. But even if the"nature of tbe task makes data col
lection and,maintenance relatively unproblematic, a variety 
of other sources of error may spring up as the. system begins 
to be used. As we just mentioned, there is nothing magic 
about knowledge-based systems that allows them to avoid 
the problems other software sj'stems have to face. Indeed, 
the fact that they cpntinue to be developed while they are 
being used undoubtedly intensifies-those probiems- The rela
tive seriousness "of the various probiems that confrontjed Ri 
vvould surely have been better appreciated if Rl had had a 
sophisticated problem reporting mechanism from the begin
ning. 

Kone looks at Rl 's performance.over the first two years 
of its use and tries to iirtagine Rl being used in a situation 
where it was being asked to configure thousands of orders a 
month, it seems clear that its use would have been discoii-
tinued. This judgment is perhaps overly harsh since, as men
tioned above, a significant portion of the configurations with 
errors could be used with- only minor modifications. In any 
event, using Ri in a high volume environment would have 
made its initial nut uring substantially more difficult. Rl \vas 
used instead in an enviroimient in which the initiai deniands 
on it were of the order of a few tens of orders per week for 
the first year. This sinall volume madeit possible for people 
to jump in whenever Rl failed and to avoid depending too 
much on a system that at the time was far from being an 
expert in the domain. 

ConcltiaioJQ 

One, of our purposes in giving these glimpses df Rl's de-
velppraental and performance histories is to provide some 
evidence for evaluating the claims that have been made about 
expert, systems. Expert systems supposedly are easy to de
velop incrementally and, at some point, bwrome as good as 
human experts. Rl lends some credence, to both of .these 
claims. While substantial 'effort has been required to de
velop Rl, the approach taken has made it possible over a 
four year period to increase Rl's knowledge substantially 
without starting over; this lends support to the first clciim. 
The: fact that human experts erroneoi^ly cpnclude that Rl 
has misconfigured systems about as frequently as Rl actually 
misconfigures systems lends some support to the second 
claim. 
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Reading Guide: 

You should have i;he foil owing inateriaT: 

"On the Development of Commercial Expert Systems" 
(a paper discussing Dipmeter Advisor) 

"RI Revisited: Four- Years in the Trenches" 

From Vol II of the Handbook of Artificial Intelligence: 

Overview (pages 79-84) 

TEIRESIAS example (pages 92-101) 

PROSRECJOR (pages 155-162) 

I suggest reading the first few pages of the overview, for historical 
background, followed by the Teiresias example, to give you an idea of 
what is possible as far as the human-computer interface. 

Next, I think you should wade through the entire paper on Dipmeter 
Advisor, The first four pages will give you an idea of how a "current" 
geologic expert system works, while the rest of the paper will indicate 
what is involved in building a system, I'll admit the second half of 
this paper will contain alot of unfamiliar terminology and irrelevant 
discussion, but you should still be able to glean alot of useful 
information out of it. 

The rest of the material will show the state-of-the-art as of a few 
years ago (the most r̂ ecent general information in print) and some 
idea of system growth. The Rl paper, in particular, is only worth 
a light skimming. 
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A. OVERVIEW 

,hp past decade, many of the fundamental Al techniques described 
^^^ evious chapters on search, knowledge representation, and natural-
'" processing have been applied in the form of expert systems, that 
'""°" nuter systems that can help solve complex, real-world problems in 
''' '̂ •fi scientific, engineering, and medical specialties. These systems are most 
"P*"*̂  I ̂  characterized by their use of large bodies of domain kno-wledge—facts 
"̂̂ ° Qcedures, gleaned from human experts, that have proved useful for 

•'" . tvp'cal problems in their domain. Expert-systems research promises 
^ 1 d to Al applications of great economic and social impact. But far 
' ' being solely concerned with applying Al problem-solving techniques, the 

rch described in this and the following two chapters has often addressed 
" darnental questions concerning the nature of knowledge, both in terms of 

I representational systems and as an e.ssentially social phenomenon— 
viedge as something that must be shared and transferred among men and 

machines. 

Involution of Expert Systems 

AJ research in the 1960s identified and explored several general-purpose 
problem-solving techniques. This work introduced and refined the concept of 
heuristic search (see Chap. II, in Vol. l) as an important model of problem 
<olving. Many of the Al systems developed during this period, like GPS, the 
Logic Theorist, REF-ARF, QA4, and PLANNER (all described elsewhere in 
lhe Handbook), dealt with problems in simple, constrained domains such as 
chess, textbook problems, robot planning, blocks-world manipulations, and 
puzzles like "Tower of Hanoi" and "Missionaries and Cannibals." But by the 
mid-1960s, some researchers in the DENDRAL project at Stanford and the 
.\LACSYMA project at M.I.T. had begun work on the first expert systems— 
organic chemical analysis in the case of DENDRAL and symbolic integration 
and formula simplification in MACS^TvIA. 

These systems were designed to manipulate and explore symbolically 
expressed problems that were known to be difficult for human researchers to 
solve. The problems were characterized by the increasing number of solution 
passibilities that had to be examined as the problem specifications grew in 
complexity—the larger the size of the problem specification (e.g., the size of 
the molecule or the complexity of the expression to be integrated), the more 
difficult it was for human researchers to discover solutions or be confident 
lhat all valid solutions had been found. This combinatorial explosion in the 
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solution search space oft,cn outstripped the abilities of human researchers. The 
capability of AI systems to deal with the larger solution spaces is important 
in that it extends the types of problems that can be solved with the same 
conceptual tools. 

More recently, several other factors have motivated research on expert-
systems development. Most notably, expert systems promise to be quite 
profitable because they can help .solve hard problems that require the best 
(most expensive) human expertise. (See, e.g., Articles VII.04 and VTI.D3 on 
systems that may help design chemical-synthesis techniques and explore for 
mineral deposits.) In .some domains, like medical diagnosis, the fact that the 
exhaustive nature of problem solving in expert systems ensures that remote 
possibilities are not overlooked is important. And often the very codification of '. 
expertise in suitable form for an expert system is an illuminating and valuable | 
part of the expert-systems development. (This systematic reorganization of 
what is known can lead, e.g., to new insights into the structure of the domain 
or to new ideas about how to teach it.) j 

In a domain like medicine.(and unlike symbolic integration) where the , 
nature of the problem is not sufficiently understood to completely specify 
the search space, large amounts of domain-specific knowledge have to be I 
represented and reasoned with. Thus, while heuristic-search management 
is still a major concern in the construction of any expert system, efficient 
implementation and automated maintenance of large knowledge bases must 
also be addressed. A particularly important design issue is devising effective 
means for acquiring such large amounts of knowledge from the human experts, 
who insist on "talking about" what they do rather than "dumping" what they ' 
know, as computers do. 

The issue of acquiring knowledge from human experts is now seen as a -
part of the general problem of transfer of expertise. Since humans are both 
the source and the eventual users of expertise, current concerns in expert-
systems design center on considerations of how humans talk about what they 
know. For an expert system to be truly useful, it should be able to learn what 
human experts know, so that it can perform as well as they do, understand 
the points of departure among the views of human experts who disagree, keep 
its knowledge up to date as human experts do (by reading, asking questions, 
and learning from experience), and present its reasoning to its human users 
in much the way that human experts would (justifying, clarifying, explaining-
and even tutoring). These issues in the transfer of expertise can be seen as 
microcosm of many of the central concerns of Artificial Intelligence. 

Representing Expertise 

Specialists are distinguished from laymen and general practitioners i" * 
technical domain by their vast task-specific knowledge, acquired from theif 
training, their subsequent readings, and especially their experience of rti& ŷ 
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J Qf cases in the course of their practice. Whether car mechamcs or 
'""' eeoris, experts can solve prpbletiis that, pthers eannpt, becausethey 
neL'''° . g jf^at rionexperts do not. Sometimes this knowledge is in the for rn 
kf ° .c„ facts about the d&main that have, over the years, been cornmitted to 
° V and sometimes the.expertise appears as hunches, "educ;ated guesses" 
"'^ i the way to proceed in problem solving.-

B nresenting and usirig the various types of knowledge that characterize 
tise constitiate one principal focus of expert-sys tems research. Among 

^̂  things that might be useful for«an expert system to know about are: 

1 Facts about the domain: "The shin bone is connected to the ankle bone" 
or more typical of hunian experts, "The; automatic choke; on '77 Chevys 
often g'ets stucklon cold mornings"; 

2 Hard-and-fast rules or procedures: "Always unplug the set before you 
stick a screwdriver into the. ba:tk"; 

3 Problem situations and what might be good things to try, to do when 
you are in them (heuristics): -'[f it won't start but you are ;getting a 
spark, check the fuel line"; 

4. Globahatrategies: differentia,! diagnosis; 

5, A "theory" of the domain: a tausal explanation of how an ihternal-
combustibn engine works. 

All of the knowledge-representation schemes described in Chapter lii (in Vol l) 
have been used in expert'systems; in fact, much original work pn= knowledge, 
representation has been done in the; context of expert-systems design. 

Note that much of the' knowledge that characterizes hOfnan expertise is 
hunchlike, in the sense that it does not constitute defiriite consequences of 
actions or certainty df conclusions. Reasoning with svr'ch knowledge has been 
the key idea that made expert systems possible and constitutes the main 
prisblem in developing their power fiirther. In particular, inexact reasoning, 
using huriches or ke-uristics to guide and fpctis what would otherwise be a 
search of an Impossibly large sp.ace^ (see Articles; n.C3 and II.C4, in Vol. 1), 
has resulted in systems with human-level problem-solving, abilitieŝ ,̂ Indeed, 
these systems .have at "times proved superior to the. human experts, primarily 
because they consider a much larger set- of possible soliitioris (as much as 
several orders of magnitude larger) and do not ifiiss unlikely or unexpected 
possibilities, once these have been-noted as worthy of consideration by the 
expert who biiilt the knowledge base. 

Transfer of Exfjertise 

Solving real-world problems at human-expert levels of perforrnance is only 
the beginning of expert-systems design. Most of the;applica,tion3 systems 
described in this chapter can be viewed as consultants that formulate opinions 
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and give advice to their users. The tasks these consultants are designed 
to perform require the application of facts and relationships known only by 
specialists. The current systems emphasize the cognitive abilities that support 
interaction with the user during problem solving, such as the ability to explain 
lines of reasoning or to acquire new domain knowledge interactively. 

Typically, such a system will be considered "intelligent" if it meets the 
following criteria: (a) The system gives correct answers or useful advice, 
and (b) the concepts and reasoning processes it uses to solve the problem 
resemble those that the user might employ. This last concern has led to the 
design of systems that can explain their reasoning about a case, maintain 
a focused dialogue with a user when pursuing relevant facts and inferences 
about his (or her) case, and employ knowledge at the conceptual level of 
the user when solving and explaining both the problem and the system's 
solution. Successfully addressing these primarily human-engineering concerns 
has required many advances in Al. These abilities and developments arc 
detailed for each system in the following articles (see especially Article XHI.B). 

Explanatiori and the opacity of knowledge. As mentioned pre
viously, a major de.sign issue for some of these systems, for the consultants 
in particular, is whether the system needs to explain its reasoning to a user. 
This capability is implemented primarily to convince users that the system's 
reasoning is appropriate and that its conclusions about a case are reasonable. 

Sometimes the problem-solving expertise of the system is in a form that 
is not at all similar to the expertise that a human expert would apply 'e 
obtain the solution. For example, in the case of the DENDRAL programs, the 
generator of chemical-structure candidates employs a procedure for exhaus
tively producing possible structures based on various graph-theoretic notions 
that organic chemists who use the system are unlikely to know or care about. 
Thus, a major portion of the DENDRAL expertise resides in a procedure that is 
conceptually opaque to the typical user. The generator was developed because 
it was discovered that the method used by chemists to find solutions for these 
problems is, in fact, incomplete, while the method used by the DENDR.*^ 
program has been mathematically proved to be complete. A similar situation 
exists in the MACS"'i'MA system, which uses the Risch algorithm for evalua'' 
ing various types of integrals. While mathematically correct, the algorithm' 
is rarely employed by human mathematicians because of its complexity. Tn^ 
correctness and continuing succe-ss of these programs serve as their prima'".̂  
form of explanation: The user community is thereby convinced that the p̂ ""' 
forming system is both acceptable and usable. 

In contrast, consultation systems like Ivn'CIN and PROSPECTOR hav^ 
been designed to represent and explain the reasoning process of the syste" 
in a manner that is understandable to the knowledgeable user. These sV-
tems require a representational formalism capable of supporting the reaso" 
ing and explanation abilities that would closely approximate the concepts 
framework of the expert and the user. Since most of these scientific a" 
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A mains have a well-defined set of concepts that their practitioners 
lec^^ ..,. „tiy. the systems' designers have capitalized on this consistency 
ii?e '^°^^ Josiffned the programs to accept and reason with knowledge using 

A \i'y>'̂  aesJB 

ihe^e c ^^^^ ^ system has an explanation facility, the system designer 
• , gp issue: Should the system reason and apply the expertise in 

'̂ "'̂ ^̂  * r that resembles the methods of human experts? In MYCIN, for 
., nia" claim is made by the designers that the simple backward-chaining 
,..>:ainP ' g^^odology has any resemblance to the methods actually employed 
^'^^ an physicians in diagnosing infectious diseases. Although the medical 
1'.̂ ' amp^oyed by the system are familiar to most physicians, the method 
'""^ r rrine the infections and causal organisms, while understandable by 

'-• ans bears little resemblance to their normal diagnostic reasoning. By 
st the PIP and INTERNIST systems emphasize the similarities of their 

'̂ I'̂ .'lnostic procedures to those of physicians. 
' ' "^Knowledge acquisition. During the development of the knowledge 

experts are unlikely to present all of the relevant facts and relationships 
pvpert performance in the domain. Being human, experts tend to forget 

simplify details about their knowledge, requiring the system to augment 
• knowledge at a later time. Since the knowledge imparted to the system 

< largely empirical and the domains are themselves developing rapidly, it is 
ce<sary for the system to make these changes easily and in an incremental ov 

lodular fashion. Thus, most of the recent applications systems have empha
sized representation schemes that allow for the incremental construction of 
,hc knowledge base. 

Most researchers have approached incremental construction by means of 
production-rule knowledge representation. Each rule, and rule set, represents 
•1 "chunk" of domain expertise that is communicable to the user and that can 
be added to or deleted from the system's knowledge base with relatively con-
.<irained changes in the system's behavior (see Article ni.C4 and the discussion 
of modularity in knowledge representation in Article III.A, in Vol. l). Thus, the 
.system can be improved by modifying the knowledge base with new rule sets 
that deal with new subdomains. Furthermore, the production-rule formalism 
can directly accommodate the knowledge of the domain experts in the form 
that they most often communicate it—for example, "In this situation I suspect 
this problem and perform these tests." 

The Status of Applications Research 

The major domains of expertise that have been developed as applica
tions systems include the diagnosis and treatment of various diseases (see 
Chap, VIII), the design of computer assistants for both the analytic and the 
synthetic aspects of organic chemistry (Sec. Vll.C), interactive tutoring systems 
in education (Chap. DC), and assistants for performing advanced mathematics 
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(Article \11.Di). .A number of other notable applications have been developed, 
including applicat,ions of AI to database information-retrieval problems (see 
Article V11.D4) and a geological prospecting assistant (Arlicle VII.D3). 

.A.mong the rapidly growing host of applications-oriented systems are 
SACON, a system for advising structural engineers in the use of a large, 
finite-element analy.sis program for modeling various mechanical structures 
(Bennett el al., 1978); PUFF, a .system for diagnosing a patient with pulmonary 
dysfunctions (Feigenbaum, 1977); and HE/VDMED, a system for diagnosing { 
and treating psychiatric patients (Heiser, Brooks, and Ballard, 1978). More 
receni are McDormott's (1981) Rl experi on computer-system configurations 
and Stefik's (1980) work on an aid in designing experiments in molecular 
genetics (see aLso Arlicle XV.D2, in Vol. Ill, on MOLGEN). Current research ' 
in this area includes extensions of the expert-system paradigm to computer-
based assistants for computer-system failure diagnosis, aids for Vl̂ Sf circuit 
design, more sophisticated database-query sysiems, and sysiems that can act ^ 
as tutors in their area.s of expertise (see Arlicle IX.C6). 

One imporiant development in current research on expert systems is ; 
the emergence in receni years of "experl-syslems-building" sysiems, which | 
facilitate the consl,ruclion of expert .systems in any domain. For example, the • 
EN-n'CIN .system (van Melle, 1980) consists of the basic control structure of 
M\'CIN, but wilh ND'CIN's infectious-disease knowledge base removed. With , 
another knowledge base substituted in the same production-rule formal as 
MYCIN'S, this "Empty M^'CIN" sysiem retains the capability of interacting 
wilh the user during a case', lo explain its reasoning, and lo answer questions 
aboul a case in the new domain. EM^'CIN has been used successfully to 
develop the applications in the treatment of pulmonary dysfunction, in struc
tural analysis, and in the psychiatric diagnosis menlioned eariier. Several '. 
other expert-syslems-building sysiems are being developed, including IR'' 
(see Arlicle VII1.B6), AGE (Nii and Aiello, 1979), OPS (Forgy and McDermott. 
1977), and ROSIE (Fain et al., 1981; Hayes-Roth el al., 1981). Sysiems such 
as these, which attempi lo facilitate the construclion of experi sysiems, are 
an imporiani area of current research. 

Another primary research activity in the near future will be the develop" 
ment of belter facilities for acquiring the domain concepts and the empiriea 
knowledge thai experi sysiems must have. Feigenbaum (1977) suggests tha 
the painful proceiss of knowledge engineering, which involves domain exper^^ 
and compuier scientists working together to design and construct the doma'" 
knowledge ba.se, is the principal bottleneck in the developmenl of expert syS' 
tems. Efficient interfaces for acquiring this domain-specific knowledge, alone 
the interactive transfer-of-experlise lines explored in TEIRESIAS (Article Vl''^' 
or the automatic theory-formation methods used by the Meta-DENDRAL sy^ 
tem (Article \^I.C2c), need to be developed before significantly larger exp^ 
systems can be constructed. 

file:///11.Di
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niissiiig from .„ ._ . ^».MiiJie of TEIRESIAS's use of rule 
models 
below. 

missing rrom .„ — wKu,MiiJie oi iniintioiAo s use or rule 
models in its knowledge-acquisition dialogue is given in tKef.sample .,protocpl 
l-k*a I tvi xr 

,Meta'rules and Perforrhahce Strategies 

In performance prpgrams with sufficiently small knowledge bases (like-
MYCIN'S), exhaustive invocation of the relevant parts of the knowiedge base 
dijring, a cpns.ultatjbti is still, computationally feasible. However, with the 
inevitable coristruction df larger knowledge bases, exhaustive, in vocation will 
become unrealistic. In anticipation of this, meta-rules are im'plemeiited in 
TEIRESIAS as a means of encoding, strategies that can direct the program's 
actions more selectively than exhaustive invocation can. THe following, meta
rule is from Ivfi'CIN's infectiousf disease domain: 

META-RULE 001 
IF CD thte inf ection^ is a pelvic^abscess, aad 

(2) there are rules that mention in their 
premiee Eiiterobacteriaceae, and 

(3) there are rules that mention in their 
premise gram positive rods, 

TffEN There is suggestiv.e evidence, (.4) that the rules 
dealing wit^ Enterobacteriaceae should be evoked 
before those deal'iiig with gram positive rods. 

This rijle suggests that, since enterobacteria are commonly associated wit'i 
a pelvic abscess, it is, a good idea to try rules about thern first, before'the 
less likely rules mentioning gram positive rod^. Note that this fneta-rule does 
not refer to specific object-level rules. Instead, it specifies certain attributes 
of the rules! it- refers to, for example, that they rnention in their premise' 
En t eroba c ler i aceae. 

An. Example: TEIRESIAS in the. Context of MYCIN 

We, now illustrate TEIRESIAS's operation in affiliation with the MY'C^^ 
system (see Article VIII.Br), paying parfcicular-attention to the explanation ano 
kn,ow ledge-acquisition facilities of TEIRESIAS. M^'CIN isintende.d to provide 
a physician with advice aboirt the diagnosis and drug therapy for bacteria' 
infectioris. The=user interacts with TEIRESIAS, which in turn corrimu'nieates 
with the MYCIN system, atth.Qugh the user is unaware" of more than one ptO' 
gram beiirg involved. The system, asks questioris about" the patient, the infe*̂ ' 
tion, the cultures grown from speciiirtens frdtri the patierit, and any organising 
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0 
. growing in the culture. (Typically, of course, the exact identity of 

(•"""'^lanism '̂  n°* ŷ *" known.) 
,f,e org [knowledge base is composed of rules that specify a situation 

• . information about the patient, culture, and organism) and the 
(in '̂oiv ^^^^ ^^^ ĵ g drawn in that situation. For example, to conclude 
fonc'" natient suffers from a bacterium in the Enterobacteriaceae category. 

IF 

srt 
RULE 095 

The s i te of the culture is blood, and 
the gram stain is positive, and 
the portal of entry is. gastrointestinal t ract , and 
[A-the abdomen is the locus of Infection, or 
B-the pelvis is the locus of infection] 

T}f£H There is strongly suggestive evidence that 
Enterobacteriaceae is the class of organisms 
for which therapy should cover. 

r»ClN asks questions of the physician to determine which rules are applicable 
• the current case—that is, to determine the "situation." To determine if the 

eanism is of type Enterobacteriaceae, MYCIN would inquire whether each 
•lause in the IF-part of rule 95 were true. 

The procedure of working backward from the conclusion to the situa-
ijon that would make the conclusion true is called back-ward chaining and 
is .vrV'CIN's fundamental reasoning mechanism. Backward chaining can go 
several levels deep, meaning that the clauses in a situation that must be true 
(for the conclusion to be true) might themselves be conclusions of other rules. 
For example, a condition on the identification of Enterobacteriaceae is that 
the infection be localized in the abdomen or the pelvis; but this condition is 
itself a conclusion, and it is only true if its conditions (that the culture from 
these places is recent and is therapeutically significant) are true. Furthermore, 
the condition of therapeutic significance has its own conditions, and so on. 
Here is a protocol showing MYCIN'S basic style of interaction (the physician's 
responses are prefixed by *•): 

-Patient 281-

1) Patient's name: 

•• Albert Hall 

2) Sex: 

•• Male 
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3) Age: 

*• 34 

4) Have you been able to obtain positive microbiological ; 
information about a possible infection of Albert Hall? ' 

t 

** .Yes 

• Infection 1 -

5) What is the infection? 

** Priaary-Bacteremia 

6) Please state when signa and symptoros of infection-1 
first appeared,: 

*• 15-Dec-80 12;00 

Culture 1 

7) From what site was the specimen for culture-1 taken? 

** Blood 

B) Please give the date .and. time when this blood culture was-
obtained-: 

** 16-Dec-8.0 12:00 

The first significant organism from this blood culture will be 
referred to as: 

Dr gani s m-1 

9) Enter the identity of organiBm-l 

*••• Unknown; 

10) Is orgahism-l a rod, or coccus (etc.): 

• »' Rod 

11) The gram-stain, of .organism-1 :• 

** Gram negative 

12) Did organistn-1 grow In the'aerobic bottle? 

.** Yes 

13) Did organism-l grow in the anaerobic bottle? 

'** Yes 
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rapT recommendations will be based on tKe following 
h ble infection(s) and potential causative organismCs): 

ECTJON'l is PRIMARY-BACTEREMIA, 
^''^<IteB-l> E.CDLI [ORGANISM-1] 

<It8m-2> PSEtJDOMONAS-AERUGINOSA [ORGANISM-1] 

IvlYCIN constructs,a goal tree {see Article n.B2, in Vol, l) of iquestions 
'"̂  ̂  ust be resolved in the course of the consultation to conclude the.idehtity 

h cterium. When'it caririot resolve ,a question by inference 'from what it-
fiv fcnowS) itasks the respoiident to provide an answer. Each node of the 

' I trpe Has subnodes that result from the-application of a rule, aa shown in goal tree , , , 

figure B-L 
g3£pianation: HOW and WHY. S.uppose that during a cdnsultatibn 

. r \{VCIN the clinician wa.nts arr explanation of the-reasoning' behind some 
stion th.at MYCIN has asked. The explanation' given by TEIRESIAS in 

'̂  .̂ oonse .to-the physician's question, WHY, involves backing rrp the goal tree 
"jLg previous.nodesand' presenting the rule used tg derive the-subnode from 

t- ancestor. (Again, 4he physician's responses .are prefixed by **.) 

Enterobacteriaceae 

Ruie.095 

Site,= Gram= .Portal =- Locus = 
Blood Positive G. 1. Tract, Abdomen or 

Pelvis 

Rule 021 

Recent Culture TherapeutJcally 
Significant 

Rule 054 

.Sterile Significant Non-
Method of- Number of sterile 
Collection Organisms Site 

Figure B-1, A MYCIN,goaJ tree. 
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Fih'l, MYGIN's queation: 

Itfhat i e the suspected p o r t a l of entry of organism-l into, t t i e 
s t e r i l e s i t e 7 

Tki physifiaTi reQuests an., explanation, 

** WHY 

Then TEJRESlAS •proceeds lo explain it's '-Teaaoning." 

[ I : e . , why i s i t important to determine the. suspected po r t a l 
of entry of organism-l irito t h i s s t e r i l e s i t e ? ] 

[3,0] . . . In order to find out about an.organism,or cTase of 
organisms for which therapy should, cover. 

I t i has already been es tab l i shed t h a t 
I [3,1] The s i t e of the cu l ture i s blood 

[3.2] The s t a in of the drganism i s gram pos i t i ve 

Therefore i f : 
[3.3] The p o r t a l of entry of the organism ie G.I. 
[3,4] [Abdomen i s the ' locirs of in fec t ion : or 

Pelvis i s the locus, of infec t ion] 

Then 
There ie strongly suggestive evidence (-.9) that 

Enterobacteriaceae ie the class of organisms 

for which therapy should cover. 

[Rule 095] 

In contrast to WHY, which speJls out ''higher" nodes in the goal tree, the HÔ ^ 
cornmand asks TEIRESL\S. to.explain the nodes lower*down the' tree t ha t havf 
been or will be expanded. For example, in t h e following exchange, the exper' 
asks how N'H'CIN will determine w h e t h e r the: abdomen or the pelvis, is *''*' 
locus pf infection: 

** HDW .[3-.4] 

Note: [&.4j'î  thejprefixyof ihe;statementpf interest in the exchange abbve. 

[ I . e . , how were you determining t h a t the Abdomen i e the locus 
of infectilori, or t h a t the Pelvis i s the locus of inf ect ion?] 

[4.0] At; tha t point Rule 021 was being.used. 

If the doctor now wants tp see rtile; 21, he asks TEIRESIAS to explain HO__ 
i t was iUsec 
mentioned: 
i t was .used, referring to thes prefix [4.0J of the Stateme.nt in which i*-. ^ 

J 
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f B 
. . HOW [4-0] 
rr <i how was Rule 021 used?] [I.e.. 

t fc 0] It ^^^ already been established that 

[5.1] the culture is recent. 

Therefore if: 
[5.2] There is therapeutically significant disease 

associated with the occurrence of this organism 

then 
I t is definite (1.0) that the s i te of the culture 
is the locus of infection in the patient. 

The explanation facilities of TEIRESIAS involve climbing up and down 
lYCIN's goal tree, explaining why questions are asked and how they are 
nvered. If MYCIN makes a misdiagnosis, these same facilities are used to 

I ck up through the rules that achieved the diagnosis until the expert has 
f lind the faulty one or determined that one is missing. TEIRESIAS is then 
sed to expedite the alteration or construction of rules by the expert. (See 

.wticle IX.C8 for a discussion of how a similar explanation facility is used in 
[he tutorial system EXCHECK.) 

Knowiedge acquisition. TEIRESIAS can help an expert formulate rules 
in English because it has expectations about what rules "look like." These 
expectations are stored internally as rule models that are formed aulomati-
callv by examining all the rules in the knowledge base. TEIRESIAS knows, for 
cvample, that there is a class.of rules that have as their conclusions the prob
able identity of a bacterium and that these rules typically have as conditions 
(a) the site of the culture, (b) the stain of the culture, and (c) the probable 
portal of enlry of the bacteria. These rule models help TEIRESIAS translate 
Lnglish versions of new rules into a machine representation acceptable lo 

[ .\n'CiN. 
To illustrate TEIRESL\S's debugging and correction facilities, we will con

tinue with the consultation shown earlier. Suppose lhat after MYCIN presents 
the expert with its diagnosis, TEIRESIAS steps in and checks whether the 
expert agrees (the physician's response is indicated by **): 

My therapy recommendation will be based on the following 
probable Infection(s) and potential causative organism(s): 

INFECTION-1 is PRIMARY BACTEREMIA 
<Item-l> E.COLI [ORGANISM-1] 

V <Item-2> PSEUDOMONAS-AERUGINOSA [ORGANISM-1] 
s 

Now TEIRESIAS steps in. 
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Are a l l these i d e n t i t i e s cor rec t? 

»* No. 

Are there any identities missing? 

** Yes. 

Which ones? 

** KLEBSIELLA-PNEUMONIAE, PROTEUS-NON-MIRABILIS 

Are there any identities which shouldn't have appeared? 

** Yes. 

Which one(s)? 

** PSUEDOMONAS-AERUGINOSA 

Do you want to 
1] track down the problem yourself, or 
2] allow me to guide the debugging, or 
3] ignore it for now and fix it another time. 

Type 1, 2, or 3. 

** 2. 

// the expert had typed 1, he would have used the HOW and IW/y com
mands to debug the problem, as discussed above. 

We'll s t a r t with PSEUDOMONAS-AERUGINOSA f i r s t : 

TEIRESIAS starts debugging by tr-ying to find out why an inappropriate 
diagnosis occurred. Frequently, solving one problem will make others "go 
away" as well. 

The following ru le s were used in deducing t h a t the i d e n t i t y of 
organism-l i s PSEUDOMONAS-AERUGINOSA: 

RULE 184 
Since 

[1.1] The category of organism-l i s not known 
[1.2] The gram s t a i n of organism-l i s gram negative 
[1.3] The morphology of organism-l i s rod 
[1.4] the ae rob ic i ty of organism-l i s f a c u l t a t i v e 

There i s weakly suggestive evidence (.3) t h a t the i d e n t i t y 
of organism-l i s PSEUDOMONAS-AERUGINOSA. 

Is t h i s ru le cor rec t? 

Note that this rule, which resulted in the wrong conclusion, is not neces
sarily an incorrect rule. It might be (and in fact is) the case that it was 
incorrectly invoked becauae one or more of its conditions are true when 
they should be false. 
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. j*g premise have f a i l ed for t h i s case? 
Sboul" 

. . Yes. 
clause of the premise should have failed? 

,, Clause 1. 

The expert believes that MYCIN should have kno-wn the category of 

ORGANISM-I. MYCIN failed to establish the category, ca-using rule 184 

to be used. 

uld i t have been poss ib le t o conclude a category? 

. . Yes. 

(Hiich one? 

,* Enterobacteriaceae. 

There were no rules successfully invoked in the attempt to 
deduce that the category of organism-l is Enterobacteriaceae. 

Xlie following (potentially applicable) rules were NOT executed 
because the marked [++] clause failed: 

RULE 116 
If 
1) The identity of organism-l is not ksown 

** 2) The gram stain of organism-l is not known 
3) The morphology of organism-l is not known 
4) The site of culture-1 is CSF 
5) The infection is meningitis 
6) The age of Albert Hall is less than or 

equal to 2 months 

Then there is weakly suggestive evidence (.33) that the 
category of organism-l is Enterobacteriaceae 

RULE 050 
If 
1) The morphology of organism-l is rod 
2) The gram stain of organism-l is gramneg 
3) The aerobicity of organism-l is facul 

++ 4) The infection with organism-l was acquired 
while the patient was hospitalized 

Then there is suggestive evidence (.7) that the category of 
organism-l is Enterobacteriaceae. 

Are all these rules correct? 

•* Yes. 
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Should any of them have been successful ly invoked? 

** No. 

This would be the case if one of the marked premises was false because it 
was "stepped on" by yet another rule farther back in the chain. 

Is there a rule missing? 

* * Yes. 

Would you like to give me such a rule now? 

*• Yes. 

Good ... 

The expert then proposes another rule to TEIRESIAS: 

If: . • 
1 ** THE PATIENT'S INFECTION IS PRIMARY-BACTEREMIA 
2 •* THE SITE IS ONE OF THE STERILE SITES 

Then: 
•* THERE IS EVIDENCE (.8) THAT THE CATEGORY IS 

ENTEROBACTERIACEAE 

TEIRESIAS parses this rule into its internal representation and then 
translates it back into English, so that the expert can check it. We pick 
up the dialogue after the expert has agreed on the parse. TEIRESIAS is 
applying its rule model. 

I hate to criticize, Dr. Davis, but did you know that most 
rules about what the category of an organism might be, 
that mention 

the site of a culture 
the infection 

Also mention -

[A] the portal of entry of the organism 

Shall I try to write a clause to account for [A]? 

** Yes. 

Here we see one of the utilities of the rule model. TEIRESIAS prompts 
the expert to add a bit of knowledge that is typiccdty found in rules like 
these and offers to fix the rule itself This completion is accomplished by 
looking at other rules that fit the same rule model, to find the most likely 
portal-of-entry clause. 

How about -
[A] The portal of entry is gastrointestinal. OK? 

*• Yes. 
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cjAg then does some finishing up: checking the complete rule with the 
TEI" J, fjpal approval and asking the expert to write a brief descripiion 
^^^^h okkeeping purposes) of why the rule was needed. Finally, it runs the 
^̂ '̂ ^ iffttion again internally, using the responses from the early part of the 
con̂  which it has stored. It turns out that adding the rule above did, in 
jiaios 'f,f̂  the other problems with the first consultation, and this time the 
'̂ '̂̂  ' ^ck is satisfactory lo the expert, 
cliagn^ '̂̂  

-„. TEIRESIAS and Expert Systems 

TEIRESIAS aids a human expert in monitoring the performance of a 
•ledge-based system. When the human expert spots an error in the 
ram's performance, in either the program's conclusions or its line of 

'' „nine TEIRESLAS assists in finding the .source of the error in the database 
.rnlaining the program's conclusions—retracing the reasoning steps until 

• faulty (or missing) rule is identified. Al this point, TEIRESIAS assists 
• knowledge acquisition, modifying faulty rules or adding new rules to the 
r tabase. Meta-level knowledge about the kinds of rules and concepts in 
(P database is applied to build expectations in TEIRESIAS's model-based 
iderstanding process. Meta-level knowledge is also used to encode problem-
living strategies, in particular, to order the invocation of rules so that those 

that are mosl likely to be useful (given the current knowledge of the program) 
are tried first. 

References 

The principal reference on TEIRESIAS is the doctoral dissertation by 
Davis (1976). Applications of meta-knowledge in expert systems are discussed 
in Davis and Buchanan (1977). See also Davis (1977, 1978, 1980). 



D3. PROSPECTOR 

P F C T O R (Duda et al., 1978) is a computer-based consultation system 
P^ . Vjging developed at SRI International to assist geologists working on 

problems in "hard-rock" mineral exploration. Like other expert sys-
'^^'^'^'"uch as MYCIN (see Article Vin.Bi) and INTERNIST (Article vm.BS), 
' ^ " O S P E C T O R attempts to represent a significant portion of the knowledge 

A the reasoning processes of experts working ih a specialized domain. The 

inte 

h»l 

Jed user of this program is an exploration geologist who is in the early 
'̂ ^^ Q{ investigating an exploration site, or "prospect." We assume that he 
', che) has a professional understanding of geology but, nonetheless, wants 
h assistance of a specialist in evaluating the findings. 

In an attempt to keep the PROSPECTOR system domain-independent, a 
r separation is maintained between the geological knowledge base and the 

chanisms that employ this knowledge (although characteristics of the prob-
domain have certainly influenced the. design of the system). Expressed 

bstractly, the main function of PROSPECTOR is to match data from a par-
tcular situation against models that describe a moderately large number of 
lisioint classes of situations. In PROSPECTOR'S domain, the models are for
mal descriptions of the most important types of ore deposits, and the data are 
orimarily surface geological observations. The available data are assumed to 
be uncertain and incomplete, so that the conclusion is expressed as a probabil-
itv or a degree of match. In addition, the program alerts the user to different 
possible interpretations of the data and identifies additional observations that 
would be most valuable for reaching a more definite conclusion. 

A typical consultation session with PROSPECTOR begins with the user 
giving the system the information about the most significant features of his 
prospect: the major rock types, minerals, and alteration products. The 
program matches these observations against its models and, when the user 
has finished volunteering information, proceeds to ask the user for additional 
information that will help confirm, the best matching model. At any time 
during the consultation, the user can interrupt to volunteer new information, 
change previous statements, or request an evaluation. 

The following edited excerpt from a PROSPECTOR session illustrates 
many of these ideas. The data for the run describe a fictitious porphyry copper 
deposit that has some, but not all, of the desired characteristics. We begin at 
the point where the user (indicated by **) starts volunteering information to 
the system. 

•* There is quartz monzonite 

Quartz monzonite (5) 

155 
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** There is a cretaceous dike 

Cretaceous dike (5) 

•* There is sericite and pyrite 

Sericite (5) pyrite (5) 

•• There may be biotite 

Biotite (2) 

•* Done 

These simple assertions describe the most prominent rocks, minerals, and 
alteration products in the target area. The system indicates its recognition 
of each statement by echoing the statement and appending an assigned 
certainty. Certainty factors range from —5 (positive that a situation 
does not hold) to 5 (positive that it does hold). All assertions made 
by PROSPECTOR have associated certainty factors. The program now 
enters the consequent mode of reasoning. 

Present ly , the models in PROSPECTOR and t h e i r scores a r e : 
1. Komatii t ic n ickel su l f ide deposi t ~ KNSD (0.0) 
2. Type-A porphyry copper deposi t — PCDA (0.0) 

• • cu r r en t hypothesis** 
3. Kuroko-type massive su l f ide deposi t — MSD (.001999) 
4. Western-s ta tes- type sandstone uranium deposi t — WSSU (0.0) 
5. Miss iss ippi-Val ley- type lead /z inc deposi t — MVTD (-4.8) 

Which of the above would you l i k e to ru le out? 

• • None 

The volunteered information was sufficient to rule out one of the models 
but was not nearly specific enough to establish any of the others. The 
choice of the second model as the current hypothesis was based not on 
its certainty but on the number and types of connections between it and 
the volunteered statements. To avoid a possibly fruitless investigation of 
unpromising models, the system gives the user the opportunity to exclude 
models of lesser interest. In this case, the -user allows all of the models 
to be explored, and the system begins with the current hypothesis. 

I am considering the p o s s i b i l i t y of a 
( Type-A porphyry copper deposi t — PCDA ) 
in the t a r g e t a rea . 

The following questions are intended to e s t a b l i s h the nature 
of the pe t ro t ec ton ic s e t t i n g . 

1—To what degree do you bel ieve t h a t : 
( the t a r g e t area i s in a cont inenta l margin mobile b e l t ) ? 

»• -2 



PROSPECTOR 157 
P3 

TViW w " discouraging answer for the PCDA model, and it removes a 
context needed for the investigation of other properties ofthe continenttil-
margin mobile belt. 

f g \ \ o i t i t i g questions are intended to determine the nature 
the regional environment. 

»g vfhat degree do you believe that: 
there are granitic intrusives in the region ) ? 

,* 5 

.j-g vrhat degree do you believe that: 
( the region contains an abundance of small stocks ) ? 

.. -3 

g To what degree do you believe that: 
( igneous rocks in the region have porphyritic texture ) ? 

.• Why 

I am t ry ing to e s t a b l i s h whether some of the i n t ru s ive rocks in 
your area have t ex tu re s suggestive of a hypabyssal to subvolcanic 
environment. Porphyry t ex tu re s r e s u l t i n g from the rapid cooling 
and c r y s t a l l i z a t i o n of a s i l i c a t e melt which contains la rge 
mineral g ra ins are suggestive of r e l a t i v e l y shallow l eve l s 
of emplacement. 

Like MYCIN, PROSPECTOR provides a variety of commands for such 
things as requesting a summary, changing pretdous answers, or volun
teering additional information. The above response to a WHY command 
ia not automatically generated from the rule but is merely stored text 
associated urith the space. 

8 To what degree do you bel ieve t h a t : 
( igneous rocks in the region have porphyr i t i c t ex tu re ) ? 

• • 5 

My certainty in ( the texture and morphology of the intrusive 
system suggest a subvolcanic (hypabyssal) regional environment ) 
is now: 4.924 

Do you want to pursue this further? 

»• No 

At this point the system noted that the certainty for the hypothesis about 
a hypabysscd environment was above 4.5, and it also noted that if the 
remaining rules were answered in the most unfavorable way possible, the 
certainty could not fall below 4-5. To save time, it let the user decide 
whether or not to continue working on this subgoal. 
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The questioning continues as above until it becomes necessary to consider 
properties that vary within the target area. Thus, for the first time it 
becomes necessary to be able to use the rules more than once, and a 
communication convention must be established to distinguish different 
spatiiU locations. 

Porphyry copper deposi ts are often composed of c h a r a c t e r i s t i c 
zones of a l t e r a t i o n and minera l iza t ion . (In some cases these 
can be looked upon as d i f f e r en t s tages superimposed upon one 
another . ) I s h a l l c a l l the most prominent such zone Zone 1. 
Even though you may have already i den t i f i ed t h i s zone a s , say. 
the p r o p y l i t i c zone or the s e r i c i t i c zone, I need to consider 
other p o s s i b i l i t i e s as wel l . Thus, the following quest ions 
are intended to determine the p o s s i b i l i t i e s for Zone 1. 

25—To what degree do you bel ieve t h a t : 
( the re are fresh-looking fe ldspars in Zone 1 ) ? 

»• -5 

Questioning continues in this manner. Eventually, PROSPECTOR estab
lishes that two zones exist in the region of interest and, after examin
ing each in detail, it concludes ihai their geologic makeup supports the 
hypothesis that Type-A porphyry copper exists in the region. . 

On a scale from -5 to 5, my ce r t a in ty t h a t ( the re are a l t e r a t i on 
zones t ha t are favorable for a Type-A porphyry copper deposi t ) 
i s now 4.833 

There are two favorable f ac to r s ; in order of importance: 
2 . 3 . 1 : 1. the re i s a s e r i c i t i c zone in Zone 1 (4.834) 

•+ e s t a b l i s h e s 2 .3 .1 ++ 
2 . 3 . 1 : 2. the re ie a po tass ic zone in Zone 2 (4.499) 

There are many fac to r s t h a t would have been unfavorable bad no 
favorable fac tor ex is ted t o overr ide them; in order of importance. 

there i s a barren-core zone in Zone 1 (-5.0) 
there i s a po tas s i c zone in Zone 1 (-5.0) 
there i s a p r o p y l i t i c zone in Zone 1 (-5.0) 
there i s a s e r i c i t i c zone in Zone 2 (-5.0) 
there i s a p r o p y l i t i c zone in Zone 2 (-4.989) 

there i s a barren-core zone in Zone 2 (-4.495) 

For which of the above do you wish to see addi t iona l informatio'»-

2 . 3 . 1 : 
2 . 3 . 1 : 
2 . 3 . 1 : 
2 . 3 . 1 : 
2 . 3 . 1 : 
2 . 3 . 1 : 

3 
4 
5 
6 
7 
8 

Knotvledge Representation 

^bodie<' 
The da la s t ructure for representing the geological knowledge eme 

in PROSPECTOR is called the inference network and guides the pla"^' ^̂  
reasoning performed by the system. The nodes in this network ^orrespo" ^̂  
various assertions, such as There is pervasively biotized hornblende or -' 
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. favorable for the potassic zone of a porphyry copper deposit. In 
is fl''^!^ 1 p run, any assertion may be known to be true, known to be false, 
9 pa""" .g(j to be true with some probability. 
°' ^^"l' of the arcs in the inference network define inference rules that specify 

• probability of one assertion affects the probability of another asser-
hô *' example, the presence of pervasively biotized hornblende suggests 
''"" tassic zone of a porphyry copper deposit, and the absence of any biotized 
(he P Jg jg yery discouraging for that conclusion. These inference rules cor-
hof" , ^^ |̂.,e production rules used in MYCIN. The remaining arcs indicate 
'^'^ n assertion is the context for another assertion, preventing conclusions 

being drawn until the right contexts are established. For example, one 
id establish that hornblende has been altered to biotite before asking 

'I'oui the degree of alteration. 
' The primary task confronting a geologist who wants to prepare a new 

, J j-Qf PROSPECTOR is the representation of his model as an inference net-
" u The current system contains models of five different types of deposits, 

•eloped in cooperation with five different consulting geologists. The statis-
• * in Table D3-1 give a rough indication of the size and complexity of these 

models. 
To allow certain kinds of logical reasoning by the system, each assertion is 

ruresented as a space in a partitioned semantic network (see Article III.03, in 
, • I i) A typical space asserts the hypothetical existence of physical entities 
having specific properties (such as being composed of biotite) and participating 
in specific relations (such as an alteration relation). In addition, a large 

I la-vonomic network describes important element-subset relations among the 
terms mentioned, such as the fact that biotite is a mica, which in turn' is a 
silicate, which in turn is a mineral. 

The articulation of assertions as a set of relations allows the system to 
recognize subset-superset connections between pairs of assertions. For exam
ple, the assertion There is pervasively biotized hornblende is clearly related 
to the assertion There is mica; assertion of the first also asserts the second, 

T A B L E D 3 - I 

Size of Knowledge Base of Five PROSPECTOR Models 

Model 

Koroko-type massive sulfide 
Mississippi-Valley-type lead/zinc 
Type A porphyry copper 
Komatiitic nickel sulfide 
Roll-front sandstone uranium 

Total 

Number of 
assertions 

39 
28 

187 
75 

212 
541 

Number 
of rules 

34 
20 
91 
49 

1 ^ 
327 
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and denial of the second denies the first. This kind of recognition is used 
in two main ways. First, il provides imporiani intermodel and intramodel 
connections beyond those given explicitly by the inference rules. Second, it 
allows the system to recognize connections between informalion volunteered 
by the user and the coded models. 

Probabilistic Reasoning 

Some of the logical constraints that hold between spaces have probabilistic 
implications. In particular, if A is an instance (i.e., subset) of B, then the 
probability of A can never exceed the probability of B. We maintain this 
constraint by automatically generating certain inference rules. For example, 
if evidence E could raise the probabilily of A above the probability of B, wc 
generate a rule from E io B that will increase the probabilily of B suflficiently 
to just satisfy the constraint. The exact procedure used here is described in 
Duda et al. (1977). 

The various inference rules connect to form an inference network; thus, 
when the user provides some evidence, this information can change the prob
abilities of several hypotheses, which in turn can change the probabilities of ( 
hypotheses that depend on them. The probability formulas determine exactl.v ^ 
how these probability changes propagate through the inference net. (The j 
reader mighl also refer to Articles VIII.82 and VIII.B6, on CASNET and W^- | 
for alternative meihods of propagation.) 

Control 

PROSPECTOR is a mixed-initiative system that begins by allowing thf . 
user to volunteer information about the prospect. This volunteered informa j 
tion is currently limited to simple statements in constrained English about 
names, ages, and forms of the rocks and the types of minerals present. ^ hc-
slalemenls are parsed by LIFER, a natural-language interface facility (-
Article rv.F7, in Vol. l), and represented as partitioned semantic networks. • 
network-matching program compares each of these volunteered spaces aga' -̂  
the spaces in the models, noting any subset, superset, or equality rela ' 
that occur. .. 

If a volunteered space is exactly equal lo a space in a model, the pro J* 
ity of the model space is updated and that change is propagated ihroug 
inference network. If a volunteered space is a subset of a space in a "̂  .••,v 
if it has a higher probability than the model space, once again the proba • 
of the model space is updated and that change is propagated throug 
inference network. jpl 

Unfortunately, if the volunteered space matches a superset of a ^̂ ^ 
space (which is usually the case), no probability change can be made un - = 
user expresses doubt about the situation. For example, if the user m 
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. the probability of the space that asserts that there is pervasively 
''!" • ed hornblende is unchanged, unless the user has said that he doubts 
'''" there is any biotite. However, it is obvious that the system may want to 

• , im this observation, and the existence of the connection lo the model follow ut> 
: recorded. 
" YVhen the user has finished the initial volunteering, PROSPECTOR scores 

yarious models on the basis of the number and types of connections that 
^ occurred and selects the best matching model for further investigation, 
ll e the basic control strategy is MYCIN-like backward chaining or conse

nt reasoning. At any given time, there is a current goal space whose exis-
ce is to be determined. The initial goal space is the one that corresponds 
the best matching model. The various spaces in the models represent 

rher evidence that can be sought from the user (are "askable") or internal 
1 notheses that are to be deduced from evidence (are "unaskable"). Naturally, 
I initial goal space is always unaskable. If the current goal space has any 
nestablished context spaces, they are pushed on the goal stack and one of 

them becomes the new current goal. 
If the current goal is askable and has not been asked before, the user is 

«ked about it, the effects of the answer are propagated through the inference 
iclwork, and the process is repeated. If it is unaskable, it must be either the 
consequence of one or more inference rules or a logical combination of one or 
more other spaces. In the former case, the rules are scored to determine their 
notential effectiveness in influencing H, and the antecedent of the best scoring 
rule becomes the next goal. In the latter case, a predetermined supporting 
,.pace becomes the next goal. In either case, the same procedure is repeated 
until (a) the top-level goal becomes so unlikely that another top-level goal is 
-elected, (b) all of the askable spaces have been asked, or (c) the user interrupts 
wilh new volunteered information. 

Summary 

This brief overview covers the basic knowledge-representation and infer
ence mechanisms used in PROSPECTOR. Many aspects of the system have not 
been discussed, such as the treatment of quantitative evidence, the matching 
procedure, the use of graphical input, the inference-network compiler, the 
explanation system, model-acquisition aids, and the test and evaluation effort. 

The five models in the current system are but a fraction of what is 
needed for comprehensive coverage of the prospecting domain, and even these 
models have only recently reached the degree of completeness required for 
doing meaningful evaluations. Limited initial tests have shown very close 
agreement between the evaluations provided by the system and the evaluations 
ofthe model designers, using data from actual deposits of the types modeled. 
•And, in fact, PROSPECTOR recently made a prediction about the location 
of molybdenum ore at an exploration site in the state of Washington that 



162 Applications-oriented AI Research: Science VII 

was substantially confirmed by subsequent drilling. More information on the 
system, the extent of its geological knowledge, its performance on known 
deposits, and its possible applications can be found in Duda el al. (1978). 
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Technology Transfer 

On the Development of 
Conimercial Expert Systems 

Reid G. Smith 
Schlumberger-Doll Research 

Old Quarry Road 
Ridgefield, Connecticut 06877 

Abs t rac t 

We use our e.xperience with the Dipmeter Advisor system for well-log 
interpretation as a case study to examine the development of commer
cial expert systems. We discuss the nature of these systems as we see 
them in the coming decade, characteristics of the evolution process, 
development methoda, and skills required in the development team. 
VVe argue that the tools and ideas of rapid prototyping and successive 
refinement accelerate the developraent process. We note that different 
types of people are required at different stages of expert system de
velopment: Those who are primarily knowledgeable in jthe domain, 
but who can use the framework to expand the domain knowledge; 
aild those who can actually design and build expert system tools and 
components. We also note that traditional programming skills con
tinue to be required in the development of commercial e-xpert systems. 
Finally, we discuss the problem of technology transfer and compare 
our experience with sorae of the traditional wisdom of expert system 
development. 

effort by Schlumberger to apply expert systems technologj- to 
problems of well-log interpretation. We have observed dur
ing this effort that the development of a commercial expert 
system imposes a substantially different set of constraints 
and requirements in terms of characteristics and methods of 
development than those seen in the research envirorunent. 

This article is intended as a case study. We briefly 
describe the dipmeter interpretation problem and the evolu
tion of the Dipmeter Advisor system. During its develop
ment a number of ideas have surfaced that we believe to be 
characteristic of this type of effort, given the current state of 
the technology. While the data are too sparse for definitive 
results, these ideas are thought to be important and sugges
tive as guidelines for subsequent commercial expert sysrem 
undertakings. 

T H E PAST DECADE has seen the development ofa num
ber of expert systems, mostly by ."VI researchers for use in 
research environments. To date, few have been utilized for 
industrial applications. As a result, we have little experience 
with which to characterize either the nature of commercial 
e.xpert systems or their development process. 

The Dipmeter Advisor system is the result of a four year 

David Barstow, J. A. Gilreath, Tom .Mitchell, and Peter Will made a 
"umber of helpful suggestions for this paper. David Gallo and Chip 
"endrickson provided the football figures. 

Example: Dipmeter Interpretation 

The Problem 

Oil-well logs are made by lowering tools into the borehole 
arid recording measurements made by the tools as they are 
raised to the surface. The resulting logs are sequences of 
values indexed by depth. Logging tools measure a variety 
of petrophysical properties. The dipmeter tool in particular 
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Dip in Subsurface Formations. 

Figure 1. 

raeasures the conductivity of rock in a number of direc
tions around the borehole. Variations in conductivity cem be 
correlated and combined with measurements of the inclina
tion and orientation of the tool to estimate the magnitude 
and azimuth of the dip or tilt of various formation layers 
penetrated by the borehole (Figure 1). 

Because the dipmeter tool has high resolution in the 
vertical direction (0.1-0.2 in.), it provides the petroleum 
geologist with detailed information on relatively fine-struct
ured sedimentary beds. This type of information is invalu
able in defining hydrocarbon reservoir structure and design
ing methods to drain such reservoirs. 

Knowledge of the dip variations as a function of depth 
in the vicinity of the borehole does not in itself identify 
geologic features. However, when combined with knowledge 
of local geology and rock properties measured by other logs 
[e.g., hthology (scmd, shale,)), the characteristic dip patterns 
(signatures) of geologic events in the depositional sequence 
can be interpreted. 

The right channel of Figure 2 is an interval of a dipmeter 
log. Dip estimates are shown as tadpoles. Dip magnitude 
increases to the right of the graph, and the down dip direc
tion is indicated by the tail on e£ich tadpole. The verticjd 
axis is depth. Hollow tadpoles indicate lower confidence dip 
estimates than solid tadpoles. (So, for example, the tadpole 
at 8360 ft. indicates a formation that is dipping down to 
the southeast at approximately 24".) The left channel is a 
gamma ray log. (It measures natural gajnma radiation in 
the formation—a rudimentary lithology indicator.) 

Sequences of tadpoles can be grouped together in pat

terns. Three of the characteristic dip patterns are described 
below (Schlumberger, 1981). 

• Green Pattem: An interval (zone) of constant dip 
magnitude and azimuth. This pattern is characteris
tic of structural dip—caused by large-scale tectonic 
disturbance that occurs long after deposition and 
compaction of sediment. 

• Red Pattern: A zone of increasing dip magnitude 
with constant azimuth over depth. This pattern 
is indicative of down dip thickening, which may be 
associated with distortions near structural featiu'es 
(e.g., faults), diflerential compaction of sediment over 
buried topographic features (e.g., reefs), or channel 
filhng. 

• Blue Pattern: A zone of decreasing dip magnitude 
with constant azimuth over depth. This pattern 
is indicative of down dip thinning, which may be 
associated with distortions near structiual features, 
differential compaction beneath denser overlying de
posits (e.g., sand lenses), or sediment transport by 
water or wind. 

From this localized da ta , a skilled interpreter is often 
able to make comprehensive deductions about the geological 
history of deposition, the composition and s t ructure of the 
beds, and the opt imum locations for future wells. 

The Dipmeter Advisor System 

The Dipmeter Advisor system a t t empts to emulate 
human expert performance in dipmeter interpretation. It 
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utilizes dipmeter patterns together with local geological 
knowledge and measurements from other logs. It ia charac
teristic of the class of programs that deal with what has come 
to be known as signal to symbol transformation (Nii, 1982). 
The program ia written in INTERLISP-D and operates on the 
Xerox ll(K), 1108, or 1132 Scientific Information Processor.^ 

The system consists of four central coraponents: a num
ber of production rules partitioned into several distinct sets 
according to function [e.g., structural rules vs stratigraphic 
rules); an inference engine that applies rules in a forward-
chained manner, resolving conflicts by rule order; a set of fea
ture detection algorithms that excimines both dipmeter and 
open-hole data {e.g., to detect tadpole patterns emd identify 
Uthological zones); and a menu-driven graphical user inter
face that provides smooth scrolling of log data. 

Conclusions are stored as instances of one of 65 token 
types, with approximately 5 features/token, on a blackboard 
that is partitioned into 15 layers of abstraction {e.g., pat
tems, lithology, stratigraphic features). There are 90 rules, 
and the rule language uses approximately 30 predicates and 
functions. The rules have the empiriccd association flavor. A 
sample is shown below.' 

IF 

THEN 

there exists a delta-dominated continental-shelf 

marine zone, and 

there exists a sand zone intersecting the marine 

zone, and 

there exists a blue pattern within the intersection, 

i 

assert a distributary fan zone 

top *— top of blue pattern 

bo t tom •(— bo t tom o f blue pattern 

flow »— azimuth o f blue pattern 

The system divides the task of dipmeter interpretation 
into eleven successive phases as shown below. After the 
system completes its analysis for a phase, it engages the 
human interpreter in an interactive dialogue. He can ex
amine, delete, or modify conclusions reached by the system. 
He can also add his own conclusions. In addition, he can 
revert to earlier phases of the analysis to refer to the conclu
sions, or to rerun the computation. 

• Initial ELKammation: The huraan interpreter can 
peruse the a\'ailable data and select logs for display. 

• Validity Check: The system examines the logs for 
evidence of tool malfunction or incorrect processing. 

• Green P a t t e m Detection: The system identifies 
zones in which the tadpoles have similar magnitude 
and azimuth. 

'Early versions of the program are described in (Davis, 1981) and 
(Gershman, 1982). 

This sample is simitar to the actual interpretation rule, but has been 
simplified somewhat for presentation. 
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Gamma Ray and Dipmeter Logs 

Figure 2. 

• Structural Dip Analysis: The system merges and 
filters green pattems to determine zones of constant 
structural dip. 

• Preliminary Structural Analysis: The system 
applies a set of rules to identify structural features 
(e.g., faults). 

• Structural Pat tern Detection: The system ex
amines the dipmeter data for red and blue patterns 
in the vicinity of structural features.^ 

• Final Structural Analysis: The system applies a 
set of rules that combines information from previous 
phases to refine its conclusions about structural fea
tures (e.g., strike of faults). 

• Lithology Analysis: The system examines the 
open hole data (e.g., gamma ray) to determine zones 
of constant lithology (e.g., sand and shale). 

• Depositional Environment Analysis: The sys
tem applies a set of rules that draws conclusions 

The algorithms used by the system to detect dip patterns are beyond 
the scope of this paper. 
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Stratigraphic analysis interaction 

Figure 3. 

about the depositioneJ environment. For example, if 
told by the human interpreter that the depositional 
environment is marine, the system attempts to infer 
the water depth at the time of deposition. 

• Stratigraphic P a t t e m Detection: The system 
examines the dipmeter data for red, blue, and green 
patterns in zones of known depositional environ
ment. 

• Stratigraphic Analysis: The system applies a set 
of rules that use information from previous phases to 
draw conclusions about stratigraphic features (e.g., 
channels, fans, bars). 

For the phases shown above, "-I-" indicates that the 
phase uses production rules written on the basis of interac
tions with an expert interpreter. The remaining phases do 
not use rules.'' 

Figure 3 shows a sample Xerox 1100 screen following 
the stratigraphic analysis phase. On the extreme right the 

system displa3'S a simamary log of dip magnitude for the 
entire well. The black box indicates the region of the well 
that is expanded in the second window from the right. This 
window shows the dipmeter data together with the deviation 
of the borehole itself. The next window displays two olher 
logs: GR (gamma ray) and ILD (a resistivity log). (Each 
of these windows can be smoothly scrolled by moving the 
mouse into its speed bcir, one of which is visible on the left 
side of the dipmeter window. A more radical movement can 
be achieved b>- moving the mouse into the black elevator box 
visible on the right side of the dipmeter window. The size of 
the interval viewable in the dipmeter and other log windows 
is also under mouse button control.) 

The system summarizes relevant conclusions in the (scroll
ing) windows in the lower left hand part of the screen. The 

^The rules ob t^ned to date are due to J. A. Gilreath of Schlumberger 
Offshore Services, New Orleans, LA. The feature detectors and signal-
processing algorithms were written independently by project members. 
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user (a dipmeter interpreter) has selected a number of con
clusions to be examined in greater detail and shown as an
notations on the dipmeter log. Also shown is the dip azimuth 
trend before and after structural dip removal.^ 

Building Commercial Expert Systems 

Embedded Systems 

Domain practitioners are typically much more interested 
in the utility and performance of a system that is to help 
them solve their problems than in the particular methods 
used to construct it. Furthermore it is unlikely that tradi
tional Al methods alone will solve real problems. They are 
likely to be augmented by techniques from signal processing 
and pattern recognition, to name but two possibilities. This 
implies that the computer scientist involved in commercicd 
expert system development must be prepared to solve prob
lems that involve a variety of disciplines and techniques. 

It is our view that the expert system kernel is likely to 
be a (perhaps even relatively small) component embedded in 
a IcU'ger system. The particular suite of problems common to 
signal understanding problems may, of course, bias our out
look, but we believe that it is difficult to avoid the conclusion 
that acceptemce and real use of expert systems depend on far-
more than a knowledge base and inference engine.^ 

Indeed our experience has been that these traditional 
parts of an expert system are not the predominant parts of 
the overall system either in terms of the amount of code or 
the re.sources required for system development. It is instruc
tive in this regard to examine the relative amounts of code 
devoted to various functions in the Dipmeter Advisor system: 

fnference Engine: 
Knowledge Base: 
Feature Detection: 
User Interface: 
Support Environment: 

8% 
22% 
13% 
42% 
15% 

This breakdown cannot be used, of course, as a direct 
measure of programming effort or as an indicator of where 
the system gets its power. Hovvever, the human inter
face figure especially is familiar to designers of expert sys
tems like MYCIN (Shortliffe, 1976), (VanMelle, 1981) and 
PROSPECTOR/KAS (Reboh, 1981). It demonstrates the 
importance of a good programming language, and indicates 
that traditional programming skills continue to be required 
for the development of commercial expert systems. 

*The scrolling graphics code was written by Paul Barth and Tony 
Passera. Extensions to the I N T E R L I S P - D menu package were wriiten 
by Eric Schoen. 

Gaschnig has made a similar observation in the context of the 
P R O S P E C T O R system (Gaschnig, 1982). 

System Evolution 

Based on our experience, we hypothesize an oscillat
ing focus of attention in commercial expert system devel
opment projects. Initially, the focus is a demonstration of 
feasibility; acquiring the knowledge for a constrained prob
lem and finding the appropriate set of expert system tools 
with which to encode and apply the knowledge. This phase 
could be relatively short. It is followed by a phase of ex
pansion of the domain knowledge—during which the expert 
system tools remain relatively constant. A point will likely 
come at which the intial tools do not provide sufficient power 
to allow continued expansion of the system's expertise. At 
that point, the focus will move away from domain problems 
and toward selection—more likely development—of new ex
pert system tools. Once a new set of more powerful tools 
has been constructed, then the focus will again retum to the 
domain problems at hand. 

Naturally any particular system may not pass through 
very many of these oscillations. The focus in the Rl project, 
for exEunple, didn't appear to oscillate at all (McDermott, 
1981). We believe this is due to the nature of the task. There 
was little of the uncertainty about the nature of the problem 
that is evident in the the signal understanding or diagnosis 
tasks. Consequently the initial tools were in fact sufficiently 
powerful to handle the problem. 

In the MYCIN project we seem to be observing the 
beginnings of an oscillation. The initial system was con
structed. Then the rule base was expanded, leaving the ini
tial expert system tools intact. More recently a new design, 
NEOMYCIN, has appeared—a new set of tools (Clancey, 
1981). 

Along with the oscillating focus, we hypothesize a rough 
performance versus time curve. For this discussion per
formance is taken to include factors such as computation 
time, accuracy of solutions, and breadth of coverage. We 
expect this curve to show periods of high positive slope cor
responding to implementation of new expert system tools, 
followed by periods of lower slope corresponding to expan
sion of domeiin knowledge, followed by periods of level or 
even decreasing slope corresponding to reaching (or surpass
ing) the amount of domain knowledge and generality that 
can be supported by the tools. 

Figure 4 shows the type of performance improvement 
that we hypothesize, together with the relative emphasis. 
The emboldened portions of the graph indicate periods of 
new expert system tool development. The remaining por
tions correspond to periods of expansion and refinement of 
domain knowledge. (During the startup period, of course, 
the two activities proceed concurrently.) 

It is currently the case that the precise set of tools 
required to solve a given problem cannot be accurately 
predicted a priori. Periods of domain knowledge expansion 
using relatively stable tools are reqtiired to expose prob
lem areas and focus tool selection and development. As e.x-
perience with expert systems grows, for any given problem. 
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Figure 4. 

development will effectively begin further along the curve. 
Developers will start with a better understanding of the set 
of tools that will eventually be required to solve the problem. 

At any given point in time, then, an expert system may 
require improvement in terms of domain knowledge and ex
pert system tools. Just as the focus of the project will vary, 
depending on which of the two types of improvement is most 
pressing, the type of person required to improve the system 
will also varj'. 

Improvements in the first area can be made to a large 
extent by people primarily knowledgeable in the domain, but 
not necessarily knowledgeable in the design of expert sys
tems. For example, at one stage of its development the Dip
meter Advisor system was familiar with a relatively small 
munber of different Uthologies. The performance of the 
system could be improved in this area without redesign. 
Similarly, the coverage of the rules could be extended to 
handle more environments, or specialized to handle local 
anomalies.^ 

Improvements in expert system tools cannot be made 
without redesign. This type of effort requires a person who 
can build such systems, as opposed to one who can use the 
framework to exptrnd capabilities. For example, the Dip
meter Advisor system uses rule order to help circumvent 
potential multiple interpretations for the same interval in 
the well, or simply draws multiple conclusions for the same 
zone. The human interpreter must select the correct inter
pretation. The system also has a very local view of consis
tency in the vertical sequence. This is attributable to the fact 
that it is reasoning from sets of empirical rules and has no 
model of the underlying geological processes that lead to the 
rules. Improvements in these areas cannot be made without 
redesign. 

^We have already noted, however, the likelihood that traditional pro
gramming skills will continue to be required. 

System Development 

We have attempted a critical review of the development 
side of the Dipmeter Advisor system. Although we are as yet 
unable to abstract a development methodology, several ob
servations stand out. Almost everj' major issue and decision 
in the evolution of the Dipmeter Advisor system addressed 
one or more of the following: 

• Demonstration of Feasibility 
• Demonstration of Utility Emd Performance 
• Evaluation of Utility and Performance. 
Demonstration of Feasibility: The problem of dipmeter 

interpretation was initially selected as a vehicle for inves
tigating the applicability of expert system techniques to well-
log interpretation. Until feasibility could be demonstrated, 
other questions were secondary. 

As a first step, a substantial effort was expended on 
acquisition of dipmeter interpretation knowledge. This effort 
was carried out over a 12 to 18 month period using standard 
techniques (protocols, videotape, discussion, representative 
examples, and so on). A single expert was studied in detail, 
again adhering to standard practice. 

The implementation of a prototype system followed data 
acquisition and was carried out in approximately four months 
(completed in December 1980). The rule base smd inference 
engine were written in INTERLISP (245 Kbytes of source 
code) and ran on a DEC 2020. The user interface was graphi
cal, written in FORTRAN (450 Kbytes of source code), and 
ran on a RAMTEK 9400 connected to a VAX 11/780. The VAX 
and 2020 were linked via a CHAOSnet. The rule base was 
made up of aproximately 30 rules. There were also several 
feature detectors and signal processing algorithms. 

Demonstration of Utility and Performance: The proto
type system demonstrated to the expert that significant 
analyses were possible. To determine commercial viability, 
other issues must be addressed. Does the system solve 
enough of the problem to be interesting and useful? Can the 
system perform with the efficiency and interactivity neces
sary in a field environment without overutilizing available 
computing resources? 

Two examples demonstrate the problem. The initied 
prototype had no means of actually detecting the red and 
blue patterns and the lithology zones that ax& required to 
perform an unaided interpretation. It did not solve enough 
of the problem to be useful. This lack resulted in implemen
tation of algorithms for simple detection of tadpole patterns 
and lithologic zones. 

Second, the detection of green patterns and determina
tion of structural dip took approximately 18 minutes in the 
first test well. This duration was imacceptable for actual 
use—later effort reduced the time to imder 2 minutes. 

Evaluation of Utility and Performance: Field evcilua-
tion was the next hurdle for the Dipmeter Advisor system. 
Several questions had to be addressed. First, was the rule 
base sufficiently complete to solve correctly a wide variety of 
problems in the geological environments for which it was de-
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Several questions had to be addressed. First, was the rule 
base sufficiently complete to solve correctly a wide variety of 
problems in the geological environments for which it was de
veloped? Second, what changes and effort would be required 
when working in other geological environments? And third, 
did the rule base sufficiently capture the thinking of enough 
dipmeter interpreters to be useful? 

To date, this has been the most difficult area. People 
in the engineering and field groups had to address the above 
questions. To accomplish this, the prototype system had 
to be capable of operating in their existing environment— 
possibly upgraded with modest investment. 

One of the difficulties wdth the initijd prototype was the 
unusual architecture of linked computers, which was not a 
standard company configuration. In an effort to facilitate 
testing, the system was reimplemented in FRANZLISP (except 
for the graphical interface), totally on the VAX 11/780. Un
fortunately this change did not solve the problem. The 
VAX/RAMTEK configuration, as a shared resource in a 
generally overloaded situation, required an excessively long 
time to complete a case. Under worst conditions, it took 
several hours. (In an imloaded VAX environment, it could 
be completed in one-half hoiu: or less.) 

At this point, new technology came to the rescue, and 
the system was re-implemented on the Xerox 1100, which 
has both a dedicated processor and sophisticated graphics. 
In this implementation the graphical interface code was in
tegrated into the remainder of the system. The result was apH 
proximately 612 Kbytes of INTERLISP-D source code. This 
implementation was robust enough and fast enough to allow 
transfer to a Schlumberger Interpretation Engineering group 
for testing in a non-research environment. 

We can summarize this section as follows: A commercial 
expert system is ultimately constructed to solve a real prob
lem (as opposed to being constructed, say, to determine the 
limits of a problem-solving architecture). As a result, the 
developers should avoid a demonstration mentality. Careful 
thought at all stages of development about the eventual dis
position of the system may prevent the necessity for multiple 
re-implementations. 

order to emphasize that two different kinds of task axe in
volved. The development team normally requires at l6ast 
one member to interact with the domain experts and encode 
domain knowledge. We reemphasize that the interaction and 
encoding activities do not necessarily require someone who 
can construct expert systeins, but rather someone who can 
become knowledgeable in the domain and who can use an 
existing expert system framework to extend the capabilities 
of the evolving system. 

The team also requires someone with a deteuled un
derstanding of the design and implementation of expert 
systems—someone who can constmct the underlying frame
work in which to encode domain knowledge. Unfortimately, 
such people are currently scarce and in demand. Among the 
ways around this bottleneck are use of off-the-shelf develoi>-
ment tools, and training of existing staS in expert system 
design techniques. Companies presently exist to perform 
training. Development tools are somewhat more problem
atic, but they too have started to appear. We will return to 
this point later in the article. 

Finally, the development team requires traditional pro
gramming support for integration into pre-existing systems, 
for graphical interfaces, and so on. In this catchall category 
we include expertise in related areas {e.g., statistical algo
rithms and signal processing eilgorithms) as dictated by the 
apphcation domain. 

Naturally, some of the skill categories shown may be co-
located in the same persons. (This has traditionally been the 
case for knowledge engineering/expert system tool design.) 

In later stages, experiment designers, software engineers, 
and other domain practitioners (not necessarily experts) are 
required to test and debug the knowledge and framework 
in more stringent and wide-ranging tests and to produce 
the actual commercial product. Once again, it is possible 
that these tasks will fall to the original team members. We 
would argue, however, that the downstream engineering of 
the original code is not the best utilization of people with 
expert system design skills. These people are too few in 
number today to be underutilized. 

The Development Team Rapid Prototyping and Successive Refinement 

Development of a commercial expert system requires 
people with a variety of skills. The following set is typical. 
We will expand on it in the remainder of this section. 

• Domain Expertise 
• Knowledge Engineering 
• Expert System Tool Design 
• Programming Support 
First, it goes without saying that committment of one 

or more articulate domain experts is crucial to the success 
of any expert system development. 

The term knowledge engineer is normally used to mean 
computer scientist intermediary—the link between expert 
and machine. We have divided this role into two parts in 

In the beginning of a commercial expert system develop
ment project, it is important to demonstrate the feasibility 
of the system. Rapid prototyping seems to be an appropriate 
strategy—especially given the usual vagueness of the under
standing of what can be accomplished. 

The main concern in such an approach is a flexible and 
powerful development environment. Traditionally, such an 
environment is not even closely related to the commercial 
computational environment. This lack leads to the prob
lems noted above. With the advent of inexpensive personal 
workstations, however, there is real hope that the situation 
may be changing (as has been our experience with the Dip
meter Advisor system). 
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Significant questions still remain. One of the problems 
of rapid prototyping is that it provides a good start toward 
system development, but does not offer clear guidance on 
how to produce a well-engineered commercial product (see, 
for example Shell, 1983). Traditionally this fault is viewed 
as a problem in technology transfer. 

The Dipmeter Advisor system has been developed using 
rapid prototyping techniques and has evolved as a series of 
prototypes through successive refinement. Our experience 
with the process suggesis technologj- transfer through not a 
single release from research to engineering but rather through 
successive releases, corresponding to successive prototypes. 
This type of transfer is appropriate for an expert system in 
which domain knowledge expansion and refinement can be 
expected to continue for some time, but for which the system 
framework has demonstrated that it is sufficiently powerful 
to warrant engineering effort. 

Such an approach to technology transfer naturally im
poses restrictions. The designers must somehow convey to 
their engineering organizations a more accurate perception 
of the expected lifetimes of the prototypes. Furthermore, 
the designers are forced to pay even more attention to user 
interfaces than our earlier figures would suggest. If the sys
tems are going to be changing rapidly then they must have 
especially convenient and easy-to-learn interfaces. 

Expert Systema Technology Transfer 

Construction of expert systems requires skills that are 
possessed by a verj' small number of individuals. Fur
thermore, the rapid prototyping development methodology 
makes traditional technology transfer more difficidt—the 
systems are in a constant state of flux. As a result it is 
fair to say that for the foreseeable future, greater than nor
mal responsibility will lie with the research and advanced 
engineering organizations to ensure successful transfer. 

Based on our experience with the Dipmeter Advisor sys
tem, we can suggest some jictions to ease the problem. The 
suggestions refer to a number of phases of expert system 
development—from problem choice to transfer to engineer
ing. 

Technology transfer can be viewed as a (forward!).pass 
from research to engineering. In order to ensure a successful 
completion, both passer and receiver must have the same 
pass pattern in mind. From the point of view of the passer, 
if no open receivers are open, then a pass is ill-advised. 
Similarly, the passer must be sensitive to the constraints 
under which the receiver operates. Throwing the ball in the 
generail area £md hoping that a receiver will appear to make 
the catch is also ill-advised. From the point of view of the 
receiver, once the bcJl has been caught, it is his responsibility 
to move on down the field. 

From our football analog}', as represented in Figures 
5, 6, and 7, we can take away a number of useful sugges
tions. First and foremost, for a research orgEuiization, con
structing demonstrations or prototypes and simply throw-

Research and Engineering do not have the 
Same Pattem in Mind 

Figure 5. 

Research does not appreciate the Constraints 
imder which Engineering operates 

Fismre 6. 

mg them to engineering isn't enough. The engineering staff 
need to be aware of the design desiderata, the false starts, 
the simplifications and approximations made in the inter
ests of expediency, the interactions between components, and 
so on—a host of insider information. Furthermore, once in 
the engineering organization, there must be committed and 
capable receivers to carrj' the project toward commercial 

JjlT 1" ,—. 

Engineering is not fully comraitted to a Suc
cessful Transfer. 

Figure 7. 
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deployment. 
This need argues for early, on-site involvement by en

gineering (and perhaps field) personnel in the research lab
oratory. Such involvement is not atypical for development 
projects, of course. It is especially importEmt for expert sys
tems technology, however, given its relative immaturity and 
the lack of trained specialists. 

These people can also help to ensure that the completed 
system is well-integrated into the overall complex of systems 
in use by the organization as a whole. Furthermore, they 
are probably in a much better position than the researchers 
actually to effect this integration. 

We have made the point several times that expert sys
tem development is an incremental process. Even so, it is 
worth reemphasizing. Without domain expertise there is no 
system! Over the course of a commercial expert system de
velopment effort, it is necessary to maintain the commitment 
of at least one domain expert—personal commitment and 
corporate commitment. The importance of the latter should 
not be overlooked. Experts make money for their employers 
emd time devoted to a development project may well have 
a short term negative impact on their normal productivity. 
Hence, management needs to support expert involvement. 

One way to ensure this commitment is to work on prob
lems that the experts actually want solved! 

We have found it useful in easing our interactions with 
both engineering and field personnel to deal in what we 
might call value-added systems. By this we mean that the 
ultimate user gets a number of advantages from using our 
nciv systems—one of which is symbolic inference. This ad
vantage is evident in the Dipmeter Advisor system. Even if 
the interpreter never uses the inference machinery, he still 
derives some benefit from the system—namely,' a powerful 
interactive log interpretation environment. In addition, he 
is always in control of interactions with the system—he can 
interactively control the system's inference procedure. This 
option has the effect of giving him an environment in which 
he can explore the ramifications of his own hypotheses about 
the local geology in addition to acquiring access to some of 
the expertise of other senior interpreters. 

We have also found it necessary to construct our systems 
in such a way that they do not have a negative impact on 
the standard field computing environment. As pointed out 
previously, personal workstations have offered real relief in 
this area. They have, not however been without cost—they 
have necessitated a relatively large investment in networking 
software. 

For additional thoughts on the problem of moving ad
vanced computer science technology into real world environ-
ni(;nts soe (Newell, 1983). Newell makes a number of salient 
observations on the basis of his experience with the instal
lation of the ZOG system on the USS CARL VINSON. One 
of the considerations for which he argues is flexibility. The 
functionality expected of a system often changes over time. 
It may therefore be difficult to predict what its eventual use 
will be. As a result, the developers of real systems are ad

vised to avoid rigidity in their designs. 

Some Observations on the Traditional Wisdom 

For the remainder of this section we consider a number 
of maxims of expert system development in the light of our 
experience in the corrunercial environment. [See (Barstow, 
1981); (Buchanan, 1982); or (Davis, 1982) for good sum
maries of the traditional wisdom of expert systems develop
ment.] 

A common maxim of expert system development is that 
we should throw away the code for the Mark-1 version of 
the system as soon as it demonstrates feasibility and get 
started on Mark-II. In the commercial environment, there is 
great reluctance to throw away code. As a result, a likelier 
scenario involves a series of progressive releases of the system 
to the expert and possibly to the engineering organization 
for development and use. The fact is that even though 
the knowledge engineer knows all too well the limitations of 
Mark-I, and even has ideas on how to overcome them, Mark-I 
may still provide some useful service. We do not yet know 
how to manage this type of progressive and evolutionary 
technology transfer.* 

It is well accepted that expert system development is 
an incremental process. Usually we understand this fact to 
mean that the performance of the system improves incremen
tally. There is, however, another kind of change that may 
occur—namely, our experts are themselves moving targets, 
partially as a result of the perspective gained through ex
perience in expert system development! This has been ap-
pcurent during the Dipmeter Advisor project. The existence 
of tools for testing the ramifications of geological hypotheses 
led our expert dipmeter interpreter to try a number of ap-
prociches to stratigraphic analysis. The program was a test 
bed for his evolving ideas. 

It is traditional wisdom that the task should be very 
carefully defined before the system is designed. Our ex
perience has been that this process is quite difficult. In 
consonance with our comments on the rapid prototyping de
velopment strategy, it is not clear that task definition can 
be done in a rigorous fashion. We suggest a contingent 
definition—one that is clear for a time, but can be easily 
changed. We should note that the evolving performance of 
the system itself at least partially fuels changes in the task 
definition. . 

It is generally accepted that construction of the Mark-
I system should be commenced as soon as one example of 
the intended behavior is understood, VVe did not obey this 
ma.xim. We now believe that we spent too much time in 
knowledge acquisition before actually starting to build a 

*This is a good illustration of a conflict that can arise as a result of 
somewhat different goals of research and of development in expert sys
tems. The former is concerned with continued exposition and machine 
implementation of human expert reasoning methods, while the latter is 
concerned with construction of products that utilize already understood 
and implemented methods. 
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system. This activity had the effect of slowing our rate 
of progress. We could not move forward in formalizing 
the knowledge that had been gained, because we could not 
demonstrate in concrete terms our understanding of it. 

This problem can be exacerbated by the seductive sim
plicity of an intuitively appealing formalism like produc
tion rules. We want a domain expert to communicate 
as much as possible about what he is doing in solving a 
problem—independent of whether or not it appears to him 
to fit naturally into the formalism. Difficulties can arise 
when the expert attempts to map his explanations directly 
into the formalism—perhaps at the expense of accuracy. If 
insufficient testing is done throughout the process of know
ledge acquisition, then a misunderstanding may develop 
about exactly what the system can and cannot do with rules 
so generated. 

Some of the development team also deemed themselves 
to have acquired more expertise than was warremted. This 
is a natural tendency. It was partially due to infrequent 
interactions with the expert. More responsibility fell on the 
shoulders of the system developers to organize the domain 
knowledge than appears prudent. This infrequency also led 
to a problem of validation—how to be sure that we were on 
the right track. On a related note, we can testify to the 
necessitj' of an adequate set of generic exEimples with which 
to test the system as it evolves. 

One piece of traditional wisdom might be questioned. 
It is conmiOD to deal with a single expert during the devel
opment of an expert system. The perceived danger is that 
it is difficult enough to capture the perspective of a single 
expert, let alone those of a number of experts. In the par
ticular context of dipmeter interpretation, however, it might 
have been useful to involve a number of experts with differing 
backgrounds from the outset. For example, while the rules 
for a first approach are most appropriately phrased by a dip
meter interpreter, the necessary geological vocabulary and 
structure are most appropriately obtciined from a geologist. 
In future systems, we will attempt to synthesize these over
lapping points of view. 

In a similar vein, we have noted a difficulty that can 
arise when a single expert is used and when he provides 
all examples with which to test the system. When work
ing with familiar examples, our expert does indeed appear 
to apply forward-chained empiricEil rules—kinds of compiled 
inferences. Recently, however, we have participated in ex
periments with a number of interpreters (and exeimples) from 
around the world. During these experiments we noted that 
all the experts exhibited a different mode of reasoning when 
faced with completely unfamiliar examples. They appeared 
to reason from underlying geological and geometric models— 
supplementing the rules. In some sense, this behavior is of 
course to be expected. However, actuail evidence of a change 
in reasoning style by the single expert that we dealt with for 
the rule base development was elusive. It was complicated 
by the fact that he has extremely broad experience. Hence, 
finding a completely unfamiliar example was quite difficult. 

We believe that dealing with multiple experts would have 
provided concrete evidence of this phenomenon much sooner 
in the life of the project. 

With regard to acceptance of the expert systems ap
proach, our experience has been somewhat different from 
lhat of the Rl designers in that there w-as general relatively 
rapid acceptance of the ideas within our organization. From 
early in the project, concerns revolved almost totally around 
performance and utility in the problem domain. 

VVe have seen a substantial increase in the size of the 
rule base (approximately tripled) and the functionality re
quired of the system before we could consider field evalua
tion. McDermott has described a similar experience with 
Rl. The size of its rule base tripled during the development 
phase (McDermott, 1981). 

The traditioned wisdom notes the importance of early 
construction of a flexible user interface. For the Dipmeter 
Advisor system the interface is graphical. It has proved in
valuable in testing and user acceptance. Furthermore, as 
has been noted elsewhere (Buchaman, 1982), expert s.vslems 
that are actually used by people trying to solve problems 
in their own domains of interest (as opposed to being used 
by researchers as vehicles for experimentation with AI tech
niques) must pay particular attention to human interface 
issues. For the Dipmeter Advisor system, it was only after we 
constructed a personal workstation implementation that was 
flexible, robust, and fast that it became possible to consider 
seriously testing by the Schlumberger engineering organiza
tion. 

One final observation worth noting relates to the impact 
of an expert system on the domain experts. .\s has been 
found in other applications of expert systems (Feigenbaum, 
1980) the existence of an expert system is helping to identify 
the real knowledge used in the field—the kind of knowledge 
that is rarely found in textbooks. A program that cap- • 
tures some of it at least gives a concrete basis for comparing 
the methods of different experts. As Gaschnig has noted "-. 
(Gaschnig, 1982) it can also help a group to reach some form 
of consensus. The Dipmeter Advisor system has stimulated 
an examination of current dipmeter interpretation methods 
that promises to improve quality. 

• * 

System Development Tools 

We have discussed the utihty of flexible programming ,'{ 
environments and personed workstations in the development 1 
of expert systems. Powerful tools for creation, modification, j 
and meuntenance of knowledge bases and related code are : 
also especially helpful during the design and testing of ex
pert systems. In a sense, they are augmentations to the 
programming environment that further assist in the rapid 
prototyping approach. Such tools may also help in reduc
ing the necessity for a tool designer on every expert system \ 
development team. t 

In this section we describe a small set of development ; 
tools that we are finding helpful in our current expert system ^ 
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efforts. The tools are STROBE, a structured object program-, 
ming system, and IMPULSE, a display oriented knowledge 
base editor. They are described in (Smith, 1983a),(Smith, 
1983b), and (Schoen, 1983). 

In recent years, interest has been considerable in struc
tured object representation for the design of expert sys
tems. Within this framework, a programmer can encapsulate 
packets of knowledge emd link them together via a variety 
of relationships to form knowledge bases. Inheritance of 
properties through generalization hierarchies is standard. 

Programming with structured objects offers a number of 
advantages. From a conceptual point of view, it is helpful to 
organize computations around programming objects whose 
internal structure explicitly reflects that of objects in the real 
world and whose communication with each other is via mes
sages. It is also helpful to organize data structures according 
to taxonomic hierarchies and to distinguish between general 
classes of entity and specific individual entities. This style 
of programming encourages thought about the structure and 

interrelations between various packets of knowledge in a sys
tem. 

From a programming point of view, it is helpful to en
capsulate procedure definitions and data definitions. This 
process leads to modular code and helps prevent inap
propriate application of procedures. The behavior of an ob
ject in stereotyped situations is defined within the object it
self in a set of procedures specific to that object as opposed to 
being defined in a general procedure buried in an amorphous 
system. Inheritance of procedure definitions also enhances 
modularity and storage efficiency. It has the added benefit 
of simplifying the sharing of procedures. 

From an expert system point of view, structured objects 
help to capture what we might call automatic inferences—the 
kind of inferences that would otherwise be made by explicit 
rule application (Nilsson, 1980). For when a system built 
with structured objects discovers that some object belongs to 
a known class of objects, then it immediately acquires access 
(through inheritance) to the body of information already 
known about the class. 

Figure 8. Sample IMPULSE Editor Screen 
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STROBE is a system that provides object-oriented pro
gramming support tools for INTERLISP. A STROBE know
ledge base is made up of a number of interrelated objects. 
The characteristics of an object and its links to other ob
jects are encoded as a number of slots. The slots them
selves have structure—facets—that can be used for annotata-
tion. STROBE implements multiple resident knowledge 
bases, tangled generalization hierarchies, flexible inheritance 
of properties, procedural attachment, message-passing, and 
procedure invocation in conjunction with several types of 
data access and alteration. It offers a primitive foundation 
with which more complex structured object representation 
schemes can be constructed. 

IMPULSE provides a convenient user interface to STROBE. 
.\ user still expresses his knowledge in terms of STROBE con
structs, but interaction with the evolving knowledge bases 
and objects is via pointing and direct visual manipulation. 
IMPULSE enables concurrent editing in multiple contexts 
{e.g., having several object editor w-indows simultaneously 
active) and graphical displays of inter-object relationships. 
Figure 8 shows an IMPULSE screen during an editing ses
sion in which parts of the tectonic feature knowledge of the 
Dipmeter Advisor system are being updated. 

In addition to their utility to the builder/maintainer of 
knowledge bases, tools like STROBE/IMPULSE can assist in 
the transfer of expertise from domain expert through com
puter scientist intermediary to machine. One of the most 
useful roles played by the intermediary is to help provide 
a logical organization for the knowledge of the domain ex
pert. This assistance is typically provided via many interac
tions. For each interaction, the intermediary gathers some 
understanding of a portion of the expert's knowledge, en
codes it in a program, discusses the encoding and the results 
of its application with the expert, and refines the encoded 
knowledge. Discussion and refinement is facilitated when the 
knowledge is encoded in domain-specific terms and when it 
is presented in forms familiar to the domain expert. Our ex
perience with IMPULSE is that its abihty to simultemeously 
display different views of a knowledge base and its charac
teristic immediate feedback have enhanced interactions with 
our domain experts. 

The tools we have discussed are characteristic of the 
sort that an expert system development team can be ex
pected to use (and perhaps produce). Our focus has been 
tools for encoding structural relationships between packets 
of knowledge. They are typically combined with other tools 
that provide facilities for encoding £md invoking heuristic 
rules. Tools of this sort are described in the literature [e.g., 
OPS (Forgy, 1981), LOOPS (Bobrow, 1983), (Gorlin, 1981), 
and EMYCIN (VanMelle, 1981)] 

Conclusions 

The current Dipmeter Advisor system has provided sub
stantial demonstration of the feasibihty of using expert sys
tem techniques in commercial well-log interpretation. Addi

tional analysis and evaluation of the system will certainly 
further define the the strengths and weaknesses of its ap
proach. The experience gained to date has also helped to 
suggest characteristics of commercial expert system dcvelop*-
ment as well as properties of a development methodology-. 

We have found that incremental development of e.xpert 
systems within a rapid prototyping framework is a viable 
approach, ll has also been important to bear in mind from 
the beginning of a commercial expert systeni development 
effort that the system will eventually be used by people who 
are more sensitive to utility and performance than to the 
novel techiques that it may embody. 

Early engineering and field involvement are especially 
important in expert systeni technology transfer, given its 
relative immaturity and the scarcity of trained specialists. 
These people are also in a good position to ease the prob
lem of integration of expert system components into more 
traditional software systems. The notion of value-added 
systems—that include symbolic inference as part of an over
all package—is useful in ensuring field acceptance. 

A variety of skills are required for expert system devel
opment. These skills domain expertise, expert system tool 
design, knowledge engineering, and traditional progrcunming 
support. Not all of these skills are required throughout a de
velopment project, as it oscillates between domain knowledge 
expansion and redesign of the underlying framework. Fur
thermore, high-level development tools such as structured 
object representation languages and standard rule inter
preters can reduce the need for tool design. 

Finally, we have noted that the traditional wisdom of 
expert system development offers sound advice. Problems 
to be wary of are related to the seductive nature of a simple 
formalism and to the extended use of a single expert. 
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