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Soufriere geothermal area, St. Lucia, Caribbean Sea

Introduction

The initial electrical resistivity survey on St. Lucia was completed by

geophysicists from the Institute of Geological Sciences (IGS), Great Britain,
in 1974. The survéy included 13 lines of dipole-dipole resistivity using a
standard electrode separation (a) of 200 m. The distribution of survey lines
and geothermal test wells is shown in Figure 1. The survey is described in

detai

1 by Greenwood and Lee (1976). A review of this report, the detailed

topographic map and the numerical data for each line (which you provided to

us),
lines
much

suggest that the survey was completed in a competent manner. The survey
were selected to provide reasonable coverage of the thermal area and
of the caldera while making good use of existing access and minimizing

topographic effects. Resistivity values were recorded for separations (n) of

2 to

10 by the IGS terminology (corresponds to n=1 to 9 in the SEG termi-

nology).

are s

Although these data appear to be quite reliable, the pseudosection plots
omewhat misleading as they are presented in terms of depth instead of
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Fig. 1 Soufri2re area, St Lucia showing geophysical survey lines




electrode separation (i.e. Figure 2c). The suggested depth equivalence
(n=2=200 m, 3=300 m, 4=400 m, etc.) is not generally accepted or considered
valid. The maximum reliable depths of resistivity mapping, assuming two-
dimensional resistivity distribution perpendicular to the survey line with
n=2-8 (IGS), and numerical modeling of the data has been shown to be approxi-

mately 2a to 2.5a.

In the case of the IGS data considered here this would correspond to
depths of 400-500 m instead of the 800-1000 m indicated by depth scales on the
pseudosections. Although the data were recorded to greater separations (n=2-
10, IGS) the lateral effects associated with three-dimensional resistivity
distributions and topography, and the lack of even two-dimensional numerical
modeling, preclude an accurate mapping of resistivities for depths exceeding
400 m. The geologic interpretation of the data, excepting the depth conside-
rations, seem reasonable and well considered.

Numerical Modeling, Line 9

Subsequent to reporting the field surveys, the IGS contracted to Geo-
tronics Corp (U.S.A.) for a number .of forward numerical model calculations
simulating the resistivity distribution of the northern half of line 9
(dipoles 4-15) which crosses the Sulphur Springs area (Lee and Greenwood,
1976). Although none of the six models presented achieve a good fit to the
observed data, model 6 (shown as Figure 2a, 2b) provides a fair indication of
the near surface (0-200 m) resistivity distribution, and indicates the large
scale resistivity distribution to depths of about 400 m. The models allow Lee
and Greenwood to infer three deeper resistivity units of approximately 15 Qem,
30 Qem, and 5 Qem. The numerical model results lead the authors to the
generally accepted resistivity depth-of-resolution values noted above, i.e.
2a-2.5a. The authors also correctly cautioned that three-dimensional subsur-
face and topographic effects, and the strong influence of near surface
resistivities on the data set, severely limited interpretation for depths
exceeding about 400 m. Numerical model 6 shows a good correlation with near
surface geology. High temperature wells 3, 4 and 5 are sited in low (2-5 Qem)
near surface resistivity bodies.

The resistivity modeling program used by Geotronics Corp. (RESCAL) was an

early modeling algorithm and several important improvements have been incor-
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porated in later programs, such as RIP2 developed by ESL/UURI. The RIP2
algorithm is more efficient and permits a greater subdivision of the model
(higher geometric resolution), calculation for separations n=2, 3, 4, 5, 6, 7
(as compared to n=2, 3, 4, 5, 6), and allows for modeling (2-D) topographic
effects. As a result substantially more accurate interpretations, to depths
of 2a-2.5a, are possible at present.

LANL Resistivity Profile

In January 1984, Los Alamos National Laboratory (LANL) completed one
additional resistivity profile of total length 5.2 km (Ander et al., 1984).
As shown in Figure 1, the northern half of the line is almost a complete
duplication of the earlier IGS lines 6 and 7. The line location and electrode
separation were chosen after evaluating the existing data of Greenwood and Lee
(1976). The LANL survey profile attempted to achieve resistivity data to a
depth of 2 km and simultaneously maintain a high spatial resolution consistent
with 200 m dipoles. In an attempt to achieve these conflicting goals, they
read voltages to separations as great as n=24 and 25. In order to read the
small voltages which result from short transmitting and receiving dipoles,
they developed their own 35-KW trailer-mounted DC transmitter driven by a 60-
KW diesel generator.

The current flow path is primarily a function of the three-dimensional
resistivity distribution and the separation of the current electrodes (i.e.
the transmitting dipole length), and the use of short dipoles (200 m to less
than 100 m) constrained most of the current flow to a near surface hemi-
spherical volume with r < 2a as shown schematically in Figure 3. Inherent to
recording such extremely large transmitter-receiver separations as n > 10 are
noisy data resulting from low induced voltages, which are then multiplied by
large geometric factors. In addition, the current is not constrained to a
simple flow path between transmitting and receiving dipoles, but is distri-
buted inversely with resistivity for current paths lateral to the survey
profile., As Lee and Greenwood (1976) and Greenwood and Lee (1976) reported
earlier, the resistivity distribution in the subject area is certainly three-
dimensional and topographic variations are also large. The Caribbean Sea is a
low resistivity body only 1-2 km west of the survey profile. Thus the inter-
pretation of these data to depths greater than 400 m to 500 m is very specu-
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lative.

The southern half of the LANL line does not duplicate earlier IGS cover-
age but is a real mix of different dipole lengths, from 200 m to less than 100
m (Figure 4), and hence of variable current depth penetration. A major data
gap {or single 500 m dipole?) which occurs in the pseudosection {stations 12-
13) is contoured as data comparable to the rest of the line. As a general
rule the resistivity data could be interpreted through numerical modeling to
determine the vertical resistivity distribution to depths of 400 m at most;
less where the dipole Tength was 150 m or less.

Anders et al. (1984) present a very limited discussion of the LANL resis-
tivity data, reproduced here as Figure 4. They note that "the upper 700 m of
the pseudosection shows similar characteristics to the British dipole-dipole
data" with 40 Qem resistivities common north of Sulphur Springs. They also
note high apparent resistivities beneath the Belfond area and interpret a zone
of very low resistivity, less than 1 ohm-m, underlying the Etangs area. They
interpret a zone of higher apparent resistivity (40-150 Qem) starting at a
depth of 600 m beneath the Sulphur Springs area. The remainder of the inter-
pretation is a correlation with surface and geologic features. Based on the
interpretation of the "deep" resistivity data they suggest three geothermal
well locations 1, 2, and 3 (see Figure 4) where they expect to encounter
geothermat brines at depths of approximately 900 m, 1800 m, and 1000 m,
respectively.

Qur limited review of these data suggest that the LANL interpretation is
simplistic, and quite probably incorrect. As noted earlier, the probable
maximum depth of reliable resistivity interpretation is about 400 m. Inspec-
tion of Figure 4, now annotated with the plotting diagonals, shows that the
{apparent) deep Tow resistivity zones beneath Sulphur Springs and Belfond are
more 1ikely primarily due to reinforcement at the intersection of diagonals
from low resistivity surface areas 1-5 and 26-27, and 13-15 and 26-31,
respectively. There are no data to suggest the continuation of low
resistivities near proposed Well No. 3 (electrodes 26-31) to depths below 200
m. It is uncertain from our reading of the LANL report if data were taken for
the 12-13 dipole, or if this represents two large data gaps in the
pseudosection. 1In addition, there is no nurerical modeling to support an
interpretation of the LANL data. In any case, we would never rely on one deep
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resistivity line since effects from beneath a single resistivity line cannot
be separated from effects originating off to the side. There is thus no
assurance at all that the low resistivity portions of the LANL profile
indicate actual low earth resistivity at the depths they indicate directly
beneath the line. We therefore recommend that the resistivity data of this
line be given Tittle weight in selecting drill sites for future testing of the

geothermal resource.

Recommendation

Numerical modeling of several lines of the IGS resistivity survey could
provide substantial information on resistivity distributions and hence
possible faults, lithologic changes, and geothermal fluids, to depths of 400-
500 m. Resistivity lines pertinent to siting of future drill holes include
lines 4, 5, 6, 7, 8, 9, and 10, Topographic variations could be modeled, if
severe enough to warrant the additional time and expense. Although the
resistivity interpretation would not be valid for depths below 500 m, the
structure from 0-500 m depths, when correlated with geologic data, would
provide the best indication of deeper features, and hence the best basis on
which to site future drill holes.
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Geophysical Surveys in St Lucia
for Geothermal Resources

P. G. Greenwood and M. K. Lee

1. INTRODUCTION

The Soufrigre region of the island of St
l.ucia in the Caribbean Sca has been regarded
for the past few decades as a poiential area for
geothermal energy. Since the early nineteen-
fifties well documented geological and geother-
mal studies of selected parts of the Soufriere
region have been made by various authors, hut
no geophysical measurements, apart from a
few temperature determinations, had been
recorded.

In response to a request received by the
Overseas Development Ministry (ODM) in
London from the Government of St Lucia for
assistance in an exploration programme for
geothermal resources, experts from the
Institute of Geological Sciences (1GS) and
Merz and Mclellan (M and M) visited St lL.ucia
during April of 1974 to evaluate the surface
emanations and recommend an exploratory
programme, ‘The 1GS report recommended
the application of geophysical, geochemical
and hydrogeological investigations and that the
combined conclusions from these disciplines be
used to site a series of exploratory boreholes '
drilled by a contractor responsible to M and M,
Some hydrogecochemical field studies were
completed during September 1974 (Morgan-
Jones and Idmunds,1974) and further field
studies commenced in February 1975,

Geophysical investigations using the
resistivity method were undertaken by
Alegsrs P, G, Greenwood and M, K, Lee of the
1GS Applied Geophysical Unit from September Lo
Pecember 1974 on hehalf of ODM, This report
presents the geophysical dawa collected and
some tentative interpretations in terms of
geothermal rescrvoir potential are made.

The resistiviiv results suggest that the
Soufriére geothermal sysiem is vapour domina-
ted and that the subsurface structure of the sys-
tern is complex, Without geological control {in

the form of boreholes) it is not easy to infer either

a unique or simple model for the geothermal
reservoir, and it should be noted that
resistivity interpretation techniques for the
study of vapour dominated systems are less
well advanced compared to those forr hotwaiwes
systems. However, the resistivity survey has
successfully delineated anomalous zones but
the full significance of the data will not be
known until more extensive geochemical and
hydrogeological surveys arc completed and at
least one exploratory borehole is logged.

2. FIELDWORK AND ORGANISATION

2.1 Organisation

The geophysical sur:vey was

conducted in co-operation with the St Lucdia.
Government Lands and Survey Department who
arranged for the necessary local support
facilities, The field crew comprised the two
1GS Geophysicists, a local surveyor, and a
local labour force which varied according to
the work available but usually exceeded twenty
men. lnitially two vehicles, but later three,
were required . 1ransport the large numbers
of staff and th.  :lky resistivity equipmeant,
The Sub Collevior in Soufridre was appointed
Liaisun Officer and was responsible for the
recruiunent and payment of the labour force
and the supply of fuel and minor contingencies.
The use of radio transceivers was essential
during the resistivity field measurements and
without them the survey could never have been
satisfactorily completed. Initially, congider-
able problems were encountered with these
transceivers due to their use under jungle
conditions (where the leaf surface of the ihick
vegetalion act as innumerable radio wave reflec-
tors thus scattering the transmitted signal)
and invaluable assistance was received from
both a detachment of Royal Signals from the
British Army (on an exercise in the Caribbean)
and the Radio Communication Department of
the St Lucia Police Force,
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Soufriere area, St Lucia, showing geophysical survey lines
(IFig. 2 derives from this map)
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UNITED NATIONS REVOLVING FUND
FOR NATURAL RESOURCES EXPLORATION

TELEPHONE: 212-906-6123
212-906-6120

REFERENCE:

Dear Marshall,

’, \) FONDS AUTORENOUVELABLE DES NATIONS UNIES
&’ ‘& POUR L'EXPLORATION DES RESSOURCES NATURELLES
s 74
%
UNRFNRE CABLE ADDRESS: UNDEVPRO « NEW YORK
One United Nations Plaza TELEX: 422862 UNDEVPRO-NYK

New York, N.Y. 10017

9 September 1985

As I told you in Kona, the expected BGS geophysical data was
ceu on my desk when T got back. I am passing it on herewith, and hope
that it will be suitable for combining with the LANL Resistivity data
to produce some useful 3-D modelling at Utah.

Mr., Marshall Reed

Yours sincerely,

1S

Peter R. Donovan

U.S. Department of Energy CE 324

Washington D.C. 20585



={r WVIC)STL/GER British Geological Surve
iiiiiiiiiivg/ﬂfl//42;7é?/42,EFY\) Keyworth -
Nottingham NG12 5GG p D

[PN (o ot e Telephone Plumntree (06 077) 6111
Mt o Telex 378173 BGSKEY C

Al B g remamny /////
. o . e L .

o

P M Fozzard Esq

Technical Manager Your

UN Revolving Fund reference
1 United Nations Plaza. Our

NEW YORK

NY 10017

UNITED STATES OF AMERICA

26 July 1985

Dear Peter
BGS GEOPHYSICAL SURVEYS FOR GEOTHERMAL RESOURCES IN ST LUCIA

When I passed through New York earlier this month Peter Donovan asked for
the original resistivity data from the BGS survey in St Lucia in 1974,
Please find enclosed a copy of the reports on the survey (number 26} and the
interpretation (Number 31) together with the original data and an explanation
of these data. There is an explanation of the data and at the beginning of
each line of data. The orientation of the line is given together with the
disposition of the dipoles. The position of the lines on St Lucia are given
in the figures in the reports. This information should be sufficient for
any geophysicist to decipher the basic information for any reprocessing. I
am copying this letter, but not contents, to Mike Léwis in case you need any
clarification regarding geophysics, but do not hesitate to request any
further information from us if necessary. Peter Greenwood has only just
returned from a spell away from England and Mike Lee is currently away,
hence the delay in getting the information to you.

All the air freight from Peru in early July is now finally with us in
Keyworth although the portable computer was missing but we got another
similar unit to edit the original data before reading it into the main
computer here. The majority of the resistivity curves are now reinterpreted
and plotted on A4 size. We have been striving for a report deadline for the
end of the month but it may slip a few days,but at least a preliminary report
was left in Arequipa. Air freight both ways return UK and Peru is

certainly a problem as we found on the way out.

With best wishes.

Yours sincerely

7

ROB EVANS

T2l L cilf Ty 5o Ao 76; el aoxareo 5
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scalar versus tensor estimates, theoret-
ical versus observed field patterns over
the survey area, and controls on near-
field effects using CSAMT and natural
field data both inside and outside the
caldera.

303
(PB—-92-172246/XAB)
in-situ  measurement of thermal
conductivity using the continuous-
heating llne-source method and
WHOI outrigged probe. Technical re-
port. Jemsek, J.; Von Herzen, R.;
Andrew, P. (Woods Hole Oceano-
graphic institution, MA (United States)).
Aug 1985. 77p. (WHOI-85-28). NTIS
Prices: PC AOSMF AO1.
Sponsored by National
Foundation, Washington, OC.
The outrigged thermal probes of a
‘pogo’ marine geothermal probe have
been adapted to measure themal
conductivity in-situ by the continuous-
heating line source technique. The
instrumental uncertainty in applying the
analytical theory to a single-probe and
double-probe configuration is found to
be 3 and 6 percent, respectively. The
in-situ outrigged single probe (.32 cm
dia.) is essentially a scaled-up version
of the needle probe (.08 cm dia.). The
.main advantage of the outrigged probe
over a larger radius probe (e.g., violin-
bow probe) is that for shor-time
temperatures (<2 min.), simple approx-
imations to the exact solution for a
perfectly conducting cylindrical probe
are achieved. The continuous-heating
compares favorably with the puise-
heating techniqus, the latter being more
energy efficient. The continuous-
heating method applied to the thin
outrigged probe allows for accurate
equilibrium in-situ temperature and
thermal conductivity estimates in less
than 15 minutes of recording time. The
technique has been applied to several
hundred marine heat flow stations.
Comparison of in-situ measurements to
needle probe measurements made on
nearby piston cores indicate agreement
to within 5%.

Science

304

Developing natural convection in a
fiuld layer with localized heating and
large viscoslty varlation. Hickox,
C.E.; Chu, T.Y. pp. 75-82 of General
topics in fluids engineering 1991.
White, FM.; Kamemoto, K. New York,
NY (United States); American Society
of Mechanical Enginears (1991). 148p.
(CONF-910684-). Contract ACO04-
76DPQ0789.

GEOTHERMAL EXPLORATION AND EXPLORATION TECHNOLOGY

From 1. American Society of Me-
chanical Engineers/Japan Socisty of
Mechanical Engineers (ASME/JSME)
fluids engineering conference; Portiand,
OR (United States) (23-26 Jun 1991).

Numerical simulations and laboratory
experiments are used to elucidate as-
pects of transient natural convection in
a magma chamber. This paper reports
that the magma chamber is modeled as
a horizontal fluid layer confined within
an enclosure of square plattorm and
heated from below by a strip heater
centered on the lower boundary of the
enclosure. The width of the strip heater
and the depth of the fiuid layer are one-
fourth of the layer width. Com syrup is
used as the working fluid in order to ap-
proximate the large viscosity variation
with temperature and the large Prandt
number typical of magma. The quies-
cent, uniform, fluid layer is subjected to
instantaneous heating from the strip
heater producing a transient flow which
is dominated by two counter-rotating
convective cells. Experimentally deter-
mine characteristics of the developing
flow are compared with numerical simu-
lations carried out with a finite element
computer program.

~y

305
Overview of geothermal exploration
in Saint Lucla, West Indies.

Barthelmy, A. pp. 227-234 of 1990 In-
ternational Symposium on geothermal
energy. Davis, CA (United States);
Geothermal Resources Council (1990).
1710p. (CONF-900823-).

From Annual meeting of
Geothermal Resources Council and in-
ternational symposium on geothermal
energy, Kailua Kona, HI (United States)
(20-24 Aug 1990).

A recent program of deep exploratory
drilling conducted in the Qualibou
Caldera in Soufriere, Saint Lucia has
provided new but inconclusive informa-
tion on the geothermal resource. Well
Sl-1 located in the Belfond area was
drilled to a total depth of 7261 ft. This
well encountered low permeabiiity and
high temperatures, with a maximum of
241°C at total depth. Following this un-
successful attempt at penetrating the
reservoir, the site at Etangs chosen for
the location of well No 2 was aban-
doned and the second well SL-2 was
drilled to a total depth of 4636 ft in the
sulphur Springs area. SL-2 produced
superheated steam with a very high
gas content from what is assumed to
be a vapor dominated zone overlying in
a brine dominated reservoir. This paper

the

reports that a long term flow test of SL-
2 is required, specifically planned to
investigate the chemistry of the
geothermal fluid and to allow a more
definite assessment of the well's per-
meability and drawdown characteristics.

306

Magnetic anomalles of the northern
Gult of Callfornla: Structural and
thermal Interpretations. Sanchez-
Zamora, O.; Doguin, P.; Couch, RW.;
Ness, G.E. pp. 377-402 of The gulf and
peninsular province of the Califomias.
Dauphin, J.P.; Simoneit, B.R.T. Tulsa,
OK (United States); American Associa-
tion of Petroleum Geologists (1991).
834p.

Geophysical surveys in the northern
Gulf of California in 1981 and 1984
(GOLFO 81, GOLFO 84) provided the
magnetic data for this study. The au-
thors analyze the data using frequency
domain techniques to determine the
depth to the tops and bottoms of mag-
netic sources. The authors assume that
the bottom of the deepest sources rep-
resent the Curie-point isotherm. The
author's results indicate a shallow mag-
netic horizon with depths to source tops
between 2.3 and 4.1 km below sea
level; an intermediate-depth horizon be-
tween 3.6 and 6.4 km; and a deep
magnetic horizon between 6.7 and 9.5
km. The author's computed depths to
the bottom of the magnetized crust
yield an average depth of 11.5 km be-
low sea level. Using the individual
computed depths to the Curie-point
isotherm, and assuming a Curie-point
temperature of 580° C, the authors de-
termine an average thermal gradient of
51.8° C/km. Assuming a conductivity of
22 W/m® C, the average computed
heat flow for the central part of the
northern Gulf of California is 114 mW/
m?. This paper presents plots of fault
traces which were determined using a
deconvolution method based on
Werner's simplified thin-dike assump-
tion. The method presented automates
the interpretation of magnetic profiles
leading to the linearization of complex
nonlinear magnetic problems.

307

Well logging resuits from three
geothermal flelds in Central Amer-
ica. Dennis, B.; Van Eeckhout, E. pp.
373-378 of 1990 International sympo-
sium on geothermal energy. Davis, CA
{(United States); Geothermal Resources
Council  (1990). 1710p. (CONF-
900823-).
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AFFENULX A

Topographic-Effect Resistivity Anomalies

for Valley, Ridge, and Slope Models

The apparent resistivity anomalies, in percent, for a valley {¥), a
ridge (R}, and a slope (S), have been computed for slope lengths (SL) of 0.5,
1.0, 1.5, 2.0, 3.0, and 6.0 in units of dipole length and for slope angles
{SA) of 10, 20, 30, and 40 degrees. Starting with valley cases, the models

are coded in the form V-SLO.5-SA10, etc.

Vor Trom {20 ] C
=1 Case Page + - Case Page + =
1 V-5L0.5-5A10 Al ! R-5L0.5-SA30 a6 7
£ | V-SL1.0-SA10 A2 9 R R=SL1.0-5A30 Al o4 ‘

o ¥-SL1.5-SA10 A3 15, 27 R-5L1.5-SA30 A39 14 Al

i V-5L2.0-SA10 A4 e 2T R-SL2.0-SA30 A0 147 a8
V-SL3.0-SA10 A5 w22, 27 R-SL3.0-SA30 Al (37 S5
¥~-SL6.0-5SA10 A6 WA -8 _R-5L6.0-5A30 A2 114 s\
v-SL0.5-5A20 A7 EN R-5L0.5-5SA40 A43 29 =
v-SL1.0-5A20 A8 20, 38 R-5L1.0-SA40 Ad4 103 3o
V-SL1.5-SA20 A9 - 32,-4¢ R-SL1.5-5A40 A5 259 55
V-SL2,0-SA20 Al0 +40,-45 R-SL2.0-SA40 A& 282 2 62
¥-SL3.0-5A20 ALl 48 43 R-SL3.0-SA40 A4T 27 7z
v-SL6.0-SA20 Al2 23 13 R-SL6.0-SA40 M8 2= 4p
V-5L0.5-5A30 Al &+ S-SL0.5-SA10 AdY 4 4
V-SL1.0-SA30 Al4 27 49 $-SL1.0-SA10 ASQ 8 \Z
V-SL1.5-SA30 Als 42 %9 $-5L1.5-5A10 A51 V3 ‘e
V-5L2.0-SA30 Alg @ S8 $-SL2.0-5A10 AS2. S V7
V-SL3.0-SA30 Al7 72 60 S-SL3.0-SAL0 A53 138 ‘o
V-SL6 .0-SA30 Al8 49 44 S$-S5L6.0-SA10 A58 10 |oO
¥-SL0.5-5A40 A9 7 & §-SL0.5-5A20 A% o )
V-SL1.0-5A40 A20 35 55 5-SL1.0-5A20 AS6 20 2.7
V-SL1.5-SA4Q AL 7o o2 S-SL1.5-5A20 AS7T 29 -
V-SL2.0-SA40 A22 88 €7 S-SL2.0~SA20 A58 35 2
¥-SL3.0-5A40 A23 B4 O $-5L3.0-SA20 AS9 37 29
V-SL6.0-SA40  A24 g5 54 S-SL6.0-SA20  A60 8 lo
R=SLO.5-SAI0 A2s 1 3 S-SLO.5-SA30 T A6l T ig ¥
R-SL1.0-SA10 A26 9 8 S-SL1.0-SA30 A62 23 g2
R-SL1.5-SA10 A27 2% 5 $-SL1.5-SA30 A63 45 =9
R-SL2.0-SA10 A28 so 18 S-SL2.0-5A30 A64 55 40
R-SL3.0-SA10 A29 =8 26 $-SL.3.0-SA30 A65 68 40
R=SL6.0-SA10 A0 21 e S-SL6.0=SA30  A66 37 28
R-SL0.5-SA20 A3l 7 7 S-SLO.5-5A40 A6T 24 T
R-SL1.0-SA20 A32 27 G §-SL1.0-5A40 A68 39 39
R-5L1.5-SA20 A33 T4 29 S-SL1.5-5A40 A69 65 49
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DEEP RESISTIVITY MEASUREMENTS IN THE QUALIBOU CALDERA,
ST. LUCTA, WEST INDIES

(Mark Ander)

A 5.2-km-long dipole-dipole DC resistivity survey was conducted
along a north-south-trending line through the Qualibou caldera from
just north of Ruby to just north of Viectoria Junction. A nominal
dipole length of 200 m was selected to obtain high resolution and
measurements were made at a total of 32 electrode stations. To get
resistivity data to a depth of 2 km, a 35-kW trailer-mounted IC
transmitter was used. The survey was centered over Sulphur Springs
and the profile location was selected on the basis of the previous
British resistivity <investigation and the detailed geologic
evaluation performed by Wohletz and Heiken of Los Alamos. The
apparent resistivity profile shows similar characteristics to the
British dipole-dipole data in the upper 700 m. There is an apparent
resistivity high of greater than 1000 ohmm located below the Belfond
area. Beneath this resistivity high, there is deeper low apparent
resistivity material that is measured at less than 10 ohm-m. The
regions containing less than 10 ohm-m material are highly suggestive
of aones containing thermal waters. There is a zone of very low -
apparent resistivity, less than 1 ohm-m, underlying the Etangs area.
The zone beneath Etangs ie related to thermal upwelling along a
fault, probably the caldera-bounding fault. Beneath Sulphur Springs,
starting at a depth of approximately 600 m, there is higher apparent
resistivity material ranging from 40 ohm-m up to 150 ohm-m in the
center of a 1-km-diameter high-resistivity closure. Interpretation
of the data strongly suggests the presence of a very hot dry steanm
field beneath Sulphur Springs. Based on the deep apparent
resistivity data, the recommended drilling sites are at (1) Craters
of Belfond, (2) Valley of Sulphur Springs, and (3) Etangs.

[. INTRODUCTION

Direct current (DC) electrical resistivity methods have been employed for
geothermal exploration in many countries and have proved to be an invaluable
adjunct to the drilling of shallow or deep holes. Numerous case studies
indicate that high-quality (>200°C) liquid-dominated geothermal reservoirs are
characterized by a resistivity of less than 10 ohm-m. This fact prevails
regardless of the resistivity of the host rock, which may be many orders of
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magnitude higher in resistivity than that of the high-quality reservoir.
Field data from drilled geothermal fields such as Wairakei, Broadlands, East
Mesa, Heber, Salton Sea, North Brawley, Niland, Yellowstone, Roosevelt, Dieng,
and Kawah Kamojang show remarkable correlations between the resistivity
anomaly and the occurrence of an economically viable hydrothermal reservoir
(Hatherton et al., 1966; Lumb and MacDonald, 1970; Risk et al., 1970; Risk,
1975; Banwell and MacDonald, 1965; Meidav and Réx, 1970; Meidav and Furgerson,
1972; Meidav et al., 1976; Harthill, 1978).

The range of resistivities of rocks in geothermal environments varies
over many orders of magnitude. The electrical resistivity of rocks is
affected by six factors: 1) temperature, 2) porosity, 3) degree of fluid
saturation of the pore space, 4) salinity of the saturating fluid, 5) pore
space geometric factors, and 6) rock matrix vresistivity (Keller and
Frischnecht, 1966). Rocks such as granite, basalt, limestone and sandstone

W
ﬂ5+l'uw95ﬁre essentially infinitely resistive at temperatures of less than 450-500°C.

ate ¥

The electrical current conduction in rocks other than clays, shales, or
massive metalliferous zones is carried through an electrolyte, or ground
water, that fills the pore space. The interrelationship between electrical
resistivity and the many factors that may influence it in a geothermal
environment is very complex. Fortunately, many of these factors combine to
enhance the resistivity contrast of the reservoir making DC resistivity a
highly successful geothermal exploration tool.

II. DEEP RESISTIVITY MEASUREMENTS AS A GEOTHERMAL EXPLORATION TOOL

Electrical resistivity is a geophysical technique permitting the deter-
mination of the distribution of earth resistivities as a function of depth,
Depth control is achieved through control of the geometry and spacing between
a set of transmitting electrodes and another set of receiving electrodes. The
earth's apparent resistivity ((g) is defined as:

_ v
Pa =277

K

where [ is the current injected in the ground at the trénsmitting electrodes,
V is the voltage measured at the receiving electrodes, and K is a geometry

factor given by:
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K = ( L N I ) //
fiv R Ry Ry
The Rij are the distances between the ith volt ectrode and jth current

electrode. The deptﬁk%f current flow is a function of the inter-electrode
distance. As the electrode distance is expanded, the current is forced to

penetrate deeper and deeper into the ground.

The apparent resistivity is that which is measured when the earth is not
homogeneous. The apparent resistivity may also be defined as the resistivity
of a layered or heterogenous medium relative to the resistivity of a
homogeneous medium. To obtain the actual resistivities in a layered or
heterogeneous medium, the apparent resistivity data must be computer modeled.

There are many different standard arrays in which the current and
voltage electrodes may be placed (Bhattacharya and Patra, 1968; Van Nostrand
and Cook, 1966). The dipole-dipole array is often selected because of its
ability to obtain an almost continuous cross section to total depth. Because
of this, the dipole-dipole array has gained considerable popularity in
geothermal exploration. The dipole-dipole array combines horizontal and depth
profiling but requires long straight cable runs to achieve results. It is
quite sensitive to lateral changes in resistivity. In this method, constant
dipole lengths are usually employed for the transmitter and receiver dipoles.
For geothermal exploration, dipole lengths of 200-1000 m are characteristic,
although both shorter and longer spacings have been used.

A. Previous Resistivity Studies on St. lLucia

Shallow resistivity studies have been carried out in the Qualibou
caldera of St. Lucia by the Institute of Geological Sciences, London, England
(Greenwood and Lee; 1976). They performed 13 dipole-dipole DC resistivity
profiles throughout the region, obtaining data to a maximum depth of 700 m.
Low apparent resistivity values were found in the north around Soufriére, La
'Pear1e, and Cresslands and other areas generally north of Sulphur Springs.
Additional Tows were centered in the south around Belle Plaine, Etangs, and

Fond Doux. Apparent resistivity highs were associated with the Belfond area
and beneath Sulphur Springs, starting at a depth of 600 m. The typically low
apparent resistivity values are associated with the geothermal system. It was
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suggested that the higher values seen at depths beneath the Sulphur Springs
area may be due to a steam field.

B. Field Operations in the Qualibou Caldera

After evaluating all available data, Los Alamos performed a deep
resistivity survey (to a depth of 2.0 km) centered on Sulphur Springs. The
profile location was determined based on the previous British resistivity
study and a geologic study performed by the Los Alamos National Laboratory.
The decision was made to run a 5.2-km-long, north-south trending,
dipole-dipole DC resistivity profile from just north of Ruby to just north of
Victoria Junction (Fig. 1). This profile traverses extreme topography and
dense jungle and was conducted during January 1984.

A nominal dipole length of 200 m was selected for the St. Lucia survey
to obtain high resolution. Because of the difficult terrain on St. Lucia, it
was impossible to keep a constant 200-m spacing. Two short regions along the
profile have electrode spacings of less than 100 m, giving even higher
resolution in these critical areas. The 5.2-km-long profile line across the
Qualibou caldera contained a total of 32 electrode stations as depicted in
Fig. 1.

To get resistivity data to a depth of 2 km, a 35-kW trailer-mounted OC
transmitter (Fig. 2) was used. This transmitting system was built by the Los
Alamos National Laboratory and is designed to handle high current output, up
to 70 amps peak-to-peak, over a single dipole or to automatically alternate
high current output over two separate dipoles. This capability permits the
transmitter to be easily used in a wide variety of DC resistivity methods
requiring both single and multiple current electrodes. The transmitter
operates with an input of 440 to 480 V AC, three phase, 50 to 60 Hz at 35 amps
or less. The transmitter output can be selected from 0 to 1000 V DC and from
0 to 70 amps peak-to-peak (maximum current is not available at maximum
voltage). The output current is reversed positive/negative (to produce a
square wave) at selectable times of 1 to 99 seconds. The negative current is
selected so that it may have either the same duration as the positive current,
or twice the positive current, thus allowing for polarity identification.

Figure 3 shows an electrical block diagram of the O0C resistivity
transmitter and Table I contains the detailed transmitter specifications. The
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Fig. 2.
Photograph of the DC resistivity transmitter showing operator's console.

DC transmitter is powered by a trailer-mounted 60-kW diesel generator. The
generator output is 480 V, 60 Hz, three phase.

Each of the four portable voltage measuring units (Fig. 4) consists of a
voltage strip chart recorder and a DC voltage bucking box. The strip chart
recorder and bucking box 1is shock mounted in a small portable aluminum
transportainer. They are designed to apply a OC offset voltage to the
incoming signal before it is plotted on the strip chart recorder. This is
necessary to keep the measurements on scale because the currents produced by
the DC transmitter (signal) are superimposed on natural earth currents (noise)
known as telluric currents, which rapidly fluctuate in magnitude. Telluric
currents have several sources. The two most important are inductions from the
motion of charged bartic]es' in the ionosphere and the motion of charged
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Fig. 3.

Electrical block diagram of the DC resistivity transmitter.

TABLE I

DEEP DC RESISTIVITY TRANSMITTER SPECIFICATIONS

INPYT:

OQUTPUT:

SIZE:

E

CONTROLS:

440-480 VAC line-to-line
Three phase WYE pulse neutral
50/60 Hz

35 amps

40 kVA or less

Adjustable O to 1000 VOC, isolated from input

Ripple voltage less than 1%, at 720 Hz

0 to 70 amps peak-to-peak {max current not available 3t max

voltage

Two independent outputs isolated from chassis, each controll-

able as follows:

- Qutput current reversed posit\ve/negative at selectable
time of 1-99 seconds.

- Negative current selected for same or double the duration
of the positive current.
Output on time selectable for 1-99 minutes.

Either output may be selected, or the outputs may alternate at

independently selected time durations.

Approximately 3 ft x 3 ft x 4 ft enclosed
Approximately 1500 1b (without trailer)

AC power on/off (panic button OFF)
DC power on/off (panic button OFF)
Digital QUTPUT CURRENT meter, 0-50 amp, 0.1 amp resolution
Bipolar analog voltmeters on each output (2), + 1000 V
Output Select -
- Qutput 1
- Alternate
- Output 2
Qutput 1 on time select 1-99 minutes
Output 2 on time select 1-99 minutes
Qutput 1 current reversal time select 1-99 seconds
Output 2 current reversal time select 1-99 seconds
Negative current time Normal/UDoubled
RESET TIME
49
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Fig. 4.
Photograph of a portable measuring unit showing voltage strip chart recorder
and DC voltage bucking box.

clouds. The smallest signal that can be recorded by this receiving system is
2uV. The receiver system is powered by an internal rechargeable Ni-Cd
battery, which gives approximately 10 hours of continuous-use on a single
charge.

&;gd)g? RESISTIVITY DATA
u)oF° .7 The resulting apparent resistivity data from the dipole-dipole
Ro G@a soundings are plotted as a function of depth in Fig. 5 (a plot of apparent
resistivity versus depth is called a pseudosection). Also shown for
comparison in Fig. 5 is the geologic cross section A-A' developed by Los

Alamos. The geologic cross section is oriented approximately 10°
counterclockwise relative to the dipole-dipole apparent resistivity cross
section, with the sections intersecting at Sulphur Springs.
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The upper 700 m of the pseudosection shows similar characteristics to
the British dipole-dipole data. In general, there is conductive material
with a resisitivity less than 40 ohm-m located to the north of Sulphur
Springs. There is an apparent resistivity high, greater than 1000 ohm-m,
located below the Belfond area. Beneath this resistivity high, there is
deeper Tow apparent resistivity material that 1is measured at Tless than
10 ohm-m. There is a zone of very low resistivity, less than 1 ohm-m,
underlying the Etangs area. Beneath Sulphur Springs and starting at a depth
of approximately 600 m, there is higher apparent resistivity material ranging
from 40 ohm-m up to 150 ohm-m in the center of a 1-km-diameter high apparent

. . . I\/W\.—s
resistivity closure.

IV.  INTERPRETATION OF RESISTIVITY DATA

There are some interrelated interpretations possible from the apparent
resistivity data. The regions containing less than 10 ohm-m material are
highy suggestive of zones containing thermal waters. The zone beneath
Etangs, containing material of 1less than 1 ohm-m, is related to thermal
upwelling along a fault, probably the caldera-bounding fault, mapped earlier
by Los Alamos geologists between Etangs and Belfond. A swampy area (at
electrodes 30 and 31) located on a hillside with good drainage could be a
surface manifestation of the fluid upwelling. The highly resistive shallow
block associated with the Belfond area 1is a 2zone devoid of fluid
penetration. [t is fault bounded to the south and may also be fault bounded
to the north. Beneath this highly resistive block, however, is a large zone
of low apparent resistivity material (less than 10 ohm-m) that strongly
suggests the presence of a large thermal reservoir. 'This region could not
have been identified without the use of the deep DC resistivity survey. The
Tocation of Sulphur Springs is believed to be entirely fault controlled.

Based on the resistivity data alone, the deep higher resistivity zone
located beneath Sulphur Springs can be interpreted in two ways: (1) the
higher resistivity layer is due to a very not dry steam field; wet steam
fields typically have resistivities around 30-60 ohm-m, while very hot dry
steam fields can reach the higher resistivities measured in this area,
(2) the higher resistivity zone beneath Sulphur Springs is due to a more
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fluid impermeable caprock. The presence of steam in four of the seven
shallow drill holes around Sulphur Springs and results from the
hydrogeochemical studies suggest that the first interpretation is correct.
The region between the two resistive zones (deep under Sulphur Springs and
shallow under Belfond) most probably represents a fault along which thermal
fluids are moving up dip from south to north to emerge in Sulphur Springs at
the surface. This would suggest that the geothermal reservoir that feeds
Sulphur Springs is located to the south beneath Belfond. This model is
supported by the presence of upwelling, fault-controlled fluids in the Etangs

area.

V. RECOMMENDATIONS FOR DRILLING IN THE QUALIBQU CALDERA

Based on the interpretation of the deep resistivity data, the following
drilling recommendations are made:

(1) Craters of Belfond. The first well should be drilled in the
Belfond area, preferably close to the location of the Belfond dance hall
because of the ease of access for a drilling rig. The well is expected to
encounter dry volcanic materials to a depth of 600-900 m where it is expected
to pass through an impermeable hydrothermal boundary into a geothermal brine.

(2) valley of Sulphur Springs. The second well should be drilled in
the valley of Sulphur Springs, preferably south of the area of surface
manifestations. This well is expected to encounter very hot dry steam between
600-1700 m and a geothermal brine by approximately 1800 m. It 1is also
possible that a more impermeable, less fluid-bearing rock will be encountered
instead of a steam zone above the deeper lying brine reservoir.

(3) Etangs. The third well should be drilled in the Etangs area,
preferably south of the road near the Nutmeg Bar. This well should pass
through the southern caldera-bounding fault and is expected to encounter
geothermal fluids at shallow depths associated with the fault. The depth of
the reservoir in this location could be as shallow as 1000 m.
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SUMMARY {1 %
The problems of identifying the base of fresh water lenses in oceanic islands are discussed. A 1 NG

study carried out in the Cayman Islands is described in which the lens basce is defined in rela-
tion to potable water standards and mapped using surface resistivity measurements with
salinity profile controls in borcholes. Using depth-salinity ratios the piczometric surface is
then determined. The technique is considered to provide a reliable cheap and rapid method of
obtaining lens gcometry in oceanic istands particularly where Tuirly homogencous lithologics

. are present. 3

Introduction

With increasing population and industrial development, the supply of water in
many small oceanic islands is becoming increasingly critical. Desalinisation of sea water is i
proving feasible under certain circumstances but due to financial constraints reliance fre- i;
quently-has.to-be-placed-upon-surface water-retention schemes or groundWatér abstraction. :
""1es for large surface reservoirs are normally few and the cost of construction and operation
. numerous small storage dams is generally prohibitive so that the main usable sources
of water usually prove to be groundwaters in the form of fresh water lenses resting upon
saline water. The presence of such lenses can be readily determined but their configuration
is usually difficult to ascertain economically and thus quantitative assessments rely heavily i
upon empiricism. As lens resources are often limited, less empiricism and better lens defi-
nition techniques are required in order that more reliable lens geometry can be deter-
mined as a basis for abstraction criteria.
The general theory of fresh water lens configuration under steady-state hydraulic
nditions is well known through the Ghyben-Herzberg relationship of fresh water density
.1 sea water density (Todd 1959). In small oceanic islands obviously only limited aereal
development of lenses is possible; where, as is [requently the case. topography is low, lens
formation is also severely restricted in depth due to the lack of physical height of the re- i
charge mounds and to the density relationships. Thin lenses are thus formed which are
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chiefly subjected to the dynamic cffects of tide and recharge input. These lenses develop
saline transition zones of significant thickness along their lower boundaries with the sur.
rounding sca water, as described by Cooper (1959). The saline transition zones normally
fall within the boundaries of fresh water lens configuration as defined by the theoretical Ghy.
ben-Herzberg 1:40 relationship (Fig. 5) so that some reduction, to say 1:25 of the ratio,
has to be applied for practical abstraction assessment purposes (Vacher 1974, Mather
1975). The modified ratio is applied to a mecasured piczometric surface and the lens base
configuration determined with the additional aid of depth-salinity profiles based on limited
numbers of boreholes. Although the method provides a moderately satisfactory approxima-
tion of lens geometry, two lactors weaken its application and it could be improved by fur-
ther boundary control techniques. The two complicating factors are:

(i) the determination of the piczometric surface requires that a large number of
water levels have to be measured simultancously over a full tidal cycle to obtain

3 a mean surface. which on thin, flat, highly dynamic lenscs can prove impossible,
and

(i1) the application of u modificd Ghyben-Herzberg ratio does not fully allow for
lithological or permeability differences within the aquifer without comprehensive
drilling control.

In the study discussed below these two fuctors have been largely discounted by direct
mapping ol the configuration of a suitably defined lens base. Geophysical techniques have
been employed and the authors consider that these techniques can provide a reliable means
of improving the definition of iens gcometry under the circumstances stated. The study
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Fi1G. 1. Regional location of the Cayman Islands.
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pas been carried outin the Cayman Iskinds which consist fargely of limestones. Application.,

poncever. is obviously not restricted 10 this one lithology.

F

Study area location | ’

) S

1o Cayman Islands are located in the western Caribbean Sca 300 km south of Cuba ‘ | §

{ . 1) They consist of three nmain islands situated in an isolated position on the northern o ¥

cize of the Cayman Trench. a submarine depression extending from southern Cuba to the *
coast of Honduras. Land 10 sea gradients are steep with the 1000 m isobath usually occurring ‘
jess than 2 km offshore. The main island is Grand Cayman which is about 40 km fong from :

cust o west and at maximum about 13 km wide. The muaximum clevation on Grand Cay-

man is 20 m above sca level but most of the istand is below 3 m and much of it is occupicd .

by saline mangrove swamp. The isiands of Little Cayman and Cayman Brac are much
smiialler than Grand Cayman although clevations reaching to 43 m abhove sca level on

-
v,
&

ovman Brac form the highest points on the islands.
i
5
Geology of the Cayman Islands ;
| :
The geological succession in the iskands may be divided into three units as follows: !
Age Fornwatian Lithology
Recent — Sands and peat
Pleistocene Ironshore Limestone )
Oligocene to Blufl’ Limestone Limestone ' '
Miocene '

The Blufl’ Limestone was first designated as a formational name by Matlcy (1926) to ;
describe the predominant limestone on the iskinds which is typically fossiliferous. medium Py
to fine-grained and dominantly crystalline with solt chalky zoning. Bedding is sub-hori- ‘
contal and poorly defined although the formation is well jointed. A highly developed micro-
karst characterises the limestone and the surface is o maze of honeycombed rock. pinnacles. |

|

ridges. fissures and sinkholes.

The Blult’ Limestone Formation is overkin unconformably by the lronshore Forma-
«+on which occurs chiefly in coastal arcas. Brunt ¢f al. (1973) have subdivided these rocks
into generally reef associated and lagoonal facics which consist predominantly of lime-
stones with fine-grained chalky varictics typifying the lagoonal environment.

Superficial deposits are present in the form of unconsolidated marsh peats scattered
throughout the islands while wlong the western side of Grand Cayman a major fine-grained
sand beach ridge is developed. A simplificd geological map of Grand Cayman is shown on
Fig. 2.
The islands are not structurally complex. Brunt 2 al. (op. cit) consider that they may be
: structurally controlled by north-cast 10 south-west trending faults and on Grand Cayman

lineations are visible on air photographs which probably reflect master joint plianes or

minor faults.
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Hydrogeology and Criteria for Lens Definition

Predominantly unconfined fresh groundwater bodies have been identified in the Islands
by Mather (1971) and Wallace Evans (1974). Approximate boundaries to the lenses have
been drawn but no conlident lens base configurations have been detailed.

On Grand Cayman where the bulk of the present study under discussion was carriegd
out, Mather (op. cit) recognized three significant lenses in the general localities as shown op
Fig. 2. To consolidate Mather’s work and in view of the fact that the main objective of the
present study was to determine potable water resources. criteria for the definition of the
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three lenses were established based on quality. The World Health Organization potable i
tinit for chloride, which is 600 parts per million (ppm), was taken as the initial guide to- oo
scther with depth-chloride profiles which indicate a rapid increase in chlorides beneath ‘
about 500 ppm where the transition zone becomes significant (Fig. 3). To allow a safety
factor in the potable resources assessment a value of 500 ppm chioride was taken as de-
ining fresh water. In the lenses where the potable limits are approached chloride is the -
minant anion; when taken at 500 ppm together with other ions the total salinity does :

not exceed the value 1000-1100 ppm which is also within the World Health Organization ¢
standard. Other ionic concentrations do not prove hazardous within the established defi-
nion,
i GL.
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FiG. 4. Conductivity profile of test borehole No. | in the central lens (Lens 2).
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Having defined limits, the study of the lens configuration was carricd out using the
following techniques:
(i) ficld measurements of clectrical conductivity and chlorides,
(ii) borchole profiling of electrical conductivity,
(iii) borchole depth sampling for electrical conductivity and chloride measurcments,
(iv) surface geophysical measurements, and
{v) limited simultincous measurements of “stitic’ water levels.

For a large part, the lateral limits of the leases in the Islands are determined by the
presence of salinc swamp areas so that the configuration of a lens boundary at the piezo-
metric surface was largely based on direct chemical measurement although away from swamp
areas the lens boundarics were determined by geophysical measurcments. The lens bases
were also determined from geophysical measurements and the piczometric surfaces were
deduced from the base configurations on the basis of density refationships with limited water
level control data.

Geophysical investigation

Various geophysical methods have been applicd 1o groundwater investigations with seismic
and clectrical methods predominating. In the case of lens definition a signilicant change in
clectrical conductivity occurs at the top of the transition zone so that clectrical methods,
riz. clectromagnetic, induced polarization and resistivity. might be considered. Electro-
magnetic methods suffer from the lack of a quantitative interpretation procedure partic-
ularly with regard to groundwater problems. while induced polarization equipment is
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cenvier and more complex than resistivity equipment and interpretation is also more com-
pheated. The resistivity method. however. has proved successtul in groundwater investiga-
vions (Swartz 1937, Flathe 1967) and was considered most practical for the environment
under study. The method was therefore chosen with selection being buased on the following
nin considerations:

(i) the presence of a high resistivity contrast at the base of a defined lens,
(i) the resistivity method possesses adequate depth penetration to define a typical
lens base.
(111) interpretation methods give quantitative results,
(iv) the cquipment is light, easily transported and does not require a vehicle for
ficld operation, and
(v) the cquipment is of a simple design amenable to local repair.

The resistivity survey was conducted using an A.B.E.M. Terrameter and a switching
hox to enable rapid tri-potential readings to be taken (Carpenter & Habberjum 1956). A
contracting Wenner electrode configuration was used throughout with a maximum electrode
sparation of $8.5 m and a minimum electrode separation of 0.3 m. A total of 175 resistivity
tpansions were completed on Grand Cayman and nine expansions completed on Cayman
israc. Where expansions could not be carried out along the sides of roads and tracks. lines
82 m Jong were cut in the bush to enable the cables to be laid out and reefed in without
breakage.
The ficld data were smoothed to minimize the effects of lateral inhomogeneities
tHabberjam & Watkins 1967) and were interpreted using a partial curve matching technique

e
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{Kocfoed 1960). Interpretations were then improved by a re-iterative process of curve re.
generation and refitting (Ghosh 1971).

Six deep boreholes and many dug wells provide control over the results of the geo-
physical interpretation. Of the three lenses present only the central and western lenses could
be tested by drilling as access other than on foot was not possiblc over the eastern lens.
Within the deep boreholes the ciectrical conductivity and temperature of the groundwater
were measured at 0.5 m intervals, Figures 3 and 4 iHustrate the results of these conductivity
profiles and the lens depth ratios measured for each case. Figure § shows the results from
all the measured boreholes and aflirms that the lens base in such a dynamic groundwater
regime is more accurately represented by a reduced Ghyben-Herzburg relationship; in this
case a ratio of 1:20 is more reasonable. In addition there is a suggestion from the limited
data that the base of the transition zone related to a ratio of 1:50. and the depth ratio of
the measured centre of the transition zone approximates to the 1:40, which would represent
the fresh/saline water interface in an ideal static situation.

For interpretation purposes surface resistivity measurcments were undertaken in the
vicinity of the test borcholes. Figures 6 and 7 compare the ficld resistivity curves (b) and
layered models derived from them (a) with the salinity profiles (c) derived from typical
conductivity curves as shown in Figs. 3 and 4. The resistivity contrast between fresh and
saline water is sufficiently great 1o cause a rapid change in apparent resistivity with depth,
permitting location of the defined base of the fresh water tens. In o small number of cases
the water table can be located. although resistivity measurements at small clectrode separa-
tions may be more influenced by karstic limestone fissures filled with terra rosa than the by
walter table. The terra rosit infillings are recorded down to about 3 m below the surface.
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1 addition. the minor inflexions in the field curve below the main peak indicate the pres-
ence of the transition zone enabling the base of this zone to be inferred. The luyered models
derived Trom the resistivity curves accurately indicate the base of the fresh water tens in the
majority of cases although problems of high contact resistance, and locally complex geol-
ogy. result in some curves giving rise to hydrogeological models which are inconsistent with
~hers from the same area.

One area where the problem of complex geology is encountered is in the western Lower
" ailey Lens (Lens 1. Fig. 8). Resistivity expansions located in the vicinity of the test bore-
hole and atong the castern margin of the lens produce layered models in which the fayer
resistivities are of the order to tens of ohm-m as opposed 0 hundreds of ohm-m which
is normally representative of the fresh water aquifer. Drilling results indicate that in these
arcas narrow chalky zones are present contaiing freshwater which give geophysical re-
sults notably different from those measured above karst limestone bedrock. The chalky
7ones in this area are not visible on the surface or identifiable on air photographs. It is not
1own whether the zones represent differing primary lithologies or are developed along

s of fracturing by preferential weathering. Similar zones. more intensely developed and
without obscuring residual terra rose cover, are easily observable on air photographs of
the eastern half of the islands, the softer weathered zones being occupied by mangrove
swamps.

Lens | is bounded to the north-west by significant thickness of Ironshore Formation
lugoonal facies and overlying swamps while the southern boundary is limited by the occur-
rence of o brackish transition zone developed in the highly permcable Blull Limestone Forma-
tion. A total of sixty-two resistivity expansions were completed in the lens. access being
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Fi1G. 10. Configuration of base of Lens 3.

(1)




2Rty

300 S, ko BUGG & 10 WL LLoyD

casicr than elscwhere in the interior of the island. OF these expansions, eleven failed 10 give
interpretations which could be translated into meaningful hydrogeotogical models, Of the
remaining expansions, not all gave results indicating the presence and thickness of the
freshwater lens, but they could be interpreted in terms of brackish and/or saline groung.
water and provided information about the Luteral extent of the lens where Swamps are no
present.

In the central lens (Lens 2, Fig. Y) access was Gar more restricted than in the west,
The central area of the fens is situated in rocks of the BiulY Limestone Formation, with
Ironshore Formation deposits. commonly of the Fagoonal facies. overlying the limestone
in peripheral arcas. Thickness of the Tronshore Formation rocks is of the order of 3 or
less. The boundary of the lens is controlled in all directions by the existence of brackish 1o
saline swamps, developed in surrounding lower ground. The swamps are found occupying
ground on both geological formations,

The Bluft’ Limestone Formation in this arca shows an extreme development of the
micro-karst topography of the islands, with deep sink holes. solution widened fissures ang
a honeycombed mass of porous near surfiace limestone. Where atiempts were made to car
out resistivity expansions in these interior micro-Karst areas it was found that the lack of
suitable grounding medium necessitated clectrodes being hammered into the rock or into
crevices. High clectrode to ground contact resistances occurred in such areas but usually
disappeared after a few minutes, allowing reliable measurements, In some instances, how.
cver. the crratic nature of the resistinces measured resulted in failure of the expansion,
The difliculties in these cases are attributed 1o the high degree of air-filled cavities, solutjon
holes and fissures acting as a near surface layer of extremcly high resistivity,

Because of the inaccessibility of the Blull Limestone Formation in the centre of Lens 2,
many of the borcholes and resistivity expansions were completed around the more access-
ible fringes of the lens. Results gained in the accessible arcas were extrapolated in the in-
terior, where few data were available. A total of fifty resistivity expansions were completed
of which seventeen gave rise to interpretations which did not provide meaningful hydro-
geological models.

An example of this failure to provide a suitable model is illustrated in the case of test
borchole No. 2 drilled on the crest of an cast to west trending ridge of Bluff Limestone pre-
sent along the northern boundary of the lens. The surfuce clevation at the borehole is
10.05 m above sea level and the water table was not encountered until 9.45 m befow surface.
The results of a resistivity expansion carricd out at this location (Fig. 7) indicate that the
observed unsmoothed field curve is representative ol changes in the water quality, and
can be used to infer depths to the basce of the freshwater lens, and transition zone. Layered
models derived from the smoothed apparent resistivity curve did not. however, reveal the
existence of any fresh water. It appears that in this casc the thin fresh waler lens below 8
fairly thick unit of very high resistivity of the order of thousands of ohm-m and above a
zone of very low resistivity, wis “*suppressed™, i.c. {ailed to inlluence the curve to the extent
that its existence could be deduced from the curve after smoothing.

The largest fresh water lens occurring on Grand Cayman (Lens 3) is situated in the
intcrior of the eastern end of the island. It occurs entirely within the Blufl Limstonse Forma-
tion and has developed a broad transition zone around its perimeter (Fig. 10). The area is
totally undeveloped and without roads. As a result, no drilling control was possible so
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that resistivity methods were the only feasible means of determining the base of the lens
using control relationships established clsewhere in the island together with depth-salinity
profiles carried out in natural sink-holes.

A total of forty-eight resistivity expansions were completed of which ten could not be
translated into meaningful hydrogeological models. In an attempt to achieve a suitable
density of data points over the postulated lens area. resistivity expansions were completed

» arcas where terriu rosa soils are not present to act as good grounding medium. in these i
.ocations the results tend to sulfler from a high degree of lateral inhomogeneity and the depth ,.*-
estimations are consequently less accurate than in arcas where good electrode to ground -
contact is achieved. i.c. in areas where residual terra rosa is present.

Discussion and conclusions

s o weDd Aicde

On the basis of depth-salinity proliles in the control boreholes and natural sink-holes. it

readily apparent that a marked change in salinity occurs at the top of the transition zone
which approximates to a 500 ppm chloride concentration in the Cayman Islands. From
surface resistivity measurements taken against control profiles it is also apparent that this
marked change has sufficient electrical contrast to be reliably identified. With accurate
control, therefore. surface resistivity provides a rapid and cheap method of mapping the
base of fresh water lenses. It reduces substantially the cost of drilling investigations and
can be carried out in areas where rig access is not possible. ln the survey described, the :
success rate for the reliable interpretation of surface spreads undertaken was 77 per cent.
Such a rate is cost acceptable, the failures being attributed to poor electrode to ground con-
.act, lateral inhomogeneity and locally complex geology.

In the Cayman Islands study, where the base of a lens was established by resistivity
measurements, the piezometric surface was calculated using a Ghyben-Herzberg ratio of
1:20 as determined by salinity profiling. Seasonal fluctuations in the piczometric surface
were monitored by continuous water level recorders. In areas where resistivity spreads
were not carried out due to bad surface conditions water levels were recorded in sink holes
and the 1:20 ratio applied to obtain the lens base. This latter technique is subjective but
was only widely applied to the centre of the central lens as no alternative practical method
was available. Its use, however, in this particular study does not detract from the value
of the resistivity approach.

In all parts of the lenses where adequate resistivity measurements were obtained they
revealed details of lens configurations which had previously not been established and which
show a marked relationship to the postulated north-west and north-east structural controls
in the islands (Brunt ef al. op cit). In particular the steep north-east trending interfaces on the :
western lens and the overall shape and depth configuration of the eastern lens may be noted. {
The emergence of these features together with the determination of similarly disposed direc- B
tions of preferential permeability found during modelling of the lenses (Richards & Dumble- ‘
-n 1975) add substance to the reliability and value of the resistivity survey. :

In conclusion, therefore, the authors believe that surface resistivity surveys can sub-
stantially improve knowledge of the base configuration of fresh water lenses and by in-
ference, with density relationships, indicate the shape of the piezometric surface in
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unconfined aquifers where the lithologics arce relatively homogeneous. Such surveys are
quantitative, rapid and cheap and are eminently suitable for oceanic island studies, Jt js
believed that their adoption will greatly assist in determining the extent of fresh water leng

resources in such islands.

Acknowledgements: The authors would like to thank the Goverment of the Cayman Iskands for permission
10 publish the paper. The work comprises part of i groundwatcer survey carricd ous by Richards and Dumble.
ton International, Consulting Engincers, Birmingham, England who have also kindly given permission for
publication. The authors would further like to thank Mr. K. Nunn of the Department of Geological Sciences,
Umvur\nv ol Bumm-'h.un for his helpful comments on the nanuseript.

References

Brunt. M. AL Granion, MU E. Co. Manr, 3D iekr, DL S W & Rucnarbs, H. G, 1973, The Pleisto-
cene rocks of the Caviman Istands. Geol, Mag, 110, 209 304,

Carpinir, E. W, & Hanueraan, 1956, A tripotential method of resistivity prospacting. Geopliysics 21,
455 WY,

Coneer, H, H., 1959, A hypothesis concerning the dvnamic batance of Tresh water and salt water in a coastal
:|quillr Journal G x'/llll\it al Researeh, 64, 461 67,

Frami, HL 1967, Interpretation of geaelectrical lL\l\lI\‘ll\ measurements for solving h\droscologlcal prob-
luns (unmlnm Geological Smu\ Eeonomie Geofogy R./u 26, SXO 97,

Guosn, G P I971 ,\ppluulmn af lincar filier lhu»r_v 10 resistivity sounding. Geaplresical Prospecting, 19,
3 217,

Hammrsan, Go ML & Warkiss, G B 19670 The reduction of lateral cllects in resistivity probing,
Geophysical Prospesting 15, 221 h

Kok, O, 1960, A generalised Ciangnard Graph for the interpretation of geoelectric sounding data,
Geophysical Prospecting, 8, 459 o4,

Mariey, Co AL 1926, The geology of the Cavenan Istands (B.W. 1) and their relittion to the Bartlett Trough
Q. H Geol. Soe. Ll 82, 152 87,

Marie, J. D 1971 A pecliminary survey of the groundwater resources of the Cayman Islands with re-
commiendations for their develop nent. Rept. of Hydrogeological Depr., Instinue of Geological Sciences,

Lowdon, 91 pp (Unpublished).
——=. 1975, Development ol the -'muml\\.xlu resourees of small limestone istainds @. S/ Engng Geol. 8,

14t -50.
Ricuarns & DusmisroN INFERNANIDNAL, 1975, Feasibility study for waler supply, sewerage and storm
water drainage. Vols. 1 & 2. Repl. to Goverament of (.wm.m Islands 250 pp (Unpublished).
Swakrz. J. H.. 1937 Runuwly studies of some salt water boundaries in the Hawaiian Islands. Transac-
tions Averican (uupln\uul Untion. 18, 38793,
Tobn, D, K. A8, Gromdwarer Hy:lrology, Wiley Ine., New York,
vacier, H. L. 1974, Groundwater H_vdmkv_vy of Bermuda. Rept. (0 Government of Bermuda 70 pp (Un-
published).
WaLLAcE Evans & PariNins, 1974, Grand Caviman Mains Water Supply Feasibility Sudy. Rept. to Govern-
ment of Cayman Islands 64 pp. (Unnuhh\hul)



file:///ii-iil

