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MODEL DESIGN IN THE PROSPECTOR CONSULTANT SYSTEM
FOR MINERAL EXPLORATION®
Richard Duda, John Gaschnig and Peter Hart

ABSTRACT )

Prospector is a computer consultant system intended to aid geologists in evalu-
ating the favorability of an exploration site or region for occurrences of ore
deposits of particular types. Knowledge about a particular type of ore deposit

is encoded in a computational model representing observable geological features
and the relative significance thereof. We describe the form of models in Pros-
pector, focussing on inference networks of geological assertions and the Bayesian
propagation formalism used to represent the judgmental reasoning process
of the economic geologist who serves as model designer. Following the initial
design of a model, simple performance evaluation techniques are used to assess
the extent to which the performance of the model reflects faithfully the intent
of the model designer. These results identify specific portions of the model
that might benefit from *fine tuning”, and establish priorities for such revisions.
This description of the Prospector system and the mode) design process serves
to illustrate the process of transferring human expertise about a subjective
domain into a mechanical realization.

I. INTRODUCTION

In an increasingly complex and specialized world, human expertise about diverse
subjects spanning scientific, economic, social, and political issues plays an
increasingly important role in the functioning of all kinds of organizations.
Although computers have become indispensable tools in many endeavors, we
continue to rely heavily on the human expert’s ability to identify and synthesize
diverse factors, to form judgments, evaluate alternatives, and make decisions —
in sum, to apply his or her years of experience to the problem at hand. This is
especially valid with regard to domains that are not easily amenable to precise
scientific formulations, i.e., to domains in which experience and subjective
judgment plays a major role.

The precious resource of human expertise is also a {ragile and transient one:
the departure of a crucial expert from an organization may cause serious dis-
locations; senior people impart their knowledge to younger colleagues, but the
demand for their talents may not leave sufficient time for such educational
efforts.

* This work was supported in part by the Office of Resource Analysis of the U.S. Geological
Survey under Contract No. 14-08-0001-1 5985, and in part by the Nonrenewable Resources
Section of the National Science Foundation under Grant AER77-04499. Any opinions,
findings, conclusions, or recommendations expressed in this publication are those of the
authors, and do not necessarily reflect the views of either the U.S. Geological Susvey o1 the
National Science Foundation.
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During recent years research in the field of artificidl intelliger.ce has produced
effective new techniques for representing empirical judgmental knowledge and
using this knowledge in petforming plausible reasoning. The best known appli-
cation of these techniques has been in the area of medical diagnosis, where
computer programs have achieved high levels of performance (Pople et al.,
1975; Shortliffe, 1976; Weiss et al., 1977; Yu, 1978, Szolovits, 1976). Other
applications include planning experiments in molecular genetics (Martin 1977)
and monitoring instruments in intensive care units (Fagan 1978). This paper
concemns a similar computer program, called Prospector, that is being developed
to help geologists in exploring for hard-rock mineral deposits. The characteristic
of plausible reasoning shared by the domains of medical diagnosis and mineral
exploration is common, to some degree, to many other diverse evaluation tasks
as well. Hence the purpose of this paper is to illustrate, by a case study for the
domain of mineral exploration, the general process of capturing and encoding
human expertise into a mechanical realization.

[I. OVERVIEW OF THE PROSPECTOR SYSTEM

The Prospector system is intended to emulate the reasoning process of an
experienced exploration geologist in assessing a given prospect site or region
for its likelihood of containing an ore deposit of the type represented by the
‘model he or she designed. Here we use the term “model” to refer to a body

of knowledge about a particular domain of expertise that is encoded into the
system and on which the system can act. The empirical knowledge contained

in Prospector consists of a number of such specially encoded models of certain
classes of ore deposits. These models are intended to represent the most authori-
tative and up-to-date information available about each deposit class.

In Prospector’s normal interactive consultation mode, the user is assumed
to have obtained some promising field data and is assumed to desire assistance
in evaluating the prospect. Thus, the user begins by providing the program
with a list of rocks and minerals observed, and by inputting other observations
expressed in simple English sentences. The program matches these data against
its models, requests additional information of potential value for arriving at
more definite conclusions, and provides a summary of the findings. The user
can ask at any time for an elaboration of the intent of a question, or for the
geological rationale for including a question in the model, or for an ongoing
trace of the effects of his answers on Prospector’s conclusions. The intent is
to provide the user with many of the services that could be provided by giving
him telephone access to a panel-of senior economic geologists, each an authority
on a particular class of ore deposits.

The performance of Prospector depends on the number of models it contains,
the types of deposits modeled, and the quality and completeness of each model.
Because the Prospector program is primarily a research project, its coverage
is still incomplete. It currently contains five prospect-scale models, one regional-
scale model, and one drilling site selection model. The prospect-scale models
consist of a Kuroko-ty pe massive sulfide model contributed by Charles F. Park, Ir.,
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a Mississippi-Valley-type carbonate lead/zinc model contributed by Neil Campbell,
a near-continental-margin porphyry copper model contributed by Marco T.
Einaudi, a Komatiitic nickel sulfide model contributed by Anthony J. Naldrett,
and a Western-states sandstone uranium model contributed by Ruffin I. Rackley.
The regional scale model is a variation of Mr. Rackley's model. The drilling
site selection model, for porphyry copper deposits, was contributed by Mr.
Victor Hollister, and differs somewhat from the other models: it derives its
inputs from digitized maps of geological characteristics, and produces as output
a color-coded graphical display of the favorability of each cell on a grid corres-
ponding to the input map. These models were selected for a variety of reasons,
including their economic significance, the extent to which they are well under-
stood scientifically, the availability of expert geologists who could collaborate
with us in the model development, and the new research issues that their im-
plementation would raise.

Each mode! is encoded as a sepatate data structure, independent of the
Prospector system per se. Thus, the Prospector program should not be confused
with its models. Rather, Prospector should be thought of as a general mechanism
for delivering relevant expert information about ore deposits to a user who
can supply it with data about a particular prospect or region.

This paper describes briefly the process of developing and encoding such
models {or Prospector. General overviews of the technical principles are given
in Hart, Duda and Einaudi (1978), mathematical aspects in Duda et al. (1976,
1978a), and detailed expositions in Duda et al. (1977, 1978b) and Hart, Duda
and Konolige (1978).

i1I.  FORMALISM FOR ENCODING EXPLORATION MODELS

A. Inference Networks of Assertions

For use in Prospector an ore deposit model must be encoded as a so-called
inference network, a netwosk of connections or relations between field evidence
and important geological hypotheses. Since we sometimes do not wish to distin-
guish between evidence and hypotheses, we shall refer to either one as an asser-
tion. To illustrate these ideas, we shall draw upon examples taken from M.T.
Einaudi's porphyry copper model, which we shall denote by PCDA. Typical
assertions in PCDA are ““Hornblende has been pervasively altered to biotite” and
“The alteration suggests the potassic zone of a porphyry copper deposit.” The
former would normally be thought of as field evidence, the latter as a geological
hypothesis. A small portion of the PCDA inference network is shown in Figure 1.
Here the terminal or “leaf”’ nodes correspond to field evidence asked of the user,
while the other nodes represent hypotheses. The text in the boxes in Figure 1 is
concise for reasons of graphical display; the actual questions asked of the user
are more definitive,

Although assertions are statement that should be either true or false, in a given
situation there is usually uncertainty as to whether they are true or false. Initially,
the state of each assertion is simply unknown. As evidence is gathered, some
assertions may be definitely established, whereas others may become only more
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or less likely. In general, we associate a probability value with every assertion.
The *“‘connections” in the inference network determine how a change in the
probability of one assertion will affect those of other assertions.

The principal or top-level assertion in an inference network for a model is the
assertion that the available evidence matches that particular model. To establish
this assertion, it is usually necessary to establish several major factors. For
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example, to establish the top-level assertion in PCDA, we must establish the
following hypotheses:

1. The petrotectonic setting is favorable for PCDA;

2. The regional evironment is favorable for PCDA,;

3. There is an intrusive system that is favorable for PCDA.

Were any of these assertions field-observable evidence, they could be established
merely by asking the user of the program whether they were true. However,
since all of these factors are hypotheses, each must be further related to other
factors. For example, the favorability of the petrotectonic setting can be estab-
lished through the following three factors, each of which happens to be deter-
minable (at least in principle) from observational evidence:

1. The prospect lies in a continental margin mobile belt;

2. The age of the belt is post-Paleozoic;

3. The prospect is subject to tectonic and magmatic activity related to

subduction.

In general, the ore deposit models in Prospector have this type of hierarchical
structure. The top-level assertion is determined by several major second-jevel
assertions, each of which may be determined by third-level assertions, with this
refinement continuing until assertions are reached that can be established directly
from field evidence. This is illustrated in Figure 1, which shows graphically that
portion of the PCDA model that describes the regional environment. In addition
to this “top-to-bottom’” development in terms of successive levels of assertions,
the models also often exhibit a “left-to-right” organization in terms of spatial
scale, from the petrotectonic setting on the left to the local details of mineral-
ization and texture on the right. Exactly how these considerations interact is
determined by the relations that exist among the assertions. The following
section explains the nature of these relations and illustrates their occurrence
in Figure 1,

B. Relations

Three basically different kinds of relations are used in Prospector to specify how
a change in the probability of one assertion affects the probability of other
assertions. We distinguish these as logical relations, plausible relations. and
contextual relations.

). Logical Relanons. With logical relations, the truth (or falsity) of a hypo-
thesis is completely determined by the truth (or falsity) of the assertions that
define it. Such relations are composed out of the primitive operations of con-
junction (AND), disjunction (OR), and negation (NOT). When several assertions
must all be true for a hypothesis to be true, the hypothesis is the conjunction of
the assertions. When the hypothesis is true if any of the assertions is true, the
hypothesis is the disjunction of the assertions. Negation merely complements
an assertion, interchanging truth and falsity. As an example of a logijcal relation,
the PCDA model says that alteration of plagioclase is indicative of the barren-
core zone if

- apoce

e e e



MobetL DesIGN IN PROSPECTOR / 339

1. Plagioclase has been altered to
a. albite
or
b. minor sericite (or both)
and
2. Plagioclase has not been altered to major epidote. -
Other examples of logical relations are shown in Figure 1.

Of course, in general we do not know whether the assertions are true, but
can only estimate a probability or degree of belief that they are true. With logical
relations, to compute the probability of a hypothesis from the probability of its
component assertions we employ the fuzzy-set formulas of Zadeh (1965). Using
these formulas, the probability of a hypothesis that is defined as the logical
conjunction (AND) of several pieces of evidence equals the minimum of the pro-
bability values corresponding to the evidence. Similarly, a hypothesis defined as
the Jogical disjunction (OR) of its evidence spaces is assigned a probability value
equal to the maximum of those values assigned to the evidence spaces. One
property of this procedure is that it often gives no “partial credit.” In particular,
if all but one of the assertions have been established, but the user can not even
guess about the last, then the probability of their conjunction often remains at
the value it had when the states of none of the assertions were known. This may
be the appropriate conclusion. When it is not, one has the option of using plaus-
ible relations.

2. Plausible Relations. With plausible relations, each assertion contributes
“votes” for or against the truth of the hypothesis. This would be expressed by
relating the assertions to the hypothesis through a set of plausible inference rules.
Each rule has an associated rule strength that measures the degree to which a
change in the probability of the evidence assertion changes the probability of the
hypothesis. This change can be positive or negative, since as assertion can be
either favorable or unfavorable for a hypothesis. As with all parts of a mode!,
these rule strengths are obtained by interviewing an authority on the correspond-
ing class of ore deposits. Initially he may express the strengths in verbal terms,
such as “rather discouraging™ or “very encouraging.” This is ultimately translated
into numerical terms (as shown in Figure 1), the changes in probability being
computed in accordance with the rules of Bayesian probability theory, as
outlined below and described in detail in Duda et al. (1977).

Prospector’s plausible reasoning scheme is based on Bayesian decision theory
(Raiffa, 1968), exploiting an elementary theorem of probability known as
Bayes’ rule. For our purposes, the so-called *odds-likelihood™ form of the rule
is most convenient. This form relates three quantities involving an evidence
assertion E and a hypothesis assertion H: the prior odds O(H) on the hypothesis,
the posterior odds O(H | E) on the hypothesis, given that E is observed to be
present, and a measure of sufficiency LS. Then Bayes’ rule can be stated as

O(H| E) = LS * O(H) (N

Odds and probabilities are freely interchangeable through the simple relation

0 =P /(1 — P), where P denotes probability, and hence P =0 / (1 + O). The suffi-
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ciency measure LS is a standard quantity in statistics called the likelihood ratio,
and is defined by

_P(E|H)

" P(E|~H) @

where ~H means “not H.”

Equation (1) prescribes a means for updating the probability (or odds) on
H. given that the evidence E is observed to be present. An inference rule for
which LS is large means that the observation of E is encouraging for H — in
the extreme case of LS approaching infinity, E is sufficient to establish H in
a strict logical sense. On the other hand, if LS is much less than unity, then
the observation of E is discouraging for H, inasmuch as the observation of E
diminishes the odds on H.

A complementary set of equations describes the case in which E is known
to be absent, that is, when ~E is true. In this case, we can use Bayes' rule to
write

O(H | ~E)=LN * O(H) 3)
where
P(~E | H) ,
= 4)
P(~E | ~H)

The quantity LN is called the necessity measure. If LN is much less than
unity, the known absence of E transforms neutral prior odds on H into very
small posterior odds in favor of H. In the extreme case of LN approaching
zero, E is logically necessary for H. On the other hand, if LN is large, then
the absence of E is encouraging for H.

Hence to define an inference rule

IF E

THEN (todegree LS,LN) H,
the model designer must articulate E and H, and must supply numerical values
for LS, LN, and O(H). i

In general, the user may not be able to state that E is either definitely present
or definitely absent. In this case, the updating formulas (1) and (3) cannot be
applied directly, but can be extended to accommodate the uncertainty in the
evidence. The extension used in Prospector involves a linear interpolation
between the extremes of E's being definitely present or definitely absent.
See Duda (1976, 1977) for details. The user expresses his certainty about E on
an arbitrary =5 to 5 scale, where S denotes that the evidence is definitely present,
—§ denotes that it is definitely absent, O indicates no information, and intes-
mediate values denote degrees of certainty.

We illustrate this plausible inference scheme with examples taken from
Figure 1. The two numbers associated with each inference rule in Figure |
are its LS and LN values, respectively. The number appearing above each box

i o § i
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representing a nonterminal node is the prior probability of that assertion’s
being true. For example, the figure indicates that the existence of stocks is a
more highly sufficient indicator of “suggestive morphology of igneous rocks”
(i.e., LS= 300) than is the existence of either dikes, intrusive breccias, or volcanic
plugs (i.e., LS = 75, 20, and 4, respectively). Similarly, “favorable level of
erosion” (FLE) is a highly sufficient and highly necessary factor for establishing
“favorable regional environment™ (i.e., LS = 5700 and LN = 0.0001), whereas
the existence of a “preintrusive throughgoing fault system” (OTFSYS) is only
mildly sufficient and mildly necessary for establishing “favorable regional
environment.” Hence the positive (LS) or negative (LN) votes of FLE are
weighted much more heavily than those of OTFSYS.

The section of the model concerned with establishing “suggestive morphology
of igneous rocks’ (SMIR) illustrates how logical and plausible relations can be
combined as building blocks to accomplish the intent of the economic geologist
designing the model. This section of the PCDA model can be described as
follows. “There are four positive indicators for establishing a suggestive mor-
phology for igneous rocks (SMIR), namely intrusive breccias, stocks, dikes,
and volcanic plugs. Each of these factors contributes independently to estab-
lishing SMIR, although to differing degrees. The absence of any one of these
four factors individually is unimportant [i.e., LN = 1 for those rules| . However,
if it is known that none of these factors is present [implying that the disjunction
node SMIRA is false], then the probability of a suggestive morphology of
igneous rocks is essentially zero [LN = 0.0002 for SMIRA].” In defining an
inference network for a model, the object is to induce the model designer to
articulate such statements, and then to translate the statements into network
constructions.

To see how the eifect of a piece of evidence propagates upward through
the model, suppose that the user has indicated only that intrusive breccias are
present, but this is definite. This fact multiplies the odds of SMIR by a factor
of 20, hence raising its probability from 0.03 to 0.382. (The prior odds on
SMIR are .03 /(1 —0.03) =0.030927, giving posterior odds on SMIR equal to
20 * 0.030927 = .61855, which corresponds to a probability of 0.61855 /
(1+0.61855) = 0.382.) This in turn increase the odds on HYPE by a factor of
300 weighted by the degree to which SMIR has increased from its prior pro-
bability, i.e, by the factor 300 * (0.382-0.03) / (1-0.03) = 108.866. Hence
the posterior probability of HYPE is 0.52373, which in tum increases the odds
of FLE by a factor of 200 * (0.52373-0.01) / (1-0.01) = 103.78, giving a
posterior probability for FLE of 0.34276. The propagation continues in this
manner upward through the network.

It should be noted that Prospector expresses its conclusions to the user
on the same ~5 to 5 certainty scale that the user employs to express his certainty
about evidence requested by the system. Prospector maps internal probability
values to external certainty scores in a piecewise linear fashion, such that the
posterior certainty is proportional to the difference between the posterior
probability and the prior probability. For example, since the prior probability of
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FLE is 0.005, a posterior probability of 0.34276 corresponds to a posterior
certainty of 5§ *(0.34276-0.005) / (1-0.005) = 1.697. Similarly, a posterior
probability of 0.001 corresponds in this case to a posterior certainty of 5 ¢
(0.00! -~ 0.005)/0.005 = —4. See Shortliffe (1975) for a description of the
subjective certainty scale used in the MYCIN medical diagnosis system.

3. Contexmal Relations. It sometimes happens that assertions cannot be
considered in uss arbitsary order, but must be considered in a particular sequence.
For example, one should determine that there is a relevant continental margin
mobile belt before considering its age. This is more than a matter of preference,
since it would be meaningless for the program to ask about the age of a non-
existent belt.

To treat such situations we employ the third class of relations, contextual
relations. In general, we use contexts to express a condition that must be estab-
lished before an assertion can be used in the reasoning process. In the above
example, the existence of a continental margin mobile belt would be specified
as a context for asking about the age of the belt. Thus, before inquiring about
the age, the system would employ all its resources to establish the existence
of the belt, and would not ask about its age unless the probability of the belt
were greater than its injtial value.

Contextual relations are also used when one assertion is geologically signifi-
cant only if another assertion has already been established. In such instances it
would not be nonsensical to ask the former question without first establishing
the latter, but it is the case that the former evidence is geologically irrelevant
without the latter to establishing a match to the model. Two such instances
are depicted by dashed arrows in Figure 1. In one of these instances, the entire
“favorable regional environment™ section of PCDA model will not be pursued
unless it has first been determined that there are granitic intrusives in the region.

fV. OVERVIEW OF THE MODEL DEVELOPMENT PROCESS

Although the development and encoding of a model for Prospector is not a
routine process, it does progress through several distinct phases whose general
nature can be described. The four most important phases are summarized below.

A. Initial Preparation

Model development is a cooperative enterprise involving an exploration geologist,
who is an authority on the type of deposit being modeled, and a computer
scientist who understands the operation of the Prospector system. The first step
in developing a model is one of introducing the exploration geologist (model
designer) to the inference network formalism, and introducing the computer
scientist (model implementor) to the general nature of the class of deposits
being modeled. In particular, this includes the identification of several known
deposits that should fit the model well, and several known deposits that may fit
partially, but that lack certain important characteristics. These specific cases
help to establish the various factors that must be taken into account.
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B. Initial Design

The initial design of the inference network is the most creative phase of the pro-
cess. It requires the identification of the various assertions, the organization of
the assertions into a hierarchical structure (as illustrated in Figure 1), the deter-
mination of the types of relations (logical, plausible, and contextual) that exist
among assertions, and the estimation of values for the parameters (the voting
strengths and initial probaoilities). The magnitude of this task depends upon the
size and complexity of the model being developed; as a point of reference, the
smallest model currently in Prospector contains 28 assertions and 20 inference
rules, while the largest contains 212 assertions and 133 inference rules. The
initial design is usually facilitated by considering factors in the “top-down’ and
“left-to-right” sequence described earlier. Delicate refinement is best avoided at
this time, since subsequent revision often causes significant sections of the model
to be reorganized, enlarged, or otherwise modified.

In addition to the connections between assertions exhibited directly by the
inference network, there are connections that exist because of the geological
meaning of the assertions. For example, the statement that there are sulfide
minerals is obviously related to the statement that there is pyrite in quartz veins;
assertion of the latter implies the former, and denial of the former denies the
latter. Recognition of such connections within a model avoids redundant or foolish
questioning; recognition of such connections between different models allows
the program to consider more than one deposit class at a time. Prospector can
automatically recognize many of these assertions if each assertion is properly
articulated. This articulation, which is described in more detail in Duda (1978b),
should also be completed during the initial design.

C. Installation and Debugging of the Model

At the end of Phase B, the model exists in a “pencil-and-paper” form. To be
incorporated into the program, the encoding must be given a formal description.
This is done through the use of a model description language (see Duda, 1978b).
The details of this language are not particularly important here. However, the
task itself is important; upon its completion the program can be run, and acci-
dental blunders or bugs can be corrected. In addition, the program can produce
a questionnaire for the model that is useful in gathering data for subsequent
testing and revision.

D. Performance Evaluation and Model Revision

Given the questionnaire data for a number of actual deposits, it is possible to
make a serious quantitative evaluation of how well particular deposits match the
model. In ourexperience, this evaluation inevitably exposes various shortcomings
of the model as encoded, requiring revision of the work done in Phases B and C.
Some care must be exercised here to avoid “overfitting” the medel to the data.
In general, the goal is to produce a model that can discriminate different types
of deposits without losing the ability to generalize, so as to allow for the vari-
ations one would expect in new situations. Achievement of that goal currently
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remains as much an art as a science. The following section describes in some
detail the use of simple performance evaluation techniques as an aid to refining

~a model.

V. USE OF PERFORMANCE EVALUATION IN REFINING A MODEL

To demonstrate that the performance of an expert knowledge-based system is
(or is not) comparable to that of the experts it emulates, it is useful to subject
the system to an appropriate objective evaluation. The simple performance
evaluation experiments reported in this section serve several purposes: (1) to
provide an objective, detailed, quantitative measure of the current performance
of a model; (2) to pinpoint those sections of the model that are not performing
exactly as intended, thereby establishing priorities for future revisions; (3) to
assess consistency of performance across different exploration sites.

We now evaluate a mode! for a class of porphyry copper deposits (PCDA)
designed by Prof. Marco Einaudi of Stanford University. Input data were avail-
able for three test cases, namely, the known deposits called Yerington (Nevada),
Bingham (Utah), and Kalamazoo (Arizona), each of which is considered an
exemplar of the PCDA model.2 On the -5 to 5 certainty scale described earlier,
the overall certainty scores computed by Prospector are 4.769 for the Yerington
deposit, 4.721 for Bingham, and 4.756 for Kalamazoo, indicating a good match
of these sites to the PCDA model.

To show performance in detail, we give below the hierarchical structure of
the major sections of the PCDA maodel. Included at the right in this enumeration
is the total number of questions that may be asked by Prospector for each of the
major sections of the model, thus showing the relative distribution of these
questions. (The questions in the FAMR section may be asked several times
during a consultation session, once for each geographically distinct zone within
the prospect area. Each such zone has relatively homogeneous geological charac-
teristics, as determined by the user.)

Total Number of Questions Defined
in PCDA Model (Version 2)

Porphyry Copper deposit, type A (PCDA) 81
Favorable petrotectonic setting (FPTS) 4
Favorable regional environment (FRE) 9
Favorable PCDA intrusive system (FPCDAIS) 68

Favorable composition in differentiated sequence 4
(FCDS)

Favorable intrusive system (FIS) 9
Favorable alteration and mineralization relations

(FAMR) 56

2The questionnaire input data used in the present tests are reported in
Duda et al.. 1978b, pp.185-93.
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As a calibration exercise, Prof. Einaudi offered a target value for the certainty
score that should be assigned to each of the three deposits for each of the major
components of the model listed above, based on the values in the input data
set for each prospect site. The target values are given either in the form of a
single number (on a —5 to S scale), or as two numbers establishing an upper and
lower bound on a certainty interval. The estimates are listed in Table 1 on the [eft
for each site in tum, with the scores as determined by execution of Prospector
recorded on the right. (We informed Prof. Einaudi of the values on the right
only after he had given us those on the left.)

Yerington Deposit

Name of Model Node

Einaudi’s Estimate

Prospector Score

PCDA
FPTS
FRE
FPCDAIS
FCDS
FIS
FAMR

451050
45t05.0
45
45t5.0

5
5
451050

4.769
4.528
4.540
4.787

4.524
4.744
4.225

Bingham Deposit

Name of Model Node

Einaudi’s Estimate

Prospector Score

PCDA
FPTS
FRE
FPCDAIS
FCDS
FIS
FAMR

45
35140
40t04.5
45t05.0

5
5
4.0

4.721
4.449
4.829
4.729

2407
4.744
4.225

Kalamazoo Deposit

Name of Model Node

Einaudi's Estimate

Prospector Score

PCDA
FPTS
FRE
FPCDAIS
FCDS
FIS
FAMR

40to 4.5 -
40t04.5
3.5
4.5t05.0
5
5
4.0

4.756
4.449
1.784
4.791

4.722
4.744
4.225

Table 1. Prospector Scores for Several Levels of the PCDA Model

(Version 2)
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The data in Table 1 show that Prospector scores each of these sections of
the model with high certainty for each site, with the exception that model
node FCDS for the Bingham deposit and model node FRE for the Kalamazoo
deposit are scored somewhat lower. In most cases shown in Table 1 Prospector
agrees very closely with Prof. Einaudi’s estimate. These conclusions can be
expressed quantitatively by first identifying the values in Table 1 with a concise
notation, then defining a simple formula for the relative error of Prospector in
predicting Prof. Einaudi’s estimates. Thus:

Let C(X, Y, Z) = Certainty score given to model node Z by agent X for site

Y, .
where X denotes either Prospector or Einaudi

For example, C(Prospector, Yerington, FPCDAIS) = 4.787. When Einaudi
gave an interval of certainty values instead of a single value, we use the mid-
point of the interval as the value of C. Then an error measure is given by

C(Einaudi, Y, Z) — C(Prospector, Y, Z)
C(Einaudi, Y, Z)

For example, E(Yerington, FPCDAIS) = (4.75 — 4.787) / 4.75 = —0.008, meaning
that Prospector’s prediction is accurate to within 0.8% in this case. Since Table |
gives values for seven nodes of the model for each of three known deposits, we
can compute the value of E for 21 different instances. For 5 of the 2] data

points Prospector predicted Einaudi's estimate to within 1%, while 15 of the

21 data points show agreement to within 10%. The grand average over the 2]

data points is 10.3%. For convenience, we list these 21 values of E in Table 2,
expressed as percentages.

E(Y,Z) =

. Average of
Yerington Bingham  Kalamazoo Absolute Values

PCDA -3% -49% -119% 5.7%
FPTS 4.7 -18.6 -4.7 93
FRE -9 -13.6 49.0 21.2
FPCDAIS -8 4 -9 v

FCDS 9.5 519 5.6 223
FIS 5.1 5.1 5.1 5.1
FAMR 11.1 5.6 5.6 7.6
Average of
Absolute values: 4.1 14.3 11.8 10.3

Table 2. Relative Error (E) of Prospector Scores as Predictors of Einaudi’s
Estimates (derived from data in Table 1) _ '

Inspection of Table 2 indicates that efforts to revise the PCDA model should
focus on the FRE and FCDS sections. When such revisions are completed, an
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updated version of Table 2 will indicate the extent to which the revisions achieved
the objectives that motivated them.

The small number of cases tested, and the fact that all the present test cases
are exemplars of the PCDA model, and the fact that the model designer himself
supplied the input data concerning the test cases, are limitations; the present
tests are more necessary than sufficient conditions for good performance. Despite
these limitations, the preliminary results reported here have proved useful in the
ongoing model refinement process. More extensive performance evaluation results
are reported in Duda et al. (1978b).

VI. REMARKS

This paper has outlined the typical procedures used to develop an exploration
model for the Prospector system. We have described the inference network and
Bayesian propagation scheme underlying Prospector models, and we have illus-
trated the use of simple performance evaluation techniques in “fine-tuning” a
model systematically. Our experience indicates that the model design process
inherently requires feedback. Although different problem solving domains
differ in many details, we believe the process of constructing Prospector-like
plausible reasoning systems follows certain general patterns and stages of develop-
ment such as are described here. Hence we have presented a concrete case study,
in the domain of mineral exploration, that may credibly suggest what might be
expected in attempts to apply a similar methodology to other domains of
expertise.

Besides the running program, there appear to be several other benefits to
this type of expert system approach. The model design process challenges the
model designer to articulate, organize, and quantify his expertise. Without
exception, the economic geologists who have designed Prospector models have
reported that the experience aided and sharpened their own thinking on the
subject matter of the model. In addition, most of the geologists we know who
have had experience with Prospector have remarked about its potential value
as an educational tool. In this regard, the models in the system contain explicit,
detailed information synthesized from the literature and the experience of
expert explorationists, together with explanatory text that can be obtained
upon request. Furthermore, a typical consultation session with Prospector
costs only about $10 at current commercial computer rates.
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P.O. BOX 1625, IDAHO FALLS, IDAHO 83415

September 6, 1984

Dr. Mike Wright

UURI/ESL

391 Chipeta Way, Suite C
Salt Lake City, UT 84108

EXPERT SYSTEMS READING MATERIAL - BWD-5-84
Dear Mike:

I enjoyed meeting you yesterday to discuss expert systems applications

in geology. As promised, I'm sending you some additional reading material,
along with a reading guide to help you budget your time. The enclosed
material will augment the papers you already have in providing background
information for your discussions with Marshall Reed.

Very truly yours,

D

Brent Dixon
Advanced Methods Branch

ts
—e7l7

Enclosures: —_—
As Stated
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October 15, 1984

Marshall Reed

Forrestal Building

1000 Independence Ave. S.W.
CE 324 5HO81

Washington, D.C. 20585

GEOTHERMAL "EXPERT" SYSTEM WRITE-UP - RAM-64-84
Dear Mr. Reed:

Enclosed is a brief write-up describing the potential advantages for e
geothermal "expert" system. We have been working for several years in
house at EG&G developing a capability in expert systems and I believe
geothermal is an ideal application for this concept. 1 have discussed the
idea with Mike Wright, Sue Prestwich and Clay Nichols and they all agree
geothermal is a good application. ‘

Mike indicated he has talked with you about the concept and that you were
interested. Some of our people with expertise in expert systems will be
in Washington on November l4th and 15th., If you are interested, they
would be glad to stop by your office and give you a more complete
presentation on the background of expert systems and our ideas for their
use in geothermal systems. '

If you have any questions, give me a call at 526-9688.

Sincerely,

1‘ ‘714/7 /
o Jrl Aea TR
’J. H. Ramsthaler
Hydropower/Geothermal Programs .

ks

Enclosure:
As Stated

S. M. Prestwich, DOE-ID
M. Wright, UURI
J. 0. Zane, EG&G Idaho (w/o Enc.)
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GEOTHERMAL EXPERT SYSTEM

s

The Problem: . ]
Geothermal. exploration and site development require integration
of expert1se from the fields of geology, geochemistry, geophysics,
and reservoir engineering. Typically, a team of experts from each
field are brought together. to interpret the data. The results can
vary, depending on the true level of expertise of each member, biases
of the team leader toward a particular field, "political” biases, and
variances in human performance versus potent1a1. Even with the same
data, two teams (or one team on two occasions) will derive different
conclusions on million dollar decisions. A case in point is the Bacca
geothermal project in New Mexico: Using the same data the exploration

team was 8 for 8 on successful wells while the development team was
0 for 8.

Expert Systems:

Expert systems are an application of artificial intelligence research
in which computer programs are designed to mimic the problem solving
methods of human experts. Human experts tend to solve problems by
using "hunches" and "rules of thumb" developed from their many years
of experience. Expert systems use this same approach, using logic
and heuristics to make educated guesses when necessary, to recognize
promising approaches to problems, and to deal effectively with erroneous
or incomplete data. Expert systems consist of a "knowledge base" containing
thumb rules, along with control and user interface programs. The rules
are "taught" to the system by human experts, much like they would groom
an apprentice. For example, a geothermal rule might look like this:

IF The target area contains several thermal springs, and
The spring discharge temperatures vary, and
The spring discharge rates vary, and
Geothermometers indicate an at-depth temperature x, and

The spring geochemistry correlation with temperature x
is high,

THEN  Increase the‘confidence level of the geothermometers.
The actual building process consists of repeated teaching and testing.

Expert systems are capable of documenting their reasoning process,
both from the aspect of how a piece of data will be used and, later,
how a solution was obtained. They are consistent, thorough, and won't
become susceptible to biases or boredom. Because of the modularity
of their programs (the rules), they can easily be changed to reflect
changes in the state-of-the-art in their field.



Geolog1c Expert Systems:

Geology is a good expert system problem domain- because it is an
ever-changing field with few governing equations, lots of uncertainty,-
"high data acquisition costs, and a small number of truly expert people.
A number of geologic expert systems have been built to date to help
disseminate the know]edge of these rare experts, including:

PROSPECTOR - a mineral exp]orat1on expert system which uses surface
geology and well logs-to f1nd ore bodies,

WAVES - an oil exploration expert system which interprets seismic
data,

DIPMETER ADVISOR - & specialist in modeling strata from dipmeter
logs,

DRILLING ADVISOR - a drilling trouble-shooter which diagnoses
problems and recommends both preventative and corrective measures.

The Geothermal Expert System:

A geothermal expert system could be used to locate unknown fields,
find drilling sites within known fields, aid in field development,
or aid in the actual drilling. The actual problem to be targeted would
depend on need and the availability of experts. Ideally, the system
would be designed and built and then turned over to the private sector
for additional training and "maintenance" (in a changing field such
as geology a system must remain current to be of use?. Required personnel
would include experts in each required discipline, knowledge engineers
(people who design expert system internals and aid in their training),
and support staff. A proposed implementation plan is as folliows:

Phase 1 -- Select target problem (field location, site selection,
: field development, drilling aid, etc.)

Build and assess prototype for selected problem
1 year, $200K

Phase 2 -- Train and test system -
2 years, $400K/yr

Phase 3 -- Final system polishing -
Technology transfer
1 year, $400K

Phase 4 -- Transfer complete, consultation support -
1 year, $100K



FY-85 Geothermal Expert System - Phase 1

Target Problem Selection -~ . o 20K

A target problem within the geothermal arena will be chosen based on.
-discussions with field experts; potential users, and the program management.
The selected problem must be addressable by expert system technology,
experts must be available, and the solution of the problem must be
non-trivial and useful to the potential end user.

Expert Team Selection 15K

Individual personnel with acknowledged expertise in the required fields
will be contacted and a system training team formed. The team will

meet to draw up the initial scope of the system and the basic knowledge
structure will be mapped out.

Expert System Software Selection 25K

The system internal requirements will be developed by the knowledge
engineers based on the problem scope and knowledge structure. The
requirements will be compared against the capabilities of commercially
available expert system building tools. Either a tool will be acquired,
or in-house tool development will begin.

Prototype Development 125K

The expert team will develop rules and a seed knowledge base will be
buitt. A set of test problems will be developed and the expert team
will begin the test and train loop. The knowledge engineer will provide
guidance in rule composition, hybridize the building tool as required,
and search the knowledge base for holes and inconsistencies.

Prototype Demonstration and Assessment 25K

Toward the end of the year development will be stopped and a demonstration
of the system held for program management. At this time the system
will be assessed and the development effort redirected as needed.



DEFINTTION:

EXAMPLES :

EXPERT SYSTEMS

A COMPUTER PROGRAM WHICH USES EXPERT KNOWLEDGE
AND INFERENCE PROCEDURES TO SOLVE LOGIC
PROBLEMS.

o CAN ACT AS INTERMEDIARY BETWEEN AN EXPERT
AND A USER OF THE EXPERTISE TO MAKE THE
EXPERTISE MORE WIDELY AVAILABLE.

MEDICAL DIAGNOSIS

DATA ANALYSIS (ec. ReacTOR AccIDENT DiAcNOSIS)
DESIGN PROBLEMS

PROSPECTING

LAW CONSULTANT




.ARTIFICIAL INTELLIGENCE VS. NATURAL INTELLIGENCE

Al
PERMANENCE
EAase oF DupLIcATION

Less EXPENSIVE

CONSISTENT AND - THOROUGH -

DOCUMENTABLE

UNINSPIRED

TAILORED KNOWLEDGE

SymBoLIc INPUT

NARROW Focus

PERISHABLE

APPRENTICESHIP

Can Be CostLY

ERRATIC

DiFFIcuLT TOo REPRODUCE OR RECALL
CREATIVE

LEARNS

Uses SENSORY DATA As WeLL As SymBoLs

Use Wibe CoNTEXT oF KNOWLEDGE
(CoMMON SENSE)



EXPERT SYSTEMS FOR
RESOURCE EXPLORATION

PROSPECTOR:

DIPMETER ADVISOR:

WAVES:

HYDRO:

DRILLING ADVISOR:

AN EXPERT SYSTEM THAT EVALUATES
SITES FOR POTENTIAL MINERAL DEPOSITS

AN EXPERT SYSTEM THAT ANALYZES
INFORMATION FROM OIL WELL LOGS

AN EXPERT SYSTEM THAT ADVISES ENGINEERS
ON THE USE OF SEISMIC DATA ANALYSIS
PROGRAMS FOR OIL INDUSTRY

A COMPUTER CONSULTATION SYSTEM FOR
SOLVING WATER RESOURCE PROBLEMS

AN OPERATIONAL EXPERT SYSTEM FOR
DIAGNOSING OIL WELL DRILLING PROBLEMS
AND RECOMMENDING CORRECTIVE AND
PREVENTIVE MEASURES



PROSPECTOR
DEVELOPED AT SRI

AIDS GEOLOGIST IN EVALUATING THE MINERAL POTENTIAL OF A SITE
OR REGION

ACCEPTS FIELD OBSERVATIONS, PROVIDES FINDINGS AND REQUESTS

- ADDITIONAL INFORMATION

’

INTENDED TO PROVIDE SERVICES LIKE TELEPHONE ACCESS TO A PANEL
OF SENIOR GEOLOGISTS, EACH AN AUTHORITY ON A PARTICULAR CLASS
OF ORE DEPOSITS

INCLUDES MODELS FOR PORPHYRY COPPER AND MOLYBDENUM DEPOSITS,
SANDSTONE URANIUM DEPOSITS, KOMATIITIC NICKEL, SULFIDE DEPOSITS,
MASSIVE SULFIDE DEPOSITS AND MISSISSIPPI VALLEY-TYPE CARBONATE
LEAD/ZINC DEPOSITS



DIPMETER ADVISOR
DEVELOPED BY SCHLUMBERGER-DOLL RESEARCH
EMULATES HUMAN EXPERT PERFORMANCE AT DIPMETER INTERPRETATION

DIPMETER MEASURES CONDUCTIVITY OF ROCK AS IT GOES DOWN A DRILL
HOLE--DATA USED TO CHARACTERIZE WELL



PROPOSED GEOTHERMAL EXPERT SYSTEM

e WouLD DRAW FROM MANY SOURCES OF KNOWLEDGE

— GEOLOGISTS

— GEOCHEMISTS

= GEOPHYSICISTS

— RESERVOIR ENGINEERS

® BEST CONFIGURATION CAN’T BE PREDICTED AHEAD OF TIME

® IMPLEMENTATION PLAN

PHAsE 1 - FEASIBILITY STUDY, BUILD PROTOTYPE -
1 vear, $200K

PHASE 2 - TRAIN AND TEST SYSTEM -
2 YEARS, $400K/YR

PHASE 3 - FINISHING WORK, TECHNOLOGY TRANSFER -
1 vear, $400K

PHASE U4 -

TRANSFER. COMPLETE, CONSULTATION SUPPORT —
1 vear, $100K '



R1 Revisited:
Four Years in the Trenches

Judith Bachant

Intelligent Systems Technology Group
Drgital Equipment Corporation
Hudson, Massachusetts 01749

Abstract

in 1830, Digital Equipment Corporation began to use a rule-based
eeszem called R1 by some and XCON by others to configure VAX-
11 cemputer systems. In the intervening years, Rl's knowledge has
invrwased substantially and its usefulness to Digital continues to grow.
This article describes what is involved in extending R1’s knowledge base
nest evaluates R1's performance during the four year period.

IN THE SUMMER 1981 ISSUE of the Al Magazine, an
article entitled “R1: the formative years” described how a
rul~based configurer of computer systems had been devel-
#pedd and put to work (McDermott, 1981). At the time that
aricle was written, R1 had been used for only a little over
:l?‘:ar and no one had much perspective on its use or use-
-iiness. R1 has now been configuring computer systems for
wver four years. This experience has provided some insight
Iito the ease and difficulty of continuing to grow an expert
::?ﬁf‘;em i a production environment and into the kind of per-
*TMmAnce expectations it might be reasonable to have about
@ vurrent gencration rule-based system.

The approach R1 takes to the configuration task and the

£ o m

A targe number of people have played critical roles in R1's development.
'uxmﬁ :Ose »'vho deserve special mention are John Barnwell, Dick

*0- Ren Gilbert, Keith Jensen, Allan Kent, Dave Kiernan, Arnold
Dennis O’Connor, and Ed Orciuch. We want to thank Allen
O’Connor, and Ed Orciuch for their helpful comments
T drafts of this article.

“atuin

LS

AN -
“ecll, Dennis
M enrlie

John McDermott

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15218

way its knowledge is represented have been described else-
where (McDermott,1980) and (McDermott, 1982). Briefly,
given a customer’s purchase order, Rl determines what, if
any, substitutions and additions have to be made to the or-
der to make it consistent, complete, and produce a num-
ber of diagrams showing the spatial and logical relationships
among the 50 to 150 components that typically constitute a
system. The program has been used on a regular basis by
Digital Equipment Corporation’s manufacturing organiza-
tion since January, 1980. R1 has sufficient knowledge of the
configuration domain and of the peculiarities of the various
configuration constraints that at each step in a configuration
task it is usually able to recognize just what to do; thus it
ordinarily does not need to backtrack when configuring a
computer system.

At the beginning of R1’s development, no clear expecta-
tions existed about how long it would take to collect enough
knowledge to make R1 an expert. We did expect that at some
point the rate at which R1 would acquire new knowledge
would at least slow, if not stop. We even thought that
R1 would be done eventually (that is, R1 would enter a
maintenance mode of well-defined and minor additions, in-
terspersed with occasional bug fixes.) It is difficult now
to believe R1 will ever be done; we expect it to continue
to grow and evolve for as long as there is a configuration
task. It may be that if R1l’s domain were less volatile,
Rl would not require perpetual development. But it is
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R1’s Growth

Figure 1.

probably also true that if the’domain were less volatile, the
task would not require a knowledge-based system.

The early expectations about R1’s performance were
likewise vague, except just as R1 was beginning to be used,
a Digital employee responsible for the configuration process
predicted that for R1 to be useful, 90% to 95% of its
configurations would have to be perfectly correct. This per-
formance goal is interesting, not so much because R1 took
three years to reach it, but because it turned out to be com-
pletely wrong. R1's task is just one small part of a process
designed to ensure that high quality computer systems are
built. Significant redundancy exists in the process precisely
because historically no individual has both known enough
about configuration and been able to pay close enough at-
tention to each order to be entrusted with the total respon-
sibility. R1 was able to provide significant assistance even
when it knew relatively little because the people who used R1
did not demand more of it than of its human predecessors.
The one definite performance expectation almost everyone
had about Rl in its early days was that it would always
configure the same set of components in the same way. It
is obvious now and should have been obvious then that this
expectation could have been satisfied only if R1 had been
discouraged from becoming more expert. '

These expectations about R1’s developmental and per-

-~
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the next section, the focus will be on the kind of involvement
required to extend R1's knowledge base. The final section’s
focus will be on the kinds of erroneous behavior R1 has ex-
hibited. g

R1’s Developmental History

This section provides a somewhat anecdotal trip through
R1’s past. Although it mentions the first year, when most of
the activity was at Carnegie-Mellon University [CMU], the
primary focus is on the four following vears, after R1 began
to be used at Digital. When CMU handed over the initial
version of R1 to Digital in January 1980, Digital scrambled
to put an organization in place that could continue its de-
velopment. This organization, currently known as the Intel-
ligent Systems Technologies group, began with only five in-
dividuals, none of whom had any background in Al. Over the
past four years, the group has grown to 77 people responsible
for eight different knowledge-based systems, one of which is
R1. As Rl was developed, an attempt was .made to effect
a division of labor between those people responsible for rep- (&
resenting R1’s knowledge and those responsible for collect- %
ing and validating that knowledge. Of the initial technical. ‘2%
people, one was an engineer who played the roles of both ¥




" a domain expert and of an interface to other domain ex-
rts outside the group; the other three people took the
* knowledge collected by the engineer and formulated it so it
was compatible with R1’s other knowledge. When the or-
ganization was a little over two years old the technical group
., had grown to eight people, five of whom were responsible for
encoding the knowledge collected and validated by the other
three. The size of the R1 technical group is still about eight.
Now, however, less of a distinction exists between the people
responsible for knowledge encoding and those responsible for

e knowledge collection.

The Knowledge R1 Acquired

Over the past four years, the amount of effort devoted
to adding knowledge to R1 has remained relatively constant

"~ at about four worker-years per year. And R1’s knowledge

has grown at a relatively constant rate, though the focus has
" ghifted around. At times the task of eliminating inadequacies
in R1's configuration knowledge has received the most atten-
tion: at other times, the group’s energies have been directed
primarily at broadening R1’s abilities in various ways. Figure
1 shows the rate at which R1's knowledge has grown; the
points in time at which R1 became able to configure new sys-
tem types are marked. Figure 1 does not show the amount
of product information to which R1 has access. This infor-
mation, which is stored in a data base, is a critical part
of the body of information needed to configure a computer
svstemn correctly. Rl retrieves the description of each com-
ponent ordered before it begins configuring a system; while
configuring the system, if it determines some piece of re-
quired functionality is missing, it searches the data base for
components that will provide that functionality. -R1 currently
has access to almost 5500 component descriptions. We do
not have good data on the rate at which the data base has
grown, but what data we have suggest the growth rate is
quite irregular.

In this article, R1’s growth is measured in number of
rules. The following values hint at the amount of knowledge
an Rl rule contains. The average conditional part of one
of Rl’s rules has 6.1 elements (the minimum number is 1
and the maximum 17). Each element is a pattern that can
be instantiated by an object defined by as many as 150 at-
tributes. On the average, a pattern will mention 4.7 of those
attributes (the minimum is 1 and the maximum 1) and
restrict the values which will satisfy the pattern in various
wars. The tests are mostly simple binary functions that
determine whether some value in the object has the specified
ritiationship to some constant or to some other value in that
©r another object. The action part of an average rule has 2.9
elernents (the minimum is 1 and the maximum 10). Each
tlement either creates a new object or modifies or deletes
in existing object. A rule can be applied when all of its
“ondition elements are instantiated.!

—

(¥ P . .
‘l”“’ additional information about the nature of R1's rules as well as
those of other systems written in OPS5, see (Gupta, 1983).

Work on R1 began in December 1978. During the first
four months, most of the effort was on developing an ini-
tial set of central capabilities. The initial version of R1 was
implemented in OPS4, a general-purpose rule-based language
(Forgy, 1979). By April, R1 had 250 rules. During the same
period, a small amount of effort was devoted to generating
descriptions of the most common components supported on
the VAX-11/780. After this demonstration version of R1 had
been developed, most of the effort during the next six months
was divided between refining those initial capabilities and
adding component descriptions to the data base; in October
1979, R1 had 750 rules and a data base consisting of 450 com-
ponent descriptions. During the following six months, little
development work was done on R1 either at Digital or CMU
because the main focus was on defining a career path for R1
within Digital. But beginning in April 1980, three months
were spent at CMU in rewriting the OPS4 version of R1 in
OPS5 (Forgy, 1981). Given that the knowledge was already
laid out in the OPS4 version, a variety of generalizations
emerged and the resulting system, though more capable, had
only 500 rules.

By the end of 1980, R1 had 850 rules, most of which
were added by people at CMU to provide R1 with additional
functionality; the primary focus at Digital during the second
half of 1980 was on adding component descriptions to the
data base and providing a group of people with the skills
to take over the continued development of R1. Most of the
work on R1 since early in 1981 has been done by people at
Digital. By March 1981, the group at Digital had extended
R1 so it could configure VAX-11/750 systems. During the
remainder of 1981, most of the group’s effort was focused
on refining R1’s knowledge of how to configure VAX-11/780
and VAX-11/750 systems. In 1982, the focus changed to ex-
tending R1 to cover more systems. While some effort was
spent in improving Rl's performance, substantial effort was
spent in extending its scope. By March, a few months be-
fore the VAX-11/730 was announced, R1 was able to configure
VAX-11/730 systems, and by July, R1 was able to configure
PDP-11/23+ systems. At that point, R1’s knowledge base
consisted of about 2000 rules. The remainder of 1982 and the
first few months of 1983 were devoted primarily to refining
that knowledge. At that point, a concerted effort was made
to extend Rl1’s capabilities so it could configure all the sys-
tems sold by Digital in significant volume. When that task
was finished in November 1983, R1 had about 3300 rules
and its data base contained about 5500 component descrip-
tions. While a significant amount of time will continue to be
devoted to extending R1's capabilities to cover new systems
as they are announced, effort will also be spent in continuing
to deepen R1's expertise in the configuration domain.

As Digital has become more dependent on Rl1, it has be-
come increasingly important that R1 be highly reliable. Thus
substantial attention has been paid to the question of how to
combine the demands of reliability with those of continuous
development. Early on, little attention was paid to formaliz-
ing the developmental process; as problems were reported,
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NUMBER AVERAGE AVERAGE AVERAGE PERCENT OF NUMBER

OF RULES RULES PER NUMBER RULE KNOWLEDGE OF PARTS

SUBTASK OF PARTS FIRINGS FREQUENTLY IN THE

ORDERED USED DATABASE

THE INITIAL R1 777 7.6 88 1056 11% 420
THE CURRENT R1 3303 10.3 T 1064 47% 5481
VAX-11/785 2883 9.8 163 2654 24% 3308
VAX-11/780 2883 9.8 171 1925 31% 3398
VAX-11/750 2801 9.7 111 1300 29%, 2915
VAX-11/730 2810 9.7 85 1141 20% 2189
VAX-11/725 2788 9.7 34 622 8% 1981
MICROVAX-1 1516 7.3 34 546 18% 1430
MICRO-PDP11 1516 7.3 44 546 18% 1828
PDP-11/23+ 1516 7.3 49 608 20% 1894
PDP-11/24 2786 9.7 43 567 13% 1763
PDP-11/44 2786 9.7 43 733 15% 1764

A comparison of the initial and current versions of R1.

Figure 2.

individuals would collect the needed knowledge. add it to the
system, and depending on the press of other problems, do
more or less testing to determine that the overall capability
of the system -had not worsened. As time passed, the de-
velopmental process acquired substantially more structure.
Planned release dates are now preceded by extensive testing
of the system.

The article describing the initial version of R1 (McDer-
mott, 1982) provides some insight into the nature of R1’s
knowledge by presenting a variety of measurements. Figure
2 compares the measurements from the initial version of R1
with corresponding measurements from the current version.
Since a significant amount of the knowledge in the current
version is specific to just a subset of the system types it can
configure, Figure 2 provides the measurements for system-
specific configurers as well as for the union of those config-
urers. Until recently, instead of a single version of R1 that
could configure all system types, there was a version of R1 for
each system type. Each of these versions consisted of a set of
from 50 to 100 rules specific to a system type and two much
larger sets of rules; it shared one of these rule sets with all of
the other system types and the other with the system types
having the same primary bus. About 300 of the shared rules
were themselves specific to just one of the system types; each
of these rules was included with the shared rules because it
was relevant to a shared subtask.

Rl's rules are grouped together on the basis of the
subtask to which they are relevant; the “number of rules”
column displays the total number of rules available to R1
in performing the configuration task, and the “average num-
ber of rules per subtask” column displays the mean number
of rules in a group. The 3303 rules the current R1 has is
the union of the rules of each system-specific configurer; the
10.3 ruies per subtask is the union of the groups of rules the
system-specific configurers bring to bear on a particular task.
The “average number of parts ordered” column displays the
number of components R1 has to configure. This number
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is significantly larger than the number of components listed
on a purchase order since those line items actually refer to
bundles of configurable components.

The numbers in the “average rule firings” and “percent . %

of knowledge frequently used” columns are based on small
sets of runs. For the initial RI, the numbers camne from run-
ning R1 on 20 typical orders. For the current R1, the num-
bers came from running each system-specific version of R1
on about 20 orders of comparable complexity. The “average
rule firings” column shows that substantially more is done
in configuring a VAX-11/780 order now than was done ini-
tially; almost twice as many rules are applied. Two factors
contribute to this increase. The configuration task has been
enlarged by definition (i.e. there is now more to do), and
second, there has been an increase in the average number of
components per order.?

The “percent of knowledge frequently used” column
shows what percentage of the rules are used at least once
in at least one of the sample runs. Thus for the initial R1,
44% of the 777 rules were applied at least once over the 20
sample runs, and for the current R1, 47% of the 3303 rules
were applied at least once over the approximately 200 sample

runs. The fact that a substantial fraction of R1’s knowledge

is used only rarely is, of course, just what we would expect

of a knowledge-based system. But the percentages for the *

system-specific versions are somewhat misleading. We would %

expect the percentage for each version to be lower than the : %

overall percentage because each was run on only about 20

orders. However, because each version has knowledge that

is not relevant to its tasks, the percentages for the versions
are lower than they otherwise would be. The percentages for
the VAX-11/780, the VAX-11/750, and the VAX-11/730 are
the most accurate, but even they are too low by several per-

centage points. Since the nature of the knowledge used by .

20n the average, 1.67 VAX-11/780 cpu minutes are required to
configure an order.




_each version is quite similar, it is likely that the percentage
of the knowledge frequently used by each is pretty much the
same—somewhere between 35% and 40% .

_ About 65% of the 2526 rules added to R1 since 1980
extend Rl1’s general configuration capabilities; only about

35% of the rules are specific to a single system type. Of the

65% at least 15% were added to correct or refine knowledge of

- how to perform some subtask. This lower bound is suggested

i by the fact that the “average number of rules per subtask”
. - jncreased by 30% during the past four years (1.e., about 230

" rules were added to the groups of rules applicable to the

f * " gubtasks the initial R1 knew how to perform); adding a rule

to the group applicable to some subtask is almost invariably
done to correct or refine the knowledge of how to perform
" that subtask. The 15% is a lower bound because as the
knowledge required to perform some subtask grows, it may
become evident that what was viewed as a single subtask
can be viewed as two or more simpler subtasks; what we
do not know is how much the average number of rules per
subtask would have grown if this subtask splitting had never
occurred.

The Kinds of Changes R1 Has Undergone

As it turned out, the task of developing R1 had just
begun when it was first put into use. In this section, we
“attempt to give a flavor of the kinds of changes that have
been made to R1 over the past four years by examining a few
examples in some detail. OQur primary purpose in examining
the growth of R1’s knowledge is to better understand what
is involved in adding knowledge to such a system. We can
identify four reasons why knowledge was added to Ri:

e To make minor refinements (adding knowledge to
improve R1’s performance on an existing subtask);

o To make major refinements (adding the knowledge
required for R1 to perform a new subtask);

e To extend the definition of the configuration task in
significant ways.

Ordinarily when people talk about why knowledge is
added to an expert system, they seem to have the first reason
in mind. As we have seen, of the more than 2500 rules
added to R1 during the past four years, the data in Figure
2 suggest that more than 10% have been added to make
minor refinements, fewer than 40% have been added to make
major refinements, at least 35% have been added to provide
r'lnccionality needed to deal with new system types. and
Perhaps as many as 15% have been added to extend the
definition of the task in significant ways.

Minor Refinements. A knowledge addition of the first
trpe is required when R1 cannot perform some subtask that
' was thought to be able to perform. For example, over the
Yeiars R1 has made several errors involving the placement
of backplanes in boxes. One instance of such an error has
10 do with a backplane’s location. In one variety of a 24
stot box, because of power considerations, a backplane is

not permitted to cover slot 10. R1 knew that if it covered
slot 10 when placing a backplane, it needed to move that
backplane toward the back of the box so the backplane’s front
edge would be in slot 11. RI’s knowledge was incomplete
because it did not know it had to move any previously placed
backplane from the front of the box toward the middle so
that its back edge would be in slot 9. This backplane has to
be moved toward the middle because leaving a larger space
between the two backplanes would mean the standard cable
used to connect backplanes could not be used (since it is not
long enough). Fixing R1 was a straightforward task, but it
required a certain amount of creativity (z.e., it was not just
a matter of “adding some more domain knowledge.”) What
R1 lacked was any notion of “deliberately vacant space.”
In order to provide rules that could recognize situations in
which blank space was inappropriately positioned, R1 had
to have the concept of blank space and an understanding of
how to make a note that a particular space had been left
blank on purpose. Given this, it was straightforward to add
a few rules that recognized when some piece of blank space
was inappropriately located and swap it with a backplane.

Major Refinements. A knowledge addition that results
in a major refinement to R! can be made in two kinds of
situations: when R1 does not have any knowledge about how
to perform some subtask, and when its knowledge of how to
perform some subtask becomes so tangled that ways need
to be found of representing the knowledge more generally.
Brief examples of both situations are presented below; in the
following section we provide a more lengthy analysis of one
attempt to rewrite a set of rules, initiated almost purely to
increase generality and understandability.

Most of the modules R1 configures on a UNIBUS consist
of one or more boards that plug into backplanes which go
in boxes. If multiple boards are required, they are usually
placed next to each other in the same backplane. A situation
unfamiliar to R1 arose when a module was designed with
boards on two buses. Its first board was to be configured
in an SPC backplane while the three remaining boards were
to be configured in a special backplane that had to be lo-
cated in the same box as the first board, but not in the same
backplane. One way of extending Rl to handle this new
component would have been to use a look-ahead strategy;
R! would have checked for space, power, and cabling con-
straints on the special backplane before configuring the first
board. An alternative would have been a simple backtrack-
ing strategy. The approach R1 actually took involved a com-
bination of both look-ahead and backtracking. Rl applies
the same rules it uses for other modules to configure the
first board; a few special rules then try to foresee abstract
constraint violations involving the rest of the boards. If a
problem is found, the first board is unconfigured. If no con-
straints are violated, power and space are reserved for the
remaining boards.

Early in R1's history, only two types of panels needed to
be considered. A few rules were sufficient to guard against
the possibility of trying to configure two panels in the same
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space in a cabinet. Templates were used to describe panel
placement possibilities; the rules recognized when some par-
ticular space was already occupied and avoided that space.
As Digital introduced new products the situation became
increasingly complicated until five different types of panels
as well as disk drives and boxes could potentially occupy
the same space with differing degrees of overlap. Because
the original approach required all possible conflicts to be
enumerated, it became increasingly unwieldy as the prob-
lem grew in complexity. The new solution involved redesign-
ing the templates so the information they contained could
be manipulated by a small number of more general rules
and by making minor changes to the action parts of about
60 already existing rules that dealt with cabinet space deci-
sions. This strategy worked well for about a year until Digital
redesigned its cabinets to comply with new FCC regulations.
At that point, the templates became too unwieldy because of
the sheer number of possible individual locations; since the
redesign also eliminated most of the irregularities of the pre-
vious problem, it became possible to simplify the templates
and keep track of potential conflicts with a few very general
rules.

New System Types. Providing R1 with the functionality
it needed to deal with new system types has constituted a
significant portion of the development effort. Since major
configuration differences exist among the various buses sup-
ported by different CPU types, it was not clear initially
how much configuration knowledge is common across sys-
tem types. When a VAX-11/750 configurer was developed,
the VAX-11/780 configurer was used as a model, but the
knowledge bases were initially completely separate. Once
the VAX-11/750 configurer had enough knowledge to be use-
ful, it was merged with the VAX-11/780 configurer. On the
other hand, the VAX-11/730 configurer was integrated, from
the beginning of its development, with the older R1; the new
version was developed by creating a small knowledge base
(consisting of about 100 rules) specific to the VAX-11/730,
adding some rules specific to the VAX-11/730 to the common
knowledge base, and generalizing several of the rules in that
common knowledge base. This approach worked well for the
VAX-11/730, but when we turned our attention to the PDP-
11/23+, we reverted to the approach we had used for the
VAX-11/750. Several factors were involved in this decision.
R1, up to this point, knew only of VAX-11 systems, which
are UNIBUS and MASSBUS based, while the PDP-11/23+ is
based on the LSI22 bus. The rules for configuring these buses
have little in common. Moreover, the PDP-11/23+ supports
a variety of operating systems, requires a completely different
paneling structure, and assumes different power and capacity
characteristics for its boxes and backplanes. Since the PDP-
11/23+ is quite dissimilar to the VAX-11 systems, a separate
version of R1 was developed for this task. Each of the sub-
sequent system configurers was integrated with either the
VAX-11 or the PDP-11/23+ system (depending on whether
" it had a UNIBUS or a LSI22 bus). Recently, it was decided
that in a production environment, it would be advantageous
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to have one single system; by April 1984, all of the syste,
configurers had been merged. Future system type additiohs‘
will be part of this single version of R1 from the beginning--
of their development.

Adding the knowledge required to deal with new systen,
tvpes is non-trivial even when the new type is quite similar ¢,
tvpes R1 already knows how to configure. Part of the effort of -
extending R1’s configuration capabilities to cover a new typ, .
is due simply to the added amount of knowledge. For eacl
of the types, we have had to add a great deal of data to ths ..
data base as well as make extensive rule changes and addi.
tions. Many of the decisions involve how to represent the new
knowledge in the rules, but new data base representations
are sometimes also required. The full extent of the effort
varies, depending on the degree of similarity between the -
added system type and the types R1 can already configure,
When there is a high degree of similarity, the form in which -
the existing knowledge is represented provides substantial ’
guidance for how to represent the new knowledge. When the
new system is quite dissimilar, substantial amounts of design
are required.

Extending the Task Definition. As Rl1's role in Digi--
tal’s manufacturing process has evolved, knowledge has been ~
added to Rl that extends the definition of its task. For
example, R1 was extended in January of 1983 to handle
“multiple-CPU” orders. Rl was originally designed to deal
with orders containing a single CPU. But multiple-CPU or-
ders have become increasingly common, especially with the

advent of smaller system types where multiple identical sys- . £

tems and/or several different systems on the same order are

the norm. Part of the challenge of extending the definition

of Rl's task involves finding a way to realize some new
capability that does not require extensive modifications tg -
R1. In this case, we avoided the temptation of trying to ;
modify R1 to configure multiple, loosely coupled systems
simultaneously. Instead, a few new rules (originally about-
10) were written to group the components into individual
svstems; each system was then configured in turn. Changes -;
had to be made to 5 existing rules that determine what to
configure and what order.information to save; a few external §
initialization and output routines also had to be modified.
The hard part was determining how R1’s task definition
could be extended most simply.

A substantial change to R1 in July of 1982 modified it to
deal with a different categorization scheme for components. -
The component descriptions had been developed exclusively -
for R1 and were tailored to the configuration task. As Digital "}

developed other knowledge-based systems for other purposes, ¢

it became desirable to have a common data base, where
the components were categorized in a less ad hoc fashion.
Before R1 could use the new descriptions, nearly all of its

rules (about 2000 at the time) had to be changed, and for ,"‘:

several hundred of these rules, the task of reformulation took
considerable thought.

While the difficulty of making changes of any of the four
types we have just described is highly dependent on the na-




ture and scope of the knowledge that needs to be added, it
also appears to be dependent on the amount of knowledge the
" system already has. In the early days, when R1 was small,
people who joined the project were able, reasonably quickly,
to acquire enough of an understanding of the configuration
task and of R1’s approach to it to become competent devel-
opers. But now that R1 has grown substantially, its sheer
magnitude seems to serve as a barrier to the would-be devel-
_oper. It takes much longer now for someone who joins the

‘4 ~ - group to gain an adequate understanding of how R1 does

v configuration.

A Change over the Years

To provide another view of R1’s development, we have
“analyzed the changes in R1's knowledge for two closely re-
" lated tasks. One of the tasks involves deciding what back-

" plane should hold the next set of modules. The other is a

subtask that may or may not be performed depending on
what the backplane selection possibilities are. The decision
of what backplane to configure next is constrained by the
pinning type of the modules, the space and power available
for them, the current length of the bus and its loading, and
the number and mix of backplanes that have been ordered.
- A good backplane choice is one that minimizes the number
of additional components that have to be added, while satis-
fving all the constraints. The subtask is performed if the
- pinning type of the next module to be configured is SPC. In
this case, two different sized backplanes could be used, so R1
must do some analysis of the implications of selecting each.
Figure 3 shows how R1’s knowledge of these tasks has devel-
oped; the development can be viewed as a series of minor
refinements, followed by a major refinement.

In December 1980, R1’s knowledge of how to perform
the two tasks consisted of 36 rules, 23 rules for the selection
task and 13 rules for the subtask. In October 1983, R1’s
knowledge consisted of 73 rules, 54 for the selection task and
19 for the subtask. During the intervening three years, 40
rules were added, 3 rules were eliminated, and 11 rules were
changed. This alteration is consistent with the knowledge-
based approach, where the initial instinct is to solve a prob-
lem by adding more knowledge. It suggests that the rules
¢ventually formulated are for the most part adequate, but
that it takes a long time to collect the relevant knowledge.
The fact that only 11 rules were changed may be a little
misleading since 27 of the added rules were special cases of
eXisting rules, implying that the conditional part of many of
the unchanged rules were inadequately discriminating. Of
the rules that were changed, the changes were almost all in
the conditional part and were in the direction of making the
rules increasingly discriminating.

In October 1983, one of the people working on Rl ob-
Served that if R1 were given more knowledge of how to assess
the likely implications of various decisions, it would need to
backtrack even less often. In the course of reworking this
Capability, the number of rules remained constant, but the

12/15/80 10/15/80 12/15/80
TOTAL RULES 36 73 73
Rules Added 40 31
Rules Deleted 3 31
Rules Changed 11 32
Condition Elements Added 11 8
Condition Elements Deleted 1 72
Condition Elements Changed 15 40
Action Elements Added ' 1 5
Action Elements Deleted 0 8
Action Elements Changed 1 13

Two sample subtasks

Figure 3.

level of expertise improved dramatically. Of the rules in
the October version, 31 were eliminated and, coincidentally,
31 were added; of the remaining 42 rules, 32 were changed.
Again, this alteration is what we might expect of a situation
in which a capability is being substantially extended. When
the knowledge is all laid out and it is clearer what other
pieces of knowledge are relevant to the task, it becomes more
obvious how to represent the knowledge cleanly. In this case,
the biggest change was the elimination of condition elements.
This happened because it became clear that the rules were
too constraining; that is, the rules had typically been added
to deal with a particular error, and so the October version
had a small set of overly general rules (from the initial ver-
sion) and several more overly specific rules. Seeing all the
knowledge laid out made it possible to hit the right level of
specificity.

Conclusions about Growth

The following conclusions purport to provide guidance to
the developers of any knowledge-based application system.
We are of course not at all sure what aspects, if any, of the
experience with Rl at Digital will turn out to be typical.
It seems reasonable to believe, however, since R1's task is
knowledge-intensive, that the experience with R1 relating to
the rate at which it has acquired knowledge and the difficulty
of adding that knowledge will at least have relevance to other
attempts to put knowledge-based systems to work on real
tasks.

Even though the experts claimed in 1979 that R1 had
most of the knowledge it needed, a great deal of knowledge
has been added to R1 over the past four years. There is no
more reason to believe now than there was then that R1 has
all of the knowledge relevant to its configuration task. This,
coupled with that fact that R1 deals with an ever-changing
domain, implies its development will never be finished. Thus
users of svstems like R1 will have to be emotionally prepared
to interact with a less than perfect program. They will have
to be as forgiving of ignorance in these expert systems as
they are of ignorance in humans who are ever becoming more
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expert.

Though much of R1's knowledge was added to correct
.or complement existing knowledge, a significant part of the
additions came as aresult-of R1 having to have the knowledge
to perform new tasks. Some of these were the result of Di gital
introducing new computer systeni types and the rest resulted
from the usérs® observations that things would be better if R1
could do one more thing. 'We believe all expert systems will
be hounded to continue to grow for both of these reaspns.

Tasks that expert systems are good for are just those whose
Moreover, in such

.objects change significantly over time.
tasks no clear boundaries delimit what should and should
not be within the province of the expert. Thus, whenever an
expert system finds itself on a boundry, its public encourages
it to extend the boundary.

Situations arise in which the task of adding a piece.

of knowledge is extremely straightforward bécause the new
knowledge needs to bé représented and used in virtually the
saitie way as the system’s existing knowledge. But, for the
most part, adding a piece of knowledge involves some amount
of creativity. In domains other than configuration (or at
least. in diagnostic as opposed to constructive tasks) domain
knowledge appears to. be substantially more regular and can
be added routinely. Significant, but as yet undiscovered,
regularities in configuration knowledge may "exist that will
someday allow it to be added more: easily. But for now, it
is important to at least be open to thé possibility that 4
knowledge-based system will forever have to be surrounded
by people who know how to do development. They will be
called upon to bie innévative and adaptable: Although it may
be the case that adding knowledge incrementally is easier
than rewriting or modifying a traditional program, by no
meang can this task be done w:thout substantia] amounts of
problem solving.

It was clear beforé R1 was a year old that the incremental
addition of knowledge resulted in a system with a significant
aniount of redundancy and a penchant for ad hocery. To the
extent that adding knowledge to the system involves human
intervention, this general lack of cleanliness and conciseness
provides -an obstacle to the system’s further development.
Few expert.systems are Tikely to be redeveloped (as R1 was

in 1980, but not since). However, we suspect that from time.

to time, some part of every expert system’s knowledge will
become so convoluted that its developers will take the time
to re-represent that knowledge.

R1% Performance

Before R1 began to be used, each system Digital received
an order for was confizured by a technical editor, typi-
tally on the day before the system was to be assembled
and tested. The technical editor examined each.order to
determine whether configuration constraints, required addi-
tional or different components and then specified some of the
relationships. armong the components on the order. Though
the task was performed at  fairly high level of abstraction, it
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each order it configured.

seldom togk fewer than 5 or 10. minutes to configure an order,
and complex orders tosk sibstantially more timé. When Rl
began t6 be uséd, it essentially became a ‘technical editg, -
But since it was not clear initially how well R1 was going Lo w
do as.a technical editor, some of the people' who had beey, '
technical editors stayed to watch over R1. In efféct, they be..
came R1's mentors. Every order configured by R1 has beey - sﬁ
examined, more or less closely, by a mentor and if the mentoy:
believed the configuration was lacking in any respect, he o .,
she reported the problem to the Rl development group. :

Although R1 i an eéxpert system in the sense that the . i
body of knowledge it uses to perform the configuration task s W
acquired by human experts over a period of years, its task ig
different from the task that used to be performed by the tech. *
nical editors because R1 configures systems at a sig‘niﬁcant}y
greater level of detail than they did. Because its task is.,
more extensive, it is hard to answer the question: Does Ri
do as well at the technical editing task as human experts do? -
The task Rl actually performs is- the.old technical editing .
task plus part of the task performed by the techinician who
physically assembles the system (sincé the technician has to
descend to R1’s level of detail to do his job}. But the tech-
nician’s gituation is different from R1's in that the technician ¥ &
has the physical components that need to be assembled and =
tested in front of him and can discover when components
are missing or misconfigured in more direct ways than are
available to R1. Thus we have not tried, in this article, to '’}
compare Ri's performince with that of the-human experts. "
The closest we come to examining that relationship is with ‘
the bogus; problems category. A bogus problem is ‘one that '
a human gxpert reperis-as an Rl error, but that on further :
examination turns out £6 have been a fatlure on the part of
the expert to appreciat€ cérrectness. :

The data presented-in this part of thie article leave some-
thing to be desired; part of the problem is that it was not’
tlear, at any point during the past four years, how frequently .
RI’s performance needed to be sampled. Since knowledge- -
based systems continue to be. developed incrementally as
they are used, it was obvious that collecting pcrformance '
data would be an ‘integral part of usirig the system. It was .. §
also clear that the more data that were collected, the better -
we would understand the extent to which R1's knowledge was
icomplete. But 4ll that is really required to drive the devel-
opmiéntal process is enough data to give the peaple collecting
and encodinn Rl’s knowledge plenty to do Since finding in- ;

aLt.e.:ntmn was given t;o the task of ext,endmg and reﬁnmg Rl
than to the data collection task. As a result, there .are a
few periods, in two cases extending for months, in which the’
data we have are incomplete. For the most part, however,
we have some information about how well R1 performed on

Even if we had information about each order RI config- -1;,'5
ured, our data would still be unsatisfactory because our un- - &
derstanding of how to collect the relevant data has grown °

slowly. Since people who have the responsibility of review- ' ;;



ing each of R1’s configurations havé little understanding of
how R1 doés what it does and where and how it can err,
v they can only report error manifestations. Devising a process
that makes it fairly straightforward to link manifestations to
causes (s, for example, the number of instances of each er-
ror type can be determined) took some time. Initially the

pwcess used paper and pencil. A second issue, then, was
7~ how to design a program that could assist with the data
coilection task. Because it took time to devise such a pro-
gram (a lot of time since it had low priority), a significant
part of our task has been to reconstruct, from incomplete
escriptions of error manifestations, what, the actual errors
were. We feel relatively confident in the overall results, but
sure a number of minor inaccuracies exist.

: Before present.mg the performance data, we need to
fiscuss briefly how “percentage of totally correct orders”
c¢ame to be accepted early ds the mietric for measuring R1's
performance. The problem with this metric, of course, is
that it does not discriminate between terrible. performance

,: ('g-arga.ntuan errors) and near perfect performance (tiny, al-
¢ -most :ns:gmficant errors). In retrospect, it is clear that hav-
g ;mg some idea of the.seriousness of each error would be help-
il in evaluating R1. But when R1 first started to be used, it
7" 4vas with the expectation that thiere were only a few things
jf it did not yet know, and the only question in people’s minds
s was how many weeks it was going to take before, R1 knew
1 verything, Within that context, it is not at all surprising
"Ehat‘ the all or nothing metric was selected; anything else
[ would have seemed too fine-grained.

© ¢ Some Performance Data

Flgure 4 provides a detailed account of R1’s performance
.‘ over the past four years. The information is presented by
c ’quarter beginning in January 1980 and ending in Decem-
“her 1983. Threée major problem categories exist: tule prob-

~ lems, data base problems, and other problems. For rule and
.for data base problems, as well as for total pmblems the
mrcentage of orders ‘containing that type of error is given.
Within each category, information is provided about one or

. more subcategories. For each subcategory, the number of
.Problem instances as well as the nuimber of distinct ‘prob-
11:"“—: Is reported. The total problem instances percent gives
4 sense of R1's: -uséfulness. Howéver, sincé most errors R1 now
“irakes are minor, its output, even if there are problems, can
m‘-i‘-“y be used, though sometirnes only after a bit of editing.
he dmmct. problems percent in the parts and rules subto-
al givey a sense of R1's conipetence; this measure shows the

« Mutiiber of distinct errors R1 has made due either £o misding

i
: incorrect configuration knowledge or to missing or incor~
e

“t camponent descriptions. Few, we think, would want to

“i5im that Ry was'a competent conﬁgurer durmg its first year

“; use: but for the past two years, its lack of knowledge has.
0 well within the bounds of respectability. Thé number

o
Probleny instances divided by number of distinct problems

problem during all four years.

gives an indication of how many times a problem occurs be-
fore it-is fixed.

The mast significant improvemeént in R1 has come in
the percent of problems attributable to missing or incor-
réct rules. While missing or incorrect domain knowledge
has never been the most significant source of problems, it
is now the case that fewer than one in a.thousand orders
is misconfigured because of rule problems. One might ask
{though we hope only in jest) how after four years R1 can
have any missing or incorrect domain knowledge. There are
at least two answers. First, even though R1 has configured
more than 80,000 orders, it has seen only a small fraction
of the situations it could possibly encounter. Second, new
products are sometimes announced before RI acquires all
the knowledge it needs to be able to configure those mew

products correctly.

Probiems with parts have been much more troublesome.
Incorréct part descriptions Rave never been much of a prob-
lem; but missing part descriptions have been a significant
During the first two years
R1 was used, the reason it was sometimes given systems to
configure containing components not described in its data
bdse had mostly to do with thé fact that the peéople respon-
siblé for -adding part descriptions to the data base were not
the right, people. It was assumed initially that the component
descriptions could be created by people who knew a lot about
the camponents, but.knew little about how R1 would use the
descriptions. As it turned out, ereating useful descriptions
is not ‘all that straightforward. It often is not cléar what
“configuration level” means, not clear what attributes are
required, and not clear what knowledge to put in the rules
and what in the data base. In order to know what informa-
tion a description should contain, i is necessary to know
liow the information is going to be used. In-order to know
how the information is going to be used, it is necessary to
know something about the component. After trying various
strategies for making the middle-men more productive, the
responsibility for creating descriptions‘was taken over by the
people who encode the configuration knowledge in rules.

This change would have solved the missing part descrip-
tions problem were it not that at about that time, the
number of orders R1 was configuring’ per quarter began
to “increasé substantially. As a consequence, the number
of different parts ordered grew significantly. -Since R1 has
descriptions. of only 5,500 of the more than 100, ;000 parts
that could appear en-an order, and since the rate at which
the as yet> undescribed parts appear on orders is very low,
the deévelopment group adopted the strategy, for low volume
parts, of waiting unti! thé part shows up on an order before
adding its description to the data base: This policy is less
cavalier than it may seem since when one of these low volume
parts does showup on an order, it usually turns out, to be
a part that is'not-itself configured (e.¢., software or an ac-
cessory). Thus.dlthough any configuration mentioning a part
R1 does not know about is-counted as a problem, most of the
time those configurations can be used without modification.
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The problems not really under the control of Rl's
developers—operational problems, controversial issues, desired

o enhancements, and bogus problems—have always been a

. gignificant part of the problems reported. During the first

_year and a half, a very large fraction of the problems were

operational; a number of factors, each by itself not very
significant, conspired to separate R1 from its user com-

* munity. During 1983, the number of bogus problem reports

ew to become a highly encouraging (from R1’s point
of view) fraction of the total problem reports; from July

" . through September, the number of bogus problem reports
. was actually double the number of rule problem instances,

and during the other three quarters the number of bogus
problem reports was about half the number of rule problem

instances.
Figure 5 presents some of the information from Figure 4

" in graphical form. The relationships among “total orders”,

“otal problem instances”, “total distinct problems” and
“ryle problem instances” are depicted. The “total orders”
measure provides a context within which the error measures
can be understood. The “total problem instances” measure
provides a lower bound on Rl’s usefulness. The area under
that curve indicates the number of orders for which RI’s
output was possibly not useful; however, as we have seen, in
most cases the output could be used, though sometimes only
after being modified. The “total distinct problems” measure
provides a lower bound on R1’s competence. The area under
that curve indicates the number of different kinds of situa-
tions R1 did not deal effectively with. The “rule problem in-
stances” measure indicates the extent to which R1's failures
were due to its ignorance of the domain.

Conclusions about Performance

As in the previous section where some conclusions about
growth were presented, the following conclusions purport to
provide guidance to the developers of any knowledge-based
application system. Since the conclusions we offer here are
not very startling, it is quite likely that they have some
general validity. All they really contain is the notion that
when Al tools confront real tasks, the world is not going to
abediently conform to all of the hopes of the tool maker. The
real world treats Al tools with the same disrespect with which
it treats all other tools and thus a great deal of the effort of
bringing Al systems into regular use on real tasks involves
doing things that do not have any special relationship to
AL What undoubtedly makes matters worse for Al tools is
that the problems they are used to solve are ordinarily more
Open than the problems traditional software tools typically
Address.

In the previous section we argued that an expert system
will never have all the knowledge it needs. Thus it will al-
ways make mistakes, and it is important for both the devel-
Opers and the users to expect them. R1’s performance data
Suggest something even stronger: To expect anything close
'0 perfection during the first few years a system is being
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Figure 5.

used (especially if the task is significantly more than toy) is
probably a very serious mistake. We believe the data also
suggest that to keep an expert system from regular use un-
til its knowledge is complete would be a poor idea. It has
taken 80,000 orders to uncover some of the inadequacies in
R1’s configuration knowledge, and the configuration task is
continually redefined as new products are introduced. These
facts suggest that even if someone had the time and energy
to try to create a near perfect system before introducing it
into production, many inadequacies would become evident
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with regular use.

It would be a mistake to believe the major or even a
primary source of error in the performance of an expert sys-
tem will be due to incorreét or missing domain knowledge.

Depending on the number and type of objects the system.
is intended to deal with, large dmounts of effort may be
needed to collect and maintain the information about these

objects. But even if the nature of the task makes data col-
lection and maintenance relatively unproblematic, a variety
of otlier sources of error may spring up as the system begins
to be used. As we just mentioned, there is nothing magic
about knowledge-based systems that allows them to avoid
the problems other software systems have to face. Indeed,

the fact that they continue to be developed while they are

being used undoubtedly intensifies.those problems. The rela-
tive seriousness of the various problems thai confronted R1
would surely have been better appreciated if Bl had had a
sophisticated problem reporting mechanism from the begin-
Ring.

If one looks at R1’s performance. over the first two years
of its use and tries to iniagine R1 being used in a situation
where it was being asked to configure thousands of orders a
month, it seems. clear that its use would have been discon-
tinued. This judgment is perhaps overly harsh since, as men-
tioned above, a significant: portion of the configurations with
errors could be used with. only minor modifications. In any
event, using R1 in a high volume environment would have
made ifs initial nuturing substantially more difficult. R1 was
used instead in an environment in which the initial demands
on it were of the order of a few tens of orders per week for
the first year. This small volume made'it possible for people
te jump in whenever R1 failed and to avoid depending too
much on a system that at the time was far from being an
expert inthe domain.

Conclusion

One. of our purposes in giving these glimpses of R1's de-
velopruental and pér[ormance histories is to provide some
evidence for evaluating the claims that have been made about
expert. systems. Expert systems supposedly are easy to de
velop incrementally and, at some point, become as good as
human experts. Rl lénds some crédence to both of these
claims. While substantial effort has been required to de-
velop R1, the approach taken has made it possible over a
four year period to increase Ri's knowledge substantially
without starting over; this lends support to the first claim.
The fact that human experts erronecusly conclude that R1
has misconfigured systems about as frequently as R1 actually
misconfigures systems lends some support to the second
claim.
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Reading Guide:
You should have the following material:

"On the Development of Commercial Expert Systems"
(a paper discussing Dipmeter Adv1sor)

"RI Revisited: Four Years in the Trenches"

From Yol II of the Handbook of Artificial Intelligence:
Overview (pages 79-84)
TEIRESIAS example (pages 92-101)
PROSPECTOR (pages 155-162)

I suggest. reading the first few pages of the overview, for historical
background, followed by the Teiresias example, to give you an idea of
what is possible as far as the human-computer interface.

Next, I think you should wade through the entire paper on Dipmeter
Adv1sor The first four pages will give you an idea of how a "current"
geo1og1c expert system works, while the rest of the paper will indicate
what 1s involved in building a system, I'11 admit the second half of
this paper will contain alot of unfamiliar term1n010gy and irrelevant
discussion, but you should still be able to glean alot of useful
information out of it.

The rest of the material will show the state-of-the-art as of a few
years ago (the most recent general information in print) and some
idea of system growth. The R1 paper, in particular, is only worth
a light skimming.
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A. OVERVIEW

ast decade, many of the fundamental Al techniques described
evious chapters on search, knowledge representation, and natural-

the PT rocessing have been applied in the form of ezpert systems, that
h‘nguageuser systems that can help solve complex, real-world problems in
- c'om cientific, engineering, and medical specialties. These systems are most
? Clﬁf ,scharacterized by their use of large bodies of domain knowledge—facts
5(rong)cedures, gleaned from human experts, that have proved useful for
:u"d.prowpical problems in their domain. Expert-systems research promises
:ﬂl\.m% to Al applications of great economic and social impact. But far
"y leabeing solely concerned with applying Al problem-solving techniques, the
rr(?m ch described in this and the following two chapters has often addressed
rC:edarmental questions concerning the nature of knowledge, both in terms of
rlmnzl representational systems and as an essentially social phenomenon—
L(:::)wledge as something that must be shared and transferred among men and

O\,ER the P

machines.

Evolution of Ezpert Systems

Al research in the 1960s identified and explored several general-purpose
problem-solving techniques. This work introduced and refined the concept of
heuristic search (see Chap. 11, in Vol. 1) as an important model of problem
<olving. Many of the Al systems developed during this period, like GPS, the
Logic Theorist, REF-ARF, QA4, and PLANNER (all deseribed elsewhere in
the Handbook), dealt with problems in simple, constrained domains such as
chess, textbook problems, robot planning, blocks-world manipulations, and
puzzles like “Tower of Hanoi” and “Missionaries and Cannibals.” But by the
mid-1960s, some researchers in the DENDRAL project at Stanford and the
MACSYMA project at M.ILT. had begun work on the first expert systems—
organic chemical analysis in the case of DENDRAL and symbolic integration
and formula simplification in MACSYMA.

These systems were designed to manipulate and explore symbolically
expressed problems that were known to be difficult for human researchers to
solve. The problems were characterized by the increasing number of solution
possibilities that had to be examined as the problem specifications grew in
complexity—the larger the size of the problem specification {e.g., the size of
the molecule or the complexity of the expression to be integrated), the more
difficult it ‘was for human researchers to discover solutions or be confident
that all valid solutions had been found. This combinatorial ezplosion in the
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solution search space often outstripped the abilities of human researchers. The
capability of Al systems to deal with the larger solution spaces is important
in that it extends the types of problems that can be solved with the same
conceptual tools.

More recently, several other factors have motivated research on expert-
systems development. Most notably, expert systems promise to be quite
profitable because they can help solve hard problems that require the best
(most expensive) human expertise. (See, e.g., Articles Vil.C4 and VIIL.D3 on
systems that may help design chemical-synthesis techniques and explore for
mineral deposits.) In some domains, like medical diagnosis, the fact that the
exhaustive nature of problem solving in expert systems ensures that remote
possibilities are not overlooked is important. And often the very codification of
expertise in suitable form for an expert system is an illuminating and valuable
part of the expert-systems development. (This systematic reorganization of
what is known can lead, e.g., to new insights into the structure of the domain
or to new ideas about how to teach it.)

In a domain like medicine (and unlike symbolic integration) where the
nature of the problem is not sufficiently understood to completely specify
the search space, large amounts of domain-specific knowledge have to be
represented and reasoned with. Thus, while heuristic-search management
is still a major concern in the construction of any expert system, efficient
implementation and automated maintenance of large knowledge bases must
also be addressed. A particularly important design issue is devising effective
means for acquiring such large amounts of knowledge from the human experts:
who insist on “talking about” what they do rather than “dumping” what they
know, as computers do.

The issue of acquiring knowledge from human experts is now seen as 8
part of the general problem of transfer of ezpertise. Since humans are both
the source and the eventual users of expertise, current concerns in expert-
systems design center on considerations of how humans talk about what they
know. For an expert system to be truly useful, it should be able to learn what
human experts know, so that it can perforfn as well as they do, understan
the points of departure among the views of human experts who disagree, keeP
its knowledge up to date as human experts do (by reading, asking questions:
and learning from experience), and present its reasoning to its human uf_;erS
in much the way that human experts would (justifying, clarifying, explaining:
and even tutoring). These issues in the transfer of expertise can be seen 85 a
microcosm of many of the central concerns of Artificial Intelligence.

Representing Ezxpertise

Specialists are distinguished from laymen and general practitioners in 2
technical domain by their vast task-specific knowledge, acquired from the“:
training, their subsequent readings, and especially their experience of many
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1 ods-of cases in the course of their practice. Whether car mechanics or
pundre seons, experts can solve problems that others cannot, because. they
ncuros‘:l‘:;‘lgs that noné;pq;,ts do not. Sometimes this kndwledgg is in the form
knoW tﬁlc facts about the domain that have, over the years, been committed to
of spe¢! énd someétimes the.expertise appears as hunches, “educited guesses”
or: = ay to proceed in problem solving.

Representing and using the various types of knowledge ;hat ri:hanat;teriz‘e
_srtise ¢onstitute one principal focus of expert-systems research. Among
<pel gs that might be useful for-an expert system to know.about are:

mernt

racts about the domain: “The shin bone is connectéd to the ankle béne”
61-! more typical of hurhan expérts, “The automatic chokeion '77 Chevys
1en gets stuckzon cold mornings?;

1.

of
2. Hard-and-fast rules or procedures: “Always unplug the set before you
" stick a screwdriver into the back”;

3. Problém situations and what might be good things ta try, to do when

~ you are in them (heuristies): “If it won't start but you are getting a

spark, check the fuel line?;

4 Global strategies: differential diagnosis;

5. A “theory” of the domain: a ¢ausal explanation of How -an internal-

eombustion engine works.
All of the knowledge-representation schemes described in Chapter I (in Vol. 1)
have been used in expert systems; in fact, much original work on:knowledge,
represent'ation has been doile in the context of expert-systems design.

Note that muceh of theé knowledge that. ¢haractérizes humin expertisé is
hunchlike, in thé serise that it does not constitute definite ¢onsequencés of
actions or certainty of conclusions. Reasoning with such knowledge has béen
the key idea that made expert systems possible and constitutes the main
‘pr'oblerﬁ in developing their power further. In particular, inezact reasoning,
using hunches or heuristics to guide and foeus what, would otherwise be a
séarch of an impossibly large space (see Articles ILG3 and ILG4, in Vol. 1),
has fesulted in systems with human-level problem=-solving abilities, Indeed,
these systems have at-times proved superior to the. human experts, ‘primarily
becauise they consider a much larger set. of possible solutions (as much as
several orders of magnitude larger) and do not riiss unlikély or unexpected
possibilities, once thése have been-noted s worthy of* consideration by the
expert who built the knowledge base. ‘

Transfer of Ezpertise

Solving real-world problems at human-expert levels of performance is only
the beginning of expert-systems design. Most of the applications systems
deseribed in this chapter can be viewed as consultents that formulate opinions
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and give advice to their users. The tasks these consultants are designed
to perform require the application of facts and relationships known only by
specialists. The current systems emphasize the cognitive abilities that support
interaction with the user during problem solving, such as the ability to explain
lines of reasoning or to acquire new domain knowledge interactively.

Typically, such a system will be considered “intelligent” if it meets the
following criteria: (a) The system gives correct answers or useful advice,
and (b) the concepts and reasoning processes it uses to solve the problem
resemble those that the user might. employ. This last concern has led to the
design of systems that can explain their reasoning about a case, maintain
a focused dialogue with a user when pursuing relevant lacts and inferences
about his (or her) case, and employ knowledge at the conceptual level of
the user when solving and explaining both the problem and the system’s
solution. Successfully addressing these primarily human-engineering concerns
has required many advances in Al. These abilities and developments are
detailed for each system in the following articles (see especially Article V1L.B).

Explanation and the opacity of knowledge. As mentioned pre
viously, a major design issue for some of these systems, for the consultants
in particular, is whether the system needs to explain its reasoning to a user.
This capability is implemented primarily to convince users that the system’s
reasoning is appropriate and that its conclusions about a case are reasonable.

Sometimes the problem-solving expertise of the system is in a form that
is not at all similar to the expertise that a human expert would apply to
obtain the solution. For example, in the case of the DENDRAL programs, the
generator of chemical-structure candidates employs a procedure for exhaus
tively producing possible structures based on various graph-theoretic notions
that organic chemists who use the system are unlikely to know or care about.
Thus, a major portion of the DENDRAL expertise resides in a procedure that is
conceptually opaque to the typical user. The generator was developed becausé
it was discovered that the method used by chemists to find solutions for thes¢
problems is, in fact, incomplete, while the method used by the DENDRAL
program has been mathematically proved to be complete. A similar situatio?
exists in the MACSYMA system, which uses the Risch algorithm for evaluat®
ing various types of integrals. While mathematically correct, the algorithi”
is rarely employed by human mathematicians because of its complexity. The
correctness and continuing success of these programs serve as their primar¥
form of explanation: The user community is thereby convinced that the pe"”
forming system is both acceptable and usable.

In contrast, consultation systems like MYCIN and PROSPECTOR have
been designed to represent and explain the reasoning process of the syste™
in a manner that is understandable to the knowledgeable user. These sys”
tems require a representational formalism capable of supporting the reaso™
ing and explanation abilities that would closely approximate the conceptv?
framework of the expert and the user. Since most of these scientific 8"
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. .al domains have a well-defined set of concepts that their practitioners
echni€ Listently, the systems' designers have capitalized on this consistency
us€ Conjdesig"ed the programs to accept and reason with knowledge using
d hav

37, concepts. . . .
hes€ c? ming that a system has an explanation facility, the system designer
:\S:uother issue: Should the system reason and apply the expertise in
er that resembles the methods of human experts? In MYCIN, for
4 manh o claim is made by the designers that the simple backward-chaining
examp !e, nmethodology has any resemblance to the methods actually employed
rczu'onl"gn physicians in diagnosing infectious diseases. Although the medical
by hu"::employed by the system are familiar to most physicians, the method
(On'cerp kring the infections and causal organisms, while understandable by
of ”‘]' e‘;ns bears little resemblance to their normal diagnostic reasoning. By
Ph}'arl:;(,, t,.he PIP and INTERNIST systems emphasize the similarities of their
“.)": mst:ic procedures to those of physicians.

dmb;(nowledge acquisition. During the development of the knowledge
pase. experts are unlikely to present all of the relevant facts and relationships
" [;\'pel‘t, performance in the domain. Being human, experts tend to forget
:,(;rm'simplify details about their knowledge, requiring the system to augment
(s knowledge at a later time. Since the knowledge imparted to the system
i< largely empirical and the domains are themselves developing rapidly, it is
necessary for the system to make these changes easily and in an incremental or
modular fashion. Thus, most of the recent applications systems have empha-
«ized representation schemes that allow for the incremental construction of
(he knowledge base.

\ost researchers have approached incremental construction by means of
production-rule knowledge representation. Each rule, and rule set, represents
a ~chunk” of domain expertise that is communicable to the user and that can
be added to or deleted from the system’s knowledge base with relatively con-
strained changes in the system’s behavior (see Article I11.C4 and the discussion
of modularity in knowledge representation in Article 1L A, in Vol. 1). Thus, the
system can be improved by modifying the knowledge base with new rule sets
that deal with new subdomains. Furthermore, the production-rule formalism
can directly accommodate the knowledge of the domain experts in the form
that they most often communicate it—for example, “In this situation I suspect
this problem and perform these tests.”

faces 31

The Status of Applications Research

The major domains of expertise that have been developed as applica-
tions systems include the diagnosis and treatment of various diseases (see
Chap. vin), the design of computer assistants for both the analytic and the
synthetic aspects of organic chemistry (Sec. VIL.C), interactive tutoring systems
in education (Chap. IX), and assistants for performing advanced mathematics
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(Article VI1.D1). A number of other notable applications have been developed,
including applications of Al to database information-retrieval problems (see
Article VIL.D4) and a geological prospecting assistant (Article VI1.D3).

Among the rapidly growing host of applications-oriented systems are
SACON, a system for advising structural engineers in the use of a large,
finite-element, analysis program for modeling various mechanical structures
(Bennett et al., 1978); PUFF, a system for diagnosing a patient, with pulmonary
dysfunctions (Feigenbaum, 1977); and HEADMED, a system for diagnosing
and treating psychiatric patients (Heiser, Brooks, and Ballard, 1978). More
recent. are MeDermott’s (1981) R1 expert. on computer-system configurations
and Stefik’s (1980) work on an aid in designing experiments in molecular
genetics (see also Article Xv.D2, in Vol. 11, on MOLGEN). Current research
in this area includes extensions of the expert-system paradigm to computer-
based assistants for computer-system failure diagnosis, aids for VLST circuit
design, more sophisticated database-query systems, and systems that can act
as tutors in their areas of expertise (see Article IX.C6).

One important development in current research on expert systems is
the emergence in recent years of “expert-systems-building” systems, which
facilitate the construction of expert systems in any domain. For example, the
EMYCIN system (van Melle, 1980) consists of the basic control structure of
MYCIN, but with MYCIN's infectious-disease knowledge base removed. With
another knowledge base substituted in the same production-rule format as
MYCIN’s, this “Empty MYCIN” system retains the capability of interacting
with the user during a case;, to explain its reasoning, and to answer questions
about. a case in the new domain. EMYCIN has been used successfully L0
develop the applications in the treatment of pulmonary dysfunction, in struc-
tural analysis, and in the psychiatric diagnosis mentioned earlier. Seversal
other expert-systems-building systems are being developed, including IRIS
(see Article VIIL.B6), AGE (Nii and Aiello, 1979), OPS (Forgy and McDermott:
1977), and ROSIE (Fain et al., 1981; Hayes-Roth et al., 1981). Systems such
as these, which attempt to facilitate the construction of expert systems, 87
an important area of current research.

Another primary research activity in the near future will be the develoP”
ment of better facilities for acquiring the domain concepts and the empiric?
knowledge that expert systems must have. Feigenbaum (1977) suggests thet
the painful process of knowledge engineering, which involves domain expe{ts
and computer scientists working together to design and construct the doma!”
knowledge base, is the principal bottleneck in the development of expert s¥Y%
tems. Efficient interfaces for acquiring this domain-specific knowledge, aloné
the interactive transfer-of-expertise lines explored in TEIRESIAS (Article viL.B
or the automatic theory-formation methods used by the Meta-DENDRAL sy¥
tem (Article VIL.C2¢), need to be developed before significantly larger expe™”
systems can be constructed.

o e e
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missmg from v e S of TEIRESIAS’S use of rule
models. in its knowledge-acquisition dialogue is given in the:sample protocol
below.

Meta-rules and Performance Strategies

In performance programs with sufficiently small knowledge bases (like

MYCIN' $), exhaustive invocation of the rélevant parts of the knowledge base

durmg a consultation is still. domiputationally feasible. However, with the-

inevitable construetion of larger knowledge bases, exhaustive. invocation will
become unrealistic. In anticipation of this, meta-rules are implemetited in
TEIRESIAS as 2 means of encoding. strategies that can diréct the program's
actions more selectively than exhaustive invocation can. The following meta-
rule is from MY CIN's infectious:disease dotain:

META~RULE 001
IF: (1) the infectiop, is a pelvic-abscess, and
{23 there are rules that mention in their
premise Entercbscteriacese, and
(3) there are rules that mention in their
premise gram positive rods,

THEN  There is suggestive evidence (.4) that the rules
dealing with Enterobacteriaceae ghould be evoked
beforé those dealing with gram positive rods.

This rule Suggests that, since enterobacteria are commonly associated with
a pelvic abscess, it is a good idea to try rules about ther first, hefore the
less likély rules mentioning gram -positive rods. Note that this meta-rule does
not refer to specific ohject<level rules. Instead, it specifies certain attribute?

of the rules; it refers to, for example, that they mention in their premise’

Enterobacteriaceae. -

An Ezample; TEIRESIAS in thé Context of MYCIN

We now illustrate TEIRESIAS’s opération in affiliation with the MYCIN
system (see Article VIIL Bl) paying particular'attention to the explanation an

knowledge-acquisition facilities 6 TEIRESIAS. MYCIN is.intended to provlde

a physician with advicé about the diagnosis and _drug therapy for bacterial
infections. The.user interacts with TEIRESIAS, which in turr conmmunieates
with the MYCIN system, although the user is unaware.of more than one pro-
gram being involved. The system asks questions about the patient, the inféc-
tion, the cultures grown from speeirmens from the patient, and any organism;‘?
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B
ia) rowing in the culture. (Typically, of course, the exact identity of
bact«erla

pism is not yet known.)

(he or82 IN's knowledge base is composed of rules that specify a situation
MY.C information about the patient, culture, and organism) and the

(in\’olw.n gns ¢that can be drawn in that situation. For example, to conclude

oncl;::;oa patient suffers from a bacterium in the Enterobacteriaceae category,

whet

wCIN invokes rule 95:
\

RULE 095
IF The site of the culture is blood, and
the gram stain ig positive, and
the portal of entry is. gastrointestinal tract, and
[A-the abdomen is the locus of infection, or
B-the pelvis is the locus of infection]

THEN There is strongly suggestive evidence that
Entercbacteriaceae is the class of organismsg
for which therapy should cover.

Y CIN asks questions of the physician to determine which rules are applicable
in the current case—that is, to determine the “situation.” To determine if the
organism is of type Enterobacteriaceae, MYCIN would inquire whether each
(lause in the IF-part of rule 95 were true.

The procedure of working backward from the conclusion to the situa-
(ion that would make the conclusion true is called backward chaining and
is MYCIN’s fundamental reasoning mechanism. Backward chaining can go
<overal levels deep, meaning that the clauses in a situation that must be true
‘(for the conclusion to be true) might themselves be conclusions of other rules.
For example, a condition on the identification of Enterobacteriaceae is that
the infection be localized in the abdomen or the pelvis; but this condition is
itself a conclusion, and it is only true if its conditions (that the culture from
these places is recent and is therapeutically significant) are true. Furthermore,
the condition of therapeutic significance has its own conditions, and so on.
Here is a protocol showing MYCIN’s basic style of interaction (the physician’s
responses are prefixed by #»):

Patient 281
1) Patient’s name:
*+ Albert Hall
2) Sex:

*+ Male
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3) Age:

; *x 34

4) Have you been able to obtain positive microbiological
information about a possible infection of Albert Hall?

wx Yeg

Infection 1
5) What :is the infection?
** Primary-Bacteremia

8) Please state when signs and symptoms of infection-1
first appeared:

*+ 15-Dec-80 12:00

Culture 1
7) From what site was the specimen for culture-1 taken?
** Blood
B} Please give the date .and time whén this blood culture was
obtained:
*% 1B-Dec-B0 12:00
The first significant organism from this blood cuipure,will’be
referred to as:
Organism-1
§) Enter the identity of organisi-1
**%: Unktiown
10) Is organiem-1 a rod, or coccué fetg.):

#+ Rod

11) The gram-stain of organism-1:

#x Gram negative

12) Did organism-1 grow in the aercbic bottle?

»* Yesg

13) Did orgsnism-1 grow in the anaerobic bottle?

% Yeg

R

CevE me T e




TEIRESIAS 95

therapy recommendations will be baged on the following
babié infection(s) and potential causative organism(s):
0

NFECTION-1 i8 PRIMARY~BACTEREMIA,
. <Item—1> E.COLI [ORGANISM-1]
(Iten-2> PSEUDOMONAS-AERUGINGSA [ORGANISM-~1]

MYCIN constructs.a goal tree (jsée Article 11.B2, in Vol. 1) of :questions
In 5um1=15t be resolved in the coutse of the consultation to concludé the identity
"“,"” S;éterriglm. When'it cannot resolve a question by inference from what it
o:'];:_aay knOWQ; it-asks the respondent to provide an answer. Each node of the
a :

5l tree fias subnodes that result from the-application of a rule, as shown in
goal U8

“iqure B-L. .. _ -
'[-'g_Explanﬂ-ti‘-’“‘ HOW and WHY. Suppose that during a consultation

MYCIN the clinician wants an explanation of the:reasoning behind some
estion that MYCIN has asked. The explanation: given by TEIRESIAS in
qeqi)oﬂse to'the physician’s giiestion, WHY; involves backing up the goal tree
: O'Jthe‘previoys..nocleﬁﬁl‘ld' presenting the rule used to derive the subnode from
o ancestor. (Again, the physician’s responses are prefixed by «.)

with

Enterobacteriaceae

7S\

Site= Gram=  .Portal=. Lbcus=
Blood Pésitive G. 1. Tract Abdomen or
Pelvis
Rule:021 / \
Recent Culture Therapeutically
Significant
Rule 054/ /
Sterile  Significant Non-
Method of Number of sterite
Collection Organisms Site

Figure B-1. A MYCIN, goal tree:
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First, MYCIN'G guestion.
What ig the suspected portal of entry of organism-1:'into:. this
pterile site?

Thé physician requests an e{xpz'qna,tfa,n,
% WHY

Then TEIRESIAS proceeds to explgin it's “reasoning. K

{I.e., why is it important to déeteérmine the suspected portal
of entry of organism-1 into this sterile site?]

[3.0] ... in order to find out about an.organism.or class of
organiems for which therapy should cover.

It hag-already been -established that
[3.1] The site of the culture ig blood
[3:2] Thé stain of the Oorganism is gram positive
Therefore if:
{3.3) The portal of entry of the organism ie G.I.
{3.4] [Abdomen is: the locus of infecticn; or
Pelvis is the locus of infection]
Then :
‘There is strongly suggestive ev:dence {.9) that.

Enterobacteriaceae ig- the class of organiems
tor which therapy should cover.

[Rule 095]

In contrast to WHY, which spells out “hlgher" nodes in the goal tree, the HOW
command asks TEIRESIAS to explain the nodes lower down thes ‘tree that have
beeri or will bé expsrided. For example, in ‘the following exchange, the exper!
asks"how MYCIN will détermine whéther the abdomen or ‘the pelvis is th
locus of infection:

o+ HOW [3.4]
Note: (8.4 )h:s the pre ﬁ;c_,pf the statement:of ‘ii‘flt:er_egt in the exchange above.

[1.e., how were you determining that the Abdomen is the locus
6f infection, or that thé Pelvis is the locus of infection?]

[4.0] At that pdint Rule 02! was being.used.
W
If the doctor now wants to see rule: 21, he asks TEIRESIAS to explain HO

it was uséd, referring to. the: prefix [4. 0] of the statement in which It we
tientioned:
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o HOW [4.0]

(1.8.. how was Rule 021 used?]

{5.0] It has already been established that
{5.1]) the culture is recent.

mherefore if:
(5.2] There is therapeutically significant disease

associated with the occurrence of this organism

Then
1t is definite (1.0) that the site of the culture

jg the locus of infection in the patient.

The explanation facilities of TEIRESIAS involve climbing up and down

\YCIN's goal tree, explaining why questions are asked and how they are
:‘nsxwrered. If MYCIN makes a misdiagnosis, these same facilities are used to
imck up through the rules that achieved the diagnosis until the expert has
found the faulty one or determined that one is missing. TEIRESIAS is then
used to expedite the alteration or construction of rules by the expert. (See
Article x.c8 for a discussion of how a similar explanation facility is used in
‘he tutorial system EXCHECK.)
Knowledge acquisition. TEIRESIAS can help an expert formulate rules
in English because it has expectations about what rules “look like.” These
expectations are stored internally as rule models that are formed automati-
cally by examining all the rules in the knowledge base. TEIRESIAS knows, for
cxample, that there is a class.of rules that have as their conclusions the prob-
able identity of a bacterium and that these rules typically have as conditions
(a) the site of the culture, (b) the stain of the culture, and (c) the probable
portal of entry of the bacteria. These rule models help TEIRESIAS translate
English versions of new rules into a machine representation acceptable to
MYCIN.

To iliustrate TEIRESIAS’s debugging and correction facilities, we will con-
tinue with the consultation shown earlier. Suppose that after MYCIN presents
the expert with its diagnosis, TEIRESIAS steps in and checks whether the
expert agrees (the physician’s response is indicated by *»):

the

My therapy recommendation will be based on the following
probable infection(s) and potential causative organism(s):

INFECTION-1 is PRIMARY BACTEREMIA
<Item-1> E.COLI [ORGANISM-1]
<Item-2> PSEUDOMONAS-AERUGINOSA [ORGANISM-1]

Now TEIRESIAS steps in.
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Are all these identities correct?
*+ No.

Are there any identities missing?

v e

** Yes.

Which ones? |
*» KLEBSIELLA-PNEUMONIAE, PROTEUS-NON-MIRABILIS ]
Are there any identities which shouldn’t have appeared?
**+ Yes.

Which one(s)? .
»* PSUEDOMONAS-AERUGINOSA

' Do you want to
" 1] track down the problem yourself, or

2) allow me to guide the debugging, or

3] ignore it for now and fix it another time.
Type 1, 2, or 3.

*%x 2

If the ezpert had typed 1, he would have used the HOW and WHY com-
mands to debug the problem, as discussed above.

We'll start with PSEUDOMONAS-AERUGINOSA first:

TEIRESIAS starls debugging by trying to find out why an inappropriate
diagnosis occurred. Frequently, solving one problem will make others “go
away” as well.

The following rules were used in deducing that the identity of
organism-1 is PSEUDOMONAS-AERUGINOSA:

RULE 184
Since
(1.1] The category of organism-1 is not known
{1.2] The gram stain of organism-1 is gram negative
{1.3) The morphology of organism-1 is rod
(1.4] the aerobicity of organism-1 is facultative

There is weakly suggestive evidence (.3) that the identity
of organism-1 is PSEUDOMONAS-AERUGINOSA.

Is this rule correct?

Note that this rule, which resulted in the wrong conclusion, is not neces
sartly an incorrect rule. It might be (and in fact 13) the case that it was
5 incorrectly invoked because one or more of its conditions are true when
' they should be false.
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Yes -

24

1d its premise have failed for this case?
Shou

1) Yes -

ypich clause of the premise should have failed?

»e Clause 1 )
The ezpert believes that MYCIN should have known the category of
ORGANISM-1.. MYCIN failed to establish the category, causing rule 184

o be used.

gnould it have been possible to conclude a category?

»s YES.

which one?
«s Enterobacteriaceae.

There were no rules successfully invoked in the attempt to
deduce that the category of organism-1 is Enterobacteriaceae.

The following (potentially applicable) rules were NOT executed
" pecause the marked [++] clause failed: .

RULE 116

if
1) The identity of organism-1 is not known

++ 2) The gram stain of organism-1 is not known
3) The morphology of organism-1 is not known
4) The site of culture-1 is CSF
5) The infection is meningitis
6) The age of Albert Hall is less than or
equal to 2 months

Then there is weakly suggestive evidence (.33) that the
category of organism-1 is Enterobacteriaceae

RULE 050
it _
1) The morphology of organism-1 is rod
2) The gram stain of organism-1 is gramneg
3) The aerobicity of organism-1 is facul
++ 4) The infection with organism-1 was acquired
while the patient was hospitalized

Then there is suggestive evidence (.7) that the category of
organism-1 is Enterobacteriaceae.

Are all these rules correct?

*+ Yes.
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Should any of them have been successfully invoked?
*+ No.

This would be the case if one of the marked premises was false because it
was “stepped on” by yet another rule farther back in the chain.

Is there a rule missing? '
** Yes. ‘
Would you like to give me such a rule now?
** Yes.
Good ...

The ezpert then proposes another rule to TEIRESIAS:

If: . .
1 »* THE PATIENT'S INFECTION IS PRIMARY-BACTEREMIA
2 *» THE SITE IS ONE OF THE STERILE SITES

Then:
=» THERE IS EVIDENCE (.8) THAT THE CATEGORY IS
ENTEROBACTERIACEAE

TEIRESIAS parses this rule into its internal representation and then
translates it back into English, so that the expert can check it. We pick
up the dialogue after the ezpert has agreed on the parse. TEIRESIAS is
applying its rule model.

I hate to criticize, Dr. Davis, but did you know that most
rules about what the category of an organism might be,
that mention

the site of a culture

the infection

Also mention -
[A] the portal of entry of the organism

Shall I try to write a clause to account for [A]?
** Yes.

Here we see one of the ultlities of the rule model. TEIRESIAS prompts
the ezpert to add a bit of knowledge that is typically found in rules like
these and offers to fiz the rule itself. This completion is accomplished by
looking at other rules that fit the same rule model, to find the most likely
portal-of-entry clause.

How about -
[A] The portal of entry is gastrointestinal. OK?

*x Yeg. 3
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(5IR SIAS then does some ﬁnishipg up: checking the complete rule with the
pert for ﬁnz.xl approval and asking the expert to write a brief description
e;or pookkeeping pgrposes) of why the rule was needed. Finally, it runs the
( s on again internally, using the responses from the early part of the
0 which it has stored. It turns out that adding the rule above did, in
rrect the other problems with the first consultation, and this time ’the

is satisfactory to the expert.

jtati

1
facts ¢!
diﬂgnOSIS

cummary: TEIRESIAS and Ezpert Systems

TEIRESIAS aids a human expert in monitoring the performance of a
knoledge'based system.' V\"hen the human expert spots an error in the
,,rogfamvs performance, in either the program’s conclusions or its line of
casoning: TEIRESIAS assists in finding the source of the error in the database
by ezplaining the program’s conclusions—retracing the reasoning steps until
d}e faulty (or mis§ing) rule is identified. At this point, TEIRESIAS assists
n rnowledge acquisition, modifying faulty rules or adding new rules to the
database- Meta-level knowledge about the kinds of rules and concepts in
(he database is applied to build expectations in TEIRESIAS's model-based
understanding process. Meta-level knowledge is also used to encode problem-
wlving strateges, in particular, to order the invocation of rules so that those
(hat are most likely to be useful (given the current knowledge of the program)

are tried first.

References

The principal 'ref'e?rence on TEIRESIAS is the doctoral dissertation by
Davis (.1976). Applications of meta-knowledge in expert systems are discussed
in Davis and Buchanan (1977). See also Davis (1977, 1978, 1980).
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D3. PROSPECTOR

pECTOR (Duda et al., 1978) is a computer-based consultation system
PROS. being developed at SRI International to assist geologists working on
that roblems in “hard-rock” mineral exploration. Like other expert sys-
cert{i"‘suih as MYCIN (see Article viiL.B1) and INTERNIST {Article VII.B3),
> CTOR attempts to represent a significant portion of the knowledge
d the reasoning processes of experts working in a specialized domain. The
an ded uvser of this program is an exploration geologist who is in the early
,nteﬂs of investigating an exploration site, or “prospect.” We assume that he
stag:he) has a professional understanding of geology but, nonetheless, wants
for assistance of & specialist in evaluating the findings.
the In an attempt to keep the PROSPECTOR system domain-independent, a
clear separation is maintained between the geological knowledge base and the
,'nechanisms that employ this knowledge (although characteristics of the prob-
lem domain have certainly influenced the design of the system). Expressed
abstractly, the main function of PROSPECTOR is to match data from a par-
(icular situation against models that describe a moderately large number of
disjoint classes of situations. In PROSPECTOR’s domain, the models are for-
mal descriptions of the most important types of ore deposits, and the data are
primarily surface geological observations. The available data are assumed to
pe uncertain and incomplete, so that the conclusion is expressed as a probabil-
ity or a degree of match. In addition, the program alerts the user to different
possible interpretations of the data and identifies additional observations that
would be most valuable for reaching a more definite conclusion.

A typical consultation session with PROSPECTOR begins with the user
giving the system the information about the most significant features of his
prospect: the major rock types, minerals, and alteration products. The
program matches these observations against its models and, when the user
has finished volunteering information, proceeds to ask the user for additional
information that will belp confirm.the best matching model. At any time
during the consultation, the user can interrupt to volunteer new information,
change previous statements, or request an evaluation.

The following edited excerpt from a PROSPECTOR session illustrates
many of these ideas. The data for the run describe a fictitious porphyry copper
deposit that has some, but not all, of the desired characteristics. We begin at
the point where the user (indicated by =#) starts volunteering information to
the system.

*+ There is quartz monzonite

Quartz monzonite (5)

155
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** There is a cretaceous dike
Cretaceous dike (5)

** There is sericite and pyrite
Sericite (§) pyrite (5)

** There may be biotite

Biotite (2)

*+ Done

These simple assertions describe the most prominent rocks, minerals, and
alteration products in the target area. The system indicates its recognition <
of each statement by echoing the statement and appending an assigned

certainty. Certainty factors range from —§ (posttive that a situation

does not hold) to 5 (positive that it does hold). All assertions made

by PROSPECTOR have associated certainty factors. The program now

enters the consequent mode of reasoning.

Presently, the models in PROSPECTOR and their scores are: .
1. Komatiitic nickel sulfide deposit -- KNSD (0.0)
2. Type-A porphyry copper deposit -- PCDA (0.0)
++current hypothesis++
3. Kuroko-type massive sulfide deposit -- MSD (.001999)
4. Western-states-type sandstone uranium deposit -- WSSU (0.0)
5. Mississippi-Valley-type lead/zinc deposit -- MVTD (-4.8)
Which of the above would you like to rule out?

** None |

The volunteered information was sufficient to rule out one of the models
but was not nearly specific enough to establish any of the others. The
choice of the second model as the current hypothesis was based not on
its certainty but on the number and types of connections between it and
the volunteered statements. To avoid a possibly fruitless investigation of
unpromising models, the system gives the user the opportunity to exclude
models of lesser interest. In this case, the user allows all of the models
to be ezplored, and the system begins with the current hypothests.

I am considering the possibility of a
( Type-A porphyry copper deposit -- PCDA )
in the target area.

The following questions are intended to establish the nature
of the petrotectonic setting.

1--To what degree do you believe that:
( the target area is in a continental margin mobile belt ) 7

* -2
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This is o discouraging answer for the PCDA model, and it removes a
context needed for the investigation of other properties of the continental-
margin mobile belt.

° following questions are intended to determine the nature
¢ the regional environment.
0

g--To what degree do you believe that:
( there are granitic intrusives in the region ) ?

‘:5

3--To what degree do you believe that:
( the region contains an abundance of small stocks ) ?

o -3

g--To what degree do you believe that:
( igneous rocks in the region have porphyritic texture ) ?

+«+ Why

I am trying to establish whether some of the intrusive rocks in
your area have textures suggestive of a hypabyssal to subvolcanic
environment. Porphyry textures resulting from the rapid cooling
and crystallization of a silicate melt which contains large
mineral grains are suggestive of relatively shallow levels

of emplacement.

Like MYCIN, PROSPECTOR provides a variety of commands for such
things as requesting a summary, changing previous answers, or volun-
teering additional information. The above response to a WHY command
is not automatically generated from the rule but is merely stored text
associated with the space.

g---To what degree do you believe that:
( igneous rocks in the region have porphyritic texture ) ?

s 5

My certainty in ( the texture and morphology of the intrusive
system suggest a subvolcanic (hypabyssal) regional environment )
is now: 4.924

Do you want to pursue this further?
=+ No

At this point the system noted that the certainty for the hypothesis about
a hypabyssal environment was above 4.5, and it also noted that if the
remaning rules were answered in the most unfavorable way possible, the
certainty could not fall below 4.5. To save time, it let the user decide
whether or not to continue working on this subgoal.
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The questioning continues as above until it becomes necessary to consider
properties that vary within the target area. Thus, for the first time it
becomes necessary to be able to use the rules more than once, and a
communication convention must be established to distinguish different
spatial locations.

Porphyry copper deposits are often composed of characteristic
zones of alteration and mineralization. (In some cases these
can be looked upon as different stages superimposed upon one
another.) I shall call the most prominent such zone Zone 1.
Even though you may have already identified this zone as, say,
the propylitic zone or the sericitic zome, I need to consider
other possibilities as well. Thus, the following questions
are intended to determine the possibilities for Zomne 1.

25--To what degree do you believe that:
( there are fresh-locking feldspars in Zone 1 ) ?

**x -5

Questioning continues in this manner. Eventually, PROSPECTOR estab-
lishes that two zones ezist in the region of interest and, after examin-
tng each in detasl, it concludes that their geologic makeup supports the
hypothesis that Type-A porphyry copper ezxists in the region. .

On a scale from -5 to 5, my certainty that ( there are alteration
zones that are favorable for a Type-A porphyry copper deposit )
is now 4.833

There are two favorable factors; in order of importance:

2.3.1: 1, there is a sericitic zone in Zone 1 (4.834)
++ establishes 2.3.1 ++

2.3.1: 2. there is a potassic zone in Zone 2 (4.499)

There are many factors that would have been unfavorable had no
favorable factor existed to override them; in order of importance:

2.3.1: 3. there is a barren-core zone in Zone 1 (-5.0)
2.3.1: 4. there is a potassic zone in Zone 1 (-5.0)
2.3.1: 5. there is a propylitic zone in Zone 1 (-5.0)
2.3.1: 6. there is a sericitic zone in Zone 2 (~5.0)
2.3.1: 7. there is a propylitic zome in Zone 2 (-4.989)
2.3.1: 8. there is a barren-core zone in Zone 2 (-4.495)

: ?
For which of the above do you wish to see additional informatio®

Knowledge Representation

The data structure for representing the geological knowledge embod_"
in PROSPECTOR is called the inference network and guides the ple
reasoning performed by the system. The nodes in this network corres
various assertions, such as There ts pervasively biotized hornblende of

usi
pOﬂ
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ation favorable for the potassic zone of a porphyry copper deposit. In
ular run, any assertion may be known to be true, known to be false,

cted to be true with some probability.
¢ of the arcs in the inference network define inference rules that specify
Mos robability of one assertion affects the probability of another asser-
v Lt;;j)rpexample, the presence of pervasively biotized hornblende suggests
(ion- assic zone of a porphyry copper deposit, and the absence of any biotized
‘ the PO de is very discouraging for that conclusion. These inference rules cor-
hor"blznw the production rules used in MYCIN. The remaining arcs indicate
reSPc"n assertion is the context for another assertion, preventing conclusions
that al?e'mg drawn until the right contexts are established. For example, one
omld establish that hornblende has been altered to. biotite before asking

. ,—hollt the degree of alteration.

"bOliI*he primary task confronting a geologist who wants to prepare a new
del for PROSPECTOR is the representation of his model as an inference net-
"o k. The current system contains models of five different types of deposits,
“’ofel'oped in cooperation with five different consulting geologists. The statis-
:lii: in Table D3-1 give a rough indication of the size and complexity of these

e

fr

c maxrem e

odels.
" To allow certain kinds of logical reasoning by the system, each assertion is

represented as a space in a partitioned semantic network (see Article 1I.C3, in
vol. 1)- A typical space asserts the hypothetical existence of physical entities
having specific properties (such as being composed of biotite) and participating
in specific relations (such as an alteration relation). In addition, a large
\axonomic network describes important element-subset relations among the
terms mentioned, such as the fact that biotite is a mica, which in turnis a
silicate, which in turn is a mineral.

The articulation of assertions as a set of relations allows the system to
recognize subset-superset connections between pairs of assertions. For exam-
ple, the assertion There 1s pervasively biotized hornblende is clearly related
1o the assertion There is mica; assertion of the first also asserts the second,

TABLE D3-1
Size of Knowledge Base of Five PROSPECTOR Models

Number of Number
Model .

assertions of rules
Koroko-type massive sulfide 39 34
Mississippi- Valley-type lead/zinc 28 20
Type A porphyry copper 187 91
Komatiitic nickel sulfide 75 49
Roil-front sandstone uranium 212 133

Total 541 327
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and denial of the second denies the first. This kind of recognition is used
in two main ways. First, it provides important intermodel and intramodel
connections beyond those given explicitly by the inference rules. Second, it
allows the system to recognize connections between information volunteered
by the user and the coded models.

Probabilistic Reasoning

Some of the logical constraints that hold between spaces have probabilistic
implications. In particular, if A is an instance (i.e., subset) of B, then the
probability of A can never exceed the probability of B. We maintain this
constraint by automatically generating certain inference rules. For example,
if evidence E could raise the probability of A above the probability of B, we
generate a rule from E to B that will increase the probability of B sufficiently
to just satisfy the constraint. The exact procedure used here is described in
Duda et al. (1977). :

The various inference rules connect to form an inference network; thus
when the user provides some evidence, this information can change the prob-
abilities of several hypotheses, which in turn can change the probabilities of
hypotheses that depend on them. The probability formulas determine exactly
how these probability changes propagate through the inference net. (The
reader might also refer to Articles VIil.B2 and VIIL.B6, on CASNET and IRIS.
for alternative methods of propagation.)

Control

PROSPECTOR is a mixed-initiative system that begins by allowing th¢
user to volunteer information about the prospect. This volunteered inform#
tion is currently limited to simple statements in constrained English about the
names, ages, and forms of the rocks and the types of minerals present. Thes¢
statements are parsed by LIFER, a natural-language interface facility (se€
Article IV.F7, in Vol. 1), and represented as partitioned semantic networks: l
network-matching program compares each of these volunteered spaces aga““"ﬂ
the spaces in the models, noting any subset, superset, or equality relatior”
that occur. 1

If a volunteered space is exactly equal to a space in a model, the Probab;w
ity of the model space is updated and that change is propagated through *
inference network. If a volunteered space is a subset of a spacein a mode _?.r:\.
if it has a higher probability than the model space, once again the probabl:h'(,
of the model space is updated and that change is propagated through *
inference network. ode!

Unfortunately, if the volunteered space matches a superset of a (he
space (which is usually the case), no probability change can be made unless "

- : tion*
user expresses doubt about the situation. For example, if the user men
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e the probability of the space that asserts that there is pervasively
biotfte’d hornblende is unchanged, unless the user has said that he doubts
iotlzthere is any biotite. However, it is obvious that the system may want to
;hﬁzw up this observation, and the existence of the connection to the model
0 ed.
is ’es\?gn the user has finished the initial volunteering, PROSPECTOR scores
¢ various models on the basis of the number and types of connections that
ceurred and selects the best matching model for further investigation.
Here, the basic control strategy is MYCIN-like backward chaining or conse-
nt reasoning. At any given time, there is a current goal space whose exis-
que e is to be determined. The initial goal space is the one that corresponds
(eﬂ:he best matching model. The various spaces in the models represent
u-)[her evidence that can be sought from the user (are “askable”) or internal
;"l‘,potheses that are to be deduced from evidence (are “unaskable”). Naturally,
(he initial goal space is always unaskable. If the current goal space has any
unesmblished context spaces, they are pushed on the goal stack and one of
(hem becomes the new current goal.
" If the current goal is askable and has not been asked before, the user is
asked about it, the effects of the answer are propagated through the inference
network, and the process is repeated. I it is unaskable, it must be either the
consequence of one or more inference rules or a logical combination of one or
more other spaces. In the former case, the rules are scored to determine their
potential effectiveness in influencing H, and the antecedent of the best scoring
rule becomes the next goal. In the latter case, a predetermined supporting
space becomes the next goal. In either case, the same procedure is repeated
until (a) the top-level goal becomes so unlikely that another top-level goal is
selected, (b) all of the askable spaces have been asked, or (c) the user interrupts
with new volunteered information.

have o

Summary

This brief overview covers the basic knowledge-representation and infer-
ence mechanisms used in PROSPECTOR. Many aspects of the system have not
been discussed, such as the treatment of quantitative evidence, the matching
procedure, the use of graphical input, the inference-network compiler, the
explanation system, model-acquisition aids, and the test and evaluation effort.

The five models in the current system are but a fraction of what is
needed for comprehensive coverage of the prospecting domain, and even these
models have only recently reached the degree of completeness required for
doing meaningful evaluations. Limited initial tests have shown very close
agreement between the evaluations provided by the system and the evaluations
of the model designers, using data from actual deposits of the types modeled.
And, in fact, PROSPECTOR recently made a prediction about the location
of molybdenum ore at an exploration site in the state of Washington that
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was substantially confirmed by subsequent drilling. More information on the
system, the extent of its geological knowledge, its performance on known
deposits, and its possible applications can be found in Duda et al. (1978).

References
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On the Development of
Commercial Expert Systems

Reid G. Smith
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Abstract

We use our experience with the Dipmeter Advisor system|for well-log
interpretation as a case study to examine the development|of commer-
cial expert systems. We discuss the nature of these systems as we see
them in the coming decade, characteristics of the evolution process,
development methods, and skills required in the development team.
We argue that the tools and ideas of rapid prototyping and successive
refinement accelerate the development process. We note that different
types of people are required at different stages of expert system de-
velopment: Those who are primarily knowledgeable in jthe domain,
but who can use the framework to expand the domain knowledge;
and those who can actually design and build expert system tools and
components. We also note that traditional programming skills con-
tinue to be-required in the development of commercial expert systems.
Finally, we discuss the problem of technology transfer and compare
our experience with some of the traditional wisdom of expert system
development.

THE PAST DECADE has seen the development of a num-
ber of expert systems, mostly by Al researchers for use in
research environments. To date, few have been utilized for
industrial applications. As a result, we have little experience
with which to characterize either the nature of commercial
expert systems or their development process.

The Dipmeter Advisor system is the result of a four year

David Barstow, J. A. Gilreath, Tom Mitchell, and Peter Will made a
Wiumber of helpful suggestions for this paper. David Gallo and Chip
Hendrickson provided the football figures.

effort by Schiumberger to apply expert systems technology to
problems of well-log interpretation. We have observed dur-
ing this effort that the development of a commercial expert
system imposes a substantially different set of constraints
and requirements in terms of characteristics and methods of
development than those seen in the research environment.

This article is intended as a case study. We briefly
describe the dipmeter interpretation problem and the evolu-
tion of the Dipmeter Advisor system. During its develop-
ment a number of ideas have surfaced that we believe to be
characteristic of this type of eflort, given the current state of
the technology. While the data are too sparse for definitive
results, these ideas are thought to be important and sugges-
tive as guidelines for subsequent commercial expert system
undertakings.

Example: Dipmeter Interpretation

The Problem

Oil-well logs are made by lowering tools into the borehole
and recording measurements made by the tools as they are
raised to the surface. The resulting logs are sequences of
values indexed by depth. Logging tools measure a variety
of petrophysical properties. The dipmeter tool in particular
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Dip in Subsurface Formations.

Figure 1.

measures the conductivity of rock in a number of direc-
tions around the borehole. Variations in conductivity can be
correlated and combined with measurements of the inclina-
tion and orientation of the tool to estimate the magnitude
and azimuth of the dip or tilt of various formation layers
penetrated by the borehole (Figure 1).

Because the dipmeter tool has high resolution in the
vertical direction (0.1-0.2 in.), it provides the petroleum
geologist with detailed information on relatively fine-struct-
ured sedimentary beds. This type of information is invalu-
able in defining hydrocarbon reservoir structure and design-
ing methods to drain such reservoirs.

Knowledge of the dip variations as a function of depth
in the vicinity of the borehole does not in itself identify
geologic features. However, when combined with knowledge
of local geology and rock properties measured by other logs
(e.g., lithology (sand, shale,)), the characteristic dip patterns
(signatures) of geologic events in the depositional sequence
can be interpreted.

The right channel of Figure 2 is an interval of a dipmeter
log. Dip estimates are shown as tadpoles. Dip magnitude
increases to the right of the graph, and the down dip direc-
tion is indicated by the tail on each tadpole. The vertical
axis is depth. Hollow tadpoles indicate lower confidence dip
estimates than solid tadpoles. (So, for example, the tadpole
at 8360 ft. indicates a formation that is dipping down to
the southeast at approximately 24°.) The left channel is a
gamma ray log. (It measures natural gamma radiation in
the formation—a rudimentary lithology indicator.)

Sequences of tadpoles can be grouped together in pat-
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terns. Three of the characteristic dip patterns are described
below (Schlumberger, 1981).

e Green Pattern: An interval (zone) of constant dip
magnitude and azimuth. This pattern is characteris-
tic of structural dip—caused by large-scale tectonic
disturbance that occurs long after deposition and
compaction of sediment.

o Red Pattern: A zone of increasing dip magnitude
with constant azimuth over depth. This pattern
is indicative of down dip thickening, which may be
associated with distortions near structural features
(e.g., faults), differential compaction of sediment over
buried topographic features (e.g., reefs), or channel
filling.

e Blue Pattern: A zone of decreasing dip magnitude
with constant azimuth over depth. This pattern
is indicative of down dip thinning, which may be
associated with distortions near structural features,
differential compaction beneath denser overlying de-
posits {e.g., sand lenses), or sediment transport by
water or wind. -

From this localized data, a skilled interpreter is often
able to make comprehensive deductions about the geological
history of deposition, the composition and structure of the
beds, and the optimum locations for future wells.

The Dipmeter Advisor System

The Dipmeter Advisor system attempts to emulate
human expert performance in dipmeter interpretation. It

s
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- utilizes dipmeter patterns together with local geologicai
knowledge and measurements from other logs. It is charac-
teristic of the class of programs that deal with what has come
to be known as signal to symbol transformation (Nii, 1982).
The program is written in INTERLISP-D and operates on the
Xerox 1100, 1108, or 1132 Scientific Information Processor.!
The system consists of four central components: a num-
ber of production rules partitioned into several distinct sets
according to function (e.g., structural rules vs stratigraphic
rules); an inference engine that applies rules in a forward-
" chained manner, resolving conflicts by rule order; a set of fea-
" ture detection algorithms that examines both dipmeter and
open-hole data (e.g., to detect tadpole patterns and identify
lithological zones); and a menu-driven graphical user inter-
face that provides smooth scrolling of log data.

Conclusions are stored as instances of one of 65 token
types, with approximately 5 features/token, on a blackboard
that is partitioned into 15 layers of abstraction (e.g., pat-
terns, lithology, stratigraphic features). There are 90 rules,
and the rule language uses approximately 30 predicates and
functions. The rules have the empirical association flavor. A
. sample is shown below.?

A

i’ there exists a delta-dominated continental-shelf

B marine zone, and

! there exists a sand zone intersecting the marine

t zone, and

there exists a blue pattern within the intersection,

THEN
assert a distributary fan zone
top +— top of blue pattern
bottom « bortom of blue pattern
flow — azimuth of blue pattern

The system divides the task of dipmeter interpretation

- into eleven successive phases as shown below. After the
systemn completes its analysis for a phase, it engages the
human interpreter in an interactive dialogue. He can ex-
amine, delete, or modify conclusions reached by the system.
He can also add his own conclusions. In addition, he can
revert to earlier phases of the analysis to refer to the conclu-
sions, or to rerun the computation.

e Initial Examination: The human interpreter can
peruse the available data and select logs for display.

e Validity Check: The system examines the logs for
evidence of tool malfunction or incorrect processing.

e Green Pattern Detection: The system identifies
zones in which the tadpoles have similar magnitude
and azimuth.

'Early versions of the program are described in (Davis, 1981) and
(Gershman, 1982).

2This sample is similar to the actual interpretation rule, but has been
simplified somewhat for presentation.
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Figure 2.

e Structural Dip Analysis: The system merges and
filters green patterns to determine zones of constant
structural dip.

e Preliminary Structural Analysis: The system
applies a set of rules to identify structural features
(e.g., faults).

¢ Structural Pattern Detection: The system ex-
amines the dipmeter data for red and blue patterns
in the vicinity of structural features.’

e Final Structural Analysis: The system applies a
set of rules that combines information from previous
phases to refine its conclusions about structural fea-
tures (e.g., strike of faults).

e Lithology Analysis: The system examines the
open hole data (e.g., gamma ray) to determine zones
of constant lithology (e.g., sand and shale).

e Depositional Environment Analysis: The sys-
tem applies a set of rules that draws conclusions

3The algorithms used by the system to detect dip patterns are beyond
the scope of this paper.
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Figure 3. 4
about the depositional environment. For example, if system displays a summary log of dip magnitude for the ';Jz
. (e . 0 . . o
told by the human interpreter that the depositional entire well. The black box indicates the region of the well

environment is marine, the system attempts to infer

that is expanded in the second window from the right. This
the water depth at the time of deposition.

window shows the dipmeter data together with the deviation

et B i S

e Stratigraphic Pattern Detection: The system of the borebole itself. The next window displays two other
examines the dipmeter data for red, blue, and green logs: GR (gamma ray) and ILD (a resistivity log). (Each &
patterns in zones of known depositional environ- of these windows can be smoothly scrolled by moving the )
ment. o - mouse into its speed bar, one of which is visible on the left ,t:n'

e Stratigraphic Analysis: The system applies a set side of the dipmeter window. A more radical movement can R
of rules that use information from previous phases to be achieved by moving the mouse into the black elevator box 3
draw conclusions about stratigraphic features (e.g., visible on the right side of the dipmeter window. The size of
chanaels, fans, bars). the interval viewable in the dipmeter and other log windows

For the phases shown above, “+” indicates that the is also under mouse button control.) ¥

The system summarizes relevant conclusions in the (scroll-

hase uses production rules written on the basis of interac- .
P P ing) windows in the lower left hand part of the screen. The

tions with an expert interpreter. The remaining phases do

ae 4
not us,e rules. ’ . . 4The rules obtained to date are due to J. A. Gilreath of Schlumberger
Figure 3 shows a sample Xerox 1100 screen following Ofishore Services, New Orleans, LA. The feature detectors and signal-

the stratigraphic analysis phase. On the extreme right the processing algorithms were written independently by project members.
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user (a dipmeter interpreter) has selected a number of con-
clusions to be examined in greater detail and shown as an-
notations on the dipmeter log. Also shown is the dip azimuth
trend before and after structural dip removal.?

Building Commercial Expert Systems

Embedded Systems

Domain practitioners are typically much more interested
in the utility and performance of a system that is to help
them solve their problems than in the particular methods
used to construct it. Furthermore it is unlikely that tradi-
tional Al methods alone will solve real problems. They are
likely to be augmented by techniques from signal processing
and pattern recognition, to name but two possibilities. This
implies that the computer scientist involved in commercial
expert system development must be prepared to solve prob-
lems that involve a variety of disciplines and techniques.

It is our view that the expert system kernel is likely to
be a (perhaps even relatively small) component embedded in
a larger system. The particular suite of problems common to
signal understanding problems may, of course, bias our out-
look, but we believe that it is difficult to avoid the conclusion
that acceptance and real use of expert systems depend on far
more than a knowledge base and inference engine.®

Indeed our experience has been that these traditional
parts of an expert system are not the predominant parts of
the overall system either in terms of the amount of code or
the resources required for system development. It is instruc-
tive in this regard to examine the relative amounts of code
devoted to various functions in the Dipmeter Advisor system:

Inference Engine: 8%
Knowledge Base: 22%
Feature Detection: 13%
User Interface: 42%
Support Environment: 15%

This breakdown cannot be used, of course, as a direct
measure of programming effort or as an indicator of where
the system gets its power. However, the human inter-
face figure especially is familiar to designers of expert sys-
tems like MYCIN (Shortliffe, 1976), (VanMelle, 1981) and
PROSPECTOR/KAS (Reboh, 1981). It demonstrates the
importance of a good programming language, and indicates

~ that traditional programming skills continue to be required

for the development of commercial expert systems.

SThe scrolling graphics code was written by Paul Barth and Tony
Passera. Extensions to the INTERLISP-D menu package were written
by Eric Schoen.

8Gaschnig has made a similar observation in the context of the
PROSPECTOR system (Gaschnig, 1982).

System Evolution

-

Based on our experience, we hypothesize an oscillat-
ing focus of attention in commercial expert system devel-
opment projects. Initially, the focus is a demonstration of
feasibility; acquiring the knowledge for a constrained prob-
lem and finding the appropriate set of expert system tools
with which to encode and apply the knowledge. This phase
could be relatively short. It is followed by a phase of ex-
pansion of the domain knowledge—during which the expert
system tools remain relatively constant. 4 point will likely
come at which the intial tools do not provide sufficient power
to allow continued expansion of the system’s expertise. At
that point, the focus will move away from domain problems
and toward selection—more likely development—of new ex-
pert system tools. Once a new set of more powerful tools
has been constructed, then the focus will again return to the
domain problems at hand.

Naturally any particular system may not pass through
very many of these oscillations. The focus in the R1 project,
for example, didn’t appear to oscillate at all (McDermott,
1981). We believe this is due to the nature of the task. There
was little of the uncertainty about the nature of the problem
that is evident in the the signal understanding or diagnosis
tasks. Consequently the initial tools were in fact sufficiently
powerful to handle the problem.

In the MYCIN project we seem to be observing the
beginnings of an oscillation. The initial system was con-
structed. Then the rule base was expanded, leaving the ini-
tial expert system tools intact. More recently a new design,
NEOMYCIN, has appeared—a new set of tools (Clancey,
1981).

Along with the oscillating focus, we hypothesize a rough
performance versus time curve. For this discussion per-
formance is taken to include factors such as computation
time, accuracy of solutions, and breadth of coverage. We
expect this curve to show periods of high positive slope cor-
responding to implementation of new expert system tools,
followed by periods of lower slope corresponding to expan-
sion of domain knowledge, followed by periods of level or
even decreasing slope corresponding to reaching (or surpass-
ing) the amount of domain knowledge and generality that
can be supported by the tools.

Figure 4 shows the type of performance improvement
that we hypothesize, together with the relative emphasis.
The emboldened portions of the graph indicate periods of
new expert system tool development. The remaining por-
tions correspond to periods of expansion and refinement of
domain knowledge. (During the startup period, of course.
the two activities proceed concurrently.)

It is currently the case that the precise set of tools
required to solve a given problem cannot be accurately
predicted a priori. Periods of domain knowledge expansion
using relatively stable tools are required to expose prob-
lem areas and focus tool selection and development. As ex-
perience with expert systems grows, for any given problem,
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development will effectively begin further along the curve.
Developers will start with a better understanding of the set
of tools that will eventually be required to solve the problem.

At any given point in time, then, an expert system may
require improvement in terms of domain knowledge and ex-
pert system tools. Just as the focus of the project will vary,
depending on which of the two types of improvement is most
pressing, the type of person required to improve the system
will also vary.

Improvements in the first area can be made to a large
extent by people primarily knowledgeable in the domain, but
not necessarily knowledgeable in the design of expert sys-
tems. For example, at one stage of its development the Dip-
meter Advisor system was familiar with a relatively small
pumber of different lithologies. The performance of the
system could be improved in this area without redesign.
Similarly, the coverage of the rules could be extended to
handle more environments, or specialized to handle local
anomalies.”

Improvements in expert system tools cannot be made
without redesign. This type of effort requires a person who
can build such systems, as opposed to one who can use the
framework to expand capabilities. For example, the Dip-
meter Advisor system uses rule order to help circumvent
potential multiple interpretations for the same interval in
the well, or simply draws multiple conclusions for the same
zone. The human interpreter must select the correct inter-
pretation. The system also has a very local view of consis-
tency in the vertical sequence. This is attributable to the fact
that it is reasoning from sets of empirical rules and has no
model of the underlying geological processes that lead to the
rules. Improvements in these areas cannot be made without
redesign.

7We have already noted, however, the likelihood that traditional pro-
gramming skills will continue to be required.

-
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System Development

We have attempted a critical review of the development
side of the Dipmeter Advisor system. Although we are as yet
unable to abstract a development methodology, several ob-
servations stand out. Almost every major issue and decision
in the evolution of the Dipmeter Advisor svstem addressed
one or more of the following:

¢ Demonstration of Feasibility

e Demonstration of Utility and Performance

¢ Evaluation of Utility and Performance.

Demonstration of Feasibility: The problem of dipmeter
interpretation was initially selected as a vehicle for inves-
tigating the applicability of expert system techniques to well-
log interpretation. Until feasibility could be demonstrated,
other questions were secondary.

As a first step, a substantial effort was expended on
acquisition of dipmeter interpretation knowledge. This effort
was carried out over a 12 to 18 month period using standard
techniques (protocols, videotape, discussion, representative
examples, and so on). A single expert was studied in detail,
again adhering to standard practice.

The implementation of a prototype system followed data
acquisition and was carried out in approximately four months
(completed in December 1980). The rule base and inference
engine were written in INTERLISP {245 Kbytes of source
code) and ran on a DEC 2020. The user interface was graphi-
cal, written in FORTRAN (450 Kbytes of source code), and
ran on a RAMTEK 9400 connected to a VAX 11/780. The VAX
and 2020 were linked via 8 CHAOSnet. The rule base was
made up of aproximately 30 rules. There were also several
feature detectors and signal processing algorithms.

Demonstration of Utility and Performance: The proto-
type system demonstrated to the expert that significant
analyses were possible. To determine commercial viability,
other issues must be addressed. Does the system solve
enough of the problem to be interesting and useful? Can the
system perform with the efficiency and interactivity neces-
sary in a field environment without overutilizing available
computing resources?

Two examples demonstrate the problem. The initial
prototype had no means of actually detecting the red and
blue patterns and the lithology zones that are required to
perform an unaided interpretation. It did not solve enough
of the problem to be useful. This lack resulted in implemen-
tation of algorithms for simple detection of tadpole patterns
and lithologic zones.

Second, the detection of green patterns and determina-
tion of structural dip took approximately 18 minutes in the
first test well. This duration was unacceptable for actual
use—later effort reduced the time to under 2 minutes.

Evaluation of Utility and Performance: Field evalua-
tion was the next hurdle for the Dipmeter Advisor system.
Several questions had to be addressed. First, was the rule
base sufficiently complete to solve correctly a wide variety of
problems in the geological environments for which it was de-




Several questions had to be addressed. First, was the rule
base sufficiently complete to solve correctly a wide variety of
problems in the geological environments for which it was de-
veloped? Second, what changes and effort would be required
when working in other geological environments? And third,
did the rule base sufficiently capture the thinking of enough
dipmeter interpreters to be useful?

To date, this has been the most difficult area. People
in the engineering and field groups had to address the above
questions. To accomplish this, the prototype system had
to be capable of operating in their existing environment—
possibly upgraded with modest investment.

One of the difficulties with the initial prototype was the
unusual architecture of linked computers, which was not a
standard company configuration. In an effort to facilitate
testing, the system was reimplemented in FRANZLISP (except
for the graphical interface), totally on the VAX 11/780. Un-
fortunately this change did not solve the problem. The
VAX/RAMTEK configuration, as a shared resource in a
generally overloaded situation, required an excessively long
time to complete a case. Under worst conditions, it took
several hours. (In an unloaded VAX environment, it could
be completed in one-half hour or less.)

At this point, new technology came to the rescue, and
the system was re-implemented on the Xerox 1100, which
has both a dedicated processor and sophisticated graphics.
In this implementation the graphical interface code was in-
tegrated into the remainder of the system. The result was ap-
proximately 612 Kbytes of INTERLISP-D source code. This
implementation was robust enough and fast enough to allow
transfer to a Schlumberger Interpretation Engineering group
for testing in a non-research environment.

We can summarize this section as follows: A commercial
expert system is ultimately constructed to solve a real prob-
lem (as opposed to being constructed, say, to determine the
limits of a problem-solving architecture). As a result, the
developers should avoid a demonstration mentality. Careful
thought at all stages of development about the eventual dis-
position of the system may prevent the necessity for multiple
re-implementations.

The Development Team

Development of a commercial expert system requires
people with a variety of skills. The following set is typical.
We will expand on it in the remainder of this section.

e Domain Expertise

s Knowledge Engineering

e Expert System Tool Design

e Programming Support

First, it goes without saying that committment of one
or more articulate domain experts is crucial to the success
of any expert system development.

The term knowledge engineer is normally used to mean
computer scientist intermediary—the link between expert
and machine. We have divided this role into two parts in

order to emphasize that two different kinds of task are in-
volved. The development team normally requires at least
one member to interact with the domain experts and encode
domain knowledge. We reemphasize that the interaction and
encoding activities do not necessarily require someone who
can construct expert systems, but rather someone who can
become knowledgeable in the domain and who can use an
existing expert system framework to extend the capabilities
of the evolving system.

The team also requires someone with a ‘detailed un-
derstanding of the design and implementation of expert
systems—someone who can construct the underlying frame-
work in which to encode domain knowledge. Unfortunately,
such people are currently scarce and in demand. Among the
ways around this bottleneck are use of off-the-shelf develop-
ment tools, and training of existing staff in expert system
design techniques. Companies presently exist to perform
training. Development tools are somewhat more problem-
atic, but they too have started to appear. We will return to
this point later in the article.

Finally, the development team requires traditional pro-
gramming support, for integration into pre-existing systems,
for graphical interfaces, and so on. In this catchall category
we include expertise in related areas (e.g., statistical algo-
rithms and signal processing algorithms) as dictated by the
application domain. .

Naturally, some of the skill categories shown may be co-
located in the same persons. {This has traditionally been the
case for knowledge engineering/expert system tool design.)

In later stages, experiment designers, software engineers,
and other domain practitioners (not necessarily experts) are
required to test and debug the knowledge and framework
in more stringent and wide-ranging tests and to produce
the actual commercial product. Once again, it is possible
that these tasks will fall to the original team members. We
would argue, however, that the downstream engineering of
the original code is not the best utilization of people with
expert system design skills. These people are too few in
number today to be underutilized.

Rapid Prototyping and Successive Refinement

In the beginning of a commercial expert system develop-
ment project, it is important to demonstrate the feasibility
of the system. Rapid prototyping seems to be an appropriate
strategy—especially given the usual vagueness of the under-
standing of what can be accomplished.

The main concern in such an approach is a flexible and
powerful development environment. Traditionally, such an
environment is not even closely related to the commercial
computational environment. This lack leads to the prob-
lems noted above. With the advent of inexpensive personal
workstations, however, there is real hope that the situation
may be changing (as has been our experience with the Dip-
meter Advisor system).
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Significant questions still remain. One of the problems
of rapid prototyping is that it provides a good start toward
system development, but does not offer clear guidance on
how to produce a well-engineered commercial product (see,
for example Sheil, 1983). Traditionally this fault is viewed
as a problem in technology transfer.

The Dipmeter Advisor system has been developed using
rapid prototyping techniques and has evolved as a series of
prototypes through successive refinement. Qur experience
with the process suggests technology transfer through not a
single release from research to engineering but rather through
~ successive releases, corresponding to successive prototypes.
This type of transfer is appropriate for an expert syvstem in
which domain knowledge expansion and refinement can be
expected to continue for some time, but for which the system
framework has demonstrated that it is sufficiently powerful
to warrant engineering effort.

Such an approach to technology transfer naturally im-
poses restrictions. The designers must somehow convey to
their engineering organizations a more accurate perception
of the expected lifetimes of the prototypes. Furthermore,
the designers are forced to pay even more attention to user
interfaces than our earlier figures would suggest. If the sys-
tems are going to be changing rapidly then they must have
especially convenient and easy-to-learn interfaces.

Expert Systems Technology Transfer

Construction of expert systems requires skills that are
possessed by a very small number of individuals. Fur-
thermore, the rapid prototyping development methodology
makes traditional technology transfer more difficult—the
systems are in a constant state of flux. As a result it is
fair to say that for the foreseeable future, greater than nor-
mal responsibility will lie with the research and advanced
engineering organizations to ensure successful transfer.

Based on our experience with the Dipmeter Advisor sys-
tem, we can suggest some actions to ease the problem. The
suggestions refer to a number of phases of expert system
development—from problem choice to transfer to engineer-
ing.

Technology transfer can be viewed as a (forward!) . pass
from research to engineering. In order to ensure a successful
completion, both passer and receiver must have the same
pass pattern in mind. From the point of view of the passer,
if no open receivers are open, then a pass is ill-advised.
Similarly, the passer must be sensitive to the constraints
under which the receiver operates. Throwing the ball in the
general area and hoping that a receiver will appear to make
the catch is also ill-advised. From the point of view of the
receiver, once the ball has been caught, it is his responsibility
to move on down the field.

From our football analogy, as represented in Figures
5, 6, and 7, we can take away a number of useful sugges-
tions. First and foremost, for a research organization, con-
structing demonstrations or prototypes and simply throw-

-
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Research and Engineering do not have the
Same Pattern in Mind

Figure 5.

Research does not appreciate the Constraints
under which Engineering operates

Figure 6.

ing them to engineering isn’t enough. The engineering staff
need to be aware of the design desiderata, the false starts,
the simplifications and approximations made in the inter-
ests of expediency, the interactions between components, and
so on—a host of insider information. Furthermore, once in
the engineering organization, there must be committed and
capable receivers to carry the project toward commercial

Engineering is not fully committed to a Suc-
“cessful Transfer.

Figure 7.
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deployment. -

This need argues for early, on-site involvement by en-
gineering (and perhaps field) personnel in the research lab-
oratory. Such involvement is not atypical for development
projects, of course. It is especially important for expert sys-
tems technology, however, given its relative immaturity and
the lack of trained specialists.

These people can also help to ensure that the completed
system is well-integrated into the overall complex of systems
in use by the organization as a whole. Furthermore, they
are probably in a much better position than the researchers
actually to effect this integration.

We have made the point several times that expert sys-
tem development is an incremental process. Even so, it is
worth reemphasizing. Without domain expertise there is no
system! Over the course of a commercial expert system de-
velopment effort, it is necessary to maintain the commitment
of at least one domain expert—personal commitment and
corporate commitment. The importance of the latter should
not be overlooked. Experts make money for their employers
and time devoted to a development project may well have
a short term negative impact on their normal productivity.
Hence, management needs to support expert involvement.

One way to ensure this commitment is to work on prob-
lems that the experts actually want solved!

We have found it useful in easing our interactions with
both engineering and field personnel to deal in what we
might call value-added systems. By this we mean that the
ultimate user gets a number of advantages from using our
new systems—one of which is symbolic inference. This ad-
vantage is evident in the Dipmeter Advisor system. Even if
the interpreter never uses the inference machinery, he still
derives some benefit from the system—namely, a powerful
interactive log interpretation environment. In addition, he
is always in control of interactions with the system—he can
interactively control the system’s inference procedure. This
option has the effect of giving him an environment in which
he can explore the ramifications of his own hypotheses about
the local geology in addition to acquiring access to some of
the expertise of other senior interpreters.

We have also found it necessary to construct our systems
in such a way that they do not have a negative impact on
the standard field computing environment. As pointed out
previously, personal workstations have offered real relief in
this area. They have, not however been without cost—they
have necessitated a relatively large investment in networking
software,

For additional thoughts on the problem of moving ad-
vanced computer science technology into real world environ-
ments sce (Newell, 1983). Newell makes a number of salient
observations on the basis of his experience with the instal-
lation of the ZOG system on the USS CARL VINSON. One
of the considerations for which he argues is flexibility. The
functionality expected of a system often changes over time.
It may therefore be difficult to predict what its eventual use
will be. As a result, the developers of real systems are ad-

a

vised to avoid rigidity in their designs.

Some Observations on the Traditional Wisdom

For the remainder of this section we consider a number
of maxims of expert system development in the light of our
experience in the commercial environment. [See (Barstow,
1981); (Buchanan, 1982); or (Davis, 1982) for good sum-
maries of the traditional wisdom of expert systems develop-
ment.]|

A common maxim of expert system development is that
we should throw away the code for the Mark-1 version of
the system as soon as it demonstrates feasibility and get
started on Mark-11. In the commercial environment, there is
great reluctance to throw away code. As a result, a likelier
scenario involves a series of progressive releases of the system
to the expert and possibly to the engineering organization
for development and use. The fact is that even though
the knowledge engineer knows all too well the limitations of
Mark-1, and even has ideas on how to overcome them, Mark-1
may still provide some useful service. We do not yet know
how to manage this type of progressive and evolutionary
technology transfer.8

It is well accepted that expert system development is
an incremental process. Usually we understand this fact to
mean that the performance of the system improves incremen-
tally. There is, however, another kind of change that may
occur—namely, our experts are themselves moving targets,
partially as a result of the perspective gained through ex-
perience in expert system development! This has been ap-
parent during the Dipmeter Advisor project. The existence
of tools for testing the ramifications of geological hypotheses
led our expert dipmeter interpreter to try a number of ap-
proaches to stratigraphic analysis. The program was a test
bed for his evolving ideas.

It is traditional wisdom that the task should be very
carefully defined before the system is designed. Our ex-
perience has been that this process is quite difficult. In
consonance with our comments on the rapid prototyping de-
velopment strategy, it is not clear that task definition can
be done in a rigorous fashion. We suggest a contingent
definition—one that is clear for a time, but can be easily
changed. We should note that the evolving performance of
the system itself at least partially fuels changes in the task
definition.

It is generally accepted that construction of the Mark-
I system should be commenced as soon as one example of
the intended behavior is understood. We did not obey this
maxim. We now believe that we spent too much time in
knowledge acquisition before actually starting to build a

8This is a good illustration of a conflict that can arise as a result of
somewhat different goals of research and of development in expert sys-
tems. The former is concerned with continued exposition and machine
implementation of human expert reasoning methods, while the latter is
concerned with construction of praducts that utilize already understood
and implemented mcthods.
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system. This activity had the effect of slowing our rate
of progress. We could not move forward in formalizing
the knowledge that had been gained, because we could not
demonstrate in concrete terms our understanding of it.

This problem can be exacerbated by the seductive sim-
plicity of an intuitively appealing formalism like produc-
tion rules. We want a domain expert to communicate
as much as possible about what he is doing in solving a
problem—independent of whether or not it appears to him
to fit naturally into the formalism. Difficulties can arise
when the expert attempts to map his explanations directly
into the formalism—perhaps at the expense of accuracy. If
insufficient testing is done throughout the process of know-
ledge acquisition, then a misunderstanding may develop
about exactly what the system can and cannot do with rules
so generated.

Some of the development team also deemed themselves
to have acquired more expertise than was warranted. This
is a natural tendency. It was partially due to infrequent
interactions with the expert. More responsibility fell on the
shoulders of the system developers to organize the domain
knowledge than appears prudent. This infrequency also led
to a problem of validation—how to be sure that we were on
the right track. On a related note, we can testify to the
necessity of an adequate set of generic examples with which
to test the system as it evolves.

One piece of traditional wisdom might be questioned.
It is commor to deal with a single expert during the devel-
opment of an expert system. The perceived danger is that
it is difficult enough to capture the perspective of a single
expert, let alone those of a number of experts. In the par-
ticular context of dipmeter interpretation, however, it might
have been useful to involve a number of experts with differing
backgrounds from the outset. For example, while the rules
for a first approach are most appropriately phrased by a dip-
meter interpreter, the necessary geological vocabulary and
structure are most appropriately obtained from a geologist.
In future systems, we will attempt to synthesize these over-
lapping points of view.

In a similar vein, we have noted a difficulty that can
arise when a single expert is used and when he provides
all examples with which to test the system. When work-
ing with familiar examples, our expert does indeed appear
to apply forward-chained empirical rules—kinds of compiled
inferences. Recently, however, we have participated in ex-
periments with & number of interpreters (and examples) from
around the world. During these experiments we noted that
all the experts exhibited a different mode of reasoning when
faced with completely unfamiliar examples. They appeared
to reason from underlying geological and geometric models—
supplementing the rules. In some sense, this behavior is of
course to be expected. However, actual evidence of a change
in reasoning style by the single expert that we dealt with for
the rule base development was elusive. It was complicated
by the fact that he has extremely broad experience. Hence,
finding a completely unfamiliar example was quite difficult.
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We believe that dealing with multiple experts would have
provided concrete evidence of this phenomenon much sooner
in the life of the project.

With regard to acceptance of the expert systems ap-
proach, our experience has been somewhat different from
that of the R1 designers in that there was general relatively
rapid acceptance of the ideas within our organization. From
early in the project, concerns revolved almost totally around
performance and utility in the problem domain.

We have seen a substantial increase in the size of the
rule base (approximately tripled) and the functionality re-
quired of the system before we could consider field evalua-
tion. McDermott has described a similar experience with
R1. The size of its rule base tripled during the development
phase (McDermott, 1981).

The traditional wisdom notes the importance of early
construction of a flexible user interface. For the Dipmeter
Advisor system the interface is graphical. It has proved in-
valuable in testing and user acceptance. Furthermore, as
has been noted elsewhere {Buchanan, 1982), expert systems
that are actually used by people trying to soive problems
in their own domains of interest (as opposed to being used
by researchers as vehicles for experimentation with Al tech-
niques) must pay particular attention to human interface
issues. For the Dipmeter Advisor system, it was only after we
constructed a personal workstation implementation that was
flexible, robust, and fast that it became possible to consider
seriously testing by the Schlumberger engineering organiza-
tion.

One final observation worth noting relates to the impact
of an expert system on the domain experts. As has been
found in other applications of expert systems (Feigenbaum,
1980) the existence of an expert system is helping to identify
the real knowledge used in the field—the kind of knowledge
that is rarely found in textbooks. A program that cap-
tures some of it at least gives a concrete basis for comparing
the methods of different experts. As Gaschnig has noted
(Gaschnig, 1982) it can also help a group to reach some form
of consensus. The Dipmeter Advisor system has stimulated
an examination of current dipmeter interpretation methods
that promises to improve quality.

System Development Tools

We have discussed the utility of flexible programming
environments and personal workstations in the development
of expert systems. Powerful tools for creation, modification,

and maintenance of knowledge bases and related code are

also especially helpful during the design and testing of ex-
pert systems. In a sense, they are augmentations to the
programming environment that further assist in the rapid
prototyping approach. Such tools may -also help in reduc-
ing the necessity for a tool designer on every expert system
development team.

In this section we describe a small set of development
tools that we are finding helpful in our current expert system
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efforts. The tools are STROBE, a structured object program-_

ming system, and IMPULSE, a display oriented knowledge
base editor. They are described in (Smith, 1983a),(Smith,
1983b), and (Schoen, 1983).

In recent years, interest has been considerable in struc-
tured object representation for the design of expert sys-
tems. Within this framework, a programmer can encapsulate
packets of knowledge and link them together via a variety
of relationships to form knowledge bases. Inheritance of
properties through generalization hierarchies is standard.

Programming with structured objects offers a number of
advantages. From a conceptual point of view, it is helpful to

' -organize computations around programming objects whose

internal structure explicitly reflects that of objects in the real
world and whose communication with each other is via mes-
sages. It is also helpful to organize data structures according
to taxonomic hierarchies and to distinguish between general
classes of entity and specific individual entities. This style
of programming encourages thought about the structure and

interrelations between various packets of knowledge in a sys-
tem. =

From a programming point of view, it is helpful to en-
capsulate procedure definitions and data definitions. This
process leads to modular code and helps prevent inap-
propriate application of procedures. The behavior of an ob-
ject in stereotyped situations is defined within the object it-
self in a set of procedures specific to that object as opposed to
being defined in a general procedure buried in an amorphous
system. Inheritance of procedure definitions also enhances
modularity and storage efficiency. It has the added benefit
of simplifying the sharing of procedures.

From an expert system point of view, structured objects
help to capture what we might call automatic inferences—the
kind of inferences that would otherwise be made by explicit
rule application (Nilsson, 1980). For when a system built
with structured objects discovers that some object belongs to
a known class of objects, then it immediately acquires access
{through inheritance) to the body of information already
known about the class.
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STROBE is a system that provides object-oriented pro-
gramming support tools for INTERLISP. A STROBE know-
ledge base is made up of a number of interrelated objects.
The characteristics of an object and its links to other ob-
jects are encoded as a number of slots. The slots them-
selves have structure—f{acets—that can be used for annotata-
tion. STROBE implements multiple resident knowledge
bases, tangled generalization hierarchies, flexible inheritance
of properties. procedural attachment, message-passing, and
procedure invocation in conjunction with several tvpes of
data access and alteration. It offers a primitive foundation
with which more complex structured object representation
schemes can be constructed.

IMPULSE provides a convenient user interface to STROBE.
A user still expresses his knowledge in terms of STROBE con-
structs, but interaction with the evolving knowledge bases
and objects is via pointing and direct visual manipulation.
IMPULSE enables concurrent editing in multiple contexts
(e.g., having several object editor windows simultaneously
active) and graphical displays of inier-object relationships.
Figure 8 shows an IMPULSE screen during an editing ses-
sion in which parts of the tectonic feature knowledge of the
Dipmeter Advisor system are being updated.

In addition to their utility to the builder/maintainer of
knowledge bases, tools like STROBE/IMPULSE can assist in
the transfer of expertise from domain expert through com-
puter scientist intermediary to machine. One of the most
useful roles played by the intermediary is to help provide
a logical organization for the knowledge of the domain ex-
pert. This assistance is typically provided via many interac-
tions. For each interaction, the intermediary gathers some
understanding of a portion of the expert’s knowledge, en-
cades it in a program, discusses the encoding and the results
of its application with the expert, and refines the encoded
knowledge. Discussion and refinement is facilitated when the
knowledge is encoded in domain-specific terms and when it
is presented in forms familiar to the domain expert. Our ex-
perience with IMPULSE is that its ability to simultaneously
display different views of a knowledge base and its charac-
teristic immediate feedback have enhanced interactions with
our domain experts.

The tools we have discussed are characteristic of the
sort that an expert system development team can be ex-
pected to use (and perhaps produce). Our focus has been
tools for encoding structural relationships between packets
of knowledge. They are typically combined with other tools
that provide facilities for encoding and invoking heuristic
rules. Tools of this sort are described in the literature [e.g.,
OPS (Forgy, 1981), LOOPS (Bobrow, 1983), (Gorlin, 1981),
and EMYCIN (VanMelle, 1981)]

Conclusions

The current Dipmeter Advisor system has provided sub-
stantial demonstration of the feasibility of using expert sys-
tem techniques in commercial well-log interpretation. Addi-

.

72 THE A1 MAGAZINE Fall 1984

tional analysis and evaluation of the system will certainly
further define the the strengths and weaknesses of its ap-
proach. The experience gained to date has also helped to
suggest characteristics of commercial expert system develop-
ment as well as properties of a development methodology.

We have found that incremental development of expert
svstems within a rapid prototyping framework is a viable
approach. It has also been important to bear in mind from
the beginning of a commercial expert system development
effort that the system will eventually be used by people who
are more sensitive to utility and performance than to the
novel techiques that it may embody.

Early engineering and field involvement are especially
important in expert system technologyv transfer, given its
relative immaturity and the scarcity of trained specialists.
These people are also in a good position to ease the prob-
lem of integration of expert system components intc more

traditional software systems. The notion of value-added
svstems—that include symbolic inference as part of an over-
all package—is useful in ensuring field acceptance.

A variety of skills are required for expert system devel-
opment. These skills domain expertise, expert system tool
design, knowledge engineering, and traditional programming
support. Not all of these skills are required throughout a de-
velopment project, as it oscillates between domain knowledge
expansion and redesign of the underlying framework. Fur-
thermore, high-level development tools such as structured
object representation languages and standard rule inter-
preters can reduce the need for tool design.

Finally, we have noted that the traditional wisdom of
expert system development offers sound advice. Problems
to be wary of are related to the seductive nature of a simple
formalism and to the extended use of a single expert.
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