References Cited

Black, Robert, 1954, Permasrost: A review: Geol Soc. America Bull. v. 65, p. 839-856, Figs. 1-3 Bucher, Walter H., 1953, Fossils in metamorphic rocks: A review: Geol. Soc. America Bull., v 64, p. 275-300, Pls. 1-2
Cloos, Ernst, and others, 1953, Reviews of geo ogical literature: an innovation: Geol. Soc America Bull., v: 64, p. 255-258
Ingerson, Earl, 1953, Nonradiogenic isotopes in geology: A review: Geol. Soc. America Bull. . 64, p. 301-374, Figs. 1-6

Pecora, W. T., 1956, Carbonatites: A review: Gew Soc. America Bull., v. 67, p. 1537-1555 Poldervaart, Aric, 1953, Metamorphism of basall rocks: A revie
64, p. $259-274$
Sharp, Robert P., 1954, Glacier flow: A revie? Geol. Soc. America Bull., v. 65, p. 821-838
Committee on Review Articles in Geology Francis Birch

$$
\begin{aligned}
& \text { P. E. Cloud, } \\
& \text { S. S. Goldich }
\end{aligned}
$$

J. Hoover Mackin

GRANITE EMPLACEMENT WITH SPECIAL REFERENCE TO NORTH AMERICA

By A. F. Budingiton

ABSTRACT

Publications of the last 25 years that discuss the emplacement of granite plutons are reviewed, with special reference to North America. The plutons are classifed according to emplacement in the epizone, mesozone, or catazone of the earth's crust. It is found that those emplaced in the epizone are almost wholly discordant; those in the mesozone complex, in part discordant and in part concordant; and those of the catazone predominantly concordant. Granite formed by granitization is considered to be minor or local in plutons of the epizone, common but subordinate in those of the mesozone, and a major factor in plutons of the catazone. The authors of the papers reviewed in general, however, infer that magma was either directly or indirectly the major factor in all the zones. Contrary to some current theories, this review emphasizes the great number and great total volume of granitic plutons emplaced as fluid magma in the epizone and their community of origin with lavas of similar composition directly associated in time and space. Magma is thus inferred to play the major role in Tertiary stocks and batholiths. There appears to be no discontinuity between plutons of the epizone and those of the mesozone, and a major role for magma is indicated for the latter also. The evidence is not clear as to whether plutons of the mesozone are continuous with those of the catazone have roots in the catazone, or are pinched off from it. Batholiths emplaced in the mesozone are dominant in most basement complexes of Precambrian to Early Cretaceous ages.

Sommatre

Les publications des 25 dernières années qui traitent de l'emplacement de plutons de granit sont passées en revue, en se référant spécialement á l'Amérique du Nord. Les plutons sont classés en fonction de leur emplacement dans l'epizone, la mesozone, ou la catazone de la croate terrestre. On a découvert que ceux placés dans l'epizone sont pres que complètement discordants; ceux dans la mesozone complex, en partie discordants et en partie concordants, et ceux situés dans la catazone concordants de façon predominante Le granit forme par le granitisation est considere comme peu important ou epars dans les plutons de l'epizone, courant mais secondaire dans ceux de la mesozone, et dimportance majeure dans les plutons de la catazone. La plupart des auteurs de ces publications passées en revue dedurent cependant que le magma était, directement ou indirectement, le facteur le plus important dans toutes les zones. Contrairement é certaines théories courantes, cette étude met en évidence le grand nombre et le grand volume total de plutons granitique emplace sous forme de magma fluide dans l'epizone; aussi leur origine communal à celle des laves de composition similaire associées directement à elles dans le temps et dans l'espace. On en déduit donc que le magma joue le rôle de premier plan dans les batholithes et les stocks Tertiairies. Il ne parait pas y avoir de discontinuité entre le plutons de l'epizone et ceux de la mesozone, et, par consequent, on indique que le magma joue également un rôle important dans le mesozone. Il n'est pas clairement évident que les plutons de la mesozone forment une suit ininterrompue avec ceux de la catazone qu'ils aient des racines dans la catazone, ou bien quils se disjoindre. Les bathohthes situes dans la mesozone dominent dans la plupart des complexes profonds de l'epoque Pre cambrienne jusqu' a l'epoque Crétacee inférieure.

Zusamatenfassung

Es werden Veröffentlichungen der letzten 25 Jahre besprochen, welche die Position von Granit-Plutonen, besonders solcher von Nord-Amerika, behandeln. Die Plutone werden entsprechend ihrer Lagerung in der Epizone, Mesozone oder Katazone der Erdkruste Klassifiziert. Es zeigt sich, daß die Lagerung in der Epizone nahezu völlig dis kordant ist, diejenige in der Mesozone dagegen komplex, teilweise diskordant, teilweise
konkordant, und diejenige in der Katazone vorwiegend konkordant. Granite, welche durch Granitisation geformt wurden, mulssen in den Plutonen der Epizone als verhältnismaßig, selten oder nur örtlich angesehen werden, als regelmáoig, jedoch anzore. Die Autoren der besprochenen Verïfentlichungen kommen jedoch im allgemeinen zu der Uberzeugung daß dos Marma, direkt oder indirekt, in allen zonen der Hauptfaktor war. Im Gegensatz zu einigen anderen umlaufenden Theorien betont diese Zusammenschau die große Anzahl und den großen Gesamtraum von Granitplutonen, welche als flussiges Magma in die Epizone eingedrungen sind und unterstreicht ihren gemeinschaftlichen Ursprung mit Lavamassen ähnlicher Zusammensetzung, mit denen sie zeitlich und raiumlich in direkter Lavamassen ähnhicher Zusammensetzung, mit denen sie zeilich und rkumhich in stöcken und Batholithen. Es scheint keine Unterbrechung 2 wischen den Plutonen der Epizone und denen der Mesozone zu bestehen, und für die letztere scheint das Magma Epizone und denen der Mesozone zu bestehen, und fur die letztere scheint das Magma
ebenfalls eine wesentliche Rolle gespielt zu haben. Die Beweise sind nicht klar, ob die Plutone der Mesozone in diejenigen der Katazone Ubergehen, ob sie Wurzeln in der Plutone der Mesozone in diejenigen der Katazone abergehen, ob sie Wurzeln in der
Katazone haben oder ob sie von ihr abgeschnitten sind. Die in die Mesozone eingelagerten Batholite sind in den meisten Grundmassiven vom Präkambrium bis zur Unteren Kreide vorherrschend.

ЗАJЕЖK ГРАННTA B CEBEPHOKL ANEPMKE

A. Ф. Буддингтов
 Абстракт

Печатные труды последних лет, описываюцие положение гранитных плутонов, особенно труды ивданные в Северной Америке являются предметом настояицего обзора. Плутоны классифицированы согласно их положению в апивоне, месовоне или катаяоне вемнон коры. Было найдено что плутоны находлщиеся в әпивоне почти полностыо иссовместимы; теже в месояонном соединении частьо несовместимы и частьо совместимы тогда как те в катазоне глљвным образом совместимы. Гранит образованныи путем гранитизании разсматривается кдк второстепенный или местныи фактор в плутонах эпизона, обычный но второстеленный в плутонах месозона, и как главнын фактор в плутонах катазона. В общем плутонах месозона, икак главныи фактор в плутонах катазона. В общем
авторы статеи настолщего обзора однако допускают что магма авторы статен настолщего обзора однако допускают что магма
непосредственно или посредственно лвляется главиым фактором во всех непосредственно или посредственно лвллется главиым фактором во всех
вонах. B противоположность некоторым современным теориям рассмотренным в настолщем обзоре подчеркивается большое количество б большой объем гранитных плутонов внедрепных в виде жидкой магмы в эпиаоне и их средство по происхождению с лавами подобного же состава непосредственно свлзанными по времени и пространству. Повидимому не существует непрерывнон свяви между плутонамп әпияона и плутонами месозона, при чем главнал родь для магмы укавана такле для последнего. Еще не дсно являются ли плутоны месозопа непрерывно связянными с плутонамп катазона, исходят ли они ия катазона или отıдеплены от него Батолиты, внедренные в месовоне играгт главную роль в большин’стве основных масс Прекамбрионовои вплоть до ранней Кретасовой эпох.

CONTENTS

TEXT	
	Page
Introduction and acknowledgments.	674
Read's "Granite Series"	675
Zones of emplacement.	676
Plutons of epizone.	677
Introduction	677
Granite stocks and batholiths	

Late Tertiary cauldron subsidence and intrusion. Early Tertiary cauldron subsidence and Permian.
Permian, Mississippian ($($), and Devonian plutons associated with cauldron sub-

Stocks primarily by cauldron subsidence but accompanied by outward or upward pressure.

Mt. Monadnock, Vermont
Ahvenisto, Finland. 68
Other discordant granitic plutons of epizone.
Introductio
Stocks and volcanic rocks of western Cascade Mountains, Oregon. .
Snoqualmie batholith, Washington.
Batholith, Casto quadrangle, Idaho.
Boulder-San Juan discordant belt of plutons, Colorado.
Stocks of Cancepcion del Oro, Mexico
Boulder batholith, Montana.
Seagull batholith, Yukon Territory.
Precambrian plutons of epizone.
General statement
General state
Granophyre.
Ring-dike complexes.
areoles of pseudo-igneous emplacement in epizone..
Description
Bingham, Utah, stock
Cassia batholith, Idaho.
La Plata stocks, Colorado.
Supplementary descriptions of plut........
placed in the epizone..
New Cornelia quartz monzonite... Arizona.
Hanover stock, New Mexico
Marys Me stock, Montana................
ico.
Paleozoic leucogranite and granite porphyry batholiths, Newloundland. Plutons of transitional(?) epizone-mesozone.....
Introduction.
Southern California batholith.
Batholith of southwestern Nova Scotia.
Plutons of mesozone.
Introduction.
Characteristics . 69
Mesozoic plutons with both discordant and concordant relations to country
White Creek batholith, British Colum
bia.................................
Coast Range batholith, Alaska-British Columbia..............................
Mesozoic pseudo-igneous plutons or facies of mesozone..................
Pellisier granite facies of Inyo batholith, California.
Chilliwack batholith, Washington........ 702
Mesozoic plutons with protoclastic or latestage post-consolidation deformation... Colville, Washington, and Cassiar, British Columbia, batholiths
Precambrian batholiths of mesozone. 703 General statement.

Noranda-Senneterre belt, Quebec. 7
Plutons north of Great Slave Lake, North-
Supplementary descriptions of plutons emplaced in mesozone.
Introduction
Bald Rock batholith, California
Snowbank stock. Minnesota

Plutons of transitional mesozone-catazone
General discussion.
Plutons of Wolverine complex, British Columbia..................................
bia...
liamsburg granodiorite pluton, Mas-
sachusetts. of mesozone), Georgia.
Prospect porphyritic granite gneiss (and Nonewaug granite lens of mesozone), Connecticut..............................
Precambrian phacoliths of Hanson Lake area,
Saskatchewan...............................
bama.
Complex history of great batholiths, largely of mesozone.
Introduction
of 712
Const Range batholith. 712
Idaho batholith. 713
Complex of plutons in Appalachian orogen,
northeast section.
Plutons of the catazone.
Introduction . 714
Introduction. 714
Domes...
Introdu
714
715
Introduction.
Igneous domes of magma emplacement. 715
Interlayered xenolithic domes.
Tectonic domes of plastic crystalline
Tectonic domes of plastic crystaline
flowage.......................................
Tectonic domes of remobilization with introduction of fluids.
Phacoliths.
Introduction.. 717
Phacoliths of the Grenville subprovince,
Canadian shield...........................
Highlands.............................
Wolf Mountain phacolith, Texas. Harpoliths.
Replacement pseudo-phacoliths.:

722
Replacement pseudo-phacoliths............
Phacolithic and pseudo-phacolithic emplacement, Manawan Lake area, Saswan. plexes.
plexes
General.
General.
placement,
katchewan.
Subcylindrical plutons...........................
mplacement in the Grenville subprovince, General statement.
Plutons in the Grenville series of Quebec.
Plutons of northwest Adirondack area, New York.................................
Plutons of Haliburton-Bancroft area,
Ontario... granite in catazone.
Introduction..............................
Goldfield-Martin Lake area, Saskatche-
Quad Creek area, Beartooth Mountains,
Complexity of Precambrian plutonic com-
126

Grenville belt. 728
Mackenzie district, Northwest Terri-

General structural relationships.
dominance of mesozonal batholiths in plutonic complexes.
Criteria for large-scale granitization 7332
Emplacement of plutons in epizone and mesozone.
Emplacement of plutons in catazone......... 733
Origin of granitic magma.
Problem of volcanic and plutonic associa-
Problem of volcanic and plutonic associa-
tions.
739
740
Conclusion......
References cited. 741

ILLUSTRATIONS

Figure

1. Schematic relationships of emplacement zones. 2. New Hampshire belt of plutons.
2. Oslo region, Norway
3. Belt of Tertiary intrusive stocks emplaced in volcanic rocks of western Cascade Mountains in Oregon and Washington
4. Boulder-San Juan belt of plutons discord-
ant to regional structure, Colorado
5. Tertiary granodiorite stocks emplaced dis cordantly in epizone
. Seagull discordant Upper Cretaceous (?)

Figure

batholith, Yukon Territory, emplaced in 8. Grent dine.
8. Great discordant Devonian (3) granite batholith of south-west Nova Scotia.
9. Representative complex Mesozoic batholith of mesozone. .
10. Early Precambrian batholiths of mesozone.
11. Precambrian batholiths emplaced in meso-
12. Williamsburg granodiorite pluton of transitional mesozone-catazone.
13. Small Paleozoic pluton of mesozone (Stone Mountain granite, Georgia)
Geology of part of Haliburton-.....roit area, Canadian shield
15. Precambrian plutons of catazone north. west Adirondack area, New York, outlier of Canadian shield
16. Compound granodiorite phacoliths (ML. and S.L.) of intrusive origin and pseudo phacolith of granodioritic gneiss (recrystallized and granitized meta-arkose in situ),
17. Two areas of Precambrian batholiths.............................
18. Geology of a part of the Front Range, Colorado
19. Schematic sketch showing possible structural relationships of plutons in epizone, mesozone and catazone. of new and new laboratory studies, and new "flash of insight" idea
In the discussion to follow the dividing line between a stock and a batholith will be taken as roughly 40 square miles as suggested by Daly. Granite, except where indicated othermise by the context, will include the family of granitoids such as quartz diorite or tonalite and trondhjemite, granodiorite, quartz monzoite or adamellite, and granite or leucogranite and alaskite. The term pluton will be used here in a very general sense for any body of intrusive igneous (or "pseudo-igneous" by metasomatism or recrystallization) rock of any size or shape. Dikes, sills, and laccoliths will receive but passing mention. The term plastic crystalline flow here means. flow of material which remains wholly or predomi nantly crystalline during thoroughgoing deformation and includes the concept of recrystallization through partial melting or solution and redeposition.

Read's "Grantte Series"

Read's concept of the "Granite Series' may best be presented by excerpts from his writings.
(1957, p. 79) "Intrusions have been classed as pre-tectonic, syntectonic or post-tectonic. I have endeavored to codify these relationships in what I call the Granite Series (Read, 1949), a series which relates the nature and form of different types of granitic bodies with their place in the fold-belt and Series can be represented thus:
-TME-

| | |
| :--- | :--- | :--- | :--- |
| | |

Deep in the fold-belt are formed, at an early stage of orogeny, great complexes of granitization granites associated with migmatites and widespread regional metamorphic rocks. As the orogeny continues, a part of these autochthonous granites becomes partly unstuck from its surroundings and moves higher in the fold structure. This process continues with the movement of true intrusive and magmatic portions late and high, and culminates in the emplacement of the granite plutons, highest and latest, pushing their way as almos soid bodies even into the post-orogenic sediments. (1951, p. 21) "The resulting parautochthonou granites show variable marginal relations, in som places migmatitic, in others characterized by an the migmatitic-metamorphic setting may con tinue till the genetic ties are completely severed and true inirusive granites emplace themselves in higher levels of the crust maybe as magma but more likely as migma. The final term of the granite series is represented by the bigh-level plutors, intrusive into non-plutonic regions late in the history of the orogen concerned. ... The plutons are the domain of the Granite-tektonik of the Cloos school and, as their emplacement produced consid surrounding them, they came in as almost dead surroun'

The writer believes that Read's discussion needs some major revision. Plutons with "granite-tektonik" are not the final terms of the granite series. On the contrary they belong almost wholly to the mesozone where, as multiple units, they may form huge batholithic complexes. The final terms of the granite series are the plutons of the epizone. Read minimizes as "few", "puny", and "nearly dead" the bodies emplaced in the upper levels of the crust. This is wholly inconsistent with the number, size, significance, and the evidence for mobility and fluidity of most plutons emplaced in the epizone of the crust in North America. Knopf (1955, p. 697) estimates that plutons of Tertiary age in North America and Greenland (all emplaced in the epizone) have a total area of 52,000 square miles.

Hans Cloos (1931) has presented a succinct pertinent discussion of the possible structural relationships of plutons at different depths. A summary prepared by S. W: Sundeen (1935, p. 48-49) is quoted here
"In a single mass the inner tectonics differ at In a single mass the inner tectonics differ at different horizons. In the upper horizon there are stocks. In the moderate depths there are wellformed arches, schlieren domes, partitions or pendants of wall rock and cleavage with border deformation and mylonites; with or without a stretching of the border spalls. In the deep zone there are arches of gneiss. The whole region is deformed and
occurs not only before and during crystallization but in part after. There is thus a lack of any small dynamic border zone and a lack of fracture suraces, border spalls and most other features of the moderate zone. Cloos sketches a vertical section a composite of these three horizons, each mas maller and drained up from the one below, and deny that a single mass may grade downwar without much change in horizontal section into the conditions of the deeper zone."

Zones of Emplacement

The granite emplacement series will be discussed with emphasis on the internal and external structure of the plutons within different temperature-depth or intensity zones of the crust. Under the simplest hypothesis the intensity of regional metamorphism may be expected to increase somewhat uniformly with depth and therefore afford an indicator of the depth. The site and period of granite emplacement, however, is not one of static conditions but of dynamic changes' in the environment. This is especially true for the mesozone. The intensity of regional meta morphism in belts away from the intrusives may still be used, however, as a suggestive clue to the depth zone. (See also Michot, 1957) Inasmuch as we are particularly interested in the physical conditions of the country rocks at the time and in the region of emplacement the upper and lower limits of each zone will have a considerable range of depth for different regions and at different times in devclopment. The depths for plutons with similar character will depend on the temperature, pressure, rela tive mobilities of the country rocks, and othe actors. The term zones as used here thus efers actually in substantial part to intensity ones rather than strictly depth zones. At the same level in the mesozone a batholith may be emplaced discordantly in only warm country rock during early stages and conformably in hot rock during late stages, especially in the oof. A predominantly mesozonal pluton may have characters peculiar to the catazone in the roof portion: In some examples the esti mation of the physical conditions may be difficult and little better than a guess. Nevertheless examples for which at least fair to good data are avaulable afford the basis for a 'reasonably consistent picture and afford some additional insight into the problems of emplacement.
Michot (1956, p. 28) suggests that the epizone may be taken as extending from the sur-
face to a depth of 10 km . The mesozone and catazone will be successively below this.

The development of the greenschist facies of metamorphism in rocks could be considered as a characteristic phenomenon of the mesozone. Fyfe, Turner, and Verhoogen (1958, p. 218) estimate that it is unlikely to develop below a temperature of about $300^{\circ} \mathrm{C}$. and above a depth of about 10 km . Their curves (p. 182) for rise of temperature with depth suggest that at a depth of about 10 km in a great thickness of sediments, after depression in the earth's crust, the temperature might rise to about $250^{\circ} \mathrm{C}$., and where the temperature had been increased by magmatic intrusion it might be as high as $450^{\circ} \mathrm{C}$. A rise of temperature in the country rock above an intruding magma is strongly implied by such data as that given by James (1955). The magma may thus be emplaced in rock of temperature higher that that otherwise appropriate for the general region. A depth commonly of 4 miles but with occasional extension, perhaps, to 6 miles seems a reasonable estimate for the base of the epl zone.

The depth of the base of the mesozone or top of the catazone where the amphibolite facies starts must likewise have a substantial range, perhaps from as shallow as 5 miles to as deep as 10 miles. Wegmann (1935) esti mated the minimum depth of the "migmatite front" at 10 km . The temperature range for the mesozone may be estimated to vary from about $250^{\circ}-350^{\circ}$ at the top to $500^{\circ} \mathrm{C}$. at the base.

Tuttle and Bowen (Adams, 1952, p. 38) wrote that It is improbable that many granites reaching the light of day have crystallized at depth greater than 9 miles". This seems slightly low. The possibility that erosion has exposed levels at a maximum a few miles deeper than this must be considered, but in general it is probably of the right order of magnitude. Guten- ${ }^{6}$ berg (1957) cites figures of 35 km for the depthe of the "granitic" crust beneath the Alps and" $25-30 \mathrm{~km}$ beneath the Sierra Nevada. If this is assumed to indicate the depth of the down folded sial, and if reasonable estimates are made for the thickness of eroded material a fgure of about 25 miles is arrived at as the normal maximum depth for sialic material. Assuming further that the minimum thickness of sialic basement complexes in the continenta shields is about $10-12$ miles, the inference maj be drawn that present levels of erosion have rarely exposed rocks that were ever at a depth greater than about 12-15 miles.

The rocks of the granulite facies in the tons 2.5 billion years old may be of the type Grenville belt appear to represent those emplaced in the mesozone, as in the Keewatin lormed at some of the deepest depths now exposed in North America. They are estimated
mplaced in the mesozone, as in the Keevan to only moderate depths is indicated.

Figure 1--Schematic Relationships of Emplacement Zones
to have formed between 600° and $700^{\circ} \mathrm{C}$. Fyfe, Turner, and Verhoogen (1958, p. 182) give a curve that indicates that a temperature range of $600^{\circ}-700^{\circ} \mathrm{C}$. could be reached at depths of 9-13 miles where the gradient had been increased by magmatic intrusion. Rosenquist (1952, p. 102) estimates the nimimum depth tor the development of the granulite facies in this temperature range as $9-10$ miles.
The predominance of mesozonal batholiths in basement complexes, however, indicates that only locally has erosion cut very deep
Possible depth relationships for the zones re shown in Figure 1.
There is in the western Cordillera of North There is in the western Cordilera of North structural relationships and zones of emplace ment of the plutons and their ages, especially for those of Late Jurassic and younger age Plutons of Tertiary age as now exposed were exclusively emplaced in the epizone and may be associated in space and general time with volcanic rocks of equivalent composition and often emplaced in them; those of the Late Cretaceous are also emplaced in the epizone, but there are more large plutons; the great composite early Late Cretaceous (?) Southern California batholith has characters transitional between those of the epizone and those of the mesozone, whereas the composite stocks and batholiths of the Late Jurassic and Early Cretaceous were emplaced in the mesozone with earlier members of the largest batholiths emplaced in the catazone
Similarly, in the Appalachian orogen, the post-Pennsylvanian plutons were all emplaced in the epizone, whereas many earlier plutons of Devonian age were intruded in the mesozone, transitional mesozone-catazone, or locally perhaps the catazone.
For rocks older than the Tertiary, however there is no necessary systematic relationship between age of rocks and the depth at which they were emplaced. Unmetamorphosed plu-

Plutons of Epizone

"Dr. Hullon's theory of granite. .' at the same time that it conceives this stone to have buen in fusion, supposes it to have been, in that state injected among the strata already consolidoted." John Playfair, 1802.

Introduction

It is rare that estimates are given in the literature of the depths at which the present exposed parts of a pluton were intruded. Tertiary intrusions as now exposed may be expected to have been emplaced within the epizone; the time for subsequent erosion has been too short to permit deep erosion. A review of the literature shows that Tertiary intrusions have the following characters, and these will be used as criteria in classifying intrusives in the epizone of older ages.
Tertiary stocks and batholiths are largely or wholly discordant to the country rock no matter whether they occur in Precambrian schists and gneisses or in folded Paleozoic and Mesozoic sediments, or, as is common, in gently dipping Tertiary volcanic rocks. Occasionally as in the Gold Hill stock in Nevada (Nolan 1935, p. 43-48) part of the walls are (Nolan, 1935, p. 43-48), part of the walls are controlled by preintrusive faults. They may occur in limestones, a type of rock peculiarly resistant to granitization, without any suggestion of relics or inheritance by replacement. A lew granitic plutons may be effectively homogeneous in composition, but most are of composite character caused by a successive series of magma emplacements of diverse composition. The diversity is commonly from syenite or monzonite to granite, or from diorite through quartz diorite, granodiorite, and quartz monzonite to granite. Quartz diorite commonly does not form as large a part of plutons in the epizone as it does in those of the mesozone Locally or in a lew plutons the diversity may
be due in part to incorporation, more or less in place, of country rock, especially in border or roof zones, but this is usually relatively unimportant. Roof pendants are common. Many of the plutons are effectively homophanous without lineation or foliation. Some have a primary linear structure, but welldeveloped planar foliation is uncommon and, where it occurs, is usually restricted to local border facies or is indistinct.

The orientation of lineation in the Jamestown, Colorado, granodiorite stock has been studied by Goddard (1935). He finds that the stock is elongated N.-S., that the lineation along the western part plunges about $70^{\circ}-80^{\circ}$ and in a re-entrant protrusion on the east has a gentler plunge of about $35^{\circ}-60^{\circ}$. Grout (quoted in Calkins and Butler, 1943, p. 35-36) studied the lineation of the Alta stock in Utah and shows the linear structure plunging in general 80° or steeper in the border zone and igently in the core. The lineation of both stocks thus suggests steep upward flow in the border zones. Grout and Balk (1934, p. 885) find that lineation in much of the Boulder batholith is elusive, but most has a pitch of about 70°, and a steep conformable upward rise is suggested. Both the Alta and Jamestown stocks and also the Mount Princeton batholith (Dings and Robinson, 1957, p. 30) have associated dikes with gently plunging lineation suggesting subhorizontal fiow. Other types of orientation of flow lines such as arches of flow lines and disconformable flow lines at flow lines and disconformable flow lines at
an angle to the walls have been referred to by Balk (1937, p. 50-54, 60-63, 69-78). The arches of flow lines may in some examples, at least, be suggestive of an arched roof.
Moehlman (1948, p. 118) and others have referred to Tertiary plutons whose walls converge downward.
Volcanic rocks are commonly associated in close genetic relationship with Tertiary plutons, but they need not be with plutons of the deeper part of the epizone. Characteristically, at least, part of the volcanic rocks will have compositions comparable to that of the facies of the plutons themselves although the quantitative ratios may be different. Alper and ' Poldervaart (1957) have studied the Animas stoch in New Mexico and the volcanic rocks it intrudes and have shown that not only is the chemical and mineral composition similar but the zircons of both the tuff and the pluton An r-habits.
metamorphic zones, may be relatively urmetamorphosed. If folded and regionally metamorphosed there may be independent evidence that the country rocks were only moderately warm and at shallow depths al the time of emplacement. Zoning of associated mineral veins on a regional scale is common, as are veins of epithermal or xenothermal character in the upper part of the epizone. Zoning of veins by repetitive introduction of solutions of diverse compositions during re peated structural reopenings is common; Peripheral outward deformation of the side walls is a feature of some epizonal plutons? It ranges from locally strongly deformed peripheral folds to gentle parallel periphera folds; outward thrusting is inferred in one example; rarely there is a local thin zone of foliation or local thin layer of slight plastic crystalline flowage in contact-metamorphic zones or local minor drag folding. Most of the plutons are small, but there are also neverthe less many batholiths. The Palcozoic White Mountain batholith in New Hampshire asso ciated with cauldron-subsidence origin has an outcrop area of 680 square miles, the Uppei Cretaceous Boulder batholith an area of 1200 square miles, and the Tertiary Cordillera Blanca batholith of Peru is more than 75 miles long, (Egeler and De Booy, 1954). The emplacement of stocks and batholiths asso ciated with ring-dike complexes and cauldron subsidence is uniformly attributed by aly authors to subsidence, either subcolumnar block sinking or block or piecemeal stoping.

Reference for comparative purposes may made to the Cenozoic Slaufrudal stock 2 b $71 / 2$ kilometers in diameter, that cuts basalit lavas with intercalated rhyolitic volcanic rocks in Iceland. Cargill, Hawkes, and Lede boer (1928) describe the stock as consisting of miarolitic granophyre, in part with granitic texture. They suggest that the stock was emplaced by sinking of the replaced mass "en bloc" and that a distinct semihorizontal layering of the intrusion indicates intermittent subsidence, the stock growing by the additiod of successive sills or caps. Relations are excep tionally well shown in steep topography.

Many other stocks and batholiths have t domical or a broad arch-shaped roof. This is commonly due in part to angular steplike transection of the roof to yield this kind d shape, in part to doming of the roof cither $b j$ simple doming, or by doming accompanied bif faulting in the roof due to distention.

The earlier members of a complex pluton in small or moderate volume, will show chill zones against country rock. Dikes, apophyses or small satellitic stocks related to large vol Umes of rock will commonly show chill zones for porphyritic characteristics. Many large masses or later members of a composite stock or batholith show no chill zones. There is often a set of late-stage aphanitic or porphyritic dikes. Associated lamprophyre dikes are \&also common. Distinct pegmatite veins are gtypically rare or minor although small pegmatitic nests may occur locally. Aplitic veinlets may be present, but aplite dikes or facies are not commonly abundant in the stocks. In some of the batholiths, however, aplite or equivalent alaskite may be well developed, as in the Boulder, Seagull, and Ackley (White, 1940) batholiths. Miarolitic structure is common, especially in leucogranite or alaskite, and it may have pegmatitic facies associated locally. Many aplite dikes are restricted to the border zone of the pluton where they occur both in the roof and in the adjacent igneous rock. Relatively flat-lying sheets of alaskite occur in the Seagull batholith, Yukon Territory, and of micropegmatite in the batholith of the Casto quadrangle, Idaho.
Granophyre may also occur locally as sheets, stocks, domical roof facies of stocks, or as metasomatized country rock. Granophyre, in general, occurs exclusively in the epizone.
Occasionally stocks of the epizone may be accompanied by satellitic laccoliths (Hunt, 1956; Strobell, 1956)
Emplacement predominantly by metasomatism is uncommon in the epizone and will be discussed under the title Pseudo-igneous Emplacement. Several plutons, however, do have an extensive aureole of granite or granite gaeiss resulting from granitization of sandstone or metaquartzite. Contacts of pluton and country rock are normally sharp.
Oftedahl (1953, p. 71-74, 92-93) has interpreted the central nordmarkite and monzonite facies of the central part of the Sande stock in southern Norway as the product of assimilation of lavas by an ekerite magma more or less in place.
Such criteria as lack of contact metamorphism and contact metasomatism, lack of chill zones, and the presence of evidence for upward drag of wall rocks have been inferred (Read, 1951, p. 9-10; Tweto, 1951; Hunt, 1953, p. 165 Drewes, 1958, p. 233; Mackenzie, 1958,
p. 69) to indicate that many plutons of the epizone have been emplaced as highly viscous magma at relatively low temperatures $\left(600^{\circ} \mathrm{C}\right.$. or lower). This interpretation is satisfactory for many porphyritic intrusives with an aphanitic matrix, but we need more data to be sure it is appropriate for plutons of almost exclusively phaneritic rock. Most plutons of the epizone do have accompanying evidence of contact metamorphism and contact metasomatism. Andalusite is developed in shales and woilastonite locally in limestone at many contacts. Pyroxene intermediate between hedenbergite and johannsenite is not uncommon (Allen and Fahey, 1957). Tourmaline is common in many aureoles of epizonal stocks. Many epizonal stocks have at least local miarolitic facies, and they may be phaneritic throughout. These facts are consistent with the probability that the liquid phase of the magma of such plutons was relatively fluid because of its content of volatiles during part or all of its period of crystallization. An excellent comparison of the characteristics of highly viscous and less viscous magma emplacement in sills has been given by Tweto (1951).

In a few examples the smaller plutons are accompanied by a small amount of breccia whose origin is in part interpreted as an explosion breccia and in part as due to upward drag of magma. Examples are a breccia of slightly rounded fragments of sedimentary rocks and of porphyry, in a matrix of similar comminuted rock associated with a diorite stock in the La Plata district (Eckel, 1949, p. 39) and breccia zones on one side of a granodiorite stock (Goddard, p. 383-384). Tweto (1951, p. $526-528$) has described an intrusion breccia as an advance guard of porphyry sills, formed by explosive intricutsion of fluids or tenuous magma. The breccia may consist of fragments of country rock and of chilled porphyry in a shale matrix or of dirty contaminated igenous material.

The magmatic origin of many salic dikes, stocks, and laccoliths emplaced in the epizone is indicated by the inclusions of deep-seated Precambrian rocks which they contain where emplaced in overlying beds. Examples are the quartz diorite porphyry laccolith described by Rouse (1933, p. 145-146) emplaced in Tertiary volcanic rocks with inclusions of Precambrian rocks which have been brought up for a minimum of $21 / 2$ miles, the inclusions of Precambrian rocks in monzonite-diorite porphyry stocks, sills, and sheets emplaced in

Mesozoic beds described by Eckel (1949, p. 34,41), an example cited by Powers (1915, p. 166-168) in Vermont where bostonite dikes in Middle Ordovician shales contain inclusions of underlying Precambrian rocks, and similarly that by Buddington and Whitcomb (1941, p. 78-79) from New York where small laccolites and sills of quartz bostonite and rhyolite porphyry emplaced in Ordovician shales contain fragments of underlying Cambrian sandstone together with rare fragments of Precambrian basement material.
Some of the Tertiary laccoliths are so closely associated with volcanic rocks that they can confidently be considered to belong to a volcanic association. Hunt (1956, p. 43) writes concerning the laccolithic mountains of the Colorado plateau that "it seems likely that most of the larger stocks in the laccolithic mountains reached the surface and erupted, although probably none of them extruded any great quantity of lava or pyroclastic materials". A paper by Rouse et al. (1937) also portrays probable relationships between laccoliths and volcanic rocks. The major bodies originally described by Gilbert as laccoliths are now interpreted by Hunt (1956, p. 42-45) as the upper part of stocks, the latter up to about 2 miles in diameter. The Three Peaks laccolith, Utah; about 5 miles in diameter, has been studied in detail by Mackin (1947). He finds that the Upper Cretaceous (?) laccolith was emplaced under a cover that ranged from 2000 feet to a possible maximum of 8000 feet. The laccolith consists of quartz monzonite porphyry, generally holocrystalline but with some glass in the groundmass near contacts. He infers that the chilled borders and the glass prove that the mass was emplaced as magma. Some of the quartz monzonite porphyry is finely miarolitic.

The numerous diorite and monzonite porphyry sills of the La Plata district (Eckel el al., 1949, p. 34) also belong among the volcanic bodies.

Granitic Slocks and Batholiths Associated with Ring Dikes and Cauldron Subsidence

Introduction.-Granitic stocks and batholiths associated in time and space with ring dikes and cauldron subsidences in direct relation to volcanic rocks occur in many different belts of different and widely spread localities
are also independent larger discordant plutons, associated with those directly due to cauldron subsidence, and inferred to be emplaced by block foundering or stoping. The prototype of this kind of complex is the Devonian Glen Coe cauldron subsidence and the associated Starav granite batholith described by Clough cl al. (1909). Other examples of discordant batholithic intrusion following ring dike and stock emplacement are the Conway granite pluton of the White Mountain batholith complex (680 sq . miles, Fig. 2), the Drammen and other batholiths (Fig. 3), and the Jos Bukuru pluton complex (285 sq . miles) of northern Nigeria (Jacobson et al., 1958, p. $11 ;$ Pl. VII).

Billings (1943) writes that he found descriptions in the literature of 115 ring dikes and 30 ring-dike complexes. He states that 11 of the 30 ring-dike complexes have a central block of volcanic rocks that has subsided. These central volcanic rocks are flows and pyroclastic rocks ranging in composition from basalt through andesite and trachyte to rhyolite; they are, he believes, comagmatic with the rocks in associated ring dikes. He further states that 17 of the 30 ring-dike complexes possess what may be called a central stock, and the central stocks usually consist of quartz. bearing rocks, commonly quartz syenite or granite. Belts in Nigeria and Southwest Africa and examples elsewhere have been described since Billings wrote so that many more ring dike complexes are now known.
Examples have been choseri from the litera, ture to exemplify the foregoing principles Before presenting these we might refer 10 some of the largest masses of acid volcanic rocks which are believed to be of magmatic origin.
The volcano-tectonic depression. of the Rotorua-Taupo graben in New Zealand (Mart shall, 1935) is about 60 by $15-20$ miles in areal dimensions, with several thousand feet of depression and about 2000 cubic miles of welded tuff (ignimbrites) occupying a basin of approximately 10,000 square miles. This would be about equivalent to a batholith of 200 square miles and 10 miles depth. Again; Westervelt (1952, p. 565) has described s Middle Pleistocene rhyolitic tuff blanket in a fault trough in the Lake Toba area of North Sumatra covering $25,000 \mathrm{sq} \mathrm{km}$ and with a volume of $2000 \mathrm{cu} . \mathrm{km}$. These are inferred to have formed as a result of the initial break through of a comparatively shallow acid magm@
depression. Ross (1955) has pointed out that pyroclastic rocks of rhyolitic, dacitic, quartz latitic, and some of latitic composition are present in many regions of the world, in volumes which dwarf many batholiths. Larsen and Cross (1956, p. 94) have estimated that the Miocene Potosi volcanic series of the San Juan volcanic rocks in Colorado contains 2300 cubic miles of rhyolitic volcanic rocks and 3000 cubic miles of quartz latite volcanics. The thyolite volcanic rocks are the equivalent of a granite batholith 230 square miles in area and 10 miles deep. Stocks of monzonite and granodiorite emplaced in the same general period of time as the Potosi lavas are associated with them and range in size from necks up to plutons 2 by 5 miles in diameter.
Late Terliary cauldron subsidence and intru-jsion.-The youngest cauldron-subsidence comtplexes may be expected to be among the least feroded and give the clearest evidence of belonging to a volcanic association.
Two such complexes from the United States will be described.
medicine lake highlands caldera, calipornia: Where erosion has not cut too deeply, cauldron subsidences occur at the surface as in the Pliocene(?)-Pleistocene(?) volcanic rocks of the Medicine Lake Highlands, California, described by Anderson (1941, p. 358-361). The caldera is an elliptical area about 4 by 6 miles in diameter in a shield volcano of platy olivine andesite about 20 miles in diameter. The rim of the caldera is outlined by nine volcanic vents from which platy andesite (± 10 per cent normative quartz and ± 61 per cent calcic oligoclase) has issued. The floor of the caldera is inferred to have sunk at least , 500 feet through collapse of a central block coincident with ring-dike intrusion and the eruption of andesitic lavas squeezed up the marginal fractures. This hypothesis would necessitate a stock of magma below with the composition of a quartz diorite. Later lavas from the vents include olivine andesites, dacites, and rhyolites and are inferred to represent continued differentiation products discharged Irom later local vents in part spaced along the margin of the depressed block. This would imply in part the existence. of magma below $\dot{x}^{\text {which }}$ could yield granitic masses on consolidation. The nature and tectonic relationships Wof these volcanic rocks may be considered as * surface manifestations of ring-dike complexes and associated deeper stocks and batholiths. SIlverton caldera, colorado: Another
dera, described by Burbank (1941). The Silverton caldera is a minor unit areally and structurally of the volcanic field of the San Juan Mountains. The caldera was formed in the late Tertiary by gradual downwarping and faulting of a large shield-shaped block of crust about 8 miles in diameter. As downwarping of the basin became accentuated with thickening of the volcanic accumulations, ring faults and associated radial fractures developed. Intrusive bodies forced their way upward along certain more strongly accentuated regional rifts, and great numbers of smaller intrusive bodies and volcanic pipes penetrated the broken rocks of the fault ring. Burbank suggests that both the rock alternation and the concentration of intrusive bodies indicate that at moderate depths below the surface the margin of the caldera is underlain by a more or less continuous ring of intrusive rock. The intrusive rocks consist of gabbro-diorite, andesite, latite, quartz latite porphyry, and rhyolite. The volcanic rocks consist of andesite, "latites", quartz latite, and rhyolite. Larsen and Cross (1956, p. 227) describe one of the quartz monzonite stocks as 2 by 5 miles in diameter.
Early Terliary cauldron sutsidence and plu-tons.-Early Tertiary plutons associated with cauldron subsidence may be expected to include some which have been eroded to a deeper level than those of the Late Tertiary, and this is the fact.
quitman complex: The following summary of the Early Tertiary Quitman complex is based on that by Huffington (1943). A series of lava flows ranges in composition from basalt to trachyte and rhyolite; rhyolites are most abundant. They are associated with pytoclastic rocks, and the whole has an approximate thickness of 3500 feet. Late basining, probably due to magmatic subsidence below the volcanic rocks, has dropped the central portion of the volcanic rocks approximately 4500 feet. A discontinuous elliptical ring of intrusives around the volcanic rocks is interpreted as a ring dike about 4 miles in diameter. The earliest intrusion in the area was a diorite; the ring-dike intrusion averages quartz monzonite. There is a related stock of quartz monzonite adjacent to the ring dike. The quartz monzonitic stock is subcircular with a diameter of about 3.5 miles and is separated from the parts of the ring dike by a septum about half a mile wide of Lower Cretaceous sedimentary rock. Belts of anlite and oranits namhure
monzonite. Granites form less than 10 per cent of the plutons, and monzonite and syenite each about 10 per cent. The ring dike is inferred to have been emplaced in large part by stoping along the ring fracture.
and one of late Karroo age in Southwest Africs (Korn and Martin, 1954). These plutons occur in the "epizone" of the crust and can approximately be considered to belong to a ? volcanic association. In addition to the annular

EXPLANATION
MISSISSIPPIAN metie momian scutonc-vacanic Oq.i: siolise pronite

Gronis wilt hostingsite.

 Oucriz yemile
 uumild Nephaline syenite (n, $\min _{x}$ Mcol valcanitr
(Earrusive phose

? UPPER DEVONIAN NEW HAMPSHIRE PWTONIC SEAIES

SILURIAN AND LOWER devonian So Aedominonivit Lown

Figure 2.-New Hampshire Belt of Plutons
Ossipee complex ring dike and biotite granite stock of cauldron subsidence; White Mountain bather olith of cauldron subsidence and coalescing rim fracturing; both Mississippian (?) of epizone; and older Winnipesaukee batholith of transitional (?) mesozone-catazone; Modified after M. P. Billings, 1956^{\prime} N. H. Planning and Development Commission, Division of Geol. Sci., Harvard University and U. S.
Geological Survey Geological Survey

Permian, Mississippian(3), and Devonian plutons associated with cauldron subsidence.Four.great belts, three of them more than 200 miles long, each with numerous granitic stocks, batholiths, and ring-dike complexes in direct tectonic, geographic, and time relationships with volcanic rocks of related compositions, have been described in recent years. The belt of Tertiary ring dikes and caldera subsidences with associated granite stocks of Sçotland should also be noted. The four belts include that of New Hampshire (Billings, 1945; 1956) of Mississippian(?) age, the Oslo district in Norway. (Holtedahl, 1943; Oftedahl, 1953) of Permian age, a belt in Nigeria (Greenwood, 1951; Jacobson et al., 1958),
dikes they range in size from small plugs and dikes to batholiths underlying as much as 680 square miles. The rocks of these belts may be thought of as representing in part. levels of deeper erosion than the Tertiary plutons and in part the rise of large masses of granitic magma to relatively high levels.

Chapman and Williams (1935, ̀. 507) find that granite forms more than 78 per cent of the plutonic complexes of the New Hampshire belt, syenite and quartz syenite 20 per cent and gabbro, diorite, and monzonite less than 2 per cent. Jacobson el al. (1958, p. 7) estimate that granite forms 94 per cent of the plutons of the belt in Nigeria and mafic to intermediate rocks only 6 per cent. By way of comparison
granite and granophyre form 63 per cent of the area of intrusive rock in the belt of Tertiary plutonic complexes of the British Isles, gabbro and dolerite 33 per cent, and ultrabasic rocks 3 per cent according to Richey (1948, p. 55).
NEW HAAIPSHIRE belt of MISSISSIPPIAN(?) Plutons: The ring-dike complex of the Ossipee Mountains, New Hampshire (Kingsley, 1931), has one of the most nearly perfect ring dikes of the New Hampshire belt and exemplifies the general character of the complexes (Fig. 2). The ring dike is described as subcircular with a diameter of a little more than 8 miles and is composed of porphyritic quartz nordmarkite (13 per cent normative quartz). Within the central complex is an arc-shaped mass of the Moat volcanic rocks. These have an approximate thickness of 7000 feet and consist of basalt (4 per cent normative quartz), andesite (13.4 per cent normative quartz), and quartz porphyry flows, and equivalent tuffs and breccias. The remainder of the central complex, except for a small block of country rocks, is composed of a coarse-gained biotite granite (25.8 per cent normative quartz). Kingsley estimates that the minimum subsidence of the volcanic rocks On the borders is 4500 feet and in the center 12,500 feet. The biotite granite is inferred to thave been emplaced as a result of either piecemeal stoping or a columnar-block subsidence.
The White Mountain batholith (fig. 2), another member of the New Hampshire central complexes, is significant because of its size. The following description is condensed from that of Billings (1928). The batholith lies about 4 miles north of the Ossipee Mountains complex. It underlies about 680 square miles and consists predominantly of granite with subordinate nordmarkite and great blocks of volcanic rocks, from a few to 8 miles in diameter, that have settled into the batholith. The volcanic rocks consist of siliceous flow rocks and interbedded tuffs and breccias to a thickness of about 11,800 feet. The siliceous flows are largely comendites (24-33 per cent norma(ive quartz) or quartz porphyries. Trachyte (18.3 per cent normative quartz) also occurs. The plutonic phases include a small mass of diorite, nordmarkite ($4-13$ per cent normative quartz), and granite (23.6-28.5 per cent normative quartz). Some nordmarkite porphyry occurs as small satellitic stocks or as chilled border facies whose groundmass is dense. It is nnoteworthy that the extrusive comendites are comparable to the plutonic granite and the extrusive trachyte to the plutonic more

The vol canic rocks seem to have settled at least 5000 feet and probably at least 17,000 feet in one area since they do not occur in the adjoining region. The emplacement of the batholith is inferred to result from roof subsidence. Magma moved upward along great fractures and issued at the surface as great flows and pyroclastic deposits.
The belt of epizonal plutons is slightly discordant to the trends of the older country rocks.
oslo belt of permitan plutons: The Oslo, Norway, belt of cauldron subsidences or ringdike and central complexes has been described by Holtedah (1943) and Oftedahl (1952; 1953). It is of such general significance that the writer cannot refrain from including a summary here. (See also Figure 3.) The plutonic complexes were emplaced in a lava plateau consisting of $2000-3000 \mathrm{~m}$ of basaltic and rhomb porphyry flows. The plutonic phase began with the consolidation of larvikite plutons, the magma of which corresponds to that of the rhomb porphyries. During later periods, with the formation of syenitic and granitic stocks there occurred the cauldron subsidences. Quartz porphyry annular dikes occur in three of the four described cauldrons as an early phase of intrusion.
The Oslo belt is very instructive because of the association of large batholiths of larvikite, nordmarkite, and biotite granite which form a belt about 200 km long; the four major cauldron complexes lie within the central part of this belt (Oftendahl, 1953, Fig. 1). One of these batholiths, the Drammen biotite granite (Oftedahl, 1953, p. 103), encloses the Drammen cauldron in the form of a huge cylindrical block or roof pendant. The biotite granite magma is younger than the rocks of the cauldron, and the stoping followed the ring fault nearly exactly. It has a quartz porphyry border against the effusives of the Drammen cauldron. The Drammen pluton is about 55 km long. Against the rocks of the Giltrevann cauldron it has a border facies of quartz porphyry with an aplitic groundmass. Oftendah (1953, p. 58) further suggests that the granite magma was at a relatively high temperature, perhaps superhcated. An ekerite batholith is younger than the rocks of the Sande cauldron. The ckerite is full of pegmatite nests and has a porphyritic border zone. Holtedahl (1951, p. 90) concludes with respect to the mechanism of emplacement of the batholiths that "huge subterranean crustal blocks sank to an

Figure 3.-Oslo Region, Norway
Four Permian complexes (B, D, G, S) of lavas, ring dikes and stocks of cauldron subsidence -aistad vounger discordant batholiths; all of epizone. After Oftedahl (1953)
mknown depth along curved fracture lines, sith magma occupying the vacated space". Oitedahl (1952, p. 58) infers a monzonitic oagma batholith at least 100 km long and $20-$ 5 km wide, slightly superheated, to explain the rhomb porphyry lava flows. He further uggests (1952, p. 60) that stoping normally ras arrested close to the suriace (about 100500 m below the surface), but occasionally the magma stoped its way clear to the surface to borm areal eruptions.

Stocks Primarily by Cauldron Sutsidence, bud Accompanied by Outward or Upward Pressure
General discussion.-The preceding discusjion has dealt with stocks that are assumed to have been emplaced effectively by subsidence of columns or blocks. There are a few examples to which subsidence of blocks or columns is Inferred to have been the major mechanics of emplacement, but they are also accompanied by evidence of deformation of country lock d
tool.
The basaltic lavas around the Mull complex (Bailey el al., 1924, Chapters XII and XIII) thow several concentric folds with dips of $10^{\circ}-30^{\circ}$ in discontinuous arcs or circles. Tyrrell's description (1928) of the northern branite mass of the island of Arran, Scotland thows that along one part of the border the lountry-rock schists have been dragged around by an uplift produced by the granite magma so that their strike swings into approximate parillelism. In another part of the border there llas been upward movement by faulting and Inylonitization
Mi. Monadnock, Vermont.-The Mount Monadnock pluton in Vermont is inferred by Chapman (1954) to result from the settling of a domical reservoir which developed cylindrical und radial fractures with consequent cauldron mbsidence and stoping of large arcuate-shaped dabs as the major method of emplacement. North and south of the stock, however, quarttites and schists which in general strike about gorth and dip east have been strongly twisted and their schistosity thrown out of regional strike. Chapman suggests that during the very. tharly stages of intrusion positive magma presfhre was sufficiently vigorous for a brief period of time to deform the immediately surrounding netamormhic rocks.
stock about 17 by 27 km in diameter, in Finland. The following summary is based on the work of Savolahti (1956). The earliest intrusions form an arc and consist of several successive intrusions of gabbro with anorthositic differentiates. The younger gabbro intrusions have chilled contacts against the older. The main core of the complex is a stock of biotitic rapakivi granite. The youngest intrusions are granite porphyry dikes with fine-grained facies in contact with all older rocks. Savolahti (1956 p. 83) writes of the rapakivi granite in general that "At an early period the hypabyssal, partly cffusive characters of rapakivis were described. Likewise, the occurrence of miarolitic cavities was recognized to be typical, and the scarcity of aplites and pegmatites was known". The stock is in general discordant to the country rock which consists of migmatites and older microcline granite, but locally the trend of the foliation of the migmatites has been deformed into conformity with the boundary of the intrusive complex. Some of the rapakivi granites in this region have been determined by Kuovo and Gast (1957, p. 30) to be about 1650 million years old, on the basis of $\mathrm{Rb}-\mathrm{Sr}, \mathrm{K}-\mathrm{A}$, and U , Th. Pb .

Other Discordant Plutons of Epizone
Inlroduclion.-The characteristic setting for discordant batholiths associated in space, time and tectonics with ring dikes, cauldron subsidence, and stocks is a peneplaned surface on a "basement complex" or series of folded and faulted beds overlain unconformably by a veneer of lavas. Such plutons occur in the New Hampshire, Oslo, Nigeria, and Southwest Africa belts and the Glen Coe district that have been referred to. They may be very appropria tely called subvolcanic. Although many stocks and batholiths are thus either directly or indirectly associated with cauldron subsidence and ring-dike complexes, many plutons of the epizone are not, although they are in general discordant. Many of these latter plutons are associated with volcanic rocks in space and time, but the evidence is commonly not sufficiently direct to tie both assuredly to the same tectonic history. Some of these plutons may not have had connections that broke through to the surface to yield lava flows. Others probably did have such connections, but the roof either remained intact or broke down and sank in the magma in such a wav that direct ennmertinn he-
associated with present evidence for caldera subsidence. -

The Bayview and Packsaddle Mountain stocks, Idaho, described by Sampson (1928) possibly afford a link between the directly subvolcanic type of pluton and plutons not now associated with volcanic rocks. The stocks are predominantly granodiorite and are significant because probably subsidence of roof rocks has accompanied their emplacement. The stocks are discordant with the relatively flat lying structure of the surrounding rocks, which are predominantly the Precambrian "Belt" series of sedimentary rocks. Block faulting has resulted in downdropping of blocks of Cambrian sedimentary beds. The block faulting is found only about the stocks and is related to the intrusion. The Cambrian rocks are found only where they are more or less engulfed in igneous rock. The granodiorite is coarsc-grained up to contacts. The collapse structure recalls that associated with cauldron subsidence. There is no pegmatite in the granodiorite, but there are a few aplite dikes.
An excellent example of control of emplacement of a Precambrian quartz monzonite stock of fractures of the country rock has bcen described and mapped by Steven (1957, p. 365375). One border has many angular step-like irregularities, and another has a zone 1.5-2 miles wide with a complex network of dikes.
Several stocks or lines of stocks and several batholiths of the epizone will be summarily described. These may be either parallel or discordant to regional structure.
Slocks and volcanic rocks of western Cascade Mounlailus, Oregon.-The Miocene (?) lavas and the line of Miocene (?) intrusive stocks of the western Cascade Mountain range in Oregon (Callaghan, 1933; Buddington and Callaghan, 1936) afford an excellent example of an association of lavas and plutons of similar composition, and of association in geography and time (fig. 4). The belt about parallels the trends of the substructure. The lavas range from basalt to rhyolite but are characterized by andesite. The intrusive stocks in Oregon occur at intervals along a line about 200 miles in length. They range in size from small plugs to a stock $11 / 2$ by $21 / 2$ miles in diameter. The rock of the smaller bodies is generally porphyritic aphanitic, that of the largest body is even-grained granular. The rocks range in composition from augite diorite through augite dacite porphyry and augite granodiorite porphyry to granite. Th larger masses are in general more siliceous. In
the Bohemia district (Buddington and Callaghan, 1936, p. 426) the intrusions occur in an art and as radial dikes. The line of intrusions has general northerly trend, but the individual in? trusions and veins trend mainly to the west or northwest. Epithermal and xenothermal metat liferous veins are associated with the stocks An extension of this belt into Washington 8 shown on the map by Waters (1955, Pl. I).
A belt of Quaternary and late Tertiary vol canoes lies in general to the east and roughl) parallel to the line of older Tertiary intrusire stocks.
Snoqualmie balholith, Washingion,-The Snoqualmie batholith of Washington (Fig. 4) of early Miocene or late Oligocene age (Grants) 1941, p. 590-593) has been described by Smilt? and Calkins (1906). It is composed of granodior? ite and biotite granite, is miarolitic (Waters, 1955, p. 711), and has porphyritic modific: tions on the margins of large masses and in dikes. It is emplaced in folded sedimentary beds and in the Keechelus volcanic rocks. The latter are in part gently folded and in part hare only initial dips. They consist of pyrozene andesite, dacite, rhyolite, and basalt with the first two greatly preponderating. An analysis of a sample of the andesite shows 18 per ant normative quartz and is very similar in come position to the granodiorite which intrudes it The batholith is about 10 miles in diameter and is inferred by Smith and Calkins to have cons solidated about 4000 feet below the surface Knopf (1955, p. 695) states that the batholith is roughly 250 square miles in exposed area and may be the top of a mass 4000 square miles in extent not yet uncovered by erosion.
Batholith, Casto quadrangle, Idaho.-Thr Miocene batholith described by Ross (1944) from the Casto quadrangle, Idaho, is also note worthy because of its size. It is at least 30 mile long and averages 7 miles wide. Much the most abundant rock according to Ross is granite, but there are small masses of quartz monzonites, granite porphyry, dacite porphyry, quarti diorite, and granophyre. The batholith dit Oligocene(?) volcanic rocks composed p ponderantly of rhyolite and quartz latite, a Ross states that some of the late rhyolitic flo may possibly be related to members of the pluton. The depth of intrusion he infers to heré been not much more than 2 miles. The granith is locally finer-grained close to the contact and granite porphyry may be a marginal laoe Micropegmatite occurs in nearly horizont ribs. The overlying strata were domed intof

Figure 4.-Belt of Tertiary Intrusive Stocks Emplaced in Volcanic Rocks of Western Cascade Mountains in Oregon and Washington
Modified after Tectonic Map of United States, Am. Assoc. Petroleum Geologists, 1944
broad low arch by the granite rather than crosscut. The granite locally has followed faults. Boulder-San Juan discordant belt of phulons, Colorado.-A series of plutons of Tertiary age
occurs in a belt extending from a little northwest of Boulder to the San Juan district in Colorado (Fig. 5), a distance of about 200 miles. The belt is strongly discordant to the regional
structure. Among others it includes the Jamestown, Montezuma, Silverton, and La Plata stocks and the Mount Princeton batholith.
Lovering and Goddard (1950) have described the belt. They state that some stocks probably
lies perpendicular to the direction of Laramide compression, it is possible that tensional forces of some magnitude were present here during the folding of the region. The belt of porphyry stocks tectonic transition zone between two types af

The Tertiary Montezuma quartz monzonite stock is an example intruded discordantly in the epizone almost exclusively in Precambrian

EXPLANATION
TERTIARY
N

Tog
Agglomerotes

CRETACEOUS AND JURASSIC

Predominantly limestone (Representative formation boundaries indicoled)
<60
Strike and dip of bedding

70×1

Strike and dip of overturned beds

Foult

Figure 5.-Boulder-San Juan Belt of Plutons Discordant to Regional Structure, Colorado Modified after Geologic Map of United States, U. S. Geol. Survey, 1932
occupy old volcanic throats, but many others were roofed with pre-Denver (Upper Cretaceous and Paleocene) rocks and probably forced their way in by stoping and intrusive faulting. The earliest intrusives show structure concordant with the country rock much more commonly than do the later, and among the latest of the intrusives explosion breccia is common: Most of the intrusives lie between monzonite and quartz monzonite in composition. The stocks are associated with dikes and sills. The texture in general ranges from coarse porphyritic and medium-grained to porphyritic aphanitic. The intrusion continued intermittently throughout the considerable span of time during which the Laramide revolution was in progress. Local transverse fracture zones marked by intrusive activity followed a period of regional northwesterly folding and faulting. The transverse structure is explained as follows; (Lovering and Goddard, 1950, p. 63).
regional deformation. Fault movements in the porphyry belt suggest that the northern part of horizontal movement well as one of tension it is believed that these two stresses-shearing and tension-were in part responsible for the rise of the magma that formed the porphyry stocks."

Dings and Robinson (1957) have described the Mount Princeton batholith which is one of the largest bodies in the belt. It is about 14 by 19 miles. They describe it as quartz mones zonite with small areas of younger granite, in-1 trusive quartz monzonite porphyry, and quaria latite porphyry. Only locally-does the rock of the batholith change texture to a' porphyry at the border, but apophyses are finer-grained. Small aplite dikes occur throughout. Pegma tite dikes are rare. The younger granite, 8 leucogranitic type, however, is locally marolitic, and has numerous pegmatite veins. Beryl occurs in the granite, the miarolitic cavities, and the pegmatite. There are two granite stocks, one

Figure 6.-Tertiary Granodiorite Stocks Emplaced Discordantly in Epizone In asymmetrical anticline of limestone, near Concepcion del Oro, Mexico. After Rogers, Tavera, and oa (1956)

The mineralization and by inference some of e associated plutons of the Boulder-San uan belt has been stated (Eckelmann and Rulp, 1957) to be $59 . \pm 5$ million years of age Slocks of Concepcion del Oro, Mexico.-Two Hosely adjacent granodiorite stocks of Tertiary ke are well exposed northwest of Concepcion
emplaced discordantly in the core of an asymmetrical anticline of Jurassic and Cretaceous sedimentary beds. Limestones are predominant with minor shaly limestone. The roof is faulted in a manner which may be explained as due to a slight doming by upward magma pressure. Roof pendants lead to an inference of a rela tively flat archlike roof with re-entrants. The emplacement seems clearly to be due to sub-
considered a "resister" to granitization. The mineral deposits are zoned, in part with a verti cal distribution, from hypothermal deposits at lower levels to epithermal chimney deposits in the higher parts of roof
Boulder batholith, Monlana.-A pluton of Late Cretaceous age, of great size for the epizone, and presumably somewhat older than the plutons of the Boulder-Breckenridge belts, is represented by the Boulder batholith in Montana. Knopi (1948, p. 666) states that a great volume of andesite and latite was erupted, probably just before emplacement of the Boulder batholith, which rose to such a high level that it invaded the pile of lavas. Balk (1937, p. 91) states that the Boulder batholith approached the surface somewhere between 2000 feet and 10,000 feet. The batholith is 70 miles long with an area of 1200 square miles. Grout and Balk (1934, p. 880) state that flow structures are poorly developed and (p. 885) that linear structures are much more widespread and unilorm, and probably more significant than the foliation as indicating the intrusive movement, although they are also elusive.

Knopf (1957, p. 81) states that the batholith is composite and-that the order of intrusion is (1) basic hypersthene-bearing granodiorite, (2) granodiorite, (3) porphyritic granodiorite, (4) biotite adamellite, and (5) muscovitic biotite granite. Alaskite and aplite are abundant. Contact metamorphism has locally developed sillimanite - cordierite - microperthite horniels. Knopf describes the emplacement of the batholith as the problem of how five different magmas in turn made room for themselves in the higher level of the crust and built up a composite batholith. He writes that near the batholith the invaded country rock has been more closely folded than at a distance from the contact. In places the strata adjacent to the batholith stand vertically and have even been overturned. Locally a series of reverse faul ts has developed along the eastern border of the batholith. The intrusive magma according to Knopf has manifestly made room for itself by crowding aside the enveloping rocks, by close appression of the beds, by overturning them, and by imbricate high-angle thrusting.

Knopf reports (p .90) the age of the batholith as determined by the Larsen zircon method to range from 62-72 m.y. and by the potassiumargon method, 87 m.y.

Seagull batholith, Yukon Territory.-The
based on his work. The batholith is about 6 by 28 miles and is emplaced largely in the trough of a syncline of Paleozoic rocks (Fig. 7). The batholith could be of mid-Cretaceous or Late Cretaceous age. It is in a deeply dissected mountain country with great relief and can be, shown to have steep walls and relatively flat undulatory roof with several of the mountain: peaks capped with hornfels and the valleys in: quartz monzonite. The country rocks are re gionally metamorphosed and belong to the muscovite-chlorite sublacies. There is no evis dence for forceful intrusion or side thrusting. The carbonate rocks have diopside, tremolite, and garnct in the contact zone, at one locality? with wollastonite. The rock of the batholith is a coarse-grained leuco-quartz monzonite wilh flat sheets of fine-grained and porphyritic? alaskite. Alaskite in near-horizontal layers up to 20 feet thick forms 5-25 per cent of the mass; There are miarolitic cavities in the quartz mor-: zonite with quartz and tourmaline. Dense spherical aggregates of quartz and tourmaline also occur as replacements in the quartz mon: zonite and alaskite. There is no pegmatite.

Precambrian Platons of Epizone

General statcment.-The major types at epizonal plutons may be of Precambrian a well as of Tertiary age. Discordant plutons of Precambrian age have been described by Anderson, Scholz, and Strobell (1955) from the Bagdad area, Arizona, and by Kalliokosti from the Weldon Bay area, Manitoba. Other types of Precambrian plutons are referred ion below.

Granophyre.-Extensive granophyre sheds associated with gabbroic or diabasic strata. form complexes have been described or redescribed in recent years from the Precambrian of Minnesota (Schwartz and Sandberg, 1940), Wisconsin (Leighton, 1954), the Wichita Mourtains of Oklahoma (Hamilton, 1956; Mernit 1958), and the Sudbury complex in Ontario (Thomson, 1956). All these were emplaced in the epizone. Hamilton writes that in the $\frac{1}{\text { s }}$ Wichita Mountains, granophyre, granite, and rhyolite form a sheet complex of dozens of separate plutons, of which many are sills and funnel-shaped masses. He states that granite and rhyolite may be either lateral equivalents of granophyre or intercalations in granophyre. and that the granites are probably in genera younger than the granophyres. Rhyolite in

cavities are common in one of the granite masses and that it may have been emplaced as a batholith. A younger granite mass has chilled facies against older rocks. The younger granite is also miarolitic. K / A and $\mathrm{Rb} / \mathrm{Sr}$ ages of a biotite from the younger granite are reported by Merritt (p .62) to be $480 \mathrm{~m} . \mathrm{y}$. and $500 \mathrm{~m} . \mathrm{y}$. respectively.
Thomson (1956, p. 43-45) has proposed that the Sudbury Basin is a volcano-tectonic depression surrounded by a ring complex of dikelike and sill-like character, and that the granophyre (micropegmatite) was emplaced as a ring structure inside the norite.
Ring-dike complexes.-The Ahvenisto pluton of Finland has already been. referred to as an example of a Precambrian ring-dike complex. Two other ring-dike complexes, the ChathamGrenville and Rigaud stocks of probable Precambrian age in Quebec, have been described by Osborne (1934). Chill facies such as quartz porphyry and syenite porphyry are found in both complexes, and miarolitic structure is found in the syenite of the Rigaud stock.

Aureoles of Pseudo-igneous Emplacement

Descriplion.-The contacts of the plutons of cauldron subsidence are almost universally sharp as are the contacts of most other stocks of the epizone. Extensive metasomatism of earlier gabbro members by younger granitic magma, however, has been described by Korn and Martin (1954) from the Messum complex in southwest Africa. The Bingham, Cassia and La Plata plutons in Utah, Idaho and Colorado respectively have been interpreted as cores of magmatic origin with aurcoles of pseudo-igneous granite, the product of replacement of quartzite or sandstone. Loughlin and Koschman (1942, p. 41-42) have also described a small body of granophyre interpreted to result from metasomatism of sandstone by emanations from an adjacent Tertiary granite body.
Bingham, Ulah, slock.-Stringham (1953) has described a small stock at Bingham, Utah, where granite forms about two-thirds of the area of the pluton and is inferred to be the product of granitization of quartzite. Some of this granite is exceptionally high in $\mathrm{K}_{2} \mathrm{O}$. The core of the stock is granite porphyry which is interpreted to be of magmatic origin. In the area to the south (Gilluly, 1932, p. 65) a series of volcanic flows in which latite is overwhelmingly predominant are cul by intrusives inferred to be roughly correlated with the Bingham

Cassia batholith, Idaho.-Anderson (1931) has described the present 60 square miles e_{-} posure of the Cassia batholith to consist of about two-thirds porphyritic, usually gneissic granite and one-third granodiorite. He believe the porphyritic granite gneiss is a replacement of metaquartzite and the granodiorite a cryy of metaquartaite and the granodiorite a crye shaped roof, and the metasomatic porphyrite granite extends at least 1800 feet down. Th batholith is of late Cretaceous or early Tertian) age. The data are not too definitive, but th batholith is here classified as emplaced in epizone.
La Plata slocks, Colorado.-Eckel (194)) has inferred the emplacement of small Lat Cretaceous or Tertiary diorite and monzonite stocks in the La Plata District, Colorado (Fid 5) to be in part by replacement or assimilation of country rock. He finds (p. 39) that whered monzonite stock transects beds of sandstone there are inclusions from an inch to sevent hundred fect in length which retain the attitud and position of the beds from which they we derived. However, he also finds that in many places contacts between the diorite and mononite and the host rock are sharp and that the diorite and monzonite locally contain ra ments of Precambrian rocks even where the are in Paleozoic or younger sedimentary beds

Supplementary Descriptions of Plutons

 Emplaced in the EpizoneNew Cornelia quartz, monzonite stock, A zona.-The New Cornelia quartz monzonity stock in the Ajo district of Arizona exhibity many features characteristic of the Tertiary stocks of the southwestern United States. The following description of it is condensed from that by Gilluly (1946).
The great copper mine at $A j o$ is opened in it low-grade epithermal deposit of chalcopyrits and bornite disseminated in the New Corndif quartz monzonite that is tentatively referred to Early Tertiary age. The New Cornelia stock $\begin{gathered}\text { th }\end{gathered}$ exposed over an area of about 6 square mites There is a discontinuous border facies consistixy of fine-grained quartz diorite. The preponderant rock is an equigranular quartz monzonite wh a poorly developed linear structure. T country rock is predominantly the Conconk trator volcanic rocks consisting of andesilit? keratophyre, and quartz keratophyre floris. breccias, and tuffs with highly altered and come plex structure. The Cornelia intrusion Gillaty infers probably took place under a moden
of rocks after folding and perhaps faultof of the Concentrator volcanic rocks (Creceous ?). He states that it is possible that the Ornelia quartz monzonite and Concentrator oicanic rocks represent the same magmatic cle. The disregard of older structures by the ntrusive, the absence of wall-rock structures moordant with its contacts, and the sporadic reservation of fine-grained (chilled) border acies indicate that the intrusion took place at relatively shallow depth. The weakness of meation in the rock is inferred by Gilluly to odicate that there was little motion in the tragma at late stages of its consolidation. After is consolidation, however, it was fractured ong westward-trending fissures, and aplite ikes were injected in large quantities. North-rard-trending fractures followed and were ccupied by pegmatites in the apical part of se stock. At later stages solutions chloritized nd sericitized the rocks of the apical part of se stock and deposited cupriferous and assohated metallic minerals of the New Cornelia te body.
Hanover stock, New Mexico.-The Hanover ranodiorite stock, New Mexico, has been detribed by Paige (1916), Schmitt (1933), and lerr et al. (1950). Where emplacement has been fcompanied by uplift and outward deformaon. It is about 2.5 miles long, north to south, med less than a mile wide. The Paleozoic bedded ecks dip away from the stock on the east and frst flanks so that it has the relationship of an bticlinal structure. At the south the bedded olticlinal structure. At the south the bedded ndine and an asymmetrical anticline beyond. he fold axes form arcs parallel to the edge of stock as though the folds had been formed y lateral pressure from the overriding stock. locally folding was so intense that thrusting tcurred on a low-angle fault plane. Kerr et al. 1050, p. 301-302) state that the near-by anta Rita stock arched and cut through overing sedimentary rocks and quartz diorite Als.
Marysville stock, Monlana.-The developPent by Barrell (1907) of the hypothesis of lock subsidence in magma as the mechanism demplacement of the Marysville granodiorite wock has made the latter one of the classic tamples of this phenomenon. Knopf (1950) frites that the stock is 6 miles north of the orthern end of the Boulder batholith and robably an outlying cupola. It is only 3 square iles in area. Barrell states that the roof sedients were domed over the granodiorite to the tent of 1000 feet, possibly 3000 feet; that
faulting immediately preceded the invasion of the stock caused by upward pressure of the igneous mass; and that at numerous places the roof of the stock passes beneath the sedimentary cover at a flat angle. Barrell further writes that the granodiorite maintains granularity up to the contact and is medium- to coarse-grained but becomes markedly more porphyritic in outlying tongues and wedges. Aplite occurs within the margin of the stock and in rocks of the border zone but is rare in the interior. There is also minor pegmatite in the same zones as the aplite. Knopf comments (5950, p. 840-842) on the remarkable contact-metamorphic aureole. The argillites are converted to cordierite hornfels, and the limestone to diopsidic and tremolitic hornfels.

Organ Mountain batholith, New Mexico.-A small discordant Tertiary batholith of about 55 square miles in area has been described by Dunham (1935) from the Organ Mountains of New Mexico. He infers that Tertiary andesite flows form the roof for the intrusive comparable with the roof of a laccolith and that in depth the body is crosscutting with steep outward dips and was emplaced by piecemeal stoping. There is evidence that some xenoliths have sunk not less than 1400 feet and probably much more. The dip of the andesite roof is away from the batholith, excceds 50°, and swings around with the contact. Locally the wall rocks have been powerfully distorted by magmatic pressure. The batholith is composite and consists of three distinct bodies, a monzonite, quartz monzonite and quartz-bearing monzonite. The quartz monzonite has tiny miarolitic cavities as a widespread feature of a porphyritic fine-grained facies. The intrusive process according to Dunham was accompanied by a progressive concentration of volatile fluxes. There are no pegmatites or aplites in the monzonite; aplites but no pegmatites in the quartz monzonite (17.5 per cent normative quartz) and aplites, pegmatites, and mineral veins in the quartz-bearing monzonite (10 per cent normative quartz). The aplites are very small dikes and veinlets. Quartz porphyry sills and dikes occur in the country rock (Dunham, 1935, p. 84). Wollastonite (p. 100) has been formed locally in the limestone contact with the late intrusions.

Paleozoic letcogranite and granile porphyry batholiths, Newfoundland.-Two examples of Paleozoic miarolitic leucogranite or alaskite batholiths emplaced in the epizone have been described by White (1940) and by Van Alstine (1948), both from the south coast of Newfound.
land. The roofs of the batholiths are relatively flat, in part covered with roof pendants, and have gently outward dipping walls. The granite is miarolitic and homophanous. Chilled con tacts are rare but were observed. The St. Law rence tatholith (Van Alstine, 1948) of Devonian (?) age has related rhyolite porphyry dikes in the country rock and epithermal fluorite de posits. It is elongated in a direction approximately normal to the trend of the major folds and thrust faults of the Cambrian and Ordovician (?) rocks and is inferred by Van Alstine to have been emplaced by stoping. The Ackeley batholith (White, 1940, p. 969) is believed to occupy more than 300 square miles. A miarolitic alaskite facies is associated with molybdenite and muscovite metasomatism Locally where the batholith is bordered by volcanic rocks there is an agmatite zone 3 miles wide.
Another discordant Devonian (?) batholith of the epizone has been described from the north coast of Newfoundland by Snelgrove (1931, p. 24-25), Baird (1951, p. 49-52), and Neale (1957). The batholith occupies at least 75 square miles in area southwest of Confusion Bay, west of Notre Dame Bay. The rock is described as a granite porphyry or quartz porphyry. Foliation and lineation are marked in marginal facies. Many inclusions of Devonian (?) rhyolitic volcanic rocks occur locally in the border facies. Neale (1957, p. 59) suggests that the volcanic rocks and the prophyry are intimately related, and all the authors infer shallow intrusion. So large a batholith of granite porphyry is very unusual, and it deserves additional detailed study.

Plutons of Transitional(?)
Epizone-Mesozone
Introduction
There are several batholiths whose description suggests characters appropriate in part or the epizone and in part for the mesozone They are therefore here included in a transitional (?) group until more definitive classification can be made. The Texas Creek granodiorite batholith (Buddington, 1929a), a unit of the Coast Range intrusives of Southeastern Alaska is representative of the kind of problem involved. The batholith has a sharply discordant broad relatively flat roof, common aplite and pegmatite dikes in the contact zones only, and associated porphyritic aphanitic dikes. These
hand it has a foliation throughout and is eme placed in close-folded country rocks-char acters appropriate for the mesozone.

Examples of plutons with transitional char. acteristics appear to be not uncommon in Europe. Several late Hercynian granite come plexes in Portugal described by Westerveld (1955) are post-tectonic and almost wholly discordant, but also have stecply dipping planar foliation in substantial part parallel to the borders of the pluton, but locally at an angle.

Soulhern California Balholith
The huge batholith of Southern Californii displays predominant discordant contacts and certain other features which ally it with plutons of the epizone, whereas the near absence of chill zones, and the occurrence of internal border foliation and local concordance of structure of country rock to contacts tie it to batho liths of the mesozonc

The northern part of the batholith of South ern California has been described by Larsen (1948), from whose work the following summary is made. The batholith is exposed for a length of 350 miles and a width of about 60 miles. It has a length of probably over 1000 miles if discontinuous bodies at the southern end are included. The batholith was intruded in early Late Cretaceous time. In the area studied by Larsen the batholith was emplaced by mort than 20 separate injections. The country rock were regionally closely folded, metamorphosed, and intruded by earlier granitic rocks, perhap in late Paleozoic and Triassic sediments, the orientation of the inclusions and other strues tures of the batholith, the elongation of the batholith, and the strike of the major faults are in about the same dircction. Larsen infers that the batholith was emplaced by stoping and not by forceful injection. Forcing apart of the walls may have been important in furnishing room for some of the elongate members of the batholith, but it could not have furnished a large part of the space for the batholith as a whole He concludes that there is no relation between proximity to granitic bodies and degree of metas morphism, except for local contact metamorphism and for thin screens between intrusive masses and small inclusions. For the most part there is little contact metamorphism where the granitic rocks intrude large bodies of older schists, slates, and quartzites. Some of the screens and inclusions in the granitic rocks however, have been greatly metamorphosed

The slates were changed to mica schists and to njection schists, the quartzites to mica-garnetquartz rocks or to quartz-sillimanite rocks. Local bodies of marble around tonalite have been replaced by garnet, diopside, wollastonite, idocrase, feldspar, etc. Many of the intrusive bodies have zones next to their contacts that are banded or gneissoid. Gabbro forms about 7 per cent of the batholith, tonalite 63 per cent, granodiorite 28 per cent, and granite 2 per cent. Larsen is of the opinion that in the area described the rocks had only a moderate temperature when the first member, the San Marcos gabbro, was intruded, as small bodies of that rock are rather fine-grained. Locally aplite dikes are miarolitic. Larsen does not discuss the possible depth at which the present level of the Southern California batholith was emplaced but states (1945, p. 404) that it was probably intruded to within a few kilometers of the surface. Chayes (1956) is of the opinion that the tonalitic rocks are the product of a mechanical mixture and interaction between ranodioritic magma with previously solidified gabbro. In most places contacts of the intrusive bodies are sharp. Chilled borders were oot found except in one granodiorite dike. Merriam (1946) describes concordance of structure of country rock with batholith contacts in the Ramona quadrangle.

Balholith of Southwestern Nova Scotia

The geology of the great batholith of southvestern Nova Scotia (Fig. 8) has been summarized by Wright (1931). It is more than 110 miles long, 20-30 miles wide, and together with satellitic bodies has an area of 4000 square miles. The eastern part consists of biotite and muscovite granite that rarely shows gneissoid or banded structure. Aplitic and pegmatitic lacies are common, and the texture of the granite is maintained up to the contacts. The contacts are sharp. Andalusite hornfels has locally been formed in adjoining slate. The country rocks are predominantly folded late Precambrian chloritic and carbonaccous slate and sandstone. The beds are in broad folds which are transected by the batholith, without appreciable distortion or deflection. The invading magma is inferred by Wright to have displaced its host without appreciable lateral thrusting or doming of the roof. Mesothermal gold-quartz veins occur in the country rocks. Wright quotes Fairbault as estimating that 9 miles of the Precambrian Goldenville formation had been eroded, mostly before Mississippian time.

Locally the batholith is reported to cut fossiliferous beds of Silurian and Devonian age. Most of the data of Fairbairn (1957), however, based on rubidium-strontium ages of mica suggest ages of between 350 and 400 million years, or between Middle and Late Ordovician. These discrepancies in ages are at present unresolved. The characters of the batholith seem to be definitely those of the epizone, but it is-not certain what significance is to be drawn from Wright's reference to 9 miles of eroded material. The axis of the batholith is in part strongly discordant to the fold axes of the regional structure. The discordant Boulder-San Juan (Colorado) line of plutons, described carlicr, may be reicred to as a much "ncarer-surface" expression of similar relationship.

Plutons of Mesozone
"The grantile was once hot, full of gas and molien.... it rose along a large broad fronl, sirelched out and expanded sideways and yielded to a force from the deplh which pushed and drove it." Hans Cloos, 1953.

Iniroduction

It may be expected that a substantial period of time would be necessary to permit erosion to expose plutons of the mesozone. The fact that no plutons of Tertiary age in North America are known to the writer to be emplaced in the mesozone is consistent with the foregoing principle. In the western Cordillera, Jurassic to Lower Cretaceous plutons, however, are dominantly of mesozonal character.

Characteristics

The individual plutons of the mesozone are inferred normally to have the following characteristics. The degree of metamorphism of the regional country rock is not more intense than the green-schist and epidote-amphibolite facies. The argillaceous country rocks of sedimentary origin are usually slates and phyllites. The inferred temperature of the country rock at the time of intrusion is generally no higher than $400^{\circ}-500^{\circ} \mathrm{C}$. There is no apparent direct relationship between the plutons and volcanic rocks. The stocks and batholiths are effectively always of composite character made up of two or more units. The units in general vary systematically; the younger intrusions are more alkalic and siliceous. The characteristic plutons have complex emplacement relationshins to the
country rock-in part discordant, in parl conscordant. Locally there may be some replacement: Some may show transection of roof in
ally, gentle dips in the core or parts of the om may indicate a domal roof. The planar strucio of some plutons may suggest a rough funf

Figure 8.-Great Discordant Devonian (?) Grantte Batholith of Southwest nova Scotu Emplaced in lower part of epizone or upper part (?) of mesozone. After W. J. Wright (1931, modife after E. R. Fairbault)
archlike shape, and have steep outward flaring walls in depth. Rarely, a mass such as the Sugar Hill pluton in Vermont (Doll, 1951, p. 44) has crowded a series of uniformly north-northeast trending metasediments into a conformable steep dipping funnel. Planar foliation is of ten well developed, especially in the outer portions of the pluton, but commonly is local, elusive, or.missing in the core. The planar structure of characteristic batholiths and stocks, especially in the border zones, is subvertical, consistent
structure either right side up or upside dow with the axis vertical or at moderate incling tions; often the structure may be as shown iol Figure 9. Younger units may crosscut the folia tion of older units, or locally the planar flow structure may be independent of boundaries of units within a composite pluton (Fig. 9) and maintain its swing across their contacts. Th planar structure in some plutons is in part sys tematically oriented at an angle to the oute border of the pluton. Linear structure met
core of the pluton without planar structure. similation may be significant in border or ifl zones. Wall rocks in the contact zones often 5ow the development of a steep schistosity Formable with the contact and with a linear Fucture more or less parallel to the dip, in*ating flowage in a subvertical direction. dift of the roof may be inferred. Minor fold Hes and lineation of country rock adjacent to pluton may have steeper plunges than furer away (Trefethen, 1944, Pl. 1). Bedded thks or dikes at large angles to the contact ay be crumpled back on themselves as though formed by outward pressure from the pluton. odded rocks or older sills parallel to the conact may show boundinage structure due to dis--ation.
Emplacement by reconstitution and replacetent of country rock is commonly either absent subordinate. An occasional small pluton, owever, may be emplaced wholly by replaceent. Chill-border facies, in the sense of aphatic texture, are absent. Typical migmatites re commonly minor and are often absent. Pegsatites and aplites, however, may be common pecially in border zones. They may have a dial fabric in some plutons. Miarolitic strucre is absent. Marginal fissures with inward .ps, in part lined with aplite or pegmatite, ay be present locally in border zones of plums. The plutons are pre-eminently those where e applicability of Cloos' system of "granite retonics" is most rewarding.
Some batholiths may be bordered by a zone 1 dike injection or contact agmatites. Dikes (ig. 13) or dike systems (Pl. 1) as well as sills ay occur in the country rocks bordering the trusives. Hutchinson (1955) has shown that the Ross Lake area, Northwest Territories, hnada, pegmatite veins of an area of several fuare miles are spatially related to a body of anodiorite. In the hottest zone near the gran-- they are often large and emplaced by granzation of granodiorite layers whereas in a oler zone they were emplaced as pegmatitic sids along dilatant fracture zones, in part ith the development of zoning of the "comex" type of pegmatite.
Contact-metamorphic aureoles may be well dveloped around stocks (Philbrick; 1936 itcher and Sinha, 1958) and small batholiths d around areas of dike complexes in roof nes (Eric and Dennis, 1958, Pl. 1). In the gger or relatively deep mesozonal batholiths rgional metamorphism is associated. Phyllites
canic rocks or metalimestones in the vicinity of contacts. A schistose structure is common in the country rock bordering mesozonal plutons.

Mcsozoic Plulons with Both Discordan and Concordant Relations to Country Rock

While Creck batholith, British Columbia.-A late Mesozoic batholith described by Reesor (1954), from British Columbia shows clearly many significant phenomena (Fig. 9). The country rock consists of the Proterozoic Lower Purcell series regionally recrystallized to phyllites, little deformed in the eastern part of the area but compressed into isoclinal folds in the western part. The rocks belong to the greenschist metamorphic facies. The batholith is about 12 to 17 miles in diameter. There is a contact-metamorphic aureole of about 1000 feet diameter, and all the rocks of the contact zone are schistose. The batholith crosscuts a north-plunging anticline of Proterozoic rocks. Although the batholith in part truncates preexisting structures, the bordering strata are generally visibly and violently side-thrust and forced to conform with the direction of the contact. Vertical isoclinal folds occur along the north and south borders. In one area a marked cross cleavage has developed; fracture cleavage has developed in competent beds, crenulations with cleavage parallel to axial plane in phyllites, and a planar foliation across the bedding. A vertical upward motion of the magma during emplacement is indicated by the vertical to near-vertical lineation and by joints. Evidence of stoping is indicated by an almost universal irregularity of the contact of the pluton with country rock and by local stoping. Inclusions occur everywhere in varying amounts, except within the interior granite. The rocks of the batholith consist, in order of their emplacement, of biotite granodiorite, hornblende granodiorite, and porphyritic granodiorite in roughly concentric arrangement with an elongate core of quartz monzonite. The quartz monzonite grades into an aplitic facies which cuts the other rocks. Aplites and pegmatites occur in great abundance in parts of the mass, notably in the porphyritic granodiorite but not in the quartz monzonite. Inward-dipping joints are well developed throughout the batholith, and many are filled with aplite or pegmatite. They rarely extend into the sediments

\rightleftharpoons	Ovartite, orgilite. dotomilic quertitite ond dalonite; represembative tamation bounderies outlined.
λ	Outer contasel ol bainolith
2	vertical foliation
Q	Strike and fip of rodiation
\checkmark	Strike ond dip of bedding
تمسمبمى	Foult

Figure 9.-Representativs In part discordant, in part concordant because of crowding aside of count
inferred to have originated at the last stage in locally at the border contact of the complex it consolidation of the interior granite. The in- follows every irregularity. There is no linear terior planar foliation is universally vertical to subvertical, and although generally coniormstructure in the quartz monzonite. A mafic-rid structure in the quartz monzonite. A maic-1id
facies of the granodiorite may be due to incors poration as indicated by the presence of ba
ac batholith of Mesozone
reek batholith, British Columbia. Modified after J. E. Reesor (1954)

Sierra Nevada batholilh, California.-The Sierra Nevada pluton is about 300 miles long and $50-60$ miles wide. It has not been fully explored, and an adequate systematic unified description of the existing data is not available.
the Yosemite area, and Cloos (1936) has published a structural study of the batholith of lished a structural study of vicinity and of an area northwest of Lake Tahoe. The structural study has been effectively summarized by Balk (1027 n 65-67) Onlv snme nertinent ideas
from literature later than that available to Balk will be cited here.
Hamilton (1956, p. 21-23) has given a summary upon which the following abstract is based: The granites were intruded in hundreds of separate plutons, some a few acres in extent and some covering several hundred square miles. Contacts are sharp, and gradation from granite to country rock commonly takes place in less than an inch. The uniformity of the granitic rocks over wide areas, and the gradual nature of the variations indicate that large volumes of the material could be mixed and homogenized. Some of the intrusive material seems to have been wholly liquid (as in the alaskites), whereas some was only partly liquid.

The granites intruded and produced contact metamorphism of a country rock which had already undergone moderate regional metamorphism. Structures in the metamorphic rocks are cut across sharply by the granites, and straight dilation dikes from the granites transect contorted metamorphic rocks. It is possible, however, that some of the deformation of the country rocks was the result of forces of intrusion acting before establishment of the final contacts. Early plutons intruded the metamorphic rocks; later plutons intruded earlier plutons.

The intrusive granites moved generally upward, as shown by their flow structures. Hamilton states that stoping operated, but to a degree that is only conjectural. He infers that an explanation in terms of cauldron subsidencestoping on a huge scale could account for the emplacement of some of the plutons, particularly the smaller ones which are intrusive entirely into other plutons. However, he finds that no evidence for such emplacement has been recognized in the Sierra except that the geometry of some contacts might favor it. His conclusion is that the plutons formed from mobile magmas which moved upward and expanded outward, mostly passively but in part forcibly. Large amounts of material were incorporated into the margins by assimilation of wall rock and stoped blocks, but most of the granitic material was introduced from!lower levels.
Durrell (1940), Macdonald (1941), and Mayo - (1941), who have studied contact relations in the Sierra; have concluded that, whatever the means of intrusion, these means were passive. They find that contacts are mostly complexly discordant in detail and, if the wall rocks were shouldered aside, it was apparently accom-
zones about the intrusions, not with shearing along the contacts.
Mayo (1941, p. 1081) suggested that the dominant means of emplacement of Sierra plutons was "permissive intrusion, tectonically" controlled," and "the structural features of the region seem in harmony with the idea that space for the intrusion was provided . . . mostly by buckling of the isoclinally folded wall rocks as a result of a north-south compression"
Durrell (1940) and Macdonald (1941) be lieve that the belts of country rocks within the batholith are roof pendants with relatively flat bases, remaining portions of a once-con tinuous roof. They agree that the contacts of the igneous bodies dip outward in most places $60^{\circ}-70^{\circ}$ and that there is a suggestion that the upper parts of the stocks, and probably all the larger intrusives, are more or less dome-shaped. Balk (1937, p. 67), on the basis of the work of Cloos, states that an eastern pluton of the batholith in the Yosemite region has what might be called a schlieren dome were it not for a small mass of structureless granite at the core, and that "each schlieren dome, or arch, is com.' posed of a number of closely related, but petrographically different, rock types which tend to conform with the dome structure, as a system of concentric shells". This pluton also shows marginal upthrusts along the contacts of the oldesi intrusion. A comparison of the geologic map by Calkins (1930) and the structure map of Cloos suggests that the flow structure in part crosses the boundary of units as in the White Creek batholith, British Columbia. The foregoing discussion deals largely with the central part of the batholith. Webb (1938, p. 315) finds that in the southern more deeply eroded part of the batholith the foliation of the septae have high. angle dips, none less than 60° :
Coast Range balholilh, A laska-Brilish Columbia. -The upper Jurassic to Lower Cretaceous Coast Range batholith of Alaska and British Columbia has a length of at least 1250 miles. with widths of 35 to 60 miles common and up to a maximum of 125 miles. A substantial part of the batholith consists of screens of schist and gneiss. There are few detailed maps of any parts of the batholith
The batholith in a general way parallels the trend of the prebatholithic structures, but only in a general way. Phemister (1945, p. 79) notes that near Vancouver, British Columbia, "The" country rocks strike slightly north of east, while the batholith has its greatest extension from south to north". Buddington (1929, p.
olith as extending for many miles parallel to the strike of the adjacent formations, although locally crosscutting; he notes that for a length of 40 miles the batholithic margin strikes nearly north and transects the general structure at an angle of 15° to 40° whereas the northern part trends northwest at a slightly greater angle than the formations of the country rock. The batholith is stated to work across a synclinorlum of Mesozoic rocks into Carboniferous rocks. Smith and Stevenson (1955, p. 816-817) write concerning the emplacement of the intrusives in southern British Columbia that in many places the batholiths transect the structures of the country rock, that in some places much of the rock was pushed aside, and that trend lines around thie southern end of the Coast Range batholith were probably formed by broad-scale and strong lateral pressures transmitted through the magma. The formations southwest of the batholith in southeastern Alaska are agenerally isoclinally overturned to the southwest, and their dip and the dip of the foliation of the border belt of the batholith is steep northeast or vertical.
Also in southeastern Alaska (Buddington, 1929, p. 181) reconnaissance indicates that the quartz diorite is predominant in the south western part (5 to 15 miles wide) of the batholith, and quartz monzonite is predominant in the eastern part (10-15 miles wide) with mixed rocks of generally granodioritic character in the core. Smith and Stevenson (1955, p. 8i1) describe the igneous intrusions in southern British Columbia as consisting of dioritic to granodioritic rocks in the western portion on Vancouver Island, predominantly granodiorite in the Coast Range, and principally granitic in central and eastern British Columbia. The foregoing relationships recall the Sierra Nevada batholith about which Durrell (1940, p. 12-13) writes that by far the most abundant plutonic rock in the area studied by him (southwestern part of batholith) is quartz diorite but that the most easterly plutonic rocks are quartz monzonite and granite, and that there is a gradual although overlapping, progression from basic types in the west to acid types in the east. The batholith is exposed along Tracy Arm in southeastern Alaska for a width of about 15 miles at an angle of 60° to the trend of the major structure. The intrusive rocks contain many large belts of injection gneiss and so many inclusions of country rock that it is doubtful if any area as much as 10 feet square is clear of them (Buddington, 1929, p. 69).
part of the Coast Range batholith in southeastern Alaska have characteristics definitely like those of bodies emplaced in the mesozone; the southwestern part of the main batholith and the adjoining country rock equally definitely have characters like those of the catazone. The northeastern part of the batholith appears to belong to the upper part of the mesozone or even the lower part of the epizone. A difference in degree of metamorphism of the country rock bordering the western and eastern parts of the batholith was early recognized by the Wright brothers (Wright, F. E. and C. W., 1908, p. 67) and discussed later by Schofield (in Schofield and Hanson, 1922, p. 65-66) and by Buddington (1928, p. 293-294). The batholith in southeastern Alaska is bordered on the southwest by a belt of medium- to high-grade metamorphic rocks. This belt has a width of about 35 miles at the southern border of Alaska; it narrows and pinches out at the north near Juneau. The belt of metamorphic rocks changes in metamorphic intensity toward the batholith from the general regional green-schist facies on the southwest through garnet-biotite and staur-olite-kyanite zones to a sillimanitic facies with a migmatite zone adjacent to the batholith. There are many plutons of granodiorite or quartz diorite throughout. The rocks to the northwest along the southwest border of the batholith and along the northeast border of the batholith are slates and greenstones. It might be suggested that the belt of medium- to high-grade metamorphic rocks on the south west border overlies an extension of the main batholith at depth and that the overlying schists were forced up from deeper zones by the upward push of underlying magma and by the accentuated upward drag of the magma mass which formed the southwestern part of the main batholith. The mechanism suggested resembles, but on a larger scale, the idea of upward drag or upward thrust of walls by rising magma proposed by Noble, Harder, and Slaughter (1949, Fig. 4). The quartz monzonite and granitic rocks of the eastern part of the batholith are younger than the quartz diorite of the western part. Granodiorite porphyry dikes of a character appropriate for the epizone are abundant locally in the country rock of the eastern border and are inferred to be related to the quartz monzonite.

Mesozoic Psetudo-igneous Plulons
or Facies of Mesozone
Swedes Flat plidon, California.-Two ex-
as emplaced by recrystallization and replace ment in the mesozone are the Swedes Flat stock in California and the Chilliwack batholith in Washington. The roof (Pellisier granite) of the Inyo batholith, California, has also been in terpreted as a product of recrystallization and eplacement.
Compton (1955) has described the Swedes Flat pluton and interpreted it as the product of recrystallization and replacement. The main mass of the pluton is about 5 by 7.5 miles in diameter. Tonalite and granodiorite form the preponderant bulk of the pluton with about 4 square miles of gabbroic and dioritic rocks at the north end and another mass at the south end. Granophyre forros a local late intrusive phase. Gradational contacts between granodiorite and dark hornfels and amphibolite are striking. The latter give way to homogeneous granodiorite through a broad zone of intricately veined mixed rocks, $100-1000$ feet wide against gabbro and diorite, up to 3 miles wide against metavolcanic rocks. The regular, gradational changes from the incipient webbing of these mixed rocks to inclusion-charged granitic rocks and then to granitic rocks with only vague hornblende clots suggest that the granitic rocks have passed through these stages in their. development. Compton believes that a replacement origin for the homogeneous rocks is supported by their lack of flow structures or fracture pattern and by the fact that the foliate inclusions fit the projection of country-rock foliation through the pluton rather than any reasonable movement picture within it. He suggests. that most of the granitization was produced by fluids moving in open channels and that the source of these fluids was probably a magma that formed the core of Swedes Flat pluton. Such a magma he infers would have lain south of, and perhaps at a lower level than, the rocks as now exposed.

Pellisier granile facies of Inyo balholith, Cal-ifornia.-The Pellisier granite facies of the Inyo batholith, California, of middle or late Mesozoic age has been interpreted by Anderson (1937) as a roof facies of a major batholith developed in situ by replacement and recrystallization of both sedimentary and igncous rocks. The granite carries abundant inclusions. most of which appear to have originally been schistose or argillaceous. The replacement origin he bases upon field evidence of gradation between country rock and granite, the variability in composition of the granite, the inheritbility in composition of the granite, the inherit-

Mnaviel bivifanceiveive tiry
replacements, especially albitization. The pasi of the batholith mapped is 35 miles long. Tl Pellisier granite is in substantial part a hon blendic granite, whereas the main part of this batholith is a biotite granite. The solutions effecting the development of the Pellisier granite are inferred by Anderson to have been derived from the underlying magma which crystallized to form the main part of the batholith. Migmas titic gneisses have been formed in the bordel? rocks of the batholith at depth.
Chilliwack batholilh, Washinglon.-The description by Misch (1952) of the Chilliwack batholith, Washington, affords an example in? which the hypothesis of granitization has been applied to explain the development of a batho-1 lith in the mesozone in the latter part of the 3 Mesozoic. The batholith is about 35 miles long and $5-10$ miles wide in Washington and ex-1 tends north into British Columbia. The country rocks are a series of geosynclinal rocks, mostly phyllites, quartzites, marbles, greenstones, and greenschists except at the southern end of the batholith where, in the border zone of the batholith, the phyllites are changed to mica schist, and the greenstones and green schists to amphibolites. The granodiorite and quarta diorite of the batholith are inferred by Misch to be the result of a continued granitization process which first yields a series of granitic gneisses (the Skagit gneiss) and then large directionless granite bodies with gradual passages between. The country rocks on this hypothesis are not pushed aside along part of the contact, but in part the granodiorite is reported to have ${ }^{\text {a }}$ moved as a plastic crystalline mass and intruded the metamorphic rocks. Several smaller bodies appear as isolated intrusive stocks which have forced their way by pushing the metamorphic rocks aside. Part of these intrusives are in Lower Cretaceous rocks. The magma of these intrusions is assumed by Misch to have formed at: depths below the level now exposed as the final : climax in a long process of granitization and mobilization, and it is stated that it did not come.from far away or an unknown depth. The depth of formation of the granitic gneisses and granites he estimates at three or four to ten miles.

Mesozoic Plutons wilh Protoclaslic or LaleSlage Posiconsolidation Deformation

Colville, Washinglon, and Cassiar, British Columbia, balholiths.-The Colville and Cassiar h batholiths are discussed together as they both
dint aiter much of the complex is solid. The lowing summary has been made from the - cscriptions by Waters and Krauskopf (1941) and by Poole (1956).
The Colville batholith intrudes folded and dynamically metamorphosed sedimentary and rolcanic rocks of late Paleozoic and Triassic ige. The age of the batholith is thought to be hate Jurassic or early Cretaceous. It is about P) miles long. Waters and Krauskopf describe the batholith as remarkably heterogeneous both structurally and petrographically. A central mass of structureless granodiorites grades outward into a belt of foliated igneous rock twhich commonly shows intricate swirling of the foliation. These swirled rocks grade into a peripheral belt of variable but well-foliated imigmatitic gneisses characterized by severe granulation of the constituent minerals. Over broad zones they find that this rock is a mylonite and that locally recrystallization has produced types resembling metamorphic granulites. The trend of the folds (in the country rock) as well as the direction of foliation and other structural features is predominantly northwest-southeast, and across these structural trends the batholithic border cuts with decided discordance. The wall rocks at the periphery of the Colville batholith show almost no evidence of contact metamorphism. Pegmatites are abundant near the border. From detailed consideration of relations both within the wall rock and within the adjacent intrusion, however, Waters and Krauskopf suggest that the features of the contact zone can best be attributed to the rise and emplacement of the batholith as a unit. By this interpretation they infer that the intense brecciation and usual lack of metamorphism in the wall rocks is due to a rise of the intrusive at a time when its peripheral portion (which now forms the gneissic and mylonitic facies) was nearly solid. Where the linear structure shown by swirl axes is well developed, the prevailing pitch of the axes is invariably northwest. They take this to indicate at least a slight regional control of this structure. The core of the intrusive mass is homophanous and composed of granodiorite and quartz diorite.
The following description and interpretation of certain phenomena shown by the Cassiar batholith is taken from Poole (1956). The batholith is of late Jurassic or Early Cretaceous age and is 13 miles wide by 70 miles long. The country rocks are sedimentary and volcanic rocks regionally folded and metamorphosed in the greenschist facies or of lower metamorphic
grade. The Cassiar batholith is largely a biotite granodiorite and quartz monzonite. The western part of the batholith for a width of about 4 miles is a strongly foliated cataclastic gneiss, whereas the interior and the eastern part is effectively massive though foliated in places. The central and eastern part is relatively undeformed. There is evidence for shouldering aside and uplift during the emplacement of the magma although it is unlikely that all the space occupied by the batholith was made in this manner. Poole infers that the cause of the deformation of the western border zone was renewal of intrusion in the solid state such that the northeast part of the batholith and adjoining sedimentary rocks moved up and perhaps southwest relative to the southwest border zone, producing the northeast dip of the foliation. He notes that the sedimentary rocks for several miles southwest of the batholith are in isoclinal folds with a southwest dip, and it is unlikely that this would have persisted if regional deformation had acted to produce the northeast-dipping foliation of the west part of the batholith.

Precambrian Balholiths of Mesozone

General stalement.-It has been noted that stocks emplaced in the epizone may be of Precambrian age, and so also may Precambrian stocks and batholiths belong to the mesozone. The Giants range (Allison, 1925) and the Vermillion (Grout, 1925) batholiths in Minnesota may be examples, and descriptions of others follow.
Noranda-Sennelerre belt, Quebec.-Several batholiths of granite and granodiorite occur as intrusives in a series of intermediate and basic flows with subordinate tuffs of the Keewatin series and Timiskaming sediments in the Noranda-Senneterre belt, Quebec. The country rocks have complex structure and a low-grade regional metamorphism. Norman (1945) and Tremblay (1950) have described some of these batholiths, and a map and description of structure on which Figure 10 is based have been published by Dawson (1954).

The batholithic rocks include muscovite and muscovite-biotite granites and hornblendic varieties; the hornblendic varieties are quartz poor.

The boundary of the La Motte batholith is almost wholly conformable with the foliation of the country rock but does transgress a series of metasedimentary beds at one locality. The foliation indicates an elongate domal roof

with moderately dipping walls on the north and steeply dipping borders around the rest of the pluton. Migmatization occurs very locally. Pegmatite forms nearly 50 per cent of the rock in a zone half a mile to a mile wide around the border of the pluton and at least 10 per cent of the interior of the pluton.

The Lacorne batholith has borders which are essentially concordant on the north and south but which on the east cut directly across the strike of the enclosing formations. Migmatization occurs locally near the southwest border of the pluton. Certain large inclusions have been moved from the vicinity of the walls and rotated. Thin lenses and dikes of granitic material have been injected in peripheral metasedimentary rocks. The foliation of the pluton indicates a structural dome in the northeast part of the main mass and another in the southwest part. As in the La Motte pluton the north border dips moderately, and the south border steeply. Dawson infers that the Lacorne pluton originally had steeply dipping walls and may have been slightly overturned toward the southwest.
The satellitic intrusions are interpreted as unroofed cupolas that join the main granite mass at depth.
Dawson (1958, p. 232) on the basis of a multivariate variance analysis of the mineralogical compositions concluded that the batholiths are composed essentially of a quartz monzonite that is homogeneous within the individual massils and also within the intrusives as a whole.
The intrusions are all interpreted by the authors as of magmatic origin. The age determination (Shillibcer and Cuming, 1956) of mica from the Lacorne pluton by the $K^{40}-A^{50}$ method gave $2500 \pm 150 \mathrm{~m} . \mathrm{y}$.
Plutons nortis of Greal Slave Lake, Nortinwest Terrilories.-Batholithic emplacement in Precambrian rocks north of Yellowknife on Great Slave Lake, Northwest Territories, Canada, has been described by Henderson (1943) and Jolliffe (1944), and the following is an abstract of their work. The country rocks away from the intrusions (Fig. 11) consist of graywacke, slatc, and volcanic rocks. Pillowed lavas are so little metamorphosed that tops of flows can be determined. Chiorite and sericite are com mon in the graywacke and slate. The rocks are isoclinally folded with steep dips. Henderson believes that the isoclinal folds in turn have been warped into synclinal- and anticlinal-like structures with the axes of the secondary folds plunging nearly vertically. The granitic batho-
iths of granodiorite and quartz dioritc wer emplaced in the refolded isoclinal rocks with accompanying metamorphism of the formations in the vicinity into andalusite cordierite and quartz-mica schists (locally with staurolite) and hornfels. The outer boundary of meta morphism crosses the trends of the folds. The granitic batholiths are concordant, and Hender son infers that lateral pressures of invading magma may have produced deformation. The sediments and volcanic rocks dip away from the batholiths at steep angles. There is a series of small younger muscovite-biotite granite stocks that have also produced similar metamorphism of the country rocks. Many granite pegmatite veins are discordant with the foliation of the country rocks.

Supplementary Descriplions of Plutons Emplaced in Mesozone

Introduction.-Other excellent detailed descriptions of mesozonal plutons in the western Cordillera are those by Taubeneck (1957) of the Bald Mountain batholith in Oregon, by Smith (1947) of the Surf Point stock in British Columbia, by Krauskopf (1943) of the Wallowa batholith in Washington; and by Compton (1955) of the Bald Rock batholith in California. Plutons emplaced in the mesozone are also dominant in most other orogens, but descriptions of only the Snowbank stock in Minnesota and the Enchanted Rock batholith in Texas will be referred to here.

Bald Rock balkolith, California.-The Bald Rock batholith, California, described in detail by Compton (1955), shows many characteristic phenomena of the mesozonal batholiths. The Baid Rock batholith is one of four plutons in a chain somewhat more than 40 miles long of small satellitic intrusions that lies 20 miles west of the main Sierra Nevada batholith. The batholith is about 9.5 miles wide, a little more than 1 ! miles long, and has an area of about 80 square miles. The bedding of the country rocks swings concordantly around the batholith, and Compton interprets it as formed by a forceful intrusion. However, he also notes that local crosscutting relations show that about a fourth of its area at the exposed level was gained by other means, and that large concentric outliers and a hull of injection migmatite suggest stoping. Inclusions are scarce, but gradational zoning of the batholith from a trondhjemite core through granodiorite to a heterogeneous tonalite rim suggests that

Figure 11.-Precambrian Batholiths Emplaced in Mesozone Fote discordant boundary of zone of metamorphism; from Henderson (1943) reproduced by courtesy he American Journal of Science
basic stoped rock contaminated an originally trondhjemitic magma
Contact-metamorphic rocks of epidote am hhbolite to possible pyroxene hornfels form in aureole that has an area nearly as great as the original kinetic intrusion. Squeezing and vertical stretching of wall rocks is indicated by pebbles of conglomerates and crystal lineation, most pronounced near the contact.
The zone of the contact migmatites is only dew feet to a few tens of feet wide where ountry-rock foliation is parallel to the conact; but it is as much as a quarter of a mile mide where the contact is sharply discordant to foliation. Most of the granitic parts of the contact migmatites occur as sharply bordered dikes that generally parallel foliation but locally cross it. The flow structure of the intrusives is more obvious near the contact because mafic minerals and inclusions are here most abundant, but its actual perfection, grain to grain, does not vary greatly from the inm to the core of the intrusion. In some places the flow surfaces parallel the gradational boundaries between rock types, in other cases they cut across them at large angles. There tre several extensive, unconformable junctions vf the flow lines that are probably local in trusive contacts. Notably, the flow structures dip as steeply at the core as anywhere in the fintrusion. In the west half of the pluton there ure thousands of thin aplite and pegmatite dikes, in the east half several large dikes and pipes of aplite and microgranitic rocks. Almost ill the dikes are vertical and trend at about right angles to the flow structure. Thus they lan out on the flanks of the trondhjemite mass The late-emplaced bodies in both halves of the batholith are interpreted as controlled by radial fractures resulting from upward pressure of an underlying mobile core. The way in which the flow layers locally cut across the gradational rock boundaries poses a considerable roblem. Compton's suggestion is that im nobile tonalite was forming near the contact while granodiorite was forming somewhat farther from the contact, and in some cases while trondhjemite 'was forming still further rom the contact. He believes the fow structures and their overall pattern can be explained only by assuming that the magma was mobile during the growth of the batholith and that grain orientation took place when a zone of mobility lowly grew into the intrusion from its walls. Larsen and Poldervaart (1957) state that
"The distribution of two distinct zircon populations in the Bald Rock batholith as well as struc-
ural relations demonstrated by Compton, are explained in terms of a parautochthonous intrusive of migma-magma, with solid phases predominant at the borders of the pluton and silicate melt predominant in the core"

Larsen and Poldervaalt emphasize that xenoliths are concentrated between the trondhjemite core and granodiorite-tonalite rim but are rare in the rim itself

The Merrimac pluton to the north, described by Hietanen (1951), shows many similar phenomena.

Snowbank slock, Minnesola.-The Precambrian Snowbank stock, Minnesota, described by Balk and Grout (1934) is a very fine example of a typical stock emplaced in the mesozone. It is an elliptical mass, 3 miles wide by 5 miles long, with planar foliation in the borders and a faint linear structure throughout, although a late granite portion is almost massive. The country rocks are strongly crowded outward with structures largely conformable with the contact, and the magma rose steeply as a cylindrical mass at an angle of about 70°

Enchanted Rock batholith, Texas.-A pluton emplaced in quartzo-feldspathic gneisses and high-grade metamorphic schists has been described by Hutchinson (1956) as the Enchanted Rock batholith from the Precambrian of Texas. Although of Precambrian age and intruded in high-grade metamorphic rocks, the batholith has some characters of those emplaced in the mesozone. It is also exceptionally interesting in that one-third of the batholith has a phacolithic relationship to the country rock. The batholith is 9 miles wide and 15 miles long. The batholith shows predominantly a periphcral concordance of the country rock with the border of the pluton, with minor discordance. Except for the phacolithic part of the batholith the foliation is nearly vertical throughout. The lineation is also nearly vertical, and during the early stages of intrusion and crystallization the principal direction of transport is inferred to have been vertical. Marginal fissures are restricted to the outer mile-wide perimeter, $\operatorname{dip} 10^{\circ}-25^{\circ}$ inward, and are filled with pegmatite and aplite. There is one joint system with steep dip, subradial and at right angles to the planar structure, also filled with pegmatite and aplite. Chilled border rocks are 10 to 2 feet wide. Hiatal porphyritic texture prevails in chilled borders and apophyses. The phacolithic part occupies a synclinal trough plunging $35^{\circ}-40^{\circ}$. There are four concentric zones of different granitic facies within the pluton.

Hutchinson infers that the batholith was emplaced at a late stage in the deformation by forceful injection and that not more than 5 per cent of the batholith is of replacement origin. The age given by the "Larsen" method is $815 \mathrm{~m} . \mathrm{y}$.

Plutons of Transitional
 Mesozone-Catazone

General Discussion

In a number of regions part of the plutons have characteristics of the mesozone, and part those of the catazone, although both are of similar age. Individual plutons also have some characteristics of both the mesozone and the catazone. Such mixed associations or characteristics appear to occur particularly in plutons emplaced in rocks with an intermediate grade of metamorphism; that of the epidote-amphibolite or staurolite-kyanite subfacies. Where plutons are of similar age in the same region, yet vary from mesozonal to catazonal, it seems probable that we are dealing with local variations in the physical conditions at the site of emplacement rather than with different depth zones. In many such examples the pluton with characteristic of the catazone may be the roof facies of a mesozonal batholith.

Plutons of Wolverine Complex, British Columbia

Armstrong (1949) describes the Wolverine complex as occupying more than 1000 square miles in British Columbia. According to him it includes a series of micaceous quartz-feldspar gneisses (in part with 40 to 65 per cent quartz) and migmatites with granodiorite plutons (up to 10 square miles) formed in place by progres sive injection of granitic material and gradual replacement of injected rock. Roots (1954) considers the complex was formed by a metamorphism and granitization superimposed on previously regionally metamorphosed Proterozoic and Lower Cambrian sedimentary beds whose grade of regional metamorphism in creases in intensity with successively lower stratigraphic horizons, low-grade quartz-chlorite schists; crystalline limestone, slate, phyllite, chloritoid schist, and graywackes in the upper part of series; quartz-mica schists, quartzite, garnetiferous schists, and kyanite and staurolite schists in the lower part of serics. The regional metamorphism he believes preceded folding, and the temperature rise prana-in_nart to emolacement of underlying
igneous or anatectic material and to sins produced by relatively gentle orogenic deforem tion. Granitizing fluids developed leucogran some of which consolidated in place; some w, mobilized and traveled along foliation plas. and fractures in partly granitized metasd ments to lorm sills and dikes. A stock of gram diorite (5 square miles) with sharp contsot steep walls, and a flat domed roof intrudes 1 schists.

Plutons of Shuswap Complex, British Colun
According to Cairnes (1940) the area of Shuswap complex may be more than square miles and consists of intensely m morphosed Precambrian beds of Belt (?) about Shuswap Lake, but in other areas mit include Upper Paleozoic and probably Triass formations. The metamorphic complex tains abundant pegmatites, gneisses aplitic injection material as an important α stituent, great bodies of granitoid gneiss, me sive granite with many bodies of pegmatio granite, and a "sill-sediment" complex crystalline schists and sill-like bodies of granit gneiss. He believes that the principal proceste have seemed to involve a gradual upras seepage of this material (pegmatitic and apliti differentiates), infiltration along bedding planes replacement or partial replacement of inter vening rock matter, and the growth, in sita of perhaps.much of the pegmatitic granite. 1 , suggests that, in places, the continued supde of magmatic material resulted in the complet conversion of large bodies of the original strit into massive granitoid rock, which, under the conditions of transformation, became partu) plastic or molten and, where subjected to loos stresses, behaved much as a normal intrusing rock behaves in its contact relation with ut joining rock masses. Cairnes believes the granitization was effected in connection the emplacement of the Mesozoic batholiths ${ }^{\text {d }}$ Armstrong and Roots consider the Shusmay to complex the equivalent of the Wolverine com plex and date the granitization as pre-Penasyo vanian or pre-Mississippian.

Williansburg Granodiorile Pluton, Massachustu
The Williamsburg granodiorite pluton in 1 Williamsburg quadrangle, Massachusetts, scribed by Willard (1956), appears to be: example of emplacement under condition transitional between those of the mesoron and catazone. The following abstract is base

Wilard's report. The country rocks consist garnetiferous quartz-mica schists, quartzite, uble, phyllite, and amphibolite. The phylcarry metacrysts of staurolite, and the

EXPLANATION

Srike and dip of foliotion (ongle of dip, vertical)

- هás

Strike and dip of second deformotion stip cleovoge

Figure 12.-Williamsburg Granodiorite Pluton of Transitional Mesozone-Catazone Appalachian orogen, Massachusetts. Modified after Willard (1956)
sts locally have metacrysts of staurolite kyanite, most abundant near the granoite. Sillimanite and tourmaline are deoped near contacts with the intrusive rocks. amphibolite consists of hornblende, uninned calcic plagioclase, with quartz, biotite, anite, and epidote. The rocks may barely ve attained the staurolite-kyanite facies at e time of magma emplacement. The granorite is in large part a mixed type consisting biotite-muscovite granodiorite and of pegmae, granitic, aplitic, and granodioritic dikes d sills of many sizes. Some of it might be died an injection gneiss. The granodiorite is ruded by granite and pegmatite dikes and At many places the granodiorite and as-

The schistosity is approximately parallel to bedding on the limbs of folds but cuts across the bedding on the crests and in the troughs. The axial-plane schistosity is inferred by Willard to have been deflected at the north by the force of the intrusion (Fig. 12). Slip cleavage is a planar structure that coincides with the axial planes of small corrugations or microfolds in the schistosity. For the most part the ship cleavage is parallel to the exposed contact between the granodiorite and the country rock. This suggests that the schistosity planes nearest the intrusive moved up relative to those farther away. Willard believes that, in large part, the intrusive forced its way along earlier foliation planes, bending them apart, causing the de-
and producing local shear couples that resulted in the slip cleavage that surrounds and dips the intrusive moved up relative to those farther way. A northwest-trending ship cleavage was produced by a later deformation The presint produc wo ld also amphe present a the discordant elationships between the- borders of the in trusive and the country rock, as portrayed both in plan and by the section as drawn by Willard, that relate this plutoi to the mesozone.

Lithonia Goteiss (and Slone Mounlain Granile of Mesozone), Georgia

The Lithonia gneiss and Stone Mountain granite in Georgia afford another example of a gneiss with characteristics of the catazone inferred to be associated in time and space with a pluton apparently emplaced in the mesozone. The Rb/Sr age of the granite averages. 278 mi.y. and biotite from the Lithonia gneiss gives $297 \mathrm{~m} . \mathrm{y}$: (Pinson el al., 1957, p. 1781).
The Stone Mountain pluton has been described by Herrmann (1954) from whose work the following summary is taken. The country rock is regionally metamorphosed and consists of schists of the staurolite-kyanite or epidote amphibolite subfacies. The muscovite granite pluton in part cuts discordantly across the structure of the country rock and in part crowds the country rock to one side. The flow structure of the granite is in part conformable to discordant contacts with the intruded gneiss. Pegmatite dikes:are locally abundant in the chist on the north side of the intrusive, and aplite dikes on the south side.
An independent extensive belt of the schist was injected and replaced by syntectonic, magmatic, potassium-rich. solutions which modified it to a gmeiss (Lithonia gneiss) of granitic composition. Pegmatite dikes in the Lithonia gneiss are small and irregular; commonly discordant but locally partially concordant aplite forms thin veins. The retationships of the rocks are shown in Figure 13. The migmatitizing and granitizing fluids are thought by Herrmann to be co-ordinate with the magma that formed the Stone Mountain granite. The rocks surrounding the Lithonia gneiss are metamorphosed to the sillimanite-almandine amphibolite subfacies. It is thus a problem to the present writer as to whether the Lithonia gneiss is the roof portion of a mesozonal pluton or represents an earlier emplacement in the catazone.
(and Nonewaug Granite Lens of Mesozone), Conntecticul
A belt of rocks in Connecticut, regionally metamorphosed in the epidote amphibolite of staurolite-kyanite facies, contains plutors whose characteristics are those of the mesozone There are also bodies of gneiss formed by migmatization and granitization that seem. best classified in the transitional mesozone catazone.
The Paleozoic Nonewaug granite lens in this belt has been described by Gates (1954). The pluton is 9 miles long and 3 miles wide. The long axis is about $\mathrm{N}: 60^{\circ} \mathrm{E}$. and is across the foliation of the schists whose regional trend is north. The schists adjacent to the lens og the north and west borders have in general 4 foliation parallel to the border of the granite as a result of crowding aside at the time of magma intrusion. On the south border the: foliation of the schists is normal to the contact The southern part of the granite lens, howevet, is a complex mixture predominantly of granite, pegmatite, and granitic gneisses with subordt nate feldspathized schist and schist. The folt ation is variable, as in a crumpled zone. The granitic gueissés are granitized schistt. The bulk of the granite mass has a layered structure dipping $35^{\circ}-80^{\circ}$ SE. and is inferred to be ot. magmatic origin. The granite has crosscutting apophyses and also occurs as dikes in the schists Pegmatite veins are present in the schists The normal schists are mica quartzites and quartz-mica schists with biotite and muscovite and accessory garnet, staurolite, and kyanite The characteristics of the pluton seen approf priate to emplacement in the mesozone.
Stewart (1935) has described from a zont southeast of the Nonewaug pluton an extensive belt of porphyritic granitic.gneiss formed in schists of similar age and grade of metamor? phism by magmatic injection and by permes ation and replacement by fluids whose sourct was in a subjacent magma. Agar (1934, pt 363-369) has also emphasized the extensiwe occurrence of mixed gneiss resulting from int vasion of these schists by granite and pegma tite. These gneisses may be the roof portion of mesozonal batholiths, or they could belong to the upper part of the catazone.

Precanibrian Phacolilhs of Honson Lake Ared ${ }^{\prime}$) Saskatchewan

It appears possible that phacolithic emplac ment, although characteristic of the catazone,

may also occur in the transitional mesozone catazone. Byers (1957) has described severa syntectonic phacoliths of granodiorite or quartz diorite emplaced in anticlinal structures of biotite gneiss, amphibolite, and migmatitic gneiss of the Hanson Lake area, Saskatchewan. The country rocks are described by him as regionally metamorphosed in the amphibolite facies or the garnet-staurolite zone or staurolitekyanite subfacies; locally the sillimanite almandite facies is attained. The anticlinal structures have steeply dipping axial planes and may be asymmetrical or isoclinal.

Syndectonic Pinckneyville Batholith, Alabama

The Pinckneyville quartz diorite batholith Alabama, has been described by Gault (1945) as a syntectonic batholithic intrusion. It is more than 40 miles long, 8-12 miles wide, and is emplaced in phyllites, schists, quartzites and amphibolites that have attained only an intermediate metamorphic grade.

Complex History of Great Batholiths. Largely of Mesozone

Introduction

Great batholiths such as those of the Coast Range of Alaska and British Columbia, the Sierra Nevada of California, Southern Cali fornia, and Idaho have had a most complex history. Individual units have been emplaced usually in a systematic sequence from more mafic to more alkali-siliceous, to make up composite stocks or small composite batholiths. Such composite plutons have in turn been emplaced as a contemporaneous or successive series within a limited period of time to yield a multiple aggregate that forms part or the bulk of the batholith. Such series may in turn be repeated in periods of time separated by substantial intervals.

The ages of the members of the Sierra Nevada batholith (largely mesozone) have been determined by the Larsen method (Faul, 1954 p. 265) to range in large part between 90 and $111 \mathrm{~m} . \mathrm{y}$. and by the potassium-argon method on biotite to be between 82.4 and 95.3 m.y. in general.

The ages of several major members of the Sierra Nevada batholith in the Yosemite National Park area have been determined (Evernden, Curtis, and Lipson, 1957) by the potassium-argon method. The ages for the youngest major member is 82.4 and the oldest
95.3 million years, a range of about 13 mirs. years, and they believe the range is conr to a few per cent at most. The average interi of time between successive intrusions is 0 mated as 2 million ycars, and each is infun to be almost completely crystalline at time of the succeeding intrusion. The auth propose
"that room for the batholith was made slomly" in small increments by vertical uplift of the oved ing sedimentary rocks which were stripped by sion as rapidly as they rose. Probably some of the time the last intrusion squeezed ine surac"

The writer would qualify this by suggesti that this mechanism was only one of serme factors in emplacement.
The ages of several outlying batholiths wil the sedimentary rocks have been determis by Curtis, Evernden, and Lipson (1958) range between 133 and 143 million years. T intrusives of the two different age groups believed by the authors to correlate with separate major orogenic periods-one of Jurassic and the other of early Late Cretace age.
The Coast Range and Idaho batholiths the complex of plutons of the northeas section of the Appalachian orogen all hr mesozonal plutons as the dominant elema but also many plutons emplaced in the epires as younger members.
The ages of a granodiorite and a diorite fr the Coast Range batholith of southeas Alaska have been determined (Matzko, Jt and Waring, 1958, p. 538) to be 93 and m.y. respectively. They note (p. 537) Silver, Stehli, and Allen have determined mean age of $103 \pm 6 \mathrm{~m} . \mathrm{y}$. for four early L Cretaceous plutonic rocks from Baja C fornia. The Baja California, Sierra Neva and Coast Range intrusives would thus sed in part to be of similar age. The Coast Ran intrusives, however, are called Late Jurat to Early Cretaceous in this report.

Coast Range Batholith

The Coast Range intrusives in norther British Columbia are stated by Kerr (18 p. 305) to comprise nine (more or less) disto intrusive phases which range in age from en Triassic to late Early Cretaceous. Kerr scribes the youngest member, which cuts Lo Cretaceous rocks, as a quartz monzonite p in mafic minerals, homogeneous, and miardil with discordant relations to the country mo
arse grain persists to the sharp contacts tept for a narrow chilled edge, in places less an 1 inch. The description suggests to the isent writer emplacement in the epizone, dhis is in agreement with his own observa ms of this rock in the Hyder district.
Kerr refers certain dome-shaped bodies of tgoclase granodiorite and hornblende granobrite to a Jurassic age. The characteristics ε consistent with emplacement in the mesome. He describes as still older a thick sheet granodiorite which is gneissic throughout ad possibly of early Jurassic or Triassic age. mally there is an older hornblende granoarite for which he suggests a Triassic age.
The probable emplacement of part of the cartz diorite of the southwest border of the atholith in the catazone has been previously serred to.
Mathews (1958, p. 172-177) has described ert of the southern end of the Coast Range tholith that comprises both plutons of Irassic or Early Cretaceous age and two Iutons of post-Late Cretaceous age. The itter are homophanous. Only one of the aunger batholiths shows a faint flow structure, d that near the borders only.
There are also small epizonal plutons of ght quantitative volume in the plutonic Implex of the Coast Range. One, described Gault (1945), has developed contemporaneexplosion breccias. A stock of miarolitic anite porphyry is intrusive into Tertiary yolitic volcanic rocks of similar composition Zarembo Island (Buddington, 1929, p. 275).

Idaho Batholith

The complex history of the Idaho batholith 3 been described by A. L. Anderson (1952). states that the batholith is composed of screte masses of granitic rock, some of which ime to place under decp-seated conditions, ners at much shallower depths. The deeply ated emplacements include two closely reted, but separately formed masses; the earlier olved while deformative stresses associated ha major orogeny were still quite intense 2 other evolved during the later less intense ages. Anderson infers that these masses probSy had their roots in the same source, but ht the granitic bodies introduced under tallower conditions came from a younger probdy unrelated source. The oldest rocks of the tholith were emplaced at the close of Sierra evadan orogeny hence near the end of Jurassic e. The younger rocks appear to be asso-
ciated with Laramide structures and are believed to be product of "Laramide orogeny of late Cretaceous time". He describes a "marginal facies", a gneissic quartz diorite along the western side with scattered roof masses in more central areas. The gneissic structure he takes to indicate emplacement during orogeny. An inner facies is largely quartz monzonite without gneissic structure emplaced alter orogenic forces had ceased and formed under rather deep-seated conditions as was the quartz diorite. The bulk of the batholith is believed to be of these Sierra Nèvadan rocks. The present writer suggests the possibility that the quartz diorite of the western part of the batholith may have been emplaced in the catazone and the quartz monzonite in the mesozone.
Anderson notes that a younger group of rocks, including diorite (of gabbrodiorite type), granodiorite, and quartz monzonite were intruded later and resemble the rocks of the Boulder batholith and its satellites of Late Cretaceous age. The diorite has chilled contacts and hypabyssal characteristics. The granodiorite and quartz monzonite have features he infers to be indicative of fairly rapid cooling and intrusion into the cold older batholithic rocks fairly close to the surface.
Larsen and Schmidt (1958) state that some coarse muscovite-bearing quartz monzonite and some very fine-grained granite of the Idaho batholith have small miarolitic cavities. They also contrast the batholith of Southern California in which the largest unit is about 200 square miles with the Idaho batholith in which several units are more than 2000 square miles each. Their statements for the Idaho batholith, however, are based on reconnaissance only, and detailed work may reveal greater complexity. They interpreted a subordinate porphyroblastic granite facies as the product of granitization of schist. Ages determined by the Larsen method on most of the rocks average 108 m.y., but one pluton gave 57 m.y.

Complex of Plutons in. Appalachian Orogen. Northeast Section

A varied series of plutons occur in Paleozoic metasedimentary and metavolcanic rocks in a wide belt of the Appalachian orogen that extends north from Long Island Sound and northeast through Newfoundland. The plutons range in age from late Ordovician (?) or Taconic through Middle to Late Devonian or Acadian to post-Pennsylvanian.

Plutons of Timenim men mbal. sen
it features characteristic of the York. These with features Cornecticut and New York. granite occur in Connecticamaston granite and Ghelmsmay indude the 1934, p. 363-368) and the (Currier. gneiss (Agar, 1934 , Massachusetus (${ }^{2}$. ford granite (1956, p. 121) undcroft series 1947). Billings (1 隹 signs the plutons (?) age. Detal known. They a Late Ordovician bodies are not kne type relations of these relations of transitional mes Middle or Late belt may beadian intrusions of throughout the bet. Acadian are abundant throughors emplaced vonian age are the characters of pled exanples inMany have to mone. Well-described of porphyritic in the mesozo Poile batholith (Cooper, 1954 clude the La in Newfoundand batholith of porbiotite gra) the Mt. Waldo bain (Trefethen, p. 26-29), phyritic biotite grane bond biotite granite, 538 1944), French (Billings, 1937, p. 508-509, of the 1944), Thire (Billings, 193, p. plutons of the Hampstaire (198), binary granite permont (Doll, 1951), 1945, p. 5 -magos area, Vermont Rhode Island Memphretuate granite gneiss, $18 \mathrm{~m} . \mathrm{y}$. (Quinn the Scituate 1951) of about 306 ± 18 granite lens, (Quinn. 1951) and the Nonewaug Winnipesauke et al., 1957), (Gates, 1954). The Winlings, 1956, Connecticut (Gates, Hampshire (Billings, 1957) batholith, New 2929 m.y. (Lyons et (Willard, bath28) of age 296 ± 29 Massachusetts (Connecticut W. Williamsburg pluton, Prospect gneiss, Connectide of charac1956), and Pros have a complex which sug(Stewart, 1935) have a some of which some Stewars and relationships catazone and some teristics alacement in the cata been tentatively gest emplacene. They have mesozone-catazone. the mesozone transitional mesoz that the New grouped (1948, p. 122) states are syntectonic Billings (1948, , Hampshire the Bethlehem gneia and that the Be bodies.
giganitic sill-like bodic. Many epizonal stocks an the same belt and Mroughout the length o Devonian (?) to postthrough in age from Late Examples are the Late miarolitic Pennsylvanian. Examples Lawrence miaround Pennsylvan (Ackeley and St. Lawthern Newfoundvonian () Acuctegranite batholiths of southry batholith of leucogranite a granite porphyry Also, in western Newland and a graundland. Also, in weports innorthern Newhir (1949, p. Phirstics that cut foundland Phair epizonal characteristics furnished trusives of epizonal rocks and have fantes. The Lower Devonian Missisippian conglomerate. Therphy Lowbles to Mississipplan granite and porph Mississippian (?) Quincy Massachusetts and

Putuns of the Catazone
If we relax, we may easily become ona教

in deeper Read, 195
 \section*{lunocy" Read, 195}

Inlroducion

rocks in which the plutons
The country intruded are inferred that in
the catazone mperature as amorphiss to have had a temp of regional metam charab

$$
\text { cated by the } \begin{gathered}
\text { minimum of } \\
\text { This may be a min be at least as high tive }
\end{gathered}
$$ This may be aill be at least as hintry rods teristically this and the councryartzilt teristablite facies, and lites, metaquartule amphibolitist of amphibolites, schists, marbles may conic quartz-mica and paragnelss. sillimanitic orthogneisses, aite zones of senut granulites, oxtensive migmatite (phlebites) a Associated extenined character (phones in conformable veined are no chill zones in diagnostic. There may be and cosies but need plutons. Foliat throughout the bod throughot well developed throughoely dipping throught of not be. It may be steption or periphery orest parallel to the elongation is commontry rod paralens. Gneissic foliaty between country mullad a general conformity try rock may be pallioz a atrusive. The coursive plastic crystal and intrus result of extens preceding emplact, apart as ang deformation prece during the em fow during deluton and

ment

placement. . s and porphyroblastic granis Augen gneisses and porplacement origin a titic-like facies may develop loution. A mignonuct of metamorphic diferentit many as a product of well established that many - an major parts of plutons in tecrystallizatio Hons or major pa. aced by recrystallizal owever, for which the mechinate, problemaly exent is at present indectroversy probabirst two ant is the subject of conumber in the farst ala, or the sub the total numb
cueds by far
art, emplaced in the Bothlithic bodies, in part, in the preceding batho have been relerre Range batholith ome clazone ha of the Coast Rang age, and some Iscussion of the Cretaceous aga, (hate Jurassic-Early Paleozoic plutons of catazone, but the med in the hay belong to the cataz bodies emplaced in age. hensive development in rocks of Precambriale and hansive de is found in rocks colazone as a whole atural atazone Bathiths of the catazosseut the structurac F Batholith may in part crossembers. Characo Cin detail may more rigid mere domes, phacotrends of the for the plutons are They are gen teristic forms conformable sheets. . Many of the lihs, and conformabs syntectonic. Morms or are erally interpreted as have irregular indeterminate masses, however, complex as to be ind nearly vertiof large and comply. Funnel and also been pro Hhout further stu forms have also been por
cal subcylindrical futons.
ar for some plutons.

Domes

-al plutons are a major Introduction-- Domical pement in the catazone. for orm of granite emplans have been offeren and Several interpretations (1) magnatic emplacemen (2) mag their origin: (1) minantly igraeous, (a) intertherefore predomina with concordant intermatic emplacement (stromatolithic replacement matic of country rock (aymes), (3) replacemastic layers of xenolithic domes), (domes by plastic layered and (4) tectonic by rejuvenation and domes, and (lowage or (4a) crystalline ition accompany Many igneous and have had emobilizaial by fluids. Many in part have of material by hit domes may aplacement. layered xenolit mechanism of empla emplacement-3 phacolithic memes of mognta ana emplacement Igreous doms domes of mag ag synclines. bskeletal remnants its shets of metabrought out by skeles with its sheets on that of the Grenville seabbro. It may be granite with diorite and metagabractically all the grissic flow) strucdiorite and of practicallom gneissic flow, sholiths the lineaid (as distinct ficlinal ovoidal foliation congneissoid ading the antidike of the foliation ement ture subparallel to the strine tectonic emplace lineation is subparale the late syntectormal steep lineation sistent
and contrasting tholiths. of mesozonal bath, BRANPORD-STON: A duster of grunngortr, connecticut: Mikami and DigCuwron pomes, cescribed by Mikami depths of at granite domes dese emplaced at dere largely of granite (1957) were emp the domes are largeripheral man 5 miles. Two of the and have a peripte with least 5 midine-rich granite and one is tonalite a mic of migmatite, a , ithic facies that fing xenozone of may yered xenolimitutes a mantling xem
an interlay and constitutes.
outer facies
lithic dome. Killingworth dome consis outward from
The Killing origin that grades interlayered of magmatic core into a pent indusions from (har a eugranitic core amphibolite ind inclusions appear with slablike amphetibolite inclusion area where country rock. Amount in the cenalion and the foliaonly in minor amoum orientation and them. The only have a random flows around hered xenothey the tonalite of heral interlay is a slightly tion of the periphoblastic and is a fow of the tonalite of ion is granoblas continued fow one has lithic portios deformed by the dome has ge dips eartier lacies. The foliation on moderate to steep the interior. the core and mod the south wh
dips at the cherest at the soutward.
on the flanks ex overturned outwadry rock coincountry rock is overdering country yode with

The immedialende and biotite sists of horn the gneisses cone gneisses are over two thirds of themblende. The ges.
35 per cent hornblescovite schists. dome has two 35 per biotite-muscovit Creek dome has border lain by Branford-Stony The a quartz monzon microcline-rich grabout units, a qu a younger mimposite body is and is tacies and a mass. The composth dome and by as the main mas the Killingwortion is inferred by 2 miles from the domical soliation been imposed younger. The domman to have on material emSeveral igneous domme detail. The Salmon Lake are described in som thotith: The sat Lat. $44^{\circ} 00^{\prime}$ Samon lake ban just southeast ondack Moun5 5adith (Fig. 15, just the Adirondacroreted as and Long. 7445 York can be inge elongate and Long. of New york between a large elonsional tains area dional form betwearly equidimens of the a transitith and a more phacolith magma emplace horbblende granita. The structure is a gneissoid dominant feldsparte, but structure thite the predominank are gentle
mesoper thite the of the struct
dips at the core

Mikami and Dignonolidation on foliation in the betore complete cha. The dips of moderately steep placed as magma. Nome are modera foliation of stony Creek dome a places the granite at throughout. In a strikes into the gangular inthroughuntry rock sta unoriented ang contral the clll angles. A few alike habit in thic formamall ang occur in breccialike metamorohic form dusions the gran

part

hions around the mass in a zone half a mile to a mile wide contain migmatite. The migmatit is interpreted as formed predominantly by forcible granitic injection with some accom panying metasomatism. There is a local de velopment of granite augen gneiss emplaced partly by dilation and partly by replacement. The Clinton dome is similar to the Branford Stony Brook dome.
igneous domes of southern rhodesia The Precambrian domes of Southern Rhodesia have been described by Macgregor (1951). He quotes (p . xzxix) with approval the following statement of Maufe,
" It is a general rule throughout the Territory hat the strike of the schists and their foliation is parallel to the edge of the batholiths and to the anding of the gneissic granite. Secondly, th argins, there being no yeval bodies, have curving margins, here being no general direction of strike batholiths. Thirdly, the schists almost always dip away from the margins of the batholiths, thus appearing to be synclinal areas."
Macgregor suggests that the large ovoidal batholiths probably originated as homogeneous magmas which ultimately consolidated as granite gneiss.
Interlayced xenolithic domes.-The term "stromatolith" was proposed by Foye (1916, p. 791) for a rock-mass consisting of many alternating layers of igneous and sedimentar rocks in sill relationship". The types to which it was applied were granite plutons of the Haliburton-Bancroft area, Ontario (Fig. 14) haliburton-bancroft area, ontario: These plutons have a minimum of 20 per cent of layers of gray gneiss and amphibolite. It was inferred that the granite magma was intruded concordantly along foliation planes of the country rock with a doming produced near the center of the intrusion with outward quaquaversal dips. Osborne (1936, p. 426-427) believes that only the border zones of the batholith described by-Foye contain so many inclusions.
black hillis dome, south dakota: The fol lowing description of the Black Hills Pre cambrian granite domes is summarized from a report by Runner (1943). The granites of the Harney Pcak area are a composite of many sills, tongues, dikes, and irregular masses of various compositions and ages. Within the area are many xenoliths of sedimentary rocks which in the central part are composed of metalimestone and amphibolite. The bedding nlanae.and_the axial olanes of the isoclinal folds
in the sedimentary inclusions in the interies dip outward from the central axial region and form a well-defined xenolith dome. The growth of the dome is believed by Runner to have been from the center outward by marginal intrusion on the border of a laccolithlike struc ture. As the structure increased in size, marginal dips steepened.
The formation of the Harney Peak dome was preceded in the area by overthrust faulting and recumbent folding. Space for the granite according to Runner was made by domal uplith lateral spread, and replacement. He suggests that the domes of the southern Black Hills probably coalesce below the schistose sediprobably coalesce below the schistose sedr-
mentary cover into a major Precambrian mentary cover into a major Precambrian,
batholith. The foliation, he infers, has beent batholith. The foliation, he infers, has bece
produced by flow in the liquid state, replace ment of bedding, multiple intrusion, and shears, ing of solid granite. Many inclusions were isolated by coalescence of parallel sills and by intersecting dikes and sills and were never engulfed in liquid magma. The age of some granite pegmatites in the Black Hills has been determined to be about $1600 \mathrm{~m} . \mathrm{y}$.
Tectonic domes and folds of plastic crystalime flowage.-Quirke and Lacey (1941) have cons cluded that many complex batholithiclike cluded that many complex batholithicike
domes with invasive relationships shown by domes with invasive relationships shown by
their diverse facies may arise from "mutual plastic invasion of the rock layers by solid flow" under conditions of deep-zone deforma. tion, but this interpretation has not received much application.
northwest adirondack area: Several bodies of orthogneiss (Fig. 15) with a composition ranging from syenite to granite have been described from the northwest Adirondacks by Buddington (1948, p. 24-30). The rock of all these bodies has a granoblastic texture and evidences of complete recrystallization under conditions of high-grade metamorphism. They are inferred to have structures formed by plastic doming and anticlinal deformation (isoclinal folding at extreme) of original sheet like or gently phacolithiclike differentiated layers of igneous rock. There is no evidence of any granitization or migmatization in cons nection with the remobilization and develop? ment of these domes and anticlines as in the case of the reactivated domes described Eskola, although pressure of rising magma be neath the anticlines and domes may have been a factor. The domes are not rheomorphic the sense that their reactivation has resulted intrusive relationships to country rock.
Tectonic domes of remobilization with iniro
duction of fluids.-Eskola (1949) set forth a concept of the development of domes in. a second period of orogeny which has received wide acceptance. The hypothesis envisages a plutonic mass of an early orogeny later eroded and mantled with sediments. During a later orogenic cycle fluids or new granitic magma was injected into the older pluton at the same time that it was deformed into gneiss with accompanying migmatization and granitization or palingenesis. The old pluton was thus mobilized new, and associated younger intrusive magma may display an intrusive relation to the mantle rocks.
Eskola (1949, p. 470) suggests that the domes In Maryland described by Broedel (1937) ar of such an origin. Precambrian granite gneiss ras reactivated in Taconic (?) time by intrusion of granite and granitization. He also suggests that these mantled domes occur in oro: genic zones and have apparently been formed genic zones and have apparently been iormed mider the influence of horizontal thrust movements, although the doming itself is inferred to be due to vertical movements of granitic masses, most if not all of which were caused by swelling during granitization and soaking with granitic magma.
In a later paper Eskola (1952, p. 126) emphasizes that in some domes the element of later granitization is absent or only incipient.
Further discussions of the problems involved in such domes may be found in the papers by Kranck (1954) and by Balk (1946).

Phacoliths

Introducion.-The term phacolith was intro duced by Harker (1909, p. 77-78) for con cordant intrusive bodies introduced concurrently with folding. He states that the situation, habit, magnitude, and form of the phacolith are all determined by the circumstances of the rolding itself and that the ideal type of phacolith is subject to many modifications, in accordance with the varying mechanical conditions of intrusion. Harker also suggests that orig inally concordant relations may be obscured owing to the igneous rocks becoming involved in later folding. The original phacolith described by Harker is a dolerite intrusion in a relatively gentle anticline. Most intrusions to which the term has been applied since, however, are syntectonic granitic types in highly deformed rocks and may themselves have been subjected to strong post-consolidation deformation. The phacoliths arc characteristically much thickened on the anticlinal plunging noses or
in the plunging ends of synclines. They com monly range in size between a mile and a score of miles in length and may be up to several thousand feet in thickness.
Phacolithic intrusions emplaced in the catazone are common throughout the world and have been especially described from the Precambrian shield areas. Excellent descriptions of granite phacoliths in Africa have been of granite phacoliths in Africa have been
published by Gevers and Frommurze (1929) and by Poldervaart and Backström (1949). and by Poldervaart and Backstrom (1949). cambrian age, are reviewed here to illustrate this mechanism of emplacement.
Phacoliths of Grenville subprovince, Canadian shield.-Phacoliths are abundant in the highgrade metamorphic Precambrian rocks of the Grenville subprovince of the Canadian shield where they have been referred to by Wilson (1925, p. 397). Osborne (1936, p. 426), and Hewitt (1953, p. 92-93), and have been deHewitt (1953, p. $92-93$), and have been de-
scribed throughout the Adirondack outlier scribed throughout the Adirondack outher
by Buddington (1929b; 1948; 1956, p. 115-117), by Buddington (1929b; 1948; 1956, p. 115-117),
Reed (1934); Cannon (1937), and Dietrich Reed (1934); Cannon (1937), and Dietrich
(1954). Some of the Adirondack phacoliths (1954). Some of the Adirondack phacoliths
occur in marble, and all have a homogeneous occur in marble, and all have a homogeneou 1957, p. 295). These relationships along with others make it highly improbable that they were emplaced by replacement but rather as magma. Nearly all those in the marble, 15 in all, have come into anticines, most of them into anticlines parallel to the major trends, but some into anticlines or synclines that are crossfolds. Extensive phacoliths of . replacement origin, however, in many places accompany those of magmatic intrusion.

Phacoliths of the New York-New Jersey high-lands.-Phacoliths are also abundant in the highlands belt of Precambrian metamorphic rocks in New York and New Jersey. A synclina phacolith has been described by Lowe (1950) The granite occurs as a synclinal sheet with a greatly thickened trough and one well-developed limb. Lowe infers that absence of secondary foliation and lack of tectonic fabric patterns in the granite indicates post-tectonic emplacement. He proposes the concept of "exchange of space" between the magma rising and the country rocks.subsiding into the empty ing magmatic chamber to account for the lack of evidence indicating lifting of the overlying rocks by forcible injection of the granite. The present writer has studied similar granitic plutons some miles to the southwest, and for these there is adequate deformation and recrystallization in much of the rock to justify

Figure 15.-Precambran Plutons of Catazone, No. Phacoliths of igneous origin, pseudo-phacoliths of metasomatic origin, coin
considering them as late tectonic emplacements - and as phacoliths

A phacolith of pyroxene and hornblende syenite gneiss has been described from the New Jersey highlands by Buddington (1956, Fig 6). It occurs on a steep anticlinal fold, is more than 12 miles long on one limb with a thickness
amount on the plunging nose of the anticlin Younger granite also occurs as a younger phaco lith flanking the syenite gneiss (Buddingtom 1956, Fig. 6) on the same anticline. In the ares to the northwest of this composite phacolith Hague el al. (1956, p. 459) describe phacolith Byram aranita amainn TL
neous domes, and tectonoplastic domes and anticlinal cores of orthogneiss
the Byram gneiss and other rocks indicates that the Byram was formed either as a phaco lithic intrusion or by replacement of a large metasedimentary sequence and that most of the field and microscopic evidence points to an gneous origin. They conclude that the Byram
igneous intrusion coupled with partial replacement.

Phacolithic emplacement of plutons in the New Jersey highlands has also been described by Hotz (1953, p. 185-192) and by Sims (1953, p. 265-268).

r
described by Stenzel (1936). He suggests that the granite intruded as a phacolith into the trough of a syncline that pitches on an average 16° SE. The granite is underlain by gneisses and overlain chiefly by schists. The intrusion he believes took place toward the end of the period of folding of the country rock and was accompanied by the stress that produced the folds. Stenzel infers that the feeding channels of the intrusive body are in a long shear zone, which extends along the phacolith and cuts across the schistosity of the country rock. Thus the magma, after rising in this moving shear zone, spread out into the syncline along the boundary between gneiss and schist.

Harpoliths.-The angle of pitch of the axes of phacoliths may range from gentle to 90°. The name "harpolith" was originally introduced by Cloos (1921, p. 44-47, 84-85) for intrusions of sickle-shaped form emplaced contemporaneously with the formation of cross folds in steeply folded rocks. There are numerous harpoliths in the Precambrian of the Adirondack area. The synclinal phacolith described by Dietrich (1954) could be called a harpolith.

Replacement pseudo-phacoliths.-Some phacolithiclike granitic masses are in large part the product of granitization and metasomatism, such as the Hermon pseudo-phacolith of the northwest Adirondack area, New York, and the sheet of granodioritic gneiss of the Manawan Lake area, Saskatchewan, described in sections that follow.

Ambrose and Burns (1956, p. 49-52) have inferred that the granite sheet conformably surrounding the Clare River syncline of the Grenville series in Ontario is of replacement origin, primarily because of the general conformity of long thin septae of limestone and the lack of disturbance which they infer should accompany magmatic emplacement. The present writer, however, is convinced of the possibility of essentially conformable syntectonic emplacement of magma in folded rocks.

Quirke (1929) has described a series of Precambrian intrusives from the French River area, Ontario, which he calls batholiths. His description of the structural relationships, tectonic history, and his interpretation of their origin, however, permit them to be called replacement phacoliths. The country rocks are metasedimentary rocks and migmatites. The plutons consist primarily of granitic and syenitic -mne. The major structures of these areas ac---n-d hur o- minifing
its apex to the north, to which converge anti clines, synclines, and fault lines. The batholiths conform to the country gneisses of this strue ture. The masses of plutonic rock are in generas small, less than 15 miles long and less than $\$$ miles wide. Quirke states that the intrusive lenses are inclined to widen along the axial region of the great syncline; indicating thes intrusion and folding were closely connected in origin. The granitic rocks appear to him to be replacements of sedimentary rocks, and he cites as one line of evidence that the pheno crysts in some certainly have grown withili gneisses which still are easily distinguishable as sedimentary rocks, and that these gneisses grade into masses which are so exclusively pors phyritic that no trace of other structure of texture remains visible.
Phacolithic and pseado-phacolititic emplacio menl, Manawan Lake area, Saskalchewan:Complex phacolithic emplacement appears to be well exemplified in the Manawan Lake area Saskatchewan. The area has been mapped and described by Kirkland (1956), and a part od the geologic map is: shown in Figure 16. The plutons were not designated as phacoliths by Kirkland, but the structural data given art consistent with such an interpretation. The rock mapped as granodiorite gneiss is described as a strongly foliated or finely gneissic rod composed of quartz and feldspar with hom blende the most abundant mafic mineral. In many places minor amounts of nodular metry arkose, biotite gneiss, cordicrite-biotite gneisy and hornblende gneiss also occur. The grano diorite gneiss occupies the same position on the east side of the Lake Manawan dome (L.M.) as the meta-arkose does on the west side, and the granodiorite gueiss is inferred by Kirkland to be a more highly metamorphosed granitised equivalent of the meta-arkose.
The conformable phacolithiclike core of the Lake Manawan dome consists of leucocratic porphyritic to even-grained granodiorite. The plagioclase exhibits albite and Carlsbad-albites twins. The rock is generally massive but places weakly foliated. The granodiorite interpreted by Kirkland as intrusive.

Subcylindrical Plulons

Wynne-Edwards (1957) has described th Westport pluton in Ontario as that of an almof vertically plunging cylinder emplaced in os vertical cylindrical fold or "vortex" that forma. a natural vertical channel for the uprise. d -1.a-r ranitic emanations.

Windrical fold resulted from a deformation of reviously isoclinally folded metamorphic ecks of the Grenville series that caused rota-
emplacement is considered improbable because of lack of flow structure or of post-emplacement deformation.

Figure 16.-Compound Granodiorite Phacoliths (M.L. and S.L.) of Intrusive Origin and Pseudo-Phacolith of Granodioritic Gneiss (Recrystalitized and Grantrized Meta-Arkose in Place), Catazone
Modified after part of Manawan Lake area, Saskatchewan, by S. J. T. Kirkland (1956)

f

in about a vertical axis expressed by buckling $\$$ competent bands along the strike and in ertain places of flowage of incompetent layers no "vortices". The pluton is formed in part gabbro but in large part by monzonite that eplaces gabbro, paragneiss, and marble. The futon is about 15 square miles in area, and the faliation of the country rock is conformable rith the margin of the mass. Numerous relics A country rock occur within the pluton, and heir foliation conforms to the attitude of the aternal mantle. There are several such plutons a row close together. The plutons are inared by Wynne-Edwards to be post-orogenic, amplaced in a dilatant zone with no indication How structure. A syntectonic mechanism of

Emplacement in the Grenville Subprovince, Canadian Shield

General statement.-The Grenville subprovince of the Canadian shield includes a belt more than 250 miles wide and more than 1000 miles long consisting preponderantly of uniformly high-grade metamorphic rocks and igneous plutons of the catazone. The province includes the Precambrian outlier of the Adirondack area in New York. The rocks of the highlands of New Jersey are similar. Many aspects of the area are discussed in The Grenville problem (Thomson, 1956). Age determinations (Shilliber and Cumming, 1956; Eckelmann and Kulp, 1957) lead to the inference that the
.a.u suido vi nie orton-Bancroft area, Ontario筑 $500-900$. and $1050 \pm 20 \mathrm{~m} . \mathrm{y}$. old.
Phions in the Gremille scries of Quebec.Osborne (1947) has had much experience with the geology of the Quebec part of the Grenville subprovince, and the following statements are based on some of his conclusions. The type locality for the Grenville series lies within a dejective zone. Within this zone the intrusives tend to be concordant with the Grenville rocks. Between the dejective zones are broad areas characterized by schistosity parallel to bedding and by gentle dips. In addition to sills in these areas there are batholiths of coarse-grained granite that cut across the structure. Osborne notes that some measure of syntexis is observable, particularly in the dejective zones, and that members of the normal sedimentary series may be missing, in which case a varicty of granitic rock orcurs in its placc. He suggests that magma appears to have been the dominant constituent of the syntectic but that at a few localities the granitic gncisses were formed by granitization of paragneiss. In the Ottawa folded belt Osborne (1936, p. 426) finds that most of the intrusives as a whole partake of the nature of phacoliths.

Plutons of northwest Adirondack aren, New York.-Several types of emplacement of plutons in the catazone are well represented in the Grenville series of the northwest Adirondack area, New York, and outlier of the Canadian shield. Representative structural relationships are shown in Figure 15.

In the northwest part of the area is a belt about 25 miles wide in which members of the Grenville series are predominant. The granitic plutons occur as alaskite phacoliths of intrusive magmatic origin, mostly in marble, and as sheets of porphyroblastic augen gneiss formed largely by metasomatism of biotite-quartzplagioclase gneiss interbedded with marble. Most of the phacoliths have moderate plunging axes parallel to the major trend of the formations, but a few are in crests or troughs of crossfolds plunging nearly at right angles to the trend of the formations. The phacolith at the cxtreme northwest is emplaced in a cross-fold plunging southeast in beds isoclinally overturned to the northwest with steep dips. Several small phacoliths along the northeastern half of the southeast border of the Grenville belt are also on cross-folds, here plunging northwest. The phacoliths along the northwest and southeast portions of the Grenville belt are in zones
soulneast respectuvely and are granoblasis gneisses. In the central part of the belt, boe-s ever, there are phacoliths with gneissoid mox, perthite granite.
The largest body of pscudo-igneous porphym blastic augen gneiss in the Grenville belt is Hermon pseudo-phacolith (Fig. 15, La $44^{\circ} 25^{\prime}$ Long. $75^{\circ} 15^{\prime}$ to Lat. $44^{\circ} 08^{\prime} 1 \mathrm{oc} 4$ $75^{\circ} 45^{\prime}$). The rock is predominantly a gro.e with augen of microcline in an even-graist gneissic groundmass. The phacolith has a wiol imum length of 35 miles and a width of $1-\frac{1}{2}$ miles. The granitic mass is continuous at tot southwest around the plunging nose of a sst ordinate anticline and the trough of a syndize The granite mass transgresses the trend of a bot of biotite-quartz-plagioclase gnciss from nert one side of the stratigraphically upper part d the gneiss to marble at the base. There are gradations between porphyroblasts in the bied tite-quartz-plagioclase gnciss, porphyroblastic schlieren of the country rock in the granim mass, and uniform granitic augen gneiss. Nis matic facies of the biotite-quartz-plagiodzy gnciss are also associated. The granitic gneiss variable in composition. A syenitic facies is $d^{\delta,}$ veloped locally in mixture with amphiboliy All these phenomena bave led to the interpreti tion that the granitic gneiss is of metasomate origin. There is also some even-grained granith associated which is inferred to be of direct magit matic origin. There are some bodies of ineqi' granular granite or granite gneiss intruded et isolated sheets in marble. These may represer remobilized or partly anatectic material, b we have no critical evidence. The solution effecting the metasomatic development of 14 augen gnciss are inferred to be related to ma matic masses below.
The structure of the area dominated by ncous rocks, pseudo-igneous rocks, and orthe gneisses in the southeastern part (Fig. 15) been controlled by the anticlinal folds domes of granoblastic syenite-quartz syeniv older granite orthogneiss that have served relatively rigid buttresses. The metamorhi and deformation of these rocks along with the Grenville series of beds preceded the emplater ment of the younger granitic plutons. The magmas yiclding the syenite-quartz syenia older granite rocks are inferred to have be cmplaced as relatively flat-lying sheets gently dipping phacoliths of the epizone transitional epizone-mesozone. The northead ern part of the western belt of orthogneiss is if ern part of the western belt of orthogneiss is
limb of an anticline overturned to the sout

Thern and eastern anticlines of orthogneiss the younger granite a flolithic emplacement the younger granite a though the southern wt of the northwest limb of the northern belt orthogneiss was locally cut out by the mager granite.
There are several synclinal phacoliths of artz-microcline granitic gneiss. These repreat metasomatized biotite-quartz-plagioclase pers (Buddington, 1957) in part and in part y quartz-microcline igneous rock of magmatic cin. Much of the metasomatic rock is sillinitic. The biotite-quartz-plagioclase gneiss the same type of rock that was replaced to ind the porphyroblastic augen gneiss in the renville belt.
The complex in the southeastern part of the (Fig. 15) is thus composed of tectonoastic domes and anticlinal cores of granodestic orthogneiss of an early period; igneous tmes, phacoliths and sheets; and pseudotacoliths of metasomatic granite gneiss. Plutons of Haliburion-Bancrofl area, Ontario. The study of the Haliburton-Bancroft area Ontario by Adams and Barlow (1910) has Fde this a classic area for the portrayal of Fhain aspects of batholithic emplacement. A arised geological map (Ontario Dept. of (ines, Map 1957b) and a revised interpretation the geology by Hewitt (1956, p. 22-41) have anntly been published.
The belt of high-grade metamorphic rocks thwest of the Hastings Basin (Fig. 14) drthwest of the Hastings Basin (Fig. 14)
durbles and silicated marbles, basic deanic rocks largely altered to amphibolite dists and gneisses, metagabbro and metaGrite gneiss, paramphibolites, and paragneiss zotaining sillimanite and garnet. Hewitt de ribes the batholiths in the high-grade metamphic terrane as mixtures of granitic material rging from granitic gneiss to pegmatite intirately injected into and replacing paragneiss amphibolite. Abundant inclusions and dilieren are present, and gradational hybrid dies of mixed origin are common. Most of e granitic bodies are concordant, and there much evidence of granitization and metamatism.
pholithic Development of Pseudo-igneus Granile in Calazone
Introduction.-The occurrence of replace-
ent pseudo-phacoliths and sheets in the cataae has been discussed. A few examples
liths will now be considered. Many have been described from the Precambrian, especially the Canadian shield. Early papers advocating the emplacement of batholiths by replacement and recrystallization were those of Quirke (1927) and Quirke and Collins (1930). Some recent examples are those of Harrison (1949), Christie (1953), Robertson (1953), Steven (1957), and Eckelmann and Poldervaart (1957).
Harrison (1949, p. 34-39) described the rocks of the File-Tramping Lakes area, Manitoba, and concluded that granitization has locally affected all volcanic and sedimentary formations in the area and that it has taken place on a regional scale and has locally been intensive enough to produce granite. He infers further, however, that abundant evidence indicates that magmatic granite also existed in large amounts.
Robertson (1953) has described the rocks of the Batty Lake area, Manitoba. He finds that gneissic, granitelike bodies occur in the Batty Lake area as bodies of batholithic size, as stocklike and sill-like bodies, and as pegmatite bodies. Viewed in aerial photographs, the larger bodies exhibit complex to broadly sweeping folds resembling those of sedimentary formations, but in the outcrop they are granodiorites, tonalites, and granites, compositionally, with well-defined foliation and grading imperceptibly into rocks. apparently of sedimentary origin. He concludes that "granitization" commences with the development of albiteoligodase in the sedimentary rocks, producing rocks mapped as "granitized" gneisses, and continues with the later formation of microcline to form bodies of granitoid gneiss that may, in some instances, have become mobile. Robertson suggests that the cause of regional metamorphism and "granitization" in this area is the proximity of magmatic material at depth.

The development of quartz monzonite gneiss and extensive granite pegmatite veining by metasomatism has been described in detail by Steven (1957) from the Precambrian of the Northgate district, Colorado. The country rock is hornblende gnciss, and remnants are abundant in the quartz monzonite gneiss Metasomatism has been effected by tenuous silica- and alkali-bearing solutions. The gneiss is inferred by Steven to have locally become mobile, moved as a plastic crystalline diapirlike mass, and developed with its foliation in the form of a funnel.
treat in Saskatchewan shows very well the kind of phenomena that have led to the inference of batholithic emplacement by metasomatisn The following description is based on that of Christie (1953), and two selected areas from his map are shown in Figure 17. More than his map are shown in Figure 17. More than
50 per cent of the Goldficids-Martin Lake 50 per cent of the Goldficis-Martin Lake
map-area is underlain by a complex of granite, gtanite gneiss, and grantoid gaciss, Christie concludes that the granites have been emplaced mainly by a granitization or replacement process, although various small bodies such as the Mackintosh Bay granite may have been emplaced as a molten magma. The Mackintosh Bay stock is shown in the lower part of area B of Figure 17, and Christie describes it as gncissic with the appearance of having thrust. aside the enclosimg sedimentary strata during emplacement. The foliation of the granite near the contacts is everywhere parallel to them. Within the stock the foliation has a rough elliptical plan, and lincation indicates a plunge of about $35^{\circ} \mathrm{SE}$.
Christie states hat in general, although the contacts of granitic rocks and amphibolite are sharp, the contacts with quartzites are commonly gradational over tens, hundreds, or even thousands of feet Typical coarse-grained pegmatite dikes or sills are rare except in the metasedinentary rocks north and northwest of the Mackintorg Bay grantite stock.
of the Mackintosh Bay grantie stock:
Tlic foliation of the granitic rocks near contacts with metasedimentary relics dips gently or moderately but tends to be stecp or vertical away from them.
The evidence for emplacement of most of the granitic rocks by granitization is based by Christie largely on gradational zones with quarizite, evidence for a complex series of replacements indicated by interpretation of microtexture, and the lack of displacement of most relict structures. The hatter is exemplified by the inclusions outlining a skeletal foid in the upper part of area B of Figure 17 .
Oitad Creek arear, Beartoolt: Mountains, Mon-tano-A detailed study of the Quad Creck area of Precambrian age in the Beartooth Mountains has been published by Eckelimann and. Pöldervart (1957). Age determinations of these rocks by Gast and Loug (1957) based on $\mathrm{Rb}-\mathrm{Sr}$ place them in general between 2730 and 2800 m.y. The following description is a summary based on the report of Eckelmantin and Poldervatrt. The Beartooth Mountains form an elongate range with longer axis teending northwest and consist of a core of granilic ing northwest and comsist of a core or granibe
Eneiss flanked by migmatites and metasedi-
ments. The historical development is belitity to be (1) original depposition of an Archean sse mentary sequence; (2) emplacentent of meby gabbro and ultramafic intrusions; followed folding-lold axes strike north-northeast; (regional metamorphism and granitization rcsulting in a core of granitic gneiss and mand of migmatites and metasediments with boug daries trending northwest. The last expresing of granitization was the production of pegaris tites. Eckelmann and Poldervant believe that theit studies indicate in-place formation of granitic gneiss. Fold axes pass continudus
and without deflection from the mantle of metasediments and migmatitës across bis boundary zones in to the core of granitic gnets although the folds intersect the boundary zowe at 40° to 50°. The boundary zone consists of intersecting; tongues, migmatites, and grantion gneiss, and these rocks grade into each otheng
along and across the strike. In the boundary along and across the strike. In the boundary
zone more resistant rock types persist at des. zone more resistant rock types persist at de
nite horizons, continuous with skiabiths? nite horizons, continuous with skiabiths
similar rocks in granitic gnieiss. Throughout foliation in granitic gneiss and banding in mits matites paraltel bedding in metasedimens. Grow th phenomena shown by zireons of difer ent rocks they believe also indicate autachtho nous formation of granitic guciss at tempert tures probably about $500^{\circ}-600^{\circ} \mathrm{C}$. Eckelmank and Poldervaart conclude that granitization wity effected by migrating alkaline aqueous sodos, tions cluring a prolonged Archean cycle d themal activity. The following statements ath:
also from their description and from a personal also from their description and from a persons,
communication from Poldervart. The rod of the core consist mainly of granitic gneis? in part showing banding, with many migmas tite layers and some motasediments. The ans cons ate a rounded type with overgrowths and outgrowths. The more homegeneous granitis, facies, in particular, have some euhedral zis cons. The rocks of a boundary or transition zone conprise mignatites and granitic gneiss, with some metasediments. The more nearls homogeneous granitic facies liave zircons like: those of the core, whereas those of the more inhomogeneous areas are similar to those of the
mantle. The rocks of the mantie are mostly mintle. The rocks of the mantile are mostly
migmatites with associated metasediments and some granitic gneiss. Rounded zircons, rounded zircons with outgrowths, and rounded zircons, with overgrowths are all present. The first tro. are about equal in quantity. There thus appears to be a gradation in the lransformation of gis ${ }^{3}$ cons during grantization. The core of the
Beartooth block consists predominantly of

pink leucocratic granitic grieiss, with tonalitic gneiss developed toward the migmatitic boundary zone.
The authors emphasize that field relations are critical in estalolishing the metnsomatic hypothesis. Insofar as structure alone is concerned, however, the following alternative interpretation might be posed as a question. Conld the pluton have been emplaced between synclinal leaves of country rock as magma wedges that were relatively very thick at the south and thin at the north so that a marked constriction of the magma wedges occurred along the pseudo-discordarit boundary of granitic core and mixed rocks? Supplemental granitization would accompany the magma.

Complexily of Precambrian Plutonic Complexes
Generat,-The Precambrian plutonic complexes of any area of considerable size rormaily comprise a complex of granitic phutons that have been emplaced in different zones at different times. Anderson, Scholz, and Strobell (1955) have described a Precaribrian complex of the. Bagdad area, Arizona, where the earliest ontrusive members: are epizonal plutous' of rhyolite and alaskite porpliyry, followed by mesozonal plutons (age 1,600 m.y.) in Precambrian schists of intermediate grade of metamorphism. Kalliokoski (1952) has described similar relationships from the Weldon Bay area, Manitoba, where a Precambrian cpizonal stock of fine-grained granodiorite with a porphyritic quartz latite border facies is interspersed with younger Precambrian is interspersed with younger Precambrian batholithic intrusions that lave developed
migmatites with adjoining schists appropriate migmatites with adjoining sc
to the mesozone or catazone.
to the mesozone or catazone.
Grenvile bell.-The writer has estimated that over a third of the igneous rocks (including orthogneisses) of the Adirondack area of Grenville rocks belong to the syenite-quartz syenite-granite series such as form the cores of tectono-plastic domes and anticlines (Fig. 15). These are inferred to have been cmplaced originally in the deeper part of the epizone although much of the rock now belongs to the granulite metamorphic facies. Granite, perhaps $100-200$ million years younger, forms 40-50 per cent of the igneous rocks and was emplaced in the catazone.
The Grenville subprovince in the HaliburtonBancroft area (Fig. 14) includes a belt, the Hastings Basin, about 20 miles wide, within whimh the rocks are of a low to intermediate
characteristics of the mesozone in contrast a the broad belts on each side of high-gratt metamorphic rocks with plutons of the catazong The rocks of the Hastings Rasin consist ix part of the Hastings series which is though by some geologists to be younger than the Greaville series, but by other geologists to bo part of the Grenville series. Hewitt (1956, p 30) writes that
"The Hastings Basin consists of a terrane of low to intermediate grate of metamorphism, includiat schists, atgillites, well-bedded blue limestontry
citystaline limestones, and voicanics, Sedimentap and volcanic structures süch as crossbedding, grii gradatio

The basic lavas frequently belong to the low grade chlorite facies. Hewitt describes the De oro granite stock as consisting of a fine-t medium-grained granite with sharp contactu and the McArthurs Mills granite stock as com sisting of a massive; conrse-grained granite titb irregular shape and discordant structural re lations to the country rock. The intrusit plutone in the Hasting series thus have ball concordant and discordant contacts, and manf have a contact-metamorphic aurcole chat acteristic of the mesozone. The present writed notes that the Marmora motasomatic iren-on deposit is a fine-grained magnetite-pyroxene epidote tactite of a type normal for the uppor part of the mesozone and dissimilar to th characteristic magnetite-bearing skarns: i the Grenville rocks of the catazone.
Colorado Front Range--Portions of the Pecambrian complexes in the Colorado Froat Range have been intensively studied and oford an excellent example of their complexity.
The oldest country rocks of the area now consist of bigli-grade metamorphic biotie illimanita selists, quartz-biotite gneiss and schist quartzite, and hornblende gneiss and amphibolite. The sillimanite-beating rock have more aplite and pegratite.
Phutons of the catazone are well exemplifed by the quartz monzonite gneiss (Fig: 18) bodies. Lovering and Goddard (1950, p. 2) describe these rocks as concordant and nearig. everywhere parallel to the foliation, with welldeveloped gneissic structure, dosely assoo. ated lenticular bodies of permatite, and io. tense lit-far-ht injection of inclusions of schist with some assinilation. It may also be noted hat a few miles southeast of Central City the quartz monzonite gneiss has typical catazonay phacolithic relationship to a complex isocinay

Phacoliths also occur within the schists of the Frecland-I, martine district to the west described by Harrison and Wells (1956, p. 54) as mostly bodies of biotite-muscovite granite that are generally concordant, although some are sharply discordant. Many of the bodies are hook-shaped and crescent-shaped in their surface cxposures and are in the axial regions of folds.
Boos and Boos (1957, p. 2615-2617) state that the probably related Mt. Morrison quartz monzonite gnciss is in part saturated with ill-defined pegmatite; they suggest that it is of granitization (palingenesis and metasomatism) origin.
The Boulder Creck granite (Fig. 18) is described by Lovering and Goddard (1950, p. 25-26) as a quartz monzonite to sodic granite slightly younger and less metamorphosed than the quartz monzonite gneiss phosed than the quartz monzonite gneiss
previously discussed. The granite is further described to have primary gneissic structure, less well developed but still discernible in the cores of large masses, and locally with abundant inclusions that rarely show much evidence of assimulation. Boos and Boos (1957, p. 2616assimuation. Boos and Boos (1957, p. 2616-
2617) state that no other granite of the Front Range has produced so many aplite dikes and sills. They ascribe the granite to a combined magmatic and metasomatic origin. The plutons of Boulder Creck granite are largely comformable but in part break across the foliation formable but in part break across the foliation
of the country rocks. Lovering and Goddard (1950, p. 52) state that the foliation and lineation suggest that the individual plutons are funnel-shaped, enlarge upward, and are accompanied by lateral thrusting. Lovering and accompanied by lateral thrusting. Lovering and
Tweto (1953, p. 8-16) on the basis of the orientation of the primary planar foliation and linear structure infer that the batholith was emplaced by rise of magma through a central conduit from which it spread upward parallel to the linear structure that plunges $40^{\circ}-60^{\circ} \mathrm{N}$. The schist along the west edge of the batholith dips under the batholith, but at the north the granite dips under the schist. The foliation of the schist is generally conformable with the contact, and the schist is closely seamed with pegmatitc. The present writer suggests that the plutons of this granite may have been emplaced in the transition mesozonc-catazone.

The Silver Plume granite plutons (Fig. 18) are inferred by Lovering and Goddard (1950, p. 28) to be younger than the Boulder Creek p. 28nita hodies. They state that these granites
3×4 intrusives. They concordant habit of the intrusion and that in some places the coaliz of granite masses fod from relatively scattered conduits at depth has resultedz. composite batholith. Boos and Boos (1) p. 2616-2618) have suggested that the Plume granite plutons were emplaced by gressive magmatic stoping.
The Longs Peak-St. Vrain batholith has correlated by Boos (1934) with the: Plume plutons. The present exposures sent the rool portion of a batholith, and describes it as a "pine-tree" type of emptu ment effected by lateral spreading and par-lit injection of the adjacent and overb beds with local folding and tilting, althe the initial conduits were made by stoping deep-seated assimilation. There is a grade shown in the walls of the cirques, 3000 feet high, from schist and gnciss at the through almost horizontal layers of separating thick sheets of granite, to granite with little schist in the lower and floors of the cirques.

The Silver Plume granite plutons appit afford an excellent example where it the upper portion were seeñ it might be terpreted as an example of emplacement transitional mesozone-catazone, wheress decper parts of the pluton have character diagnostic for the normal mesozonc.
A lew discordant intrusive stocks of Tor age and emplaced in the epizone add in complexity of the Colorado Front Range 2 \%s
Mackenzic district, Northwest Terrimirs. The batholithic complexes of the distria Mackenzie, Northwest Territories, Cunco have bcen described by Henderson (b) as consisting of both Archean and Prolef intrusions, each on a large scale. The Art batholithic portion intrudes a series of sediments and metavolcanics but is at places overlain unconformably by g (1) series of Proterozoic formations with conglomerates. These beds in turn art truded by granite batholiths. Both older younger groups of rocks have membens belong to only a low-grade stage of morphism. Henderson has not discused ${ }^{2}$. mechanics of emplacement of the batber The writer notes, however, that the Aros. batholithic complexes in part at least 3 to show (Geological Survey of Canade 581A) domal structure and that miger 581A) domal structure and that migat:
mesozonc-catazone. The Proterozoic xions, in part (Geological Survey of da, Maps 1024A and 1024B), show crossag relations to the country rock and may ag to the mesozone. In part the Protcrozoic Files (Fienderson, 1948, p. 47-48) are Fribed as associated with porphyry that Wy seems to grade into the granite and to fenetically related to it but in places is cut te granite with sharp contacts. Henderson granite with sharp contacts. Henderson Ciguish one granite from the other except me critical structural relationships can be krmined.

Commentary.

Gencral Siructural Relationships
fistudy of the literature on the plutons of th America leads to the following comatary. Plutons emplaced in the epizone, wailly the "subvolcanic" plutons with erty associated volcanic rocks, would probI be classed with the atectonic or postEenic group, those of the mesozone as flectonic and post- or occasionally lateanatic, and the catazonal plutons, preminanly at least, as syntectonic and syntematic. Also the plutons of the epizone Fdd belong to the "disharmonious" class as Fed by Walton (1955, p. 8-11) in which re is a strong contrast between the energy of the granite and that of the country ${ }^{8}$ as evidenced by contact-metamorphic Toms
Ihe exposed plutons of the mesozonc occur Why in belts of eugeosynclinal rocks although yare in general post-tectonic. Those of the *ooe, however, occur (1) in the eugeosynwoe, however, occur (1) in the eugeosynIn and structure such as the Sierra Madre milal of Mexico (cf. Concepcion del Oro, F6); and (3) in the Colorado, New Mexico, St southern Arizona Rocky Mountain belts munding the Colorado plateau where the rounding the Colorado plateau where the ements are of mainland or intracratonic reyclinal and shelf types and the intrusions Gide with belts of faulting and uplift Enover, Santa Rita, and Organ Mountain - Mons, New Mexico).. The cpizonal plutons ${ }_{3}^{2}$ also occur in transverse belts such as that Fibe Boulder-San Juan in Colorado (Fig. 5) Wone including and extending northeast the Boulder batholith in Montana. The mozoic and Mesozoic sedimentary beds may
locally be so thin that Tertiary intrusions in Precambrian rocks are exposed. Tertiary epizonal plutons of the Oregon Cascade Mountains occur in very gently warped Tertiary lavas and in the Cascade Mountains of Washington in lavas and in folded Tertiary sedimentary beds. The question arises as to whether the epizonal plutons outside the eugeosynclinal belts would pass downward into those of mesozonal type. Ewing and Press state (1957) that the thickness of the crust in the Canadian shich and central Interior Plains is 35 km , whereas it is $40-45 \mathrm{~km}$ in the western Great Plains and Basin and Range province and $50-55 \mathrm{~km}$ in the Rocky Mountain region. This permits the possibility that the Tertiary plutons of the Basin and Range and Rocky Mountain provinces are connected with deepseated processes. A mesozonal batholith may also occur in an old orogenic eugeosynclinal structure but may have beer: emplaced following the development of a miogeosyncline or other type of structure in the same region.
A general discussion of the hypothesis of granite by granitization has been published by Perrin and Roubault (1949) and by Perrin (1954).

Dickson (1958, p. 35) has proposed that magma emplacement may take place by a process he calls "zone melting". This involves crystallization of the base of a column of magma to yield latent heat that is in part transferred by rise of fugitive constituents (mostly $\mathrm{H}_{2} \mathrm{O}$) to the top of the column where melting of the roof is effected. The differential concentration of the lugitive constituents at the top of the magma column arises in consequence of the tendency for such materials to move to zones of lower pressure and lower temperature. The quantitative role of the cffectiveness of this mechanism of emplacement remains to be determined. There is the problem of adequate time and appropriate physical conditions. It may be a possible accessory factor under favorable conditions in accentuating differential incorporation of rock with low-melting constituents thereby in turn increasing the potentiality for piecemcal stoping and in increasing the intensity of conditions at the rool of mesozonal batholiths.
Reynolds (1958) has summarized in an attractive manner a stimulating hypothesis that involves a combination of granitization and diapiric rise in deeper levels with movement by fluidization and magma development in the upper levels. She writes (p. 382)
"As a diapir rises, rocks which at a low structural level are obvinus migmatites become more and more homogenized by the mechanical kneading caused by superposed movements (Wegmann), and by chemisubtractions, and recrystallization). In this way a migmatite rising in diapir style becomes gradually transformed to nebulite (Sederholm) and eventualiy to homogeneous granite. If recrystallization outlasts the movement then, just as in salt-diapirs, all traces of the movements will be lost,"
and p. 384
"It is, however, only where granite diapirs have
reached the zone of fracture that cvidence of melting and the birth of acid volcanics has so far been found

If the writer understands this hypothesis correctly it involves two assumptions for which we must await adequate support: (1) that there we must await adequate support: (1) that there
is time for a substantial fow of hot matter to diffuse upward through the diapir, and (2) that in the upper zone something is postulated to happen that affords energy to raise the temperature of solid material to the melting point and to supply adequate latent heat of melting to develop magma. The present writer considers it at least equally reasonable to postulate that hot matter difiusing upward from depths would help to liquify granitic material in the regionally hot catazone before that in the much cooler upper zones. The hypothesis of magma from depth to surface has advantages with respect to ease of effecting homogencity and adaplability to explain the systematic compositional variations of the different units of composite batholiths and their structural details. Efforts to check on such hypotheses as that of Reynolds, however would doubtless lead us to new insights.
The epizonal stocks and batholiths have been emplaced at one extreme by columnar subsidenec with a 360 -degree ring fracture (Ossipee pluton, New Hampshire) and at another extreme by piecemeal stoping of angular blocks (castern part of the pluton in Northgate district, Colorado). Subsidence of blocks for most plutons probably involves both arc and intersecting angular block fracturing in varying degrees. The alternative development o columnar subsidence or of piecemcal stoping is not related to depth. One factor in aggressive piecemcal stoping as, contrasted with permissive subsidence may be the predominance of a tendency for the magma to lift the roof with consequent breaking and subsidence.

Predominance of Mesozonal Balholilis

 in Plutonic ComplexesThe tremendous total volume of batholiths with their directly associated rocks of high grade metamorphism in plutonic complexes of orogenic belts predisposes one to think of the complexes predominantly in terms of vers? deep-scated erosion and of batholithic enplacement in the catazone. This, however, is only partly truc, for most of the batholiths of most orogenic belts were emplaced in the mesozone (including the transition mesozone catazone).
There is only one well-authenticated greal belt of uniformly high-grade metamorphic rocks with associated intrusives in the whole Canadian shield. This is the belt of Grenville type rocks that extends for over 1000 mile from Labrador to Pennsylvania and is more than 250-350 miles wide. This belt in part has rocks that belong to the granulite facies and is also characterized throughout by the presence of great anorthositic plutons. The ages of the granitic intrusives insofar as now determined range between about 900 and 1100 m.y. A least part of the belt of Precambrian rocks in the Rocky Mountains such as that in Mon: tana, Wyoming, and Colorado may be analogous to the Grenville belt. Granitic rocks with ages of $2700-2800 \mathrm{~m} . \mathrm{y}$. and anorthosite bodies occur in this belt.
The batholiths of such provinces as the following, however, were predominantly emplaced in the mesozone: the Keewatin provind with a width of more than 250 miles and with rocks intruded by granite pegmatite with ago of $2,500 \mathrm{~m} . \mathrm{y}$.; the Yellowknife belt, Northwes Territories, with pegmatites at least 1850 m.s. old; the Colorado Front Range with somt granite plutons of about 1000 m.y. age; the belt about 200 miles wide across Newfoundland with plutons of Acadian age; and the zone of Jura-Cretaceous batholiths about 350 mile wide in Alaska and British Columbia. The wide in Alaska and British Columbia. The
intensity of regional metamorphism as indil intensity of regional metamorphism as indi-
cated by rocks farthest from the major in cated by rocks farthest from the major in trusives is prevailingly that of the greenschis facies with local zones in the staurolite-kyanite subfacies. The sillimanite facics is generally restricted to zones of rock adjacent to the majo plutons or complex of plutons.

Criteria for Large-Scale Granitization
Several examples have been described in the

Irge-scale granitization has resulted in bathodhic masses. One of the difficulties in proving ganitization is that nearly all criteria are ebject to alternative interpretations. Much of ae rock involved is a leucogranite of a comoxition approaching that of the experimentally etermined ratio for the major minerals conaned at minimum temperatures with $\mathrm{H}_{2} \mathrm{O}$ asolution. A satisfactory hypothesis as to why aplacement of varied rocks in an open system y alkalic-siliccous solutions should result in ucogranite approaching the composition merimentally determined to be that of the tectic has yet to be offered. Overgrowths and atgrowths on rounded zircons may develop contaminated magma as well as during ranitization of metasediments in place.
The problem of the proper interpretation of te significance of long thin layers of country rock occurring cither as linear slabs or outtring skeletal folds is an old one. (Cf. Lawson, 1894, p. 296.) A skeletal fold outlined by netalimestone slabs in the Harney peak btholith is interpreted as xenolithic in inrusive granite by Runner (1943, p. 449-453), hereas a long thin metalimestone layer in granite on the border of the Clare River syndine is inferred by Ambrose and Burns (1956) o necessitate an origin as a relic in granite meiss of granitization origin. The metasedimentary rocks outlining skeletal folds in the Goldfield-Martin Lake area are also inferred by Christie (1953) to be relics in a batholith of ranite gneiss of granitization origin, although he present writer would note that some phacothic magma emplacement, if not indicated, at rast does not seem precluded by the relationhips shown on the map (Fig. 17). Folded amphibolite layers and thin amphibolite layers in granite phacoliths of the Northwest Adirondacks are interpreted by Buddington (1929) xenoliths in granite of magmatic origin, Thereas skeletal folds outlined by layers of hornblende gneiss near Northgate, Colorado re explained by Steven (1957) as relics residual in quartz monzonite of granitization origin. lany recent authors emphasize a skialithic s contrasted with a xenolithic origin. Exensive thin layers of country rock do however occur in igneous sills (Eckel, ot al., 1949, Pl. 2), laccoliths, and stocks (Murthy, 1957, p. 94). The conditions of emplacement in the catazone are intense and syntectonic, and it seems probable that conformable emplacement would be facilitated. Metasedimentary inclusions in the form of relic folds or skeletal folds in ranite gneiss are not necessarily "skialiths"
but may be thought of as arising from a com plex phacolithic mechanism of magma emplace ment into country rock that has complex folds, boudinage structure, and formations much thickened and thinned by differential plastic flowage. It is expectable that the magma will be accompanied by some granitization partial fluxing of the lowest-melting constituents of the country rock, and hybridization The shredded ends of some layers may be due to being squeezed or pulled apart during plastic lowage as well as to irregular replacement. It thus seems highly probable that metasedimentary rocks as layers or skeletal folds in granite or granite gneiss may be either of xenolithic origin in magmatic granite or of skialithic origin in metasomatic granite gneiss.
It has been argucd that some batholithic emplacement by granitization has been accompanied by inflation with outward deformation of the walls as the result of introduction of new material. Barth (1947, p. 181) infers that new material. Barth (1947, p. 181) infers that formable walls is a "petroblast" cleveloped by formable walls is a "petroblast" cleveloped by
the introduction of new material as a "doud the introduction of new material as a "cloud
of ichor or migrating ions". Oertel (1955, p. 45) of ichor or migrating ions". Oertel (1955, p. 45) describes the Loch Doon stock in Scotland as
having expanded its volume by 34 per cent having expanded its volume by 34 per cent
and (p. 81) "Der Pluton ist durch Metamorphose unter Stoffzufuhr aus pneumatolytischen. Lösungen und durch metasomatische stoffwanderung entstanden". The Loch Doon pluton has discordant contacts for much of its border. To the writer's knowledge the concept of expansion of the walls as a result of granitization has not yet been advocated for any North American pluton. This is perhaps because hundreds of examples of mineral deposits have been studied in which there has been introduction of new material, but little or no evidence for inflation in consequence of it has been reported.

Emplacement of Plutons in Epizone and Mesozone

Lava flows, acknowledged by all to be of magmatic derivation, may be considered an observable large (as contrasted with the size of an ion) base of known origin from which to extrapolate to a corresponding magmatic origin for most plutons of the epizone.

The common occurrence of homophanous structure, the conmon local development of miarolitic or aphanitic texture, and the inferred genetic relationship to lavas of similar composition associated in time and space all in-
dicate that the Tertiary plutons were emplaced as magmas, largely or wholly fluid. "Far travelled" xenoliths from depth and absence of flow structure in the enclosing rock of some plutons necessitate a fluid mode of transfer from deptin. The magma of Tertiary plutons from depth. The magma of Tertary plutons was, in the initial stages, fluid enough to yield lava flows. At later stages, alter rise to higher cooler levels in the accumulated lava pile, loss of volatiles at lower pressures and partial crystallization would occur, and the magma would becone viscous enough to "set" before reaching the surfacc entmasse.
Many geologists have emphasized the development of a schistosity that is steeply dipping, often with subvertical lineation, in both peripheral country rock and in border both peripheral country rock and in border
facies of plutons, such as most of those of the facies of plutons, such as most of those of the
mesozone and many of the transitional cpizonemesozone. Because of this they have inferred that the invading material had to be a highly viscous or a diapiriike mass, partly or largely crystallized, rising upward and dragging its walls: This is probably true for much of the quartz diorite facies that forms the outer part of many plutons. Such quartz diorite is reasonably interpreted as the product of incorporation of country rock by a more specifically granitic magma and might therefore be exgranitic magma and might
pected to be partly crystallinere. Again, sucpected to be partly crystalline. Againg suc-
cessive centril intrusion of magma could processive centran intrusion of magma could pro-
duce inflation, deformation; and upward drag of party to largely consolidated carlier facies. In some plutons of the mesozone, upward movement in the boider zones persisted through the very last:stages of consolidation and even into the solid state.
Such evidence for viscous magria in the border zones, however, does not preclude the possibility that even initial stages of magma omplacement in the mesozone may locally have been frcely fuid, and it has no nocessary have been ircely fuid, and it has no nocessary
bearing on the later intrusion of the cores. bearing on the later intusion of the cores.
Even conformable schistose structure in the contact zones of mesozonal plutons need not always indicate development in consequence of complacement of viscous magma. Durrell (1940) made a systematic study of contact: metamorphism in the southern Sierra Nevada and emphasizes that, in contact zones with granite, metasedimentary phyllites and schists. may merely coarsen in grain but retain the original foliated structure, a mimetic inheritance. This means thati if the material of a pluton of the mesozone were a fluid magma in the early stages we should not necessarily
mentary phyllites, and if formed it might d appear subsequently by stoping. It may z be noted that hornfels, as distinguished in schist, does occur in the wall rock of mesozonal plutons. In part, however, hornfels may itself be deformed at later 5 b of magma emplacement.

Much of the gneissoid granite does not dit the amount of crushing and protoclastic strit ture that would be expected if fowage occurt at a late stage of consolidation. Frcely 9 pended crystals in an early stage of crytis zation may be oriented by flowage, and 4 oricntation may be preserne control of cot subsequent overgrowth and
ization by the carly fabric.
It seems probable that much, if not noot the magma that yielded the rocks of of mesozonal plutons was predoninantly lig at the time of its eniplacement.

There is good evidence that lavas at locally some hypabyssal plutons crystallit, with some minerals characteristic of hid temperatures than those of their plutot equivalents (Tuttle and Keith, 1954; Mu and Smith, 1956; Buddington et al.; $19 x$ p. 519-522). Most of the plutons, howere especially the larger ones, will have crystallit. in the presence of at least part of their volat ${ }^{3} 3$. will therefore have remained partly fuid fot long time down to temperatures lower ts those of lavas, and any initial high-temperatis mineerals will have ufidergone recrystallizititi at lower temperatures: The plutons in cpizone, and their inferred relationships 8 those of greater depth, necessitate that $h=$ fluid magma that formed them could lat risen from source to surface in a relatry short tire -a small fraction of the lenglipe time assigned to a geologic period. Othety the magma would have frozen en route.

A hypothesis is that autochthonous' ${ }^{2}$ t parautochthonous batholiths are inetasontion in origin, wholly or predominantly solidte, arose in and ascended from zones now exper in the more decply croded areas. This raise problem if we also assume, as is here donct, most of the plutons emplaced in the equent and in part in the mesozone were predar. nantly liquid magmatic. The foregoing byt theses taken together would necessitate that 4 plutonic mass became more tiquid as itht. into cooler levels and that it lefta concentryes residuum of resistant type of rocks in the soutce area, the catazone Rise into lones pressure zones, chemical reactions, and incout,

Finn (Kennedy, 1955) would tend to increase tity, but it remains to be shown that these turs are adequate to meet the requirements. development and risc of granitic magma Fof the roots of eugeosynclincal materials fud presumably leave behind a series of rocks sposed predominantly. of garnet amphibosposed predominantly of garnet amphiboFind magnesian pyroxene-calcic plagioclase wulite but with some other refractory
nitials. This complex would be appropriately esistent with the seismic data for rocks above II discontinuity in the lower part of the fast not now exposed, but there is no satisdery evidence that there is a concentration "resistates?" in the now-exposed portions of reatazone. If erosion has only locally exposed ecatazone. If erosion has only localy exposer his deeper than about 12 miles in the earth's gut, as seems probable, then we conclude that Fal magma: usually came from levëls deeper most now at the surface.
The apparent dominance of lineation, insofar fowage structures do occur, in plutons of 4 epizone and the cominance of planar fation, with or without lifieation, in the Alons of the mesozone correlate with the Fitences in mechanics of emplacement and ferent conditions of consolidation and flow The two zones. Lineation alone appears to Triated to an early fluid stage followed by Itinued costallization in quiet. In the oinued crystallaat movent during sozone continued movere cring in permits the development of planar strucwin in some parts of the pluton.
Ithere appears to be good evidence that some The plutons of the mesozone had extensive dit and could not have been continuous with Hitons of the epizone unless through relatively * connecting channels. The plutons of the 4 tisozone and epizone locally overlap one or mine of their borders as though overriding them, ot: in pencral the evidence for an extensive Mor is lacking.
The present. data do not preclude the possiThe present data do not preclude the possiAty, however, that the plutons of the epizone, tleast in part, enlarge downward and are
Stinuous with plutons of the mesozone. If Themuous with plutons of the mesozone. If Wemplacement of the latter were in subW业 thein the possibility would exist for emtrement of magma in the epizone through Endering of crustal blocks into magma below: ddomical-planar or arch-lincar structure such doccurs in some plutons of the mesozone * 施d form at a late stage in consolidation and (muld not necessarily indicate a roof of original - not nccessariy moicatelidor

The mechanics of emplacement of plutons n the epizone as a consequence of alternating magman rise with accompanying pressure effects and nagma relaxation with accompanying appropriate structural collapse of roof and walls heve been discussed by Anderson (1936) and by Billings (1945, p. 53-55; 1947, p. 279and by
288).

In the mesozone, yielding of the walls by pastic flowage may be expected to be greater with depth. This will commonly' result in outward-flaring walls, disterition of the roof, outward-flaring walls, distention of the potentiality for coliapse of portions of the roof over the border zones of the underlying magma. This may in part explain the occurrerice of both discordant and concordatit boundaries so characteristic of plutons of the mesozone
It is recognized that replacement may occur locally with sharp and even discordant contacts. An oricin by mochanical rather than chemical An orgin by media seme the best intepreprocesses, now tation for most contacts of plutons, in the epizonc, and the simuarity of character and probable history indicntes a similar mechanical origin for most sharp discordant contacts of plutons in the deeper zones

The writer finds no evidence for postulating a discontinuity between the compositions, textures, internal structures, or mechanics of emplacenent of plutons in the epizone and those of the mesozone. There are plutons with internediate characteristics that suggest a series of gradational changes from one to the serics
other.

The concept of the development of nigmamarma with schlierenlike structure at the source sëens reasonable, but its rise and emsource seems Thement "as such" docs not fit the homophaplacement as such" does not the mesozone and those of the epizone:
The Nor th American literature of the past 25 years appears to be based on the assumption that the best theory, as of the present for cmplacement of plutons in the epizone is one of block foundering $\mathrm{in}_{\text {, }}$ or some kind of stoping. by, magma as a major factor. After half a century, however, the stoping hypothesis entury, still lacks verification in the sense that we do not have desirable supporting evider levels; sunken blocks in the plutons of deeper levels; Unless such blocks have been indistinguishably incorporated in magma, or reworked and metasomatized into new granites at depth, or have sunk to very great depths, we might
expect to find more evidence of floored platons expect to find more evidence of floored plutons expect to find more evid
than has been reported.

Three major factors of emplacement of plutons in the mesozone are inferred to be stoping or block foundering, crowding aside of the wails, and uplift of the roof. The sideward expansion may in part result in plastic flowage of country rock upward and downward. Additional factors are incorporation of country rock and metasomatism of wall rock. The importance of each factor varies with the particular example. If the tonalities of the bathoiith of Southern California are inferred to result from incorporation of gabbro by granodiorite magma then gabbroic material may be inferred to be equivalent to about hal of the tonalite that forms 63 per cent of the area now occupied by the batholith. This would make the problem of emplacement of the batholith one of how so large a volume of the initial gabbro was introduced as well as of how so great a mass of granodiorite was emplaced. Similarly at least 10 per cent of the problem of emplacement of the Coast Range batholith of Alaska and British Columbia could be related to incorporation of mafic rocks. Most of the mafic rocks in orogens, howcver, are lava flows and intrusive diabase, dolerite, or gabbro sheets emplaced under conditions of the epizone previous to major deformations.
A great varicty of structures associated with plutons of the mesozonc have been cited as consistent with formation by upward movement of magma. Such structures within the plutons are subvertical foliation and lineation in border facies, marginal fissures with pegmatite or aplite, marginal upthrusts, radial dikes, and schlieren domes; structures in the country rock near the pluton may be increase in dip of foliation or of slaty cleavage or of the plunge of lineation, subvertical lincation and subvertical secondary fold axes of plastic flowage origin, slip cleavage roughly similar in strike to the periphery but dipping outward with the lower schist laycrs moving up relative to the over lying layers, and developinent of domical oliation in the roof
Structures consistent with outward expansion effected by the pluton are deformation of beds into partial conformity with the periph ery, intensification of folding, and in part the intensification of planar foliation in the border acies of the pluton itsclf.

All discordant structures nced not necessarily mean stoping, for expansion effects of the pluton may result in pulling portions of the
this possibility is not of sufficient magnitude I satisfy the actual relationships.

Emplacement of Plutons in Catazone

If the writer has correctly interpreted the literature, then most, perhaps all, of the plutons of the catazone were emplaced undet synkinematic conditions. The roof portions of a number of batholiths of the mesozone are similar to those of plutons emplaced in the catazone, but such conformable emplacement in the mesozone does not, in part at leash, appear to be related necessarily to regiona tectonic forces. Such plutons may be intermediate between those typical of the mesozones and those characteristic of the catazonc. The extent to which plutons of the catazone are due to metasomatism or anatexis is yet to be definitely determined. It is logical to assume that at their source granitic masses would as a result of anatexis and rise of temperatured become mobile and rise as diapirs or as "migma: magma", but the extent to which source areas are now exposed is most problematical.
Marshall and Narain (1954, p. 73) have post-1 ulated that the negative gravity anomalies over granite batholiths, of a type here inferred to belong to the mesozone, are due to "granite roots", to extension of the granite pluton to depth, rather than due only to density contrasts betwcen granite and country rock near the present surface. Presumably this could mean continuity of plutons of the mesozone with those of the catazone. Biehler and Bonini (1958) have concluded that, if reasonable assumptions are made for the probable geology and density distribution of the region of the Boulder batholith, it follows that a granite mass roughly with a plano-concave cross section and a depth not much less than and not much more than 10 miles will closely satisly the residual negative bougucr anomaly. An additional narrow root could also be present.
Grout (1945, p. 276-278) on the basis of some experimental evidence suggests that large intrusives that rise from great depths may have only roots or a series of roots and that they may ascend along part of their route because some of the overlying rocks become so reduced in viscosity that they move aside and down along the sides in a mobile contact zone. There may be accompanying distention and sideward low in the roof during emplacement. Such a mechanism of intrucinn wnuld
e areal cross section of batholiths in the eeper part of the mesozone with the areal oss section of their feeders from the catazone. The shape of the intrusive mass would be
seems to be a major kind in the catazone, and often phacoliths. of both igneous and of metasomatic origin are reported to be associated. Many xenolithic domal batholiths may also,

Figure 19.-Schematic Sketch Showing Possible Structural Relationshtys of Plutons in Epizone, Mesozone, and Catazone
Question is left open as to whether batholiths of mesozone enlarge downward in continuity with Question is left open as to whether batho
hose of catazone or whether they have roots

Streamlined and comparable to the shape of salt diapirs with pinched-off roots. The lower part of such bodies should have inward dips. Symmetric funnel-shaped plutons such as the loon Lake (Fig. 14) are few, but a number of deep-seated plutons such as the Cheddar batholith (Fig. 14) and the southwest side of a part of the Coast Range batholith are asymmetric in cross section and bordered on one side by inward-dipping schists. The problem of batholithic roots in the transition zone between the mesozone and catazone and in he catazone deserve more detailed study The details of the interrelations of plutons of the catazone to those of the mesozone and of those of the mesozone to those of the epizone emain as problems. A tentative schematic hagramof relatinnchine ic chnoun in Fianre 10
in part at least, result from a phacolithic mechanism of emplacement, usually igeneous but in part metasomatic.
Age determinations permit the inference that the youngest plutons of the catazone with extensively developed migmatities are about $100 \mathrm{~m} . \mathrm{y}$. old and that plutons of the epizone may be at least as old as 1.65 b.y. and probably much older. Plutons of the mesozone range in age from slightly less than $100 \mathrm{~m} . \mathrm{y}$. to those of the Keewatin belt of the Canadian shield which are 2.5 b.y. or older.

Origin of Granilic Magma
"We must still entertain the hypolhesis that most granites have been produced throughoul geologic time by differemialion of basic (basallic) magma,

The role of metasedimentary material as the * prime source of most granitic magma is now emphasized far more than is implicd in the statement of Bowen cited above. There appears to be a tendency at the present time to start with the assumption of at least two major magmas-onc, the granitic derived from the sialic part of the crust, the other, the basaltic from deeper down, probably in the mantle, or beneath the continents from an eclogite root. Graywacke forms a large part of eugeosynclinal sediments. It would with increasing melting yield successively a little truc granite and then a trondhjemitic magma. The latter by reaction with associated basalts would result in a tonalitic magma. Partial melting of an illitic type of clay has been shown by Winkler (1957, p. 57-58) to yield an exceptionally potassium-rich leucogranitic magma. The hypothesis that the lowest part of the sial contains some primordial granitic material differentiated from basaltic magma however is reasonable and has not as yet been precluded, especially for the early stages of geologic history. Remelting of such primordial granite would, of course, yield granite magma directly. An andesitic magma may form by partial melting of a gabbroic or cclogitic continental substratum or essentially by incorporation of graywacke in basaltic magma.
Basaltic magma may yield basalt or gabbro directly by consolidation; dioritic-andesitic magma by assimilation of sialic material or by mixing of femic and salic magma; and ultramafic, anorthositic, monzonitic, granophyric, and other subordinate facies by differentiation. The granitic magma may yield granites directly; minor diorite by incorporation or metasomatism of mafic rock; and mobile quartz dioritic or other intermediate kinds of magma by incorporation of graywacke and carlier basalt flows or gabbro plutons. The quartz dioritic magmas may in turn yield granodiorite, quartz monzonite, and new granite magma by differentiation. The initial volume of gabbro emplaced in the mesozone and epizone must have been much larger than that now represented by exposure. Much of it foundered in later intrusive granitic magma and was incorporated to reappear in the modified facies such as quartz diorite.
Read (1951, p. 22) has made a tentative suggestion that "wo seek the ultimate source of the granitising fluids in crystallising simatic material below the site of the geosyncline." Adoption of such a hypothesis has a number of
significant consequences. Simatic material in crystallizing at depth slowly over a long time may be expected to undergo fractional crystal. may be expected to undergo fractional crysia. lization and differentiation to yield direclly
magmatic monzonitic to dioritic differentiats magmatic monzonitic to dioritic differentiats
(especially if magma is undersaturated) of (especially if magma is undersaturated) of
magmatic granitic differentiates (if overmagmatic granitic differenciates (if over-
saturated). The released granitizing fluids, either magma, gas ions, or all three may be expected to modify the material in the lowest part of the geosyncline and add to or develop granitic magma. The effect of pressure in raising the temperature of melting is not adequate to prevent a rise of temperature and pneumatolytic fluids from fluxing granitic material at the base of the sialic part of the crust rather than higher up. The source zone for the plutons would therefore not be expected to be exposed
Tuttle (1955) has estimated that with a geothermal gradient of $30^{\circ} \mathrm{C}$. per km partial melting of a geosynclinal prism of sediments might start to yield a biotitic granitic magma with a temperature of about $640^{\circ} \mathrm{C}$. at a deph of 21 km and that complete melting with about 2 per cent $\mathrm{H}_{2} \mathrm{O}$ could occur at about 31 km . With a gradient of $40^{\circ} \mathrm{C}$. per km incipient melting could occur at a depth as shallow as 15 km .
The usual order of intrusion-gabbro, quartz diorite, granodiorite, quartz monzonite, and granitc-in composite plutons is one that corresponds to the order theoretically ex. pectable as a result of magmatic differentiation or alternatively to that of decreasing tempera tures. A speculative hypothesis to explain this order might be as follows. The carly rise of basaltic magma directly yields gabbro plutons, diabase shects, and basaltic lavas; basaltic magma with incorportation of sial leads to andesitic lavas and minor diorite plutons, Subsidiary effects of the development and rise of basaltic magma and its derivatives are accentuation of the rise of the isogeotherms and fluxing in the lowest part of the sial. As the isogeotherms rise through the deep sial early formed interstitial low-melting granitic fuids work upward, react with country rock in part, and result in a differentiated domal column ranging upward in composition from residual refractory materials at the base through quarls dioritic and granodioritic facies to granite at the top. Eventually the continued rise of the isogeotherms results in sufficient melting of si the lower portion of the column-either thes quartz dioritic or granodioritic facies-so thal
rises as a whole followed successively by melting and rise of the overlying materials. Granodioritic magma may in turn react with mafic material on its upward flow to yield quartz diorite. Later granitic magma may nise through a sheath of the earlier intrusives. Oher hypotheses are desirable.
The variation in ratio of different kinds of Theous rock in the different zones needs study. The plutons of the epizone may be predomilantly granodiorite, quartz monzonite, and branite. The tonalitic facies in gencral appear 10 form a larger percentage of the rocks in the plutons of the mesozone than in those of the pizone. Quartz monzonite, granite, and leucogranite or alaskite are far more common among the members of the granite family in certain belts of the catazone than in the mesozone (Daly, 1914, p. 60; Osborne, 1956). In particular, andesine-quartz diorite apparently is relatively subordinate in these elts. Andesine and labradorite anorthosite and gabbroic anorthosite of the types found in massifs and independent sheets are possibly amost exclusively in belts of the catazone. Assuming the foregoing relationships are correct, although we do need quantitative data to substantiate them, some suggestions as to their origin may be offered as bases for study. is the restriction of the types of anorthosite mentioned to the catazone the result of the necessity for the kind of environment which by acling as a plastic envelope (the country rock soften marble) under high pressure permits the retention of the high volatile content essential to keep the equivalent magma fluid and of gabbroic anorthositic or anorthositic composition, or is it a phenomenon to be correated with greater age, or both? A favorable home for quartz diorite is the mesozone. Is this because the quartz diorite magma origitates largely through reaction of more alkalic granitic magmas with mafic rocks, thus losing widity and to a substantial extent not rising above the mesozone? Is the predominance of granodiorite and granite relative to quartz diorite in the cpizone the consequences of equivalent magmas being the lightest types and fuid at relatively low magmatic temperatures because of volatile content and their lower melting intervals? Why the predominance of granite in certain catazonal belts? One answer might be, "They are granitization products". But the writer is not convinced that this is the whole answer because magmatic
mesoperthite granite bulks large in the Adirondack belt of catazonal rocks.

Problem of Volcanic and Plutonic Associations
One of the most critical problems is whether or not our present knowledge indicates, or is consistent with, the hypothesis that there is a direct relationship between salic volcanic rocks, aphanitic or porphyritic intrusions, and granitoid plutons.
Kennedy (Kennedy and Anderson, 1938) has made a sharp distinction between voleanic and plutonic associations with respect to igneous rocks. He postulates that the volcanic associations include not only lava flows and directly related vent intrusions but also such intrusions as the great sill swarms of the Karroo, South Airica, the Palisades sill of New Jersey, and even the great sheets such as the Bushveld igneous complex of the Central Transvaal, South Africa, all of which are in nonorogenic areas and intimately associated with volcanic phenomena. Plutonic associations on the other hand he suggests appear to be limited to orogenic regions and consist almost entirely of granodiorite and gramite together with smaller amounts of their associated predominantly homblendic, basic, ultrabasic, and lamprophyric types, while typical gabbros are characteristically rare or absent. He further states that volcanic associations, on the contrary, are overwhelmingly basic and are composed mainly of basaltic magma or of rock types belonging to a basaltic line of descent. He concludes (1938, p. 30) that
"Altogether, there does not appear to be any very direct evidence to indicate a close connection between plutonic activity and volcanicity"
and (1948; p. 2-3) that
"there is a universal absence of lavas belonging to a period contemporaneous with the rise of batholithic

A recent discussion of the problem has been given by Raguin (1957, p. 185-199). He refers to subvolcanic granite masses as truly very special and exceptional and moreover ambiguous in interpretation. He attributes to E . Suess the development of the concepts that successively deeper denudated levels reveal lava flows, hypabyssal porphyry intrusions, and grained plutonic bodies of similar com position but different texture and that all are
owamany wated. He also presents a discus son an opposite philosophy that envisage e foregoing concepts as seductive but de ceiving and that interprets the association of volcanic rocks and major plutons in the earth's crust to have no direct relationship. Some proposed objections to the Suess concepts are that the succession in plutonic rocks is from basic to acid but in volcanic rocks from acid to basic, irregular or recurrent; volcanic rocks may occur independent of plutonic rocks, and vice versa; volcanism is related to periods of racturing of the crust, plutonism to periods of folding; plutonism occurs after vulcanism; a true volcano has never been observed to rise from a plutonic mass; and identities such as volcanic and plutonic quartz porphyries are only a phenomenon of convergence. Raguin concludes that the problem of the relationship of vulcanism to plutonism is still unsolved.
The ideas of Kennedy have been criticized by Tyrrell (1955, p. 420) who writes
"The lava series ranging from pyroxene andesite to rhyolite, therefore, has the same chemical composition, the same geological and geographical distribution, the same tectonic environment, and appears at the slutonic stage of the tectono-igneous cycle as granite. If the latier belongs from quartz diorite to ation there seems to be no escape fromitonic assocision that the andesite-dacite rhyolite series likewise does ... The writer suggests that the whole trouble with plutonic and volcanic associations is that they are wrongly named."

The many citations (21) in this review dem onstrate that it is normal for volcanic rocks of equivalent composition to be associated in space, time, and tectonics with plutons emplaced in the cpizone.' Many granitic bodies that have been called plutonic because of their medium to coarse grain and their batholithic size are not plutons in the sense of deep-seated emplacement. Exceptionally cogent examples that provide a clear demonstration of the succession of magmalic activity from volcanism to high-level granite emplacement have been described from Northern Nigeria by Jacobson, MacLeod, and Black (1958, p. 7). Here are about 40 granite complexes in a belt about 270 miles long and up to 100 miles wide. The total area of granite is about 2000 square - miles, and there is about 500 additional square miles of rhyolite of similar chemical composition and age. The rhyolite furthermore is almost wholly confined within the granite ring complexes. The granite plutons are up to
about 3 times as many complexes, each about 3 times the aren, in the mesozone $\frac{\pi}{4}$ neath this belt, it would mean a contine great batholith, 270 miles long with an aray width of 65 miles.
Some of the very small plutons of the epin. may be granitic, granophyric, or monroct differentiates of basaltic magma bodies loois somewhat below. But it seems essential most of the salic lava flows and stocks and the batholiths of the epizone originated t^{2} granitic magma of deep-seated origin.
A diversity of succession in lava sequent can reasonably be interpreted in terms of cessive pulses of basaltic or andesitic mager from depths and magmas of the rhyd rhyodacitc, dellenite, dacite group 1 f epizonal plutons. It is also probable that so of the cpizonal dikes of granitic composit came directly from great depth rather the from epizonal plutons. In summary, the m rocks are predominantly extruded as lavas emplaced in the epizone, whereas the fate rocks, although including lava flows and mase related plutons emplaced in the epizone, are volume per cent largely emplaced in ${ }^{6} \mathrm{t}$ mesozone and catazone. If the granite of nated as a differentiate of gabbroic magmat the mesozone or catazone, at a level above tu source of the gabbroic magma itself, then bode: of gabbro at least 10 times as large astat granite plutons should be common in mesozone or catazone of the orogens. 5 bodies do not occur in appropriate volumit? these zones as now exposed.

Conclusion

The foregoing survey shows that the authe who have reported on detailed strudry studies of stocks and batholiths in Nar? America have reasoned that granitization $0^{\mathbf{T}^{3}}$ occasionally has played a role in the mechand of emplacement of plutons in the epizone, been of subordinate significance (one aut ${ }^{2}$) excepted) in the mesozone, but has played major although not necessarily a grealy:pon ponderant part in the catazone. Otherwise reliance has been on magma emplacemin One might also conclude from such a surve. however, that the unity of agreement in interif. tation has been far too great to be healthy 5 the optimum advance of our understand Hypotheses, in general, as to the respetetur roles of magma and of metasomatism inf
the problem remains one demanding cal studies and more dependable criteria.

References Citrd

lns, L. H., 1952, Ann. Rept of the director of the Grophysical Laborntory, 1951-1952: Carnegie Lost. Washington Year Book 51, p. 35-63 ,western C 1934 , Granites and related intrusives, $354-373$
a, V. T., and Fahey, J. J., 1957, Some pyroxenes associated with pyrometasomatic zinc deposits in Mexico and New Mexico: Geol. Soc. America Bull., v. 68, p. 881-896
Di.I. S., 1925 , The Giants Range batholith of Alinnesota: Jour. Geology, v. 33, p. 488-508 a, A. M., and Poldervaart, Arie, 1957, Zircons Irom the Animas stock and associated rocks, trowe Mexico: Econ. Geology, v. 52, D. 952-971 in the Clare River syncline, a demonstration of granitization, $42-52$ in Themonstration Edilar The Grenville problem: Royal Soc Canada Special Pub. 1, 119 p.
derson, A. L., 1934, Contact phenomena associalted with the Cassia batholith, Idaho: Jour. Ceology, v. 42, p. 376-392
1952, Multiple emplacement of the Idaho Fatholith: Jour. Geology, v. 60, p. 255-265 Lerson, C. A., 1941, Volcanoes of the Medicine y. 25, p. 347-422
derson, C. A., Scholz, E. A., and Strobell, J. D. 1956, Geology and ore deposits of the Bagdad area, Yavapai Counly, Arizona: U. S. Geol. Survey Prof. Paper 278, 103 p .
terson, E. M., 1936, The dynamics of the formation of cone shects, ring dikes and cauldron subsidences: Royal Soc. Edinburgh Proc., v. 56, pt. 2, p. 128-157
and, G. H., 1937, Granitization, albitization, and related phenomena in the northern Inyo Range of California-Ne
ica Bull., v. 48, p. 1-74
ra Bull., v. 48, p. 1-74 Cassiar J. E., 1949, Fort St. James Map-Area, Cassiar and Coast districts, British Columbia: Geol. Survey Canada Mem. 252, 210 p .
pro D. M., 1951, The geology of Burlington peninsula; Newfoundland: Geol. Survey Canada Paper 51-21, 70 p
Tey, E. B., el al., 1924, The Tertiary and postTertiary geology of Mull, Joch Aline, and Oban: Geol. Survey Scotland Mem., 445 p .
r rocks: Geo 1937, Structural behavior of igneous rocks: Geol. Soc. America Mcm. 5, 177 p.
1946, Gneiss dome at Shelburne Falls, Massachusetts: Geol. Soc. America Bull., v. 57, p. * 125-160
, Robert, and Grout, F. F., 1934, Structural study of the Snowbank stock: Geol. Soc. America Bull., v. 45, p. 621-636
arell, Joseph, 1907, Geology of the Marysville mining district, Montana: U. S. Geol. Survey Prol. Paper 57, 178 p.
h, Tom F. W., 1947, The Birkeland granite, a case of petroblastesis: Comm. Géol. Finlande

Indonesia. V. la, General geology: The Hague, Govt. Printing Ófice, 732 p .
Biehler, S., and Bonini, W. E., 1958, Gravity anomalies and tectonic features of northwestern Montana (Abstract): Geol Soc bath ara, Montana (Abstract): Geol. Soc. America Bull., V. 69 p. ${ }^{1534}$

Billings, M. P. 1928, The petrology of the North Conway quadrangle in the White Mountains of New Hampshire: 1 m .
Proc., v. 63 , p. $68-137$
\qquad 1937, Regional metamorphism of the LittletonMoosilauke area, New Hampshire: Geol. Soc. America Bull., v. 48, p. 463-566

- 1943, Ring-dikes and their origin: N. Y. Acad.' Sci. Trans., ser. 2, v. 5, p. 131-144 1945, Mechanics of igneous intrusion in New Hampshire: $\Lambda \mathrm{m}$. Jour. Sci., v. 243-A, p. 40-69 1947, Structural geology: N. Y., Prentice-Hall, Inc., 473 p .
- 1948, Discussion, p. 122 in Gilluly, James, Chairman, Origin of granite: Geol. Soc. America $\mathrm{Ncm} .28,140 \mathrm{p}$.
- 1956, The geology of New Hampshire. Pt. II, Bedrock gcology: Concord, N. H., N. H. State Plan. and Devel. Comm., 203 P .
Bodenlos, A. J., and Ericksen, G. E., 1955, Leadzinc deposits of Cordillera Blanca and northern Survey Bull. 1017, 166 p.
Boos, M. F., and Boos, C. A., 1934, Granites of the lront Range; The Longs Peak-St. Vrain
batholith: Geol. Soc. America Bull., v. 45, p. 303-332
-1957, Tectonics of eastern flank and foothills Front Range, Colorado: Am. Assoc. Petrolcum Geologists Bull., v. 41, p. 2603-2676
Bowen, N. L., 1948 , The granite problem and the method of multiple prejudices, p. 79-90 in Gilluly, James, Chairman, Origin of granite:
Geol. Soc. America Mem. 28, 140 p . Geol. Soc. America Mem. 28, 140 p .
Broedel, Carl, 1937, The struclure of the gneiss domes near Baltio
v. 13, p. 149-187
Buddington, A. F., 1929, Geology and mineral deposits of southeastern Alaska: U. S. Geol. Survey Bull. 800, 398 p .
- 1929a, Geology of Hyder and vicinity, southeastern Alaska: U. S. Geol. Survey Bull. 807, 124 p.
- 1929b, Granite phacoliths and their contact zones in the northwest Adirondacks: N. Y. State Mus. Bull. 281, p. 51-107
- 1934, Geology and mineral resources of the Hammond, Antwerp, and Lowville quadrangles: N. Y. State Mus. Bull. 296, 251 p. 1939, Adirondack igneous rocks and their metamorphism: Geol. Soc. America Mem. 7,
354 p .
- 1948, Origin of the granitic rocks of the northwest Adirondacks, p. 21-44 $2 /$ Gilluly, James, Mem. 28, 140 p .
- 1956, Correlation of rigid units, types of folds and lineation in a Grenville belt, p. 99-119 in Thomson, J. E., Edilor, The Grenville problem: Royal Soc. Canada Special Pub. 1, 119 p.
_ 1957, Interrelated Precambrian granitic rocks.

Buddington, A. F., and Callaghan, Eugene, 1936,
Dioritic Dioritic intrusive rocks and contact metaAm. Jour in the Cascade Range in Oregon:
Buddington, A. F., v. 31, p. 421-449 Genlogy of the Willsboro aundr, 1., 1941, York: N. Y. State Mus. Bull. 325 , 13^{9} ic, New
Buddington, A. F., Frihey, Bul. and, Vlisid 1955 , Thermonactric and petrogenetic significance of titaniferous magnetite: Am. Jour. Sci., v. 253, p. 497-532
Burbank, W. S., 1933, Vein systems of the Arrastre Basin and regional geologic structure in the
Silverton and Silverton and Telluride quadrangles, Colorado: Colo. Sci. Soc. Proc., v. 13, j. 135-214

- 1941, Structural control of ore deposition in tricts of the San Juan Mountains: Colo Sci Byers, A. R., 1957 Gec. P. 141-261
Byers, A. R., 1957, Gcology and mineral deposits of katchewan Dep Lake area, Saskatchewan: Sas-
Cairnes, C. E., 1940, The Shuswap rocks of 45 p . British Columbia: 6 th Pacific Sci Cons southern British Columbia: 6th Pacific Sci. Cong. Proc.,
V. 1, p. 259-272
Calkins, F. C., 1930 Yosemite region: U. S. Gcol. Survey prof Papermite region: U. S. Gcol. Survey Prof.
Calkins Pa 100, p. 120-129
 Fork area, Utah: U. S. Gcol. Survey Prof Paper 201, 152 p.
volcanic sequence in the Cascade Res of the Oregon: Am. Gcophys. Union Trans., p. 243 in
Cannon, R. S., 1937, Geology of the Piseco Lake
Cargill, H. K., Hawkes 1928, The major intrusions of southeastern Iceland: Geol. Soc. London Quart. Jour., v. 84 Iceland: Geo
p. $505-537$
Chapman, R. W., 1954, Criteria for the mode of emplacement of the alkaline stock at Mount Monadnock, V. 65 , permont: Geol. Soc. America
Bull., v. 65, p. 97-114
Chapman, R. W., and Will
of the White Mountain magma sericolution Mineralogist, v. 20, P. $502-530$
Chayes, F., 1956, Statistical petrolog,
Lab. Ann. Rept. Director for 1955-1956, p. 214
Christie, A. M., 1953 , Goldfields-Martin Lake maparea, Saskatchewan: Gcol. Survey Canada
Cloos, Ernst, 1934 .
Cloos, Ernst, 1934, The Loon Lake pluton, Ban-
croft area, Ontario, Cana croft area, Ontario, Canada: Jour. Geology, v
42 , p. 393-399
- 1936 Der Sier

Neues Jahr. für Mineralogie in California: Paüs Jahr. für Mineralogie, Geologic, und 450 Paiaontologie Beil.-Band 76, Abt. B., p. 355-
Cloos, H
chen Vorgänge, Braunschweig: Heft 57 vulcanis1953, Conversation with the carth 57 , p. 1-95. Arom German by E. B. Garside: N. Y., Alfred loos, Hnopi, 4.13 p .
Cloos, Hans, and Cbudoba, K.; 1931, Der Brandberg: Neues Johrbuck, Beil.-Band 66, Abt. B,
p. 1-82
Clough, C. T., Maufe, H. B., and Bailey, E. B.,

Compton, R. R., 1955, Trondjhemite batholit near Bidweli Bar, Trondjhemite bathol near Bidwell Bar, Califor
America Bull., v. 66, p. 9-44
Cooper, J. R., 1954 , 66, p. 9-44
Area, Newfound Land oile-Cinq Cerf Mus Mem. 276, 62 p .
Cross, Whitman, 02 . review of the geology of L. S., 1935, A brid southwestern Colorado: U S Geol Bull. 843, 138 p .
Currier, I. W., 1947, Granitization and its signifcance as a regional metamorphic process ia New. England: Wash. Acad. Sci. Jour., v. 31, P. 75-86

Curtis, G. H., Evernden, J. F., and Lipson, Jo 1958: Age determination of some granilic; method: Calif. Div. Mines Special Rept. 54, method
16 p .
Daly, R. R., 1914, Igneous rocks and their origin:
N. Y., McGraw-Hill N. Y., McGraw-Hill Book Co., 563 p the earth: N. Y., McGraw-Hill Book Co 508 p .
Dawson, K. R., 1954, Structural features of the Preissac-Lacorne batholith, Abitibi County Quebec: Geol Survey Canada Paper $53 / 4$ - 1958, An application of Multivariate variance analysis to mincralogical variation, Preissace: Lacorne batholith, Abitibi County, Quebect The Canadian Mineralogist, v. 6, pt. 2, p. 222-
, 233 kson, F. W., 1958, Zonc melting as a mechanism
of intrusion ((bstract) : Am. Gcophys. Unior, of intrusion (Abstract): Am. Gcophys. Union,
Program 39th Ann. Mecting, p. 35 Dietrich, R. V., 1954, Fish Creck p. 35 western New York: Am. Jour. Sci., v. 252, p. 513-531
Dings, McClelland, and Robinson, C. S., 1957, Geology and ore deposits of the Garfield quad rangle, Colorado: U. S. Geol. Survey Prof. Paper 289, 110 p.
quadrangle and the souy of the Memphremagos lrasburg quadrangle, Vermont: Vt. Geal Survey Bull. 3, 113 p . .
Drews, H., 1958, Structural geology of the southera Snake Range, Nevada: Geol. Soc. America Bull., v. 69, p. 221-240
Dunham, K. C. . 1935, Geology of the Organ Moun-
tains: N. M. School Mines Bull tains: N. M. School Mines Bull. 11, 272 p.
urrell, C., 1940, Metamorphism in the southern Univ. Calif. Dept. Gast of Visalia, California: Univ. Calif. Dept. Geol. Sci. Bull., v. 25, p
Eckel, E.
deposits of the La Plata district Cology and ore U. S. Geo Survey Prof Paistrict, Colorado:

Eckelmann, F. D., and Poldervart, Arie p. Geologic evolution of the Beartooth Mountains, Montana and Wyoming. Pt. 1 Archaem: history of the Quad Creek area: Geol. Soc: America Bull., v. 68, p. 1225-1262
Eckelmann, W. R., and Kulp, J. L., 1957, Uraniumlead method of age determination: Geol. Soc
Egeler, C. G., 1954, Pred. 1117-1140
Egeler, C. G., 1954, Predominance of intermediate
and more and more acid rocks among the Cretaceowa
character of plutons in the Cordillera Blanca, Peru: K. Nedicrl.
v. 57, p. $490-496$
J. H., and Dennis J. G., 1958, Geology of the Concord-Wateriord area, Vermont: Vt. Geol. Survey Bull. 11, 66 p .
ola, P. E., 1949, The problem of mantled gneiss domes: Geol. Soc. London Quart. Jour., v 104, p. 461-476
1952, Λ discussion of domes and granites and ores: Soc. Geol. de Finlande Comptes Rendus, XXV, p. 125-144
Potassium, J. F. Curtis, G. H., and Lipson, J., 1957 Potassium-argon dating of igneous rocks: An Assoc. Petroleum Geologists Bull., v. 41, p 2120-2127
ing, M., and Press, F., 1957, Regional measure ments of crustal thickness: Geol. Soc. Americ Bull., v. 68, p. 1816
$24-28$ in. E., 1957, Nova Scotia mica ages, p strontium, calcium and argon and related topics: U.S. Atomic Energy Comm. 4th. Ann Progress Rept. for 1956-1957, N. Y. O.-3937 117 p .
, H., 1954, Nuclear geology: N. Y., John Wiley \& Sons, p. 265-266
W. G.; 1916, Are the "batholiths" of the Haliburton-Bancroft area, Ontario, correctly named?: Jour Geology, v. 24, p. 783-791
fe, W. S., Turner, F. J., and Verhoogen, John, 1958, Metamorphic reactions and metamorphic facies: Geol. Soc. America Mem. 73, 260 p .
determinations from the basement rocks of Beterminations lrom the basement rocks of the (Abstract): Geol. Soc. America Bull., v. 68, p Abs
1732
es, R. M., 1954, The bedrock geology of the Woodbury quadrangle: Conn. Geol. Nat. Hist Survey Quad. Rept. 3, 23 p.
Gult, H. R., 1945, Explosion-breccia in the Wrangell district, southeastern Alaska: Am Geophys. Union Trans., v. 26, p. 389-390 1945-A, Petrography, structures, and petrofabrics of the Pinckneyville quartz diorite Alabama: Geol. Soc. America Bull., v. 56, p 181-246
thman, H. M., 1958, Notch Peak intrusive: Utah Geol. and Min. Survey Bull. 62, 50 p .
ers, T. W. and Frommurze, H. F., 1929, The Seology of Northwestern Dest Africa: Geol. Soc S Africa T v. 32, p. 31-57

Gilluly, James, 1932, Geology and ore deposits of the Stockton and Fairfield quadrangles, Utah: U. S. Geol. Survey, Prof. Paper 173, p. 61-62 1946, The Ajo mining district, Arizona: U. S Geol. Survey Prof. Paper 209, 112 p.
ddard, E. N., 1935, The influence of Tertiary intrusive structural features on mineral deposit at Jamestown, Colorado: Econ. Geology, v. 30, p. $370-386$
discove R. Y., 1941, A John Day vertebrate fossil discovered in the Keechelus series of Washing ton: Am. Jour. Sci., v. 239, p. 590-593
cenwood, Robert, 1951, Younger intrusive rocks of the plateau province, Nigeria, compared

1945, Scale models of structures related to
batholiths: Am. Jour. Sci., v. $243-$ A, p. $260-284$ batholiths: Am. Jour. Sci., v. 243-A, p. 260-284 structures in the Boulder batbolith: Geol. Soc America Bull., v. 45, p. $877-896$
Gutenberg, Beno, 1957, Zur Frage der Gebirgswurzeln: Geol. Rundschau, Band 46, Heft 1, p. $30-38$
Hadley, J. B., 1942, Stratigraphy, structure, and petrology of the Mt. Cube area, New Hamp-
shire: Geol. Soc. Amcrica Bull., v. 53, p. 113shire: Geol. Soc. America Bull., v. 53, p. 113176
Hague, J. M., Baum, J. L., Herrmann, A. L., and Pickering, R. J., 1956, Geology and structure of the Franklin-Sterling area, New Jersey: Geol. Soc. America Bull., v. 67, p. 435-474
Hamilton, W. B., 1956, Geology of the Huntington Dive Mines Special County, California: Calif Div. Mines Special Rept. 46, 25 p. 1956, Precambrian rocks of Wichita and Arbuckle Mountains, Oklahoma:
America Bull., v. 67, p. $1319-1330$
Harker, Alfred, 1909, The natural history of igneous rocks: N. Y., Macmilian Co., 384 p . Harrison, J. E., and Wells, J. W., 1956, Geology and ore deposits of the Freeland-Lamartine dis-
trict, Clear Creek County, Colorado: U. S Geol. Survey Bull. 1032-B, p. 3-127
Harrison, J. M., 1949, Gcology and mineral deposits of File-Tramping Lakes area, Manitoba: Gcol. Survey Canada Mem. 250, 92 p.
Henderson, J. F., 1943, Structure and metamorphism of early Precambrian rocks between
Gordon and Grcat Slave lakes Northwest Gordon and Great Slave lakes, Northwest 1948, Extent of Proterozoic granitic intrusions in the western part of the Canadian Shield: Royal Soc. Canada Trans., v. 42, ser. 3, p. 41-54
Herrmann, L., 1954, Geology of the Stone Moun-tain-Lithonia district, Gcorgia: Ga. Geol. Survey Bull. 61, 139 p .
Hewitt, D. F., 1953, Geology of the BrudenellRaglan area: Ont. Dept. Mines Ann. Rept., v. 62, pt. 5,123 p.

- 1956, The Grenville region of Ontario, p. 22-41 in Thomson, J. E., Edilor, The Grenville problem: Royal Soc. Canada Special Pub. 1, 119 p.
Hietanen, A. M., 1951, Metamorphic and igneous rocks of the Merrimac area, Plumas National Forest, California: Geol. Soc. America Bull.
Holtedah Oia 1943
oltedahi, Olal, 1943, Studies on the igneous rock
complex of the Oslo region. I, Some structural complex of the Oslo region. I, Some structural
features of the district near Oslo: Norske features of the district near Oslo: Norske
Vidensk.-Akad. Oslo, Mat.-Nat. Kl., Skr. 71 p.
1952 , The structural history of Norway and its relation to Great Britain: Geol. Soc. London Quart. Jour., v. 108, p. 65-98
Hotz, Preston, 1953, Magnetite deposits of the Sterling Lake, N. Y.-Ringwood, N. J. area: U. S. Geol. Survey Bull. 982-F, p. 153-244

Huffington, R. M., 1943, Geology of the northern Quitman Mountains, Trans-Pecos, Texas Geol. Soc. America Bull., v. 54, p. 987-1048
Hunt, C. B., 1956, Cenozoic geology of the Colorado plateau: U. S. Geol. Survey Prof. Paper 279, 99 p.
ansoun, к. w.. 1yss, Kegional zonation of peg-
matites near Ross Lake, District of Macmatites near Ross Lake, District of Mac Canada Bull 3450 P. Canada Bull. 34, 50 p .
Jacobson, Reginald R. E., Macleod, W. N., and Black, Russell, 1958, Ring-complexes in the younger granite province of northern Nigeria mes, H. L., 1955, Zones of region
in the Precambrian of northern Michigan: in the Precambrian of northern Machigan:
Geol. Soc. America Bull., v. 66, p. 1455-1488
Joliffe, A. W., 1944, Rare-element minerals in peg matites, Yellowknife-Beaulieu Area, Northwest Territories: Canada Dept. Mines and Res. Paper 44-12, 23 p .
Kalliokoski, J.' 1952 , Weldon Bay map-area,
Manitoba: Geol. Survey Canada Mem. 270, Manit
80 p .
Kennedy, G. C., 1955, Some aspects of the role of water in rock melts, p. $489-504$ in Poldervaart, A., Editar, Crust of the earth: Geol. Soc America Special Paper 62, 762 p.
Kennedy, W. Q., 1948, Crustal layers and the origin of ore deposits: Schweiz. Mineralog. und
Pedy iv Q. $28, \mathrm{~F}$. 8
ennedy, W. Q., and Anderson, E. M., 1938,
Crustal layers and the origin of magmas: Bull Colcanol. Naples, ser. 2, T. 3, p. 23-82
Kerr, F. A., 1932, The character of the Coast Range com; Canada Trans., sce. 4, p. 305-316
Kerr, P. F., Kulp, J. L., Patterson, C. M., and Wright, R. J., 1950 , Hydrothermal alteration at Santa Rita, New Mexico: Geol. Soc. America Bull., v. 61, p. 275-340
Kingsley, Louise, 1931, Cauldron-Subsidence of the Ossippee Mountains: Am. Jour. Sci., v. 22, p.
139-168 . T. 1950, The geology of the Manawan Lake area, north halt Saskatchewan:
Knopf, Adolph 1948, The geosynclinal theory
Knopl, Adolph, 1948, The geosynclinal theory
Geol. Soc. America Bull., v. S9, p. 649-670

- 1950, The Marysvilic grandionte stock,
tana: Am. Mineralogist, v. 35, p. 834-844
- 1955, Batheliths in time, p. $685-702$ in Polder vaart, A., Edilor, Crust of the earth: Gcol. Soc. America Special Paper 62, 762 p.
- 1957, The Boukder bathylith of Montana: Am. Jour. Sci., v. 255, p. 81-103
Korn, H., and Martin, H., 1954, The Messum gneous complex of Southwest Airica: Geol. Soc. S. Africa Trans,, v. 57, p. 83-124
Kouvo, Olavi, and Gast, P. W., 1957, Comparative radioactive ages from some Finnish granites (Abstract): Am. Geophys. Union Program 38th Ann. Meeting, p. 30
Kranck, E. H., 1954, Deep structures and wlirametamorphism: N. Y. Acad. Sci. Trans., v. 16
Zrauskopi K
Krauskopf, K. B., 1943, The Wallowa batholith Am. Jour. Sci., v. 241, p. 607-628
Larsen, E. S., Jr., 1945, Time required for the
crystallization of the great batholith of southern crystalization of the great bathonth of souther and Lower
- 1948, Batholith and associated rocks of Corona, Elsinore, and San tuis Rey auadraneles

Larsen, E. S., Jr., and Cross, Whitman, 1954C ogy and petrology of the San Juan rs
southwestern Colorado: U. S. Geol. S southwestern Colorado:
Prof. Paper 258, 303 p .
Larsen, E. S., Jr., and Schmidt, R. G., reconnaissance of the Idaho bathonter balholith: U. S. Geol. Survey Bull. 10 1-33
Larsen, L. H., and Poldervaart, Arie, 1957, of the Bald Rock batholith, Californis ${ }^{\text {bl }}$ stract): Am. Geophys. Union Programe Ann. Meeting, p. 35-36
Lawson, A. C., 1894, A multiple diabase dikey Geologist, v. 13, p. 293-297
Leighton, M. W., 1954, Pctrogenesis of ag granophyre complex in northern
Geol. Soc. America Bull., v. 65, p. $401-42$.
Loughlin, G. F and Koschman, A. H. ${ }^{\text {Q }}$ Gcology and ore deposits of the Magite mining district, New Mexico: U. S. Gedts vey Prof. Paper 200, 168 p.
Lovering, T. S., 1935, Geology and ore depcim Geol. Survey Prof. Paper 178, 119 p. .t
Lovering, T. S., and Goddard, E. N., 1950 , \mathbf{C} and ore deposits of the Front Range, Cober
Lovering T. S., and Tweto, Ogden, 1953, Cem and ore deposits of the Boulder County Prof. Paper 245, 199 p.
Lowe, Kurt, 1950, Storm King granite Mountain, New York: Geol. Soc. Avet, Bull., v. 61, p. 137-190
Lyons, J. B., Jaffe, H. W., Gottfried, D., ing, C. L., 1957, Lead-alpha ages dos New Hampshire
255 , p. 527-546
Macdonald, Gordon, 1941, Gcology of the reven Sierra Nevada between the King and ${ }^{\text {S }}$ Bull., v. 26, p. 215-273
Macgregor, A. M., 1951 , Some milestone S. Africa Trans. v. 54, p. xxvii-ixxi

Mackenzie, D. H., 1958 , The structure o town granite complex, Morayshire: Ged v. 95 , p. $57-70$

Mackin, J. Hoover, 1947, Some structuralitet of the intrusions in the Iron Springs dit
Utah: Utah Geol. Soc. Guidcbook no. 2 , 6 ,
Marshall, C. E., and Narain, H., 1954, Re gravity investigations in the Eastat
Central Commonwealth: Univ. Sydnejo Central Commonwealth: Univ. Sydnej̈b Geology and Geophysics Mem. 2, 10
Marshall, P., 1935, Acid rocks of the ${ }^{3}$,
Rotorua Rotorua volcanic district: Royal
Mathews, W. H., 1958, Geology of the Mo baldi map-area, southwestern British Couns Canada:
Matzko, J. J., Jaffe, H. W., and Waringate it 1958, Lead-alpha age determinationsto itic rocks fr
p. $529-539$
Mayo, Evans B., 1941, Deformation in the mer
the southwestern part of the Ramona quadagle, San Dicgo County, Californi
It, C. A., 1958, Igneous geology of the Lake Htus area, Oklahoma: Okla. Geol. Survey, boll. 76, 70 p .

- 0 , Paul, 1956, La géologie des zones profondes P lecorce terrestre: Soc. Geol. Belgique Ann., 80, p. 119-60
1957, Phénomènes géologiques dans la catazone erolonde: Geol. Rundschau, Band 46, Heft 1, 143-147
aii, H. M., and Digman, R. E., 1957, The bedfock geology of the Guilford 15 -minute quadangle and a portion of the New Haven quad-
angle: Conn. State Geol. and Nat. History langle: Conn. State
Sarvey Bull. $86,93 \mathrm{p}$.
sarvey Bull. $80,93 \mathrm{p}$.
he Peter, 1949, Metasomatic granitizat dimensions; Part II. Static manilization in Sheku area, northwest Yunnan: Am. Jour. Sci., v. 247, p. 372-406
1052 Geolory of the northern Cascades of hashington: The Mountaineer, v. 45, p. 4-22 mman, R. S., 1948, Discussion, p. 117-118 in Gilluly, James, Editor, Origin of granite: Geol Soc. America Mem. 28, 140 p .
I. D., and Smith, J. V., 1956 , Crystallization Celdspars in larvikites: Zeit für Kristall., Band 107. Heft 3, p. 182-195
Thy, V. R., 1957, Bed rock geology of the East Barre a
121 p.

41 p.

E. R. W., 1957, Ambiguous intrusive relationship of the Betts Cove-Tilt Cove serpentine belt, Newfoundland: Geol. Assoc. Canada Proc., v. 9, p. 95-107
ools, David R., 1956, Narragansett Pier quad-
rangle, Rhode Islan
Geol. Survey GQ 91
Geol. Survey GQ 91. Harder, J. O., and Slaughter, A. L., , J. A., Harder, J. O., and slaughter, Black Hills and the Homestake Mine, Lead, South Dakota: Geol. Soc. America Bull. v. 60 South Dak
p. $321-352$
p. T. B., 1935, The Gold Hill mining district, Ulah: U.S. Geol. Survey Prof. Paper 177, $172 p$. aan, G. W. H., 1945, Molybdenite deposits and pegmatiles in the Preissac-La Corne area, Abitibi County, Quebec: Econ. Geology, v. 40 , p. 1-17
d, Gerhard, 1955, Der pluton von Loch Doon Südscholtland: Stutlgart, Geotekt. Forsch., Helt 11, p. 1-83
Hett 11, P. $1-83$, of the Oslo region. X , The feldspars: Norske Vidensk.-Akad. Oslo, Mat.-Nat. Kl., Skr. 3, p. 1952, Studies on the igneous rock complex of the Oslo region. XII, The lavas: Norske Vidensk.-Akad. Oslo, Mat.-Nat. KI., Skr. 3, 64 p .
1953, Studies on the igneous rock complex of he Osto region. XIII, The cauldrons: Norske Vidensk.-Akad. Osto, Mat.-Nat. Kl., Skr. 3 108 p .
orne, F. F., 1934, The Chatham-Grenville composite slock, Quebec: Royal Soc. Canada Trans., sec. IV, v. 28, p. 49-63
1936, Intrusives of part of the Laurentian
in Gilluly, James, Edilor, Geol. Soc. America Mem. 28, 140 p

- 1950 , che southern part of the Timiskaming and the southern part in Quebec: Royal Soc. Canada Trans., v. 50, p. 53-63
Paige, S., 1916, Silver City folio: U. S. Gcol. Survey
Paige, S., $1910,19 \mathrm{p}$.
folio 199,19
folio $199,19 \mathrm{p}$. , Granitization, metamorphism Perrin, Rene, 1954, Granitization, m. 252, p. 449and
465
Perrin, René, and Roubauit, M., 1949 On the ${ }_{379}$ grnite problem: Jour. Geology, v. St, p. Phair, George, 1949, Gcology of the southwestern part of the Long Range, thesis, Princeton Univ.
Phemister, T. C., 1945, The Coast Range batholith near Vancouver, British Columbia: Geol. Soc. London Quart. Jour., v. 150, p. 37-88
Philbrick, S. S., 1936, The contact metamorphism of the Onawa pluton, Piscataquis County Maine: Am. Jour. Sci., v. 31, p. 1-40
Pinson, W. H., Fairbairn, H. W., Hurley, P. M., Herzog, L. F., and Cormier, R. F., 1957, Age study of some crystalline rocks of the Georgia Bull., v. 68, p. 1781
Pitcher, W. S., and Sinha, R. C., 1958, The petro chemistry of the Ardara aureole: Geol. London Quart. Jour., v. 113, p. 393-408
Playfair, John, 1802, Illustrations of the fintonian theory of the earth (Rcproduction wis Univ. 111. duction by George White): Urbana,
Press, 1958
Poldervaart, Arie, and von Backström, J. W., 1949, A study of an area . Africa Trans., v. 52, p. 433-495
Poole, W. H., 1955, Woll map with marginal (Preliminary gurvey Canada Paper 55-21
notes): Geology of the Cassiar Mountains in the vicinity of the Yukon-British Columbia bound ary: Ph.D. thesis, Princeton Univ.
Powers, Sidncy, 1915, The origin of inclusions in dikes: Jour. Geology, v. 23, p. 1-10, 106-182
Quinn, A. W., Jalle, H. Wilpha ages of Rhode Waring, C. L., Lead-alpha ages of Rhode Island granitic rocks compas, p. 547-560
ages: Am. Jour. Sci., Quirke, T. T.' 192 , Soc America Bull., v. 38, p matites.

1929. The structures of the French River area. Jour. Geology, v. 37, p. 683-699
Jour. Geology, v. 37, p. 683-699
Guirke, T. T., and Collins, W. H., 1930, The disQuirke, T. T., and Collins, Wuronian: Geol. Survey Canada Mem. 160, 129 p.
Quirke T T and Lacy, W. C., 1941, Deep-zone Quirke, T. T., and Lacy, W. C., dome $589-609$.
Raguin, E., 1957, Géologie du granit: Paris, Masson
Read, H H 1949 , a contemplation of time in Read, H. H., 1949, A contemplat Quart. Jour., v. plutonism: Geol. Soc. London
105, p. $101-156$
1930. Metamorphism and granitization: Geol.
in. Poldervaart, A., Editor, Crust of the earth: Geol. Soc. America Special Paper 62, 762 p. past, present and fuguregy: Renections on its past, present and future: Jour. Madras Univ. Centenary Number, p. 71-83
Reed, J. C., 1934, Gcology of the Potsdam quadrangle: N. Y. State Mus. Bull. 312, 98 p.
Reesor, J. E., 1952, The White Creek batholith and its geological enviromen arca,
Univ.
1954, Preliminary map of Dewar Creek, British Columbia: Geol. Survey Canada Paper 53-25
Reynolds, D. L., 1958 Granite: some tectonic petrological, and physico-chemical aspects: Geol. Mag. v. 95, p. 378-396
Richey, J. E., 1948 , Scotland: The Tertiary volcanic districis: Edinburgh Geol. Survey and Mus. Dept. Sci. and Indus. Rescarch 105 p .
Robertson, D. S., 1953, Batty Lake map-area, 55 p .
55 p.
Rogers, C. L., Tavera, F.., and Ulloa, S., 1956, Map of Avalos-Concepcion del Ore Mineral district, Zacatecas, Mcxico: 20th Internat. Gcol. Cong. Guidebook, Excursion C-3
Roots, E. F., 1954, Geology and mineral deposits of Aken Lake map-area, British Columbia: Geol. Survey Canada Mem. 27, 240 p.
Rosenquist, I. T., 1952, The metamorphic facies and the feldspar minerals: Univ. Bergen, Arb.
Ross C. P. 1934 , 102
Casto quadrangle, Idaho: U. S. Geol Surve Bull. 854, 135 p.
1955, Provenience of pyroclastic material Geol. Soc. America Bull, v. 66, p. 427-434
Rouse, J. T., Hess, H. H., Foote, r., Vhay, J. S. and Wilson, K. P., 1937, Petrology, structure, and relation to tectonics of porphyry intrusions in the Beartooth Mountains, Montana: Jour. Geology, v. 45, p. 717-740
Runner, J. J., 1943, Structure and origin of Black Hills Pre-Cambrian granite domes: Jour. Geology, v. 51, p. 431-457
Sampson, E., 1928, Geology and silver ore deposits of the Pend d'Oreille district, Idaho: Idaho Bur. Mines and Geology Pamph. 31, 25 p.
Savolahti, Antti, 1956, The Ahvenisto massif in 96 p. Geol de
Schmitt
Mexico 1935 , The Central mining district, New Mexico: Am. Inst. Min. and Met. Engineers
Schofield, S, ${ }^{\text {M }}$ 115, D. 187-208
ore deposits of Salmon River district, British Columbia: Canada Geol. Survey, Mem. 132, 81 p.
Schwartz, G. M., and Sandberg, A. E., 1940, Rock series in diabase sills at Duluth, Minnesota: Geol. Soc. America Bull., v. 51, p. 1135-1171
Shillibeer, H. A., and Cumming, G. L., 1956, The bearing of age determination on the relation between the Keewatin and Grenville province: P. 54-73 in Thomson, J. E., Editor, The Gren$1,119 \mathrm{p}$.
Sims, Paul, 1
Sims, Paul, 1953, Geology of the Dover magnetite

Smith, A. R., and Stcvenson, J. S., 1955, Deformsishan, M., 1955, The emplacement of granite: Am tion and igneous intrusion in southern Britad Columbia, Canada: Geol. Soc. America Bull., 66, p. 811-818
Smith, Alexander, 1947, Control of ore by primari igneous structures, Porcher Island, Britits 245-262
Smith, G. O., and Calkins, F. C., 1906, Descriptia the Snoqualmie quadrangle, Washingtoo: U. S. Geol. Survey Folio 139, 14 p.

Snelgrove, A. K. 1931, Geology and ore deposits d Bets Cove-Tilt Cove aren, Newfoundland: Car adian Inst. Min. Met. 228, p. 477-519 Stenzel, H. B., 1936, Structural study of a phacolith: X, Internat. Geol. Cong. Rept., p. 361-361 of granitic rocks, Northgate district, Colorado: U. S. Geol. Survey Prof. Paper 274-M, p. 335377
Stewart, Lincoln, 1935, The petrology of the Pros: pct porphyritic gneiss of Connecticut: Cons.
State Geol. and Nat. History Survey Bull. J
Stringham, Bronson, 1953, Granitization and hydohiermal alteration at Bingham, Utah: Geol. Soc. America Bull., v. 64, p. 945-991
Strobell, J. D., Jr., 1956, Geology of the Carrizp Mountains area in northeastern Arizona and Oil and Gas Inv., Map OM 160 Shects 1 and 2
Sundecu' S. W., and others, 1935, Annotations of selected papers on the mechanics of igneous invasion: Natl. Res. Council Div. Geology and Geography Ann. Rept. 1934-1935, App. A Exhibit B, 54 p.
Taubeneck, W. H., 1957, Geology of the Elkhorn Mountain batholith: Geol. Soc. America Bull, r. 68, p. 181-238

Thomson, J. E., 1956, Geology of the Sudburt basin: Ontario Dept. Mines, v. 65, p. 1-56
Trefethen, J. M., 1944, Mt. Waldo batholith and associated igneous rocks, Waldo County, Maine Geol. Soc. America Bull, v. 55, p. 895-904
Tremblay, L. P., 1950, Piedmont map-area, Abitibi County, Quebec: Geol. Survey Canada Mem.
253,113 p.
Triplett, W. H., 1952, Geology of the silver-lcadzinc deposits of the Avalos-Providencia district of Mexico: Am. Inst. Min. Engineers Trans., p. 583-593
Tuttle, O. F., 1955, Degré geothermique et magmas granitiques: Colloque Int. de Pétrog. (France, Centre Natl. Rech. Sci-Nancy, Ecole Natl. Supérieure Géol. Appliquée)
Tuttle, O. F., and Keith, M. L., 1954, The granite problem: evidence from the quartz and feldspar $61-72$
Tweto, Ogden, 1951, Form and structure of sills near Pando, Colorado: Geol. Soc. America Bull. v. 62, p. 507-532

Tyrrell, G. W., 1928, Geology of Arran: Geol. Surves Scotland Mem., 292 p .

- 1955, Distribution of igneous rocks in spact, and time: Geol. Soc. America Bull, v. 66, p.
- Altine

Van Alstine, R. E., 1948, Gcology and mineral deposits of the St. Lawrence area, Burin

Rencontre East area, Newfoundland: Econ. Gencontre Last area, 15
Willard, Max, 1956, Bedrock geology of the Williamsburg quadrangle,
Surver GO 85 Survey GQ 85
Wilson, Morley, 1925, The Grenville pre-Cambrian subprovince: Jour. Geology, v. 33, p. 396-399 Winkler, H. G. F., 1958, Experimentalle Gesteins-metamorphose- ${ }^{\text {Acta v. 13, p. 42-69 }}$
Acta, v. 13, p. 42-69 Wright, C. W., 1908, The Wright, F. E., and Wrigat, C . W .ing districts Alaska: U. S. Geol. Survey Bull. 345, 210 p .
Wright, IV. J., 1931, Data on the method of granitic intrusion in Nova Scotia: Royal Soc. Canada Trans., v. 25, p. 309-327
Wynne-Edwards, H. R., 1957, Structure of the Wyme-Edwards,
Westport concordant pluton in the Grenville, Ontario: Jour. Geology; v. 65, p. 639-649
Princeton University, Princeton, N. J.
Princeion Universify, by the Combittee on Mandeript Received by inticies, November 2, 1958

REGIONAL GEOPHYSICS OF
 THE BASIN AND RANGE PROVINCE

George A. Thompson
Department of Geophysics, Stanford University, Stanford, California 94305

Dennis B. Burke
U.S. Geological Survey, Menlo Park, California 94025

Of late years the most important contributions have conte from the Physicists. and in their scales have been weighed the old theories of Geologists.
G. K. Gilbert (1874)

INTRODUCTION AND GEOLOGIC SETTING

Nearly one hundred years ago, Gilbert $(23,24)$ and other geologic pioncers introduced the idea that much of the seeming jumble of mountains and valleys in western North America was the result of far different processes than fold mountain systems such as the Appaiachians or Alps. After a century of geologic and geophysical investigations in the region, it is now generally accepted that the physiography of the Basin and Range province (Figure 1) is one of sculptured and partially buried fault-bounded blocks that have been produced by the extension of the region during late Cenozoic time. Crustal blocks composed of complexly deformed, diverse pre-Cenozoic rocks and relatively undeformed, predominantly nonmarine volcanic rocks of early and middle Cenozoic age have been variously uplifted, tilted, and dropped along numerous normal faults throughout a broad region from Mexico to Canada - from as far west as California and Oregon to as far east as western Texas (e.g. Cook, 13; Gilluly, 27; Thompson, 76).
The distribution of late Cenozoic normal faults in the western United States is shown on Figure 2 (note that the regional extent of faulting is somewhat larger than the Basin and Range physiographic province of Figure 1). The recent seismicity (Figure 3) shows that small earthquakes are widespread in what Atwater (5) called a wide soft zone accommodating oblique divergence between the Pacific and North American plates. The net effect of fault movements within this region is a crustal extension oriented roughly WNW-ESE. The actual motion on individual faults is quite variable, however, and appears to be controlled by the orientation of faults with respect to this principal extension (Thompson \& Burke, 78). In the northern portion of the region-actoss Nevada and western

Figure \rfloor Physiographic provinces of the western United States (Fenneman, 21).

Utah-the domain of faulting is neatly confined between the Sierra Nevada of California and the Wasatch Mountains of north-centra! Utah. The relatively unfaulted Colorado Plateau separates the central portion from a zone of faulting in the Rio Grande trough in New Mexico and west Texas. Relative motion between the unextended and rather enigmatic mass of the plateau and the encircling faulted terrain is presumably accommodated by a component of right-lateral strike-slip along the southern plateau border. Faulted terrain extends southwards without interruption into Mexico and the Gulf of California. Faulting seems to die out to the north, and the manner in which relative motions are accommodated along the northern boundary remains a troublesome problem.

Figure 2 Predominantly normal (Basin and Range) faults of late Cenozoic age in the western United States (modified from Gilluly, 26).

Although the Basin and Range province is in many ways a unique physiographic and geologic entity, increasingly precise and reliable geophysical studies, logether with advances in tectonic theory, highlight similarities between the province and other regions of past or present crustal extension. It has a high heat flow and widespread volcanism like other regions of active normal faulting, such as the Rift Valleys of Africa, the Lake Baikal depression of the USSR, the Rhine graben of Europe, the marginal basins of the western Pacific Ocean, and the worldwide system of oceanic ridges and rises. Along with the Sierra Nevada and Colorado Plateau, it forms a wide elevated region averaging $1-2 \mathrm{~km}$ above sea level and thus may resemble the elevated, thermally expanded oceanic ridges (Sclater \&

Figure 3 Earihquake epicenters in western North America for the period 1961-1970. Small dots represent earthquakes of magnitude ybout 3 to 5 , large dots greater than 5 . National Oceanographic and Atmospheric Administration epicenters replotled by J. C. Lahr and P. R. Stevenson of the US Geological Survey (personal communication, 1973).

Francheteau, 65). Also like some of these other regions, it has a thin crust and low mantle velocity.

Can regional geophysical data for the Basin and Range province, combined with interpretations of its geologic history, lead toward a better understanding of the tectonic procesşes that have controlled its development? To what exient have earlier geologic events in the region preordained the pattern of faulting that we now sec in western North America? What constraints must be heeded in tectonic models of the region, and what aspects of the province allow these models to be compared with other portions of the global system of ever-changing lithosphere plates? We
believe this last consideration to be of great importance, although it can only be touched on lightly here, because much understanding of the province derives from analogy with other regions of crustal extension. The currently most promising models relate Basin and Range structure to an earlier subducting plate at the western margin of North America, and they incorporate close physical comparisons with the marginal basins of the western Pacific.

REGIONAL CRUST AND MANTLE STRUCTURE

Crustal Thickness: Seismic Refraction

Seismic waves from explosions have provided the most reliable and detailed information on crustal thickness and indicate that the region of distinctive Basin and Range structures corresponds quite closely with a region of thin continental crust (Pakiser, 52; Prodehl, 55). Prior to the work of Tatel \& Tuve (74) it was generally assumed that the crust would be thicker under this elevated region than in continental regions near sea level, a relationship that has been found in other mountain regions. It was thought that lateral variations of velocity and density in the mantle were unimportant, or at least inconvenient in seismic interpretation, and that isostatic compensation was accomplished mainly by variations in crustal thickness.

Tatel and Tuve found that the crust in northwestern Utah is an anomalously thin 29 km . Verification came from Berg et al (6), Diment et al (16), and Press (54), although these authors initially used a different definition of the crust. They found abnormally low P-wave velocities of 7.6 to $7.8 \mathrm{~km} / \mathrm{sec}$ at shallow depth for what we have now come to identify as P_{n}, the wave traveling in the uppermost mantle below the M discontinuity.

Extensive explosion studies carried out by the US Geological Survey established the basic picture as we know it today. David H. Warren, of the USGS (personal communication, 1973) has compiled and interpreted these and other data into a contour map of crustal thickness (Figure 4). The contours are based on data of varying quality and on varying interpretation of velocity structures within the crust; nonetheless they represent a good first approximation. Almost the whole region from the Rocky Mountains westward has a thin but variable crust, roughly two thirds the thickness found in stable regions of comparable elevations. The eastern border of the Basin and Range province is marked by a fairly sharp gradient at the 35 km contour to a thicker crust under the Colorado Plateau. Southeast of the Colorado Plateau there is some indication of thinning beneath the Rio Grande trough of New Mexico and west Texas.
The crust is thicker beneath the Sierra Nevada to the west of the province [although this conclusion has been called into question by Carder (10)]. It is interesting to point out that in detail the thick crust of the Sierran region (Figure 5) extends into the Basin and Range province to the east of the Sierra Nevada. The eastward extent of thick crust does not correspond with the eastern border of the Mesozoic Sierra Nevada batholith (Figure 6), however; although a correlation of the low velocity zone with the border of the batholith is not ruled out.

Figure 4 Contour map of crustal thickness (in kilometers) based on seismic refraction studies. Small numbers indicate individual thickness determinations. Compiled by David H. Warren from the following sources: $1,4,7,11,16,19,20,22,30,34-39,44,55,57-59$, $62,66,67,70,72,73,82-85$.

Upper Mantle Velocity and Implications From Gravity

When it was found that the crust is abnormally thin beneath the Basin and Range province and adjacent regions it was also discovered that P_{n} is anomalous. Its velocity of 7.7 to $7.9 \mathrm{~km} / \mathrm{sec}$ is significantly less than the normal velocity of about $8.2 \mathrm{~km} / \mathrm{sec}$ observed in stable regions (Pakiser, 52; Herrin \& Taggart, 33; see Figure 7). Most of the Basin and Range province is characterized by the lowest

Figure 5 Crust and upper mantle structure in a section across central California and west-central Nevada as deduced from seismic-refraction studies. An alternative model beneath the Coast Ranges and Great Valley is shown by dashed lines; 10pography greally vertically exaggerated (from Eaton, 20).

Gravity data supply a fundamental constraint on the amount of mass per unit area underlying any region. This information is particularly valuable because seismic refraction measurements do not by themselves allow interpretations of the thickness of the anomalous upper mantle of low P_{n} velocity. Gravity interpretation utilizes: 1. crustal thicknesses from seismic refraction, 2. crustal densities estimated from-seismic velocities and geology, and 3. upper mantle densities estimated from P_{n} velocities. The gravity data then yield estimates of the thickness of anomalous mantle relative to stable regions (Thompson \& Talwani, 79). The required thickness of low-density, low-velocity anomalous upper mantle is at least 20 km over much of the region.

In comparison with stable continental regions near sea level, most of the isostatic support for the high Basin-Range and adjacent regions is in the anomalous upper mantle. This material must surely be a key element in any tectonic model.

Isostatic gravity anomalies in the United States (Figure 8) show that most of the region from the west coast to the eastern limit of the Basin and Range province is deficient in mass, with an average anomaly of perhaps around - 10 mgal. In this respect the region is similar to marginal basins of the western Pacific, which also tend to be isostatically negative.

The Lake Bomeville Experiment

A natural experiment in gravitational unloading of the Basin-Range crust occurred as pluvial Lake Bonneville, of late Pleistocene age, dried up, leaving the Great Salt Lake as its principal remnant. Prominent shorelines around the edge and on former islands mark the successively lower levels of Lake Bonneville. These shorelines are domed up toward the center as much as 64 m as a result of the unloading (Gilbert, 25 ; Crittenden, 14).

Figure 6 Distribution of granitic rocks in California and Nevada. Solid lines represent major active strike-slip faults (from Crowder et al, 15).

Using data from this natural experiment and a simple model of an elastic lithosphere floating on a fluid asthenosphere, Walcott (81) has computed the apparent flexural rigidity of the lithosphere and compared it with that of other regions subjected to various kinds of loading and unloading. Walcott's results, as shown in Table 1, illustrate that the flexural rigidity of the Basin and Range lithosphere is unusually low. He suggests that the anomaly may be explained by a "very thin lithosphere, only about 20 km thick, with hot, lower crustal material" acting as part of the asthenosphere. In contrast, the flexural rigidity of stable continental and oceanic regions suggests lithosphere thicknesses of 110 km and

Table 1 Apparent fiexural rigidity of the lithosphere (from Walcoth, 81)

Data	Region	Apparent flexural rigidity, Newlonmeters	Characteristic time, years
Lake Bonneville	Basin and Range province	5×10^{22}	10^{4}
Caribou Mountains	Stable continental platform	3×10^{23}	5×10^{6}
Interior Plains	Stable continental platform	4×10^{23}	5×10^{8}
Boothia uplift	Stable continental platform	7×10^{22}	5×10^{8}
Lake Algonquin	Stable continental platform	6×10^{24}	10^{3}
Lake Agassiz	Stable continental platform	9×10^{24}	10^{3}
Hawaiian archipelago	Oceanic lithosphere	2×10^{23}	10^{7}
Island ares	Oceanic lithosphere	2×10^{23}	10^{7}

75 km or more, respectively. The low P_{a} velocity and high heat flow (discussed in a later section) are consistent with Walcolt's interpretation.

Anomalous Manle and the Low-Velocity Zone

Several studies have indicated that the Basin-Range region has an unusually welldeveloped upper mantle low-velocity zone (LVZ) for both P - and S-waves. The relationship is not always clear between the accentuated LVZ (as defined by waves refracted at deeper levels in the mantle) and the anomalous upper mantle (as defined by low P_{n} velocity). In a study applicable to the central part of the Basin and Range province in Nevada and western Utah, Archambeau and associates (2) derived a model (Figure 9) in which the M discontinuity is at a depth of 28 km and the $P_{\text {a }}$ velocity just below it is $7.7 \mathrm{~km} / \mathrm{sec}$. This low velocity remains nearly constant to a depth of 130 km , where it undergoes a rapid transition to $8.3 \mathrm{~km} / \mathrm{sec}$. Thus the LVZ is about 100 km thick; it begins at the top of the mantle and coincides with the anomalous upper mantle.
In comparison, the same investigators derived three models applicable to regions northeast and east of the Basin and Range province, including the Colorado Plateau (Figure 9). These models have in common a "lid" of higher velocity material (P_{n} about $8.0 \mathrm{~km} / \mathrm{sec}$) above the LVZ, which is only about half as thick as in the Basin-Range model.
In the foregoing discussion a single model has been assumed to represent the Colorado Plateav, and this assumption seems reasonable because of the geological uniformity of the Plateau. However, within the limited resolution of the data, P_{a} velocities (Figure 7) appear to vary markedly over the Plateau and would not allow a single upper mantle model. This seeming conflict invites further research.
Helmberger (31) developed a new technique for studying regional variations of the LVZ. The method makes use of the nearly constant velocity of the PL wave in the crustal wave guide and the regional variation in the velocity of long-period P-waves. Results are mapped on Figure 10 (York \& Helmberger, 87) as observed time differences minus the time difference predicted from a model LVZ roughly

Figure 7 Contour map of $P_{\text {. }}$ (upper mantle) yelocities (in kilometers par second) (from Herrin, 32)
comparable to the Colorado Plateau model of Figure 9. Progressively more negative at values (delays of the long-period P-wave relative to the model) represent progressively thicker LVZ or lower upper mantle velocity. Positive values represent thinner or higher velocity LVZ relative to the model. Two main zones of thick LVZ within the -3 sec contour trend northward through eastern Nevada and weslern Ulah and northeastward into the Rio Grande Irough in New Mexico. These zones join to the southwest and continue across southern California and northern Mexico toward the continental borderland off southern California (generally considered to have Basin-Range structure) and the Gutf or California. The Colorado Plateau is strikingly outlined by the zero contour, which is expected because the reference model resembles the Colorado Plateau mantle.

Figure 8 Regional isostatic gravity anomaly (based on Airy-Heiskanen concept with standard column 30 km). Line pattern, greater than +10 mgal ; stippled pattern more negative than - 10 mg al (from Woollard, 86).

In other important investigations Robinson \& Kovach (56) studied upper mantle S-waves in the Basin and Range province, and Herrin (32) compared the Basin and Range upper mantle with that of a stable region, the Canadian Shield. Using direct measurements of the travel time gradient, Robinson and Kovach found a thin lid zone (9 km) of shear velocity $4.5 \mathrm{~km} / \mathrm{sec}$ at the top of the mantle, overlying a low velocity zone with a minimum velocity at 100 km . Herrin's comparative model for the Canadian Shield contains no LVZ for P-waves and only a weak one for S-waves. The comparison is important because it emphasizes a degree of similarity between the Basin and Range and Colorado Plateau maniles relative to the stable region.

Figure 9 Generalized comparison of crust and upper mantle structure in the Basin and Range province and Colorado Ptateau. P-wave velocities are in kilometers per second (adapled from Archambeav et al; 2):

RATE AND DIRECTION OF SPREADING

Seismological Evidence

Recent studies of focal mechanisms of many small earthquakes highlight a strikingly consistent direction of ongoing Basin and Range extension. Although recent earthquakes have been concentrated near the eastern and western borders of the province and in a belt across southern Utah and Nevada, evidence of older faulting indicates that they are a reasonable sample of this longer but much more widespread tectonic aciivity.
Focal solutions compiled by Schoiz et al (64) show predominantly normal faulting, with the extension direction ranging approximately from east-west to nortbwest-southeast. The few examples of strike-slip motion are also consistent with this extension direction.
Only a few of the larger historical earthquakes were accompanied by surface ruptures large enough for the amount of offel to be directly observed, and these larger shocks (Figure 11) probably account for most of the total deformation. The main north-south zone of historical fisulting in Nevada and adjacent California is nearly continuous, Horizontal extension across the faults ranges from a few centimeters to a fow meters (Thompson, 75) and is greatest near the north and south ends of the zone. This wide range in extension, plus the existence of unfaulted gaps, shows that the $100-\mathrm{yr}$ historical period is too short for measuring a meaningful rate ofextension.

Dixie Valley, a Type Basin

Near the northern end of the zone of historical faulting, at the site of the 1954 fauling in Dixie Valley (Figure 12), two measures of long-term displacement have

Figure 10 Relative development of upper mantle LVZ (low velocity zone), expressed as contours of time difference in seconds with respect to a model LVZ similar to that of Colorado Plateau. Stipple pattern accentuates region of pronounced (thicker or lower velocity) LVZ (from York \& Helmberger, 87).
been investigated (Thompson \& Burke, 78): 1. Displacements of the shoreline of a late Pleistocene lake supply a measure of extension during the last 12,000 years (Figure 13), and 2. fault displacements determined from geophysical exploration of the valley give the total amount of extension for late Cenozoic time, at least 5 km in $15 \mathrm{~m} . \mathrm{y}$. The average spreading rates are $1 \mathrm{~mm} / \mathrm{yr}$ for the short interval and at least $0.4 \mathrm{~mm} / \mathrm{yr}$ for the total displacement. The spreading direction we obtained from large slickenside grooves on fault planes is approximately $\mathrm{N} 55^{\circ} \mathrm{W}-\mathrm{S} 55^{\circ} \mathrm{E}$,

Figure II Historic surface offels and epicenters for earthquakes of greater than about magnitude 7 in the western United States (from Ryall el al, 61).
which corresponds well with the range of directions obtained from earthquake focal mechanisms.

Dixie Valley is the only basin for which this much data is available. A simple extrapolation to 20 major basins across this part of the province suggests a total Basin-Range spreading of about 100 km (10% increase in crustal area) and a spreading rate of $8 \mathrm{~mm} / \mathrm{yr}$. On somewhat difterent assumptions, Gilhuy (28) estimated that the areal expansion ranges from 4% to 12% over most of the province. Stewart (71) estimated 50 to 100 km (5% to 10% of extension on the basis of a careful analysis of all available data. Hamilton \& Myers (29) suggest that the extension may be as great as $300 \mathrm{~km}(30 \%)$. More subsurface data on many basins is needed to improve these estimates.

13

Figure 13 (abote) Man of offsel lake shorelines in west-central Dixie Valley. The relative vertical spacing of beach ridges around the valley demonstrates that the highest beach ridge preserved in this area (3544 fi) marks-like the lufa cemented terrace deposits on bedrockthe highest lake stand. The age of the high shoreline is 12,000 years (from Thompson \& Burke, 78).

Figure 12 (left) Dixie Valley region. Fault scarps formed or reactivaled in 1903, 1915, and 1954 are shown (from Thompson \& Burke, 78).

Locus and Time of Basin-Range Faulting

The present seismicity (Figure 3) is a misleading guide to even the geologically youngest faulting. Fault scarps of Quaternary age are widespread and bear little
relation to the seismicity. Slemmons (69) has documented this fact for Nevada with maps of faults in three age groups covering roughly the last 100,000 years. The locus of faulting appears to have shifted randomly over the whole breadth of the province rather than having been confined to the area of recent seismic activity.

Although older normal faults are known (Burke \& McKee, 9), the main onset of block faulting is marked by the widespread disruption of drainage and formation of local sedimentary basins about middle or late Miocene time. The lower Miocene ash-fiow sheets which cover broad areas were deposited on surfaces of low tectonic relief (McKee, 46; Noble, 50). The inception of Basin-Range faulting over at least Nevada and adjacent California is dated at 15 to 17 m.y. (see Noble, 50 , for references). It must be emphasized that after faulting began it was probably sporadic in any one area. On physiographic evidence, some areas appear to have been inactive for a long time (for example, parts of Arizona, New Mexico, and west Texas), while activity continued to the present in other areas.

THE PATTERN OF RUPTURE

Basin-Range faults are often described in a general way as high-angle normal faults striking north to northeast, but the impression conveyed by that description is highly misleading. Individual faults tend to be extremely crooked in map plan and the fault pattern is more nearly rhomboid or even rectilinear. Some mountain ranges are bounded by en echelon faults that strike diagonal to the range (eastern front of Sierra Nevada for example). Considerable warping and tilting of the blocks accompany the faulting, particularly near the ends of elongate basins.

Nowhere is the fault pattern better exhibited than in the late Cenozoic basalt flows of south-central Oregon (Figure 14), but similar patterns are common from Nevada (Figures 12 and 13) to Texas. Moreover, the roughly rhomboid map pattern of faulting is characteristic of other regions of present or past crustal extension, such as the African Rifts, the Rhine graben, the Oslo graben, and the Triassic basins of eastern North America.

No well-founded explanation for the complex rupture pattern is known. Alternative hypotheses include changes in the stress system with time, influence of older structures, and anisotropy in mechanical properties of the crust. Another possibility is that the pattern is roughly analogous to the near-orthogonal pattern formed by oceanic ridges and transform fauls, a pattern which has been explained as offering minimum resistance to plate separation (Lachenbruch \& Thompson, 42). Oldenburg \& Brune (51) dramatically reproduced the near-orthogonal oceanic pattern in a laboratory model with a thin crust of wax forming on molten wax, and Duffield (18) observed similar patterns forming on the solidified crust of a convecting lava lake.

The simple application of the minimum resistance theory to the Basin and Range province would suggest a series of northeast-trending grabens (normal to the spreading direction) and northwest-Irending transform faults. The actual mechanics are more complex, and the faults commonly are hybrid, having components of

Figure 14 Rhomboid paltern of rupture expressed by late Cenozoic normal faults in south-central Oregon. Barbs on downthrown side of faults; faults dashed where inferred (from southeast portion of plate 3 of Donath, 17).
both dip- and strike-slip. The pattern is not simple and the question of the rupture pattern is far from resolved.
In addition to the problem of the pattern of faulting, the question of whether the normal faults systematically flatten with depth has been much debated, in part because such changes would imply greater regional extension. The seismic focal mechanisms lend no support to the notion of major decreases in dip, however, and serious geometric problems would ensue at the ends of basins if such decreases did occur. Therefore the low dipping to subhorizontal normal faults that have been observed in surface exposures and mine workings seem best ascribed to gravitational sliding and tilting in response to deeper primary faulting. The problem has been explored by Stewart (71) and Moore (48). Armstrong (3) interprets low-iangle fattits in eastern Nevada as gravitational sliding features of late Cenozoic age.

HEAT FLOW AND CRUSTAL TEMPERATURE

Regional Variation of Heat Flow

A region of anomalously high heat flow comprises the entire Basin and Range province and extends across the Columbia Plateau and part of the Rocky Mountain province (Figure 15). Heat flow values greater than 2 HFU [heat flow

Figure 15 Contour map of heat flow. Contours in Heat Flow Units ($\mu \mathrm{cal} \mathrm{cm}^{-2} \mathrm{sec}^{-1}$); dashed where extended on the basis of meager data. Data points shown as open triangles are measured heat flows in the range 0 to 0.99 ; solid triangles, 1.0 to 1.49; open squares, 1.5 to 1.99 ; solid squares, 2.0 to 2.49 ; open circles, 2.5 to 2.99 ; solid circles, 3.0 and larger (from Roy et al, 60).
units (HFU), $\left.\mu \mathrm{Cal} \mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$ characterize this broad region, in contrast to normal average values of about 1.5 HFU .

Although the Colorado Plateau is at least partly an area of normal heat flow, the distribution of measurements is inadequate to explore its boundaries with the Basin and Range province. The boundary with the Sierra Nevada appears to be surprisingly sharp.

Another compilation of the regional heat flow, by Sass and associates (63),

Figure 16 Cross section of Dixie Valley, Nevada. The subsurface structure to the depth of the sedimentary fill (stippled) is based on geophysical exploration. Dike at depth is hypothesized to accommodate surface extension, as shown by arrows (based on Burke, 8; Thompson, 76).
although more conservatively contoured, contains important additional details. One cluster of consistently high values (mosily above 3 HFU), the "Battle Mountain high" in northern Nevada, is interpreted as a transient effect of fairly recent crustal intrusion. To the south in Nevada, a cluster of values less than 1.5 HFU, the "Eureka low," is thought to be the result of unusual deep circulation of ground water. These examples emphasize the importance of nonconductive heat transfer. We point out that spreading of the grabens may be accompanied by intrusion of dikes at depths of a few kilometers (Thompson, 76), and these intrusions may be important in the heat transfer (Figure 16). The Battle Mountain high is on the projection of the active zone of spreading (historic fault breaks) at its north end (Figure 11).

The thermal transition to the Sierra Nevada may occur within a lateral distance of only 10 or 20 km (Sass et al, 63). If this proves to be the case, it will require shallow heat sources and will strengthen the hypothesis of intrusions beneath the grabens. Furthermore, present evidence suggests that the heat flow boundary' with the Sierra Nevada follows in detail the irregular boundary of the normal faulting and not the generalized physiographic or topographic boundary.

Heat Production and the Linear Heat Flow Relation

A surprising and remarkably simple relationship has been found between heat flow and the heat production of surface rocks in plutonic areas; that is, within areas such as the Sierra Nevada and Basin and Range province, the heat flow varies
linearly with the radioactive heat production at the surface (Roy et al, 60). This relationship is best explained by an exponential decrease of heat production with depth in the crust, combined with an additional flow of heat from the mantle (Lachenbruch, 41). The flow from the mantle-called the reduced heat flowamounts to $1.4 \pm 0.2 \mathrm{HFU}$ in the Basin and Range province, compared to 0.8 ± 0.1 HFU in the United States east of the Rocky Mountains and only 0.4 HFU in the Sierra Nevada (Roy et al, 60).

Crustal temperature profiles for the three heat-flow provinces have been calculated by Lachenbruch (41), based on the exponential model. Temperatures at ${ }^{1}$ a depth of 30 km in the Basin and Range province range from $700-1000^{\circ} \mathrm{C}$ (depending on surface heat flow or heat production), as compared to $400-600^{\circ} \mathrm{C}$ in eastern United States. Temperatures in the Basin-Range crust may thus reach the melting range for granite, and temperatures in the upper mantle may reach melting for basalt. These high temperatures, combined with widespread late Cenozoic volcanism, form a basis for the generally accepted hypothesis that partial melting is responsible for the thin lithosphere and for the shallow, accentuated low velocity zone (asthenosphere) of the Basin and Range province.

The conductive model will need to be modified if much heat is carried into the crust by intrusions beneath spreading centers, as we have suggested (Figure 16).

Hot-spots and Mantle Plumes?

The Yellowstone volcanic region in northwestern Wyoming may represent a hot-spot above an upwelling convective plume in the mantle (Morgan, 49). According to Morgan's theory the North American lithosphere as a whole is moving westsouthwest with respect to the mantle. The trail of the persistent Yellowstone hot-spot across its mantle plume would be marked by the older volcanics westsouthwest of Yellowstone (in the Snake River part of the Columbia Plateau province). Other possible hot-spots have been suggested within the Basin and Range province.

A significant point about the theory should be kept in mind regarding the origin of the fault-block structures. If the Yellowstone plume is a driving mechanism for the structures and the lithosphere is moving westward across it, the locus of BasinRange tectonic activity should be migrating eastward; and we know of no strong evidence for an eastward march of tectonic activity. Westward movement of the lithosphere at a rate on the order of $1 \mathrm{~cm} / \mathrm{yr}$ would have produced a movement of 150 km in the $15 \mathrm{~m} . \mathrm{y}$. since the inception of Basin-Range faulting.

MAGNETIC AND ELECTRICAL ANOMALIES

Anomalies in the regional magnetic field and in electrical conductivity generally support other evidence of a hot upper mantle in the Basin and Range province, but the resolution of lateral variations has so far been very limited.

Zietz (88) showed that from the Sierra Nevada to the Rocky Mountains, magnetic anomalies are subdued in amplitude, and that long-wavelength anomalies are
absent. This fact suggests that the lower crust and mantle may be above the Curie temperature (578° for magnetite). Surprisingly, the magnetic field over the Colorado Plateau does not appear to differ significantly from that over the Basin and Range province, in contrast to results from other kinds of studies.

Porath \& Gough (53) explored variations in mantle electrical conductivity from the eastern and southern Basin and Range province to the Great Plains by measuring geomagnetic fluctuations. The anomalies are well represented by variations in depth 10 a half-space of conductivity 0.2 (ohm m^{-1}. The top of this conductor is inferred to correspond approximately with the 1500° isotherm. Depths to the surface of the conductor are 190 km under the Basin and Range province and 350 km under the Colorado Plateau, with a ridge of depth 120 km at the boundary. The depth under the Rio Grande trough is 120 km , that under the southern Rocky Mountains is 150 km , and that under the Greal Plains is 350 km . Although such models are naturally not unique, they strengthen the interpretations of regional heat-fow variations and add another dimension to the unusual properties of the Basin and Range province.

PETROLOGIC RELATIONS

Three important relationships among the rocks deserve special emphasis:

1. Prior to Basin and Range faulting, lower and middle Cenozoic volcanoes erupted largely intermediate-composition rocks that become more alkalic toward the continental interior (Lipman et al, 43). This pattern is similar to volcanics now being erupted around the Pacific margin in association with convergent plate margins.
2. A major change to fundamentally basaltic volcanism (including bimodal mafic-silicic associations) took place during late Cenozoic time at about the inception of Basin-Range faulting (Christiansen \& Lipman, 12). The Iransition to this new volcanism began in the southeastern part of the region and moved northwestward. The time of transition may be correlated with the initial intersection of the East Pacific Rise with the continental-margin trench system, an intersection which Atwater (5) also interprets as having progressed northwestward.
3. The composition of the crust and upper mantle as it existed beneath the Colorado Plateau prior to Basin-Range faulting has been ingeniously reconstructed from crystalline rock fragments in a breccia-filled diatreme, which is about 30 m.y. old (McGetchin \& Silver, 45). The crust contained about 31% intermediate and acidic igneous rocks, 66% basic metaigneous rocks, and 3% eclogite. The upper mantle to a depth of about 100 km contained about 75% peridotite and pyroxenite and 25% eclogite. It is especially interesting that the mantle $30 \mathrm{~m} . \mathrm{y}$. ago contained this much eclogite, because eclogite is capable of converting into gabbro with a volume expansion of about 10% in response 10 a rise in temperature or decrease in pressure.

Eclogite may be a key to an understanding of late Cenozoic uplift of the broad region that includes the Sierra Nevada, Basin and Range province, and Colorado Plateau. The expansion of eclogite in only 60 km of mantle could produce an
uplift of $1.5 \mathrm{~km}(60 \times 25 \% \times 10 \%)$. The former eclogite may now be represented by gabbro dispersed in the mantle low velocity zone, or by crustal additions of basic metaigneous rock, or by basaltic volcanics.

SYNTHESIS AND TECTONIC MODEL

The regional geophysical data put many useful constraints on speculations about the fundamental tectonic processes of the Basin and Range province. Among these data the heat flow is central; the volcanism, thin crust, low mantle velocity, accentuated low velocity zone, generally high elevation, subdued magnetic anomalies, high electrical conductivity, and great breadth of the seismically active zone can logically be associated with high temperatures and high heat now.
The gravity data-coupled with the estimated extension-supply an interesting constraint that does not seem to have been widely recognized (Thompson, 77). If a 30 km crustal plate were simply atlenuated by a horizontal extension of 10%, a negative isostatic anomaly of more than 300 mgal would be produced. If the attenuated plate were only 10 km thick the anomaly would still be 100 mgal . Because the regional isostatic anomalies average no more than about 10 mgal , the gravity emphatically indicates that the circuits of mass flow must be closed. Nearsurface crustal spreading is almost perfectly matched by lateral backfiow in the mantle.

If we imagine a vertical fence surrounding the Basin and Range province and extending through the crust and mantle, the integrated flux of mass through the fence must be zero, despite the outward flow by extension in the upper crust. We now need to find out how the deep lateral inflow takes place. Is the lateral flow in the low velocity zone? Is it a deeper mantle flow associated with narrow upwelling convective plumes, analogous to a thunderhead in the atmosphere? Is the flow related to former subduction of an oceanic lithospheric plate at the continental margin? At present these questions lead rather quickly into speculation.
The regional geophysical characteristics, geologic history, and petrology rather strongly suggest a link with plate-tectonic interactions at the western edge of the continent going back to early Cenozoic time. Analogies with spreading marginal basins of the western Pacific are especially promising (Karig, 40; Matsuda \& Uyeda, 47; Scholz et al, 64; Sleep \& Toksöz 68; Thompson, 77; Uyeda \& Miyashiro, 80).
The general idea is that in a broad belt on the continental side of an arc-trench system, a descending lithospheric plate either generates magma along its upper surface or creates a convecting subcell by viscous drag. The rising magma or convection current helps to move the arc away from the continent, creating a spreading marginal basin. The situation is somewhat different along the central coast of North America in that subduction ceased when a spreading ridge reached the Irench in middle Cenozoic time. But because the descending young lithosphere would still be very hot when the ridge reached the trench, and because conductive heat transfer is very slow, it is easy to imagine that the thermal effects of a past subduction process are still being felt in the Basin and Range province.

Acknowledgments

We thank David Warren for allowing us to use his unpublished map of crustal thick ness'; John Lahr and Peter Stevenson for their map of earthquake epicenters; and Kimberly Bailey, James Baxter, Robert Daniel, Allan Lindh, Dohn K. Riley, Don C. Riley, and Donald Steeples for stimulating discussions in a seminar which ranged widely over many of the topics discussed here.

Literature Cited

1. Aldrich, L. T. et al 1960. The earth's crust. Carnegie Inst. Washington Yearb. 1959-1960:202-8
2. Archambeau, C. B. Flinn, E. A, Lambert, D. G. 1969. Fine structure of the upper mantle. J. Geophys. Res. 74 : 5825-65
3. Armstrong, R. L. 1972. Low-angle (denudation) faulis, hinterland of the Sevier orogenic belt, eastern Nevada and western Utah. Geol. Soc. Am. Bull. 83:1729-54
4. Asada, T. el al 1961. See Ref. 1, 1960-1961:244-50
5. Atwater, T. 1970. Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geol. Soc. Am. Bull. 81:3513-36
6. Berg, J. W., Cook, K. L, Narans, H. D., Dolan, W. M. 1960. Seismic investigation of crustal structure in the eastern part of the Basin and Range province. Seismol. Soc. Am. Bull. 50:511-36
7. Berg J. W. et al 1966. Crustal refraction profile, Oregon Coast Range. Seismol. Soc. Am. Bull. 56:1357-62
8. Burke, D. B. 1967. Aerial pholograph survey of Dixie Valley, Nevada. In Geuphysical study of Busin-Runge sirucIure, Dixie Valley region, Nevada. US Air Force Cambridge Res. Lab. Spec. Rep., 66-848
9. Burke, D. B., McKee, E. H. 1973. MidCenozoic volcano-lectonic features in central Nevada. Gcol. Soc. Am. Abstr. with Programs 5:18
10. Carder, D. S. 1973. Trans-California seismic profile, Death Valley to Monterey Bay. Seismol. Soc. Am. Bull. 63:571-86
11. Carder, D. S., Qamar, A., McEvilly, T. V. 1970. Trans-California seismic profile. Pahute Mesa to San Francisco Bay. Seismol. Soc. Am. Bull. 60:1829-46
12. Christiansen, R. L, Lipman, P. W. 1972.

Cenozoic volcanism and plate-tectonic evolution of the western United States. II Late Cenozoic. Phil. Trans. Roy. Soc. London Ser. A 271:249-84
13. Cook, K. L. 1969. Active rift system in the Basin and Range province. Tectunophysics 8:469-511
14. Crittenden. M. D. Jr. 1963. Effective viscosity of the earth derived from isostatic loading of Pieistocene Luke Bonneville. J. Geophys. Res. 68:5517-30
15. Crowder, D. F, McKee, E. H., Ross D. C., Krauskopr, K. B. 1973. Granitic rocks of the White Mountains area, California-Nevada: age and regional significance. Geol. Soc. Am. Bull. 84: 285-96
16. Diment, W. H., Stewart, S. W., Roller, J. C. 1961. Crustal structure from the Nevada Test Site to Kingman, Arizona, from seismic und gravity observations. J. Geophys. Res. 66:201-14
17. Donath, F. A. 1962. Analysis of BasinRange structure, south-central Oregon. Geol. Soc. Am. Bull. 73:1-16
18. Duffield, W. A. 1972. A naturally occurring model ofglobal plate tectonics. J. Geophys. Res. 77:2543-55
19. Eaton, J. P. 1963. Crustal structure from San Francisco, California, 10 Eureka, Nevada, from seismic-refraction measurements. J. Geophys. Res. 68 : 5789-5806
20. Eaton, J. P. 1966. Crustal structure in northern and central California from seismic evidence. In Geology of northern California, ed. E. H. Builey. Culif. Div. Mines Geol. Bull., 190, 419-26
21. Fenneman, N. M. 1946. Physical divisions of the United States. US Geul. Surv. Map (1:7,000,000 scale)
22. Gibbs, J. F., Roller, J. C. 1966. Crustal structure determined by seismicrefraction measurements between the Nevada Test Site and Ludlow, Cali-
${ }^{\text {' }}$ Warren, D. H., Healy, J. H. Structure of the crust in the conterminous United States. Tectonophysics. In press.
fornia. US Geol. Surv. Prof. Pap. 550-D. D125-31
23. Gilbert, G. K. 1874. US Geogr. Geol. Surv. W. 100 th Meridian Progr. Rep.
24. Gilbert, G. K. 1875. US Geogr. Geol. Surv. W. 100 th Meridian. Rep. 3
25. Gilbert, G. K. 1890. Lake Bonneville. US Geol. Surv. Monogr. I. 438 pp.
26. Gilluly, J. 1963. The tectonic evolution of the western United States. Quari. J. Geol. Soc. London 119:133-74
27. Gilluly, J. 1970. Crustal deformation in the western United States. In The Megatectonics of Continents and Oceans, ed. H. Johnson, B. L. Smith, 47-73. New Jersey: Ruigers Univ. Press
28. Gilluly, J. 1972. Tectonies involved in the evolution of mountain ranges. In The Nature of the Solid Eurth. ed. E. Robertson, 406-39. New York: McGraw. 677 pp.
29. Hamilton, W., Myers, W. B. 1966. Cenozoic tectonics of the western United States. Rep. Geophys. 4:509-49
30. Healy, J. H. 1963. Crustal structure along the coast of California from seismic-refraction measurements. J. Geophys. Res. 68: 5777-87
31. Helmberger, D. V. 1972. Long period body wave propagation from 4° to 13°. Seismol. Soc. Am. Bull. 62:325-41
32. Herrin, E. 1972. A comparative study of upper mantle models: Canadian Shield and Basin and Range province. See Ref. 28, 216-34
33. Herrin, E., Taggarh J. 1962. Regional variations in $P n$ velocity and their effect on the location of epicenters. Seismol. Suc. Am. Bull. 52: 1037-46
34. Hill, D. P. 1963. Gravity and crustal structure in the western Snake River Plain, Idaho. J. Geophys. Res. 68 : 5807-19
35. Hill, D. P., Pakiser, L. C. 1966. Crustal structure between the Nevada Test Site and Boise, Idaho, from seismic-refraction measurements. In the earth beneath the continents, ed. J. S. Steinhart, T. J. Smith. Geophys. Monogr. 10. Am. Geophys. Union, Washington DC, 391-419
36. Jackson, W. H. Pakiser, L. C. 1965. Seisinic study of crustal structure in the southern Rocky Mountains. In Geological Survey Research 1965. US Geol. Surv. Prof. Pap. 52S-D. D85-92
37. Jackson, W. H, Stewart, S. W, Pakiser, L. C. 1963. Crustal structure in eastern Colorado from seismic-refraction measurements. J. Geophys. Res. 68:5767-76
38. Johnson, L. R. 1965. Crustal structure between Lake Mead, Nevada, und

Mono Lake, California. J. Geophys. Res. 70: 2863-72
39. Johnson, S. H., Couch, R. W. 1970. Crustal structure in the North Cascade Mountains of Washington and British Columbia from seismic refraction measurements. Seismol. Soc. Am. Bull. 60:1259-69
40. Karig, D. E. 1971. Origin and development of marginal basins in the western Pacific. J. Geophys. Res. 71:2542-61
41. Lachenbruch, A. H. 1970. Crustal temperature and heat production: implications of the linear heat-flow relation. J. Geophys. Res. 75:3291-3300
42. Lachenbruch, A. H., Thompson, G. A. 1972. Oceanic ridges and transform faults: their intersection angles and resistance to plate motion. Earth Plunet. Sci. Letl. 15:116-22
43. Lipman, P. W., Prostka, H. J., Christiansen, R. L. 1972. Cenozoic volcanism and plate-tectonic evolution of the western United States. 1. Early and middle Cenozoic. Phil. Trans. Roy. Soe. London Ser. A 271:217-48
44. McCamy, K., Meyer, R. P. 1964. A correlation method of apparent velocity measurement. J. Geophys. Res. 69:69199
45. McGetchin. T. R., Silver, L. T. 1972. A crustal-upper mantle model for the Colorado Plateau based on observations of crystalline rock fragmenis in the Moses Rock dike. J. Geophys. Res. 77:7022-37
46. McKee, E. H. 1971. Tertiary igneous chronology of the Great Basin of western United States-implications for tectonic models. Geol. Soc. Am. Bull. 82:3497-3502
47. Matsuda, T., Uyeda, S. 1971. On the Pacific-type orogeny and its modelextension of the paired belts concept and possible origin of marginal seas. Tectonophysics 11:5-27
48. Moore, J. G. 1960. Curvature of normal faults in the Basin and Range province of the western United States. In Geological Survey Research, 1960 US Geol. Surv. Prof. Pap. 400-B. B409-11
49. Morgan, W. J. 1972. Deep mantle convection plumes and plate motions. Am. Assoc. Petrol. Geol. Bull. 56:203-13
50. Noble, D. C. 1972. Some observations on the Cenozoic volcano-tectonic evolution of the Great Basin, western United States. Earth Planet. Sci. Letl. 17: 142-50
51. Oldenburg, D. W, Brune, J. N. 1972. Ridge transform fault spreading in freezing wax. Science 178 :301-4
52. Pakiser, L. C. 1963. Structure of the crust
and upper manite in the western Uniled Stales. J. Geophys. Res. 68:5747-56
53. Poraih, H, Gough, D. I. 1971. Mantle conductive siructures in the western United States lrom magnetometer array studies. Geoplys: J. Roy. Astron. Soc 22:261-75
54. Press, F. 1960. Crustal sifuctures in the California-Nevadi region. J. Geophys. Res. 65: 1809-14
55. Prodehl, C. 1970. Crustal structure of the western United States from seismicrefraction measurements in compurison with central European results. Z. Geophys. 36:477-500
56. Robinson, R, Kovach, R. L. 1972 . Shear wave velocities in the earth's mantle. Phys. Eurth Planet. Interiors 5: 30-44
57. Roller, J. C. 1964. Crustal struciure in the vicinity of Las Vegas, Nevada, from seismic and gravity observations. US Geol Surv, Prof. Pap. 475-D. D108-11
58. Roller, 3. C. 1965. Crustal structure in the eastern Colorado Plaleaus province from seismic-relraclion measurements. Seimol. Soc. Am. Bull. 55:107-19
59. Roller, J. C., Healy, J. H. 1963. Seismicrelraction measurements of crustal struclure between Santa Mónim Bay and Lake Mead. J. Geophys. Res. 68: 5837-48
60. Roy, R. F. Blackwelt, D, D., Decker, E. R. 1972. Continentat heat flow. In The Naiure of the Solid Earth ed. E. Roberison, 506-43. New York: McGraw. 677 pp .
61. Ryall, A., Stemmons, D. B., Gedney, L. D. 1966 . Sejsmicity, tectonism, and surface faulting in the westerñ Uaited States during historic time. Seismol. Soc. Am. Bull. 56: 1 105-36
62. Ryall, A., Stuart, D. J. 1963. Travel times and amplitudes from nuclear explosions, Nevada Test Site 10 Ordway Colorado. J. Geophys. Res 68:5821-35
63. Suss, J. H., Lachenbruch, A. H., Monroe, R. J., Greene, G. W. Moses, T. H. Jr. 1971. Heat flow in the western United States. J. Geophys. Res 76:6376-6413
64. Scholz, C. H., Barazangi, M., Sbur, M. L. 1971. Late Cenozoic evolution of the Great Basir, western United States, as an ensialic interare basin. Geol. Soc. Am Budl 82:2979-90
65. Selater, J. G., Francheieau, T. 1970. The implications of terrestrial heat flow observations on current tectonic and geochemical nodels of the crusi and upper manite of the earth. Geoplys. J. Ray. Astrom. Soc. 20:.509-42
66. Shor, G. G. Jr. 1955. Deep reflections from_southern California blasts. Trahs.

Am. Geophys. Union 36:133-138
67. Shor, G. G., Raitt, R. W. 1958. Seismic studies in the southern California coninental borderland. In Tomo 2 Geof. Aplicada: Int. Geol. Congr. 20h.. Mexico, D. F., 1956 (Trahujos). Secr. 9. 243-59
68. Sleep, N. H., Toksōz. M. N. 1971. Evolution of marginal basins. Narure 233:548-50
69. Slemmons, D. B. 1967. Pliocene and Quarternary crustal movements of the Basin and Range province, USA. I. Gerosci. Osaka Cily Uniu 10:91-103
70. Steinhart, J, S., Meyer, R. P. 1961. Explosion siudies of continental structure. Univ of Wisconsin, 1956-1959. Carnegia Insi, Wash. Publ. 622. 409 pp.
71. Stewart, J. H. 1971. Basin and Range sifucture: a system of horsts and grabens produced by deep-seated exiension. Geol. Soc. Am. Bull. 82: 1019-14
72. Siewart, S, W, 196B. Pieliminary comparison of seismic travel times and inferred crustal structure adjacent to the San Andreas fault in the Diablo and Gabilan Ranges of central California. In Proc. Conf. Geol. Prab Sa! Andreas Fault System, ed. W. R. Dickinson, A. Grantz, 218-30. Stanford, California: Stanford Univ.
73. Sewart, S. W., Pakiser, L. C. 1963. Crusial structure in eastern New Mexico interpreted from the GNOME enplosion. Seismol Sac. Am. Bull. 52: 1017-30
74. Tatel, H. E., Tuve, M. A. 1955. Seismic explorstion of a coninental crusl. Geól. Soc. Aif. Spec. Pap. 62:35-50
75. Thompson, G. A. 1959. Gravity measurements between Haxen and Austing, Neqada, a study of BasinRange simucture. J. Geophys. Res. 64: 217-30
76. Thompson, G. A. 1966. The rift system of the western United States. In The world rift system, ed. T. N. Irvine. Geol. Surb, Cun. Dep. Mines Tech, Surv. Pap. 66-14:280-90
77. Thompson, G. A. 1971. Cenozoic Basin Range tectontsm in relation to deep structure. Geol. Soc. Am. Abstr. 3(2): 209. 1972 Proc. Ju. Geol. Cimter., 24th Sect. 3:84-90
78. Thompson, G. A, Burke, D. B. 1973. Rate and direction of spreading in Dixie Valley, Basin and Range province, Nevada. Geol. Soc. Am. Bull. 84:627-32
79. Thompson, G. A. Titwani, M. 1964, Crustal sifuclure from Pacific basin to central Nevada. J. Geoplys. Res. 68: 4813-37
80. Uyeda, S. Miyashiro, A. Plate tectonics and Japanese Islands. Unpublishert
81. Walcoll, R, 1. 1970. Flexural rigidity, thickness and viscosity of the lithosphere. J. Geophys. Res. 75:3941-54
82. Warren, D. H. 1969. A seismic-refraction survey of crustal structure in central Arizona, Geol. Soc. Am. Bull 80:257-82
83. Warren, D. H, Healy, J. H., Bohn, J, Marshall. P. A. 1973. Crustal siruciure under LASA from seismic refraction measurements. J. Geophys. Res. 78: 8721-34
84. Warren, D. H. Jackson W. H. 1968. Surface seismic measurements of the project GASBUGGY explosion al intermediate distance ranges. US Geol. Suru.

Open File Rep. 45 pp.
B5. Willden, R. 1965. Seismic-refraction measurements of crustal structure between American Falls Reservoir, Idaho, and Flaming Gorge Reservoir, Utah, US Geol Surw. Prof. Pap. 525-C. C44-50
86. Woollard, G. P. 1972 . Regional variations in gravity. See Ret 28, 463-505
87. York. J. E., Helmberger, D. V. 1973. Low-velocity zone variations in the southwestern United States. J. Geophys. Res. 78:1883-86
88. Zietz, 1. 1969. Aeromagnetic investigations of the earth's crust in the United States. In The Earth's Crust and Upper Mantle, od. P. J. Hart 404-15, Am. Geophys. Union Monugr. 13.735 pp .

IDAHO

		TEMPERAT 				HAME OF SPRING
- IJ	 18404	11.6	471	43.556	114.413	CLARENDON HOT SPRINGS
- IP	13.1 .45	145	631	43.504	114.355	HAILEY :HOT SPRINGS
-10	19.138	$\because 129$	54 - 1	43.422	114.628	ELK CREEK- HOT SPRING
-10	. 15137	.150	66.1	$43 \cdot 3.82$	114.932	WALDRO? HOT SPRTNG
-10	$16^{\prime} 139$.	159	$.71 \quad 0$. 43.292	114.906	BARRONFS HOT SPRING
-ID	17170	. 143	651	. 43.051	114.952	WHITE ARROW HOT SPRINES
-10	18.171	\% 80	.27 1	$43 \cdot 0.50$	$114 \cdot 933$	HOT SULPHUR LAKE
10	182	$\therefore 115$	4%. 1	43.818	115.863	(WARM SPRINGS)
10	2123	. 130	54.0	43.814	115.045	
10	3×120	130	$54: 0$. 43.802	115.393 :	GRANITE CREEK SPRINGS
$\because \mathrm{ID}$	$4: 119$	$\therefore 148$	$55: 0$	43.789	115.434	DUTCH:FRANK SPRINGS
ID	5:117		W 0	43.777	115.481	POOL CREEK HOT SPRING
- ID	6.116	168	761	43.754	115.570	NEINMEYER HOT SPRINGS
ID	7×115		H. 1	4.3 .736	115.580	VAUGHN HOT SPRING
10	8113	120	491	43.726	115.602	LOFTUS HOT SPRING
10	9112		H 1	43.9721	115.615	SMITHCABIN.HOT SPRINGS
ID	$10 ; 110$	141	. 611	43.697	115.655	SHEEP CREEK 3RIDGE HOT
10	11.84 :	$\because 154$	571	43.6.69	115.698	THIN SPRINGS
ID	12, 126	122	49.1	43.638	115.127	(HOT.SPRING)
10.	13124		$\therefore 1$	43.613	115.250	(SPRINGS) .
- ID	14.125		W 1	43.613	115.158	
\cdots	15^{127}	120	491	. 43.603	115.069	(HOT SPRING)
- ID	16129	132	55.1	43.553	115.273	PARADISE HOT SPRINGS
10	$17 \cdot 12.8$. 138	59 3	43.542	115.285	BRIOGE HOT SPRINGS (8)
10	$18 \quad 131$	157	701	43.154	115.515	(HOT SPRINGS) ..
- ID	19.131 A	130	552	43.113	115.305	LATTY HOT SPRING
10	20		W 1	43.005	115.125	(WARM SPRING)
10	$21 \cdot 1313$	125	510	4.3.002	115.171	
- ID.	15.6	130	551	43.951	116.353	ROYSTONE HOT SPRINSS
10°	2159	128	53.1	43.425	116.718	GIVENS HOT SPRINGS
ID	1	. 62	171	44.150	111:104.	LILY PAD LAKE
10	$\because 2.151$		H 0	44.135	111.303	
\therefore - 10	3	105	410	44.0.91	111.459	ASHTON UARM SPRINGS
10	1148	84	291	44.253	112.539	(WARM'SPRINGS).
ID	2150	121	501	49.144	112.546	LIDY "HOT SPRINGS
10	165	87	311	44.613	113.365	(WARM SPRINGS)
10	2108	84	291	44.267	113.450	-BARNEY HOT SPRINGS
ID	$1 . .54$		H. 1	44.951	114.706	(HARM SPRING)
10	2	115	461	44.836	114.790	HOSPITAL HOT SPRING
ID	3. 55	121	491	44.799	114.806	(HOT. SPRING)
ID	-4 49	130	541	44.784	114.354.	COX:HOT SPRINSS
10	5	149	541	44.730	114.995	SUNFLOUER HOT SPRINGS
10	653	114	461	44.722	114.017	(HOT. SPRING)
ID	757		W 1	44.661	114.650	(HOT. SPRINGS)
ID	856	190	871	44.645	114.738	(HOT SPRINGS)
ID	9.58	121	501	44.626	114:598	SHOHER BATH SPRINSS
ID	10105	123	501	44.524	114.175	BEARDSLEY. HOT SPRINGS
ID	1188		W 0	44.511	114.880	

RAME OF SPRING
3 CLARENDON HOT SPRINGS
HAILEY :HOT SPRINGS
ELK CREEK•HOT SPRING
BARPONAS HOT SPRIVG
WHITE ARROW HOT SPRINES
HOT SULPHUR LAKE
(WARM SPRINGS)
GRANITE CREEK SPRINGS
DUTCH:FRANK SPRINGS
POOL CREEK HOT SPRING
NEINMEYER HOT SPRINGS
VAUGHN HOT SPRING
LOFTUS HOT SPRING
SMITH CABIN. HOT SPRINGS
SHEEP CREEK BRIDGE HOT SPRING.
THIN SPRINGS
(HOT.SPRING)
(SPRINGS)
(HOT SPRING)

BRIOGE HOT SPRINGS (8)
(HOT SPRINGS)
LATTY HOT SPRING
(HARM SPRING)

ROYSTONE HOT SPRINGS
GIVENS HOT SPRINGS
LILY PAD LAKE
ASHTON HARM SPRINGS
(WARM SPRINGS)
IOY "HOT SPRINGS
(WARM SPRINGS)
ARNEY HOT SPRINGS

HOSPITAL HOT SPRING
(HOT SPRING)
COX:HOT SPRINGS
SUNFLOHER HOT SPRINGS
(HOT. SPRING)
(HOT. SPRINGS)
(HOT SPRINGS)
SHOHER BATH SPRINGS
BEARDSLEY. HOT SPRINGS

montana

MT	1		
$M T$	2		
$M T$	1.	36	139
$M T$	2		76
$M T$	8	40	.70

H $144.985-111.615$ HOLF :CREEK HOT SPRINGS
H 144.798 .111 .145 (HOT SPRINGS)
60145.757110 .256 HUNTERS.HOT SPRINGS

6 . 25. O 45.706 110.975 BRIDGER CANYON SPRINGS (4)
MT 34

NEVADA

NV	1		
NV	2		
NV	3		
NV	1	\ddots	90
NV	2	150	90
NV	1	151	73
NV	2	141	75
NV	1	138	110
NV	2	\ldots	.
NV	3		88

TEMPEGATURE

(WARM-SPRING)
U 1 38.253.116.828 (WARM"SPRING)
NV 6
-NV 7125
141
NV 1116
61
80 26.
20697
. 38.187115 .373
38:955 117.049
38.820117 .181

WARM "SPRINGS
CHARNOCK (BIG BLUE) SPRINGS
DARROUGHS HOT SPRINGS
INDIAN SPRINES
DOUBLE SPRING
WEDELL:HOT SPRINGS
MINA HOT SPRING (7)
WALLEYS HOT SPRINGS
NEVADA (HINDS) HOT SPRINGS
(HOT SPRING)
UILSON. HOT SPRING
83:-28.0.39.917.114.669
143 © 0.39 .891 114.898 JOHN SALVIFS:HOT SPRING (7)
$\begin{array}{lllll}100 & 76 & 24 & 0 & 39.547 \\ 114.917\end{array}$
1:01" - 83.28. 139.415114 .780
$102 \quad 95 \quad 34 \quad 1 \quad 37.284 \quad 114.865$
$102 \mathrm{~A}{ }^{\cdots} 7021$
H 139.422115 .683
W 139.072115 .635
139.988116 .043 SIRI RANCH-SPRING
39.743 115.074 SHIPLEY HOT SPRING
39.941116 .681 (HOT. SPRINGS)
39.905116 .591 W

H $1 \quad 39.893116 .650$ L
ALTI•HOT-SPRINGS
LITTLE HOT SPRINGS
SULPHUR SPRING
(HOT:SPRINGS)
(WARM SPRING)
BARTHOLOMAE (CLOBE) HOT SPRINGS
SPENCER HOT SPRINGS
POTTFS RANCH HOT SPRING (10)
DIANAS PUNCH BOHL
(HOT:SPRINGS)
(HOT SPRING)
DIXIE HOT SPRINGS
MUD SPRINGS
BORAX SPRING
SAND."SPRINGS
LEE. HOT SPRINGS
(SPRING) (WARM)

NEH MEXICO

$-N M$	1	38	125	52	1	32.501	106.926	RADIUM SPRINGS
NM	1		72	33	1	32.795	107.276	DERRY UARM SPRINGS

OREGON

SOUTH DAKOTA

SO	1	4	72	22	0	43.526	103.376	MARTIN	VALLEY	çuffalo	EAP)	SPRINGS
SD	2	2	90	32	1	43.447	103.509	(SPRIN	S)			
SD	3	1	89	31	1	43.438	103.483	HOT SP	INGS			
SD	4	3.	68	19	1	43.333	103.551	CASCAD	SPRIN			

TEXAS

| TX. | 1 | | 105 | 40 | 1 | 29.18310 .2 .994 | (HOT SPRINGS) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TX | 1 | 3 | 114 | 45 | 1 | 30.035 | 104.598 | HOT SPRINGS |
| TX | 1 | 1 | 100 | 37 | 1 | 30.859 | 105.342 | REO BULL SPRING |
| TX | 2 | 2 | 126 | 52 | 1 | 30.822 | 105.311 | INDIAN HOT SPRINGS |

UTAH

UT	1	57	91	32	137.700	110.421	(UARM SPRING).
UT	1	,	98	36	3.37.327	113.587	VEYO HOT SPRING
UT	2	54	107	42	1.37.187	113.259	DIXIE (LAVERKIN) HOT SPRINGS
UT	1	37	71	22	038.998	111.870	REDMOND SPRINGS (LAKE)
- UT	1	28	105	41	138.864	112.508	MEADOU HOT SPRINGS
\because UT	2		100	37	1.38 .849	112.492	HATTON (BLACK ROCK) HOT SPRINGS
UT	3		$\because 73$	23	0.38.776	112.095	RICHFIELD WARM (HOT) SPRINSS
UT	4		163	76	138.538	112.100	RED HILL HOT SPRING
-UT	5	48	147	64	138.532	112.106	MONRDE (COOPER) HOT SPRINES
- U.r	6	49	147	64	138.611	112.199	JOSEPH HOT SPRINGS
UT	7	47	77	24	138.602	112.108	JOHNSON WARM SPRING
UT	8			W.	038.588	. 112.554	(HARM VAPOR)
-UF	3	51	190	88	039.496	112.857	ROOSEVELT (MCKEANS) HOT SPPINGS
UT	10	53	96	36	1. 38.211	112.909	RADIUM (DOTSONS) WARM SPRINGS
-UT	1	52	193	90	138.173	113.201	THERMO HOT SPRINGS
UT	1	17	70	21	139.755	111.855	GOSHEN WARM SPRINGS
UT	2	31	73	22	039.246	111.644	LIVINGSTON WARM SPRINGS
UT	3	35	72	22	139.180	111.693	STERLING (NINEMILE) WARM SPRING
UT	1		74	23	139.514	112.805	FUMAROLE BUTTE
- UT	2	24	188	87	1.39.511	112.727	BAKER (ABRAHAM, CRATER) HOT SPRINGS
UT	1	20	168	75	139.905	113.428	WILSON HOT SPRINGS
UT	2	21	82	27	139.884	113.408	BIG SPRING (NORTH SPRINGS)
UT	3	22	82	27	137.341	113.394	FISH SPRINGS
UT	4	25°	82	27	037.456	113.993	GANDY UARM SPRINGS

UASHINGTON

WA	1		100	37	1	45.823	121.116	KLICKITAT SPRINGS
WA	2		120	49	1	45.728	121.800	ST MARTINS HOT SPRINGS
WA	3			H	1	45.723	121.927	GRAYS HOT SPRINGS
WA	4.16	89	32	1	45.553	121.962 MOFFETTS HOT SPRINGS		
WA	1	12	90	32	1	46.452	120.959 SODA SPRINGS	
WA	1		69	21	1	46.752	121.814 LONGMIRE	

MYOMNG

120	48	1.	41.449	105.802
69	21	1	42.247	104.779
85	30	1	42.663	105.396
129	54	'0	42.545	105.723
75	24	1	42.703	107.103
60	16	0	42.313	108.033
8.9	32	1	42.491	108.171
102	39	1	-42.747	109.618
14.3	62	0	42.827	110.997
11.4	46	0	42.817	110.993
60	16	0	42.395	110.507
132	56	1	43.654	108.195
71	22	1	43.582	108.209
111	44	1	43.009	108.837
84	29	1	43.560	109.727
75	25	0	4.3 .520	109.670
121	50	\bigcirc	43.763	110.693
112.	45	0	43.910.	110.189
80	27	1	43.537	110.614
64	18	3	43.624	110.605
80	27	1	43.545	110.739
85	30	0	43.471	110.833
112	45	1	43.367	110.444
95	37	1	43.296	110.774
85	30	1	43.282	110.020
67	20	0	$44 \cdot 735$	109-188
69	21	0	44.612	108.136
36	36	1	44.512	109.115
	W	0	44.493	109.204

SARATOGA HOT SPRINGS
IMMIGRANTS WASH TUB (WARM SPRINGS)
DOUGLAS WARM SPRINGS (3)
ALCOVA HOT SPRINGS
HORSE CREEK SPRINGS
CONANT (3)
(NARM SPRINGS)
STEELE HOT SPRINGS
AUBURN HARM SPRINGS
JOHNSON SPRINGS (3)
BIG FALL CREEK (3)
THERMOPOLIS (BIE HORN) HOT SPRRINGS
WIND RIVER CANYON (3)
WASHAKIE MINERAL HOT SPRINGS
WARM SPRING (3)
LITTLE:WARM SPRINS (3)
JACKSON LAKE HOT SPRINGS.
NORTH BUFFALO FORK (3)
KELLY WARM SPRING
TETON VALLEY WARM SPRING
ABERCROMEIE WARM SPRING
BOYLES HILL SPRING (3)
GRANITE HOT SPRINGS AND GRANITE FALLS (3)
ASTORIA MINERAL HOT SPRINGS
KENDALL HARM SPRING
LITTLE SHEEP MOUNTAIN WARM SPRINGS
SHEEP MOUNTAIN WARM SPRINGS
DEMARIS (CODY) HOT SPRINGS
BUFFALO BILL RESERVOIR (3)

TEMPERATURE OE

FIGURE 5. Temperature/depth and stratigrapher relationships in the elk Basin oil field, Wyoming and Montana
(1)

Figure 7. COLORADO

\therefore O HeAELER WELL

Figure 2. Locations of wells tested by Heasler and outlines of oil fields which supplied. Petroleum Information data.

\qquad
\qquad
\qquad
\qquad
\qquad
Figure 5. THERMAL GRADIENTS IN UTTAH TO $Z Z E$ SURFACE, USINE MEAN ANNWAL ATMOSPHERIC TEMPERATURES AVERAGE_GRADIENTS OVER \qquad 100 M NNTERVALS PLOTTED AGALNST DEPTA \qquad
$---\cdots-\infty-\infty$- - - - - -
$-\cdots$
$-\cdots$
,.................
\qquad
\qquad

$\because-\cdots \quad-\quad \cdots \cdots \cdots+\cdots$

:...- - - - - - . - - - - . . . $\cdots-\cdots$- - - - - - - - - - -$\rightarrow-\cdots \cdot \operatorname{-n}-\cdots+\cdots+\cdots$

$-,-1+$
$\cdots-\infty \quad-\infty$

 Эフサホリカs 이

A

FIgure 6. (a) THERMAL GRADIENTS IN UTAH FROM DEITHS of 500 m or less to the surface, using mean anNual atmospheric temperatures. Average gradients by seasons. (b) mean seasonal ATMOSPHERIC TEMPERATURES.
保

Figure 11. Detail of anomalous thermal gradient aread in Grand County, Utah.

Figures $7,8,9$, and 10

COLORADO; MONTANA, NEW MEXICO, AND UTAH

COMPARISONS OF THERMAL GRADIENTS in DIL wells with areas considered generally favorable for the recovery of thermal waters

Explanation
\square
area generally favorable for the RECOVERY IF THERMAL WATERS (USGS Circular 790).AREA OF ANOMALOUS THERMAL GRADIENTS.
area of anomalous thermal gradients CALCULATED TO DEPTHS PREDOMINANTLY LESS THAN ONE KILOMETER.

REGIONS OF BEST WELL DENSITY.

Flgure 7. COLORADO

A

Figure 11. Detail of anomalous thermal gradient areas in Grand County, Utah.

Figure 11. Detail of anomalous thermal gradient areas in Grand County, Utah.

MEMORANDUM

TO: ESL Staff

FROM: Mike Wright
SUBJECT: Management of the Geochemical Laboratory and Staff

As you all know, Bob Bamford plans to leave ESL in order to pursue private consulting. Therefore, effective 1 October 1979, Joe Moore will assume responsibility for management of the Geochemical Laboratory facility and staff. Reporting directly to Joe will be the current lab staff, including Odin Christensen, Regina Capuano, Dave Cole, Ruth Kroneman, and Tina Serling.

Joe will be responsible for implementing new programs planned for FY80, for continuation of the current programs, for ensuring the quality of the analytical and other work produced by the lab and for assigning priorities. Requests for lab staff assistance and for analytical work should be communicated to Joe.

After 1 October, Bob will be working as a consultant to ESL. He will be working at the lab full time until about the middle of October, when the initial writing for the Roosevelt Hot Springs report will be completed. At that time, Dave Cole will be taking over Bob's office space, and Bob's work for ESL will be on an as needed basis until The Geysers work is complete. Odin Christensen will assume primary responsibility for the Roosevelt and Geysers studies on behalf of ESL after 1 October and will interface with Bob on Bob's continuing contribution.

We have very much appreciated the excellent work which Bob has directed while at ESL. Industry has recognized this work as being highly interesting and significant. Those of you who have contributed to the success of the geochemical research efforts to date can be justly proud.

Mike Wright Associate Director

ANACONDA
From
DENNIS L. NIELSON
(Uranim)
Cathby - Econ Qeology - Dec. 71178 OJoun' Hydrotheral
convection: syptem geveratud ly radioactia decay.

Stucbless it. al, 1977,
J. Res. U.S.G.S.

$$
0.5, \text { n. } 1 ., 61.81
$$

NED
FHP DRHECT 3 pm

Chart
 with heroum theme ol wall.
 without? 0 ont Cizaimal grodkint areous
Areas ase....tic writh alurda. t low-themole comeletioity
mockn wion onp. rookn wion Trp.

Creass areorea tel wetco aming areaz assougtile with outerypeng Gramiteroties

COLORADO ANOMALOUS AREAS

$$
\begin{aligned}
& \text { NEW MEXICO } \\
& \text { LITTLE BLUE MESA }
\end{aligned}
$$

MONTANA ANON AREAS

Comment
PANDOCDH - West front Qawford metux. Well, nile sourh of Kandolph hava BHT of $65.6^{\circ} \mathrm{C}$ at 1416 ne.
PRICE - Shallow welir. Naxunium BHT is $40^{\circ} \mathrm{e}$ at 608 min Itic locaten si fniles 5ω of Prece $*$
PETERS POINT. Area 20 meles northeact of Caot Carbow City.
CGood PI well here-w

CGood PI well hare, will chacte DOGM filea forit-muisid on intral cherk
GRAND COUNTY - Cem-ceaticl with Nuancore thale onetcorap and the Uncompraigare Up-bift. Well 12 milas writ of Cacea har a BHT of $12.8^{\circ} \mathrm{C}$ at 867 m . Water reported

* zrirm fules of etah Dhision of O il, L_{as}, and muning

okould be able to finid
PI wella un DOGM
DOGM

(1) 5, EDGE County.
(2) 12 mi J.If MyTon
(3) 2 mi W. of Littue Bonanza
(4) 16 mi 5 . of Ouray
(5) 4 Mi NE of $\angle A S_{A L}$
(6) Rossel PT Gr. Salt lake
(7) 20 mi w of Manili
(8) 4 mi SE OF BURMESTER
(9) 12 ni w. of Rainbow
kuelle to Chocte Dogm
PI-96 Peteré Poict, Corbon Co.
Reserve Oel 14. Oe.temépoint
seet 7, 135-TE nervill i三t semoh
PI-104 Stand Co.
Atlantii Disfielde 2-2 Arco-flate see 2, T165. R 24E

No 14 DoGM - Nothing REmarkable $28.8^{\circ} \mathrm{C} / \mathrm{hm}$

PI-54 Uhitah Q.
Weupercai Oil R-14 MCU
$\sec 27, T 15 S-R 19 E$ nur-mod $1=7$ datarth
PI-82 Dwahacme Os.
Pure Oil 1 Castle Araw
sec 10 95-17E

PI-91 Thitah Co.
Chorney Oil
1-18-South Red Wash-Fed
see 18, T95-24E
PI-94 Ehitah O
Maper hnc 2-8Hope Unit-Fed sec 8 IIS-21E

PI-154 Han fuaw Co.
Uneni Oilaf Calif
Uneon Oilog Calij
sen 33, T 285 -R 25 E
1Pmi Ridge USA

MONT
NW Miles City Custer Co.

All grads mi area

Heghast teng $23.3^{\circ} \mathrm{C}$ all BHT's lese tham 1 Kme

Q+intritewnta pepx 1 tof yorrar Haxre axtien

MONT
MAST 42.3

as 1158.9 ft 353 m

353 m
$\frac{7.8}{93}$

$2+5^{\circ} \cdot 3555$

MONT
PLENTYNOCD

av 2342 m
ord, Dewd mise.
Note: 6 Mi wof westby on RR fMi NE of Plentywood area.
$\begin{array}{llllll}786 & 210 & 6634 & 98.9 & 2022 \quad 46.2 & 354 R C L F\end{array}$

RICHLAND COPMONT

MONT.
MAST $45^{\circ} \mathrm{F}$
NW ROSEBUD CO. $7.2^{\circ} \mathrm{C}$

ar $5081=1549 \mathrm{~m}$
$\begin{aligned} \text { Senmage }- & 402 T Y \angle R \\ & 354 \text { SSVD Tyler from } \\ & 354 \text { STR }\end{aligned}$

43 aw $4081 \mathrm{ft}=1244 \mathrm{~m}$

$$
\text { MONT } \angle \angle A U R E Y \text { MAST } 47.0^{\circ} \mathrm{K}
$$

23

$$
1,683.86^{\prime}=513 \mathrm{~m}
$$

abiou $\ln x$

NEW MEXICO
SOUTHERN SAN Juan Basin
LITTLE BLUE MESA mAST
all PI

$\#$	of	ft
9	154	4618
14	160	5582
15	164	5474
16	156	5162
22	174	6395
23	132	3929
25	166	5518
28	142	4154
30	146	4448
32	168	6059
	$\frac{51339}{}$	

at $5134^{\prime}=1565 \mathrm{~m}$
must a fracture (?)

Title Blue mesa area
553 Surassace
602 Cretacescin
603 "

 EASTERN ELBERT CO

MAST USE $50^{\circ} \mathrm{F}$ $10^{\circ} \mathrm{C}$
$00 \angle 0$
LOGAN t meLD Cos.
MAST $Y^{\circ} 7^{\circ} R$
MW STERLING

$$
8.3^{\circ} \mathrm{C}
$$

two largest grads listed

ancencture (?)

1435
436
437
438

$$
110 \quad 3720
$$

30.9

-406

RANGECY
MAST $6.6^{\circ} \mathrm{e}$
all PI.

COLO
NEAR RICO

$$
\begin{aligned}
\text { MAST } & 43.8^{\circ} \mathrm{F} \\
= & 6.6^{\circ} \mathrm{C}
\end{aligned}
$$

Dunton-Reai Hot Ago area
geatherncometer $58^{\circ} \mathrm{C}$
surface $28-46^{\circ} \mathrm{C}$
$105 / 3$

$\therefore 000$
Piceance creek
s-centizal eio blanco co

Cell pi
M45t $6.6^{\circ} \mathrm{C}$

nurut antrachtrue
$\begin{array}{lllllll}1700 & 217 & 8940 & 102.8 & 2725 & 35.3 & 604 \text { MVRD } \\ 701 & 132 & 4664 & 55.6 & 1422 & 34.4 & 652 \text { WSTC }\end{array}$

COCORADO
isolated high grads.
BHTS' $>120^{\circ} \mathrm{F}$

"11 26 mi E. Grand Jct.
(3) SWestern Rio Blanco Co
(3)
"
(5) $32 \mathrm{mi} N$. Grand Jct

4,3 hite with Aargely

PI
${ }^{\circ} \mathrm{F}$
\# 104 .
3235 5 \% \% W2

726
${ }^{\circ} \mathrm{C} / \mathrm{hm}$
in 60t CSLG Cetaceous Cox tlegate
gos production
$28-42$ GPM

UTAH
Rich bo anomaly mast-43 ${ }^{\circ}=6=61^{\circ} \mathrm{C}$

TIIN-RTE

DOGM

553 TCRK = Fwin Creek - Apper furacicic
503 CHNL Chinle - Uppor Drassie
all west frant Arawford native nor water productaons rottre.

$7150^{\circ} \mathrm{C}$

PETERS POINT MAST $45^{\circ} \mathrm{F}, 7.2^{\circ} \mathrm{C}$

IDAHO

(1) Near Nalew HS KGRA
(2) near Nitw. Hone

(1) PR valley
(2) RR Valley
(3) RR VALLEY - 10 mi S. of CurRant
(4) 3 Mi. SE OF EAST ELY
$57 \mathrm{Mi} . \mathrm{N}$. of MCGILL

AREA
USwest
GtBasin
Gthm
 DO NOT CITE DO NOT QUOTE Internal use only

SUBREGION I: SNAKE RIVER PLAIN

Subregional Setting

The Snake River Plain and the Yellowstone volcanic field constitute a major young volcanic province extending in a broad arc from the Idaho-Oregon state line eastward across Idaho to Yellowstone National Park and vicinity (Figure l). The common geologic element in the region is the volcanic activity as indicated by the young basaltic rocks at Craters of the Moon in the eastern Snake River Plain and the massive young rhyolitic volcanic deposits and associated basalts of the eastern Snake River Plain and Yellowstone.

The Snake River Plain is an area of generally low relief which is covered by basaltic lava flows interbedded with young, flatlying river and lake deposited sedimentary rocks. The plain contains a large proportion of the state of Idaho's irrigated agricultural lands, and most' of its population centers. The northeastern portion of the plain is terminated by a generally circular, forested, silicic volcanic feature, the island Park Caldera. The island Park Caldera borders the higher plateaus and mountains of Yellowstone National Park immediately to the east. Radiometric dating indicates that the volcanism has progressed eastward along the plain toward Yellowstone.

The Eastern plain has been characterized as a downwarp, and geophysical surveys indicate 3 to 5 Kws of sedimentary and volcanic fill within the trough. The primary recharge area for the Snake Plains Aquifer is the high snowfall region in the island park area. The outflow area is at Thousand Springs near Buhl in the canyon of the Snake River. Scattered young silicic volcanic centers are present both within the Eastern plain and marginal to it within the Blackfoot Volcanic Field. The Western plain has been described as a rift valley. Volcanism in the Western plain is older than that of the Eastern plain and no specific prospects based on young rhyolitic volcanism have been identified.

Economy of the Subregion

The agricultural emphasis in both the eastern and western Snake River Plain is on potatos and sugar beets. Associated food processing industries are a major agribusiness element of the subregion. Alfalfa and grain are also of agricultural significance in the subregion. The Island Park area supports an active timber industry.

The most significant mineral industry in the region is also agriculture-related. Extensive phosphate deposits occur in the region marginal to the Snake River Plain in southeastern Idaho and significant phosphate processing industry is centered at Pocatello.

Energy Production and Consumption

At present, wnergy generation within the subregion is dominantly hydroelectric, with extensive generation capacity developed by the Idaho Power Company from reservoirs along the Snake River, and imported electric power from the Columbia River system provided by the Bonneville Power Administration. Idaho Power Company and rural electric coops are seriously considering alternative electrical generation alternatives as the hydroelectric generating capacity of the Snake River system has been developed to near-capäcity. Coal-fired plants have been proposed to meet projected requirements but specific projects have been rejected on environmental grounds.

The major supplier of energy for direct heat uses in the subregion is the Intermountain Gas Company. The company is agressively investigating geothermal markets, \bar{f} which (as at Boise) have traditionally used geothermal energy for direct. feat applications.

Geothermal Potential

Confirmed geothermal resources of the area are of low and moderate temperature; and are presently being exploited for a variety of direct heat uses. Known geothermal resources within the subprovince are primarily associated with normal faulting along the margins of the Snake River plain.

Young silicic volcanic rock within the Eastern plain and the high temperature geothermal systems at Yellowstone National Park indicate the potential for igneous-related high temperature resources in the Eastern plain. The high flow rate Snake Plains Aquifer is responsible for obscuring the high heat flow that may be associated with such hidden resources.

Moderate temperature hydrothermal systems are indicated by geochemical thermometry for the Western Snake River plain. High temperatures $\left(-200^{\circ} \mathrm{C}\right)$ have been reported from deep exploration wells in the area, but no high temperature fluid production has been confirmed.

The fracture zones paralleling the northwestern trend of the plain contain at least moderate temperature geothermal resources along both the northern and southern flanks of the Western Snake River plain. The Bruneau-Grandview area adjacent to the plain on the south is notable in this respect. At least a 12 by 60 mile area contains hot fluids at depths of 1,000 to 3,000 feet. The region may ext end from Twin Falls near the easternmost portion of the Western plain more or less continuously to the Oregon state line near Vale.

Strategy

Based on existing resource data, near-term geothermal utilization within the subr egion will be primarily a continuation and expansion of direct heat applications of the low and moderate temperature hydrothermal resources. The Technical Initiatives Program (TIP) insures that potential users are made more fully aware of the geothermal potential existing throughout the subregion and, together with the PON program for direct heat application, will maximize the xéplacement of fessil fuel úséd r. to..create low grade energy with geothermal resources. . The Midterm electrical generation goal of 8,000-9,500 MWe from high temperature resources will be largely dependent on the successful exploration for the hidden resources of the deep Snake River plain. Impediments to industry exploration of the subregion without government support include both the masking of the deep thermal situation by the cold Snake Plains Aquifer and the drilling difficulties anticipated in drilling through the volcanic sequence. A combination of ongoing USGS and DOE-supported assessment, combined with cost-shared drilling with industry, is expected to establish the high temperature geothermal potential of the Snake River plain by 1982. The midterm utilization of the extensive moderate temperature resources for, electrical power generation will depend on the successful development of moderate temperature electrical generation technology at Raft River.

6.

SUBREGION II - NORTHERN ROCKY MOUNTAINS

Subregional Setting

The Northern Rocky Mountain Subregion (Figure l) is a mountainous area characterized by rugged topography, extensive forests and low population density. The subregion is here defined as those portions of Montana and Northern Idaho characterized by the presence of batholiths and folded. mountain ranges exclusive of . the young volcanic provinces of the Yellowstone and Snake River plain.

The combined Idaho and Boulder Batholiths comprise much of central Idaho and southwestern Montana. The area geologically is dominated by batholithic complexes of intermediate to silicic rocks of Cretaceous age (90MYBP). The batholiths are similar in composition and age to the Sierra' Nevada Batholith. The southern and western margins of the Idaho Batholith contain faulted sediment=basins such as Little Camas Prairie, which provide ideal reservoir conditions with approximately 2 KM of sedimentary fill.

In addition to the batholithic ranges; the subregion contains north-trending, folded, sedimentary mountains such as the Sawtooth Range in central Idaho.

Economic Parameters

As the subregion is dominantly dorested land, the economy is based on forext products, tourism, agriculture and hard-rock mining. Population density is low and much of the subregion is composed of National forests, wilderness areas and primative areas.

Energy Próduction and Consumpsion

Electrical generation within the subregion is a mix of hydroelectric power imported from the BPA and Snake River systems, coal fired generation at the Jim Bridger Plant near Green River, Wyoming, and smaller local hydro and coal fired plants. Domestic and Canadian natural gas provides the most important energy source for direct heat applications throughout the subregion. Concern over natural gas availability has motivated widespread interest in alternative energy sources for direct heat applications.

Geothermal Potential

The Northern Rocky Mountain Subregion has a widespread potential for the discovery and development of moderate and low temperature geothermal resources. There is no geochemical or geologic evidence for the existence of very high temperatures suitable for electrical power generation. Widespread moderate and low temperature resources are localized by the presence of fractures
and fault zones. Heat flow throughout at least the Idaho Batholith and Boulder Batholith is known to be high and virtually any recently active fault zone within this portion of the subregion has a potential for providing a moderate temperature resource through deep convective circulation. Hot springs and shallow, moderate temperature, hydrothermal resources are particularly common along structural zones within the Idaho Batholith.

Strategy

The geothermal program in this subregion will emphasize the stimulation of the development of moderate temperature resources for direct heat applications. Individual communities and industries within this natural gas-dependent area will provide the primary targets for development of the geothermal resources for direct heat applications. The program will be implemented largely through the TIPS project and a continuation and expansion of the PON program. The wide-spread occurence of hard rock mining throughout the subregion presents both an opportunity for expanded utilization of natural hot waters in mineral beneficiation and an institutional question concerning the status of geothermal rights versus mineral rights.

SUBREGION III - WASATCH FRONT

Subregional Setting

\therefore The Wasatch Fault Zone and its northern-continuation-as-the \therefore -
Teton Fault zone ithrough southeastern Idahol'to the southern border of Yellowstone volcanic field.contains a disproportionate |percentage of, the, subregion's population and land súitable for agricultural purposes. The wasatch Fault-Zone marks a sharp boundary between the Basin: and Range Province to the west and the wasatch Range to the east. The western margin of the Wasatch Front Subregion generally corresponds to a zone of seismic activity known as the Intermountain Seismic Belt, which continues on northward in the Northern Rocky Mountains past Yellowstone through western Montana to the Canadian border near Glacier National Park. The Unita uplift, the Wind River Range and the associated overthrust belts are also included within this subregion.

Economy of the Subregion

The. Wasatch Front Subregion is generally lightly populated forest land with forest products and ranching dominating its rural economy. A narrow strip along the western margin of the subregion, the Wasatch and Teton Fault Zones, contains most of the area's major population and trade centers including Salt

Lake City. a major intermountain commerce and transportationcenter. This same area also includes much of the subregion's crop land. The subregion contains the watershed for several major drainages, but the populated portions of the area remain relatively water short. Water constitutes one of the major restrictions on the economic growth in the subregion.

Energy Production and Consumption

The subregion is a net importer of energy. Both coal and petroleum are imported from the Colorado plateau immediately to the east of the subregion in the state of Utah. Utah Power and Light, the principal electrical utility for the southern half of the region currently purchases power from $B P A$ and has tentatively contracted with Phillip for geothermal steam from the Roosevelt field, in south central Utah.

Geothermal Potential

The techonically active margins of the subregion, which border the Basin and Range Subregion, contain low and moderate temperature geothermal resources suitable for direct heat applications. The general absence of young volcanism within the subprovince is negative evidence concerning the potential for the discovery of the $+200^{\circ} \mathrm{C}$ fluid resources suitable for electrical generation in the near term. The fortunate coincidence of the area's population centers with widespread low to moderate temperature resources associated with the wasatch Fault zone provides a major opportunity for direct heat applications.

Oil and gas exploration of the overthrust belt of southeastern Idaho has provided firect confirmation of the presence of moderate temperature resources. Water near the boiling point has been produced from carbonate aquifers at depths of less than 2 km at several points in Teton Valley.

Strategy

The near term geothermal program for the wasatch Front subregion will emphasize the acceleration of the development of low and moderate temperature resources for direct heat applications. This will be accomplished by means of the inventory of these resources in cooperation with state agencies in Utah and Idaho and the geothermal program of the U. S. Geological Survey. Following the initial inventory of the resources which will be completed in FY 78, the program will emphasize site specific studies and projects under the TIPS Project designed to bring the resource to the attention of the potential users. A significant impact on new energy requirements for low grade heat will be possible through an ambitious program which addresses markets in the private and public sector.

SUBREGION IV - COLORADO PLATEAU

Subregional Setting

The Colorado Plateau and the young volcanic ranges which occur around its margin with the Basin and Rande Province are here considered as a single subregion. The Colorado Plateau is roughly a circular area bounded on the west and south by the Basin and Range Province and on the north and east by the Wasatch Front and southern Rocky Mountains. Topographically, the plateau is divided into a number of individual uplifts and basins which range in elevation from 5,000 to 11,000 feet. The margins of the plateau contain a number of relatively young volcanic ranges with a significant geothermal potential. These include the Mineral Range in southwestern Utah, the San Francisco Peaks near flagstaff, Arizona, the White Mountains in southcentral Arizona, the Zuni Uplift in northwestern New Mexico and the San Juan Range of Southwestern Colorado.

Economy of the Subregion

The subregion contains an abundance of mineral resources, including coal, oil and gas, uranium, and precious metals. The area is, in general, sparcely populated with scattered commerce centers, such as Flagstaff, serving large geographic areas. A number of cities have prospered in the Four Corners region as a result of oil and gas production and uranium
exploration and development. Coal mining is a major activity within the Uinta region and the Kaiparowits Plateau field. Agriculture in the form of truck farming and orchards is an important local source of income in the valleys marginal to the plateau. Much of the land is semi-arid and supports sheep and cattle ranching.

Energy Production and Consumption

The subregion is a net exporter of energy as a result of the coal generation plant at Four Corners. The oil and gas fields of the subregion include the Uinta Basin, and the numerous fields in the Paradox Basin and the San Juan Basin. Energy consumption within the region is low, but the region presents major opportunities for the growth of energy-intensive industries co-located with the coal deposits and geothermal resources.

Geothermal Potential

The interior of the Colorado Plateau is generally thought to be a relatively low heat flow province. The margins of the plateau, however, contain major, confirmed, high-temperature geothermal systems associated with young silicic volcanic centers. The Roosevelt-Cove Fort-Sulfurdale-Thermo KGRAs in southcentral Utah constitute a major electrical generation resource which is being actively developed by industry with DOE support.

Young volcanic centers in central and eastern Arizona include the San Francisco Peaks and the White Mountains. These regions have not been explored by deep drilling but appear promising on the basis of their geologic setting, regional heat flow measurements and limited geochemical data. The Zuni Uplift in northeastern New Mexico is interesting but its potential is less substantiated.

Strategy

The young volcanic fields marginal to the Colorado Plateau constitute a high priority target within the total region. Acceleration of the rate of development of the known fields in southern. Utah in order to meet the 1985 goal of 100 MWe and the year 2000 goal of 2600 MWe will be accomplished primarily by means of the industry-coupled drilling program which was initiated in FY 77. Further drilling in adjacent KGRAs will be encouraged during subsequent solicitation programs. The rate of development of these reservoirs will also be accelerated by means of case studies of the data set provided by the industrial participants in the program.

The utilization of by-product fluids produced by electrical generation at these fields will be encouraged through an expanded regionwide PON program for direct heat applications.
15.

Oil and gas exploration within the Colorado Plateau will be carefully monitored for abnormal gradients encountered during the oil and gas exploration. The margins of the plateau will receive particular emphasis in state-USGS cooperative origrans with Arizona, Utah, New Mexico and Colorado. These programs are designed to target reservoirs suitable for direct heat applications, which the TIPS Project will help make available to potential users.

SUBREGION V - BASIN AND RANGE

Subregional Setting

The Basin and Range subregion is a major physiographic province which includes most of Nevada, southwestern Arizona, western Utah, southwestern New Mexico and a small portinn of southern Idaho. The subregion includes block-faulted basins and ranges which are generally north-south trending througrout whe fegront The subregion is arid to semiarid and characteristically is composed of desert lands and closed drainages. Although basaltic and rhyolicic lavas dated 6 to 20 million years before present are common throughout the province, there are very few young rhyolitic centers. The region has a higher than normal heat flow, and hot springs and wells, particularly in northcentral and eastern Nevada..

Economics of the Subregion

Mining and ranching provide the major regional source of income. Tourism, forestry and agriculture are locally important. The availability of water throughout the region is restricted and water requirements for any new industrial or population growth must be carefully considered.

Energy Production and Consumption

Due to the low population density, the Subregion is not a large consumer of energy. The minerals industry, however, does require large quantities of energy for mineral beneficiation at the numerous smelters dispersed throughout the province.

The region could be a major supplier of electrical power to California.

Geothermal Potential

The subregion has a widespread moderate temperature resource which is almost universally present along fracture zenes within the region. Geochemically predicted base reservoir temperatures of 150° to $200^{\circ} \mathrm{C}$ are relatively common and temperatures as high as $240^{\circ} \mathrm{C}$ are predicted for some fields. Although the Basin and and Range Province is characterized by its high heat flow, the thermal gradients measured throughout the region are by no means uniform. High gradients are especially common in a region of northcentral and noprtheastefn Nevada known as the Battle Mountain High. This area of unusually high heat flow does not appear to be associated with any known igneous heat source, but rather is an area of abnormally high gradient superimposed on the reginnal high.

The area of the Battle Mountain High continues to be the object of considerable industry interest in exploration for electrical
generating capacity. The westernmost portion and its boundary with the Sierran Front seems to possess the high temperature geothermal potential. Prospects with confirmed high temperatures include Steamboat Springs, Brady Hot Springs and Grey's Peak.

Strategy

In view of the interest displayed by industry in the electrical generating capacity of resources of the northern Basin and Range, this region has been targeted for the second initiative of the industry coupled program, beginning in 1978. Significant questions remain as to the nature of the heat source driving the numerous moderate and possibly high temperature systems. The industry coupled program will be designed to both stimulate the drilling and development of the numerous systems in the area and also to acquire detailed subsurface data which will be valuable in accelerating the industries rate of successful discoveries. A modest program of 10 W and moderate temperature reservoir identification is planned in cooperation with the USGS and State agencies. This program will seek as its main thrust to replace existing energy consumption in the region for mineral beneficiation at sites where mineral processing and the geothermal resources are co-located.

SUBREGION VI

RIO GRANDE RIFT - SOUTHERN ROCKY MOUNTAINS SUBREGION

The major feature of this subregion is the Rio Grande Rift, a. structural depression located just west of the Sangre De Cristo Range of Northern New Mexico, which estends southward through Central New Mexico to the Texas border at El Paso. Also included in the subregion are the Southern Rocky Mountains, which extend from the Laramie Range in Southern Wyoming to the Sangre De cristo Range. The region is mountainous with elevations to 14,000 feet. Intermentein bosing colled parks separate the jnetividual panges The subregion is bounded on the east by the Great Plains and on the west by the Colorado Plateau and Wyoming Basin (Figure 7). Economics of the Subregion
Thē economy of the subregion has a strong agriculture and forest products base. . Tourism has become an increasingly important industry and environmental sensitivities are especially high. Ranching, forestry and only a limited additional agricultural activity is permitted by the topography and climate of the region.

Energy Production and Consumption

Tje area generally lacks energy intensive industries and is neither a major producer or consumer of electricity. Electrical power generation from high temperature geothermal resources could serve the needs of growing metropolitan areas such as Albuquerque, or could be exported to california. Many of the individual cities
and town within the subregion are dependent on natural gas for direct heat applications and their service has been threatened during past winters by natural gas shortages. These urban areas constitute the major new term market for geothermal energy within the region.

Geothermal Potential

The subregion has a demonstrated high temperature reservoir which is being developed by Union Oil Company at the Valles Caldera/ near Los Alamos in northern New Mexico. The Caldera lies along the Rio Grande Rift on the margin of the Colorado Plateau. The/presence of high temperature geothermal reservoirs at other sites along the Rift have been postulated but not confirmed. The Rift does constitute a favorable region for high temperature geothermal system discoveries. The remainder of the subprovince, particularly the more northern ranges, do not appear to have a high temperature potential. Known geothermal occurences through the San Luis Valley in southern Colorado and near Alenwood Springs in northern Colorado confirm that at least a moderate temperature resource is present throughout this negion.

Strategy

A pre-commercial study of the high temperature potential of the Rio Grande Rift will be conducted during 1979 and 1980. Based on the success of this survey, an industry-coupled program will be initiated in 1981 which will be designed to stimulate industry exploration for high temperature systems within the Rio Grande Rift. The State Coop program and the PON program for direct heat applications will be employed in order to stimulate the development of low and moderate temperature geothermal resources in the major population centers of the region.

SUBREGION VII

GREAT PLAINS

Subregional Setting

The Great Plains subregion is a major physiographic province lying east of the Rocky Mountains. For the purposes of this program the Wyoming Basin is included within the Great Plains subregion. The Great Plains are underlain by eastward dipping sedimentary rocks of tertiary age. A number of individual mountain ranges, including the Black Hills of South Dakota, are present within the subregion. The Williston Basin is a large sedimentary basin centered to the northeast of the Black Hills in Montana, North Dakota and Northwestern South Dakota.

The principal deep fresh water aquifer throughout much of the subregion is the Madison Limestone.

Economy of the Subregion

The economy of the area is dominantly agricultural, with most of the subregion being utilized for grain production and ranching. Oil production from the Williston Basin in North Dakota, the Powder River, Big Horn and wìnd River Basins in Wyoming, and gas and oil production from several fields in Montana have constituted major non-agriculture economic activity of the subregion. Montana and Wyoming contain significant bituminous to subbituminous coal fields which are undergoing accelerated development and will significantly impact the region's economy. Coal processing will compete with other demands for ground and surface water in the Subregion.

Energy Production and Consumption

The region is a net exporter of energy and fuel as a result of its low population density and abundant energy resources. In view of the region's abundant coal deposits, coal generation of electricity may be water-limited rather than resource-limited.

Geothermal Potential

The Great Plains subregion contains no identified igneous point sources and the geologic environment does not suggest the presence of high temperature geothermal systems. Heat flow throughout most of the region is normal or near-normal and, as a result, moderate temperature convective systems are not common. The sabregion does contain widespread occurrences of hot water in the Madison Aquifer, which has been locally utilized for direct heat applications. A significant development for space heating is presently underway in South Dakota under the PON program. Water near the boiling point is produced from the Madison Formation near Casper and Sheridan, Wyoming, making these urban areas potential users of geothermal energy for direct heat applications.

C":

1 -

 CHARACTERISTICS OF THE JURASSIC TWIN CREEK LIMESTONE IN IDAHO, WYOMING, AND UTAH ${ }^{1}$
 By RALPH. W. IMLAY.
 United States Geological Survey, Washington, D. C.

INTRODUCTION

This paper includes a summary of the lithologic and stratigraphic characteristics of the seven members of the Twin Creek limestone, the descriptions of some ypical sections in western Wyoming and southeastern daho, and three lines of columnar sections. The last wo items present much information not published preiously. The summary descriptions represent a conensed version of those published in the Wyoming Geoogical Association Guidebook for 1950 (Imlay, 1950a) ut include some additional information. Only brief rention is made of the correlation of the members of ne Twin Creek limestone, as that subject has been disussed fully in the Bulletin of the Geological Society of merica (Imlay, 1952a). Likewise, the origin of the arious kinds of sediments comprising the Twin Creek mestone has been discussed amply in a report pubshed by the National Research Council (Imlay, 950b).

IISTRIBUTION AND GENERAL FEATURES

The Twin Creek limestone occurs in an area of exnsive thrust faulting along the Idaho-Wyoming bor$: r$ and in north-central Utah, extending from the uthern end of the Teton Mountains west of Jackson, 'yo., southward to the south end of the central Watch Range near Thistle, Utah. It also occurs east of e area of thrust faulting in the western part of the nta Mountains as far east as Lake Fork (Thomas and uger, 1946, p. 1275-1277). Within the area of rusting, it thickens westward from about 800 feet to 300 feet. The thickest measured section is at Thomas rk Canyon, abour 22 miles north-northwest of Cokele, Wyo., but the section on Stump Creek, Idaho, out 8 miles northwest of Auburn, Wyo., is nearly as ck. The Twin Creek consists mainly of medium- to ht-gray limestone, of which most is shaly and athers into long splinters. However, the formation o contains two persistent red members in its lower rd, one cliff-forming limestone member at the top its lower third, and one sandy member at its top.

DESCRIPTIONS OF THE MEMBERS

Member A at the base of the Twin Creek limestone :kens westward in an irregular manner from an aver-

[^0]age of 75 feet in western Wyoming to about 400 feet in the Blackfoot Mountains in Idaho. Its thickness may vary markedly within distances of less than a mile. It is absent in the Uinta Mountains and locally absent in the Wasatch Range of Utah.

The member is characterized by soft, brownish-red siltstone that contains interbeds, or units, of brecciated or honeycombed limestone. In western Wyoming and locally in eastern Idaho the lower part of the member contains a conspicuous unit of brecciated gray to yellow limestone that ranges from 10 to 50 feet in thickness. This unit is a jumble of sharply angular blocks, generally includes a little red siltstone, and shows faint stratification. The position of this brecciated limestone unit is occupied by thick masses of gypsum in the southeast corner of the Jackson Quadrangle in the $\mathrm{E} 1 / 2 \mathrm{sec} .36$, T. 36 N., R. 115 W. Locally, gypsum has been found in the lower part of the member near the head of Crow Creek, Caribou County, Idaho, in sec. 10, T. 11 S., R. 45 E. (Mansfield, 1927, p. 96). In many sections the middle and upper parts of the member contain one or more beds or thin units of yellow honeycombed or brecciated limestone that are generally inconspicuous. In southeastern Idaho the middle part of the member contains a unit of dense limestone that is siliceous and bears nodules and lenses of brownish-gray chert. This unit is about 70 feet thick on Stump Creek in the $\mathrm{S} 1 / 2$ secs. 27 and 28, T. 6 S., R. 45 E., Caribou County, and at least 140 feet thick on Williams Creek in the SE $1 / 4 \mathrm{sec} .12, \mathrm{~T}$. 2 S., R. 39 E., Bingham County. A similar chert-bearing limestone generally only 1 or 2 feet thick occurs near the middle of the member in several sections near the Idaho-Wyoming border. Most sections contain minor amounts of brownish-red fine-grained sandstone interbedded with the red siltstone. Yellowish-white sandstone occurs locally at or near the base of the member. The basal beds of the member may consist of red siltstone, of soft yellowish sandstone, or of brecciated limestone, and they invariably rest sharply on the hard quartzitic Nugget sandstone. The upper contact of the member is marked by an equally sharp change from soft red siltstone to sandy or massive oolitic limestone.

Member B thickens westward from 25 to nearly 300 feet. In western W yoming this member consists mainly of medium- to thin-bedded, grayish-black to dark brownish-gray limestone. Its basal unit generally

consists of 5 to 15 . feet or more of dark oolite that contains a few sand grains and some pyrite. Thinner oolitic beds occur higher in the formation in some sections. In southeastern Idaho the basal 20 to 60 feet generally consists of brownish, sandy, crossbedded limestone that may contain tiny pebbles of red, green, and gray siliceous material. Similar sandy limestones also occur at higher levels. Some of the sandy beds are glauconitic. Oolitic beds are generally present above the basal unit of sandy limestone. A light-green to white volcanic tuff (Mansfield, 1927, p. 97) from 5 to 10 feet thick occurs within the member in the general area between Cokeville and Afton, Wyo. The member has furnished a large fauna of mollusks. Gryphaea planoconvexa Whitfield is one of its most common and most characteristic fossils. The ammonites Stemmatoceras and Chondroceras (Defonticeras) have been found in most sections in the upper part of the member and prove its middle Bajocian (earlier Middle Jurassic) age. The member persists southward into north-central Utah as least as far as Thistle. In the Uinta Mountains it is recognizable as far east as Lake Fork but is absent on the Whiterocks River. In the Jackson Hole area it thins eastward and becomes shaly, but the basal oolitic unit persists.

Member C thickens westward from 50 feet in western Wyoming to 350 feet in Idaho and consists mainly of medium-gray shaly limestone that is very soft basally but becomes harder upward, contains some thin beds near its top, and grades into the overlying silty beds of member D. A few thin beds near the top are generally composed mainly of crinoidal fragments. It weathers characteristically into light-gray splintery fragments. Its basal contact is transitional within a few inches in most sections. Its lower two-thirds has furnished Gryphaea planoconvexa Whitfield. The ammonites Stemmatoceras and Chondroceras were found about 10 feet below the top of the member on the North Fork of Stump Creek in the Freedom Quadrangle, Idaho. These ammonites show that the member is of early Middle Jurassic age. Member C is recognizable lithologically in northern Utah as far south as Thistle and as far east in the Uinta Mountains as the Whiterocks River. It thins eastward rapidly in the Jackson Hole area and is only about 50 feet thick at Lower Slide Lake on the Gros Ventre River.

Member D thickens generally westward from 35 feet in western Wyoming to 270 feet in Idaho but varies considerably in thickness within short distances. It consists of interbedded soft red, green, or yellow siltstone, silty to finely sandy yellowish limestone, and greenish-gray silty shale. The limestones vary from shaly to thick-bedded, frequently show crossbedding, and contain marine fossils. Red siltstone dominates over
limestone in the easternmost sections in Wyoming, but westward the member becomes more calcareous, sandier, and loses its red units. In Idaho is consists mostly of yellowish limestone whose sandy members are cliffforming. In northern Utah, member D at most places consists of a unit of yellowish sandy limestone overlain by a unit of soft red siltstone. The base of member D is generally marked by a unit of silty to sandy limestone that is transitional into the underlying member. The top of member D makes a sharp contact with the overlying cliff-forming limestone at the base of member E .

Member E thickens westward from about 60 feet in western Wyoming to 400 feet in Idaho. It consists mostly of medium-gray to brownish-gray, mediumbedded, cliff-forming limestone but includes many thin beds in its middle and upper parts. Most of the beds are dense, but oolitic beds occur throughout. Generally the basal bed is massive and oolitic. In Idaho, along Preuss Creek and Stump Creek, some of the limestones are slightly sandy. Member E is the main ridge-former in the Twin Creek limestone and could be mapped easily if detailed mapping of the Twin Creek is ever found desirable. Its basal contact is sharp. It grades into the overlying member through a unit of thinbedded to shaly limestone, and the boundary must generally be chosen arbitrarily within an interval of 30 to 50 feet. It has furnished very few fossils. Some of the beds contain crinoid parts and Camptonectes. Gryphaea nebrascensis Meek and Hayden was found near the top of the member on Sliderock Creek and on Cortonwood Creek east of Smoor, Wyo. Member E is recog. nizable lithologically in northern Utah as far south as Thistle and at least as far east as the Whiterocks River in the Uinta Mountains. The lowest few feet of limestone in the Carmel formation north of Vernal in sec. 26, T. 3 S., R. 21 E., is probably the easternmost limit of the member. Between the Whiterocks and Duchesne Rivers the upper part of the member contains a thin but conspicuous unit of grayish-white, thin-bedded, nearly lithographic limestone. This limestone is overlain at Lake Fork by a few feet of sandy limestone. Near Manila on the north side of the Uinta Mountains, member E consists entirely of slightly sandy oolitic limestone. Equivalent beds at Lower Slide Lake on the Gros Ventre River are about 57 feet thick and include, from base to top, 20 feet of medium-bedded oolitic limestone, 30 feet of shale with thin interbeds of limestone, and 7 feet of oolitic limestone. About 8 feet above the base of the shale were obtained the ammonites Arcticoceras and Cadoceras. These genera are common in the basal part of the Rierdon formation in Montana and in equivalent beds in north-central Wyoming.

BIG ELK MOUNTAIN NORTH SIDE SEC.6,T.2S., R.45E., BONNEVILLE CO., IDAHO

CABIN CREEK
NORTH SIDE SEC.17, T.38N., R.II6 W TETON CO., WYO.

MUMFORD CREEK HOBACK CANYON GREEN RIVER LAKES RED GRADE RED CREEK
NORTH SIDE SECS. 31 日 32,T.39N.,RH4W1, T.39N.,R.IO8W. Q109W. SECS.12813,T.5N.R.6W. SEC.7, T.6N., R. 3 W.

figure 1.

WEST
EAST

COLUMNAR SECTIONS ALONG LINE B-B'
FIGURE 2.

Member F thickens westward from about 250 feet in western Wyoming to 1,600 feet or more in Idaho. It is by far the thickest and most conspicuous part of the Twin Creek limestone, forming extensive bare slopes of light-gray color that are visible for great distances. It consists mainly of soft, dense, light-gray shaly limestone that weathers generally into lighter-colored splintery fragments. At wide intervals the member contains hatd, thin beds that bear many fragments of crinoids and echinoids, fairly well preserved Camptonectes, a few oysters and belemnites, and rarely such pelecypods as Pinna, Astarte, Isocyprina; and Trigonia. In the middle and upper parts of the member, some of the thin limestone beds are oolitic, and others are silty to sandy and ripple-marked. Eastward the member becomes less calcareous, and a few of the units weather into chunky rather than splintery fragments. Associated with these chunky beds are some thin nodular limestones that may contain an abundance of Gryphaea nebrascensis Meek and Hayden. Such fossiliferous units are common in the section on Greys River in the Afton Quadrangle and on Cabin Creek and Fall Creek in the Jackson Quadrangle. The member is overlain transitionally by the silty to sandy beds of member G, and the boundary must be selected arbitrarily in most sections. Member F is recognizable lithologically in northern Utah as far south as Thistle but becomes much shalier southward, and some units are calcareous shales rather than limestones (Bâker, et al., 1947). In the Uinta Mountains, member F is typically developed as far east as Lake Fork. At the Whiterocks River, and eastward, the beds occupying the stratigraphic position of member F consist mostly of redbeds and gypsum that are customarily included in the Carmel formation. Eastward, in the Jackson Hole area beyond the DarbyAbsaroka line of overthrusting, the beds equivalent to member F consist of thinner, medium-gray, calcareous shales that near their base in some sections contain a few thin beds of nodular limestone. The nodular limestones contain a great variety of mollusks, including the ammonites Cadoceras and Xenocephalites: The shales are especially characterized by an abundance of Gryphaea nebrascensis Meek and Hayden, which contrasts with the rarity of the species in the underlying oolitic limestones that contain Arcticoceras. These shales are lithologically and stratigraphically identical with the Reierdon formation of Montana. Eastward, in the Wind River Basin, they pass into the Stockade Beaver shale member of the Sundance formation.

Member G ranges in thickness from about 25 feet to at least 288 feet, is highly variable in thickness, and within the area of thrust faulting does not thicken appreciably in any direction. It consists mostly of yellowish to greenish, lavender, or pinkish, silty to finely
sandy, ripple-marked, thin-bedded limestone, and some shaly limestone. Some units consist of medium-bedded limestone that is generally oolitic or sandy. Some of the sandy units are crossbedded. Many beds are a coquina of crinoid and echinoid fragments, and their upper surfaces are commonly matted with shells of Camptonectes. The upper part of the member is generally harder: and thicker-bedded than the lower part and in places forms low cliffs. Westward, in Idaho, the member becomes sandier and consists of interbedded units of ripple-marked sandy limestone and glauconitic, thin- to thick-bedded sandstone. At Thomas Fork Canyon and Wolverine Canyon the member is more than half sandstone and at Preuss Creek is mostly sandstone (Imlay, 1952b, p. 1740). The sandy units are lithologically similar to the Stump sandstone. Member G is overlain transitionally by red siltstone or sandstone at the base of the Preuss sandstone. At the top, in most sections, is a transitional zone that is generally less than 10 feet thick. In some sections, as on South Piney Creek and on Cabin Creek in Wyoming, the transitional zone is much thicker. In such sections the highest limestone is arbitrarily placed in the Twin Creek, because a marine limestone is apt to be more persistent than a red unit. Member G is recognizable in Utah as far south as Thistle and as far east as Lake Fork. East of the Duchesne River the member consists mostly of greenishgray siltstone and sandstone. In the Jackson Hole area it disappears eastward and is absent at Lower Slide Lake on the Gros Ventre River. Member G is similar lithologically and stratigraphically to the Hulett sandstone member of the Sundance formation in central and eastern Wyoming, western South Dakota, western North Dakota, and southeastern Montana.

BIBLIOGRAPHY

Baker, A. A., et al. (1947). "Stratigraphy of the Wasarch Mounmins in the Vicinity of Provo ${ }^{\text {E }}$ Utah," U. S. Geol. Survey Predim. Chart 30, Oil and Gas Invest. Ser.
Imlay. R. W. (1950a), "Jurassic Rocks in the Mountains Along the West Side of the Green River Basin," Wyoming Geological Assn. Guidebook, Fifth Annual Field Conference, pp. $37-48,3$ figs.
(1950b) " Paleoecology of Jurassic Seas in the Western Interior of the United States," Natl: Resenrch Council, Report of the Committee on a Treatise on Marine Ecology, and Paleoecology, 1948-1949, no. 9, pp. 72-104, 8 figs., 1 correlation table.
(1952a), "Correlation of the Jurassic Formations of North America Exclusive of Canada,' Bull. Geol. Soc. Amer.; Vol. 63, Pp. 953-992, 2 pls.
.......... (19526), "Marine Origin of the Preuss Sandstone of Idato, Wyoming, and Utah," Bull. Amer. Assoc. Petrol. Geol., Vol. 36, Pp. 1735-1753, 4 figs.
Love, J. D., er al, (1945), 'Stracigraphic Sections and Thickness Maps of Jurassic Rocks in Central Wyoming;" U. S. Geol. Survey Prelim. Chart 14, Oil and Gas Invest Ser.
Manstield, G. R. (1927), 'Geography, Geology, and Mineral Resources of Part of Southeastern Idaho," U. S. Geol. Survey Prof. Paper 152, 409 pages, 46 figs., 63 pls.
Thomas, H. D., and Kruger, M, L. (1946), "Late Paleozoic and Early Mesozoic Stratigraphy of Uinta Mountains, Utah," Bull. Amer. Assoc. Periol. Geol., Vol. 30, pp. 1255-1293, 10 kigs.

LOCAL SECTIONS

Lower part of Twin Creek limestone about $11 / 2$ miles east of Bear Lake on road to Pegram in NW1/4 sec. 29 and NE1/4 sec. 30, T. 15 S., R. 45 E., Bear Lake County, Idaho:

rWIN CREEK LIMESTONE

Member C
24. Limestone, shaly, soft, medium-gray, weathers light-gray. Not measured; at least several hundred feetexposed.
Member B:
23. Limestone, medium-bedded, slightly sandy, cross-bedded, medium yellowish-gray.30
22. Limestone, greenish-gray 1
21. Limestone, thin-bedded, yellowish- to pinkish-gray.... 20
20. Limestone, medium- to thick-bedded, finely sandy, crossbedded, medium-gray, weathers light brownish-gray, traces of oysters5
19. Covered11
Limestone in beds 8 to 12 inches thick, very sandy, a few small pebbles of red and yellow cherr, cross- bedded, dark brownish-gray, weathers light-brown, many oyster fragments in top bed. 6
17. Sandstone, thin-bedded, crossbedded, fine-grained, light-gray. 5
16. Limestone, full of grit and small pebbles consisting of red, yellow, gray and black chert and white quartz, many shell fragments. 1
15. Covered. 44
14. Limestone, thin-bedded, sandy, partly crossbedded, a 6 -inch coquina bed about 5 feet below top, medium yellowish-gray, weathers grayish-yellow 37
13. Limestone, thin-bedded, sandy, medium-gray, weathers same. 32
12. Limestone, thin- to medium-bedded, medium yellow- ish-gray, weathers brownish-gray 14
11. Limestone, sandy, hard, crossbedded, contains oysters, bryozoans, and crinoid fragments. $11 / 2$
10. Limestone, finely sandy, partly crossbedded, medium gray, weathers light yellowish-gray 22
Member A:
9. Mostly covered. Some red siltstone occurs within 32 feet of top 130
8. Siltstone, light-red, soft. 20
7. Siltstone, olive-green, soft 7
6. Siltstone, light-red, soft. 6
5. Limestone, light yellowish-gray, nodular 1
4. Siltstone, light-red to light-green. 30
3. Limestone, medium- to thin-bedded, nodular and por- ous but not brecciated, light yellowish-gray to olive- gray, weathers yellowish-gray. 18
2. Limestone, thin-bedded, laminated, medium dark gray, weathers light-gray. $21 / 2$

1. Siltstone, reddish-brown, soft. 32
IGGET SANDSTONE.
Twin Creek limestone on north side of Preuss CreekEl/2 sec. 15, T. 11 S., R. 45 E., Bear Lake County,ho:

EUSS SANDSTONE.

IN CREEK LIMESTONE:

lember G :

ish, weathers dull pinkish-gray, contact with Preusssandstone transitional within 10 feet71lember F :
24. Limestone, shaly, soft, some thin beds, medium-gray, weathers light-gray. Cannot be measured because of strong folding but at least.$1,500+$

ember \mathbf{E} :
23. Limestone, medium- to thin-bedded, dense, mediumgray.
22. Limestone, massive, slightly oolitic, some shell frag ments, forms top of cliff. 10
21. Limestone, thin- to medium-bedded, slightly sandy, medium yellowish-gray 48
20. Covered. 26
19. Limestone, thick-bedded, cliff-forming, medium-gray. 61
18. Limestone, massive, oolitic, medium-gray 6
Member D:
17. Silrstone, brownish-red, soft 6
16. Limestone, thin-bedded to shaly, silty to sandy, ligh yellowish-gray. 33
Member C :
15. Limestone, shaly, soft, light-gray, a few thin beds. 271
Member B:
14. Limestone, medium- to thin-bedded, medium-gray, forms low cliff 20
13. Limestone, thin-bedded, light-gray. 21
12. Limestone, thin- to medium-bedded, sandy, some grains of grit size, brownish-gray. 30
11. Tuff, dense, light-green to white. 5
10. Covered 22
9. Limestone, thin- to medium-bedded, sandy, brownish- gray, becomes less sandy toward base, some beds coquinoid. 111
8: Limestone, medium-bedded, gray. 20
Member A:
7. Covered. 15
6. Siltstone, brownish-red, soft 37
5. Limestone, brecciated, gray 4
4. Sandstone, thin-bedded, brownish-red, very fine- grained. 33
3. Siltstone, brownish-red, soft 30
2. Limestone, brecciated, gray.. 7

1. Siltstone, brownish-red, soft. 3
Approximate thickness $.2,485+$
NUGGET SANDSTONE (not measured).
Twin Creek limestone along old Lander Trail southof Stump Creek in S1/2 secs. 27 and 28, T. 6 S., R. 45 E.,Caribou County, Idaho (thicknesses approximate):
PREUSS SANDSTONE.
TWIN CREEK LIMESTONE:
Member G :Feet
2. Limestone, thin-bedded, slightly sandy, yellowish- to pinkish-gray, overlain by soft red siltstone at base of Preuss sandstone. 90
Member F :
3. Limestone, shaly, soft, light-gray $1,000 \pm$
Member E:
4. Limestone, medium- to thick-bedded, slightly sandy, some beds oolitic, contains some comminuted shells, medium-gray to light yellowish-brown. 400
Member D:
5. Siltstone, brownish-red, soft. 30
6. Limestone, thin-bedded, sandy, yellowish-gray. 60
7. Limestone, cliff-forming, finely sandy, light yellowish- gray, contains many small Gryphaea 20
8. Limestone, thin-bedded to shaly, silty, yellowish-gray 6015. Limestone, cliff-forming, sandy, glauconitic, partlyoolitic, greenish- to pinkish-yellow.
9. Limestone, thin-bedded to shaly, interbedded withcalcareous siltstone, some beds sandy, yellowish-gray..60
Member C :
10. Limestone, shaly, soft, light-gray, becoming harderupwards, contains abundant Gryphaea planocon-vexa Whitfield in its lower two-thirds.250
Member B:
11. Limestone, thin-bedded, slightly sandy, yellowishgray, weathers light yellowish-gray, upper 10 feet contains many Gryphaea planoconvexa Whitfield.

TABLE 1.

thickness in feet of the members of the twin creek limestone and SOME EQUIVALENT FORMATIONS IN WYOMING, IDAHO, AND UTAH

	A	B	C	D	E	F	G	Total
Mosquito Pass, Wyo.: N1⁄2 sec. 34, T. 41 N., R. 118 W.	80	75	95	45	65	395	25	780
Lower Slide Lake, Wyo.: Sec. 4, T. 42 N., R. 114 W	46	56	50	38	57	163	0	410
Wolverine Canyon, Idaho: E $1 / 2$ sec. 28 \& $W^{1 / 2}$ sec 27, T. I S., R. 39 E.		NOT	EXP			1500+	172	
Fall Creek, Idaho: Sec. 18, T. 1 N., R. 43 E	96	200	338	77	160	628	131	1630
Big Elk Mountain, Idaho: SW1/4 sec. 6; T. 2 S., R. 45 E.	20	74	228	123	172	520	120	1257
Fall Creek, Wyo.: NE1/4 sec. 20, T. 39 N., R. 116 W	63	55	151	40	69	477	48	903
Cabin Creek, Wyo.: S $1 / 2 \mathrm{sec} .17$, T. 38 N., R. 116 W .	97	97	140	40	89	370	127	960
Mumford Creek, Wyo.: SE1/4 sec. 32, T. 38 N., R, 115 W.	107	24	125	71	65	330	41.	763
Hoback Canyon, Wyo.: Secs. 31 \& 32, T. 39 N., R. 114 W.; sec. 6, T. 38 N., R. 114 W...	76	60	104	43	65	290	28	666
Stump Creek, Idaho: S $1 / 22$ secs. 27 \& 28, T. 6 S., R. 45 E.	223	281	250	270	400	1000	90	2514
Greys River, Wyo.: Sec. 4, T. 33 N., R. 116 W	110	45	240	64	155	475	89	1178
Cottonwood Creek, Wyo.: W1/2 sec. 36 and $E 1 / 2$ sec. $35, \mathrm{~T} .31 \mathrm{~N} .$, R. 118 W.	102	87	275	66	146	530	100	1306
Poker Flat, Wyo.: Secs. 3 \& 10, T. 29 N., R. 117 W.	125	88	247	83	175	813	102	1633
South Piney Creek, Wyo.: Sec. 11, T. 29 N., R. 115 W \qquad	82	70	103	49	157	262	232	955
Preuss Creek, Idaho: E1/2 sec. 15, T. 11 S., R. 45 E.	129	229	271	39	246	1500+	71	- 2485
Thomas Fork Canyon, Wyo.: Secs. 19 \& 20, T. 28 N., R. 119 W., sec. 24, T. 28 N., R. 120 W...	$40+$	188	315	168	305	1625	111	$2752+$
Ferney Gulch, Wyo.: Secs. 1 \& 2, T. 27 N., R. $117^{1 / 2}$ W., sec. 1, T. 27 N., R. 118 W.	140	91	252	115	400	575	86	1659
Devils Hole, North Fork, Wyo.: Sec. 15, T. 27 N., R. 117 W.	75	79	245	69	218	735	102	1523
LaBarge Creek, Wyo.: NW $1 / 4$ sec. 16 \& NE1/4 sec. 17, T. 27 N., R. 115 W.	53	75	208	59	339	249	128	1111
Sliderock Creek, Wyo.: Sec. 10, T. 25 N., R. 118 W.	150	85	275	75	154	1089	186	2014
Fontenelle Creek, South Fork, Wyo.: NW $1 / 4$ sec. 33, T. 26 N., R. 116 W.	77	68	184	35	212	487	177	1240
Leed Canyon, Wyo.: Secs. 1 \& 2, T. 22 N., R. 119 W	76	95	260	108	182	1118	102	1941
Manila, Wyo. (4 miles south of): SWY/1/ sec. 6, T. 2 N., R. 20 E.	0	0	24	7	23	227	50	331
Weber River near Pesa, Utah: SW $1 / 4$ sec. 11 \& NW $1 / 4$ sec. 14, T. 1 S., R. 5 E....	0	47+	125	107	220	776	82	$1357+$
Duchesne River, Utah: SW $1 / 4$ sec. 4, T. I S., R. 8 W \qquad	0	42	91	68	104	280	165	750
Lake Fork, Utah: Sec. 2, T. 1 N., R. 5 W.	0	32	109	30	109	114	49	443
Whiterocks River, Utah: NW1/4 sec. 19 \& SE1/4 sec. 18, T. 2 N., R. 1 E.....	0	0	40	21	17	182	85	345
Monks Hollow, Utah: Sec. 32, T. 4 S., R. 5 E., \& sec. 5, T. 5 S., R. 5 E...	49	92	123	57	305	275	288	1189
Thistle, Utah: W $1 / 2 \sec 33$, T. 8 S., R. 4 E.	9	71	183	41	345	$?$	$?$	

11. Limestone, shaly, medium-gray, weathers light yel-lowish-gray, contains Stemmatoceras.
12. Limestone, massive, dense, medium-gray, weathers white
13. Limestone, thin- to medium-bedded, slightly sandy, oolitic, brownish-gray, rather soft.
14. Limestone, sandy, glauconitic, crossbedded, contains small pebbles of gray and red chert, many oyster and crinoid fragments, dark-gray, forms low cliffs....
15. Limestone, sandy, thin-bedded, dark yellowish-gray..
16. Limestone, sandy, oolitic, medium- to thick-bedded, contains many oysters on bedding surfaces, dark-gray..
17. Limestone, sandy, thin-bedded, contains many oyster and crinoid fragments, dark-gray.
Member A:
18. Siltstone, light-gray to pink, interbedded with yellowish thin-bedded limestone that is locally brecciated and honeycombed.
19. Siltstone, brownish-red, soft, poorly exposed; some beds of honeycombed limestone near base.
20. Limestone, medium- to thin-bedded, medium-gray, weachers light-gray; contains considerable brownishto reddish-gray chert as nodules, short, thin lenses, and as granules; crinoid fragments abundant; some beds sandy and crossbedded.
21. Sandstone, fine-grained, and siltstone, brownish-red, poorly exposed.

Total thickness of Twin Creek. 2,514士

Twin Creek limestone on north side of Big Elk Mountain between junction of Elk Creek and Bear Creek in the $\operatorname{SW} 1 / 4 \mathrm{sec}$. 6, T. 2 S., R. 45 E., Bonneville County, Idaho:

PREUSS SANDSTONE.

TWIN CREEK LIMESTONE:
Member G :
Feer
12. Limestone, thin-bedded, silty to finely sandy, yel-lowish-gray, ripple-marked, locally crossbedded, upper 16 feet contains interbeds of pink siltstone.....
Member F :
11. Limestone, shaly, soft, breaks into splintery fragments, lighe-gray, has thin beds of nodular limestone every 10 to 15 feet. Gryphaea nebrascensis Meek and Hayden noted at 250 and 410 feet above base....

Member E:

10. Limestone, medium- to thin-bedded, cliff-forming, medium-gray, dense to granular, some beds slightly sandy and showing weak crossbedding. One 4 -foot bed of oolitic limestone occurs about 72 feet above base.
Member D:
11. Limestone, shaly to thin-bedded, sandy, yellowish...... 15
12. Siltstone, light brownish-red, soft............................... 24
13. Limestone, thick-bedded, sandy, yellowish.................. Limestone, medium- to thin-bedded, becoming thicker-bedded upward, medium-gray to yellowishgray.
Member C:
14. Limestone, shaly, soft, light-gray, weathers into pencil-like fragments.168
15. Limestone, medium-bedded, dark-gray, slightly sandy,
contains many crinoid fragments. 12
16. Limestone, shaly, light-gray, poorly exposed 48

Member B:
2. Limestone, medium-bedded, yellowish-gray, becomes sandy in upper part.

Member A:

1. Sandstone, fine-grained, and siltstone, brownish-red to mortled gray and red; contains some beds of honeycombed limestone at top, poorly exposed..20

Twin Creek limestone along Fall Creek in Irwin Quadrangle, measured from center to southwest corner of sec. 18, T. 1 N., R. 43 E., Bonneville County, Idaho:

PREUSS SANDSTONE.

TWIN CREEK LIMESTONE:
Member G :
23. Sandstone, thin-bedded ($1 / 2$ inch to 4 inches chick), light yellowish- to olive-gray, some glauconite..........
22. Limestone, medium- to thin-bedded (1 inch to 12 inches thick), medium yellowish-gray, mostly oolitic, some dense, silty to finely sandy, weathers yellowish gray, some beds full of crinoid columnals and arm fragments, some glauconite.
21. Limestone, shaly, light yellowish-gray...
20. Limestone, same as unit 22.

Member F :

19. Covered.
20. Limestone, shaly, medium-gray, weathers light-gray, chunky to splintery.
21. Limestone, thin-bedded to shaly, medium-gray

Member E:
16. Limestone, medium- to thick-bedded, medium-gray, oolitic to dense, weathers medium-gray.
Member D:
15. Siltstone, red, soft.
14. Limestone, medium-bedded, silty, oolitic in lower part, medium to yellowish-gray, weathers mediumgray, upper part dense, slightly sandy throughout but mostly sandy toward top.
Member C:
13. Limestone, thin-bedded to shaly, medium-gray, weathers light gray.
12. Limestone, medium-bedded (6 to 8 inches), mediumgray, weathers light-gray.
11. Limestone, shaly, medium-gray, weathers light-gray, chunky, becomes harder toward top.

Member B:

10. Limestone, thin- to medium-bedded, medium- to light-gray, weathers light-gray, contains Gryphaea planoconvexa Whitfield.
11. Limestone, very sandy, crossbedded, brownish-gray, weathers same, forms low cliff
12. Limestone, brownish-gray, slightly sandy, mediumto thick-bedded, weathers medium brownish-gray......
13. Limestone, medium-bedded, medium-gray to yel-lowish-gray.
14. Limestone, silty, thick-bedded (6 to 24 inches thick), light brownish-gray, weathers medium brownishgray, traces of crinoid columnals.
. Limestone, oolitic, medium-gray.
15. Limestone, oolitic, medium-gray..............................
16. Limestone, dense, thick-bedded, light-gray.
17. Covered. ...
18. Limestone, medium gray to grayish-black, dense, medium- to thick-bedded, weathers dark-gray.

Member A:

1. Siltstone, mostly brownish-red, upper 20 feet purplish, soft; rests sharply on Nugget sandstone.

Total thickness of Twin Creek.

NUGGET SANDSTONE.

Twin Creek limestone and Preuss sandstone on Cabi Creek, Jackson Quadrangle, in S $1 / 2 \mathrm{sec} .17, \mathrm{~T} .38 \mathrm{~N} ., \mathrm{F}$ 116 W., Teton County, Wyo.:
STUMP SANDSTONE (not measured). PREUSS SANDSTONE:
29. Sandstone, dull-red to pink, thin-bedded to shaly, fine-grained, rather soft, contains a few hard, thin beds overlain sharply by glauconitic sandstone of Stump.
28. Sandstone, massive, fine-grained, hard, light pinkishgray, weathers darker.
27. Sandstone, dull-red, rather soft, a few hard layers...... 20
26. Sandstone, $\begin{aligned} & \text { cliff-forming. }\end{aligned}$ 21

FIN CREEK LIMESTONE

Member G

25. Limestone, sandy, crossbedded, beds 1 to 3 feet thick, light yellowish-gray, cliff-forming
26. Siltsrone, shaly, mostly brownish-red, some yellowishgray.
27. Siltstone, shaly, calcareous, ribboned yellow and gray.
28. Limestone, thick-bedded, finely sandy, shows some crossbedding, light yellowish-gray, cliff-forming.......
29. Limestone, shaly to thin-bedded, silty, light yellowishgray.
30. Limestone, medium-bedded, consists mainly of crinoid and echinoid fragments, medium-gray. \qquad
31. Limestone, shaly, medium-gray, weathers into lightgray splinters.
32. Limestone, medium-bedded, sandy, medium yellow-ish-gray; forms ledge.
33. Limestone, thin-bedded to shaly, silty, yellowish-gray Member F :
34. Limestone, shaly, medium- to light-gray, weathers into light-gray splinters.253
35. Limestone, silty, yellowish. 10
36. Limestone, shaly, fissile to splintery, medium-gray....13. Limestone, shaly, chunky, medium-gray.32
75

Member E:
12. Limestone, medium- to thin-bedded, partly oolitic, medium-gray.
11. Limestone, thin-bedded to shaly, poorly exposed......10. Limestone, medium to thin-bedded, oolitic to dense,medium-gray.25
Member D:
9. Siltstone, red, soft, upper contact sharp. 40
Member C :
8. Limestone, thin- to medium-bedded, silty, some beds oolitic, medium yellowish-gray.10
7. Limestone, shaly, soft at base, forms low ledges at rop, medium-gray. 130
Nember B:
6. Limestone, thin-bedded to shaly, medium-gray, Gry-phaea planoconvexa Whitfield found at top............70
5. Limestone, colitic, medium-bedded, slightly sandy, dark-gray. 11
4. Limestone, medium-bedded, dense, medium-gray.
Aember A:
3. Siltstone, red, soft, poorly exposed. 55
2. Limestone, medium-bedded, granular, light-gray, con- tains some chert 10

1. Limestone, brecciated, medium-gray, lower 2 feet
2. Limestone, brecciated, medium-gray, lower 2 feet yellow. 32
Total thickness of Twin Creek 960

GGET SANDSTONE.

Incomplete section of Twin Creek limestone on north ık of Williams Creek in SE1/4 sec. 12, T. 2 S., R. 39 E., igham County, Idaho:

IN CREEK LIMESTONE:

Aember B (?)

10. Limestone, oolitic, massive, sandy.............................. 15
11. Limestone, sandy, crossbedded, partly oolitic............ 60

Kember A

8. Covered. Some float of soft red sandstone..................
9. Limestone, medium- to thin-bedded, dense, mediumto dark-gray, siliceous, contains brownish chert nodules.
10. Limestone, yellowish-gray, brecciated or honeycombed.
11. Limestone, medium- to thin-bedded, dense, mediumto dark-gray, siliceous, contains some brownish chert nodules.
12. Limestone, brecciated, light yellowish-gray..

8
3. Limestone, finely sandy, light yellowish-gray, interbedded with brownish-red siltstone.
2. Siltstone, soft, dull-red, yellow, green, some inter bedded honeycombed limestone.

1. Siltstone, soft, pink to dull-red, some light-green or yellow, mostly non-calcareous, contains some beds of dull-red to yellow, fine-grained, non-calcareous sandstone; about 30 feet below top occurs 2 feet of dense, shaly yellow limestone.

NUGGET SANDSTONE.

Twin Creek limestone equivalents north of Lower Slide Lake on Gros Ventre River in sec. 4, T. 42 N., R. 114 W., Teton County Wyo.:

PREUSS SANDSTONE (?) (may be basal Stump) :
24. Siltstone, red
23. Sandstone, light-gray.

TWIN CREEK LIMESTONE EQUIVALENTS:

Member F:
22. Shale, calcareous, medium-gray, weathers light-gray, one thin bed of nodular limestone in lower foot, several thin beds of fossiliferous limestone from 35 to 40 feet above base include Cadoceras and Xenocephalites. Gryphaea nebrascensis abundant throughout.

Member E:

21. Limestone, oolitic, thick-bedded at top and bottom, thin-bedded in middle, medium yellowish-gray...
22. Shale, calcareous, medium-gray, weathers light-gray. Gryphaea nebrascensis obrained 10 feet below top (lowest occurrence noted)
23. Shale, calcareous, medium-gray, and thin beds of soft, brownish-gray limestone, weathers light-gray. Eight feet above base occur Arcticoceras, Cadoceras, and many pelecypods.
24. Limestone, oolitic, massive, medium-gray, weathers same.
25. Limestone, medium- to thin-bedded, slightly oolitic, crumbly, medium yellowish-gray, weathers mediumgray, very fossiliferous.
26. Limestone, medium- to thick-bedded, beds 6 to 12 inches thick, oolitic, hard, medium yellowish-gray, weathers medium-gray, traces of fossils..
Member D:
27. Limestone, shaly, soft, yellowish-gray \qquad
28. Limestone, shaly, sofr, olive-green to yellowish-gray..
29. Siltstone, brownish-red, soft, makes sharp contact with underlying unit, thickens westward in $1 / 2$ mile to 43 feet.
Member C:
30. Limestone, shaly, medium-gray, contains a few thin beds of coquinoid limestone and locally a hard bed of coquina at top.
31. Limestone, shaly, sofr, medium-gray, weathers same.. Member B:
32. Limestone, mostly shaly, fairly soft, some beds from 4 to 10 inches thick at intervals of 4 to 8 feet, darkgray to grayish-black, weathers dark-gray; 20 feet above base occurs Chondroceras; Gryphaea planoconvexa Whitfield occurs throughout
33. Limestone, medium- to thin-bedded, mostly dense, partly oolitic, upper 2 feet slightly sandy and pyritic, medium yellowish-gray, weathers medium-gray........
34. Limestone, shaly, soft, medium-gray.. Member A:
35. Siltstone, brownish-red, soft. I
36. Limestone, pinkish-yellow, weathers pinkish to yellow, forms top of cliff.
37. Limestone, brecciated, gray to yellow, angular fragments as much as a foot in diameter but most fragments smaller, forms cliff.
38. Limestone, brecciated, silty, purplish to yellow and gray.
39. Limestone, sility, soft, yellow to pinkish.. 2
40. Siltstone, brownish-red, soft, rests sharply on Nugget sandstone.

Total thickness of Twin Creek............................

IISSISSIPPIAN STRATIGRAPHY IN THE UTAH-IDAHOWYOMING AREA

By F. D. HOLLAND, JR.
Curator, University of Cincinnati Museum

Unduensity of uitas RESEARCH IMSTIUUTE EARTH SCIENGE Lat

INTRODUCTION

Mississippian seas were widespread in the Rocky lountain region, and throughout most of Mississippian me broad seaways extended from Alaska to Mexico. Tithin these seas thick sequences of limestone, sandone, and shale were deposited, with carbonate rocks redominating in volume and extent. Eardley (1949, 665) has given the name "the Madison basin" to long narrow zone extending from western Montana, rough southeastern Idaho, and into southern Nevada, hich received over 4,000 feet of sediments in Lower fississippian time. A somewhat smaller area in westn Utah and central Idaho which sank over 6,000 feet ad received over 6,000 feet of sediments in the Misisippian is called "the Brazer basin."
The area covered by the excursion (Ogden, Utah, Jackson, Wyoming) (Figure 1) lies roughly along hat Kay (1951, p. 10, 14) has called "the Wasatch te." This hypothetical line roughly marks the posiin of the monoclinal flexure from the craton on the it into the miogeosyncline on the west. The area of ? miogeosyncline west of the Wasatch line (defined a line of disappearance of the Lower Cambrian and $: 2,000$ foot isopach of the entire Cambrian) has :n termed the Millard Belt (Kay, 1947, 1951). Thus tectonic pattern in the Cordilleran region was set Cambrian time and the same pattern was followed oughout the Paleozoic. Kay (1951, p. 14) says, stems from the Ordovician through the Jurassic are erally more.fully represented and thicker in the ie areas in which lower Cambrian is present and whole Cambrian thicker."
The route of the trip throughout most of its extent far enough west so that practically the maximum ion of Mississippian is seen. Thus, thick fossiliferous iissippian limestones in the Logan-Ogden area pass vard into drab sandstones, with the fossiliferous stones dropping out as the craton is approached. Brush Creek in the Uinta Mountains, Williams 43, p. 609) has stated that the Madison formation sists essentially of light-drab sandstones and silt:s, with tongues of red beds and a thick member of formational breccia." Also Wanless, et al. (1946) reported progressive westward thickening of the ssippian from 1,080 feet in the Gros Ventre e of western Wyoming, to 1,800 feet in the : River Range of eastern Idaho; further west-
ward in Idaho the Mississippian passes into a thick geosynclinal black shale sequence. Two formations make up the Mississippian column in most of the area: the Madison limestone (Kinderhookian) below, overlain unconformably by the Brazer limestone (Meramecian and Chesterian) above. A thin unit of shale, the Leatham formation (lower Kinderhookian), is known to conformably underlie the Madison in the Logan, Utah area; however the extent of this shale outside of the Logan area has not yet been determined by field studies.

The Mississippian generally rests unconformably upon the Devonian Jefferson limestone or an equivalent of the Upper Devonian Three Forks formation. In much of the area the Upper Mississippian Brazer limestone is unconformably overlain by the Pennsylvanian Wells formation, but from Teton Pass eastward the Darwin sandstone member of the Amsden formation (Lower Pennsylvanian age) overlies the Brazer.

The first report of Carboniferous rocks in Utah was by the Stansbury expedition in 1849 (Stansbury, 1852). Hayden, Peale, and others made observations in the Logan area. King (1876, p. 478-80) first named the strata, calling them the "Wahsatch" limestones of "Devonian" and "Carboniferous" age, however, Richardson (1913) revealed that King's "Wahsatch" included rocks of Ordovician to Mississippian age. The term Wasatch has not since been used to refer to Paleozoic rocks.

The type sections of two of the Mississippian for mations lie near the route of the field trip. Richardson in 1913 named the Brazer limestone from exposures in Brazer Canyon in the Crawford Mountains, 6 miles northeast of Randolph, Utah; and Holland (1952, p. 1719) named the Leatham formation for the exposure on the north wall of Leatham Hollow about 8 air-linet miles southeast of Logan, Utah. The Madison wif named by Peale (1893) who failed to designate a typos locality for the Madison limestone but did imply, thet the unit was named for the Madison River in the Thew Forks, Montana area. Sloss and Hamblin (1942.) cid Holland (1952) have discussed the comples himent of the name Madison and have described in denina section directly north of Logan, Monana, defignatias this the type section of the Madison.

FIGURE I.-GENERAL IOCATION MAP

Mansfield (1927) prepared a comprehensive report on the geology of southeastern Idaho and included in this report a description of the Carboniferous and Triassic fossils by Girty (1927, p. 411-46). Richardson (1941) published a report on the geology of the Randolph Quadrangle (next quadrangle east of the Logan Quadrangle) and included a geologic map. Williams (1943) has described numerous sections of Carboniferous formations in the Uinta and Wasatch Mountains. Eardley (1944) studied the geology of the north-central Wasatch Mountains, and Williams and Yolton (1945) described in detail Brazer and Wells sections near Dry Lake, southwest of Logan, Utah. Parks .(1949 and 1951) zoned the Brazer on the basis of its coral fauna and Williams (1948) summarized much work in the Logan Quadrangle and presented an excellent report on the stratigraphy, structure, and historical geology, with a geologic map and detailed cross-sections.

Kirkham (1924) discussed the geology and mapped a large portion of the Caribou Range southwest of Swan Valley, Idaho.

In the mountain ranges about the Jackson Hole region the writer has relied principally upon reports by Horberg (1938), Horberg, Nelson, and Church (1949), Thomas (1948), Wanless and others (1945, 1946).

Ogden to Montpelier - East of Ogden the Mississippian crops out in Ogden Canyon. There the darkgray, thin-bedded typical Madison is about 600 feet thick, and the Brazer is only about half as thick (1,100 feet) as in the Logan area.

Mississippian strata are not again encountered until Wellsville Mountain and the Pisgah Hills southwest of Logan. Approaching Dry Lake from the south the Leatham and Madison are not exposed along U. S. Highway 91. A very thick section of Brazer is, however, exposed along a road cut of an old portion of U. S. Highway 91 where it turns eastward across the Pisgah Hills toward Sardine Canyon. Williams and Yolton (1945) have reported 3,700 feet exposed in the Dry Lake section but this is over 1,000 feet more than was measured by Parks (1949). The former have listed over 130 species from the most typical strata of

FIGURE 2.-Mississippian section on the east slope of Beirdneau Peak viewed from U. S. Highway 89 about 5 miles east of mouth of. Logan Canyon, Utah.

the formation, the thin- to medium-bedded, dark-gray to grayish-black cherty limestones of the middle Brazer. Caninia, other large tetracorals, Lithostrotion whitneyi Meek, Spirifer brazerianus Girty, and Chonetes are abundant and frequently excellently preserved; many specimens are silicified and suitable for acid etching.

Entering Logan Canyon east of Logan one can see the cliffs of nearly flat-lying resistant Mississippian limestones near the axis of the Logan syncline. About 5 miles from the mouth of the canyon an excellent view of the entire Mississippian section is obtained from the road (Figure 2).

There on the east slope of Beirdneau Peak the Upper Devonian "Contact Ledge" can be seen as a thin zone of resistant limestone marking the top of the Devonian section. Above this, a slope is formed on the Lower Mississippian Leatham formation (about 75 feet thick). The Leatham consists of shales, sandy shales, and dark reddish-gray, nodular limestones characterized by abundant nodules 1 to 2 inches in diameter containing Rhipidomella missouriensis (Swallow) and Syringothyris. At the type section in Leatham Hollow, about 9 miles to the south, the base is marked by a 3 -inch conglomeratic limestone, bearing angular chert nodules, limestone pebbles, and an occasional fragmental fish tooth.

Above the Leatham the Madison limestone rises in a sheer cliff, locally known as the "Chinese Wall". This part of the Madison is about 250 feet thick, and is composed of dark-gray, fine-crystalline limestone rhythmically interbedded with thin shaly limestone beds. A long steep slope rises to the base of a second cliff of the Madison, which may be termed the "Upper Chinese Wall". This middle slope of the Madison is formed on dark-gray, fine-crystalline to sublithographic, thinly-bedded limestone rhythmically interbedded with $1 / 8$-inch beds of grayish-orange, soft, silty to argillaceous limestone. The lithologic character of most of the "Upper Chinese Wall" resembles that of the slope below, but this part appears to be more resistant to weathering and erosion. At several levels, benches or reentrants are weathered into the cliff, so that this upper cliff is not as well-defined as the lower cliff of the Madison. This thin-bedded limestone is the lithologic and faunal equivalent of the Lodgepole limestone of the Logan, Montana area. Osagian elements are in general lacking from the fauna. Whether never deposited, or removed by erosion, there does not seem to be an equivalent of the thick-bedded Mission Canyon portion of the Madison of Montana present in this area. The fauna of the

Madison is characterized by tetracorals of smaller size than those of the Brazer, abundant Syringopora, Spirifer cf. S. centronatus, and abundant gastropods and cactocrinids.

Locally the base of the Brazer is marked by a phosphatic shale member which seems to have been deposited on the eroded upper Madison surface. Williams (1939, 1943, p. 595) has reported this basal phosphatic shale in Blacksmith Fork Canyon but it is miss. ing in Leatham Hollow, 2 miles to the north. Williams (1943, p. 611) mentions the variety of lithologic types in the various exposures of Brazer, but says that each section generally contains some intercalated limestone and sandstone and generally some pure thick-bedded limestones (note cliffs near the top of Beirdneau Peak, Figure 2). The Wells is not exposed on the north side of Logan Canyon but appears in an incomplete section atop Logan and Millville Peaks, the high peaks just east of the town of Logan and south of lower Logan Canyon.

Steeply tilted Madison beds crop out in several small areas south and east of Laketown in the Randolph Quadrangle. and then disappear under the cover of the Wasatch formation. The Brazer also outcrops about a mile east of Laketown with a bed of phosphate rock near the base.

From Sage Creek Junction the escarpment of the Crawford Mountains can be seen to the southeast. The Brazer forms this scarp, and here the Madison forms the upper slopes and the crest of the mountains. The 200 feet (or at least the upper portion) of the "thinbedded impure earthy-gray limestone, which weathers to yellowish and reddish tints" reported by Richardson (1941, p. 20) to underlie conformably the Madison in the Crawford Mountains probably represents the Leatham formation. The Brazer type section in this area has been restudied by Williams (1943, p. 610) who states that neither the top nor the bottom is exposed, and that the limestones are dolomitized. Mississippian fossils are rare and poorly preserved in the area.

Montpelier Through Georgetown Canyon and Return. - The large fault block that rises northeast of Montpelier is composed of Madison limestone. Brazer limestone is present on the west slope of the hills just east of town, but in this area the Mississippian is faulted and the section is incomplete.

The Mississippian is next seen in a broad strip along the west side of Crow Creek; the outcrop of the Brazer limestone is crossed at the entrance to Wells Canyon. At the mouth of Wells Canyon a partial section (the base is covered by hill wash on the east) of Brazer was
reported by Mansfield (1927, p. 63) as 1,130 feet thick. The section dips westward into the Webster syncline of Mansfield which is marked by the Pruess Range. One-foot to three-foot beds of dark-gray limestone mark the lower part of the section here, with whitish sandstones and light sandstones exposed above. In this section shaly, cherty, limestone marks the top of the Brazer, underneath sandstone of the basal Wells formation.

Brazer beds of essentially the same lithology form the crest of anticlinal Snowdrift Mountain, and the route passes through it along the South Fork of Deer Creek.

Although Madison is not exposed in the. Crow Creek Quadrangle, it crops out at a number of places in the Slug Creek Quadrangle to the west. The high ridge west of Georgetown Canyon is formed by a large portion of Madison brought up by faulting. The Brazer is lower on the canyon walls and the trip crosses a narrow slice, dipping 75° west, brought up by a thrust subordinate to the main overthrust.

A spectacular portal or gateway at the mouth of Georgetown Canyon is formed by ledges of Madison limestone.

Alpine, Idaho, to Jackson, Wyoming. - The Madison and Brazzer limestones make up the rugged mountains along the northeast edge of the Snake River Valley from Alpine to Swan Valley; Idaho.

West of the Snake River only one section of Madison is crossed by the route and this lies at the entrance to Fall Creek Canyon. Here in the Fall Creek Quadrangle, however, the Brazer is well exposed along the west side of the Snake River fault, and a complete section is obtained in Fall Creek Canyon. South of Fall Creek the Brazer runs along the axis of the Snake River anticline (Kirkham, 1924). In this area the Madison and Brazer are each about 1,000 feer thick. Each are cliff-makers but the Brazer is again the more massive, and although each is dominantly made up of dark-gray, fine- to coarse-crystalline limestone, the Beazer again weathers to the lighter color, being lightgray or almost white. As in the Utah area the faunas of both formations are dominated by rugose corals, those in the Brazer being much larger, generally 3 to 8 inches long.

Along Pine Creek, west of the fault, typical Madison and Brazer are exposed. In the west part of the canyon the beds dip about 25° to the west, but farther eastwatd dips as high as 75° are encountered near the main sult.

East of Victor, Carboniferous limestones rise from mder the cover of Mesozoic and Cenozoic sediments of the Teton Basin to form the gently-dipping western lope of the Tetons. Horberg (1938, p. 16) states
that "thie tabular inter-stream areas and most of the important sedimentary peaks (Mt. Hunt, 10,775 feet, Rendezvous Peak, 10,924 feet, and Fossil Mt., 10,553 feet) are formed of these [Madison and Brazer] limestones." The Madison and Brazer form the bulk of the mountain just north of Teton Pass. Here the Brazer has thinned considerably and is subordinate to the Madison. In general the distinguishing characteristics of the limestones are the same in this area as in areas to the south.

Thomas (1948) states that Bachrach (1946) has recognized the Brazer over a wide area in the Hoback and Gros Ventre Mountains with the Darwin sandstone everywhere present above the Brazer. Thomas considers the Darwin as basal Pennsylvanian in this area.

The Gros Ventre Buttes northwest of Jackson are similar to each other in structure and composition. They represent normal fault blocks of gently-dipping Paleozoic strata and younger lava flows tilted westward along their eastern ;scarp slopes. The Madison crops out on the southeast conner of each of the buttes and Horberg (1938, p. 42) reports that a tunnel dug west of Jacksón on East Gros Ventre Butte has penetrated the talus and exposed the slickensided, polished surface of Madison limestone forming the footwall in contact with breccia and talus on the east.

Two smaller buttes south of the main Gros Ventre buttes expose Madison limestone (and other Paleozoics) as remnants of the southwest-dipping Jackson thrust plane.

ACKNOWLEDGMENTS

I wish to thank Mr. J. B. Pogue of the Department of Geology and Geography, University of Cincinnati, for his critical reading of the manuscript and for his suggestions. I also thank my wife, Margine, for typing the manuscript and for other aid.

SELECTED REFERENCES

Bachrach, Ruth (1946), "Correlation of Mississippian and Pennsylvanean Strata in Lincoln, Sublecte"and Teron Counties, Wyoming," Unpublished Master's Thesis, Univ. of Michigan.
Eardley, A. J. (1949), "Paleotectonics and Paleogeologic Maps of Central and Wesrerp North America," Bûll. Amer. Assóc. Petrol. Gêol.; vol. 33, no 5 , pp. 655-82.
Giity, G, H. (1927), "Descriptions of New Species of Carboniferous and Triassic' Fossils," in Mansfield, G. R., "Geography, Geology, and Mineral Resources of Part of Southeastern ldahó" U. S. Geol. Survey Prof: Paper 152, Appendix.
Holland, F. D., Jr. (1952), "Stratigraphic Details of Lower Mississippian Rocks in Northeastern Urah and Southwestern Montana," Bull. Amer Assoc Perrol. Geol., wol. 36, no. 9, pp. 1697-1734.
Horberg, Leland (1938), "The Structural Geology and Physiogtephy of the Teton Pass Area, Wyoming'" Augustana Iibrary Pub. 16; 86 pp 2 figs.
-............. Nelson, Vincent, and Church, Victor (1949), 'Structural Trends iñ Central Western Wyoming: Buil. Geol. Soc. Americi, vol. 60 , pp. $183-216,4$ figs., 6 pls.
Kay, Marshalt' (1951), "North American Geosynclines," Geol. Soc. America Mem. 48,143 pp:, 20 figs., 16 pls:

regional stratigraphy Of The Devonian system in NORTHEASTERN UTAH, SOUTHEASTERN IDAHO, AND WESTERN WYOMING

AREA
USwest
Strat
Devon

By JAMES E. BROOKS
Southern Methodist University, Dallas, Texas and
JOHN M. ANDRICHUK
Gulf Oil Corporation, Tulsa, Oklahoma

STRATIGRAPHY

Figure 3 shows a cross-section of Devonian rocks extending from southwesternmost Montana and immediately adjacent Idaho eastward to western Wyoming (Cody area, Wind River Range, and Teton Range) and thus southwestward to northeastern Utah.

In northern and northeastern Utah relatively rapid thinning with correspondingly rapid changes in vertical stratigraphic sequence characterize rocks of Devonian age. The thickest portion of the Devonian, as exposed in Logan Canyon (Section 8, Figure 3), is composed of three stratigraphic units described in detail by Williams (1948). The units are, from bottom to top, the Water Canyon formation, a light-gray to almost white, coarsely-crystalline, sandy, dolomitic limestone, the Hyrum member of the Jefferson formation, a drab, dark-gray, medium- to coarsely-crystalline secondary dolomite, and the Beirdneau member of the Jefferson formation, a light-tan to buff unit composed of platy beds of siltstone and' dolomite with partings of tan shale being prominent throughout the sequence (Fig-

FIGURE I.-South wall Logan Canyon east of Logan, Utah. Massive cliffs on upper wall are Madison limestone. -Slope-making sequence to lower, less well developed cliffs is Beirdneau member, Jefferson formation. Lower cliffs mark upper portion of Hyrum member, Jefferson formation.
ure 1). Local zones of sedimentary breccia are prominent in some parts of the section. The Beirdneau member exposed in Logan Canyon is some 400 feet thick. Holland (1952), describing what is apparently the uppermost portion of this unit, exposed a few miles south of Logan Canyon in Leatham Hollow, has measured a thickness of some 70^{\prime} of rocks of similar lithology to which he assigns a Kinderhookian age and which he correlates with the Sappington sandstone of southwestern Montana. In Leatham Hollow this unit, named the Leatham formation by Holland, rests disconformably on the dark-gray limestones and dolomites of the Jefferson formation (presumably the Hyrum member of the Jefferson of Williams in Logan Canyon). Absence of so great a thickness, in view of its presence a few miles to the north seems somewhat anomalous. However, since the writers have not visited the Leatham Hollow area they do not presume to offer an explanation of the apparent anomaly.

The Water Canyon formation at the base of the sequence is not recognized elsewhere in the area of the field trip. However to the south and west, in central Utah, correlable units are exposed. The Hyrum member of the Jefferson is likely correlative with the Jefperson formation which lies at the base of the Devonian section in areas to the north, east, and south. The Beirdneau member of the Jefferson formation may be chronologically a close correlative of the Three Forks formation, recognized elsewhere in the region. However, the lithologies are similar only in that both represent a change in late Devonian time from purely carbonate deposition to that of a more clastic nature.

To the east (Laketown-Randolph area, section 7 , Figure 3) two units of Devonian age are recognized. The Jefferson formation, a dark- to medium-gray, me dium- to coarsely-crystalline unit composed of varying beds of limestone and secondary dolomite is conforms ably overlain by the Three Forks formation which sists of a shaley, very thinly-bedded, olive-gray limesitine typically making a topographic saddie in areas of dips ping beds and almost always characterized by a red col weathering zone at the outcrop surface (Figure 2) a 20

FIGURE 2.-North wall Laketown Canyon, east of Laketown, Utah. Saddle in ridge crest to left of center is typical of Three Forks formation. Units to right are Mississippian limestones. Strata to left of saddle are uppermost Jefferson formation.

Still farther to the south in the vicinity of Oakley, Utah (Section 10, Figure 3) Devonian rocks are represented by a very thin section of tan calcareous shales and siltsones which rests disconformably on a quartzite of questionably Cambrian age and which apparently grade upward into rocks of Mississippian age. A formation name has not been assigned to these rocks, büt presumably they are genetically related to the Three Forks formation mentioned to the north, representing a slightly variant shelf environment. A fauna of Hackberry age is present in these beds. This section is the most eastward exposure of Devonian rocks so far noted in Utah and, in view of the thinness and clastic nature of the sediments, presumably represents deposition not too far removed from the zero edge to the east.

In Wyoming, the Devonian interval is termed the "Darby formation", but approximate lithologic equivalents of the Three Forks-Jefferson may be differentiated. The upper part of the Darby sequence is chàracterized by conspicuous amounts of clastics (sand, silt, and argillaceous material) interbedded with the carbonates and may be correlated with the Three Forks. The remaining lower relatively pure carbonate beds are considered Jefferson equivalents. Eastward in the shelf area of Wyoming, this Jefferson interval thins and is not recognizable near the eastern zero edge. The Three Forks beds appear to be transgressive eastward in Wyoming.

In southwestern Montana and adjoining Idaho, a two-fold division of the Devonian is recognized. The two units are roughly correlable with the Three Forks and Jefferson of central Montana. In the latter area, a pre-Jefferson basal clastic unit is also recognized and the Jefferson is divisible into an upper dolomite mem-ber and a lower limestone member. In sections 1 and 2 the lowest Devonian beds appear to be lithologic equivalents of the dolomite member of the Jefferson, and the lower limestone member is not lithologically distinguishable. However, this limestone member becomes recognizable a short distance to the north. The Three Forks interval of southwestern Montana is made up of shale and argillaceous dolomite beds containing a thin, varicolored, solution-brecciated zone at the base. Light-brown or orange-weathered, fine, sandy beds are developed in the upper part of this clastic sequence, directly below the Madison strata. These sandy beds may be lithologic equivalents of the Sappington sandstone in the Logan area of Montana, where they have been included in the Devonian by Sloss and Laird (1947). Recently, Holland (1952) has assigned a Kinderhookian age to the Sappington sandstone developed at Logan, Montana, and correlates the zone with his Leatham formation of northeastern Utah mentioned above. The exact relationship of the Three Forks beds with the Darby of western Wyoming requires further study, but the upper part of the Darby appears to be related to the Three Forks in that it also contains prominent amounts of clastics. The Darby typically shows a shelf sequence made up predominantly of secondary dolomites with variable amounts of noimal marine limestone. The sandstone has variable amounts of carbonate cement and passes laterally into sandy carbonates and pure carbonates. Green or gray clay shales are also developed in thin beds or partings.

ISOPACCH AND FACIES MAP Isopach Pattern

The isopach pattern (Figure 4) suggests the existence within the area of the map of two different tectonic environments. Stable shelf conditions in the Wasatch Range--western Uinta Range atea and in the area of west-central Wyoming and eastern Idaho are indicated by the rather broad extent in both areas of relatively thin Devonian sediments. The thickness of the Devonian section in these shelf areas averages between 150 and 300 feet. A gradual westward thickening from the eastern zero edge is well portrayed, particularly in the Wyoming Shelf (Andrichuk, 1951). The shelf areas are bounded on the west by an irregularly trending axis of rapid increase in thickness. This zone presumably represents the tectonic "hinge" between the stielf areas to the east and the more negative geosyn-
clinal areas to the west. The Wyoming Shelf is likewise bounded on the north, off the area of the map, by a west to east axis of rapid thickening trending across southwestern Montana. Devonian sediments to the north in Montana increase to a thickness of about

1,000 feet, while to the west and southwest of the Wyoming Shelf, in Idaho, and the northeastern edge of Utah, thicknesses in excess of 3,000 feet are known.

The smaller shelf in north-central Utah is separated from the Wyoming shelf by the geosynclinal embay-

ment in northeastern Utah. Thickening from the very thin sediments of the Utah shelf, to the geosynclinal embayment to the north is moderately rapid, with thicknesses of approximately 2,500 feet being attained. However, to the west of the Utah shelf thickening toward the geosyncline is more gradual, and geosynclinal sediments in western Utah average about 1,500 feet.

Lithofacies Pattern
Clastics are important constituents of the section in both shelf areas mentioned above, and exhibit a gradual decrease in proportion westward from the zero edge. Near the present eastern limit of Devonian occurrence, the clastics locally may be quantitatively more important than the carbonates. In the shelf area of Wyoming they generally constitute at least 20 per cent of the total section. Non-clastics form over 80 per cent of the total section in the adjoining basinal areas to the west and southwest. In Wyoming the clastics become much coarser near the eastern zero edge. In the Utah shelf, which is considerably narrower than that in Wyoming, clastics near the eastern edge dominate the section, constituting at least 75 per cent of the sediments present. This condition rapidly changes to the west until in the exposures at the western edge of the shelf in the Wasatch Range carbonates constitute the greater part of the section.

TECTONIC AND ENVIRONMENTAL INTERPRETATION
The Utah and Wyoming shelf areas behaved as relatively positive areas on which sedimentation commenced somewhat later than in the adjoining negative areas to the west and north. Devonian clastic deposits of the Utah shelf represent deposition under stable conditions. The relatively fine sands and silts and clays are of a clean character and suggest deposition under conditions of stability with reworking of the depositional interface for considerable lengths of time before lithification was completed. Carbonates at the western edge of the Utah shelf likewise represent stable conditions, being of normal marine limestone type. Similarly, to the northeast, in the Wyoming shelf area the clastics and carbonates of the Darby represent shelf-type deposits laid down under relatively near-shore conditions of considerable stability. Quartzose sands, showing lateral intergradations with carbonates, green clay shales, and well developed secondary dolomites all indicate slow deposition on a slowly subsiding platform, permitting winnowing out of fine clastic material and dolomitization of the limestones. The deposits are characterized by evidences of disconformities, especially in the eastern areas. The increasing clastic content and
coarsening of clastics of the east indicate that the present zero edge was also the approximate eastern depositional limit. The adjacent landmass to the east was apparently sufficiently positive to furnish the coarse and fine clastics which are prominent at the sight of deposition.

The locus of rapid change in thickness bounding the generally western edge of both the Wyoming and Utah shelves represents a tectonic hinge which, consequently, also forms the eastern boundary of the irregularly trending geosynclinal belt. The fact that carbonate sediments are predominant in this more negative belt indicates that the belt lay a considerable distance from the land area to the east from which the sediments of the region were likely derived. Even in the area of the southeastern Idaho embayment, which extends considerably closer to the sediment source area than do other parts of the geosynclinal element, the section is composed predominantly of non-clastic material, although in this area clastics do become more noticeable in the section (for example in the Logan, Utah area, Section 8, Figure 3).

Patterns shown in Idaho are constructed on the basis of available published information (Mansfield, 1927, Ross, 1934, 1937; Umpelby, 1913, 1917; Umpleby, et al., 1930) and by use of unpublished material received from L. L. Sloss and used by permission of Phillips Petroleum Company.

BIBLIOGRAPHY
Andrichuk, J. M. (1951), "Regional Stratigraphic Analysis of Devonian System in Wyoming, Montana, Southern Saskatchewan, and Alberta," Bull. Amer. Assoc. Petrol. Geol., Vol. 35, No. 11, pp. 2368-2408.
Eardley, A. J. (1944), "Geology of the North-Central Wasatch Mountains, Utah", Bull. Geol. Soc. Am., Vol. S5, pp. $821-893$.
Foster, H. L. (1947), "Stratigraphy of Teton County, Wyoming," Bull. Amer. Assoc. Petrol. Geol., Vol. 31, No. 9.
Holland, Jr., F. D. (1952), "Stratigraphic Details of Lower Mississippian Rocks of Northeastern Utah and Southwescern Montana", Bull. Amer. Assoc. Petrol. Geol., Vol. 36, No. 9, pp. 1697-1734.
Mansfield, G. R. (1927), "Geology, Geography, and Mineral Resources of Part of Southeast Idaho", U. S. Geol. Survey Prof. Paper 152, p. 159.
Richardson, G. B. (1941), "Geology and Mineral Resources of the Randolph Quadrangle, Utah, Wyoming", U. S. Geol. Survey Bull. 923.
Ross, C. P. (1934), "Correlation and Interpretation of Paleozoic Stratigraphy in South-Central Idaho", Bull. Geol. Soc. America, Vol. 45, p. 937.
Ross, C. P. (1937), "Geology and Ore Deposits of Bayhorse Region, Custer County, Idaho', U. S. Geol. Survey Bull. 877.
S!oss, L. L. and Laird, W. M. (1947), "Devonian System in Central and Northwestern Montana," Bull. Amer. Assoc. Petrol. Geol., Vol. 31, No. 8, pp. 1404-30.
Sloss, L. L. and Moritz, C. A. (1951), "Paleozoic Stratigraphy of Southwestern Montana", Ibid., Vol. 35, pp. 2135-69.
Williams, J. S. (1948), "Geology of the Paleozoic Rocks, Logan Quadrangle, Utah", Buill. Geol. Soc. Am., Vol. 59, pp. 1121-1164.
Umpleby, J. B., Westgate, L. G. and Ross, C. P. (1930), "Geology and Ore Deposits of Wood River Region, Idaho," U. S. Geol. Survey Bull. 814.
Umpleby, U. B. (1913), "Geology and Ore Deposits of Lemhi County, Idaho," Ibid., Bull. 528.
Umpleby, U. B. (1917), "Geology and Ore Deposits of the MacKay Region, Idaho," Ibid., Prof. Paper 97.

[^0]: ${ }^{2}$ ublication authorized by the Director, U. S. Geological Survey.

