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The ¢lectrical resistivities at @ fregquency of
1 kHz of eguesus solutions of the chlorides of sodium,
calcium, and potassiun have beern mzasured under 30 Hra
hydraststic pressure ovar a concentrition rance of
roughiy 0.2 to 4 malar (or aecprorimately 3 to 25 .
weight percent) while varying the tezperanurc fron 22

te 375°C. ke gbserved bahavior cof the electrical
resistivity botwoon 200 and ’7*°P 1; markadly diff-

ereat from thst pradicted v the extrasolation of
lower temporature gdata,  Consicerébie errors on thz
oider of 25 porcent or greater in 107 interpretaticn
will result from tho use of existing forrwles for high
tewperature resistivity of brines. A new formula is
given fron three-digensional regression anaiysis of
these megsurements with an ordar of magnitude increase
in accuracy over the existing iormulas.

JNTRODUCTION

The electrical resistivity of dilute aqueous salt
solutions has becn studied Tor a number of ycars! but
vory littie data exists above conzentrations of 0.1
molar? {rocently reviewedd), lHormal groundwzters ave
comronly noar 0.1 swiar® while most gesthermal and oil
ficld fluids are at least several molar {sce Teble 1).
Thus, the inlevpretation of electrical measuremants in
geotherrmal ar2as’ at present are mainly based upon
exira yO]ut]G“S ¢f lower 9Cdpgrgt”rr and lower concen-
tration dota?. Such extranolation may introduce
Serious crrors into the interpretaiion of geothermal
reservair charLcLC|1 tics determined from electrical
measurcmants?

This paper presents now cxperimental data

and an

improved descrintive medel of the elccirical properties
of brines as a funclion of temperatura from 22 to 375°C

and concenbralicn Trom roughly 3 to 20 wciqht noreent
while uader 30 MPa hydrostatic pressure,  Uata and
models are given for brines comngned of the chlavides
of sodium, calcium, and potassium and their wixtures.
Copparison of the older loy interprotation formuias!?
to the naw modaly ilTustrates an order of maunitude
imrovesant in accuracy with an overat) it to within
12 percent.

RESISTIVITY DEPEI2ENCE UFDI TEMPERATURE

Tha electrical resistivity of fluid saturated
recks has -been ooztulated to follow the temperature
dA)fn znce of the saturating fluid in the absence of
conducting mirsrals or si:n1.1 ant surficial conduc-
tion aleng altered pore walls!! 12 13 This has
occurred cue to the success of & 51“319 empirical
formula relating the resistivity of a rock to the
esistivity of the fluid fi1ling the pores of the
rock!%:

o = f P

where o = resxs*mxwty ‘of c]a -free, non-shaie
materiel that is ]00 percent saturated

Py © resistivity of saturating sotution

and F = formaticn resistivity factor.
A nunber of investigaiors huve corived formulazs to fit
this which add the temperature of the satureting
fluidsis 8, ’

Experimenta} cobservations have shown that some
rocks ocbay these foramulas while others do not'? 20 21,
Part of the problem is the inadzguate knowiedae of the
resistivity desendence upan temperaturz for the
sclution that 7i1ls tho rock novas,

We have empivically found ihe best
resistivity data to tomperatures to be

= N I 2 4 h 73
o bo-ibT 4bT+b3T iLQ"l

1 2
vhere T is temperatura ond the ccefficicnts, b, are
empiricalty found.

fit of the

RESTSTIVITY DEPENDCNCE LG COHCINTRAYICH

k»l.ronrna a-n iTius ~Lrations at_end 0F papor,

dazendance of the electrical
solutions hgs bezn extensively
ed by tie formala

The concentration
resistivity of agusous
studied and is ‘nsL represente

= 10/{tc)

the cquivalenl conductivity sccording to??

1/2

wvhere A s

A= 80 - B] C + HZ c Tnc + higher ordor terms
vihere ¢ 18 the molay concont»ation and the cno(fic—w
ients, B, are depondint span tac solulion enemiciey?d,
Furlther discussien way be found in ncacly any teal

on elecirochenisieyy 7,
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EXPERIMENTAL

The measurement of the electrical resistivity of
concentrated salt solutions at elevated temperatures
is very difficult due to the corrosive nature of the
solution chemistries. A special sample holder
(Figures 1 and 2) and pressure vessel assembly was
manufactured from mullite ceramic, platinum, inconel,
stainless steel, and teflon components. The salt
solution contacted only mullite and platinum. A four
electrode configuration at a measurement frequency of
1 kHz was chosen to eliminate electrode polarization
prohlems. Measurements at frequencies from 0.1 to
10 kHz were performed to confirm the lack of polar-
ization at the electrodes. Two electrode measurements
were found to have polarization errors on the order
of an order of magnitude.

Cumulative experimental errors due to thermal
expansion, errors in determining cell constants,
instrument errors, and so forth did not exceed +1
percent in the final resistivity determination. The
temperature of the solution was measured with a type
S, Pt-10%Rh thermocouple in the solution with an
accuracy of +1°C. The system was hydrostat1ca11y
pressurized with argon gas through a series of snub-
bers and pressure regulators as illustrated in
Figure 3. Pressure was measured and monitored with
two strain gauge pressure transducers as well as a
manual Bourdon tube gauge. The electrical resistance
of the sample cell was measured with a Hewlett-Packard
4262A automatic digital LCR meter. A computer was
used to control the environmental parameters and to
perform the electrical measurements as schematicaily
illustrated in Figure 3.

Each experiment began with the cleaning in
distilled water and assembly of the sample cell and
pressure vessel. A teflon calibration cell of
precisely known geometry was used with standard
potassium chloride solutions2" to ca]lbrate the pres-
sure vessel sampie cell.

Salt solutions were prepared from neageﬂtegvade
crystals (anhydrous CaC]z) which vere gravimetrically

measured into 150,000 ohm-m water. Resultant room
temperature (22° C) resistivities were checked against
reference table values2".

A1l measurements reported here were performed
at hydrostatic pressures of 30 MPa as the resistivities
of the studied solutions were found to be independent
of pressure in agreement with earlier studies!.
Pressure dependence only becomes significant well
above the critical region or as the solution nears
and passes below its vapor pressure.

RESULTS

Isobaric resistivities of NaCl, KC1, and CaC)2

solutions versus temperature at several salt concen-
trations are shown in Figures 4, 5, and 6. In general,
the electrical resistivity decreases with increasing
temperature and with increasing salt concentration.
However, as the critical temperature of the solutions
is approached at the higher temperatures studied, the
resistivity reaches a minimum and then begins to
increase with increasing temperature.

Quist and Marshall! have given the best explana-
tion for the behavior of the physical properties of
aqueous salt solutions. The electrical resistivity
is controlied by a variety of parameters including
viscosity, density, and the dielectric permittivity
of the solution. As temperature or concentration
increases, these properties of water begin to change
very rapidly. The rapid decrease of viscosity with

increasing temperature results in a rapid increase in
jonic mobilities with a resultant decrease in elec-
trical resistivity. Above roughly 300°C as the
critical point is approached, the rate of decrease in
viscosity with increasing temperature diminishes and
the change in ionic mobility becomes less. As the
temperature continues to increase, the changes in
density overtake the effects of viscosity. The
decreasing density results in a lowering of the diel-
ectric permittivity and in the number of jons per unit
volume. This results in the increased association
among ion pairs and an increase in the electrical
resistivity. Thus when the increase in jonic mobility
is offset by the decrease in permittivity and in ionic
concentration, the electrical resistivity reaches a
minimum versus temperature. As the concentration of
the salt solution increases significantly above 0.1
molar, the minimum in the resistivity shifts to higher
temperatures due to the effects of the increasing salt
concentration upon the critical properties of water.
The solid lines in Figures 4, 5, and b6 are
formula fits to the data points by three dimensional
regression analysis25. The coefficient matrices and
computer program to generate the resistivity at a
given temperature and concentration is given in the

‘appendix.

Figure 7 i1lustrates a comparison of the
experimental data with the formula from three-dimen-
sional regression and with Arp's approximationl®. Both
formulas are in reasonable agreement with the data up
to about 200°C. Beyond 200°C, Arp's approximation
encounters serious difficulties.

Figures 8, 9, and 10 illustrate the concentration
dependence of NaCl, KC1, and CaCl2 at three tempera-

tures. Note that the curves of resistivity versus
concentration crossover each other. These crossovers
are a direct result of the differences in the salt
solution viscosities versus temperature and concentra-
tion. These crossovers also illustrate the need for
great caution when reducing a solution of mixed salts
to an equivalent solution of NaCl.

Commonly, this is performed by the use of
muitipliers which convert a given ionic concentration
of salt to an equivalent amount of NaCl:

k K + kC]C] = measured equivalent NaCi
concentration in weight percent
kCaCa++ * kpyC17 = measured equivalent NaCl

concentration

where the k's are multipliers and it is assumed that

kNa= kC] = 1. The kK and kCa multipliers are then

empirically determined (usually from electrical
resistivity measurements). Desai and Moore!® report
that the multipliers are fairly constant and indepen-
dent of temperature up to 71°C with errors less than
5 percent for concentrations below 1 weight percent.
As illustrated in Figures 11 and 12, we have found
this no Tonger to be the case at higher temperatures
and concentrations.

To illustrate the errors involved in the
extrapolation of lower temperature and lower concentra-
tion data to higher values, a mixed salt of 3 weight
percent total salt concentration composed of 1.5 wt%
NaCl, 0.75 wt% KC1, and 0.75 wt¥ CaC]2 was measured.

Figure 13 iVlustrates the results with a 3 wt% NaCl
solution for comparison. Table 2 gives the resulting
measured resistivities compared with values calculated
by our three-dimensional regression formula and values
using Desai and Moore's multipliers in Arp's equation.
Our newer formula is an order of magnitude better.
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18. Desai, K.P. and Moore, E.J., Equivalent NaCl Table 3, the following short BASIC program will .
+ determination from ionic concentrations, The generate electrical resistivity in ohm-m at a given
Log Analyst, May-Jdune, pp.12-2) (1969) temperature in °C and salt concentration (molar).
19. Hyndman, R.D. and Drury, M.J., The physical 10 DIM 8(3,5),0(1,1),¢(1,3),7(5,1),D(1,5)
properties of oceanic basement rocks from deep 20 FORTI =1 to 5
drilling on the Mid-Atlantic Ridge, J.Geophys. Res.! 30 INPUT B(1,1),B(2,1),8(3,1)
vol, 81, pp.4042-4052 (1976) 40 NEXT 1
50 DISP"Enter molar concentration and Celcius temp";
20. Olhoeft, G.R., Electrical properties of water 60 INPUT C,T
saturated basalt: preliminary results to 506K 70 C(1,1)=C
(233°C), U.S.G.S. Open File Report D-77-688 (1977) |80 C(1,2)=C*SQR(C)
90 C€(1,3)=C*C*L0G(C)
21, OYhoeft, G.R. and Ucok, H., Electrical resistivity | 100 T(1,1)=1 .
of water saturated basalt, EOS, Trans. AGU, vol.58,| 110 T(2,1)=1/T
p. 1235 (1977) 120 T(3,1)=T
130 T{4,1)=T*T
22. Fuoss, R.M. and Hsia, K.L., Association of 1:1 140 T(5,1)=T*T*T
salts in water, Proc. Natl, Acad. Sci., vol.57, 150 MAT D =(C*B
pp.1550-1557 (1967) 160 MAT 0 =D*T
170 PRINT T,C,1/0(1,1)
23. Bockris, J.0'M. and Reddy, A.K.N., Modern 180 END
Electrochemistry, 2 vols., New York: Plenum (1970)
Line 10 sets up the matrix dimensions.
24, Jones, G. and Bradshaw, B.C., Specific conductance | Lines 20-40 enter the B matrix coefficients from
of standard potassium chloride solutions in ohm-1 Table 3 for the appropriate salt.
cm™ 1, J,Am Chem.Soc., vo1.55, pp.1780-1800 (1933) | Lines 50-50 enter the desired concentration and
temperature.
25, Dlhoeft, G.R., Algorithm and BASIC program for Lines 70-140 compute the concentration and temperature
ordinary least squares regression in two and three matrices. ’
dimensions, U.S.G.S. Open File Report 78-876 (1978)| Linzs 150-160 compute the electrical conductivity (due
. to the form of the concentration dependence)
26. Wahl, E.F., Geothermal Energy Utilization, New Line 170 prints out the tamperature (°C), molar
York: Wiley, pp. 26-80 (1977) concentration, and electrical resistivity (ohm-m).
To compute the molar conceniration of the -solution,
multiply the solution concertration in weight percent
APPENDIX by the density of the solution, multiply that prpduct

Using the coefficients for B that are listed in

by ten, and divide by the molecular weight of the
solute. See any standard chemistry textbook.

TABLE 1

Examples of typical water chemistries in weight percent.

Ion Normal ground Salton Sea East Mesa Cerro Prieto
water Seawater Brine Brine Brine
Na' 0.061 1.5 5.04 0.7 0.6
k* 0.061 0.038 1.75 0.089 0.17
catt . 0.0037 0.04 2.8 0.077 0.034
€1 0.0082 1.9 15.5 1.4 1.1
Mgt 0.00024 0.135 0.0054 0.0016 0.0016
S0, 0.1 0.27 - ¢.02
(HCO4)™ 0.0429 0.014 0.01 0.03 0.0011
DS 0.198 3.45 25.8 2.5 2.0
molarity 0.03 0.56 3.6 0.36 0.3
ToC 340 138 290
Reference 6 6 5 25 25
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TABLE 2

Comparison of actual measured resistivities with varfous derived parameters

Temperature Measured Resistivity Multipliers Equivalent
(°c) Resistivity from Desai in this study NaCi
{ohm-m) and Moore's from Fig. 12 & 13 Concentration
method + ++ (weight percent)
K Ca

w

25 0.22 0.22 0.592 0.723 2.77
100 0.078 0.070 0.331 0.160 .25
300 0.043 0.0345 0.203 -0.385 2.3

Formula
Resistivity
from this
study -
0.22
0.0765
0.0430

Chemical composition of solution: TS 3 wt¥, 0.5901 wt¥ Ha+. 0.3933 K+, 0.271) CaH. 1.7462 €17

*Example calculation:

Equivalent NaCl = 0.5901 x 1 + 1.7462 x 1 + 0.3933 x 0.592 + 0.2711 x 0.723 = 2.77 wt}

TABLE 3

Coefficient matrices for B for the three-dimensional regression

analysis of the data in the text:

CaCIZ:
-34.62 24.64 -3.907
780.3 -492.3 64.59
B = 1.050 -0.5922 0.06735
-0.002459 0.001461 -1.216x107
9.986x10°7  -7.108x1077  -4.731x307°
K1 5.783 -6.607 1.665
-59.23 149.7 .21
g = 0.2051 0.1064 -0.03418
1.esast o700 ysaem?
-1.094x10°%  1.080x107%  1.9asx1077
NaCl: 3.470 -6.650 2.633
-59.21 198.1 -64.80
B = 0.4551 -0.2058 0.005799
‘ 19.346x107°  7.368410°°  6.741x107°

21.766x10°8  8.768x1077  -2.136x1077
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