CATALOG OF ALL WELLS IN WELDATA FILE,OCTOBER 1979 UPDATE THIS INCEX REPRESENTS A CURRENT LISTING OF ALL SAMPLES
STORED AT THE HELL SAMPLE LIBRARY WITH THE EXCEPTION OF DRILL CUTTINGS. THE CUTTINGS HILL BE CATALDGED NEXT AND
WILL BE AVAILABLE TO THE PUBLIC SOON.
ALTHOUGH THIS INDEX INCLUDES ALL CORES, CORE CHIPS,
AND OUTCROP SAMPLES, INFORMATION ON INDIVIDUAL HELLS IS
OFTEN INCOMPLETE OR ERPONEOUS. USERS OF THIS INDEX CAN
RENOER A SERYICE BY REPORTING ANY ERRORS OR OMISSIONS
THEY OISCOVER. PLEASE SEND SUCH INFORMATIDN TO E DOW
DAYIDSONG CARE GF THE BUREAU OF ECONOMIC GEOLOGY, SO THAT
IT CAN BE ADOED TO OUR DATA GANK.

LEGEND

WELL NO. - . PREFIX $C=$ CORE
PREFIX $\mathrm{E}=$ CORE CHIPS
PREFIX $P=$ OUTCROP SAMPLES
PREFIX R = CUTTINGS
PREFIX S = SUPERIOR OIL CO. DONATIONS
PREFIX T = NEWLY ACQUTRED CORE IN TRANSITION
TO PERMANENT STORAGE.
THE NUMBERS FOLLOMING THE PREFIX ARE CATALOG
NUMBERS ASSIGMED BY THE WELL SAMPLE LIBRARY
COUNTY-~- - INDICATES COUNTY UHERE THE HELL IS LOCATED
LOC-- $-\infty-\infty$ - NUMBER IN THTS COLUMN REFERS TO TOPO MAP
NUMBER, SPOTTEO BY F.E. LOZO, APRIL, 1977.
OPERATOR-. $\rightarrow N A M E$ OF OPERATOR WHEN THE WELL WAS ORILLED.
NO ALLOMANCES HAVE BEEN MADE FOR OPERATOR NAME CHAMGES
LEASE=m-m WAME OF LEASE HOLCER
NO. $-\cdots-\cdots$-. - HELL NUMBER DESIGNATED ON THE SPECIFIC LEASE
DEPTH---m- THE THO NUMBERS REPRESENT THE INTERYAL ON HAND AT THE LIBRARY
FORMATION \sim REPRESENTS THE FORMATION PENETRATED AT THE TOTAL DEPYH OF THE INTERYAL HELD BY THE LIBRARY
TS------ INDICATES THE AVAILABILITY OF THIN SECTIONS

AGE--N-----REPRESENTS THE AVAILABILITY OF AT THE TOTAL LOG
DEPTH OF THE TNTERVAL HEID BY THE ITBRAPY
REPRESENTS THE NUMBER OF BOXES IN HHICH THE
CORE IS COMTAINED

				SULTMEYER		2	64		10	NO	NO		22
\cdots cosisis	olanco	07t．	LINDGREN ANO LEHMAN，INC．	HOG THIEF BEND	1	7	55	GRANITE	No	NO	NO	PRECAMBRN	7
Condy 127	BLANCO	019	LINDGREN AND LEHMAN，INC．	HOG THIEF BEND	2	23	225	granIte	No	No	NO	PRECAMBRN	23
c－31728	BLANCO	018	LINDGREN AND LEHMAN，INC．	HOG THIEF BEMD	3	3.	249	GRANITE	NO	No	N0	PRECAMBRN	26
$\cot 1729$	BLANCO	3 ya	LINDGREN AND LEHMAN，INC．	HDG THIEF BEND	4	8	172	GRANITE	No	NO	NO．	PRECAMBRN	17
cosich3	BLANCO	0 y	LINDGREN AND LEHMAN，INC．	HOG THIEF BEND	5	$3{ }^{3}$	275	GRANITE	No	NO	No	PRECAMBRN	29
c－30731	BLANCD	超	LINOGREN AND LEHMAN，INC．	HOG THIEF BEND	5	12．	314	GRANITE	NO	No	NO	PRECAMBRN	33
c－96732	BLANCO	笣盛	LINDGREN ANC LEHMAN，INC．	HOG．THIEF BENO	7	3	365	GRANITE	No	NO	NO	PRECAMBRN	38
c－30733	BLANCD	ang	LINDGREN ANO LEHMAM，INC．	HOG THIEF BEND	8	3	380	GRAMITE	NO	NO	No	PRECAMBRN	37
$6 \cos 3734$	BLANCO	08	LINDGREN AND LEHMAM，INC．	HOG THIEF BEND	9	\cdots ．	368	GRANITE	ND	No	No	PRECAMBRN	38
c－ 6 施 335	BLANCD	喠高	LINDGREN AND LEHMAN，INC．	HOG THIEF BEND	123	3	221	GRANITE	No	No	NO	PRECAMBRN	23
6－37736	BLANCO	\％${ }^{\text {a }}$	LINDGREN AND LEHMAN，INC．	HDG THIEF BEMD	11	${ }^{3}$	186	GRANITE	No	NO	NO	PRECAMBRN	$2{ }^{3}$
C－15737	BLANCO	薙虽	LINDGREN AND LEHMAN．INC．	HOG THIEF BEND	12	4	366	GRANITE	NO	NO	NO	PRECAMBRN	38
c．10738	BLANCO	095	LINDGREN ANO LEHMAN，INC．	HOG THIEF BENO	13	4	257	GRANITE	No	No	NO	PRECAMBRN	27
C－76739	blanco	30	LINOGREN ANO LEHMAN．INC．	HOG THIEF BEND	14	2	354	CAP MTV．	NO	NO	No	CAMBRIAN	38
C－T174	blanco	319	LINDGREN AND LEHMAN IMC．	HDG THIEF BEMD	15	2	476	GRANITE	No	NO	NO	PRECAMBRN	44
cosp741	Blanco	089	LINDGREN ANO LEHMAN：INC．	HOG THIEF BEMD	16	17	421	GRANITE	NO	N0	NO	PRECAMBRN	44
C－be742	BLANCO	10	LINDGREN ANO LEHMAN，INC．	HOG THIEF BEMD	17	\％	42 \％	GRAMITE	NO	NO	NO	PRECAMBRN	44
c－30743	BLANCD		LINDGREN AND LEHMAN：INC．	HOG THIEF BEMD	18	－	605	CAP MTN．	NO	No	NO	CAMBRIAN	62
c－67144	BLANCO	30	LINDGREN AND LEHMAN：INC．	HOG THIEF BEND	19	25	283	GRANITE	NO	No	No	PRECAMBRN	3 J
c－1． 745	BLANCO	00^{3}	LINDGREN ANO LEHMAN，INC．	HOG THIEF BEMD	$2{ }^{3}$	3	255	GRANITE	NO	N0	NO	PRECAMBRN	27
C－7 31746	BLANCO	09	LINDGREN ANO LEHMAN，INC．	IRON ROCK CREEK	1	${ }^{*}$	513	GRANITE	No	No	NO	PRECAMBRN	51
C－317747	Blanco		LINOGREN ANO LEHMAN，TNC．	IRON ROCK CREEK	2	θ	633	GRANITE	No	NO	NO	PRECAMBRN	65
C－ibl 748	BLANCO	\％9	LINDGREN AND LEHMAN，INC．	IRON ROCK CREEK	3	${ }^{*}$	185	GRANITE	No	No	NO	PRECAMBRN	18
C－111749	BLANCO	510	LINDGREN ANO LEHMAN，INC．	IRON ROCK CREEK	4	2	244	GRANITE	NO	N0	NO	PRECAMBRN	25
c－01873	BLANCO	ด1\％	LINDGREN AND LEHMAN，INC．	IRON ROCK CREEK	5	\％	725	GRANITE	NO	NO	No	PRECAMBRN	72
c－6531	BLANCO	322	SHELL DEV CO（B F PERKINS）	BECKMANA	1	8	52	GLEN ROSE	NO	NO	NO	L．CRETAC．	7
C－06352	BLANCO	322	SHELL DEV CO（B F PERKINS）	BECKMANM	2	${ }^{2}$	51	GLEN ROSE	NO	Mo	No	L．CRETAC．	6
C－261．53	BLANCO	422	SHELL DEV CO（B F PERKINS）	BECKMANN	3	3.	52	GLEN ROSE	NO	NO	NO	L．CRETAC．	7
Cob6 64	BLANCO	\＄22	SHELL DEV CO（B F PERKINS）	DAVIS	1	，	79	GLEN ROSE	NO	NO	NO	L．CRETAC．	7
c－3635	BLANCO	022	SHELL DEV CO（B F PERKINS）	DAVIS	2	3	91	GLEN ROSE	No	No	NO	L．CRETAC．	9
Cotblat	BORDEN	（\％）	AMERADA PETROLEUM CORP．	WEATHERS	6	6812	6841	CANYON	NO	YES	No	PENNSYLVAN	6
c－giont 7	BORDEN		MAGNOLIA PETROLEUM COMPANY	COMRAD	c－3	6755	6757	CANYON	NO	NO	N0	PENNSYLVAN	1
C－06th8	BORDEN	0¢	MAGNOL IA PETROLEUM COMPANY	CONRAD	C－5	6911	6944	CANYON	NO	YES	NO	PENNSYLVAN	1
Coman 5	BORDEN	DH2	SEABOARD	CANMON	1	8357	8484	CANNON	NO	YES	No	PENOSYLVAN	2
C－30769	BORDEN	37.	SEABOARD	CLAYTON，J．B．	A $=1$	$839{ }^{\circ}$	8405	CANYON	NO	YES	NO	PENNSYLVAN	3
c－05535	BORDEN	703等．	SEABOARD	6000	1	7947	8879	CANYON	NO	YES	NO	PENNSYLVAN	3
c－12135	BOROEN	$0{ }^{4}$	SEABOAPD	6000	12	3.3		CANYON	NO	NO	NO	PENNSYLVAN	1
C－3685 3	BGRDEN	10 ${ }^{\text {a }}$	SEABOARD	6000	24	3） 88	8186	CANYON	No	YES	NO	PENNSYLVAN	14.
c－00534	BORDEN	6\％	SEABOAPD	G000	27	8251	8333	CANYON	N0	YES	NO	PENNSYLVAN	3
C－02533	BORDEN	90\％	SEABOARD	6000	28	8254	8319	CANYON	ND	YES	NO	PENNSYLVAN	2
6－B6104	80R0EN	楼考	SEABOARD	HANKS，PORTER	1	5233．	5245	SPRA YBERRY	NO	YES	NO	PERMIAN	1
c－615535	BOROEN		SEABOARD	ZANT	1	7822	7855		NO	No	NO		1
C－10062	BORDEN	B65	SLICK MOORMAN	VAN ROEDER	1	6695	6805	CAMYON	NO	No	NO	PENNS YLVAN	12
c－0．57	BOROEN	（tal	STANDARD OF TEXAS	6000．CLARA	1	9759	9802	FISSELMAN	MO	No	NO	SILURIAN	15
C－129\％	BORDEN	D95	SUN OIL COMPANY	MCDOMELL	1	6557	6677	WOLFCAMP	N0	NO	NO	PERMIAN	8
C－61846	Boule	滣昜	PAN AMERICAN CORPORATION	BRADHAM	1	5328	6340	SMACKOVER	NO	NO	HD	JURASSIC	3
C－76795	BOtIE	\％ 6	TEXAS WATER PROJECT	TEST HOLE－XCN－	1	1	71		NO	NO	No		1
C－3 3828	904IE	0 \％	TEXAS WATER PROJECT	TEST HDLE－ND－	1	1	61		No	No	NO		2
C－75114．	BRALORIA	（1）	BRITISH－AMERICAN	FAY A．B．	1	12773	13597	SLIG0	NO	N0	NO	L．CRETAC．	3
C－353000	BRAZORIA		BRITISH AMERICAN	FAY	1	11857	13954	SKIPS	No	NO	NO		1
Tontel 43	GRAZORIA		PAN AMERICAN CORPDRATION	SHEPAROS MATT	1	3		FRIO	NO	NO	No	L．CRETAC．	9
c－0］655	BRAZORIA		TEXAS BASIN－RUP．OF RECLAM．	BRAZOS RIVER VALLEY	1	15	48		NO	No	NO		3
6037644	BRAZCRIA	359	TEXAS BASIN＝BUR．OF RECLAM．	BRAZOS RIVER VALLEY	2	15	51		NO	NO	NO		2
C－806 62	BRALCRIA	04	TEXAS BASIM－BUR．OF RECLAM．	BRAZOS RIVER VALLEY	3	15	75		－	\cdots			

		and mat COMM．	TEST HOLE RF－4	a	1425 GLEN ROSE	NO	No	NO	1．CRETAC．	153
6－0．16	BROOKS	Th：ARKANSAS FUEL OIL	DAUSDN，J．F． 1	7119	7549 FRIO	YES	YES	YES	OLIGOCENE	2
c－b 6112	BROOKS	OOT．BUR OF ECO GEO US GYPSUM	GH－39 GYP HILL	12	916					95
c－01256	Brooks	0＊＊SUN OIL COMPANY	HORNSEY 1－A	7365	8996	NO	YES	No		17
c－36174	BROUN	1）HOUSTON OIL AND MINERAL	STRATIGRAPHIC TEST	1658	2446 CHAPELL	No	No N0	vo	MISSIPPI	1
C－11776	BROHN	－${ }^{\text {Ch }}$ MOBIL OIL COMPANY	DAGSCH	＊	\％	NO	NO	NO		1
cosil249	BROUN	T2 SUN OIL COMPANY	BLAIR	2861	3105	No	NO	No		1
c－11255	BROW	3ne SUN OIL COMPANY	HANKS，8． 1	5987	$6{ }^{6} 58$	No	NO	NO		2
C－t 5097	BROUN	DUS HATER DEYELDPMENT BDARD	MEDL $=$ Y 31－57－85859－51	2	103	NO	NO	No		1
T－73 3 \％ 2	BURLESON	DO＊CADDO OIL COMPANY	COFFIELD B－7＊A 3	3326	3375 NAVARRO	NO	YES	NO	U．CRETAC．	18
C－ 4 E 6378	BURLESON	14	KEY	$6{ }^{6} 34$	6124 BUDA	NO	N0	NO	le cretac．	8
C－20433	BURLESON	0¢\％RED BANK OIL COMPANY	GRAMM－ 1	503 3	6341 EDHARDS	No	YES	YES	L．CRETAC．	4
C－1 1235	BURLESON	OS SUN OIL COMPANY	DUGGER－HERRING－HELL	10138	18338	NO	MO	NO		4
C－1034 3	BURNET	Dam CHILDRESS QUARRY	TEST HDLE 2	S\％	332 MARBLE FLS	NO	NO	No	PENNSYLVAN	2
cobo345	BURNET	枹管 CHILDRESS QUARRY	TEST HOLE 3	0	38 MARBLE FLS	no	NO	NO	PENNSYLVAN	3
c－3 3151	BURNET	30，LINDGREM AND LEHMAN．INC．	SLAUGHTER GAP 1	1 ？	434 GRANITE	No	No	NO	PRECAMBRN	44.
c－12 752	BURNET	BEP LINDGREN AND LEHMAN．INC．	SLAUGHTER GAP 2	7	235 CAP MTN．	M0	ND	NO	CAMBRIAN	24
cong753	BURNET	OR9 LINDGREN AND LEHMAN，INC．	SLAUGHTER GAP 3	\％	326 GRANITE	NO	NO	NO	PRECAMBRN	33
c－31754	BURNE	the LINDGPEN ANO LEHMAN，INC．	SLAUGHTER GAP 4	36	369 CAP MTN．	No	NO	NO	CAMBRIAN	37
c－32755	BURNET	\％LINDGREN AND LEHMAN．INC．	SLAUGHTER GAP 5	5	355 CAP MTN．	10	NO	NO	CAMBRIAN	37
cose 156	BURNET	20）．LINDGREN ANO LEHMAN．INC．	SLAUGHTER GAP 5	Pe	250 GRANTTE	NO	No	NO	PRECAMBRN	26
C－40757	BURNET	\tag LINDGREN AND LEHMAN，INC．	SLAUGHTER GAP 7	48	135 CAP MTN．	No	No	No	CAMBRIAN	14
C－76758	BURNET	30．LIMDGREN AND LEHMAN，INC．	SLAUGHTER GAP 8	0	36 CAP MTN．	no	NO	No	CAMBRIAN	9
C－30759	BURNET	\％gS LINDGREN AND LEHMAN，INC．	SLAUGHTER GAP 9	7	232 GRAMITE	N0	NO	No	PRECAMBRN	25
C－1076\％	BURNET	Qa LINDGREN AND LEHMAN，INC．	SLAUGHTER GAP Ih．	4	55 CAP MTN．	No	No	NO	CAMBRIAN	7
c－60761	BURNET	\＃U\％LENDGREN AND LEHMAN．INC．	SLAUGHTER GAP 11	3	65 GRANITE	No	No	No	PRECAMBRN	7
$c-05762$	BURNET	OG LINDGREN AND LEHMAN．INC．	SLAUGHTER GAP 12	$\underline{3}$	53 CAP MTN．	NO	No	NO	CAMBRIAM	\square
c－83763	BURNET	D3．LINDGREN AND LEHMAN．INC．	SLAUGHTER GAP 13	3	47 GRANITE	No	No	NO	PRECAMERN	5
C－70764	BURNET	DJ．LINDGREN AND LEHMAN．INC．	SLAUGHTER GAP 14	0.	115 grantre	NO	No	NO	PRECAMBRN	13
c－47765	BURNET	鴙会 LINDGREN AND LEHMAN，INC．	SLAUGHTER GAP 15	\％	215 GRANITE	No	No	No	PRECAMBRA	23
c－10766	BURNET	be LINDGREN AND LEHMAN，INC．	SLAUGHTER GAP 16	3	185 GRANITE	No	NO	NO	PRECAMBRN	19
C－16317	BURNET	828 SHELL DEV CO（C H MOORE）	N，BERTRAM－C．ALLEN 1	9	158 PALUXY	NO	NO	N）	L．CRETAC．	15
C－65 515	BURNET	327 SHELL DEV CO（C H MOORE）	DATMEAL－SHAM PROP． 2	4	142 PALUXY	NO	NO	NO	L．CRETAC．	15
c－13．6118	BURNET	627 SHELL DEV CO（C H MOORE）	WATSON RANCH－HARDIN 1	9	72 PALUXY	NO	NO	NO	L．CRETAC．	7
T－601148	BURNET	Q0］U．S．AIR FORCE	$\mathrm{BG}-\mathrm{CR}$ ？IES	12	20］：GRANITE	N0	YES	NO	PRECAMBRN	14
C－20312	CALDHELL	Weat MAGNOLTA PETROLEUM COMPANY	MERCER ALF 4 4 ＊	2367	472\％SLIG0	No	NO	NO		14
C－06305	CALDUELL	OOK ADAMS RIODLE	DINGES 1	2514	2552	NO	NO	NO		16
c－it194	CALDHELL	OR ADAMS R RIDDLE	DINGES 2	2386	2468	No	NO	No		41
c－003 3	CALDUELL	Den BEARD SCHEFTS	BROUME 3－A	1927	2230	MO	ND	NO		112
C－73312	CALDUELL	32 SE BEARO－SCHEFTS	BROMNE $7-4$	188\％	2217	NO	N3	NO		147
c－01212	CALDHELL	bga BEARD SCHEFTS	BROHNE 8	1915	2243	No	NO	No		114
C－3 386	CALOHELL	70y．CALLIHAN－ELLISON，ET．AL．	DILLARD COOPER 1	2245	2753	No	No	NO		1
c－0143	CALOUELL	gen Callihancellison，ET．AL．	DILLARD＝SCURR	2575	2675	No	NO	No		1
C－3 3884	CALDWELL	Q ${ }^{\text {W }}$ DANCIGER－DEVELOPMENT SYND．	JOLLEY 1	44 2	1425	NO	YES	NO		1
	CALOHELL	mata delrar otl company	BRAMDY－ 19	197\％	2229 BUDA LIME	N0	NO	No	L．CRETAC．	15
C－609889	CALDHELL	B1：DELRAY OIL COMPANY	BRANOY 18	1913	2167 BUDA LIME	NO	NO	No	L．CRETAC．	13
C－75188	CALCHELL	TOH DON CHEMICAL	WHITE SSKIPS	1154	2217	No	ND	No		6
C－113385	CALOHELL	O＊：EDTARDS，JOHN ET．AL．	CALDMELL 1	1346	1489.	No	YES	NO		1
C－15439	CALDHELL	gut givens．ET，AL．	BEDNOR I	1976	1979	NO	NO	No		1
c－364 ${ }^{\text {a }}$	CALDHELL	37t GREYBERG	BLACKBURN I	1581	2452	NO	No．	No		1
c－30554	CALDUELL	OGQ GULF OIL CORPORATION	BEATTY 36	1244	1996 GEORGETOUN．	No	yes	No	L．CRETAC．	193
c－3 364 4	CALOMELL	Qh HAYNES－JOHNS	RODENBURG 1	1912	2192	No	YES	No		97
C－03210	CALDUELL	09\％IRVING SCHEFTS	BRANYON 1－a	1974	2445	NO	NO	NO		1䢕古
6－00211	CALDHELL	O\％t LULING OIL AND GAS	TILLER 3	2315	2610．TAYLOR	No	Yes	No	U．CRFTAP	－
$c-2478$	CALOWELL	DQS MAGNOL PA PETROLEUM COMPANY	GRAYBURG－TABOR $\quad 15$	lpat	pors					

					1	1984	2． 34	EDYARDS	No	YES	NO	1．CRETAC．	17
			OEmAIOK ANO TRUST	SCHOLHINSKI	1	1125	2735		No	NO	No		173
－－01． 58	CALOUELL	0］	ORMSBY	MERIMEATHER	E	2282	2632		No	No	No		27
C－71402	CALDUELL	83	PAYNE AND BOND	SCHALE	2	783^{3}	1514		NO	YES	NO		2
$\mathrm{c}=18432$	CALOHELL	Ont	RAYOR，M．${ }^{\text {P．}}$	AUGUST	1	2）2\％：	2368		NO	NO	NO		18
C－14373	CALOWELL	$8{ }^{51}$	RAYOR，M． 0.	WALKER	2	2953	3698		NO	res	NO		2
c－00160g	CALDVELL	$00^{0 /}$	ROUSELL，LOUIS J．	NAME MITHELD	c	1935	2514	buoa	19	NO	No	L．CRETAC．	24
c－35135	CALDHELL	T08	SERBAN	HINDS	1	$23 \% 1$	2737		No	No No			74
C－9 ${ }^{\text {a }} 213$	CALOMELL	064	SCHEFTS．MARTIN	CLARK，S．	1	1872	221＊	AUSTIN	No	YES	No	13．CRETAC．	112
C－0 03.5	CALOHELL	023	SMITH－STARR	CROHELL	1	2425	5 6971	HOSSTDN	NO	YES	No	L．CRETAC．	14
C－01428	CALDHELL		SOUTHERN PRODUCING COMPANY	HOLCOMB－BRA NN ING	1	1243	1359		No	NO	YES	CRETACEOUS	$3{ }^{5}$
c－ht163	CALOHELL	6＂衰	STARR－MCNEIL	CROHELL	1	4135	534 ．	SLI60	N0	res	YES	L．CRETAC．	326
C－7 1422	CALDUELL	0020	SHEARINGEN BROS．－ARMSTRONG	MRIGHT	1	2217	2352		NO	NO	NO		23
C－11542	CALDUELL	67t	TENNECO	DICKSON，R．P．	1	5458	5179	SLIGO	No	No	NO	L．CRETAC．	62
C－4t352	CALDUELL	003	UNITEO NORTH ANO SOUTH	BYRD	2	2115	4149	EDuARDS	No	No	NO	L．CRETAC．	2
C－10354	CALOUELL	5%	UNITED NORTH AND SOUTH	GIDEON	1	2171	2165	EDUARDS	No	Yes	NO	1．CRETAC．	1
c－4355	CALDGELL	43	UNITED NORTH AND SOUTH	HARDIMAN	7	2116	4136	EDGAROS	No	No	No	1．CRETAC．	1
C－12353	CALOHELL	nos	UNITEO NORTH AND SOUTH	KELLY	$!$	3935	$466{ }^{\circ}$	EDHAROS	NO	No	NO	L．CRETAC．	2
C－01356	CALDHELL	93	UNITED NORTH AND SOUTH	SHAMKLIM	1	2112	4584	EDGARDS	No	No	No	L．CRETAC．	13
c－09351	CALOUELL	086.	UNITEO NORTH ANO SOUTH	TABOR	8	337\％	4744	EDHARDS	No	No	Mo	L．CRETAC．	3
C－00335	CALDUELL		UNITED NORTH ANE SOUTH	TILLER	2	332）	4645	EDUARDS	No	YES	NO	1．CRETAC．	2
C－4 165	CALOHELL	n）	VOYLES AND BYRD	TAYLOR	1	1599	1748	EDHARDS	No	NO	No	L．CRETAC．	17
C－131590	CALDHELL	13 ${ }^{\text {a }}$	VOYLES AND SOTHRN．PROD．	JOLLY	6	1251	1954	EDUAROS	ND	NO	N0	L．CRETAC．	88
C－10427	CALDGELL	教解	VOYLES AND SOTHRN．PROD．	SCHAEFFER	1	126．	1364	EDHARDS	No	No	N0	1．CRETAC．	28
c－ 2135	CALHOUN	Sts	SUN OIL COMPANY	LAvaca bay	34	8679	8874	FRIO	VES	N0	Yes	OLIGOCENE	3
C－1213	CALLAHAM	7\％	SUN OIL COMPANY	FREELAND	1	2899	3832	BARNETT	No	YES	NO	MISSISSIPPI	27
C－\＄1221	CALLAHAN	6ta	SUN OIL COMPANY	GUYTON	1	3218	4100	ellenburg	No	YES	No	ORDOVICIAN	27
C－711253	CALLAHAN	017	SUN OIL COMPANY	WILLIAMS	1	2483	2513	MORAN	NO	YES	NO	PERMIAN	12
c－46099	CALLAHAN	08	HATER DEVELOPMENT BOARD	PAGE 30－55－520	611	1.	83		No	NO	No		1
c－91327	CAMERON	39．	SUN OIL COMPANY	CAMERON COUNTY DIST．	1	9778	9841	FRIO	10	No	YES	OLIGOCENE	18
c－3123	CAMERON	06	SUN OIL COAPANY	CAMERON COUNTY DIST．	$1=A$	975．	9861	FRIO	No	YES	YES	OLTGOCENE	34
C－61791	CAMP	045	TEXAS WATER PROJECT	BORING－TD－	1	1	140 \％		No	NO	No	EOCENE	5
c－48792	CAMP		TEXAS HATER PROJECT	BJRIMG－TO－	2	1	51		no	NO	No	EOCENE	1
C－64322	CAMP	378	TEXAS WATER PROJECT	BORING－FCT－	3	1	111		NO	No	No	EOCENE	4
c－be823	CAMP	00¢	TEXAS WATER PROJECT	BORING－FCT－	4	1	98		No	NO	No	EOCENE	4
C－13824	CAMP	03	TEXAS WATER PROJECT	BORING FCT－	5	1	161		NO	NO	NO	EOCENE	3
c－at825	CAMP	23	TEXAS WATER PROJECT	BORIMG－FCT－	6	1	58		NO	NO	No	EOCENE	3
C－13826	CAMP	¢\％\％	TEXAS WATER PROJECT	BORING－FCT－	7	1	71		No	No	NO	EOCENE	2
C－31072	CARSON	勾哏	AIKMAN	SANFORD	1	3393	3393		No	NO	No		3
$\mathrm{C}=11073$	CARSON	勺勹｜	CABOT CORPDRATION	RAPSTINE	2	\％	9		No	NO	NO		1
c． 11182	CHAMBERS	06	SUN OIL COMPANY	HOFFMAN	2	8432	8548		No	Yes	No		6
C－01437	CHEROKEE	\％17	GENERAL CRUDE OIL COMPANY	STOCKTON，ET AL	1	438\％	4504		No	YES	NO	L．CRETAC．	3
C－81234	CHEROKEE	n98	SUN OIL COMPANY	TEMPLE INDUSTRIES	1	5109	518		No	No	No		24
C－10632	CHEROKEES	983	AMERICAN PETROFINA COMPANY	CHILDRESS	1	3737	3939	4000BINE	No	YES	NO	U．CRETAC．	17
B－002846	CHILORESS	\＃19	HUMBLE OIL AND REFINING	FUR？	1	2573	5594		No	NO	No		1
C－11181	CHILORESS	T34	HEST TEXAS DRILLING COMPANY	OHENS，STEVE	1	5778	6235		NO	NO	NO		21
Cobl 344	Clay	Bty	HUMBLE OIL AND REFINING	DEE R ROCK MOORE	1	6635	6894	ELLENBURG	NO	NO	No	OROOVICIAN	14
8－97t83 E	CLAY	¢T？	Magnolta petroleum conpany	FISHER	1	6524	6529	ELLENBURG	No	No	NO	ORDOVICIAN	4
B－13184F	Clay	301	MAGNOL IA PETROLEUM COMPANY	FORD	1	3992	4843	STRAMN	N0	No	No	PENNSYLYAN	1
9－00684E	CLAY	B12	MAgNoL ia petroleum company	FORD－SKIPS－	2	3891	4494	BRYSON	NO	NO	NO	PENNSYLVAN	1
$8-96985$	Clay	039	MAGNOL IA PETROLEUM COMPANY	OLIVER	1	3193	3280．	STRAMN	No	NO	No	PENNS YLVAN	1
B－103854	CLAY	65	magnolia petroleum company	OLIVER	2	3179	3185	STRAGN	NO	No	NO	PENNS YLVAN	1
C－60 856	Clay	001	MAGNOL IA PETROLEUM COMPANY	UYNA	4	1	13.	－	No	NO	No		1
B－197384C	CLAY	36	MAGNOLIA PETROLEUM COMPANY	HYNN	5	4484	4492		NO	NO	M0		1
B－968840	Clay	10\％	MAGNOLIA PETROLEUM COMPANY	GYNN	7	4529	4539		n / n	non			
C＝88668G	CLAY	758	PHILLIPS PETROLEUM COMPANY	HAPGOOD	\cdots								

				$\begin{aligned} & \text { BLODOWORTH, } \\ & \text { B. } \end{aligned}$	$\begin{array}{r} 2 \\ 2 \\ \hline \end{array}$	$\begin{aligned} & 6098 \\ & 5766 \end{aligned}$	$\begin{array}{r} 6127 \\ 6271 \end{array}$	$\begin{aligned} & \text { STRAUN } \\ & \text { STRAUN } \end{aligned}$	$\begin{gathered} \text { Mo } \\ \text { NO } \end{gathered}$	$\begin{aligned} & \text { YES } \\ & \text { YES } \end{aligned}$		PENNSYLVAN PENNSYLUAN	
		was.	UN OIL COMPANY	BLOODUORTH, H.L.	2	5599	6456	STRAWN	No	YES	No	PENNSYLVAN	1
- -191884	COKE	305	SUN OIL COMPANY	BRAMNON	17	6149	6314	Ell ENBURG	No	yes	NO	ORDOVICIAN	95
C.011363	COKE	7en	SUN OIL COMPANY	Cummings	2	577	5872	CANYON	No	YES	NO	PENMSYLVAN	3
c-01364	COKE	13t	SUN OIL COMPANY	Cummings	4	5885	6119	CANYON	NO	YES	NO	PENNSYLVAN	5
C-031.47	COKE	00*	SUN OIL COMPANY	Cummings	5	5935	6.38	ELLENBURG	No	YES	NO	ORDOUICIAN	45
Cotil143	COKE	36	SUN OIL COMPANY	CUMMINGS	6	5911	6/31	Straha	No	YES	NO	PENNSYLVAN	34
c-31276.	COKE	369	SUN OIL COMPANY	CUMMINGS	7	1193.	1128.		NO	NO	NO		8
c-71144	coke	63	SUN OIL COMPANY	CUMPINGS	9	516 ?	6182	CANYOM	NO	NO	NO	PENNSYLYAM	43
c.01362	COKE	0\%	SUN OIL COMPANY	CUMMINGS	13	5174	6246	Strand	No	YES	No	PENNSYLVAN	4
c-01413	COKE	Des	SUN OIL COMPANY	CUMMINGS	15	6132	6663	STRA用	No	NO	No	PENNSYLVAN	4
c-01146	COKE	Q0\%	SUN OIL COMPANY	CUMMINGS	16	5032	64.54	STRAMN	No	No	No	PENMSYLVAN	12
c-31414.	COKE	0¢1	SUN 011 COMPANY	CUMMINGS	17	5928	513	STRAMN	NO	No	ND	PENYSYLYAN	5
c-31145	COKE	0 0\%	SUN OIL COMPANY	Cummings	18	599\%.	6739	STRAMN	NO	NO	NO	PENNSYLVAN	6
c-1144.4	COKE		SUN OIL COMPANY	CUMMINGS	18	5992.	5239	STRAMN	no	No	NO	PENNSYLVAN	2
c-2125\%	Coxe	101	SUN OIL COMPANY	CUMMINGS	19	95°	1771		No	No	No		2
C-1 1356	COKE	36	SUN OIL COMPANY	DAYIDSON	3	5942:	5138	STRAMN	NO	YES	NO	PENNSYLVAN	5
C-3)2988	COKE	093	SUN OIL COMPANY	DAVIDSON	9	5642	5366	STRAMN	No	YES	NO	PENNSYLVAN	24
c-31365	CJKE	708	SUN OIL COMPANY	DAVIOSOM	11	5958	6145	STRAWN	No	YES	No	PENNSYLVAN	5
c-018341	COKE	Qut	SUN OIL COMPANY	JAMISON	7	5331	6494	CANYON	N0	YES	No	PENASYLVAN	52
c-01162	coks		SUN OTL COMPANY	JAMISON	7	5967	6359	canron	No	YES	NO	PENNSYLVAN	134
$\mathrm{c}-18337$	coke	$3 \times$	SUN OIL COMPANY	BRANNON	14	5855	5325	CANYON	No	Yes	NO	PENNSYLUAN	79
c-3f339	COKE	S4 4	SUN OIL COMPANY	JAMESON, H. ${ }^{\text {S }}$	26	5396	6562	canyon	No	NO	NO	PENNSYLVAN	103
Cwi 1331	coke	317	SUN OTL COMPANY	MALDNE	1	5586	5598	CANYON	No	YeS	No	PENNSYLVAN	4
c-01293	coke	00\%	SUN OIL COMPANY	MALDNE, CYNTHIA	A -1	5588	5754	CANYON	NO	YES	MO	PENNSYLVAN	26
C-11185	coke	Dis	SUN OIL COMPANY	MATHERS	6	5997	5502	CANYON	NO	No	NO	PENNSYLVAN	134
c-11348	COKE	6䞼	SUN OIL COMPAAY	PRICE. F.	1	5714	5744	CANYON	No	No	No	PENNSPLYAN	3
C-1241	coke	3*\%.	SUN OIL COMPANY	PRICE	1	1165	1313	CANYON	No	No	NO	PENNS YLVAN	20.
c-00153	COKE	B7\%	SUN OIL COMPANY	PRICE	3	5909.	6113	CanYon	No	Yes	NO	PENNSYLVAN	4 4.
c-1 1343	COKE	017	SUN OIL COMPANY	SCHOOLER	?	5313	6422	CANYON	No	YES	NO	PENNSYLVAN	19
$c-5338$	COKE	B6	SUN OIL COMPANY	HALKER	A-1	6111	6318	CANYON	No	Yes	ND	PENNSYLVAN	72
C-3 5183	coke	339	SUN OIL COMPANY	MALKER	3	6273	6921	CANYON	No	Y 5	NO	PENNSYLVAN	93
c. 20343	COKE	$3{ }^{1+1}$	SUA OIL COMPANY	HALKER	7	5975	5264	CANYON	NO	YES	NO	PENASYLUAN	95
C-b1156G	COLEMAN	313	DEL-RAY OIL COMPANY	ALLCORN	1	2998	379.7	PALO PINTO	NO	NT	NO	PENNSYLVAN	:
c-13157E	COLEMAN	0) ${ }^{\text {a }}$	DEL-RAY OIL COMPANY	Louper	1	296\%	2975.	PALO PIMTO	MO	No	No	PENASYLVAN	2
C-30996	COLEMAN	nou.	DEL-RAY OIL COMPAMY	UNKNOMN		2521	2974	PALO PINTO	NO	No	NO	PENNSYLVAN	2
C-301558	COLEMAN	20\%	SIGMORE OIL CORPORATION	DAY	1	2343	2393	MARBLE FLS	NO	NO	NO	PENUSYLVAN	5
C. 301551	COLEMAN	39\%	SIGMORE OIL CORPORATION	TUCKER	2	2313:	2356	MARBLE FLS	NO	No	No	PENNSYLVAN	5
c-i 1198	COLEMAN	80]	SUN OIL COMPANY	JOHNSON	1	4192	4374	ELLEMBURG	No	YES	No	ORODVICEAN	62
cosot 890	COLLIN	09].	HUMBLE DIL AND REFINING	MILLER	1	9298	11388	ELLENBURG	NO	NO	No	ORDOVICIAN	94
c-61123	COLGYORTH	der	LA CIMA	BELL	4-7	23732	2174		NO	NO	No		19
C-40516	COLGMORTH	9\%?	SALT FORK BASIN-BUR. RECL.	SAMNORHOOD DAM	1-2-3-4	3			NO	NO	NO		3
$\operatorname{cog} 718$	COLORADO	019	Magnolita pertoleum company	CHESTERVILLE UNIT	6	947\%	9735		NO	YES	NO		7
C-8664F	COLORADO	De9	magnolia petroleum company	GRACEY HEGENHOFT	1	9824	14283.	UILCOX	YES	YES	YES	EOCENE	5
c-36161E	COLORADO	3\% ${ }^{\text {a }}$	PURE OIL	VOGELSANG, FREIDA	1	3265	10594	HILCOX	YES	YES	YES	EOCENE	315
C-73778	COLORADO	5 T	TEXAS BASIN-BUR OF RECLAM.	SKULL CREEK OAM	1	?	49		NO	No	No		1
c-6at24	COMAL	004	CORPS OF ENGINEERS	CANYON DAM	1	25	294		No	NO	NO	CRETACEOUS	18
c-1s.258	COMAL	गt ${ }^{\text {a }}$	CORPS OF ENGINEERS	CAMYON DAM	1	3	175		NO	NO	NO	L. CRETAC.	6
cosis247	COMAL	098	CORPS OF ENGINEERS	CANYON DAM	2	32	193		No	N0	NO	L. cretac.	11
C-12266	COMAL	Qe:	CORPS OF ENGIHEERS	CAMYON DAM - HC-	2	17	$1{ }^{18}$		No	No	No	L. CRETAC.	5
c-20259	COMAL	-19	CORPS OF ENGINEERS	CANYON DAM	9- 2	6	159		No	No	NO	L. CRETAC.	7
c-3 24.88	COMAL	029	CORPS OF ENGINEERS	CANYON DAM	3	${ }^{3}$	459		NO	No	No	L. CRETAC.	-
c. 81261	COMAL	00.	CORPS OF ENGINEERS	CANYON DAM - UC-	3	4	129		NO	ma	*		
c-13262.	COMAL	733	CORPS OF ENGINEERS	CANYON DAM B	$3-\cdots \quad 3$	81	17n						

			CORPS OF ENGINEERS	LANYON DAM CANYON DAM	$\begin{aligned} & 10 \\ & 12 \end{aligned}$	$\begin{aligned} & 7 x \\ & 0 \end{aligned}$	$\begin{aligned} & 163 \\ & 166 \end{aligned}$			$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { no } \\ & \text { no } \end{aligned}$	L．CRETAC． L．CRETAC．	$\begin{aligned} & 10 \\ & 10 \\ & \hline \end{aligned}$
C－75256	COMAL	080	CORPS OF ENGINEERS	CANYON DAM	14	8%	67		NO	NO	NO	CRETACEDUS	8
C－ 54257	COMAL	31．	CORPS Of ENGINEERS	CANYON DAM	16	\％	154		Mo	No	No	L．CRETAC．	7
c．01643	COMAL	114．	CORPS OF ENGINEERS	CANYON DAM 25．	49182	$3 \times$	253		NO	No	No	L．CRETAC．	12
c－30539	COMAL	D12．	CORPS OF ENGINEERS	CANYON DAM 2C－	7510	5 m	174		NO	No	NO	1．CRETAC．	14
c－3）541	COMAL	310.	CORPS OF ENGINEERS	CANYON DAM F	1－213	3	373	GLEN ROSE	NO	No	NO	L．CRETAC．	7
c－06081	COMAL	（1）	CORPS OF ENGINEERS	CANYON DAM FI 2	c－112	119	254		YES	NO	No	CRETACEOUS	17
C－95081	COMAL	06］	CORPS OF ENGINEERS	CANYON DAM Fi 2	$\mathrm{C}=14 \mathrm{l}$	7	351		Yes	N0	no	L．CRETAC．	21
c－01317	COMAL	9］19	LANDA PARK	MATER MELL	2－5	$3{ }^{3}$	$32{ }^{\text {a }}$	－DGARDS	ND	NO	No	L．CRETAC．	74
c－26 611	COMAL	013	SHELL DEY CO（F E LOZO）	CANYON－EGON PREUSSER	1	2	155	GLEN ROSE	N0	No	No	L．CRETAC．	14
c－36158	COMAL	098.	SHELL DEV CO（F E LOZO）	MAGNER	1	7	12	EDHARDS	yes	NO	NO	L．CRETAC．	7
C－76369	COMAL	D0	SHELL DEV CO（F E LOZO）	HEHE	1	5	82	EDHARDS	YES	NO	No	L．CRETAC．	8
C－66015	COMAL	181速	SHELL DEV CO（C H MOORE）	BRETZKE，LEE	1	8	68	GLEN ROSE	NO	No	N0	l．CRETAC．	6
C－26157	COMAL	$0{ }^{6} 9$	SHELL DEV CO（B F PERKINS）	BREMER，CURTIS	1	9	125	GLEN ROSE	NO	NO	NO	L．CRETAC．	12
C－36\％ 58	COMAL	\％0 5	SHELL DEV CO（B F PERKINS）	MAYER，EDHIN	1	1	118	GLEN ROSE	No	No	No	L．CRETAC．	11
c－060．59	COMAL	305	SHELL DEV CO（B F PERKINS）	MAYER．EDHIN	2	0	96	GLEN ROSE	No	N0	Na	L．CRETAC．	6
c－46760	COMAL	3 S 5	SHELL DEY CO（B F PERKINS）	MAYER．EDHIN	3	3	73	GLEN ROSE	No	No	N0	le CRETAC．	5
c－71165	COMAL	079．	HATER DEVELDPMENT BOARD	TEST HOLE	$\square \mathrm{x}=2$	275	433	GLEN ROSE	NO	No	NO	L．CrETAC．	13
C－ 11126	COMANCHE	H24．	BOX．N． 1.	OBSERVATION HELL	1	3	103		No	NO	No		2
C－11127	COMANCHE		BOX，N．L．	OBSERVATION MELL	2	23	983		NO	No	NO		2
Cot1128	COMANCHE	000	Box， $\mathrm{N}=\mathrm{L}$ ．	OBSERVATION HELL	3	＊．	128		No	NO	NO		2
c－11129	COMANCHE	005	BOX，N．L．	OBSERVATION MELL	4	3	105		No	NO	No		2
c－41139	COMANCHE	0.98	BOX，N．L．	OBSERVATION HELL	5	3	132		No	No	NO		1
$c+6161$	COMANCHE	abl	HATER DEVELOPMENT BOARD	KIMMELL 31－53－443	9－451娄	3	279		NO	No	NO		1
cost 98	COMANCHE	370	WATER DEVELDPMENT BOARD	CRAIG 41－35－402	7.8 .9	0	111		NO	No	No		1
C－66496	COMANCHE	00^{2}	WATER DEVELOPMENT BOARD	GILBREATH LAND 4：－3．5	512	\％	369	NO	NO	No			2
C－t1311	CONCHO		CARTER，E．L．	CARTER，E．L．	1	1547	1592		NO	No	NO		17
C－71289	CONCHO	102	SUN OIL COMPANY	WARDLAH	1	2427	2432	CANYON	NO	YES	No	PENASYLUAN	2
c－1 1.65	cooke	300	Cox．D．A．	COX ${ }_{\text {c }} \mathrm{D}$ ．A ．	2	3842	3963		No	NO	NO		1
$\mathrm{C}=11684$	COOKE	nta	COX，D．A．	Cox，D．A．		2947：	438				NO		1
C－85473	COOKE	Tgs	HOLLINGSMORTH	FETTE	31	50178	5143		NO	No	NO	PRECAMBRIN	1
B－\＄4381G	cooke	तो	MAGNOLIA PETROLEUM COMPANY	MCGEORGE－SKIPS－	1	5355	5513		No	NO	No		3
Custa 82A	cooke	8）29．	MAGNOLIA PETROLEUA CO．	MCGEORGE	2	4354	5582		No	NO	NO		9
C－76381A	cooke	90\％	MAgNol ia petroleum company	MEGEORGE	3	5544	5573		ND	N0	NO		5
C－71984	cooke	62：	MAGNOLIA PETROLEUM COMPANY	MCGEORGE	4	5596	5595		NO	NO	NO		3
B－70181B	CODKE	\＄73	MAGNDLIA PETROLEUM COMPANY	MITCHELL	1	3895	3903		NO	YES	NO		2
B－617 82	COOKE	001	MAGNOLIA PETROLEUM COMPANY	MITCHELL	1	3895	3913		NO	YES	NO		2
C－870796	COOKE		MAGNOLIA PETROLEUM COMPANY	MOONEY－SKIPS＝	4	2676	3988		No	NO	NO		1
Coniblicha	COOKE	01\％	MAGNOLIA PETROLEUM COMPANY	PAMSEY	1	7822	7842		NO	No	NO		1
C－764798	cooke	8 ®\％	MAGNOLIA PETROLEUM COMPANY	RAMSEY－SKIPS－	2	4663	4897		No	No	NO		2
B－B6］ 790	cooke	30 音	MAGNDL IA PETROLEUM COMPANY	RAMSEY	4	4657	5677		NO	No	NO		1
C－3H1979	COOKE	万7\％	MAgNDLIA PETROLEUM COMPANY	RAMSEY	$\frac{\square}{6}$	4747	4759		No	NO	NO		1
colobl9e	COOKE	Des．	MAGNOLIA PETROLEUM COMPANY	RAMSEY－SKIPS－	8	4562	4813		No	NO	NO		1
B－32379F	COOK	bet	MAgNOLIA PETROLEUM COMPANY	RAMSEY	9	4655	4680		No	NO	NO		1
B－bec 9 A	cooke	v0\％	MAGNOL TA PETROLEUM COMPANY	RAMSEY	13	4741	5291		NO	NO	No		1
C－3tyber	cooke	304	MASNOLIA PETROLEUM COMPANY	RAMSEY	18	4697	4778		No	NO	NO		1
C－11101	cooke	312	NORTH TEXAS CANAL ROUTE	TEST HOLE	5	20.	10.	DUCK CREEK	NO	No	NO	1．CRETAC．	2
$\mathrm{c}-1112$	cooke	\％${ }^{\text {at }}$	NORTH TEXAS CAMAL ROUTE	TEST HOLE	6	11	47	DUCK CREEK	N0	NO	No	L．CRETAC．	4
C－9 11103	COOKE	000.	NORTH TEXAS CANAL ROUTE	TEST HOLE	7	3		G000LAND	No	NO	N3	L．CRETAC．	1.
C－1117	COOKE	Sta	NORTH TEXAS CANAL ROUTE	TEST HOLE	22	3	75		No	No	No	L．CRETAC．	2
c－2918828	COOKF	007	SEITZ，ET AL	MCGEDRGE	3	5512	5521		NO	NO	No		1
c－301．89C	cooke	O2\％	SEITR，ET AL	hilliams	1	549］	5521		No	NO	NB		1
3－10076G	cooke	0.3	SNODD，C． H ．	HEESE	2	3427	3433		NO	No	NO		1
6.10511	cookz	007	STANOLIND	BEST，J．M．	13	4345	4998		Nn	Nn	min		

C－0\％969	CULBERSON		S		
c－ 20932	culberson	00	CITIES	SERV	
c－13854	culeerson	003	CITIES	SERV	
Cobe 8	cuL		CIT	SERVIC	
C－76892	CUL BERSON	0\％	CI	SERY	
c－00914	culberson	n90	cities	SERVI	
$\mathrm{C}-31855$	Cul berson	002	CITIES	SERVI	
C－09907	CULEERSON	839	Cities	SERUIC	
c－119910	culberson	88	CITIES	SERYIC	
C－30934	CULB	0 CH	CITI	SERVI	
c－031936	CULBERSON	003	CItIES	servi	
C－31863．	culberson	803	CITIES	SERUIC	
c－06862	Culberson	09	CITIES	SERVIC	
c－20863	culberson	日19	CITIES	SERVIC	
C－30918	culberson	298	CITIES	SERVICE	
c－2093	CULBERSON	－13	CITIES	service	
C－11353	CULBERSON	39	Cities	SERVICE	
$c-30931$	CULberson	9\％	cities	SERVICE	
C－60868	culberson	9xth	Cities	SERYIC	
C－\＄093	CULbERSON	98：	cities	SERVIC	
C001994	Culberson	037	CITIES	servic	
c－29858	culberson	80：	CITIES	SERVICE	
C－63932	Culberson	38	CITIES	SERVICE	
c－33854	CULBERSON	309	cities	SERYICE	
C＝00879	CULBERSON	003	Cities	SERUIC	
c－30847	CULBERSON	060	CITIES	SERYICE	
c－00914	Culberson	$0^{\times} 3$	CITIES	SERVICE	
c－09851	culeerson	ger	CITIES	SERYICE	
c－089 9	CULBERSON	039	CITIES	service	
c－00912	culberson	009	cities	SERVICE	
c－22916	culberson	3 3 3	CITIES	SERVICE	
c－02935	cUlberson	30，	CITIES	SERVICE	
C－12915	culberson	00：．	CITIES	service	
C－3085	culeerson	3183	cities	service	
c－33875	Culberson	93．	CITIES	SERVICE	
C－b088爯．	culberson	003	CITIES	SERVICE	
C－60911	culberson	00^{3}	cities	SERVICE	
C－30895	culberson	am	CITIES	SERVICE	
C－010929	CULBERSON	9r？	CITIES	SERUICE	
c－03865	culberson	ont	citizs	SERVICE	
C－68887	culberson	003	CITIES	SERVICE	
C－10838	culberson	$0{ }^{6}$	cities	SERVICE	
C－39848	CULBERSON	30？	CITIES	SERUICE	
c－30885	CULberson	00	CITIES	SERYICE	
c－06878	culberson	903	CITIES	SERVICE	
c－11874	culberson	－3	CITIES	service	
c－00897	CULBERSON	003.	CITIES	SERVICE	
c－33894	culberson	008	cities	SERVICE	
C－03946	culberson	02	CITIES	SERVICE	
c． 09923	CULBERSON	03	CITIES	SERVICE	
c－6．867	CULEERSON	06\％	CITIES	SERVICE	
c－33883	culbeason	000	Cities	SERVICE	

						1	5331	6557	
－1			003	SUN OIL Company	FREEMAN（ADGM SEITZ）	2	3344	3104	
	C－31367	COOKE	昭㭗	SUN OIL COMPANY	PRICE	3	$59 \pm$ ．	6743	
	C－ 111262	COOK	01 \％	SUN OIL COMPANY	SAYLors	3	2565	2604	
	c－193780	cooke	deat	TEXACO	ROSUSE	1	577.	6788	
0	c－3．6326	CORYELL	332	SHELL DEV．CO．（AMSBURY）	EVANT（SHELDON PRO）	1			XY
	C－08201	cottle	100	general crude oil company	SUENSON DVLP．CO．	13－1	15412	5454	
	C－13202	COTTLE	9t	general crude gil company	Stenson	29－1	5392	5402	Canyon
3	C－11293	cottle	080	GENERAL CRUDE OIL COMPANY	Stenson	33－1	5392	5452	
	C－09294	cottle	09	general crude oil company	SuENSON	273－1	5315	5452	
	C－11382	cottle	กู่	Standard of texas	BARRON	1	6538	6564	MORRON
（）	C－01189	cottle	008	STAND．AND ROBINSON BROS．	TIPPEN	2	6798	6877	MORROH
	c－00123	crane	Dovo	atlantic refining company	UNIVERSITY	1－4	11391	17522	ellenburg
	C－51291	crane		GULF OIL CORPORATION	ESTES，H．A．	28－E	7951．	889	Ellenburg
（）	C－00290	CRANE	not	GULF OIL CORPORATION	HENDERSON，D． H ．	94	11074	1545	
	C－00296	Crane	003	GULF OIL CORPORATION	LEA，ET AL	14－T	2903.	4897	San andres
	C－31282	CRANE	$n 90$	GULF OIL CORPORATION	HADDELL	144.5	13136	11848	ELLENBURG
$6)$	C－80799	crane	007	HUMBLE OIL ANO REFINING	COHDEN	1－0	9224	9132	ELLENBURG
	C－00122	crane	003	humble oil and refining	COMDEN	3	8814	8955	HONE YCUT
	C－38382	CRANE	300	SINCLAIR－PRAIRIE ET AL	tubss	2	5753．	6362	ELLENBURG
（\％）	C．00154	crockett	$0 \cdot 9$	CONTINENTAL OIL COMPANY	HARRIS	$\mathrm{E}-1$	18131	18178	ELLENBuRg
	C－60117	CROCKETt	30n．	CONTINENTAL OIL COMPANY	HARRIS	E－3	18131	10178	ellenburg
	C－003871	Crockert	的枵	HUMBLE OIL AND REFINING	COX，ALMA	1	814．	8178	Ellenburg
（0）	C－30988B	CROCKETT	009	HUMBLE OIL AND REFINING	COX，ALMA	1－C	8287	8678	ELLENBURg
	C－0135	CROCKET	gos	humble oil and refining	cox	1－0	7417	7999	GORMAN
	C－19188	CROCKETT	603．	HUMBLE OIL AND REFINING	COX，ALMA	1－E	9532	8668	ELLENBURG
（ ${ }^{(1)}$	C－03857	CROCKETT	Data	humble oil and refining	HARDHICK	2	8481	8515	ELlenburg
	C－00965	CROCKETT	003	magnolia petroleum company	HOSPITAL－SHANNON	1	7394	732 ．	ELLENBURG
	C－70．89A	CROCKETt	Ots	SHELL OIL COMPANY	BAGGETT，H．R．	2－2 ${ }^{2}$	6592.	5759	CANYON
6）	c－buer	CROCKETT	003	SHELL OIL COMPANY	CHAMBERS		7586		ELLENBURG
		CROCKETT	昭者	SHELL OIL COMPANY	CHAMBERS	9	7534	7585	ELLENBURG
	c－30872	CROCKETT	00%	SHELL OIL COMPANY	chambers	18	7528.	7584	ELLENBURG
$\stackrel{\sim}{3}$	c－b3933	CROCKETT	0at	SHELL OIL COMPANY	chambers	12	7512	7553	ELLENBURG
	c－10716	CROCKETT	90\％	STANDARD－MILLSPAUGH	GARLITZ（SKIPS）	2－15	364	690.	
	C－03507	CROCKETT		Stanolind	HOLT．NETTIE	3	1829	1462	
6）	c－03420	CROCKETT	63＊	STANOL IND	TODD，J．S．				ELLENBUR
	C－21173	CROCKETT	08.	SUN OIL COMPANY	UNIVERSITY	2	6897	6981	
	c－817953	CROCKETT	90\％	SUPERIOR OIL COMPANY	UNIVERSITY	227	7331	7367	gorman
俞	c－11134	croser	09	NORTH TEXAS CANAL ROUTE	BLANCO CANYON DAM	1	\cdots		
	c－ 11135	crosey	028	NORTH TEXAS Canal route	blanco canyon dam	2	8.	126	
	C－30922	CULBERSON	oge	CITIES SERYICE OIL COMPANY	ALICE	CT－1	\％	2161	
6	c－32506	crosey	Q3	STANOLIND	ROBERTSON	2	3515	3719	
	c－10855	CULBERSON	暒的	CITIES SERVICE OIL COMPANY	alice	CT－2	45.	456	
	C－13917	Culberson	807	CITIES SERVICE OIL COMPANY	ALICE	CT－2	119.	1208.	
6	C－60919	CULBERSON	069	CITIES SERVICE OIL COMPANY	ALICE	CT－3	13	878.	
	c－00921	culberson	309	CITIES SERVICE OIL COMPANY	ALICE	Cro4	3	580.	
	c．13885	Culberson	33^{3}	CITIES SERVICE OIL COMPANY	ALICE	CT－5	d．	1089	
6	C－00925	culberson	003	Cities service oil company	ANN	CT－1		598	
	C－00851	CULBERSON	903	CITIES SERUICE OIL COMPANY	ANN	cr－2		1137	
	C－00388	CULEERSON	13\％	CITIES SERVICE OIL COMPANY	ANN	CT－3	2.	85π	
（\％）	C－00893	CULBERSON	Das	CITIES SERVICE OIL COMPANY	ANN	CT－4	，	854	
	C－813324	CULBERSON	nns	CITIES SERYICE OIL COMPANY	Arco	3		1393.	
	C－00923	CULBERSON	30：	CITIES SERVICE OIL COMPANY	ARMSTRONG	CT－1	1438 ．	14658.	
0	$C-90927$	culberson culberson	008 $n 0:$	CITIES SERVICE OIL COMPANY CITIES SEZVICE OIL COMPANY	ATLAS ATLAS	CT－$\frac{1}{2}$	3	715	

10				
No	HO	No		22
No	No	No		6
No	res	NO		11
no	NO	No		1
No	No	NO	L．Cretac．	15
No	No	No	PRECAMBRN	1
No	No	No	penns rlvan	1
No	res	No	PRECAMBRN	1
No	res	NO	Precambrn	1
No	NO	No	pennsrlyan	1
No	NO	No	pennstlvan	2
No	No	No	OROOVICIAN	9
NO	No	NO	ordouician	31
No	ND	No	devonian	54
No	No	No	PERMIAN	182
No	No	NO	ORDOVICTAN	91
No	YES	No	ORDOVICIAN	7
No	res	No	ORDOVICIAN	23
No	YES	No	ordovician	99
No	res	No	ordovician	8
No	res	N0	ordovician	8
No	res	NO	grdovician	2
No	r res	No	ordovictan	20
No	YES	NO	ORDOVICIAN	53
NO	YES	No	ordovician	7
No	res	NO	ORDOVICIAN	2
No	YES	NO	ordovician	19
No	NO	No	penas ilvan	21
NO	YES	NO	ordovictan	1
No	res	No	ORDOVICIAN	i
No	Yes	No	ORdovician	1
No	NO	No	ORDOUICIAN	1
NO	No	No		4
No	No	No		6
No	res	NO	ORDOVICIAN	27
NO	res	NO	devonian	28
No	Yes	NO	grdovician	17
no	no	No		5
NO	no	No		4
No	NO	NO		4
No	No	no		9
no	No	No		1
No	NO	No		2
No	No	NO		2
No	No	NO		1
No	NO	NO		6
No	No	No		3
No	NO	No		4
No	No	No		4
No	No	No		3
No	No	ND		5
No	No	No		1
NO	No	NO		2
No	No	No		2

KE SULPHUR						225	315.		N	Ho	No		6
				TEST HOLE TEST HOLE	$\begin{aligned} & 11-1 \\ & 11-4 \end{aligned}$		$\begin{aligned} & 1925 \\ & 1896 \end{aligned}$	CASTILE CASTILE	NO NO	$\begin{aligned} & \text { No } \\ & \text { vo } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { no } \end{aligned}$	$\begin{aligned} & \text { PERMIAN } \\ & \text { PERMIAN } \end{aligned}$	
	N	30 ${ }^{\text {a }}$	JEFFERSON LAKE SULPHUR	TEST HOLE	12－9	3	1535	CASTILE	NO	No	No	PERMIAN	12
cenis 989	CULBERSON	00｜	JEFFERSON LAKE SULPHUR	TEST HOLE	12－9	3	1762	castile	No	NO	No	PERMIAN	11
Cum999？	CULBERSON	$0{ }^{3}$	JEFFERSON LAKE SULPHUR	TEST HOLE	12－11	，	1030	castile	No	No	No	PERMIAN	2
c－3t990	CULBERSON	709	JEFFERSON LAKE SULPHUR	TEST HOLE	13－1	3	1200	CASTILE	NO	No	No	PERMIAN	8
Cu＊${ }^{\text {a }} 395$	CULBERSON	76）	JEFFERSON LAKE SULPHUR	TEST HOLE	14－5	3．	2876	castile	NO	No	No	PERMIAN	6
c－ 1 委994	CULBERSON	09 泉	JEFFERSON LAKE SULPHUR	TEST HOLE	14－7	1.	1475	CASTILE	No	NO	No	PERMTAN	4
C－614996	CULBERSON	780	JEFFERSON LAKE SULPHUR	TEST HOLE	14－8	1	$10 \cdot 8$	castile	No	No	No	PERMIAN	2
con 0672	CUL ${ }^{\text {CuERSON }}$	129	SHELL DEV．CO．（F．E．LOZO）	KENT－REYNOLDS RANCH	1	12	171	cox	NO	No	YES	l．CRETAC．	8
C－3 368161	CUL日ERSON	31\％．	SHELL DEV．CO．（PERKINS）	T－DIAMOND	1	1	197	BUDA	No	No	NO	L．CRETAC．	2
C－11275	culeerson	טeat	SUN OIL COMPANY	TXL	F－1	2541\％：	2618	DELAGARE	NO	No	No	PERMIAN	5
C＊3462	CULBERSON	OT3	WILLIAMS	UPOIKE（BLACK JOHN）	1		－		NO	No	No		19
c－40458	CULBERSON	903	WILLIAMS	UPOIKE（BLACK JOHN）		2901	315	DELAGARE	No	NO	NO	PERMIAN	1
C－30178E	DALLAS	00%	magnolia petroleum company	trigg	1	9352	97.62		No	NO	No		1
c－0］785	DALLAS	$3{ }^{3}$	PRALRIE PRODUCTION COMPANY	SMITH	$\mathrm{C-1}$	3	23		No	NO	No	PRECAMBRN	3
c－1394	DAMSON	008	SUN OIL COMPANY	HAROY（M．LAMESA）	1	7957	11115		No	NO	NO		7
cotis 83	DELTA	080	TEXAS WATER PROUECT	BORING（SO）	1	1	61		NO	NO	NO		1
c－3883	DELTA		TEXAS HATER PROJECT	BORING（SD）	2	1	51		NO	No	No		1
T－10637	DEHIT	60ts	OIXEL RESOURCES	PETER JABLONSKI	1	14257	14424		NO	No	No		
C－3 ${ }^{\text {a }} 672$	DEWITT		GETTY OIL COMPANY	BURNS	1	9238	9523	UILCOX	No	YES	Yes	EOCENE	28
T－1䢒144	DEHITT	209	GETTY OIL COMPANY	GILBERT	1	1985	23.69	ANACACHO	No	NO	No	U．CRETAC．	34
5－670 45	0EHIT	70\％	GETTY OIL COMPANY	GILBER	2	1955	2117	ANACACHO	No	NO	No	U．CRETAC．	41
T－00342	DEHITT	Ety	GETTY OIL COMPANY	GREELE	1	1985	3236	ANACACHO	No	NO	NO	U．CRETAC．	57
F－212043	DEWITT	019	GETTY OIL COMPANY	GREELE	2	1949	2． 45	ANACACHO	No	No	No	U．CRETAC．	33
$c-05517$	DEWITT	（1）7	GULF BASIN－BUR．RECLAM．	HOCHEIM DAM SITE	1－15	8.	5 5．		No	No	NO		54
C－837．85A	DEYIT	Q30．	SHELL OIL COMPANY	BROUN，C．S．	1	15945	18390	EOHARDS	No	No	No	L．CRETAC．	7
c－10541	DEHIT	082．	SHELL OIL COMPANY	ROEHL GALTER O．	1	13754	13768	EDHAROS	No	No	No	L．CRETAC．	7
c－07774	OEHITT	697	TEXAS BASIN－BUR，OF RECLAM．	CUERO DAM SITE	1－14	9	100	EDUARDS	No	No	No	L．CRETAC．	49
$c \rightarrow 0349$	DESIT	68：	TEXAS EASTERN TRANS：CORP．	GARBE	1	14043	14241		NO	YES	NO		14
C－11111	OICKENS	3 Sa	NORTH TEXAS CANAL ROUTE	TEST HOLE	15	33	135	HHITEHORSE	No	ND	NO	PERMTAN	4
c－11112	DICKENS	602	NORTH TEXAS CANAL ROUTE	TEST HOLE	17	${ }^{2}$	65	QTRMASTER	No	NO	No	PERMIAN	2
$\mathrm{C}-01113$	DICKENS	303	NORTH TEXAS CANAL ROUTE	TEST HOLE	18	＊	134	Dockum	NO	NO	No	TRIASSIC	6
C－31114	DICKENS	3 3 ${ }^{\text {a }}$	NDTRH TEXAS CANAL ROUTE	TEST HOLE	19	0	115		NO	NO	No		3
C－11116	DICKENS	0\％	NOTRH TEXAS CANAL ROUTE	TEST HOLE	21	38	75	OGALLALA	NO	NO	NO	PLTOCENE	3
c－01115	DICKENS	30．	NORTH TEXAS CAMAL ROUTE	TEST HOLE	2%	Pa	56	ogallala	NO	NO	NO	PLIOCENE	1
C－61881E	DIMMIT	58	delrar oil company	BAGget	1－25	5456	5311	SAN MIGUEL	NO	NO	NO	U．CRETAC．	9
c－tio6681	DIMMIT	－ 0 空	DELRAY OIL COMPANY	Huck	1	5444	5519	SAN MIGUEL	NO	No	NO	U．CRETAC．	14.
C－31568C	DIMMIT	Ster	DELRAY OIL COMPANY	JONES	3－16	545%	5499	SAN MIGUEL	NO	NO	N0	U．CRETAC．	7
c－ 466680	DIMVIT	698．	delray oil company	JONES	4－16	5449	5539	SAN MIGUEL	NO	MO	No	U．CRETAC．	6
$\mathrm{C}-711810$	OIMMIT	713．	DELRAY OIL COMPANY	JONES	$6 \cdot 16$	5467 \％	5521	SAN MIGUEL	NO	NO	NO	U．CRETAC．	14.
c－301256	DIMMIT	307.	OELRAY OIL COMPANY	POGERS	6－14	5415	5474	SAN MIGUEL	NO	NO	No	U．CRETAC．	8
c－til 5 F	OIMMIT	me．	delray oil company	RDGERS	B－14	544%	5496	SAN MIGUEL	NO	NO	No	U．CRETAC．	8
Cate 6588	OIMMIT	att	LONE STAR GAS	BRAY	1	2922	3397	SAN MIGUEL	NO	NO	No	U．CRETAC．	15
C－313818	DIMMIT	07a	LONE STAR GAS	bray	2	2973	3428	SAN MIGUEL	NO	No	NO	U．CRETAC．	11
C－011618	DIMMIT	Ont	TESORO PETROLEUM CORPORATION	CRENSHAU	1	4.	3	AMACACHO	NO．	NO	No	U．CRETAC．	1
Comb6554	OIMMIT	048	TESORO PETRCLEUM CORPORATI ON	CRENSHAU	51	4922	4982	ANACACHO	No	NO	NO	U．CRETAC．	13.
C－026658	DIMMIT	00^{5}	TESORO PETROLEUM CORPORATION	CREMSHAG	51	5158	5188	ANACACHO	No	No	No	U．CRETAC．	1
c－31601	DIMMIT	964	TESORO PETRO CO．	CRENSHAU	51	5158	5188		No	No	No		4
Col0161	OIMMIT	00\％	TESORO PETROLEUP CORPORATION	SAN MIGUEL	52	5147	5176	ANACACHO	NO	NO	No	U．CRETAC．	2
Cm 13151 C	DIMMIT	03	TESORO PETROLEUN CORPORATION	SAN MIGUEL	54	5384	53.98	ANACACHO	NO	MO	NO	U．CRETAC．	2
C－7n1610	DIMMIT	05	TESORD PETRGLEUM CORPORATION	SAN MIGUEL	55	5859	52×5	ANACACHO	NO	No	NO	U．CRETAC．	－
T－10333	OIMMIT	ท2？	TEXAS PAC．COAL AND DTL CO．	NAME ITHHELD	0	$18 \% 2$	1803	SAN PMTGUEL	NO	Mn	\cdots		
c－091050	DIMMIT	nes．	H000，W．H．	MEATHERS	1	299］	3008	Snm					
c－00368．	DIMMIT	6 O	OTHERS	HANCHETT，LEE									

				Jacobs	1－1	113531	11740		10	No	NO		21.
			L LUMPANY	RAMIREZ	B－2	4551	4554		No	No	No		1
	gunzales	0018	TESORO PETROLEUM CORPORATION	HENDERSHOT．C．J．	1	4535	4833	AUSTIN	NO	NO	Yes	U．CRETAC．	49
	GONZALES	\％${ }^{\text {a }}$	Prairle proouction	HUR？	1	4449	489\％	AUSTIM	No	MO	YES	U．CRETAC．	54
c－3136	gray	100	ERNEY，DON	CORBIN	1	3.	－		NO	No	No		18
c－36266	GRAY	03\％	GULF OIL CORPORATION	SHAEKLTON，E．A．	1	7898	7928	ARBUCKLE	NO	YES	NO	ORDOVICIAN	3
cable 74	gray	100．	GULF OIL CORPORATION	SHACKLTON	1	7899	7927	ARBUCKLE	NO	YES	NO	ORDOVICIAN	2
C－56668H	GRAY	6）	PHILLIPS PETROLEUM COMPANY	BENTON	4	2943	2945	GRAN．HASH	No	NO	NO		1
C－01152	gray	abl	PHILLIPS PETROLEUM COMPANY	DELP	2	11770	11540	HONE YCUT	NO	YES	NO	ORDOVICIAN	75
C－37156	gray	203	PHILLIPS PETROLEUM COMPANY	STRICKLER	1	10192	11272	ELLENBURG	No	YES	NO	ORDOVICIAN	64
c－15559	gray	129	PHILLIPS PETROLEUM COMPAAY	TRDY．A．	1	9562	11.43	ARBUCKLE	NO	NO	NO	ORDOVICIAN	2
C－3043	GRAY	ba	PHILLIPS PETROLEUM COMPANY	WOOD，J．E．	6	2577	2588		NO	YES	NO		4
C－19276	gray	W戴枵	PHOENIX	RALPH	1	3122．	3251		NO	No	No		2
C－114 14	GRAY	nta	STANDARD OF TEXAS	MATHERS	2	7482	7949		NO	NO	NO		59
C－31024	gray	－17e	STANDARD OF TEXAS	MATHERS	3－1	7131．	7869		NO	NO	NO		31
c－31723	GRAY	007	TENNECO	COMBS	126	2792	2973		NO	NO	No		59
$c \rightarrow 1113$	gRay	38	HILCOX OIL COMPANY	COMBS	118	2638	2888		NO	NO	NO		89
6－31720	GRAY	bla	WILCOX OIL COMPANY	comas	143	2744	2839		NO	No	No		31
	gRay	Tal	MILCOX OIL COMPANY	Combs	144	2714	2827		NO	NO	No		37
C－20722	gray	Q10	MILCOX OIL COMPANY	combs	145	2716	2849		NO	No	No		44
c－2093988	grayson	0ty	HIBBERT OIL COMPAMY	SHORT	1	7881	7931	JOINS	No	NO	No	ORDOUICIAN	1
$8-180830$	grayson	\％1\％	HI BBERT OIL	SHORT	1	7871	7881	OIL CREEK	No	NO	No	ORDOVICIAN	1
conotigc	GRAYSON	ne．	MAGNOL IA PETROLEUM COMPANY	G00HIN	1	12131	12145	OIL CREEK	NO	NO	No	ORDOVICIAN	1
3－904836	grayson	300	magnol ia petraleum company	HOOGES（SKIPS）	1	7552	7781	ELLENBURG	NO	NO	NO	ORDOVICIAN	1
C－10． 77 A	gRaYSON	宜\％．	MAGMOLTA PETROLEUM COMPANY	H00GES	2	7668	7687	ELLENBURG	NO	NO	MO	ORDOVICIAN	1
Comolit7B	GRAYSON	06	magnolia petroleum company	HODGES	6	6881	7519	ELLENBURG	NO	ND	NO	ORDOVICIAN	2
c－81159	gRaYSON	A23	SIMCLAIR－PRARIE，ET．AL	HILLIAMS．M．	1	3574	4286		No	YES	No		$1{ }^{4}$
C． 1346	GRAYSON	D3：	SUN OIL COMPANY	CIJNMINGHAM	1	5108	5330		NO	YES	NO	PENNSYLVAN	4
c－81333	GRAYSON	By	SUN OIL COMPANY	DAGKINS	1	3999	443		No	YES	NO		1
$6-1273$	GRAYSON	196	SUN OIL COMPANY	GODWIN	1	5226	$64 \% 7$		No	YES	NO	PEMNSYLUAN	6
C－51338	GRAYSON	308．	SUN OTL CDMPANY	GRIFFIM	1	6731．	68.20		NO	YES	NO	PENNSYLVAN	3
c－31337	GRAYSON	700．	SUN DIL COMPANY	GRIFFIN	2	6756	6781		No	YES	No	PENNSYLYAN	3
c－a 1336	grayson	P9\％	SUN OIL COMPANY	GRIFFIN	3	6750	6772		No	r res	NO	PENNSYLVAN	2
$6-12274$	GRAYSON	018	SUN OTL COMPANY	GRIFFIN	4	6738	6761		No	res	No	PENNSYLVAN	5
c－ 1248	gRAYSON		SUN OLL COMPANY	GRIFFIM	5	6722	5762		NO	r es	No	PENNSYLUAN	3
C－1246	GRAYSON	65\％	SUN OTL COMPANY	GRIFFIN	6	6762	6818		No	$Y E S$	NO	PENNSYLVAN	2
C－S 1374	GRAYSON	106	SUN OIL COMPANY	GRIFFIN	7	6752	6792		No	YES	No	PENNSYLVAN	3
C－ 1247	GRAYSON	者愫	SUN OIL COMPANY	GRIFFIN	8	6727	6775		No	YES	No	PENNSYLVAN	3
c－61411	GRAYSON	904	SUN OIL COMPANY	GRIFFIM	9	5728	6741		No	No	No	PEMNSYLVAN	1
C－1245	GRAYSON	The	SUN OTL COMPANY	GRIFFIN	14.	6568	5713		NO	No	NO	PENNSYLVAN	2
c－b1320	GRAYSON	got	SUN OIL COMPANY	SHANKLES	3	8867	914		No	YeS	No	PENNSYLVAN	4\％，
C－1291	GRAYSON	？${ }^{\text {\％}}$ \％．	SUN OIL COMPANY	SHANKLES	2	7685	7762	BAKER SAND	No	$r \leq s$	NO	OROQVICIAN	23
B－971876	grayson	045	SUPERIOR DTL COMPANY	HENDERSON	1	6124	6555	H．SPR．CRK．	No	res	No	DRDOVICIAN	15
8－48137	GRAYSON	46	SUPERIOR OIL COMPAMY	PRIVITTE	1	775	8147	H．SPR．CRK．	NO	r VS	NO	ORDOVICTAN	13
$\dot{c}-3{ }^{\text {c }} 465$	GREGG	030．	hUMBLE OIL AND REFINING	CLEMONS	1	3656	3557	HOODBINE	NO	YES	No	U．CRETAC．	1
C－313 156 H	gUADALUPE	Bta．	DELRAY OIL COMPANY	DENMAN	B－14	2393	2526	BUDA LIME	NO	NO	NO	U．CRETAC．	3
c－bis 896	GUADALUPE	006	delray oil company	L．G．DENMAN	12	2325	2486	DARST CRK	No	No	MD	U．CRETAC．	7
C－3136C	gUADALUPE	$6{ }^{6}$	Delray otl company	POOLEY	10.	1884	1947	AUSTIN CHK	NO	NO	NO	U．CRETAC．	4
C＝1通1570	gUADALUPE	a ${ }^{\text {a }}$	DELREY OIL	UNKMOMN	\times	1934．	2025		No	NO	No		5
Con1156F	GUADALUPE	$3{ }^{3}$	DELRAY OIL COMPANY	UNKNOLSN		2234	2447	AUSTIN CHK	NO	No	NO	U．CRETAC．	5
c－123 258	gUADALUPE	䀜0	EICHEN，ELIZABETH	EDDY．J．	1	1	953		NO	YES	NO		16
$\mathrm{C} \rightarrow 1 \mathrm{~A} 483$	GUADALUPE	761	FROST，JACK	BLANKS ESTATE	1	1798.	1941	GEORGETOHN	NO	YES	No	L．CRETAC．	3
c－0．2214	GUADALUPE	310	G000R I CH	SHANKLIN	11	2112	2167	EAGLEFORD	No	YeS	NO	U．CRETAC．	n－
C－T1545	guadalupe	D08	GULF OIL CORPORATION	OIX，T．	23	3258	5415	HOSSTON	an	an			
$6-3335$	guadalupe	75	HARMANSON	GATZKE	4								

			Pruduction company	BL BLUMBERG	A－1	$\begin{aligned} & 2817 \\ & 3163 \end{aligned}$	$\begin{aligned} & 4872 \\ & 3386 \end{aligned}$	AUSTIN	$\begin{aligned} & \text { No } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { NO } \end{aligned}$	L．CRETAC． U．CRETAC．	$\begin{array}{r} 152 \\ \hline \end{array}$
－630356	GUADALUPE	（t）	PRAIRIE PRODUCTION COMPANY	BLUMBERG	$B \times 1$	4590	4285	AUSTIN	NO	No	No	U．CRETAC．	51
C－管造187	GUADALUPE	000．	PRODUCERS OF NEVADA	DERLIC．E．	1	1922	2213	GEORGETOUN	NO	YES	NO	L．CRETAC．	122
C－6n391	gUADALUPE	\％n都，	STANOLIND	SCHMIDT，THEO	1	1372	2614	HOSSTON	No	YES	No	L．CRETAC．	4的1
Cobs 631	GUADALUPE	南景	STANOLIND	SCHMIDT．THEO	1.	1392	2314	HOSSTON	NO	YES	NO	L．CREIAC．	$3{ }^{3}$
Con 1416	gUADALUPE	609.	SUN OTL COMPANY	gatzke	4	2235	2556		NO	No	NO	L．CRETAC．	7
C－11121	HALE	910	NORTH TEXAS CANAL ROUTE	TEST HOLE	27	i．	6复．		No	ND	NO		2
c－61122	HAL	\％0\％	NORTH TEXAS CANAL ROUTE	TEST HOLE	28	5	75		No	NO	NO		3
c－31119	HALE	， 0^{0}	NORTH TEXAS CANAL ROUTE	TEST HOLE	25	3	5 S		No	No	NO		1
C－9112委	HALE	307	NORTH TEXAS CANAL ROUTE	TEST HOLE	25	＊	65		No	No	No		1
c－趘1444	HALE	300	STAMDARD DF TEXAS	KELI＝HOR	1	8452	8492		NO	YES	NO	PENNSYLVAN	14
C－悬421	HAMILTON	4at	SEABOARD	DAHSON，J．	1	2975	$3 \geqslant 13$	ELLENBURG	No	YES	NO	ORDOVICIAN	6
c－ 0.4431	HAMILTON	01＊＊	SEABOARO	DAHSON：J．	1	2518	5344	ELLENBURG	no	Yes	NO	OROOVICIAN	29
c－46124	HAMILTON	33	SHELL DEV CO．（D L AMSBURY）	HAMILTON（CROUCH）	1	5	15	PALUXY	NO	No	No	L．CRETAC．	14
c－663 25	HAMILTON	933	SHFLL DEY CO（DI AMSBURY）	HAMILTON（MID－TEX）	2	S	125	Paluxy	NO	NO	NO	L．CREIAC．	$1{ }^{1}$
c－2 6723	HAMILTON	334	SHELL DEV CO（D L AMSBURY）	HAMILTON（STREGER）	3	5	140	paluxy	No	No	No	L．CRETAC．	15
C＋56 29	HAMILTON	134	SHELL DEV CO（DL AMSBURY）	OLIM－GAR PARKER FARM	1	3.	173	PALUXY	NO	No	NO	L．CRETAC．	17
c－11587	HANSFORO	0013	GULF OIL CORPORATI ON	ALEXANDER	1	6813	6827	U．MORROW	NO	No	NO	PENNSYLVAN	7
c－820． 69	HANSFORD	010．tip	GULF OIL CORPORATION	CDLLARD	1	8484	8494	L．MORROU	No	No	NO	PENNSYLVAN	1
C－31138	HANSFDRD	3 O	PALO DURO CREEK SITE	TEST HOLE	1	3	\＄39		No	NO	No		5
C－11383	HARDEMAN		HUMBLE OIL AND REFINING	MCSPADOEN	1	5450	8185	CHAPPEL	no	NO	NO	MISSISSIPPI	1
Con 1193	HAR DEMAN	047	HUMBLE DIL AND REFINING	hilliams	1	50.37	8594	ELLENBURG	No	M0	NO	DRDOVICIAN	1
condis．95C	HARDEMAN	䢒㟫	SHELL OIL COMPANY	CONLEY	$A=1$	8359	8214	ELLENBURG	No	No	NO	ORDOVICIAN	18
Comilia	HAROEMAN	p\％\％．	SHELL OIL COMPANY	SCHUR	2	7962	8238	ELLENBURG	No	NB	NO	OROOVICIAN	41
C－1趇69	HARDEMAN	0 00	STANDARD OF TEXAS	CDFFEE，R．H．	1	814造	8143	CHAPPEL	No	No	No	MISSISSIPPI	1
c－011331	HARDEMAN	\％ 17	STANDARD OF TEXAS	COFFEE，只H．	1	8113	83.3	CHAPPEL	No	No	No	MISSISSIPPI	1
c－11］ 87	HARDEMAN		STANDARD OF TEXAS	DICKEY	1	8618	86.78	CHAPPEL	No	NO	No	MISSISSIPPI	1
$C \rightarrow 31225$	HARDEMAN	B0．	SUM OIL COMPANY	QUANAH CITY UNIT	1	97t．	8913	CHAPPEL	No	NO	NJ	MISSISSEPPI	56
C－ 01197	HARDEMAN	30\％	SUN OLL COMPANY	THOMPSON－OUANAH UNIT	1	832 l	8471	CHAPPEL	No	ND	No	MISSISSIPPI	52
C－81499	HAROEMAN	\＄2？	SUN OIL COMPANY	THOMPSON	1	8423	8475	CHAPPEL	Mo	No	NO	MISSISSIPPI	16
c－4 023	HARDEMAN	not．	GULF BASIN－BUR．RECLAIM．	NECHES－PIN ISLAND	1－12	15	10.		No	NO	NO		34
C－01524	HARDIN	90\％	OIL RESERVES CORPORATION	KIRBY STEPENSON 8	1－k	84.9	8562		NO	Yes	NO		7
T－00561	HARDIN	园哏	TEXACO	SOUR LAKE	587	654	579		No	NO	NO		2.
c－62488	HARDIN	359	TEX．GULF PROD．CO．	CHRISTIAN．ET．AL	1	2111	3364		No	YES	No		4
c－3 375	HARRIS	10\％	AMERADA－STANOLIND	BODE	1	5335	6173		No	No	NO		11
C－36624	HARRIS		GULF BASIN＊BUR．RECLAM．	BUFFALO BAYOU SHIP	1－5	\％	，		NO	No	No		2
C－10523	HARRIS	1935	GULF BASIH－BUR．RECLAM．	SAN JACINTO YALLEY	1－11	15	10		NO	No	NO		49
c－31422	HARRIS	\＃0\％	HUMBLE OIL AND REFINING	TOMBALL	11	8820	9865		No	No	NO		7
F－012047	HARRIS	0et．	PAN AMERICAN CORPORATION	BROHN	1	1492管	14755		NO	NO	NO		13
C－88463	HARRIS	6\％	RIO BRAVO OIL COMPANY	P．S．B．	8	3312	3329		No	No	No		1
c－31423	HARRIS	403	SUN DIL COMPANY	CHAMBERS	9	4835	4885		10	No	NO		1
c－31188	HARRIS	¢9\％．	SUN OTL COMPANY	KRATKY	1	8131	8272		No	No	NB		5
$\mathrm{C}=\mathrm{B} 1181$	HARRIS	骨號	SUN OTL COMPANY	MATLAGE	2	5547	5624		NO	YES	No		7
C－11189	HARRIS	． 397	SUN OIL COMPANY	MAURITZ UNIT 11	1	2645	8859		No	NO	N0		4
C－$\$ 1183$	HARRIS	149．	SUN OTL COMPANY	MINTREE：D．K．	4	2199	2737		NO	NO	NO		7
C－m016 H	HARRISON	pron	ATLANTIC REFINING COMPANY	BOSCH	1	6575	6775		No	No	NO		12
C－10］78A	HARRISON	bat	MAGNDLIA PETROLEUM COMPANY	HRIGHT	1	4697	4762		NO	ND	No		1
C－1）835	HARRISOM	3）	TEXAS WATER PROJECT	TEST HOLE（FCM） 1	1	1	125		No	NO	No		4
C－bt838	HARRISON		TEXAS HATER PROJECT	TEST HOLE（MD） 1	1	1	116		NO	NO	No		4
C－73335	HARRISON	112．	TEXAS HATER PROJECT	TEST HOLE（FCM） 2	2	1	98		No	No	No		4
C－14685	HARTLEY	968	STANDAPD DF TEXAS	BIVINS	12	319＊	5543		No	No	NO		25
c－19687	HARTLEY	\％）	STANOARD OF TEXAS	BIVINS	14	3452	3555		No	NO	No		16
c－14683	HARTLEY	1010．0．	STANDARD OF TEXAS	BIVINS	15	3351	569 \％		NO	No	NO		3%.
C－11445	HARTLEY	687	STANDARD OF TEXAS	JOHNSON	1	8952	8958	ARBUCKLE	Na	\cdots			

					WHESICH	512	15	121	JACKSON	M0	NO	NO	EOCENE	6	
					WINERICH	513	105	120.	JACKSON	NO	No	NO	EOCENE	6	
			gwuehanna	WESTERM	UINERICH	514	105	119	JACKSON	NO	NO	NO	EOCENE	5	
－	．untwes	078	SUSQUEHANNA	HESTERN	MINERICH	515	115	123	JACKSON	NO	No	No	EOCENE	5	
$\cos 5086$	KARNES	00^{2}	SUSQUEHANNA	HESTERN	HINESICH	523	110	119	JACKSON	No	NO	No	EOCENE	2	
T－103 28	KARNES	004	SUSQUEMANNA	HESTERN	WINEPICH	536	115	128	JACKSON	NO	No	NO	EOCENE	5	
T－12128	KARNES	an？	SUSQUE HANVA	HESTERN	WINERICH	537	102	12\％．	JACKSON	NO	No	NO	EOCENE	5	
T－31328A	KARNES	00%	SUSQUEHANNA	HESTERN	YINERICH	539	132	119	JACKSON	NO	NO	NO	Eocene	6	
T－1］ 288	KARNES	095	SUSQUE HANNA	HESTERN	UINERICH	54.	109	139	JACKSON	no	NO	NO	EOCENE	1	
T－0028B	KARNES	$3{ }^{3}$	SUSQUEHANNA	HESTERN	HINERICH	541	120	113	JACKSON	MO	No	No	EOCENE	3	
T－90123B	KARNES	部产	SUSQUEHANVA	HESTERN	WINERICH	545	135	12 B	JACKSON	NO	NO	H）	EOCENE	5	
T－00323C	KARNES	0 m	SUSQUE HANNA	HESTERN	WINERICH	547	115	120	JACKSON	NO	NO	No	EOCENE	5	
T－apg28C	KARNES	48	SUSQUEMANNA	HESTERM	HINERICH	548	13.5	117	JACKSON	NO	NO	NO	EOCENE	4	
T－004280	KARNES	60：	SUSQUEHANNA	WESTERN	WINERICH	549	175	127.	JACKSON	NO	NO	No	EOCENE	4	
T－321230	KARNES	095	SUSQuehanna	HESTERN	UINERICH	550	185	121	JACKSON	NO	NO	No	EOCENE	6	
To01028E	KARNES	6）${ }^{\text {ata }}$	SUSQUEHANNA	HESTERN	WINERICH	551	$1{ }^{165}$	123	JACKSON	No	No	NO	EOCENE	6	
T－31328E	Karnes	061	SUSQUE HANNA	HESTERM	HIMERICH	552	185	121	Jackson	No	No	NO	EOCENE	5	
T－31328F	KARNES	97	SUSQUEHANNA	WESTERN	HINERICH	554	135	12\％	JACKSON	No	N0	No	EOCENE	5	
T－13128F	KARNES	貯	SUSQUEHANAA	HESTERN	HINERICH	556	1.5	120．	Jackson	NO	NO	no	EOCENE	6	
Twitis28G	KARNES	$8{ }^{8} 4$	SUSQUEHANNA	WESTERN	HINERICH	559	135	119	Jackson	No	No	No	EOCEME	5	
T－00928H	KARNES	60a	SUSQUEHANNA	HESTERN	UINERICH	554	11.4	119	JACKSON	NO	No	NO	EOCENE	6	
T－13028G	KARNES	3）${ }^{\text {\％}}$	SUSQUEHANNA	MESTERN	WINERICH	555	115	12 B	JACKSON	N0	No	NO．	EOCENE	6	
T －603 28H	KARNES	60］	SUSQuehanna．	HESTERM	WINERICH	558	115	129．	Jackson	NO	NO	No＇	EOCENE	6	
T0013316	KARNES	017	SUSQUEHANNA	पESTERN	MINERICH	1113	48	75	JACKSON	Mo	No	No	EOCENE	10	
T－00026E	KARNES	yon	SUSQUEHANNA	HESTERN	UINERICH	11% ．	81	177	JACKSON	N0	NO	N0	EOCENE	8	
T－36331E	KARNES	Thn	SUSQUEHANNA	WESTERN	HINERICH	1101	75	103	JACKSON	NO	NO	No	cocene	6	
T－bun31E	KARNES	ग6 ${ }^{2}$	SUSQUEHANNA	HESTERN	WINERICH	1112	73	99	JACKSON	No	NO	NO	EOCENE	9	
T－103296	karnes	06.	SUsquehanna	HESTERN	HINERICH	1752	93	114	JACKSON	No	NO	NO	EOCENE	7	
T－100 29H	KARNES	030	SUSQUEHANNA	HESTERN	HINERICH	1754	88	114	Jackson	No	No	NO	EDCENE	8	
T－bos31I	KARNES	089	SUSDUEHANNA	YESTERN	HINERICH	1755	59	116	JACKSON	N0	NO	NO	EOCENE	13	
T－90032E	KARNES	092	SUSQUEHANNA	UESTERN	WINERICH	1756	25		JACKSON	N0	N0	NO	EOCENE	8	
T－63129E	KARNES	010	SUSQUEHANNA	HESTERN	MINERICH	1757	13		JACKSON	NO	No	No	cocene	2	
T－309290	kARNES	370	SUSQuehanna	UESTERN	HINERICH	1758	13.	30.	JACKSON	NO	NO	No	EOCENE	5	
T－b0329C	kARNES	001	SUSQUEHANMA	HESTERN	HINERICH	1759	136	125	JACKSON	NO	N3	No	EOCENE	6	
T－004298	KARNES	阿搨	SUSQUEHANNA	HESTERN	MINERICH	176\％	22	47	JACKSON	NO	No	No	COCENE	8	
T－61729	kapnes	685	SUSQUEHANNA	HESTERM	YINERICH	1761	3 \％		JACKSON	No	10	NO	EOCENE	5	
T－10129A	karnes	69\％	SUSQUEHANNA	HESTERA	HINERICH．	1752	28	54.	jackson	NO	N0	NO	EOCENE	6	
T－76131	KARNES	04\％	SUSQuEhanna	HESTERN	HINERICH	1763	25	5 5．	JACKSON	No	N0	NO	EOCENE	8	
T－90031a	KARNES	080	SUSQUEHANNA	HESTERN	WINERICH	1764	10	35	JACKSON	NO	N0	NO	EOCENE	6	
T－30］31A	karnes	407	SUSQUEHANAA	WESTERN	HINERICH	1755	23.		JACKSON	No	NO	no	EDCENE	5	
T－00031日	karnes	穿缶年	susquehanma	WESTERA	HIMERICH	1765	5	25	JACK SON	No	No	No	Encene	5	
T－0．13318	kARNES	7\％	SUSQUEHAMMA	WESTERA	HINERICH	1767	\％	23	JACKSOM	10	No	N0	Eocene	3	
T－rbi31C	karnes	70 0^{3}	SUSQuehanna	HESTERN	MINERICH	1768	33	48	JACKSON	No	NO	No	EDCENE	3	
T－3n13 3 B	kARNES	\％\％	SUSQUEHANNA	WESTERN	WINERICH	1758	33	51	JACKSON	No	N0	NO	EOCENE	3	
T－030291	karnes	Sta	SUSQuehanya	wESTERN	MINERICH	1769	38	50	JACKSON	No	No	No	EDCENE	6	
T－013 32	kARNES	$3{ }^{3}$	SUSQUEHANMA	HESTERN	WINERICH	177\％	$3{ }^{2}$	49	JACKSON	NO	NO	NO	EOCENE	6	
	karnes	00\％	SUSQuEHANMA	HESTERN	HINERICH	1771	85	116	JACK SON	No	NO	NO	EOCENE	11	
T－3631H	KARNES	彦岢	SUSQUEHANIA	HESTERN	WINERICH	1772	85	115	JACKSON	NO	10	No	EDCENE	13	
T－601330	karmes	B18	SUSQUEHANNA	HESTERN	WINERICH	1773	85	115	JACKSON	no	NO	NO	EOCENE	13	
T－0730E	KARNES	000	SUSQUEHANNA	WESTERN	HIMERICH	1774	85	115	JACKSON	No	NO	NO	EOCENE	12	
T－bou3nc	kARNES	086	SUSQuEHANNA	HESTERN	MINERICH	1776	88	113	JACKSON	No	No	NO	COCENE	9	
7－701328	KARNES	07n	SUSQUEHANNA	HESTERN	HINERICH	1777	85	115	Jackson	NO	10	NO	EOCENE		
T－ 0 －${ }^{\text {a }}$ 32C	KARNES		SUSQUEHANNA	HESTERN	WINERICH	1783	5	$4{ }^{2}$	JACKSON	No	no	－			
T－393320	KARNES	301	SUSQUEHANNA	HESTERN	MINERICH	1784	14.	39	．tarua						
T－318．32F	KARNES	6ab	SUSQUEHANAA	MESTERN	MIMERICH	1785									

$6-1390$	$\begin{aligned} & \text { MEUINA } \\ & \text { MEDINA } \end{aligned}$	$\begin{aligned} & 424 \\ & 505 \end{aligned}$	WAIEK UEUELUPMENI DUAKU hater development board	$\begin{aligned} & \text { Kr-e } \\ & \text { T0-30.907. } \\ & \hline \end{aligned}$		$\frac{3}{3}$		OLEN KuOE GLEN ROSE	NO	$\begin{aligned} & \text { NO } \end{aligned}$	$\begin{aligned} & \text { vu } \\ & \text { Non } \end{aligned}$	L．VMLIAL． L．CRETAC．	$\begin{aligned} & 62 \\ & 27 \end{aligned}$
C－03114	MIDLAND	073	MAgNOL TA PETROLEUA COMPANY	NOBLE	1	13357	13450	HONEYCUT	NO	YES	NO	ORDOVICIAN	13
C－00354	MIOLAND	00\％	MAGNOL IA PETROLEUM COMPANY	WINDHAPA	A－2	12567	13888	GORMAN	NO	No	NO	ORDOVICIAN	42
C－81152	MIDLAND	0%	SINCLAIR DIL AND GAS	SANDERS	5	9227	10368	CANYON	NO	No	NO	PENNSYLVAN	7
c－13577	MIDLAND	$0 \cdot 1$	STANDARD OF TEXAS	SIMMS，J．E．	2	12472	12543	FUSSELMAN	NO	NO	NO	SILURIAN	24
C－04558	MIDLAND	90 ？	STANOLIND	MIOKIFF，HERB	3	7538	8107．	SPRA YBERRY	No	No	No	PERMIAN	57
c－11357	MIDLand	42\％	SUN OIL COMPANY	HUTCHINSON	7	7182	7873	SPRAYBERRY	No	YES	NO	PERMIAN	162
C－10．53	MILAM	073	BYRD AND VOYLES	GREEN，LUCINDA	1	5989	5388	BUDA	No	No	NO	L．CRETAC．	32
C－73 166	MILAM	002	BYRD AND VOYLES	GREEN	1	5693	5369	SDGARDS	NO	NO	NO	l．CRETAC．	21
C－35177	MILAM	9\％\％	BYRD AND VOYLES	GREEN	2	5535	5718	KIAMICHI	N0	No	No	L．CRETAC．	26
T－i0002A	MIL AM	36	CADDD OIL COMPANY	MCVOY	1	3388	3458	NAVARRO	No	YES	NO	U．CRETAC．	24
C－10197	MILAM	63	COFFEE	DAVIS	1	3729	3795		No	NO	YES	CRETACEOUS	4
C－6］ 369	MILAN	008	EISER，M．${ }^{\text {H．}}$	CITIZENS NAT．BANK	1	2152	2321		NO	YES	NO		26
C－0015	MILAN	003．	HARRISON，DAN	SMITH	1	1888	3512		NO	No	YES	CRETACEOUS	118
C－3644＊	MILAM	0 0 0	LEE，JOHN ET．AL	ISAACKS	1	2353．	3398		NO	NO	No		1
C－30367	MILAN	0\％${ }^{\text {a }}$	WILSON BROACH	WHITE，E．L．	1	2634	37.92	GLEN ROSE	No	YES	No	L．CRETAC．	3
C－3033 8	MILLS	n）：	MAGNOL IA PETROLEUM COMPANY	SCHUSTER	1	2841	2966		NO	YES	No		41
C－173310	MILLS	gix	MAgNOLIA PETROLEUM COMPANY	SINGLETON	1	1941	2711		No	YES	NO		2
C－303］	MILLS	0n ${ }^{\text {a }}$	MAGNOL TA PETROLEUM COMPANY	SULLIVAN	1	1913	$2^{3} 47$		No	YES	NO		49
c－07782	MILLS	Qef	TEXAS BASIN－BUR．OF RECLAM．	CAT CLAH SITE		3.	36		NO	NO	No		1
C－93578	MITCHELL		STANDARD OF TEXAS	BONE	1	3325	3543	CLEARFORK	No	NO	No	PERMIAN	69
c－hatib	MITCHELL	30^{29}	STANDARD OF TEXAS	CLARK	2－2	1842	1849		No	No	No		1
c－80565	MITCHELL	013	STANDARD OF TEXAS	MILLER	18－4	285	3142.	CLEARFORK	NO	NO	No	PERMIAN	96
c．00446	Montague	vig	HUMPHEYS CORPORATION	HINTON	1	527	1814		No	NO	NO		4
c．03451	montague	DEf	HUMPHEYS CORPORATION	HOHARD	2	834	835		NO	NO	No		1
C－0．448	montague	00\％	HUMPHEYS CORPORATION	HYNDS	1	892	944		NO	NO	NO		1
C－0，449	montague	31？	HUMPHEYS CORPORATI ON	HYNDS	2	935	935		NO	NO	No		1
C－03450	Montague	O6．${ }^{\text {a }}$	HUMPHEYS CORPORATION	HYNDS	3	912	934		NO	NO	NO		1
Costang	Montague	00：	HUMPHEYS CORPORATION	MADDOX	3	2040	2276		No	No	N0		55
C－30447	montague	000	HUMPHEYS AND BOYD	JDNES	3	227	422		NO	NO	NO		1
Cob0］81E	Montague	00：	MAGNOL IA PETROLEUM COMPANY	CARMINATI	1	5638	5643	STRAUN	No	No	NO	PENNS YLVAN	1
C－611154	Montague	（87\％	MAgNOL IA PETRDLEUM COMPANY	TEST HOLE	4	265	747		NO	NO	N0		25
c－01120	montague	90\％	STANDARD DF TEXAS	ELKIN，R．P．	1	5988	7143	ELLENBURG	NO	NO	NO	ORDOVICIAN	9
C－011517	Montague	030.	STANDARD OF TEXAS	MCCALL，C．S．	2	5925	6975	ELLENBUR	No	No	No	ORDOVICIAN	18
Colin 25	montague	nots	STANDARD OF TEXAS	ROBERTS	4	7192	7445	ELLENBURG	NO	No	No	ORDOUICIAN	88
C－31997	MONTAGUE	3043	STEMMONS	CLINGERSMITH	2	971	989		NO	NO	NO		6
C－03481	MONTGOMER	Y象 ${ }^{2}$	SUPERIDR OIL COMPANY	MCMAHAN	1	91.5	12418		NO	YES	YES		4
C＊3 3715	MOORE	6\％	SINCLAIR OIL AND GAS	MASTERSON ESTATE	16	3456	3503		NO	YES	NO		3
c．30256A	MOORE	mob	SOCONY MOBIL OIL COMPANY	COON，R．S．	25－7	3214	3445		No	NO	NO		36
C－31713	MOORE	P9：	STANDARD OF TEXAS	MASTERSON ESTATE	7	335\％	3449		NO	YES	NO		6
C－001714	MOORE	何 ${ }^{\text {a }}$	STANDARD OF TEXAS	MASTERSON ESTATE	11	3346	3444		NO	No	ND		5
c－137796	MORRIS	05	TEXAS HATER PROJECT	TEST HOLE（KCN）	2	1	57		NO	NO	NO		2
C－31889	MORRIS	00° ：	TEXAS WATER PROJECT	TEST HOLE（ND）	2	1	133		NO	NO	No		2
Col 30831	MORRIS	$9{ }^{\circ}$	TEXAS HATER PROJECT	TEST HOLE（ND）	4	1	101		No	NO	NO		4
Cosi1395	MOTLEY	30＂	GENERAL CRUDE OIL COMPANY	BIRNIE	1	874．7．	8809	STRAUN	No	YES	N0	PENNSYLVAN	19
C－M14469	MOTLEY	6\％\％	GENERAL CRUDE OIL COMPANY	SHENSON	5－2	5149	5149	STRAHN	NO	YES	NO	PENNSYLVAN	1
c－3 788	NACOGOOCH	Ev9	PAN AMERICAN CORPORATION	BLACKBURN，ANNIE P．	1	4791	4818		NO	N0	NO		9
C－3．5126	NACOGOOCH	V09：	TEXACO	BURT	1	18495	10544		No	NO	NO		1
C－0 1005	NAVARRO	6\％3	MCCORMICK	LAFERRO	1	9332	9749		No	NO	NO		3
Cus） 464	NAVARRO	3n？	NEH BLOCK OIL COMPANY	BOUNDS	1	2956	2958		No	NO	NO		1
C－36131	NAVARRO	50\％	texaco	MATHIS－NCT O／A	1	6864	693.2		No	No	NO		1
C．066122	NAVARRO	0 O	TEXACO	MONTGOMERY	12	5185	5839						16
Comen 391	NAVARRO	Ons	WHEELOCK AND COLLINS	CERF	1	6215	6488	PALUXY	NO	YES	N0	L．CRETAC．	！
C－R14 456	NAVARRO	\％容家	WHEELOCK AND COLLINS	CERF	1	3832	6184	PALUXY	NO	YES	NO	L．CRETAC．	3
C－1518	NEHTON	30%	AMDCO	norn									

$\begin{aligned} & c-\operatorname{tg} 956 \\ & c-\operatorname{tog} 95 \end{aligned}$	PECOS PECOS	$\begin{aligned} & n+8 \\ & n+5 \end{aligned}$	$A M, A X$ AMAX	UNIYERSTTY UNIUERSITY	$\begin{aligned} & 15-23 \\ & 15-23 \\ & \hline \end{aligned}$	2	$\begin{aligned} & 693 . \\ & 1103 \text { YATES } \end{aligned}$	No	NO	$\begin{aligned} & \mathrm{NO} \\ & \mathrm{NO} \end{aligned}$	PERMIAN	5
C－83947	PECOS	書哏要	AMAX	UNIVERSITY	2－23	5	1218 YATES	NO	NO	NO	PERMIAN	2
C－ 80.939	PECOS	00\％．	AMAX	UNIUERSITY	26.23	28 ）	150 YATES	ND	NO	NO．	PERMIAN	199
c－83．958	PECOS	98．	AMAX	UNIVERSITY	28－23	2	1831 YATES	NO	No	N0	PERMIAN	3
c－10959	pecos	392	AMAX	UNIUERSITY	29－23	3	185 YATES	NO	No	N0	PERMIAN	2
6－12966	PECOS	493	AMAX	UNIVERSITY	38－23	\％	1045 YATES	NO	No	NO	PERMIAN	2
c． 31968	PECOS	旬2	AMAX	UNIVERSITY	32－23	3.	125 YATES	NO	NO	NO	PERMIAN	2
C－00969	PECOS	039	AMAX	UNIUERSITY	34－23	䎟	1870.5 YATES	No	NO	N0	PERMIAN	2
C－60961	PECOS	pos	AMAX	UNIVERSITY	37－23	3	1606 YATES	NO	ND	NO	PERMIAN	2
c－39962	PECOS	阿哏．	AMAX	UNIVERSITY	51－23	1	17.48 YATES	ND	NO	NO	PERMIAN	2
	PECOS	bora	AMAX	UNIVERSITY	51－23	2	1785 YATES	N0	NO	NO	PERMIAN	2
C－207964	PECOS	6） 0	AMAX	UNIVERSITY	54－23	2	1＊33 YATES	No	No	No	PERMIAN	2
C－35965	PECOS	808	AMAX	UNIUERSITY	55－23	2	1030 YATES	NO．	NO	ND	PERMIAN	2
c．mfl 965	PECOS	－0，${ }^{\text {a }}$	AMAX	UNIUERSITY	55－23	2	1745 YATES	N0	NO	NO	PERMIAN	2
C－10997	PECOS	643	Amax	UNIUERSITY	56－23	$\%$	30 b	MO	NO	NO		2
C－34．967	PECOS		AMAX	UNIVERSITY	58－23	2	1340 YATES	NO	No	NO	PERMIAN	2
C－1 1434	pecos		HUMBLE OIL AND REFINING	NEAL，ROXIE	1	1785	10878 STRAMN	NO	No	NO	PENN S YLUAN	3
C－75381	PECOS	$5{ }^{5}$	PHILLIPS PETROLEUM COMPANY	GLENNA	1	13927	14519 HONEYCUT	NO	YES	NO	ORDOVICIAN	53
c－3 0676	PECOS	063	PHILLIPS PETROLEUM COMPANY	PUCKETT	1－C	13235	14901	NO	res	NO	PRECAMBRN	122
$\mathrm{C}-7299 \mathrm{H}$	PECOS	$9{ }^{9}$	PHILLIPS PETROLEUM COMPANY	RIXSE	2	5417	5430 HOLFCAMP	NO	NO	No	PERMIAN	2
c－16668E	pecos	\％h\％	PHILLIPS PETROLEUM COMPANY	SILYERMAN	3	5113	6141 HOLFCAMP	NO	No	N0	PERMIAN	3
C－3 3 ［986	pecos	的㪟	PIPER PETROLEUM COMPANY	ALLIED	3	${ }^{7}$	1221 Yates	No	NO	NO	PERMIAN	5
C－31899	PECOS	008	PIPER PETROLEUM COMPANY	ALLIED	4	3	1：5\％YATES	NO	No	NO	PERMIAN	5
C－368971	PECOS	90\％	PIPER PETROLEUM COMPANY	ARCO	A－1	\％	123］YATES	NO	NO	No	PERMIAN	2
C－79975	PECOS	not	PIPER PETROLEUM COMPANY	ARCO	A－2	3.	120］YATES	No	NO	NO	PERMIAN	1
C－4t398	PEcos	7\％${ }^{\text {\％}}$	PIPER PETROLEUM COMPANY	ARCD $-14{ }^{\text {\％－}}$	$2-A-1$	4	130．YATES	NO	NO	ND	PERMIAN	1
C－315976	PECOS	0363	PIPER PETROLEUM COMPANY	ARCO	A－3	3	1200 YATES	NO	NO	NO	PERMIAN	2
C－Bis 972	PECOS		PIPER PETROLEUM COMPANY	ARCD	A $=4$	3	1200．YATES	No	NO	NO	PERMIAN	2
C－3 3979	PECOS	003	PIPER PETROLEUM COMPANY	ARCO－140－	4－A－1	4	10n，YaTES	NO	NO	NO	PERMIAN	1
C－078973	PECOS	$0{ }^{3}$	PIPER PETROLEUM COMPANY	ARCO	A－5	5	1208 YATES	NO	NO	NO	PERMIAN	2
	PECOS	0 O	PIPER PETRDLEUM COMPANY	ARCD	A－6	1.	1351 YATES	NO	NO	NO	PERMIAN	1
C－60981	PECOS	g\％	PIPPER PETROLEUM COMPANY	ARCO	A－7	3	120．YATES	No	No	NO	PERMIAN	2
C－92977	PECOS	32\％	PIPER PETROLEUM COMPANY	ARCD	A－8	1	950 YATES	NO	NO	NO	PERMIAN	2
C－13978	PECOS	964	PIPER PETRDLEUM COMPANY	ARCO	A－9	0	957 YATES	NO	NO	NO	PERMIAN	2
C－7考 982	PECOS	003.	PIPER PETROLEUM COMPANY	ARCO	A－12：	7	50 B	NO	NO	NO		1
c－39983	PECOS	099	PIPER PETROLEUM COMPANY	BENNET	3	3	1）3 YATES	ND	NO	NO	PERMIAN	5
c－11396	PECOS	002	PIPER PETROLEUM COMPANY	BENNET	4	\％	950．YATES	NO	NO	NO	PERMIAN	4
C－\＄9987	PECOS	405	PIPER PETROLEUM COMPANY	COCHRAN	3	\％	779 YATES	No	No	NO	PERMIAN	4
c－61037	PECOS	009	PIPER PETROLEUM COMPANY	COCHRAN	4	7，	845 YATES	NO	NO	NO	PERMIAN	3
C－6y94i	PECOS		PIPER PETROLEUM COMPANY	DRAKE	3	2	950．YATES	NO	NO	NO	PERMIAN	4
$\mathrm{C}-46940 \mathrm{~A}$	pecos	86\％	PIPER PETROLEUM COMPANY	LEONA	3	\cdots	95 C YATES	NO	No	NO	PERMIAN	4
C－61984	PECOS	0 H	PIPER PETROLEUM COMPANY	ROBERTSON	3	3	945 YATES	NO	NO	NO	PERMIAN	4
C－01138	PECOS	0914	PIPER PETROLEUM COMPANY	ROBERTSON	4	3.	950 YATES	NO	NO	NO	PERMIAN	5
C－24985	PECOS	08\％	PIPER PETROLEUM COMPANY	$W_{0} \mathrm{X} \cdot \mathrm{C}_{0}$	7	？	1）8，YATES	NO	NO	NO	PERMIAN	5
C－01018	PECOS	067	PIPER PETROLEUM COMPANY	H．X．C．	8	3	13n3 YATES	NO	ND	No	PERMIAN	6
c－1607	PECOS		SHELL DEV CO（B F PERKINS）	HOVEY（GRAEFF RAN．）	1	11	259 BUDA	NO	NO	NO	L．CRETAC．	23
C－13 573	PECOS	00\％	STANDARD OF TEXAS	CANNON，C．C．	17	2546	8536 SIMPSON	NO	N0	No	ORDOVICIAN	41
C－00183	PECOS	409	STANDARD DF TEXAS	OHENS	1	9351．	9662 HONEYCUT	NO	YES	NO	ORDOVICIAN	36
c－6 4118	PECOS		STANDARD OF TEXAS	SMITH－4－	15－1	1596	1671 GRAYBURG	NO	NO	NO	PERMIAN	15
C－03376	PECOS	ดก	STANDARD DF TEXAS	SMITH－5－	15－1	1543	1658 GRAYBURG	N0	NO	NO	PERMIAN	13
Con迷378	PECOS	01\％	Standard df texas	SMITH－5m	16－2	1557	1562 GRAYBURG	NO	No	NO	PERMIAN	3
C－4 4379	PECOS	（t）${ }^{\text {a }}$	STANDARD OF TEXAS	SMITH－2－	15－2	1557	1579 GRAYBURG	NO	NO	No	PERMIAN	5
c－30411	PECOS	09.	STANDARD OF TEXAS	SMITH－1－	21－6	1787	1718 GRAYBURG	NO	No	NO	PERMIAN	1
c－6t415	PECOS	630．	STANDARD OF TEXAS	SMITH－1－	23－2	1492	1523 GRAYRURG	NO	NO	No	prrmian	7

		Y	$\begin{aligned} & \text { MOM GARZA } \\ & \text { MENDOZA } \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \end{aligned}$	$\begin{aligned} & 5721 \\ & 6618 \end{aligned}$	$\begin{aligned} & 5769 \\ & 6672 \end{aligned}$	QUEEN C	$\begin{aligned} & \text { NO } \\ & \text { NO } \end{aligned}$			EOCENE	$\begin{array}{r} 6 \\ 17 \end{array}$
	\％	（1）TENAECO	SLICK－STATE	$\mathrm{C}=7$	4913．	5832	FRIO	NO	NO	res	OLIGOCEME	11
C－11562	StARA	D03 TENNECO	SLICK	24	7588	7533		No	y 5	NO		12.
C－20589	STARR	006．TEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSION	\％	${ }^{4}$	35	ALLUVIUM	No	No	No	HOLOCENE	5
c－31599．	STARR	059．TEXAS BASIM－BUR．OF RECLAM．	EL ALAMO DIVERSION	2	${ }^{2}$	19	alluvium	NO	NO	NO	HOLOCENE	5
co．05591	STARR	（t）TEXAS BASIN－BUR．DF RECLAM．	El alamo diversion	3	\％		alluvium	NO	No	NO	holocene	4
c－81592	STARP	GEAE IEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSION	4	1	75	alluvium	No	No	NO	HOLOCENE	5
C－03593	STARR	DE．TEXAS BASEN－BUR．OF RECLAM．	EL ALAMO DIVERSION	5	＊	85	Alluvium	NO	No	NO	Holocene	5
coth594	STARR	O6J TEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSION	5	2	$7{ }^{3}$	Alluvium	No	no	No	HOLOCENE	5
c－6／595	STARR	D⿴囗才．TEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSION	7	？	63	ALLUVIUM	Mo	N0	No	HOLOCENE	5
c－35596	STARR	016．TEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSIDN	8	0	63	alluvium	No	NO	NO	HOLOCENE	5
c－105 597	Stara	00% TEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSION	9	3.	59	Alluvium	No	No	NO	HOLOCENE	5
c－3孚598	STARR	Nath TEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSION	13.	\square	31	alluvium	NO	NO	No	HOLOCENE	3
C－61599	STARR	60\％TEXAS BASIN－BUR．OF RECLAM．	EL ALAMO DIVERSION	11	\％	118	alluvium	No	ND	NO	holocene	10.
C－7197	STEPHENS	OPG CALIFORNIA OIL COMPANY	kulbeth	1	15755	15953		NO	NO	NO		3
C－61136	STEPHENS	Oen CALIFORNIA OIL COMPANY	kulbeth	1	72	75		NO	NO	No		1
Cmst 1576	STEPHENS	QOE SIGMORE OIL CORPORATION	LAAGGFORD	$A=A$	2872	2997	LaUderdale	NO	NO	No	PENNS YLVAN	3
C－315158C	STEPHENS	कीa SIGMORE OIL CORPORATION	LANGFORD	6－2	2815	2899	LAUDERDALE	No	No	NO	PENNSYLYAN	4
C－60157H	STEPHENS	aEs SIGMORE OIL CORPORATION	LANGFORD	32	2745	2833	lauderdale	No	NO	NO	PENNSYLVAN	5
C－6a712	STERLING		HARRIS，T． H ．	，	2592	2521	camyon	NO	NO	NO	PENNSYLVAN	6
c－01195	STERLING	（ix SUN OIL COMPANY	CLARK，G．	1	5×58	5109		No	NO	MO		15
Cal1226	STERLING	7\％SUN DIL COMPANY	COLE．M．	2	5142．．	5272		NO	No	NO		55
c－31295	STERLING	BOE SUN OIL COMPANY	SPRIMGER	2	1459	1474	SAN ANGELO	No	YES	No	PERMIAN	5
c－51335	STERLING	Dap SUN OIL COMPANY	STRINGER，8．l．	D－1	1617	1626	SAM ANGELO	No	YES	NO	PERMIAN	3
Coln116	STONEWALL	OEO SEABOARD	UPSHAW	4	5857	6243	TANYARD	vo	YES	NO	ORDOVICIAN	25
c．01252	STONE MALL	087．SUN OIL COMPANY	MARTIN	1	5377	5422	STRA＊N	NO	NO	NO	PENNSYLVAN	15
c－31415	STONEGALL	ge SUN OIL COMPANY	MARTIN	7．A	5359.	54.29	STRAMN	NO	YES	NO	PENMSYLVAN	26
c－31260	STONEMALL	WO．SUN OIL COMPANY	MCARTHUR	1	3645	3549	SADDLE CRK	No	YES	NO	PERMIAN	1
c－ 31725	STONEHALL	093．U．S．GEOLOGIC SURVEY	PERMIAN PRDJECT	27	121	485		NO	NO	NO		31
c－0h119	SUTTON	DAT HUMBLE OIL AND REFINING	HARRISON	1	6823	6922	HONE YCUT	N0	YES	No	ORDOVICIAN	12
Cobl 151	SUTTON	OED．HUMBLE OIL ANO REFINING	HARRISON	1	5823	6924	HONE YCUT	No	YES	No	DRDOVICIAN	25
C－73887H	SUTTON	QC\％HUMBLE OIL AND REFINING	NORTH BRANCH UNIT 3	1	587 \％	5978		No	YES	No		2
Con 4975	sution	0）NATIONAL POTASH CO．	Ross	1	1	189		no	No	No		a
C－11264	SUTTON	Gla SUN OIL COMPANY	OUNSAR	1	5325	$6 \% 02$		NO	No	NO		111
c－11227	SUTION	OHS SUN OIL COMPANY	DUNBAR，B． $\mathrm{B}_{\text {．}}$	1	6214	627		No	Yes	NO		8
C－31381	SUTTCN	O6T SUN OIL COMPANY	JoY CASH	1	2691	2781		NO	NO	No		1
C－11393	SUTTON	Dras SUN OIL COMPANY	THEIRS ESTATE	1	2573．	3115		No	No	NO		1
C－21446	SHISHER	Sar STANOARD OF TEXAS	JOHMSON	1	$782{ }^{\text {\％}}$	7829	CANYON	NO	No	NO	PENNSYLVAN	2
c－31269	TAYLOR	90．MA SON－JOHNSON	atlas millile site	LT－1	1.	225		No	No	No		6
C． 21258	taylor	Dea SUN OIL COMPANY	BRADSHAH	2	422？	4237	FRY SAND	NO	YES	NO	PENNSYLVAN	5
C－0141］	TAYLOR	\％at SUN OTL COMPANY	BRADSHAY	4	4215	4245	FRY SAND	No	YES	NO	PENNSYLVAN	4
C－11318	taylor	De SUN OIL COMPANY	BRADSHAW	5	4575	4703．	garner	NO	NO	NO	PENMS YLVAN	9
c－11315	TAYLOR	Qaid SUN OIL COMPANY	CARTHRIGHT	1	4528	4652．	gray	No	YES	NO	PENNSYLVAN	11
c－1329	TAYLOR	D\％．SUN OTL COMPANY	FREDRICKSON	1	4225	4541	JENNINGS	No	Yes	NO	PENNSYLVAN	5
C－71286	TAYLOR	D＊＊SUN OIL COMPANY	PARMELLY	1	3039	329	FLIPPEN	No	YES	NO	PENNSYLYAN	7
C－71432	TAYLOR	00\％SUN OIL COMPANY	RICHARDS	1	1	29		No	YES	NO		3
c－81319	TAYLOR	Det Sun orl company	RICHARDS	2	4399	4459	GOEN LIME	N0	YES	No	PENNS YLVAN	24
Coin767	TERRELL	OHP FOREST OIL CORPORATIOM	JUOKINS（SKIPS）	1	17628	26338	ELLENBURG	NO	NO	No	ORDOVICIAN	15
$c-30175$	TERRELL	觻．INTNL．BNORY．ANO MAT．COMM．	TEST HOLE F	1－15	13	965	GLEN ROSE	No	NO	No	1．CRETAC．－	99
c－76034	TERRELL	DOT SHELL DEV CO（B F PERKINS）	JESSUP，E． $\mathrm{H}^{\text {．}}$	1	2	122	BUDA	No	No	No	L．CRETAC．	6
cores 58	TERRY	DOE STANOL IND	SCALES	1	$952{ }^{2}$	9950．	CANYON	N0	YES	NO	PENNS YLVAN	2
c－63537	TERRY	Ogr STANOLIND	SCALES	5	9881	9985	CANYON	N0	YES	NO	PENNSYLVAN	2
T－103 66	teray	00．TENNECO	CENTRAL GLORIETA UNIT	T 18.	5991	6047	GLORIETA	NO	NO	an		
C－011）45	TERRY	09a UNION PRODUCING COMPANY	cotyen	1	9970	Tanc						

| $C-1497$ | TRAVIS |
| :--- | :--- | :--- |
| C-14 | |

$\begin{aligned} & T-10540 \\ & T-\tan 54 \mathrm{C} \end{aligned}$	uValde uvalde	$\begin{aligned} & 639 \\ & 608 \end{aligned}$	$\begin{aligned} & \text { GULF OIL } \\ & \text { GULF OIL } \end{aligned}$	SOUTHMEST TEXAS SOUTHWEST TEXAS	$\begin{aligned} & \text { PP17 } \\ & \text { RR14 } \end{aligned}$	$\begin{array}{rr} 75 & 136 \\ 211 & 221 \\ \hline \end{array}$		$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$		$\begin{gathered} 10 \\ 1 \end{gathered}$
T－10554B	UVALEE	60\％	GULF OIL	SOUTHHEST TEXAS	U8	245475		No	No	N0		8
T－23近4A	uvalde	30\％	GULF OIL	SOUTHMEST TEXAS	V8	458 ¢06		NO	No	NO		3
C－by 563	uvalde	385	MOHOLE	TEST HELL	1	570．1112		Mo	No	No		1
C－15 59	UVALDE	012	SHELL DEV CO（C I SMITH）	CHALK BLUFF	1	－$\quad 97$	MCKAIGHT	No	No	No	l．CRETAC．	6
C．3644	UVALDE	311	SHELL DEV CO（C I SMITH）	PARDI，GEORGE	1	50， 171	SALMONPEAK	NO	No	No	1．CRETAC．	1.
C－11545	UVALDE	003	TENNECO AND PENNZOIL UNITED	KINCAID，FOT．OET AL	1	3374 4251	PEARSALL	No	NO	No	L．CRETAC．	61
Cail 6092	UVALDE	903	WATER DEVELOPMENT BOARO	TEST YP\％4 69\％42－709		73．697		No	No	NO	CRETACEOUS	32
c－0 14360	VAL VERDE	023	INTNL BNDRY．AND HAT．COMM．	TEST HOLE－POWERHOUSE	4－V	$362 \quad 770$		No	No	NO	L．CRETAC．	31
C－31144	val verde	363	INTNL．BNDRY．AND WAT．COMM．	TEST HOLE	E－1	475736		No	NO	No	L．CRETAC．	21
C－31151	VAL VERDE	ntio	INTNL BNDRY．AND WAT．COMM．	TEST HOLE	10－1	551＊ 854		No	No	ND	L．CRETAC．	42
C－be637A	val verde	$0 \cdot 1$	INTNL．BNDRY．AND MAT．COMM．	TEST HOLE	10－21	23． 158		No	No	No	L．CRETAC．	1
Com6637	VAL VERDE	$0{ }^{1} 1$	INTNL．BNDRY：AND MAT．COMM．	TEST HOLE	ID－22	153 45a		No	NO	NO	L．CRETAC．	2
C－11172A	VAL VERDE	数1	INTNL．BNDRY．AND HAT．COMM．	TEST HOLE	10－22	\％ 711	KIAMICHI	NO	No	No	L．CRETAC．	73
C－$=1145$	VAL VEROE	30	INTNL．BNDRY．ANO YAT．COMM．	TEST HOLE	H0－2	$495 \quad 725$		NO	NO	No	L．CRETAC．	12
C－11148	VAL VERDE		INTNL，BNORY，AND HAT．COMM．	TEST HOLE	40－2	582669		No	No	NO	L．CRETAC．	6
C－01152	VAL VERDE		INTNL．BNDRY．AND MAT．COMM．	TEST HOLE	40－3	651 843		No	NO	NO	L．CRETAC．	8
Cmal 1146	VAL VERDE	50a	INTNL．BNDRY．AND HAT．COMM．	TEST HOLE	W0－6	$57 ?$ 665		No	NO	No	L．CRETAC．	4
C－01147	VAL VEPDE		INTNL BNDRY．AND WAT．COMM．	TEST HOLE	H0－7	301 716		No	No	NO	L．CRETAC．	23
C－01159	VAL VERDE	not	INTNL．BNDRY．AND HAT．COMM．	TEST HOLE	H0－9	484491		No	No	No	L．CRETAC．	2
c－11149	VAL VERDE	bab．	INTNL．BNDRY．ANO WAT．COMM．	TES？HOLE	H0－9A	52\％ 526		No	NO	NO	L．CRETAC．	2
c－07363	VAL VERDE	609．	PHILLIPS PETROLEUM COMPANY	MILSON	1	14983.16341	ELLENBURG	No	Yes	NO	ORDOVICIAN	156
C－36．38	VAL VERDE	30＊	SHELL DEV CO（C I SMITH）	DOLAN FALLS（FAWCETT）	1	$2 \quad 57$		No	NO	NO	L．CRETAC．	5
c－56378	YAL VERDE	36 4	SHELL DEV CO（C I SMITH）	HINDS，LUCIOUS	1	3） 391	GLEN ROSE	No	NO	N\％	L．CRETAC．	45
c－36 376	VAL VERDE	012	SHELL DEV CO（C I SMITH）	SLAUGHTER BEND	1	$2 \quad 155$	MCKNIGHT	NO	No	No	L．CRETAC．	17
C－360 617	VAL VERDE	082	SHELL DEV CO（C I SMITH）	SLAUGHTER BENO	2	＊ 57	MCKNIGHT	No	No	No	L．CRETAC．	6
$\cos 541.4$	VAN ZANDT	103	CRYSTAL OIL COMPANY	G．H．EASLEY	1	1303513301		No	NO	No		8
$\mathrm{C}-31183$	VAN ZANDT	7n复	PAN AMERICAN CORPORATION	NICHOLS，G．V．	3.	13312．13336		No	No	NO		11
Con 119	VAN ZANDT	－39	SUN OIL COMPANY	TRAUIS GAS UNIT	9	13112 13531		NO	NO	No		173
C－11862	victoria	90\％	AMERADA PETROLEUM CORP．	KOVAP	1	1451415172	HILCOX	yes	NO	YES	EOCENE	184
$C \rightarrow 11143$	VICTORIA	3016．	AMERADA PETROLEUM CORP．	TALLEY	1	1444） 14481	WILCOX	No	No	YES	EOCENE	1
c－13 626	VICTORIA	90\％．	GULF BASIN＝BUR R RECLAM．	GARCITAS VALLEY	1－4	$15 \quad 99$		NO	No	NO		19
c－17625	victoria	015	GULF BASIN－BUR．RECLAM．	GUADALUPE YALLEY	1－14	\％1818．		No	NO	No		54
C＊ill 6645	VICTORIA	\＃19	SUN OIL COMPANY	URBAN，E．R．	2	1387514119	vILCOX	Yes	NO	YES	EOCENE	24
c－30622	victoria	018）	TEXAS BASIN－BUR．OF RECLAM．	SAN ANTONIO YALLEY	1－14	－ 105		No	NO	YES		53
	WALKER	Bry．	LONESTAR	CEN COAL＋COKE	G－4	1575.15978		No	No	NO		6
c－tos 521	WALKER	90，	TIDEMATER DIL COMPAMY	Nequan	1	1129712271		No	No	NO		2
c－13343	HARD		DALPORT OIL COMPANY	JOHNSON	8	1885 2113：		No	YES	NO		78
C－D0238	HARD	7mat	GULF OIL CORPORATION	ESTES．M，A	12	28.275347		No	YES	NO		139
C－16274	WARD	Q ${ }^{3}$	GULF OIL COPPORATION	H．S．A．	218	2388 3\％．53	QUEEN	No	YES	NO	PERMIAN	68
c－30272	HARO	010	GULF OIL CORPORATION	M．S．A．	146	17192633	yates	NO	YES	NO	PERMIAN	54
$\mathrm{c}-14273$	HARO	68	GULF OIL CORPGRATION	O－BRIEN	212	25513881	QUEEN	No	NO	No	PERMIAN	43
B－481］9	HARO	300	SHELL OIL COMPANY	SEALY－SMITH	3	1046310484	ELLENBURG	NO	res	NO	ORDOVICIAN	1
Csobl3 38 A	WARD	abr	SHELL OIL COMPANY	SEALY－SMITH	89	38873376	OUEEN	No	No	NO	PERMIAN	48
C－inilif	HARE	0 O	SHELL CIL COMPANY	SLOAN	13	378\％393\％	glorieta	No	NO	No	PERMIAN	25
c－3） 571	WARD	050	STANDARD OF TEXAS	HARDAGE ANO WILSON	1－？	78537949		NO	No	NO		32
C－3054 51	YARD	bis．	Standard of texas	SEALY－SMITH	4－1	856？ 8625		No	NO	NO		2 L
C－00551	WARD	000.	STANDARD OF TEXAS	SEALYOSMITH	7－1	35238654		NO	No	No		14
C－553	HARD	00^{4}	StANDARD DF TEXAS	SEALY SMITH	8－1	86938711		No	NO	NO		35
Cobl569	WARD	10\％	STANDARD OF TEXAS	STEGART	6	$7724 \quad 7879$		No	No	N0	PENNSYLVAN	51
c－05564．	HARD	008	STANOLIND	SHIPLY QUEEN	12－1 x	$2425 \quad 2952$	QUEEN	No	No	NO	PERMIAN	45
C－37504	HARD	607	STANOLIND	TUBBS	1	39558275	WADDELL	No	No	No	ORDOUICIAN	15
C．07572A	HEBB	003	GETTY DIL COMPANY	BEMAVIDES	1	968． 10329	WILCOX	No	YES	yes	EOCENE	14
c－0 5102	MEBA	001	HUNT OIL COMPANY	REUTHINGER	1	1435114398	SLIGO	No	No	No	L．CRETAC．	6

$0-134$
HEBH
WFQ日
-
Q9. TEXACO
HATKINS
LAREDO

1 00. TEXAS CENTRAL POHER COMPANY | $C-00399$ | WEBB |
| :--- | :--- | 69 GULF BASIN-BUR. OF RECLAM. C- WHARTON TH: BROOKYOOD

COMPANY LAREDO
 $\begin{array}{lcccc}\text { LAREDO } & & 252 & 1326 & \text { NO } \\ \text { COLORAOO VALLEY } & 1-9 & 8 & 3 \\ \text { TAYLOR } & 1 & 1728 & 7849 \text { MISSOURIAN NO }\end{array}$ C-BE586 WHEELER On MOBIL OTL COMPANY HALKER, LEE, HATTIE LEE C-01033 HHEELER

OO. PAN AMERICAN CORPORATION 09. PAN AMERICAN CORPORATION

DO PAN AMFRICAN CORPORATION \begin{tabular}{c}
C-01036

\hline Cot 1977

HHEELER

 COT OHEELER ONE AMERICAN CORPORATION C- 00583 HHEELER OOZ PAN AMERICAN CORPORATION $\begin{array}{llll}C-01378 & \text { WHEELER DA! PAN AMERICAN CORPORATION } \\ \text { C-RO584 }\end{array}$

$C-00584$ \& HHEELER

\hline-21080 \& $H E E L E R ~ P A N ~ A M E R I C A N ~ C O R P O R A T I O N ~$
\end{tabular}

 C- 1.79 WHEELER EOT, PAN AMERICAN CORPDRATION
 $\frac{C-61.26}{C-10108}$ WHEELER \quad OHELER PAN AMERICAN CORPORATION C- 1121 HHEELER WON SIDHELL. E. C. AND R. C.

 C-VEOB4A HICHITA OR MAGNDLTA PETROLEUM COMPANY C-30083 HICHITA OOT MAGNOLIA PETROLEUM COMPANY Cond 2 T7F HICHITA ONF MAGNOLIA PETROLEUM COMPANY B-DGO $76 F$ HICHITA GH MAGNOLIA PETROLEUM COMPANY C-DODT7E WICHITA DE MAGNOLIA PETROLEUM COMPANY C-TEST7C HICHITA GOD. MAGNOLIA PETROLEUM COMPANY C-DEAT7D HICHITA OQ MAGNOLIA PETROLEUM COMPANY

 B-30.176E HICHITA GLQ. MAGNOLIA PETROLEUM COMPANY C-TDI75G UICHITA OAT MAGNOLIA PETROLEUM COMPANY C-DOET5F HICHITA OOD MAGNOLIA PETROLEUM COMPANY COBDT5E WICHITA OET MAGNOLIA PETROLEUM COMPANY C-OUTOD HICHITA OS MAGNOLTA PETROLEUM COMPANY -C-DGZ83E HICHITA OY' MAGNOLIA PETROLEUM COMPANY C-OB3.83E HICHITA DO. MAGNOLIA PETROLEUM COMPANY
 C-BST74B HICHITA BEB MAGNOLIA PETROLEUM COMPANY C-ABD49 WICHITA SE MAGNOLIA PETROLEUM COMPANY C-00048 HICHITA GOn MAGNOLTA PETROLEUM COMPANY C- 3.1438 HICHITA ODA MAGNOLIA PETROLEUM COMPANY 8-55179 HICHITA OOT MAGNOLIA

A PETROLEUM COMPANY C-DOAB3A WICHITA OO MAGNOLIA PETROLEUM COMPANY C-DDEB3B MICHITA BJ MAGNOLIA PETROLEUM COMPANY. C-OUNB3C WICHITA OOR MAGNOLIA PETROLEUM COMPANY $\frac{C-0083 C}{C-B O D S E E}$ HICHITA OG MAGNOLIA PETROLEUM COMPANY C-OBD82E AICHITA OUO MAGNULIA PETROLFUM COMPANY

[^0]

C－10334A	WICHITA	000	MAGNOLIA	PETROLEUM	COMPANY	RAMMING	44	172%	1754	GUNSIGHT	NO	NO	No	PENNS YLVAN	1
C－30174	HICHITA	008	MAGNOLIA	PETROLEUM	COMPANY	RAMMING	45	1725	1742	GUNSIGHT	No	No	No	PENNSYLVAN	1
C－600736	WICHITA	93%	MA GNOL IA	PETROLEUM	COMPANY．	RAMMING	46	175	1723	GUNSIGHT	No	NO	No	PENMSYLUAN	1
B－10273F	WICHITA	075．	Magnolia	PETROLEUM	COMPANY	RAMMING（SKIPS）	47	773	1718	GUNSIGHT	No	NO	NO	PENNSYLVAN	2
3－00633E	HICHITA	071	MAGNOLIA	PETROLEUM	COMPANY	RAMMING	48	1775	1793	GUNS IGHT	NO	No	No	PENNSYLVAN	1
8－6013C	WICHITA	006	MAGNOLIA	PETROLEUM	COMPANY	REILLY（SKIPS）	143	1295	1885	GUNSIGHT	NO	yes	NO	PENNSYLVAN	3
8－63082G	HICHITA		MAgNOLIA	PETROLEUM	COMPANY	REILLY	165	481	517		NO	YES	NO		1
B－320734	WICHITA	10\％	MAGNOL IA	PETROLEUM	COMPANY	REILLY（SKIPS）	165	592	1528	GUNSIGHT	NO	YES	No	PENNSYLVAN	1
$\mathrm{C}-37381 \mathrm{C}$	WICHITA	30\％	MAGNOLIA	PETROLEUM	COMPANY	REILLY（SKIPS）	157	497	1290		NO	YES	NO		1
B－30］72F	WICHITA	O3：	MAGNOLIA	PETROLEUM	COMPANY	REILLY	184	1515	1633	GUNSIGHT	NO	No	No	PENNSYLVAN	1
B－00372E	HICHITA	0n\％	MAGNOLIA	PETROLEUM	COMPANY	REILLY（SKIPS）	185	753	1521	GUNS IGHT	NO	No	No	PENNSYLVAN	1
8－30072B	WICHITA	080	MAGNOLTA	PETROLEUM	COMPANY	REILLY（SKIPS）	198.	1371	1507		NO	No	NO		2
B－00071G	HICHITA	307	MAGNOL IA	PETROLEUM	COMPANY	REILLY（SKIPS）	192	1498	1582	GUNSIGHT	No	No	No	PENNSYLUAN	1
B－70076	WICHITA	003	MAGNOLIA	PETROLEUM	COMPANY	REILLY（SKIPS）	194	395	1526	GUNSIGHT	NO	No	No	PENNSYLVAN	2
B－201312	WICHITA	339	MA GNOLIA	PETROLEUA	COMPANY	REILLY	195	1325	1337		NO	No	NO		1
B－30077 F	HICHITA	128.	MAGNOL IA	PETROLEUM	COMPANY	REILLY（SKIPS）	198	387	1379		NO	NO	No		1
B－00383F	WICHITA	TT］	MAGNOLIA	PETROLEUM	COMPANY	REILLY	23 \％	1329	1333		N0	No	No		1
3－701871C	HICHITA	30］${ }^{3}$	MAGNOLIA	PETROLEUM	COMPANY	REILLY	231	1355	1364		NO	NO	No		1
B－192700	HICHITA	03 ？	MAGNOL IA	PETROLEUM	COMPANY	REILLY	285	1623	1645	GUNS IGHT	NO	No	No	PENNSYLVAN	1
C－30］7ac	WICHITA	619	MAGNOLIA	PETROLEUM	COMPANY	REILLY	217	167	1615	GUNSIGHT	NO	NO	NO	PENNSYLVAN	1
B－313．73	UICHITA	019．	MAGNOL IA	PETROLEUM	COMPANY	REILLY（SKIPS）	209	515	1492		NO	No	NO		3
8－10279	WICHITA	037	MAGNOLIA	PETROLEUM	COMPANY	REILLY（SKIPS）	21.	1355	150.9	GUNSIGHT	N0	NO	NO	PENNSYLVAN	1
B－231369F	WICHITA	39%	MAGNOLIA	PETROLEUM	COMPANY	REILLY（SKIPS）	214	1335	1512	GUNSIGHT	NO	N0	No	PENNSYLVAN	1
B－0．9850	WICHITA	178	MAgNOLIA	PETROLEUM	COMPANY	THOM	21	1532	1533		NO	NO	NO		1
C－11439	WICHITA	064	MOBIL OIL	COMPANY		HDNAKER	74	4649	4655		NO	NO	NO		1
c－81441	WICHITA	B0\％	MOBIL OIL	COMPANY		HONAKER	75	4	8.		NO	NO	NO		2%
C－h1171E	VICHITA	0 O	SHELL OIL	COMPANY		KMA	353	3763	3961	ELLENBURG	NO	NO	NO	OROOVICIAN	15
Conto 848	WICHITA	109年	VIERSON	PETR．COMPA	NY	KEMPNER	1	3742	3768	ELLENBURG	NO	No	No	ORDOUICIAN	2
B－303746	UILBARGER	502	MA GNOLIA．	PETROLEUM	COMPANY	H．AND T．C．	34	2223	2248		NO	NO	No		1
B－00074E	WILBARGER	$30 \cdot$	MAGNOLIA	PETROLEUM	COMPANY	H．AND T．C．	55	2238	3113		NO	NO	No		2
8－31074F	WIL AARGER	牙衰	MAGNOLIA	PETROLEUM	COMPANY	H．AND T． C ．	54	321\％．	3713		NO	No	No		1
C－01175B	HILBARGER	3）${ }^{\text {a }}$	SHELL OIL	COMPANY		CULLAR	1	5255	6746	ELLENBURG	NO	NO	NO	ORDOVICIAN	47
C－601710	UILBARGER	gta	SHELL DIL	COMPANY		DAVIS	1	6151	6599	ELLENBURG	NO	M0	NO	ORDOVICIAN	54
C＝a 1022	HILBARGER	009	STANOARD	OF TEXAS		HILLIAMS	1	7289.	7554	ELLENBURG	NO	No	No	ORDOVICIAN	1
c－200730	WICHITA	805	Magnolia	PETROLEUM	COMPANY	REILLY	29	1279	1283		NO	YES	NO		1
c－101738	WICHITA	003	MAgNOLIA	PETROLEUM	COMPANY	REILLY	159	1759	1767	GUNSIGHT	NO	YES	No	PENNSYLVAN	1
C－00072G	HICHITA	000	MAGNOLIA	PETROLEUM	COMPANY	REILLY	183	$16 \% 8$	1524	GUNSIGHT	No	NO	NO	PENNSYLVAN	1
C－000720	WICHITA	40\％	MA GNOL IA	PETROLEUM	COMPANY	REILLY	188	1594	1612	GUNS IGHT	N0	NO	NO	PENNSYLVAN	1
C－10272C	WICHITA	00 \％	MA GNOL TA	PETROLEUM	COMPANY	REILLY	189	1591	1633	GUNSIGHT	NO	NO	NO	PENNSYLVAN	1
C－00072A	HICHITA	0 O	MAGNOLIA	PETROLEUM	COMPANY	REILLY	191	1571	1586	GUNSIGHT	NO	NO	NO	PENASYLYAN	1
B－98071F	WICHITA	$0)^{\text {a }}$	MAGNOLIA	PETROLEUM	COMPANY	REILLY	193	1432	1421：		ND	No	NO		1
8－936710	WICHITA	002	MAGNOLIA	PETROLEUM	COMPANY	REILLY	196	1342	1353		NO	No	No		1
B－32971B	WICHITA	785	MAgNOL IA	PETROLEUM	COMPANY	REILLY	23.2	1348	1359		NO	NO	N0		1
B－012 71 A	VICHITA	0\％n	MAGNOLIA	PETROLEUM	COMPANY	REILLY	213	1344	1349		No	NO	NO		1
C－76\％73E	WICHITA	0\％	MAGNOL IA	PETROLEUM	COMPANY	REILLY	23.4	1342.	1352		NO	No	NO		1
8－60169G	WICHITA	pen	MAGNOLIA	PETROLEUM	COMPANY	REILLY	213	1523	1534	GUNS IGHT	NO	No	No	PENNSYLVAN	1
C－89635	HILLIAMSO	Nan3	ANDERSON	－PRICHARD		BACHMEYER，LEO	1	1585	1714	BUDA	No	No	NO	L．CRETAC．	2
c－4 4329	WILLIAMSO	Nat？	ANDERSON	PPRICHARD		BACHMEYER，LEO	1	1335	1391	BUDA	N0	YES	NO	L．CRETAC．	16
c－113326	HILLIAMSO	Nov？	ANDERSON	－PRICHARD		ERHART	1	1433.	1455	BUDA	No	NO	NO	L．CRETAC．	7
c－01327	WILLIAMSO	Noto	ANDERSON	－PRICHARD		GING，S．R．	1	1088	1265	BUDA	NO	YES	NO	L．CRETAC．	42
C－03323	HILLIAMSO	N30＊	ANDERSON	－PRICHARD		PREUSSE	1	1199	1138	AUSTIN	NO	YES	NO	U．CRETAC．	6
C－IT3425	WILLIAMSO	Nant	ANDERSON	－PRICHARD		PREUSSE	B－1	1103	1194	AUSTIN	NO	YES	YES	U．CRETAC．	27
C－3n328	WILLIAMSO	NDS：	ANDERSON	－PRICHARD		PREUSSE	2	1142	2296	BUDA	NO	YES	NO	L．CRETAC．	45
c－0．3330	MILLIAMSO	Notot	ANDERSON	－PRICHARD		BACHPMEYER	1	1182	1934	GEORGETOWN	NO	NO	No	L．CRETAC．	33
$\mathrm{C}-30318$	WILLIAMSO	Nast	ANDERSON	－PRICHARD		HEISNER	1－A	1164	1235	RIINA－	M． 0	an			

countered in atlempting to find the thermal conductivity appropriate to the geo logic section in which the temperatures were measured. The conductivities of rocks range from 0.002 to 0.020 calories per centimeter-second-degree $\mathrm{C}_{\text {- }}$. and despite continuing efforts, it is still not possible io make satisfactory estimates of the thermal conductivity of sandstones, shales, or limestones on the basis of lithologic descriptions. Direct measurements of the conductivity are required, but available cores rarely provide an adequate sample of the local lithology.

It does appear possible, however, to make use of temperatures in evaporite sections. A preliminary survey showed that the gradients in the Salado salt sec!ion (Upper Permian) in West Texas and castern New Mexico varied little ove: a wide area. This suggests that the average conductivity of the salt remains the

Fig. i. Location map showing wells from which temperature data were taken. Index of wells shown in Figure a
i. Sandburg and Mills No. i.
2. Cap Rock Oil and Gas No. r.
3. Superior No. I Community.
4. New Mexico Producers and Refmers No. y hluehird.
5. Marland-Ohio No. i Workman.
6. Getty No. 7 Dooley.
7. Gulf No. I Northrup.
8. Standard Potash No. 2 Test.
9. Donnelly and Gerke No. i University.
10. O'Reilly, Slack, and Owen No. I University.
ame over the whole area. If a suitable vaite of this mean conductivity is found, \because is then possible to find the heat flow in a considerable number of wells peneraing this formation.

This study was greatly advanced by the use of a continuous temperature log :ron the Gulf No. r Northrup well in Reeves County, 'Cexas. Analysis of this log shows clear changes of gradient at lithologic boundaries and establishes a useful ratio between the mean conductivities of salt and anhydrite. Older temperature measurements, made with mercury thermometers at isolated points without regard ior lithologic boundaries, are, of course, inadequate for demonstrating sharp) changes of gradient. Nevertheless, useful results were obtained from these old datia.

ACKNOWLEDGMENTS

We are indebted to Mr. Charles L. Jones of the U. S. Geological Survey for supplying us with a number of samples from the Ochoa series near Carlsbad,入ew Mexico. Mr. McLain J. Forman of New Orleans kindly provided samples oi anhydrite rock from the cap rock of a Gulf Coast salt dome. We are particularly indebted to Mr. George W. Leney and Dr. James T. Wilson of the University of Michigan for permission to include their unpublished measurements of the thermal conductivity of rock salt in our summary. The temperature log of the Gulf No. I Northrop well was provided through the courtesy of Mr. C. D. Cordry of the Gulf Oil Co. Finally, we wish to express our appreciation to Dr. Francis Birch for advice in all phases of the work and for critically reviewing the manuscript.

IEMPERATURE GRADIENTS

The temperature data available for this work can be divided into two cateyories. In the first there is only one well, the Gulf No.. i Northrup. Mr. C. D. Cordry of the Gulf Oil Co. kindly supplied a continuous temperature log of this well. The remaining data were, with one exception, laken from Hawtof (1930): In this second category, the temperatures were read with thermometers at inter"als of 250 or 500 feet. Hawtof's measurements only accidentally fall at formation contacts, and hence they usually show no evidence of abrupt changes in the slopes of the temperature-depth curves. Smooth, although somewhat wavy curves would also fit the data. Sharp changes in gradient are inferred from theoretical considerations and are strikingly displayed by the results obtained from the Gulf No. I Northrup well. Kecping these facts in mind, temperature-depth curves were reconstructed from Hawtof's measurements with the introduction of abrupt Ureaks in slope at contacts in the manner shown in Figure 2.

In some of the wells, the temperature was measured at only one point in the alt section. In this case the gradient in the salt was found by extrapolating the fradients in the underlying and overlying sections to the contacts of the salt, thus giving the temperatures at those points. The gradients found in this way are less reliable than those found from two or more temperatures measured in the silt section, and are distinguished in the tabulated results. Examples of a "retiable" and an "unreliable" gradient in the salt are shown in Figure 2.

The interpretation of discontinuous temperature data vequires considerable judgment，and it is impossible to present either the details of our calculations or complete discussions of individual wells in a short paper．Wic have tried to select wells in which the relation between gradients and lithology is clear and susceptible of only one interpretation．In the interest of brevity and for easy reference，our calculated gradients are collected in table 3 in a later section．
Gulf No．I Norlhrup Well．Reeves County，Texas．
This well is located in southeast Reeves County a few miles west of the Pecos County line．The well was drilled by the rotary method，but was left undisturbed for one year before the temperature measurements were made．Schlumberger Well Surveying corporation made a continuous temperature log of the well from the surface to 8,076 feet；a radioactivity \log was available for the cased part of the well from the surface to 5,200 fect and both radioactivity and electric logs were

Fic：2．Examples of＂reliable＂and＂unreliable＂Gradients in the Upper Salt，Big Lake Fital The＂reliable＂curve is from Big Take－University Well No．119，and the＂unreliable＂curve is froest： Big Lake－University Well No．no．
a a a able below this depth．The total depth of the well is now 18,609 feet．
A gencratized stratigraphic section，compiled from several sources（Adams， 1944；Woods，1940，Lang，1935；Lang，1939；and Carsey，1935），was correlated with the well logs．ferrelations with the radioactivity \log above 5 ； 200 fect were checked against the typical radioactivity log of the Ochoa scries given by Russell （1941）．

The temperature profle and gradients for this well are shown in figure 3 ． The correlation beiween the gradient and the lithologies as determined from the well logs is striking，as is the sharpness of the change in gradient at several points． The yalue of a continuous temperature log is well－demonstrated by these results．

Big Lake Oil Field，Regan Counly，Texas．
There are three beds of salt in the Upper Castile formation in the Big Lake re－ gion，but only the uppermost one is thick enough to be detected on discontinuous temperature logs．Well logs given by Hennen（1929）and Sellards and Patton （1926）show that the thickness of the salt is uniformly 570 feet throughout the field．Hawtof（I930）gives the depth of the top of the salt section for all of the wells in which he measured temperatures．

Wells in Upton and Midland Connties，Texas．
Useful data were obtained from the Donnelly and Gerke No．i University well and from the Standard Potash No． 2 Test well in Upton and Midland Coun－

Fig．3．Temperature，Geothermal Gradients，and Lithologies in the Gulf No．I Northrup Well， Reeves County，Texas．Lithology from electric and radioactivity logs．
fies respectively. Hawtof (I930) again gives the depth to the top of the sate each well. The section in these wells was assumed to be the same as in the that Lake field, since accurate knowledge of the thickness of the salt is unnecesson In the former well the gradient is determined by two measurements of tempa fure in the salt section. In the latier, one measurement made in the sali \& har deepest in the well.

Wells in Lea and Eddy Counies, New Mcxico.

The stratigraphy in the northern part of the Delaware Basin is compthate by an unconformity at the base of the Rustler formation which cuts out montome the salt in this region. North-south and east-west cross sections by Krote (r939) in the vicinity of Cardsbad show that over the Central Basin Platoust thick section of salt with little or no anhydrite is encountered. In the basin tsony relations are reversed, and anhydrite predominates over salt.

से
Reliable gradients were obtained in three of the six wells in New Meximot, the Sandburg and Mills No. I well, the gradient was found in anhydrite, fite Marland-Ohio No. I Workman and the Getty No. 7 Dooley wells, data, way tained from a salt section with neghigible amounts of anhydrite. In the latertat the temperatures were taken from Van Orstrand (1937); and Lang (1937) © the section in the well. In the three remaining wells, the evaporite sectiontso up of both salt and anhydrite; without detailed sample logs it is impossibere determine the proportions of the two types of rock. Since the gradients aretert liable in all of these wells, highly accurate knowledge of lithology is unwarritght, EWe shall employ conducivities based on our best estimates of the lithologidg "calculating the heat flow in these wells.
药 THERMAL CONDUCTIVITY

The geothermal gradients encountered in the salt section in the Perfoth Basin are rather uniform over the area examined (table 3). This suggests thatite heat flow and the thermal conductivity in the salt are also nearly uniforpfor alternative, to suppose that both of the latter quantities are changing, in stat way as to leave the gradients unaffected, demands an improbably close bitize between independent quantities. In order to calculate the heat flow in thistegt it is only necessary to estimate the conductivity of the salt section. Resuldat new measurements of thermal conductivity of other materials pertinent tof study will also be presented.

Conductinity of Rock Sall.

Because of the ease with which pure samples of salt can be obtaind would expect to be dealing with a well-defined, uniform material; nevertherget measurements of its thermal conductivity have not led to consistent rent ; Some of the discrepancies between the findings of various workers is dodtemot due to real differences between the materials studied, but some must btget to experimental error. It is known that carefully prepared synthetic crate
baw comuctivities that are higher than natural ones (Birch and Clark, 1940), and consequently litule weight can be piven determinations made on such maemals in estimating the conductivity as rock salt.

Measurements of the thermal cons wivity of rock salt as a function of temfeature are shown in Figure 4. The measurements by Ballard, McCarthy, and natis (1050) are on synthetic crystais, the remainder are on natural material. There is a tendency for the results to be concentrated about the curve represent--g the measurements of Birch and Clark (i940). The two values that fall well betow this curve are probably erroncous. Most of the points above the curve meresent measurements on single crystals, and their greater purity and perfection eay acount for the higher conductivity.

If we ignore the measarements made on artificial crystals and those which mpar to be affected by experimental crror, the results shown in figure 4 sugter that the conductivity of rock salt is about 13^{1} at a temperature of 20 to

Fig. 4. Thermal conductivity of rock salt as a function of temperature. The curve is from Wich and Clark (1940). Other references: 1. Birch et al. (1942); 2. Present study (see table 2); 3. tigullished measurements by George W. Leney; 4. Ballard, McCarthy, and Davis (r950); 5. Benfield *290); 6. Coster (1947). Points marked with the letter S represent measurements on single orystals.
$30^{\circ} \mathrm{C}$. The only pertinent values that depart. widely from this figure are those of Benfield (1939) and Coster (1947). Both of these measurements were made on natural rock salt with apparatus of proven reliability. It appears that rock salt may have a thermal conductivity considerably higher than 13 , but on the basis of present data such values must be considered exceptional. We adopt is as the conductivity of rock salt, with an estimated uncertaindy of ten porcent.

Coinductivily of Anhydrile.

Measurements of the conductivity of massive anhydrite rock are given in table i. Specimens from the Loetschberg Tunnel in Switzerland and from the - cap rock of a Gulf Coast salt dome gave fairly consistent results, but these samples were exceedingly pure, and their densities approached that of single crystals of the mineral. Specimens with porosity or containing small amounts of gypsum should have lower conductivities. This may account for the difference between Coster's (1947) results and the other values given in table 1 . We adopt a value of 13.5 for the conductivity of pure anhydrite rock.

Table I
Tuermal Conductivity of Anhymrite.

The results of measurements of conductivity made for this study are col. lected in table 2. The rocks from New Mexico were kindly supplied by Ifr. Charles L. Jones of the U. S. Geological Survey. These specimens were from the Rustler and Salado formations, and were chosen because of lithology rather thon stratigraphic position. The measurements were made with the apparatusde scribed by Birch (i950).

It appears from these data that the presence of small amounts of impurities has little effect on the conductivity of rock salt. Polyhalite is a poor conductery
${ }^{1}$ Valucs of conductivity will henceforth be written as numbers with units $10^{-3} \mathrm{cal} / \mathrm{cm} \mathrm{sec}$ understood.
and our single sample of shale has a rather low conductivity for this type of rock One specimen of dolomite has a conductivity of 10.6 compared with a mean value of 8.I found by Birch and Clark (1945) for three samples from Cranc County, Texas.

Conductivily of Other Sediments.

Once the heat flow in a well is found by means of the gradient in the salt section and the adopted conductivity of rock salt, it is possible to find the mean conductivity of other rock units by dividing the heat flow by the gradients obtained in other parts of the well. This provides a rough test of the "reasonability" of the heat flow. Measured values of the conductivity of shale range from

Table 2.
Results of New Conductivity Measurements

about 3.0 to 5.0 , for sandstone from 4.8 to 8.1 , limestone 5.0 to 7.3 , and dolomite 8. to 13.2 . (These data were taken from Birch et al., r942; Mossop and Gafner, 1951; Bullard and Niblett, 195 I ; and Birch and Clark, 1945.)

We expect that the mean conductivity in an interval, as calculated from the gradients, should be in reasonable agreement with the figures given above. For heterogeneous sections a weighted mean conductivity must be used. For layered rocks the appropriate formula for the conductivity of a heterogeneous interval is ${ }^{1} K=\sum_{i} w_{i} / K_{i}$, where K is the mean conductivity in the interval, K_{i} is the conductivity of the ith homogencous bed, and w_{i} is the ratio of the thickness of the th bed to the thickness of the entire interval. This formula is analogous to that used for calculating the resistance of electrical resistors in series.

HEAT FLOW

Geothermal gradients, assumed conductivities in the evaporite section, and resultant values of the heat flow are collected in table 3 . With $\mathrm{r} .1 \times 10^{-6} \mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$ for the heat how in the Gulf No. I Northrup well, the conductivities given in table 4 are found for other strata in the well. The valucs for the clastic rocks are in reasonable agrecment with the measured values mentioned in the preceding section, but the Castile anhydrite has a lower conductivity than that found for pure anhydrite rock. This discrepancy is presumed to be due to laminae of calcite which occur throughout the Castile formation. According to Adams (1944) the anhydrite layers are characteristically two or three times as thick as the calcite layers, and there are also beds of pure anhydrite up to several fect in thickness scattered irregularly through the section. We assume the calcite layers to have a

Table 3
Granients, Conductivity, and Heat Flow in West Texas, And Castern New Mexico

Well Name	Geothermal Grarlient in Eaporites (${ }^{\circ} \mathrm{C} . / \mathrm{km}$)	Combuctivity $\left(\mathrm{cal} / \mathrm{cm} \mathrm{sec}^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { Heat Flow } \\ & \left(\mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}\right) \end{aligned}$
Reves Co., Tex. Gulf No. 1 Northrup	*8. 29	${ }_{13} \times 10^{-3}$	${ }^{*}$ I. 1×10^{-6}.
Regan Co. Tex.			
Big Lake-University	*). 00	13	* 1.2
$\begin{array}{r} 103 \\ \because 100 \end{array}$	8.80	1.3	1.1
$\therefore \quad 110$	9.84	13	1.3 :
112	9.15	1.3	${ }^{1.2}$ 1.
115	*7.59	-13	
148	${ }_{* 7}^{*} \cdot 9.94$	13	${ }^{1} 1.10 \%$
- 119	8.34 8.5	13 13	1.1
- 124	S. 3.	13	1.1
+125 +126	8. *. 29	13 13	${ }^{1} \mathrm{I}$. 1
126 127	*8. 57	13	*I. 1
O'Reilly-Stack-Owen-University No. I	9.74	${ }^{1} 3$	1.3 :
Unton Co., Tex. Donnelly and Gerke No. I	*8. 20	13	*I. 1
Midtand Co., Tex. Standard Potash No. 2 Test	$9 \cdot 4$	13	1.2 .
Eddy Co., New Mexico			
Sandburg and Mills No. i	* 10.27	$11 . S^{1}$	${ }^{1} 22{ }^{\text {a }}$
Superior No. i Community	10.12	$11 . S^{1}$	1.2 8,
New Mexico Producers \& Refiners No. I Bluebird	7.25	13	
Marland-Ohio No. y Worknan	*7.70	13	*1.0
Getty No. 7 Dooley .	* 3.02	13	1.0. $0^{\text {ctig }}$
Lea Co., New Mexico Cap Rock Oil and Gas No. I	9.2(?)	13	$1.2(?)$

[^1]conductivity of 7 and the anhydrite 13.5 . If the section consists of 30 perct calcite, its mean conductivity is 10.4 ; it is Ir.4 if calcite layers make up 20 perce of the section. Agreement with the value of ir. 8 calculated from the gradients oblained by assuming about 15 percent calcite in the anhydrite. We adopt a cc ductivity of w. 8 for the Castile formation in order to estimate the heat flow some of the wells in New Mexico which encountered no thick salt section.

In the Big Lake field the conductivity of the beds above the salt was calculat from the gradients by taking the heat flow to be equal to the mean of the relial. values in the salt section ($1.1 \times 10^{-6} \mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$). The beds above the salt have mean conductivity of 7.4 , which is reasonable for a sequence of clastic rocks.

Table 4
Conductrities in time Gulf No. 1. Northrup Well

$=1$ Interval \quad| Conductivity |
| :---: |
| (cal/cm sec ${ }^{\circ} \mathrm{C}$.) |

The mean value of the beat flow in the reliable wells in New Mexico i: I.I $\times 10^{-6} \mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$, but the heat flow in wells drilled through salt is system atically lower than that found in the anhydrite. Our value of the conductivity of the anhydrite may be too high, but until an opportunity for a detailed study of the conductivity of these rocks presents itself, the question must remain unsettled

In all of the places examined the heat flow is found to be close to $1 . I \times 10^{-1}$. $\mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$. This value is lower than the value of $\mathrm{r} .4 \times 10^{-6}$ found by Richardsor and Wells (1931) in New Mexico, and considerably lower than the value 2.0×10^{-6} found by Birch and Clark (1945). The former result is based on a conductivity of anhydrite of 12.3 , and Richardson and Wells give no source of this value. The heat flow found by Birch and Clark was obtained from gradients in the Big Lake University $1-B$ well, and measured conductivities of rocks from wells in Upton and Crane Counties, Texas. They found a gradient of $24^{\circ} \mathrm{C} . / \mathrm{km}$ between 2,500 and 6,500 feet, which is below the evaporite section. They assumed that the rocks in this interval were represented by samples of dolomitic limestones from the wells further west. These samples are not representative of the lithologies encountered between 2,500 and 6,500 feet in the Big Lake field, although they are probably of the same age. From the driller's log of this well (Hennen, 1929), the rocks in this interval are estimated to be: 7 percent sand, 5 percent anhydrite, 46 percent shale and silt, and 42 percent limestone and dolomite. Assuming conductivities of 6 for the sand (which contains some shale); 3 for the shale, 13.5 for the anhydrite, and 8 for the carbonates, we find the mean conductivity in this interval to be 4.5 . It is likely that in some cases limestone was mistaken for dolo-
mite in the driller's log. If we assume that all of the rocks logged as carbonates are anhydrite with conductivity 13.5 , the mean conductivity in the interval is found to be 5.O. The resulting heat flow is I.I or $\mathrm{I} .2 \times 1 \mathrm{I}^{-6} \mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$ depending on the assumed conductivity. The close agreement between this value and that obtained from the salt section is fortuitous, for driller's logs are not reliable indices of lithology and the values of conductivity that we have adopted are no more than guided guesses. Nevertheless the result shows that the heat flow of 2.0×10^{-6} found by Birch and Clark is improbably large, and that there is no serious disagreement between the heat flow in this part of the well and that in the salt section.

The gradient below 7,000 feet in this well is greater than $34^{\circ} \mathrm{C} . / \mathrm{km}$ (Birch and Clark, 1945). According to the driller's \log the rocks below 7,000 feet are mainly carbonates, and such a high gradient is unexpected. We must conclude that either the temperatures are in error or the carbonates are extremely porous limestones of low conductivity (ca. 4). If the conductivity of the limestones were as high as 7 , the heat flow would be about $2.4 \times 10^{-6} \mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$. This requires that the conductivity of salt be about 29 , which scems impossible.

conclusions

On the basis of present data we conclude that the heat flow in West Texas and eastern New Mexico is $\mathrm{r} . \mathrm{I} \pm 0 . \mathrm{I} \times 10^{-6} \mathrm{cal} / \mathrm{cm}^{2} \mathrm{sec}$. More accurate studies will be necessary if changes in heat flow from place to place within this region are to be established. The most serious error affecting our results arises from the lack of measured values of the thermal conductivity of the rocks in which the temperatures were measured. Our estimated uncertainty of ten percent should be sufficiently generous, but our results are subject to revision should future measurements prove our adopted value of the conductivity to be in error.

There is a definite correlation between geothermal gradient and lithology in regions in which formations of contrasting thermal conductivity are found. This correlation is best demonstrated by continuous temperature logs; measurements of temperature at isolated points cannot reveal abrupt changes of gradient. The low gradients in the salt sequence in the Permian basin persist over a large area; the "coolness" of the rocks in this region is due to the high conductivity of the evaporites.

It is fruitless to attempt to interpret temperature-depth curves without regard for lithology. In this comection we are faced with a paradoxical situation, for a preponderance of data on underground temperatures comes from wells for which there is no modern lithologic control. Our knowledge of heat flow could be greatly enhanced by modern data on both temperature and conductivity from a relatively small number of oil wells. It is to be hoped that opportunities for new measurements of these quantities will be recognized by geologists in charge of drilling, and that continuous temperature logs, as well as adequate cores from the logged section, will become available in the future.

REFERENCES

Whams, J. E., 1944, Epper Permian Ochoa Series of Delaware Basin, West Texas and Southeastern New Mexico: Bull. Amer. Assoc. Petrol. Geol., v. 28, p. 1596-1625.
Ballard, S. S. McCarthy, K. A., and Davis, W. C., 1950, A method for measuring the thermal con ducivity of small samples of poorly conducting materials such as optical crystals: Rev. Sci. Inst., v. 2 I, p. 105-907
ienfield, A. E., ro30, Tcrestrial heat flow in Great Britain: Proc. Roy. Soc. A, v. 173, p. 428-450 iirch, Francis, 1950, Flow of heat in the Front Range, Colorado: Gcol. Soc. Am., Bull., v. 6r, p 567-630.
_——, 1954, The present state of geothermal investigations: Geophysics, v. 19, p. 645-659. ture and com, Farry, 1940, The thermal conductivity of rocks and its dependence on tempera, ture and composition: Am. Jour. Sci., v. 238, p. 529-558, 6 13-635. Jour. Sci., v. 243-A, p. 69-74.
Special Paper No, and Spicer, H. C., r942, Handbook of physical constants: Geol. Soc. Am.,
Bur Ao. 36.
Suc Geophys Niblett, E. R., 195i, Terrestrial heat flow in England: Mon. Not. Roy. Astr. Soc., Geophys. Suppl., v. 6, p. 222-238.
Carsey, J. B.; 1935, Unconformities in the Humble, White, and Baker deep test, Pecos County, Texas: Univ, of Texas Bull. No. 3501, p. 127-129.
Coster, H. P., 1947, Terrestrial heat flow in Persia: Mon. Not. Roy. Astr. Soc., Geophys. Suppl., v. 5, P. 13I-145.

Hawtof, E. M., r930, Results of deep well temperature measurements in Texas: Am. Petr. Inst. Production Bulletin No. 205, p. 62-to8.
Hennen, R. V., 1929, Big Lake oil pool, Texas: Structure of typical American oil fields, v. II, Amer Assoc. Petrol. Gcol., Tulsa, p: 500-54r.
Krocnlein, G. A:, 1939, Salt, potash, and anhydrite in Castilc formation of Southeast New Mexico Bull. Amer. Assoc. Petrol. Geol., v. 23, p. 1682-1693.
Lang, W: B., 1935, Upper Permian formations of Delaware basin of Texas and New. Mexico: Bull Amer. Assoc. Petrol. Geol., v. 19, p. 262-270.
v. 21, p. Irologic significance of a geothermal gradient curve: Buli. Amer. Assoc. Petrol. Geol.
(1205. 205.

1572 .
Mossup
Mossop, S. C. and Gafner, G., 195 r, The thermal constants of some rocks from the Orange Free State: Jour. Chem. Met. Min. Soc. S. Africa, v. 52, p. 6 T-73.
Richardson, L. T. and Wells, R. C., 1931, The heat of solution of some potash minerals: Jour. Wash.
Acad. Sci., v. XXI, p. 243-248.
Russell W. L, W. W. $243-248$
Russcll, W. L., I941, Well logging by radioactivity: Bull. Amer. Assoc: Petrol. Geol., v. 25, p. 1768-
r788.
Sellards, E. H. and Patton, L. T., 1926, The subsurface geology of the Big Lake oil field: Bull. Amer. Assoc. Petrol. Gcol., v. ro, p. $365-38 \mathrm{~s}$
Van Orstrand, C. E., 1937, On the estimation of teniperatures at moderate depths in the crust of the carth: Trans. Amer. Geophys. Union, reports and papers, general assembly, 1937.
Yoods, E. H., I940, South-North cross-section from Pecos County through Winkler County, Texas to Roosevelt County, New Mexico: Bull. Amer. Assoc. Petrol. Geol., v. 24, p. 29-36.

Basement Rocks in Far West Texas and South-Central New Mexico

by Rodger E. Denison and E. A. Hetherington, Jr. Mobil Research and Development Corporation
Field Research Laboratory Dallas, Texas

$$
\begin{aligned}
& \text { in Border Stratigraphy } \\
& \text { symposium, 19.6, Kottowhi; } \\
& + \text { Lemare, eds N.M.St. } \\
& \text { Bur } m+\min \text { Res cure } 104
\end{aligned}
$$

Abstract

Far west Texas and south-central New Mexico contain eight areas of Precambrian exposure. Samples from twentyfive wells drilled to basement aid in the correlation of the outcropping units. Twenty -four new isotopic ages have been determined from outcrops and from subsurface samples. Four periods of activity can be defined on the basis of this and previous work. The oldest rocks exposed are in the San Andres Mountain trend. These largely granitic rocks are $1350 \mathrm{~m} . \mathrm{y}$. (million years) and older and represent the basic framework into or onto which younger rocks were intruded or deposited. The best age obtained for the Carrizo Mountain Group in the Van Horn area is 1240 m.y., based on a rather indistinct whole rock isochron from about 950 to 1000 m.y. The granite at Pajarito Peak, Otero County, New Mexico, yielded an age of 1170 my. and appears to be a restricted basement rock type. The Castner-Allamore carbonate rocks and the Hazel-Llanoria sandstones and shades, together with their subsurface equivalents, were deposited over a large area. This deposition was accompanied by basalts and diabase injection. Granite and rhyolite in the Franklin Mountain area and to the east were emplace and injected essentially contemporaneously at $950 \mathrm{~m} . \dot{\mathrm{y}}$. This igneous activity is the youngest recognized in the Precambrian of this area and caused the metamorphism of the slightly older clastic and carbonate sedimentary rocks where in contact.

metarhyolites. These rocks were later metamorphosed at

INTRODUCTION

Far west Texas and south-central New Mexico contain eight areas of Precambrian exposure, ranging from the few acres at Bent Dome in Otero County, New Mexico, to more than one hundred square miles (260 square kilometers) around Van Horn, Texas. In addition, samples from twenty-five wells drilled in search of oil and gas are available for study in the area surrounding the outcrops. We have assembled information from the recent literature on these areas, determined an additional twenty-four isotopic ages both from surface and subsurface samples, and attempted to synthesize a workable geologic history and a basement geologic map of the area. Although certain parts of the history are imprecisely defined, a remarkably consistent evolution and correlation between outcrop and subsurface rocks can be made.

We first will describe each outcrop area and present the new isotopic ages; then we will examine the information from the subsurface, and finally we will use these data in formulating a geologic history.

FRANKLIN MOUNTAINS

The work of Harbour (1960) in the Franklin Mountains summarized previous studies as well as adding much signifi-
cant original data. His work outlined four major stratigraphic units with an aggregated thickness in excess of 5000 feet (1520 meters). In addition, McAnulty (1967) studied the three lower units in considerable detail. Although the conclusions reached here do not wholly agree with McAnulty's his descriptions are the best to be found.

The lowermost unit is the Castner "Limestone." The base is not exposed, yet 1100 feet (335 meters) of marble, diabase, and related hornfels have been measured by Harbour in the Fusselman Canyon area. The term limestone does not seem appropriate for a rock characteristically carrying a variety of metamorphic minerals, including garnet, tremolite, diopside, and epidote. Therefore, we recommend changing the name to Caster Marble.

The lower part is characterized by white to gray or green carbonates showing delicately preserved structures including stromatozoan-like algal heads. These carbonates are interbedded with dark, fine-grained diabasic rocks and biotite argillites. The two are very difficult to distinguish in the field. The lower carbonate beds are dolomitic and in some instances almost pure dolomite. The basal unit must have contained only a little quartz; otherwise, the dolomite would have reacted with it to form more abundant diopside and tremolite.

The upper part was called a hornfels by Harbour. The carbonates were originally considerably less pure than in the lower intervals. The diversity of metamorphic minerals,
including an abundance of garnet, is evidence of a substantial clay mineral content. Quartz grains as relicts are common, and the rock is considerably less dolomitic in general, as shown by analyses reported by Harbour. Edgewise conglomerates are common near the upper part, as are a wide variety of abundant microstructures. The uppermost part contains structures that are here interpireted as soft sediment deformation. The unit as a whole is lacking in any major schistose development. The sedimentary rock appears to have been converted to hornfels without attendant shearing.

The Mundy Breccia overlies the Castner Marble. It varies from 0 to 250 feet (76 meters) in thickness. Harbour interpreted this unit as basaltic fragments, in a "fine, dark-gray matrix resembling indurated mudstone." McAnulty interprets it as a basalt flow breccia. The petrography of this unit is not straightforward. The basaltic fragments are altered but only incipiently metamorphosed with a welldefined relict igneous texture. The matrix is not uniform but is composed mostly of altered feldspar, chlorite, actinolite, and lesser biotite and tourmaline. The suggestion is that the matrix is closely related to the basalt itself. Aside from blocks of Castner Marble in the lower part of the Mundy (reported by McAnulty), no material other than basalt has been found in the breccia. The matrix occupies only a small part of the total volume. We interpret the unit as a surface flow that extruded on a floor of soft Castner carbonates. Whether this was a surface or submarine flow breccia cannot be resolved with the available evidence. The soft sediment deformation in the Castner Marble is thus ascribed to differential loading by the basaltic debris. The appearance of the breccia has been altered by later metamorphism, by intrusive granite, and probably by trapped solutions from the Castner carbonates streaming along breccia zones.

Stratigraphically overlying the Mundy Breccia is the Llanoria Quartzite. The unit is composed of approximately 2600 feet (795 meters) of quartzite, siltstone, and shale. The lower part is mostly a rather pure quartzite containing only a minor amount of microcline. The upper part is separated from the lower by a granite sill. Harbour describes the upper part as "Sandstone, siltstone, and shale in thin beds which form brown-weathering slopes."

Overlying the Llanoria Quartzite is a sequence of as much as 1400 feet (425 meters) of rhyolite flows. This unit is here named the Franklin Mountain Rhyolite simply because this is what workers in the area call it.

The rhyolite generally carries sodic plagioclase and perthite phenocrysts in a groundmass of delicate devitrified quartz-feldspar. Quartz phenocrysts, where present, are abundant. Certain samples are poor in quartz and probably approach a trachytic composition. Locally, the rhyolite is converted to a hornfels by granite intrusion. This is particularly common in some areas on the western slopes.

Flow structures are difficult to find in place, although strongly banded types are easily found as boulders in stream beds. The general feeling, although difficult to demonstrate, is that the rhyolite is at least roughly conformable with the underlying sediments.

The Red Bluff Granite intrudes the entire Precambrian sequencee. In addition, McAnulty reports an older microgranite porphyry in the Fusselman Canyon area. The microgranite is intrusive into the Precambrian sedimentary sequence, mostly as sills. The microgranite is in turn intruded by Red Bluff-type granite. The granites examined in this study were mostly medium- to fine-grained, characteristically carrying only perthite as the feldspar. Some are quartz poor and contain a pyroxene, but most are highly quartzose with less than five percent femic minerals, common hornblende, biotite, and riebeckite. Textures vary from porphyritic and micrographic to even-grained and hypidiomorphic. The granites have petrographic characteristics of epizone instrusions and were probably emplaced at depths of less than one mile.

Wasserburg et al. (1962) report K / Ar and $\mathrm{Rb} / \mathrm{Sr}$ ages of 880 to 1030 m.y.* on a variety of granitic samples. Two zircon ages were determined with 1095 and 1080 m.y. being the $\mathrm{Pb} 207 / \mathrm{Pb} 206$ ages. A whole rock age of 990 ± 50 m.y. was reported on a sample of metarhyolite by Muehlberger et al. (1966, p. 5415). We have determined ten $\mathrm{Rb} / \mathrm{Sr}$ ages on whole rocks and feldspars from granites and rhyolites (table 1). We did not find any systematic difference in the ages of the granite and rhyolite and have grouped the two to obtain an isochron or "best" age. The determinations fall very closely along an isochron of $953 \pm$ 13 m.y. with an initial ratio of 0.7081 ± 0.0010 (fig. 1). Two of the whole rock rhyolites fall below the line, but the other whole rocks and feldspars are close to the isochron age. The apparent low ages from the whole rocks are probably caused by minor alterations in the groundmass, because feldspars separated from the same specimens give higher ages.

We believe the sedimentary units were deposited in quick succession, soon became covered by rhyolite, and in the same time interval were intruded and metamorphosed by Red Bluff Granite. The granitic igneous activity took place at about $953 \pm 13 \mathrm{~m} . \mathrm{y}$. The association of synchronous rhyolite-granite is common throughout the southern United States. Muehlberger, Denison, and Lidiak (1967, p. 2372-2373) drew attention to this relationship.

A succession of lower Paleozoic sedimentary rocks over-• lies both the granite and rhyolite. Although the structure is disrupted, the Paleozoic sequence appears to be only disconformable with the layered Precambrian rocks.

HUECO MOUNTAINS

Several small hills of red granite are exposed beneath Bliss Sandstone (Cambrian) near the south end of the Hueco Mountains (King, 1935). Wasserburg et al. report an $\mathrm{Rb} / \mathrm{Sr}$ age of 990 ± 60 on feldspar from the granite. The rock is a partly micrographic perthite granite, petrographically indistinguishable from the Red Bluff Granite of the

* The $\mathrm{Rb} / \mathrm{Sr}$ ages reported by Wasserburg et al. have been recalculated using the 47 b.y. half-life, resulting in ages six percent lower than those using the 50 b.y. half-life.

Figure 1
An Isochron Plot of Franklin Mountain and related rock determinations

Franklin Mountains. The determined age is close to the isochron age of the Franklin Mountains and related rocks. We conclude that the granite exposed in the Hueco Mountains is related both in petrographic character and age to that exposed in the Franklin Mountains.

PUMP STATION HILLS

Masson (1956) described the igneous rocks exposed in a group of low-lying knolls, the Pump Station Hills, in some detail. The dominant rock type is rhyolite porphyry, but some fine micrographic granite porphyry and other rock types are also present. Wasserburg et al. determined an $\mathrm{Rb} / \mathrm{Sr}$ whole rock age of $960 \pm 60 \mathrm{~m} . \mathrm{y}$. and a feldspar age of $1000 \pm 40 \mathrm{~m} . \mathrm{y}$. on a rhyolite sample. These ages and the general petrographic character clearly relate these rocks to those in the Franklin and Hueco mountains.

BENT DOME

At a locality near Bent, Otero County, the Permian Abo Formation rests upon rocks of Precambrian age. Bachman (1960) named the structure the Bent Dome and described it in some detail as part of the Pedernal landmass.

A light-gray quartzite is the principal rock type. In the sample examined in this study, the quartzite contained almost no lithic or feldspathic debris. No metamorphic minerals were seen and shearing is lacking. The quartzite is apparently intruded (exposures are poor) by a deep-red micrographic granite porphyry. No samples fresh enough for dating could be collected, even though there are prospect pits in the granite. The quartzite is considered equivalent to the Llanoria in the Franklin Mountains. The micrographic granite, by analogy, is part of the $950 \mathrm{~m} . \mathrm{y}$. igneous activity common to the south. This is the most northerly encounter of rocks considered equivalent to the graniterhyolite sequence.

Bachman reported cobbles of rhyolite, granite, and quartzite in the overlying Abo. This suggests that, at least locally, the Franklin Mountain Rhyolite was deposited this far north and was subsequently removed by erosion. An alternate but less likely explanation is that the rhyolite was derived from the Panhandle Volcanic Terrane in the 1100 to $1200 \mathrm{~m} . \mathrm{y}$. range.

PAJARITO PEAK

The age of the granitic rocks at Pajarito Peak has been the subject of some disagreement. Thompson (1942) thought them Precambrian as part of the Pedernal landmass. Lloyd (1949) and Motts and Gaal (1960) argued for a Tertiary age, and the outcrop is so shown on the State Geologic Map (Dane and Bachman, 1965).

Kelley (1968) recently described the geology of Pajarito Peak in detail: His conclusion is for a definitely Precambrian age, based on field relations. Our laboratory performed the isotopic ages reported by Kelley, which demonstrate a Precambrian age. Kelley generally described the alkaline rocks and no résumé is needed here. The samples we examined and dated from Pajarito Peak are of a riebeckite granite and associated syenite-quartz syenite pegmatite. The granite is composed, in volume percent, of 38.0 perthite, 25.8 quartz, 24.7 riebeckite, 4.7 aegirine, and 6.8 iron oxides and alteration material. The latter appears to replace a former femic mineral. The quartz is mostly in large, discrete, single crystals with local poikilitic inclusions of perthite and riebecktite. This texture gives the rock a porphyritic-like appearance. The syenite is fine-grained, actually a microsyenite, and is gradational with a quartzbearing pegmatitic phase. The rock is composed of perthite and common hornblende with lesser riebeckite, pyroxene (?) alteration material, rutile, apatite, and iron oxides. Quartz occurs only in the pegmatitic phase.

At the suggestion of Frank E. Kottlowski, ages were determined on two samples from the controversial outcrop. Riebeckite from the granite yielded a K/Ar age of $1170 \pm$ 25 m.y. and common hornblende from the pegmatitic phase an age of $1190 \pm 25 \mathrm{~m} . \mathrm{y}$. An Rb/Sr age of 1135 ± 15 m.y. was obtained from feldspar from the granite.

Similar ages are not found elsewhere in this area. However, to the east, a large volume of granite and rhyolite was injected and extruded during the period 1100 to 1200 m.y. (the Panhandle igneous activity of Muehlberger et al.). The rocks at Pajarito Peak are interpreted as a local extension of this igneous activity.

The crystalline rocks are overlain by sedimentary rocks equivalent to the Permian Yeso and San Andres Formations (Kelley). Significantly; all Precambrian sedimentary rocks are absent, although they are demonstrably thick nearby. Either by nondeposition or later erosion, the thick sandstones and diabase-basalt of the DeBaca Terrane are missing. This suggests that Pajarito Peak is and has been a structural high and is part of the Pedernal landmass.

SACRAMENTO MOUNTAINS

Three small outcrops of Precambrian rocks are found south of Alamogordo, Otero County, at the base of the Sacramento Mountains escarpment. Pray (1961) described 80 feet (24 meters) of sedimentary section composed of quartzite, siltstone, and shales. These clastic rocks are cut by diabasic rocks, mostly as sills. The Precambrian sedimentary rocks have an angular discordance of about 10 degrees with the overlying Bliss Sandstone.

These rocks are similar to others found in a large northsouth band in south-central New Mexico (Muehlberger and Denison, 1964; Muehlberger, Denison, and Lidiak), the DeBaca Terrane.

SAN ANDRES MOUNTAINS

The San Andres Mountains expose Precambrian rocks along an 85 -mile (137 - kilometer) north-south length. The sequence is complex and diverse. Kottlowski (1959) reports

> Red to gray granites, including roof-pendants of various schists and gneisses, and cut by pegmatite and diabase dikes, occur in the northern and southern parts of the mountains. From Sulphur Canyon to south of Hembrillo Canyon a thick series of metamorphic rocks is exposed including mica and quartz-feldspar schists, quartzites, amphibolites, phyllites, talc schist, talc, and dolomite, intruded by diabase and aplite dikes and by small masses of granite. Foliation of the metamorphic rocks along Hembrillo Canyon strikes N. $30-45^{\circ} \mathrm{W}$. and dips steeply westward. In places, this metamorphic series is truncated by a light-gray quartzite with bedding almost parallel to that of the overlying Bliss sandstone; however, the quartzite is cut by pale-pink aplite dikes that are truncated by basal beds of the Bliss Sandstone.

Kottlowski also notes the similarity of the quartzite to the Precambrian sedimentary rocks in the Sacramento Mountains and to samples from a well near Cloudcroft, Otero County.

Four ages have been reported from the length of the San Andres Mountain trend (Muehlberger et al.). Potassiumargon ages from micas range from 1350 to 1400 m.y., and one $\mathrm{Rb} / \mathrm{Sr}$ determination on a whole rock yielded an age of $1300 \pm 70 \mathrm{~m} . \mathrm{y}$. In addition, two ages were determined on a core from the Sun No. 1 Bingham (Socorro County) oil test a few miles north of the north end of the Precambrian outcrops along the San Andres trend. This granite gneiss (described by Muehlberger and Denison) gave an $\mathrm{Rb} / \mathrm{Sr}$ age of $1570 \pm 100 \mathrm{~m} . \mathrm{y}$. on microcline and a K/Ar age of 1350 m.y. on biotite.

Clearly, this is a different type of Precambrian complex from that exposed to the south in the Franklin Mountains. It is older and composed of a massive igneous-metamorphic complex. The igneous rock composition is dioritic to granitic, considerably more diverse than the granite of the 950-m.y. activity.

VAN HORN AREA

The rocks in the Van Horn area have been the object of excellent studies by King and Flawn (1953) and King (1965). Our dating has substantiated their field interpretation and the following is taken largely from their work. We do differ in the interpretation of the origin of some of the metamorphic rocks. What Flawn called meta-arkose is interpreted here mainly as metarhyolite.

The area may be divided into two segments. The older is exposed in the Eagle, Wylie, Van Horn, and Carrizo
mountains and the southern end of the Diablo platform. The Carrizo Mountain Group is composed of quartzite, schist, phyllite, and marble overlain and intruded by metarhyolite and amphibolite. The exposed thickness in the Carrizo Mountains is reported to be as much as 19,000 feet (5800 meters) and does not appear to be repeated. In the Van Horn Mountains, the entire sequence is intruded by abundant pegmatite and is a higher metamorphic grade than the rocks to the north. The rocks of the Carrizo Mountain Group are separated from the younger rocks cropping out on the Diablo platform by the Steeruwitz overthrust.

On the Diablo platform, the lowest unit is the Allamore Formation, composed of very thick marbles with interbedded phyllite, chert, and pyroclastic volcanic rocks. The Allamore is overlain by another thick but very different unit, the Hazel Formation, which is made up of coarsegrained conglomerate and sandstone. The Van Horn Sandstone rests with angular unconformity on these older metasedimentary units and is of probable Late Precambrian age. Bliss(?) Sandstone overlies parts of these units in the Diablo platform area, but the Carrizo Mountain Group is overlain by Hueco Limestone (Permian).

Wasserburg et al. determined a number of ages on rocks and minerals from the Van Horn area. There is considerable variation in the apparent ages, but the oldest center around $1000 \mathrm{~m} . \mathrm{y}$. We interpret this to be near the time of metamorphism. We have determined seven whole rock ages on the metarhyolites. Only one of these (No. 759) falls into the 1000 -m.y. range; the others are distinctly older. The youngest sample is very muscovitic. The muscovite was formed during metamorphism and indicates that during the addition of water to form muscovite, a closed system was not maintained. A least-squares cubic fit of an isochron using the six older ages yields a best age of $1238 \pm 65 \mathrm{~m} . \mathrm{y}$. with an initial ratio of 0.7002 ± 0.0058. The error is high and the scatter considerable (fig. 2). We are not confident that the determined age is actually the age of formation because of the scatter; however, it is clear the metarhyolites have an age of formation substantially older than similar rocks in the Franklin Mountains.

A feldspar was separated from a rhyolite dike (?) that cuts the Allamore. This rock is unmetamorphosed and distinctly different from other rhyolitic rocks in this area. The determined age is $950 \pm 14 \mathrm{~m} . \mathrm{y}$., identical to the Franklin Mountain rhyolites.

Thus, the rhyolites of the Carrizo Mountain Group were formed at about $1250 \mathrm{~m} . \mathrm{y}$. and metamorphosed about 1000 m.y. The faulting and deformation that thrust the Carrizo Mountain Group over the Allamore-Hazel sequence is probably contemporaneous with the metamorphism. A postmetamorphic dike (?) rock yields an age of 950 m.y.

Granite and rhyolite boulders reported in the Hazel Formation (King in King and Flawn, p. 84) have not been dated. These cannot be derived from the Pump Station Hills--Hueco Mountains, as suggested by King, because this terrane is too young. However, these granitic rocks could be

Figure 2
An Isochron Plot of whole rock determinations from the Metarhyolite in the Carrizo Mountain Group
derived from the 1100 to 1200 m.y. terrane reported by Muehlberger et al. (p. 5422). The actual spread of ages in the volcanic rocks in this 1100 to $1200 \mathrm{~m} . \mathrm{y}$. terrane does not preclude the possibility that the Carrizo Mountain metarhyolite is related to some of those in the Panhandle area.

Unresolved problems remain in the Van Horn area. Perhaps the most puzzling is the difference in general strike rof units in the Carrizo Mountain Group and those of the Hazel-Allamore sequence. This is best shown on King's (1965) map of the Sierra Diablo region. The dominant strike direction north of the Steeruwitz Fault is nearly east-west; south of the fault it is about N. $60^{\circ} \mathrm{E}$. There is in interval covered by Van Horn and younger units, and there could be a general wrapping around of units beneath the two to three miles of cover. The lineations in the metaihyolite appear to be closer to the structural direction found to the north of the Steeruwitz Fault. In any event, the suggestion is that the Carrizo Mountain Group has undergone more than one period of major deformation. The area has been used as an example of major left lateral (Moody and Hill, 1956) and right lateral (Muehlberger, 1965) fault. The arguments are based on geometry, and specific support for the contentions is sparse.

SUBSURFACE

Scattered wells drilled to basement lie within the study urea. Basement rocks from some of these wells have been described (Flawn, 1956; Foster, 1959; Muehlberger and Denison). Several basement rock units have been discussed and named by Muehlberger, Denison, and Lidiak. Much of the discussion to follow is taken from these works, particulasly Muehlberger and Denison.
\%: The oldest rocks in the subsurface are believed to be equivalent, in part, to those in the San Andres Mountains. Muehlberger, Denison, and Lidiak named these rocks the Chaves Granitic Terrane. The rocks penetrated are granitic In composition but diverse in petrography. Granites and granodiorites, some with a well-defined gneissic fabric, are the most common rock types. The only age determined on basement rocks of this terrane was from a biotite granite from the Humble No. 1 Huapache Unit oil test in sec. 35, T. 23 S., R. 22 E., Eddy County. The biotite yielded an age of $1310 \pm 20 \mathrm{~m} . \mathrm{y}$. and the feldspar $1350 \pm \mathrm{m}, 20 \mathrm{~m} . \mathrm{y}$. This compares favorably with the outcrop ages from the San Andres Mountains. It is believed that some of the gneisses may be substantially older (possibly 1600 m.y.), becoming melamorphosed at about $1350 \mathrm{~m} . \mathrm{y}$. This unit is the basic flamework rock, into which and onto which younger units Were deposited or intruded, for much of southeast New
Mexico Mexico.
The granite and related pegmatite dated at Pajarito Peak tepresent a basement rock unit that has not been drilled in the study area. However, numerous basement wells have penetrated petrologically related rock with the same ages in toutheastern New Mexico, mainly in eastern Chaves and

Eddy counties and Lea County. The unit is not yet named.
The vast majority of the map area shown in Figure 3 is underlain by rocks of the DeBaca Terrane. In the north, the rocks are argillites and feldspathic quartzites with interbedded basalts and are intruded by diabase. However, beginning with a line running east-west through central Otero County, carbonate rocks become a commonly drilled rock type.

The Turner No. 1 State in sec. 36, T. 25 S., R. 16 E., Otero County, drilled 2135 feet (651 meters) of altered diabase, talc-tremolite marble, quartz syenite, and micrographic granite porphyry. Nineteen intervals were examined petrographically in the drilled sequence. The similiarity between this and the section exposed in the Franklin Mountains is remarkable. In the LeFores No. 1 Federal oil test, sec. 22, T. 21 S., R. 16 E., wollastonite marble has been described by Muehlberger and Denison.

In southern Otero County and in Texas, the majority of wells penetrated rhyolite or micrographic granite. The only age determined from these rocks is on feldspar from the Gulf No. 1 Burner State in Hudspeth County. This fraction from a micrographic granite porphyry yielded an age of 890 $\pm 20 \mathrm{~m} . \mathrm{y}$. The age is younger than expected and may be due to alteration in the feldspar. In any event, we interpret these granites and rhyolites as equivalent to those cropping out in the Franklin and Hueco mountains and Pump Station Hills.

PRECAMBRIAN HISTORY

The oldest rocks exposed in this area are in the San Andres Mountains where micas from igneous rocks yield ages of 1350 to $1400 \mathrm{~m} . \mathrm{y}$. A suggestion of relict older ages of about 1600 m.y. is present, but how extensive these older rocks (later metamorphosed at 1350 to $1400 \mathrm{~m} . \mathrm{y}$.) are is not known. The metasedimentary rocks in this linear outcrop belt are not recognized in any of the wells penetrating basement in this area. These older layered rocks may be equivalent to the sequence found in the Los PinosManzano mountains. The gneisses form the framework for all younger Precambrian units. These younger rocks are a veneer of sediments with locally significant intrusions.

To the south in Hudspeth and Culberson counties, the Carrizo Mountain Group was deposited and extruded. The exact time interval this took place is not so straightforward as might be hoped. Our best age of $1240 \pm 65 \mathrm{~m} . \mathrm{y}$. on the age of extrusion of the rhyolite overlying sedimentary rocks shows they are significantly older than a comparable sequence in the Franklin Mountains. The former extent of this sedimentation and volcanic activity is not known, but it certainly extended considerably to the north of the present limited outcrop area. The inexactness of a best age for the rhyolite extrusion opens the door for speculation of its possible "real" age. The only other thick metasedimentary sequence fairly close at hand is that in the San Andres Mountains; this would require the rhyolite age to be lowered very significantly, probably ten or fifteen percent

at the least. On the basis of our experience and considering the data, we believe this unlikely.

The isotopic ages determined on the rocks at Pajarito Peak in Otero County are interpreted to separate these rocks from those surrounding them. No trace of the 1140 to $1180 \mathrm{~m} . \mathrm{y}$. age or rock type can be found in the subsurface surrounding the Peak. The age is common to the east in eastern Eddy, Chaves, and Lea counties. We interpret this outcrop to be the westernmost known occurrence of this rock age in southern New Mexico. The outcrop is also significant because all the younger Precambrian sediments of the DeBaca Terrane are absent, whereas they are demonstrably thick nearby. Thus, by nondeposition or, more likely, by erosion during the lower Paleozoic, these sediments are no longer present from this structural high. Probably part of the Pedernal uplift affected sedimentation during Late Paleozoic time.

The period of 950 to 1000 m.y. saw the last major Precambrian activity. This is manifested in a variety of ways. The lowest stratigraphic unit that can be demonstrated is a carbonate rock sequence, the Castner-Allamore Marble. What these marbles rest upon or are underlain by is gnot known, for the base is nowhere exposed. This thick Carbonate rock deposition was accompanied locally by diabase intrusions and basic volcanic rocks. The carbonate trocks were followed by a thick clastic sequence of variable composition. Pure sandstones, arkoses, shales, and conglomierates are found in the subsurface DeBaca Terrane, Hazel Formation, and Llanoria Quartzite. Diabases and basalts are common in the subsurface DeBaca Terrane but are not found on the outcrop in the Hazel-Llanoria. Movement had already begun in Hazel time, as evidenced by the abundant clasts of Allamore in the conglomerates of the Hazel Formation. This movement culminated with essentially synchronous igneous intrusions with pegmatite formation. The movement led to the Steeruwitz thrust with the Oolder Carrizo Mountain Group rocks and associated younger intrusions being ramped over the Hazel-Allamore sequence.
To the west in the Franklin Mountains, activity was far less intense. Conglomerates present in the Llanoria are tielatively minor. Widespread rhyolites were extruded, probably many of which were welded tuffs. The rhyolites provided a cover for the intrusion of comagmatic granites. This igneous activity was passive and relatively dry, as talc is sparse or absent in the Castner but diopside is common.
A significant shearing component is not reflected in the metasedimentary sequence; the rocks are simply converted to hornfels.
To the north, the rocks of the DeBaca Terrane were being deposited. These were mostly impure sandstones and shales with abundant diabase and basalt. Limestones are not penetrated north of a line through central Otero County, probably through nondeposition. North of this arbitrary line, the rocks are characteristically unmetamorphosed. This reflects the absence of major igneous activity equivalint to that in the Franklin Mountains. The exception is at Bent Dome where a quartzite similar to the Llanoria is litruded by a finely micrographic granite. However, intru-
sions do not appear to be common, and the rocks of the DeBaca Terrane are only locally converted to hornfels but not regionally metamerphosed. The Franklin Mountain granite-rhyolite sequence is easily separated from the other rock units on the basis of petrography and age; however, it is difficult to define in terms of areal distribution. It is shown on the basement rock map as a distinct area, but one should recongize that this represents only that part of Texas and New Mexico where the granite-rhyolite sequence is most likely to occur. Areas outside that shown may be covered by rhyolite or have breached granite intrusions on the basement surface that are Franklin Mountain equivalents. Conversely, areas within the mapped area may have Van Horn Sandstone covering the rhyolite or granite, or the rhyolite may be removed by erosion to expose the underlying DeBaca Terrane.

The period between 950 m.y. and the Cambrian was marked by some differential movement and erosion that exposed the more deeply emplaced granites. The amount of uplift,' folding, and faulting during this period is relatively small, as evidenced by the roughly conformable or mildly disconformable relationship between lower Paleozoic and the Precambrian layered sequences in the Franklin, Sacramento, and San Andres mountains.

CONCLUSION
This area, about 180 miles (290 kilometers) long and 130 miles (210 kilometers) wide, is one of the best in the United States to show very close correspondence between scattered Precambrian outcrops and intervening basement control from drill holes. The basement evolution can be developed using petrography and geochronology, though not so precisely as might be hoped in every instance. We believe any vagueness can be resolved by further, detailed work. The two main problems not resolved to our satisfaction are the possible "real" age of extrusion-deposition of the Carrizo Mountain Group and the complex San Andres Mountain Precambrian sequence, about which very little is known.

ACKNOWLEDGMENTS
We wish to thank Mobil Research and Development Corporation for allowing us to pursue these interesting problems and to publish the results. Many of the subsurface samples were obtained through William R. Muehlberger from The University of Texas basement-rock collection. Most of the surface samples were collected with the aid of David W. Greenlee of Mobil's Midland Division. William N. McAnulty and David V. LeMone generously conducted the senior author through the Fusselman Canyon area. Frank E. Kottlowski of the New Mexico Bureau of Mines and Mineral Resources collected the sample from Pajarito Peak and offered welcome advice on collecting in other parts of New Mexico.

TABLE 1. $\mathrm{Rb} / \mathrm{Sr}$ AGES FOR SAMPLES IN FAR WEST TEXAS AND SOUTH-CENTRAL NEW MEXICO (cont)

NO. FRACTION	$\begin{gathered} \mathbf{R b} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{gathered} R b / 87 \\ S r 86 \end{gathered}$	$\begin{aligned} & \text { Sr87 } \\ & \text { Sr86 } \end{aligned}$	AGE	ROCK TYPE AND LOCATION
*770F	118.5	127.6	2.68	0.7475	990 ± 50	Quartz syenite, pyroxene bearing. Dam spillway at base of Fusselman Canyon
788W	126.1	145.77	2.50	0.7420	915 ± 50	Rhyolite porphyry. Middle part of the Franklin Mountain Rhyolite in Fusselman Canyon
789W	179.4	21.5	24.1	1.032	905 ± 20	Rhyolite porphyry. Upper part of the Franklin
789F	375.7	21.2	51.2	1.430	950 ± 15	Mountain Rhyolite on western dip slope opposite Fusselman Canyon
1064F	929.1	11.1	241.4	4.060	935 ± 15	Granite. East of Tom Mayes Park at prospect pit in narrow part of Canyon
1063W	263.7	15.7	48.5	1.407	970 ± 20	Metarhyolite porphyry. East of Tom Mayes Park east of sample 1064
1065F	442.3	2.67	477.5	7.378	980 ± 15	Granite. McKelligon Canyon about 1000 m from end of road on southwest side of road
1066W	216.5	26.1	23.9	1.030	910 ± 20	Metarhyolite porphyry. McKelligon Canyon near the
1066F	323.5	55.1	16.9	0.9452	940 ± 15	end of the road at head of canyon
830F	446.5	27.1	47.6	1.394	970 ± 15	Granite. Tin Mine locality about 2 miles north of North Franklin Mountain
VAN HORN AREA						
739W	22.4	22.9	28.0	1.132	1040 ± 40	Metarhyolite porphyry. Carrizo Mountains $3800^{\prime} \mathrm{N} 30^{\circ} 02^{\prime} 30^{\prime \prime} \mathrm{N}$
	218.7	22.3	28.4	1.137	1040 ± 40	$5500^{\prime} \mathrm{W}$ of $105^{\circ} 55^{\prime} \mathrm{W}$. The sample is highly muscovitic
741w	157.5	36.8	12.4	0.9381	1290 ± 60	Metarhyolite porphyry. Carrizo Mountains, $4100^{\prime} \mathrm{N} 31^{\circ} 82^{\prime} 30^{\prime \prime} \mathrm{N}, 7200^{\prime} \mathrm{W}$ of $105^{\circ} 55^{\prime} \mathrm{W}$
744W	178.1	49.7	10.4	0.8997	1290 ± 80	Metarhyolite porphyry. Carrizo Mountains, Gifford-Hill Quarry $8500^{\prime} \mathrm{N} 30^{\circ} 02^{\prime}, 30^{\prime \prime} \mathrm{N}, 1000^{\prime} \mathrm{W} 105^{\circ} 57^{\prime}$ 甘
748F	326.0	38.5	24.4	1.051	950 ± 15	Rhyolite porphyry. Sierra Diablo, $10080^{\prime} \mathrm{N} 30^{\circ} 5^{\prime}$, $3800^{\prime} \mathrm{E} 105^{\circ} 2^{\prime} 30^{\prime \prime} \mathrm{W}$. The sample is related to Franklin Mountain samples and is a dike in the Allamore Formation
758W	168.3	39.3	12.4	0.9275	1240 ± 60	Metarhyolite porphyry. Carrizo Mountains, $900^{\prime} \mathrm{N} 31^{\circ} 2^{\prime} 30^{\prime \prime} 5300^{\prime}$ W $104^{\circ} 57^{\prime} 30^{\prime \prime}$
759W	122.3	80.8	4.36	0.7793	1220 ± 200	Metarhyolite porphyry. Carrizo Mountains same location as 758

TABLE 1. Rb/Sr AGES FOR SAMPLES IN FAR WEST TEXAS AND SOUTH-CENTRAL NEW MEXICO (cont)

TABLE 2. K/Ar AGES FROM AMPHIBOLES AT PAJARITO PEAK, OTERO COUNTY, NEW MEXICO

TABLE 3. ROCKS OF THE FRANKLIN MOUNTAINS AND VAN HORN AREA

AGE (m.y.)	FRANKLIN MOUNTAINS		VAN HORN AREA

REFERENCES

Bachman, George O. (1960) Southwestern edge of late Paleozoic landmass in New Mexico, U.S. Geol. Surv., Prof. Paper 400-B, p. B239-B241.
Dane, Carle H., and Bachman, George O. (19̀65) Geologic :map of New Mexico, U.S. Geol. Surv.
Flawn, Peter T. (1956) Basement rocks of Texas and southeast New Mexico, Univ. Texas Pub. No. 5605, 261 p.
Foster, Roy W. (1959) Precambrian rocks of the Sacramento Mountains and vicinity, Roswell Geol. Soc. and Perm. Basin Sec., Soc. Econ. Paleont. and Min., Guidebook, Sacramento Mountains, p. 137-153.
Harbour, Robert L. (1960) Precambrian rocks at North Franklin Mountain, Texas, Am. Assoc. Petrol. Geol. Bull., v. 44, p. 1785-1792.
Kelley, Vincent C. (1968) Geology of alkaline Precambrian rocks at Pajarito Peak, Otero County, New Mexico, Geol. Soc. Am. Bull., v. 79, p. 1565-1572.
King, Philip B. (1935) Outline of structural development of Trans-Pecos, Texas, Am. Assoc. Petrol. Geol. Bull., v. 19, p. 221-261.
-..., (1965) Geology of the Sierra Diablo region, Texas, U.S. Geol. Surv., Prof. Paper 480, 185 p.
--- , and Flawn, Peter T. (1953) Geology and mineral deposits of Precambrian rocks of the Van Horn area, Texas, Univ. Texas Pub. 5301, 218 p.
Kottlowski, Frank E. (1959) Sedimentary rocks of the San Andres Mountains, Roswell Geol. Soc. and Perm. Basin Sec., Soc. Econ. Paleont. and Min., Guidebook, Sacramento Mountains, p. 259-277.
Lloyd, Edwin R. (1949) Pre-San Andres stratigraphy and oil producing zones in southeastern New Mexico, N . Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 29.
Masson, P. H. (1956) Age of igneous rocks at Pump Station

Hills, Hudspeth Commy, Texas, Am. Assoc. Petrol. Geol. Bull., v. 40, p. 501.518.
McAnulty, W. N., Jr. (1967) Geology of the Fusselman Canyon area, Franklin Mountains, El Paso County, Texas, master's thesis, Univ. Texas, 79 p .
Moody, J. D., and Hill, M. J. (1956) Wrench-fault tectonics, Geol. Soc. Am. Bull., v. 67, p. 1207-1246.
Motts, Ward S., and Gaal, Robert A. (1960) Geology of Pajarito Mountain area, Otero County, New Mexico, Am. Assoc. Petrol. Geol. Bull., v. 44, p. 108-1 10.
Muehlberger, William R. (1965) Late Paleozoic movement along the Texas lineament, N.Y. Acad. Sci. Trans., ser. 2, v. 27, p. 385-392.
---, and Denison, Rodger E. (1964) Precambrian geology of south-central New Mexico, N. Mex. Geol. Soc., Guidebook, Fifteenth field conference, The Ruidoso Country, p. 62-69.
\ldots, \ldots, \ldots, and Lidiak, E. G. (1967) Basement rocks in the continental interior of the United States, Am. Assoc. Petrol. Geol. Bull., v. 51, p. 2351-2380.
---, Hedge, C. E., Denison, R. E., and R. F. Marvin, (1966) Geochronology of the midcontinent regions, United States: 3. Southern area, Jour. Geophys. Res., v. 71, p. 5409-5426.
Pray, Lloyd C. (1961) Geology of the Sacramento Mountains escarpment, Otero County, New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 35, 144 p.
Thompson, Marcus L. (1942) Pennsylvanian system in New Mexico, N. Mex. Inst. Min. and Tech., State Bur. Mines and Mineral Res., Bull. 17, 92 p.
Wasserburg, G. J., Wetherill, G. W., Silver, L. T., and Flawn, P. T. (1962) A study of the ages of the Precambrian of Texas, Jour. Geophys. Res., v. 67, p. 4021-4047.

APPENDIX A

ANALYTICAL PROCEDURES

The strontium measurements were determined on a 13 -inch radius, 60 -degree magnetic sector, 15.8 -inch radius, 91 -degree electric sector, second order double-focusing mass spectrometer.

The rubidium measurements were made on a symmetric 6 -inch, 60 -degree, single-focusing Nier-type mass spectrometer. Separate strontium measurements were made on spiked and unspiked aliquots. The unspiked strontium $87 / 86$ measure. ments were normalized to Nier's value of $\mathrm{Sr}^{86} / \mathrm{Sr}^{88}=0.1194$. Separations were made on an ion-exchange column and identified by using Sr^{85} and Rb^{83} tracers. The analytical precision based on replicate analysis is estimated to be ± 0.2 percent for isotope ratio measurements and ± 1 percent for both Rb and Sr concentrations. Our results compare favorably with published standards (see Lanphere and Dalrymple, 1967).

The argon measurements were made on a 4.5 -inch Reynolds-type mass spectrometer. The samples were fused by induction coil heating in tungsten or columbium crucibles and purified through (1) dry ice, (2) copper oxide at $600^{\circ} \mathrm{C}$. (3) liquid nitrogen, and (4) calcium at $900^{\circ} \mathrm{C}$ and then absorbed on charcoal at liquid-nitrogen temperature in a break seal. A typical blank is about 10^{-11} moles of atmospheric argon; the best are about 4×10^{-12} moles.

The constants used to compute the ages are

$$
\begin{aligned}
& \mathrm{Rb}^{87} \lambda_{\beta}=1.47 \times 10^{-11} / \mathrm{yrs} \\
& \mathrm{Rb}^{87}=0.283 \mathrm{gm} / \mathrm{gm} \mathrm{Rb} \\
& \mathrm{~K}^{40} \lambda_{\varepsilon}=0.585 \times 10^{-10} / \mathrm{yrs} \\
& \lambda_{\rho}=4.72 \times 10^{-10} / \mathrm{yrs} \\
& \mathrm{~K}^{40}=1.22 \times 10^{-4} \mathrm{gm} / \mathrm{gm} \mathrm{~K} .
\end{aligned}
$$

APPENDIX B

The following are brief summaries of samples drilled to basement in the areas shown in Figure 1．The wells are numbered within each county．The numbers in New Mexico fare the same as those used by Foster and Stipp（1961）．The解Texas numbers follow Flawn with additions for newer wwells．

CULBERSON 1

Cosden No． 1 Cockrell，sec．7，blk．80，PSL Survey．Cut－ tings at 3210 to 3356 ft ．The rock is fine－grained biotite granite gneiss，most of which is composed of microcline， plagioclase，and quartz in a granoblastic mosaic varying in grain size．Fresh olive－green biotite books show a high degree of preferred orientation parallel to grain size band－ zing．It is interpreted as a metaigneous rock of granitic composition．Possibly，it is equivalent to the metarhyolites of the Carrizo Mountain Group，but petrographic evidence is unclear．In any event，the rock is interpreted as being frelated to the Carrizo Mountain sequence．

EL PASO 1＊

Jones No． 1 Sorely，sec．17，blk．S，PSL Survey．Flawn（p． 155）reported a quartz diorite in cuttings from 2213－20 ft． The descriptions suggest a rock similar to some found as intrusions within the Castner Marble，but certain differ－ ences are apparent and no definite correlation can be made．

HUDSPETH 1＊

American Land No． 1 Roseborough，sec．7，blk．21，Tws 6， PSL．Flawn（p．167）examined cuttings from two intervals， $1600-10 \mathrm{ft}$ ．and $1625-1787 \mathrm{ft}$ ．，and described a rhyolite porphyry．The rhyolite is interpreted here as being equiva－ lent to the Franklin Mountain Rhyolite．

HUDSPETH 2＊

California No． 1 Theison，sec．19，blk．E．Univ．Lands． Flawn（p．169）described a micrographic granite in cuttings from $4844-48 \mathrm{ft}$ ．The well was drilled about 20 miles north of granite cropping out in the Hueco Mountains．The granite described in the well is interpreted as equivalent to that in the Hueco and Franklin mountains．

HUDSPETH 4

Gulf No． 1 Burner State，sec．14，blk．19，PSL．A core taken at 9222 ft ．is a micrographic granite porphyry．The feldspar yielded an age of $840 \pm 15 \mathrm{~m} . y$. ，which is below the age of
granites of the Red Bluff type．However，petrographic similarity prompts us to consider it equivalent to the gran－ ite in the Hueco and Franklin mountains．The age is pos－ sible too low because of alteration in the feldspar．

CHAVES $3 \ddagger$

Humble No． 1 State N，35－14S－17E．Muehlberger and Denison described five intervals from 2610 to 4010 ft ．The well penetrated a sequence of quartzite，arkose，and olivine basalt，which comprise part of the DeBaca Terrane．

CHAVES 38 \ddagger

Magnolia No． 1 Turney，23－14S－22E．Four intervals from 4920 to 5340 ft ．were described by Muehlberger and Denison．The well penetrated diabase and a gneissic granitic rock．The petrography is not clear－cut，but the granitic rock is probably part of the Chaves Granitic Terrane and the diabase probably equivalent in age to those in the DeBaca －Terrane．

CHAVES 44 キ

Humble No． 1 Gorman，30－15S－22E．An interval at 5805－25 ft ．is in a banded granitic gneiss，part of the Chaves Granitic Terrane．

CHAVES $48 \ddagger$

Black No． 1 Shildneck，24－16S－20E．Four intervals from 6740 to 6990 ft ．were examined．The upper interval penetrated a granite gneiss，the lower three were in diabase． The gneiss is part of the Chaves Granitic Terrane；the lower diabase is probably equivalent to those in the DeBaca Terrane．

CHAVES $49 \ddagger$

Magnolia No． 1 Black Hills Unit，31－17S－20E．Three inter－ vals from 5915 to 6085 ft ．penetrated quartzitic and arkosic sandstones and argillaceous siltstones of the DeBaca Terrane．

CHAVES $40 \ddagger$

Gulf No． 1 Chaves＂U＇，10－18S－16E．One core interval at \pm

[^2]3100 ft . was interpreted as an enigmatic, slightly metamorphosed rock of clastic sedimentary origin by Muehlberger and Denison. In this interpretation, the rock would be related to those in the DeBaca Terrane.

CHAVES 51 \ddagger

Sun No. 1 Pinon Unit, 19-19S-17E. Four intervals from 1732 to 1911 ft . all penetrated altered albite andesite porphyry. The rock is probably related to those in the DeBaca Terrane.

CHAVES 52 \ddagger

Sun No. 2 Pinon Unit, 20-19S-17E. One interval at 1650-59 ft . was in a meta-albite andesite. The rock is similar to that in Chaves 51 and is related to those in the DeBaca Terrane.

EDDY 3*

Southern Union No. 1 Elliot, 24-18S-23E. One core interval at $9886-87 \mathrm{ft}$. was in a foliated granite. The rock may be simply a granite gneiss. The well penetrated part of the Chaves Granitic Terrane.

EDDY $4 \dagger$

Magnolia No. 1, Tres Rancho Unit, 10-19S-23E. The only interval examined, 10,000 to $10,010 \mathrm{ft}$., was interpreted as a banded granite gneiss related to the Chaves Granitic Terrane.

EDDY $6 \neq$

Magnolia No. 1, State " W ", 16-21S-22E. Three intervals from 11230 to 11312 ft . were interpreted as a quartzite intruded by an albite diabase later metamorphosed to lower greenschist facies or hydrothermally altered. The rocks are part of the DeBaca Terrane.

EDDY 7

Humble No. 2, Huapache, 23-23S-22E. A biotite granodiorite was penetrated from 12570 to 12580 ft . The rock is petrographically very similar to Eddy 8, although somewhat different in bulk composition. The rock is part of the Chaves Granitic Terrane.

EDDY 8

Humble No. 1 Huapache, 35-23S-22E. A core taken at 12629 ft . was a biotite granite. The biotite yielded an $\mathrm{Rb} / \mathrm{Sr}$ age of $1310 \pm 20 \mathrm{~m} . \mathrm{y}$. and the feldspar an age of $1350 \pm 30 \mathrm{~m} . \mathrm{y}$. The granite is part of the Chaves Granitic Terrane.

LINCOLN $1 \dagger$

Stanolind No. 1 Picacho, 10-12S-18E. - -mi itervals from 2538 to 2759 ft . penetrated a feldspate $=$ istone. Thy
rock is part of the DeBaca Terrane. rock is part of the DeBaca Terrane.

OTERO 1*

Hunt No. 1 McMillan-Turner, 5-26S-E Fwo intervals: from 1887 to 2060 ft . were diabase, wir iner intervals from 2860 to 2170 ft . were in rhyoins Fophyry. The rhyolite is probably related to the Fens Mountain Rhyolite and the diabse to that in the $\mathrm{D} \mathrm{E}_{\mathrm{i}}^{\mathrm{a}} \mathrm{a}=$ Terrane. The petrographic-geometric relationship the the the diabase is younger than the rhyolit this is not unequivocal.

OTERO 2 \ddagger

Standard of Texas No. 1 Scarp, 18-21S-EDE Diabase was penetrated in two examined intervals fore $2630-2660 \mathrm{ft}$. The rock is related to the DeBaca Terrane

OTERO $3 \dagger$

Southern Union No. 1 Cloudcroft, 5-1T-12E. Fourteen thinsections were examined in the iniersi from 4520 to 4702 ft . These showed a quartzite and $=$ gliceous quartz ite cut by diabase dikes. The rocks are $F=-t$ of the DeBaca Terrane.

OTERO 4

Turner No. 1 State, 36-25S-16E. Nineteen thinsections were examined from 3115 to 5195 ft . The sequence was diabase with alternate talc-tremolite marble intruded by a sill of granite. The well was abandoned in micrographic granite porphyry at 5195 ft . The sequence is a remarkable parallei to the lower part of the section in the Franklin Mountains.

otero 5

Coral No. 1 Warren, 19-23S-18E. Cuttings taken at 2300 to. 2330 ft . show an olivine diabase. The rock is probably related to those of the DeBaca Terrane.

OTERO $6 \dagger$

LeFores No. 1 Federal, 22-21S-16E. The well penetrated diverse metamorphic rocks. In the interval from 2230 to 2250 ft ., four thinsections showed a marble with wollaston ite, garnet; tremolite, and calcite. The origin of the rock is contact metamorphism of an impure limestone. The rock is probably related to the Allamore-Castner sequence.

NEW OBSERVATIONS ON THE STRATIGRAPHY

 OF KEY PERMIAN SECTIONS OF WEST TEXAS judyJohn M. Mys Clinton Oil Company
Midland, Texas 79701

ABSTRACT

Key outcrop areas to an understanding of Permian stratigraphy of the Permian basin are the Eastern shelf, Guadalupe Mountains, Hueco Mountains, Apache Mountains, Sierra Diablo, and Glass Mountains. The basic stratigraphic framework for all these locations was established in the 1920's and 30 's. Subsequent work has resulted primarily in a more detailed subdivision of the rock units, and some changes in age assignment.

Problems in the Permian still remaining are correlation between outcrop areas, shelf to basin correlation, and the position of the Permian chronostratigraphic boundaries. These problems are reviewed in the paper, and new evidence and suggestions are put forward concerning shelf to basin correlations of the Capita Formation in the Guadalupe Mountains, the stratigraphic position and extent of the Powwow in the Hueco Mountains, and the Wolfcampian-Leonardian Series boundary in the Hueco Mountains.

INTRODUCTION

The Permian basin is an area of oil-rich Permian rocks located in southeastern New Mexico and west Texas. It is an area of some of the best exposed Permin rocks in North America. This fact led to the establishment. in west Texas of the type sections of the North American Permian series by Adams, et al. (1939). For this reason and the fact they contain considerable hydrocarbons these Permian rocks have received considerable study. Much study has been of the Permin stratigraphy of the basin. This is desirable and understandable since a solid stratigraphic framework is a prerequisite to other studies such as paleotectonics. A good deal of the Permian stratigraphy of the area is known but problems still remain to be solved. One of the goals of this symposium is to review what is known and to look at some of the problems, especially those probelms relevant to correlation and position of the Permian chronostratigraphic boundaries.

The primary purpose of this paper is to summarize the basic Permian stratigraphic framework of the region that was established in the 1920's and 30's, and to update this stratigraphic framework on the basis of
more recent work. Some discussion and personal observations on some of the remaining problems are also included.

The key outcrop areas (Fig. 1) to the Permian stratigraphy of the region are the Eastern shell, Guadalupe Mountains; Sierra Diablo, Apache Mountains, Hueco Mountains, and Glass Mountains. These will be discussed in detail. For completeness less important areas, such as the Chinati Mountains, Finlay Mountains, Malone Mountains, and the Franklin Mountains, will also be mentioned. Because the majority of the Permian rocks are in the subsurface this aspect will also be discussed.

ACKNOWLEDGEMENTS

I am grateful to Clinton Oil Company for permission to publish this paper and for support in its preparation. I am especially grateful to Wendell Stewart, Texaco Inc., Midland, Texas, for much helpful information on the fusulinid fauna of the Hueco Mountains. Special thanks go to Mary Louise Rhodes, Chevron Oil Company, Denver, Colorado, for her interpretation of the Castile well core from Winker County, Texas, and for allowing me to examine photographs and descriptions of the core. Thanks also go to my wife Eileen for her encouragement during preparation of this paper. Special credit goes to Geo-Sec Services (Phyllis Gilbertson, drafting, and Ann Latimer, typing) for their high quality workmanship on this paper.

KEY STRATIGRAPHIC SECTIONS

Guadualupe Mountains. This fault block range of mountains located in Culberson County, Texas, and Eddy County, New Mexico, is most famous for its spectacular exposures (Fig. 2) of the Capita reef complex. The stratigraphic framework of this interesting mountain range was established by King (1948) and is shown in figure Ba. Newell, et all. (1953) and Hayes (1964) made some modifications resulting in the framework shown in figure Bb. Since then, there

rmission , aration. Texaco ation on Special ron Oil tation of :xas, and ihs and my wife ation of Services ; typing) laper.

[^3]

F
Figure 2.-Permian outcrops in the Guadalupe
Mountains. The left photo shows the mouth of Big

talus. The right photo shows the spectacular El Capitan at the southern end of the range. The exposed stratigraphic units are marked on the photo as follows: Pc - Capitan; Pcc - Cherry Canyon, Pbre - Brushy Canyon, Pbs - Bone Spring.

Guadalupe Mountains are shelf to basin correlations. The most difficult one concerns the Cutoff Formation. Wilde and Todd (1968) Give a detailed discussion of the problem and their correlation of the Cutoff and

Figure 3a.-P.B. King's (1948) stratigraphic framework of the Guadalupe Mountains.

Figure 3b.-Guadalupe Mountains stratigraphic framework from Hayes (1964).

Figure 4.-Stratigraphic relationships of the Cutoff Formation (from Wilde and Todd, 1968).
related units is shown in figure 4.
Achauer (1969, figures 2 and 3) correlates the Lamar Limestone Member at the top of the Bell Canyon with the Seven Rivers Formation. This is highly questionable and results, as Cys (1971) has indicated, from the extreme difficulty in tracing beds across the big notch in the slope on the north side of the mouth of McKittrick Canyon. Tyrrell (1969, p. 83-84) presented the following fusulinid data which firmly establishes the correlation of the Lamar Member with the Tansill Formation: (1) the small Tethyan fusulinid Yabeina is present only in the basal Lamar and basal Tansill, (2) Reichelina is a common fossil in the middle and upper Lamar and middle Tansill, and (3) Paraboultonia is restricted to the upper parts of both units.

There is also strong nonpaleontological evidence to support a Tansill-Lamar correlation. On the scarp between McKittrick and Big Canyons there are exposed dip slopes of forereef talus that essentially represent a single bed or thin group of beds. One can start on the Lamar Member below the third spur north of McKittrick Canyon (Fig. 5) and trace it into the forereef beds. One can then trace these equivalent forereef beds into the reef "massive" without a break in their continuity. The interval where these beds grade into the reef is much above the upper contact of the Seven Rivers and at the approximate level of the Tansill. There are other localities (Fig. 6) in the Guadalupe Mountains where forereef dip slopes which represent a single bed or group of beds are found. In

Figure 5-Stream bed below the third spur north of McKittrick Canyon. The author is sitting on thick-bedded Lamar Limestone approximately 30 yards from its transition into the forereef talus beds.
\qquad
of the contact from a well in Winkler County, Texas, shows a definite transition zone of a few feet between the Bell Canyon and the Castile (Mary Louise Rhodes, oral communication, 1975). I have examined photographs and descriptions of the core and agree with the interpretation. Thus, it appears that the Bell Canyon-Castile contact is transitional with the very important impli ation that the Castile evaporites may be of deep water origin.

The Castile has no shelf equivalents and onlap to a zero edge against the Capitan reef. Newell, et al. (1953, p. 47) did suggest the basal calcareous beds of the Castile were equivalent'. to the uppermost Tansill Formation. However, Tyrrell (1969, p. 84) has shown that the uppermost (post-Ocotillo) Tansill beds are equivalent to unnamed post-Lamar forereef limestone tongues present at the basin margin immediately underlying the Castile. These tongues grade basinward into a thin post-Lamar siltstone at the top of the Bell Canyon.

The second problem involves the Ochoan Series. Adams, et al. (1939) defined this series using the Castile-Salado-Rustler-Dewey Lake sequence as its type section. The problem is in the fact that the type Ochoan section does not contain a diagnostic fauna that is usable for correlation. The only fossils that have been described from this section are some undiagnostic Upper Paleozoic invertebrates present in a thin dolomite in the Rustler (Walter, 1953). The top of the Ochoan Series is also marked by an unconformity. In North America, because the Ochoan is the only postGuadalupian series, it is possible to assign beds outside its type area to it on the basis of stratigraphic position. That is, in a stratigraphic sequence beds that occur above the highest definite Guadalupian can be assigned to the Ochoan. In Europe and Asia the postGuadalupian is assigned to the Dzhulfian Series (stage of some authors) which is additionally subdivided into two or three stages (substages), depending upon which invertebrate group is used as the basis for correlation. It is evident that the Ochoan and Dzhulfian are at least partially equivalent. How much of the Dzhulfian and to which of its stages is the Ochoan equivalent? No one knows positively because of the lack of diagnostic fossils in the type Ochoan. Because of the fairly rapid deposition of its strata and the pre-Triassic unconformity at its top, the Ochoan is not equivalent to the entire Dzhulfian. Obviously, what is needed is the discovery of an undoubted Ochoan section in North America containing a diagnostic fauna. This could then be delineated as a reference section and utilized for regional and worldwide correlations. Perhaps, palynological studies of the type Ochoan would yield some meaningful biostratigraphic data.

Sierra Diablo-Apache Mountains.' The Sierra Diablo is a block-faulted mountain range that contains excellent Wolfcampian and Leonardian exposures (Fig. 7). The Apache Mountains is across the valley to the east of the southern Sierra Diablo and is composed chiefly of Guadalupian rocks. Thus, the two ranges are complementary to one another and form a single "study

Figure 7-Victorio Peak in the Sierra Diablo. Corn Ranch is in the foreground with the massive Kriz Lens behind it. These excellent outcrops are typical of those found in the range. Stratigraphic units are marked on the photo as follows: Pvp Victorio Peak, Pbs - Bone Spring, and Ph - Hueco.
unit". For this reason they are discussed as a single entity.

The stratigraphic framework of the Sierra Diablo was established by P.B. King in the 1930's, but not published in detail until 1965. That of the previously little known Apache Mountains was not fully established until the detailed work of Wood (1968). The stratigraphic framework of both ranges is shown in figure 8. Because the strata in both ranges are continuations of those to the north in the Guadalupe Mountains the problems pertinent to both ranges are similar. There are no major Permian stratigraphic probelms unique to these two ranges. However, three features should be mentioned. First, the Queen and Grayburg Formations have changed facies to a single carbonate unit in the Apache Mountains which Wood (1968) named the Munn Formation. Second, the Hueco-Bone Spring contact in the Sierra Diablo region is conformable except on the Victorio flexure (Fig. 9). Here, there is local wedging-out and thinning of basal Bone Spring beds, slight angularity between the two units, and limestone pebble beds in the basal Bone Spring containing reworked Hueco fusulinids. It is thought that this local unconformity represents a shelfedge scour surface, and in terms of magnitude and time represented might possibly be termed a diastem instead of an unconformity. The third feature is the exact locality on Victorio Peak of Kobustoschwagerina stanislavi. This species is very unusual and the only presently known North American representative of the genus. It was first found in float approximately 45 to 50 feet. (stratigraphic) directly above Kriz Lens on Victorio Peak (Dunbar, 1953). Despite repeated efforts by many workers the in situ beds were not found until 1955 when they were located by Wilde and Hull. They (Wilde, written communication, 1974) found on the north side of the spur two thin beds containing R. stanislavi between 80 and 100 feet below the knob Fig. 10) of Bone Spring "massive" that caps the spur above the Kriz Lens. Since that time many workers (including

Figure 8.-Pre-Ochoan Permian stratigraphic framework of the Sierra Diablo and Apache Mountains (after King, 1965; and Wood, 1968).
myself) have been unable to relocate the beds. This important location needs careful published documentation, and Wilde (written communication, 1974) informs me that he intends to do this in the near future.

Finlay and Malone Mountains. The Finlay Mountains and the Malone Mountains, seven miles to the south, each contain enigmatic Permian exposures. Both are

Figure 9.-Photo showing wedging-out, thinning, and arching of basal Bone Spring beds across the crest of the Kriz Lens at the top of the Hueco on the east side of Victorio Peak in the Sierra Diablo. The basal Bone. Spring beds that wedge out against and immediately overlie the Kriz (Lens contain reworked Hueco fusulinids and lithoclasts.

Knob of Bone
\qquad
Spring "massive" (Bed 22 of Dunbar)

Figure 10.Photograph of the east side of the spur above the Kirz Lens. The Robustoschwagerina stanislavi beds are located somewhere between where the author is standing and the knob of Bone Spring "massive" at the top of the spur. Uncommon float containing R. stanislavi has been found at several places on this slope.
truncated by the Cretaceous and neither have their
bases exposed. Figure 11 shows the recognized Permian
strata present in each range. The current stratigraphic
(ramework was established by Albritton and Smith
(1965). Later Myers (1972) discussed Permian patch
reefs present in the Finlay Mountains, and gave a
complete thickness of the Wilke Ranch Formation
based on a recent well in the range that penetrated the unexposed portion of the formation.
The sequence in the Finlay Mountains is interbedded
bimestone conglomerate, thin-bedded lime marlstone,
and bioclastic limestone. Albritton and Smith (1965)
did not formally name the sequence but called it
"Leonard Series (undivided)". This sequence is a very distinctive, mappable lithologic unit in the Finlay Mountains with great importance in the interpretation of the regional stratigraphy and Permian history of the region. For this reason, I herein informally designatethis sequence the Wilke Ranch Formation (named after a well-known ranch in the western Finlay Mountains) and designate the type section as Albritton and Smith's (1965, p. 8-9) measured section 1. A formal proposal of this new formational name will be published elsewhere in the near future. The exposed thickness if 1650 feet and the total thickness is 1856 feet (Myers, 1972). Fusulinids and brachiopods date it as Leonardian.

The 630 feet of exposed gypsum and interbedded carbonates in the Malone Mountains is the Briggs Formation. Diagnostic brachiopods that date it as Leonardian are found only in the basal limestone (Albritton and Smith, 1965). The upper part is essentially unfossiliferous. No fusulinids have been reported from the Briggs Formation.

The basic stratigraphic problem is their mutual relationship to each other. Albritton and Smith (1965, p. 22-23) discussed this problem and concluded that the two formations are partially equivalent. There is no direct evidence for this, and their conclusion is from inductive reasoning based on two rather weak assumptions. The first assumption is that the basal limestone section of the Briggs is equivalent to the limestone unit below the calcirudite at the top of the Wilkie Ranch Formation (see Fig. 11). This assumption is based on the occurrence of the brachiopod Composita mexicana in both limestones, each of which is the only prominent limestone unit in their respective formations. Both limestones have abundant fossils and it seems strange that a brachiopod that is uncommon in each of them is the only fossil that is found in two limestones that are supposedly the same one. The second assumption is that the pisolitic dolomite in the upper part of the Briggs represents an algal bioherm. A detailed petrographic study of the pisolites has not been done, but similar pisolites in the Tansill and Yates Formations of the Apache and Guadalupe Mountains are now known to be of inorganic vadose origin. Thus, there is a distinct possibility the pisolites in the Briggs have the same origin. These observations and the fact that both formations are very different in lithology suggest that these formations are not stratigraphic equivalents. More detailed work on this facies aspect needs to be done. However, the problem is additionally complicated by the fact that the Malone Mountains are part of a thrust sheet that rests on Cretaceous shales (Albritton and Smith, 1965).

Brachiopods date both formations as Leonardian (Albritton and Smith; 1965). However, their precise position within it or their precise correlation to the Sierra Diablo and Glass Mountains is open to question because the fossils are not that diagnostic. A more detailed search for a diagnostic fauna should be undertaken.

Still pertinent to this is the paleogeography of the

Figure 11.-Stratigraphic section of exposed Permian strata in the Finlay Mountains (after

Myers, 1972) and the Malone Mountains (from Albritton and Smith, 1965).

Diabl shelf Delav depos the tit diffic Leon: interf the 0^{-} was C const separ the simpl Leon with regio part prom gypst confc This but is Perm work with

Hues Texa Lowt fram (194: units lowe Lime figur desig beds placı worl prob the 1 Pow posi bour

Diablo platform, which is a shallow, open marine "shelf" bordered by two deeper, basins (Marfa and Delaware). Both basins did not have evaporites deposited in them during Leoniardian time. Tierefore, the thick gypsum in the Briggs is very anomalous and difficult to reconcile with the present picture of Leonardian paleogeography of the Permian basin. The interfingering of the basal limestone of the Briggs and the overlying gypsum cannot be directly observed, and was only postulated by Albritton and Smith (1965) in constructing a composite section of the Briggs from six separate incomplete sections. Thus, it is possible that the unfossiliferous upper dolomite-gypsum section simply overlies the basal limestone and its contained Leonardian fossils. This distinct possibility, coupled with the presence of Jurassic evaporites in the general region to the south, and the Malone Mountains being part of a thrust plate "pushed up" from the south, have prompted many workers to informally suggest that the gypsum in the Briggs is Jurassic in age and rests unconformably on the definitely Permian basal limestone. This is an admittedly attractive solution to the problem, but is it the right one? It does pose less problems than a Permian age for the gypsum does, but additional field work is needed before this question can be answered with certainty.

Hueco Mountains. This mountain range in far west Texas and southcentral New Mexico has a well-exposed Lower Permian section. The basic stratigraphic framework was established by King, King, and Knight (1945). Williams (1963) gave formation names to the units established by these authors as the informal lower, middle, and upper divisions of the Hueco Limestone to give the present framework shown in figure 12. In addition, Williams (1963) informally designated "Pseudoschwagerina beds" and "Bursum beds" in the upper division of the Magdalena and placed the lower boundary of the Permian at the base of the so-called "Bursum beds". As a result of William's work there are two major perplexing stratigraphic problems in the Hueco Mountains. The first concerns The base of the Wolfcamp and the definition of the Powwow Member, and the second concerns the goosition of the Wolfcampian-Leonardian Series tooundary.

The Powwow at its type section was originally defined as a conglomeratic red shale interval at the base of the Hueco, resting with marked angular unconformity on the Magdalena Limestone. Where it is present the Powwow was interpreted, until William's Wiork, as a detrital interval at the base of the Permian Pennsylvays found unconformably on underlying Pennsylvanian beds. Williams (1963) reported early Molfcampian fusulinids from below the Powwow in the Magdalena and subsequently lowered the base of the Permian into the Magdalena. This is open to question. The critical area is "Reef" Hill where King, King, ond
Knight's Khight's (1945) measured section " J " is located. This Voverlain unconformably by a detrital sequence that fills overlain unconformably by a detrital sequence that fills achannel cut in the mound complex. This sequence

Figure 12.-Williams' (1963) Permian stratigraphic framework of the Hueco Mountains.
consists of lime and chert pebble conglomerates and some' thin interbedded red shale and marine limestones (algal in part). The hill is capped by a 4 feet thick fusulinid biocalcarenite. The fusulinids in this upper part are early Wolfcampian representatives of the genera Triticites and Schwagerina. On the basis of the age dating, lithologic similarity, and the disconformable relationship to underlying Virgilian sediments, this sequence is assigned to the Powwow and regarded as early Wolfcampian age. King, King, and Knight (1945) mapped the entire hill as Magdalena; this is obviously in error. On the scarp (Fig. 13) to the east of "Reef" Hill is undoubted Powwow which has Pseudoschwagerina associated with it and rests unconformably on Magdalena. What is the relationship of the Powwow on "Reef" Hill to that in the scarp and canyons to the east and southeast? The answer will hopefully be given by work in progress by Wendell Stewart and myself. We also hope to verify or disprove William's report of early Wolfcampian fusulinids in the Magdalena immediately northeast of "Reef" Hill at his

Figure 13.-Photographs of "Reef" Hill and adjacent area south of Hueco tanks in the Hueco
locality 1 (Fig. 13). The significance of "Reef" Hill is that there is now verifiable non-Magdalena early Wolfcampian pre-Pseudoschwagerina sediments in the Hueco. Mountains which makes the Permian section in this range one of the most complete Wolfcampian surface sections and appropriate as a standard reference shelf section for the Wolfcampian Series. Documentation of the early Wolfcampian fusulinids will be given in the aforementioned work of Stewart and myself.

On the north side of the mouth of Hueco Canyon Williams (1963) at his locality. 3 (Fig. 14) reported Pseudoschwagerina from beds he. considered as Magdalena below a conglomeratic red shale interval he considered as Powwow. I believe this interpretation is open to question. In the Robledo and Sacramento Mountains in New Mexico there is interfingering of Abo red beds and marine limestones of the Hueco. Two of the Abo red bed tongues extend southward into the Hueco Mountains where they are termed the Powwow and Deer Mountain Red Shale Members of the Hueco Canyon Formation and Alacran Mountain Formation respectively. On the north side of the mouth of Hueco Canyon there are two previously unreported conglomeratic red shale interyals in the Hueco Canyon. Formation well above the one Williams called Powwow

Mountains. See text for explanation.

Figure 14.-Photograph of the area of Williams' Iocality 3 on the north side of the mouth of Hueco Canyon. Abbreviations are as follows: Psch.Williams' Pseudoschwagerina beds, Phcp. Williams' Powwow Member, and Phe - Hueco Canyon Formation.
(Fig. 14). They may be represented by one or more of the covered intervals in Williams' measured section 8 near Juan Peak to the north of Hueco Canyon. The
significant point to keep in mind is that in the Hueco Canyon Formation there are several conglomeratic red shale intervals which cannot be differentiated solely on lithology. To reiterate, the Powwow at its type section was defined as a conglomeratic red shale unit at the base of the Hueco resting with angular unconformity on the Magdalena. As shown in figure 14 there is no obvious angular unconformity between Williams' Pseudoschwagerina beds and the overlying Hueco Canyon Formation. Also the Pseudoschwagerina beds are lithologically distinct from the Magdalena exposed in the rest of the Hueco Mountains. Immediately to the south of Hueco Canyon, especially in the "Reef". Hill area, the Magdalena consists of a series of lime and chert conglomerates interbedded with marine limestones and infrequent reddish brown shales. North of Hueco Canyon near the Texas-New Mexico state line Hardie (1958) describes the Magdalena lithology as an alternating series of shale, limestone, and lime and chert pebble conglomerate. The Pseudoschwagerina beds are medium to thick bedded, light gray limestones. On the basis of the above reasons I would assign the Pseudoschwagerina beds to the Hueco Canyon Formation and interpret the Powwow as being present below these beds in unconformable relationshp with typical Magdalena, but not presently exposed because of its position below the valley floor. What Williams termed Powwow, I would interpret as an unnamed Abo red bed tongue similar to the two unnamed units that occur above it on the north side of the mouth of Hueco Canyon.

The second problem concerns the LeonardianWolfcampian Series boundary in the Hueco Mountains. Williams (1963) in a fault block to the north of Alacran Mountain found the fusulinid Schwagerina crassitectoria, which is though to be diagnostic of Leonardian age. On the basis of this occurrence Williams (1963, p. 32) placed the LeonardianWolfcampian boundary in the Alacran Mountain Formation approximately 280 feet above the Deer Mountain Red Shale Member. From his Leonardian beds Williams also reported Schwagerina franklinensis which he stated C.A. Ross found in the lower Leonard Formation in the Glass Mountains. However,, C.A. Ross (written communication, 1970) informs me that he does not recognize S. franklinensis in the Glass Mountains. After detailed study, and prior to formal publication of his work in 1963, Ross defined what he first thought was \underline{S}. franklinensis as a new species, \underline{S}. $\frac{\text { allisonensis. For the }}{\text { that }}$ following reasons I would suggest Hat there are no Leonardian rocks present in the Hueco Mountains. First, on the Diablo Plateau to the tast of the Hueco Mountains is a sequence King, King, and Knight (1945) mapped as their "eastern dimemite facies" (actually the lithology is dominantly simestone). In the lower part of tis section the same suite of fusulinids is present that is found in the upper Carbonate units on Alacran Mountain, including communicadoschwagerina (Wendell Stewart, oral hormmunication, 1975), marking a good correlation the eabetween the two sections. In the upper part of
eastern section Stewart (oral communication, 1975), has found late Wolfcampian fusulinids which are
advanced species of the genus Chaleroschwagerina. Thus, in close proximity of the Hueco Mountains there is a continuous Wolfcamp section younger than anything found in the general area. Second, in the fault block north of Alacran Mountain Schwagerina crassitectoria is found 20 feet above a limestone that contains Schwagerina menziesi, a form characteristic of the lower Pseudoschwagerina zone as exposed in the Hueco Mountains. Where are the missing late Wolfcamp beds? I have examined Williams' measured section 6 (where he found Schwagerina crassitectoria) in détail and found no evidence of an unconformity. Third, in Williams' measured section 6° S. crassitectoria is 'found approximately 280 feet above the Deer Mountain Red Shale Member. On Alacran Mountain definite Pseudoschwagerina has been found by Wendell Stewart (oral communication, 1971) at the top of 'Alacran Mountain approximately 300 feet above the top of the Deer Mountain Red- Shale Member (Williams' figure of 214 feet of section from this member to the top of Alacran Mountain is thought to be in error). Hence, Pseudoschwagerina occurs stratigraphically above Schwagerina crassitectoria in the Hueco Mountains. Fourth, Wendell Stewart (oral communication, 1975) states that he has some doubt that S. crassitectoria is absolutely restricted to the Leonardian Series. On the basis of the above reasons I would interpret the occurrence of \underline{S}. crassitectoria (if, indeed, the fusulinid is that species) in the Hueco Mountains as the first Wolfcamp record of the speciés, with the corollary that there is no Leonardian exposed in the Hueco Mountains; It is diso important that the "eastern dolomite facies" is one of the youngest marine Wolfcamp sections exposed in the west Texas area and indicates the appropriateness of a Wolfcamp standard reference shelf section being established in the Hueco Mountains. A summary of my current stratigraphic interpretation is given in figure 15.

Franklin Mountains. These mountains in far west Texas are a fault block range composed primarily of older Paleozoic rocks. However, there are Permian outliers on the west side of the range. The detailed stratigraphic framework of these Permian rocks was established by Williams (1966). The basal 1080 feet of limestoné he assigned to the Hueco Canyon Formation, the middle 545 feet of limestone and some interbedded siltstone to the Cerro Alto Limestone, and the upper 500 feet of limestone to the Alacran Mountain Formation. All three formations constitute the Hueco Group.

There is no basal detrital interval as exists in the Hueco Mountains, nor are there any unnamed red bed tongues in the Hueco Canyon Formation. Williams (1966): assigned 110 feet of limestone with several covered intervals in the Alacran Mountain Formation to the Deer Mountain Red Shale Member. I fail to recognize the Deer Mountain Red Shale Member in the Franklin Mountains and believe Williams' assignment to be questionable. The Deer Mountain Red Shale Member in the Hueco Mountains is a thick, poorly exposed reddish brown shale with scattered, thin, discontinuous, fossiliferous limestones. In contrast, Williams' assigned interval in the Franklin Mountains

Diablo Plateau

$$
\text { - } \bar{R} \bar{B}>\text { Unnomed red bed tongue }
$$

Figure 15.-Revised Permian stratigraphic framework of the Hueco Mountains.
has thick (8 to 23 feet), continuous limestones and there is no indication that the covered intervals consist of reddish brown shale.

Williams (1966) reports the Hueco Group in the Franklin Mountains rests conformably on thin argillaceous limestones of the Pennsylvanian. However, Stewart (1968) believes the contact to be unconformable. I am inclined to agree with Stewart's interpretation. Williams (1966) reported definite Pseudoschwagerina 66 feet above the base of the Hueco Canyon Formation. Unless this unfossiliferous basal 66 feet represents the entire early Wolfcampian Leptotriticites zone, which is doubtful, there must be an unconformity.

The top of the section is eroded and there is less Alacran Mountain Formation preserved than in the Hueco Mountains. All of the Hueco Group in the Franklin Mountains is within the Pseudoschwagerina zone (Williams, 1966).

Chinati Mountains. These mountains have a Permian section that is important to the understanding of regional Permian stratigraphy and geologic history, yet little detailed work has been published. The basic Permian stratigraphic framework was established by Udden (1904). The present framework (Fig. 16) is the result of modifications by Rix (1953a, : 1953b) and Amsbury (1958). Skinner (1940) established the basic age assignments on the basis of fusulinids. Cooper and Grant (1972, p. 125-126) briefly discuss the brachiopods and, on the basis of correlations with the Glass Mountains, place (1972, fig. 28 on p. 106) an unconformity representing all of middle Leonardian time within the Cibolo Formation. This unconformity has not been identified by physical criteria on the outcrop or by fusulinid biostratigraphic data. Its existence needs additional, well-documented fusulinid verification.

Most of the Pinto Canyon Formation represents deep
water turbidity current and submarines slide block deposits (Amsbury, 1958). Where and at what distance is the shelf edge that was the source for these deposits? No one knows. Detailed depositional environment studies need to be undertaken at the critical Shafter section, especially within the "lower brecciated zone" of the Cibolo Formation. This "zone" consists of biohermal masses with boulder and cobble sized intraclasts between them. Is this an allochthonous slide deposit (similar to the Radar slide in the Guadalupe Mountains), or an in situ biohermal accumulation with the interbioherm rubble being derived from the bioherms themselves by strong current action? There is disagreement on which is the correct interpretation and the need for additional detailed work is obvious.
Glass Mountains. This interesting mountain range with Glass Mountains. This interesting mountain range with
its well-exposed Permian section (Fig. 17) is critical to Americanpretation of both regional and North American Permian stratigraphy. The type sections of the Wolfcampian and Leonardian Series are in these Mountains. The basic stratigraphic framework (Fig. 18) was

Figure 16.-Permian stratigraphic framework of the Chinati Mountains.
(1930) and later modified by the more detailed fusulinid work of Ross (1963) and brachiopod work of Cooper and Grant (1964, 1966, 1972). The Glass Mountains have received more detailed study than most other areas because of their complicated Permian stratigraphy and the location of the Wolfcampian and Leonardian type sections in them.

Ross (1963) did a detailed study of the Lower Permian. Because "Wolfcamp" was a chronostratigraphic term and to avoid confusion, he eliminated the term "Wolfcamp Formation" and erected the Neal Ranch and Lenox Hills Formations in its place. The Neal Ranch Formation is essentially the "Upper Member" of P.B. King's (1930) Wolfcamp Formation. On the basis of lithologic similarity and their contained fauna Ross (1963) reassigned the Uddenites-bearing Shale Member and bed 2 of the Gray Limestone Member to the Pennsylvanian Gaptank Formation. The Lenox Hills

Figure 17.-Top photo: A winter view from the north of Dugout Mountain at the southwestern end of the Glass Mountains. This mountain consists of Wolfcampian and Leonardian rocks. It is the type-locality of the Dugout Mountain Member of the Skinner . Ranch Formation. Bottom photo: A. view from the south of Cathedral Mountain in the southwestern Glass Mountains. The massive cliffs are the Capitan Formation and the underlying slopes are the Word Formation.

Formation is a sequence of interbedded conglomerate, limestone, and shale approximately 200 to 300 feet thick that P.B. King (1930) assigned to the lower part of the Hess Formation. At the same time, Ross (1963) recognized major unconformities at the base of the Wolfcampian Series, in the middle of the Wolfcampian Series (between the Neal Ranch and Lenox Hills Formations), and at the top of the Wolfcampian Series.

Cooper and Grant $(1964,1966,1972)$ in their long detailed study of the Permian brachiopods of the Glass Mountains recognized the need for smaller stratigraphic subdivisions in order to better relate brachiopod-distribution to the lithic sequence. Therefore, they named some of P.B. King's (1930) numbered limestone members of his Leonard, Hess, and Word Formations, erected other new members, and divided the Leonard Formation into two new formations in order to restrict the term "Leonard" to its
chronostratigraphic use as a series name. Some of their. stratigraphic interpretations are in direct conflict with those of Ross (1963) and are as follows:

1. Cooper and Grant (1966) reassigned the upper part of the Lenox Hills Formation to the Hess Formation eastward from a point one mile east of the Hess Ranch house on is the basis of lithologic similarity. In addition, they also lowered the top of the Lenox Hills? Formation in the eastern Glass Mountains: to the highest bed of conglomerate or calcirudite. In doing this Cooper and Grant ignore Ross' (1963) major unconformity at the top of his Lenox Hills Formation and give the Hess Formation both a Wolf. ${ }^{\text {. }}$ campian and Leonardian age.
2. Cooper and Grant (1972, p. 37, 110) believe that the Neal Ranch and Lenox Hills Formations interfinger at the southwestern end of the Lenox Hills. They also suggest that the biohermal limestones at the top of the Neal Ranch Formation at this locality may actually be basal Lenox Hills Formation, although they contain typical Neal Ranch brachiopods. Ross (1963) interprets a regional unconformity between the two formations.
3. Cooper and Grant (1972, p. 43-44, 53-55) in the Wolf Camp Hills and eastern Glass Mountains assigned all of the Lenox Hills Formation to the Hess Formation. Their. reason is that, in their opinion, the Lenox Hills Formation of this area is lithologically different from the Lenox Hills Formation in its type area and quite similar to the overlying Hess Formation. Thus, the Lenox Hills Formation is restricted to the western and central Glass Mountains and the Hess Formation extends from the top of the Neal Ranch Formation to the base of the Cathedral Mountain Formation in the eastern Glass Mountains. No major unconformities are shown within or at the base of the Hess Formation.
4. Cooper and Grant (1972, fig. 28 on p. 106) show no major regional unconformity between the Skinner Ranch and Lenox Hills Formations.
5. Cooper and Grant (1972, p. 32) restricted the term "Gray Limestone Member" to P.B. King's bed 2 and excluded beds 3 and 4 from the member on the basis of the distinctive fauna of bed 4. In addition, Cooper and Grant (1972, p. 30, 109) strictly on a faunal basis removed the Gray Limestone Member (bed 2) from the Gaptank Formation and, assigned it to the base of the Neal Ranch Formation. I will discuss these proposed changes in more detail below.

As figure 18 shows, the above interpretations of Cooper and Grant are in direct conflict with those of Ross. These conflicts need to be resolved by detailed field work and additional paleontological collecting and study.

A major problem in the Glass Mountains is the exact position of the base of the Permian. This is especially critical because the type section of the Wolfcampian

Series is in the Wolf Camp Hills. This problem will be discussed in detail elsewhere in this volume by C.A. Ross. Hence, I will only briefly review where the base has been placed by various workers and offer my opinion as to where I would place the boundary.
R.E. King (1930) placed the base of the Permian at the base of the Uddenites-bearing Shale Member of the Gaptank Formation primarily on the basis of

Figure 18.—Permian stratigraphic framework of the Glass Mountains.
brachiopods. Bostwick (1962) reported Schwagerina from this same member and placed the PenasylvanianPermian boundary at its base. Ross (1963), seemingly unaware of Bostwick's work, placed the base of the Permian at the base of the Neal Ranch Formation, although he indicated the Gray Limestone Member (bed 2) possibly in part could be Permian. Wilde (1971) reported Permian species of Triticites and Schwagerina from the Gray Limestone Member (bed 2 and placed the base of the Permian at its base. Still, for no apparent reason, Wilde disregarded Bostwick's report (1962) of Permian Schwagerina in the underlying Uddenites-bearing Shale Member, although he reported finding Pseudofusulinella in this member. Assuming Bostwick's (1962) work is valid and, considering the Cooper and Grant brachiopod faunal evidence (1972), I would place the base of the Permian at the base of the Uddenites-bearing Shale Member.*

Pertinent to this problem is the proper formational assignment of the upper two members of the Gaptank Formation. Ross (1963) on the basis of lithology assigned the Gray Limestone Member (bed 2) and Uddenites-bearing Shale Member to the Gaptank Formation. As mentioned above, Cooper and Grant (1972, p. 30, 109) reassigned the former to the Neal Ranch Formation strictly on a faunal basis. According to modern stratigraphic practice, members are usually defined and assigned to formations on the basis of lithology, not solely on a faunal basis. Primarily for this reason, I would suggest that the Gray Limestone Member (bed 2) be retained in the Gaptank Formation until Cooper and Grant can present compelling lithologic criteria for their reassignment. Ross (1963, p. 13) on a lithologic basis placed beds 3 and 4 of P.B. King's (1930) Gray Limestone Member in the Neal Ranch Formation and, placed the upper contact of the Gaptank Formation at the top of bed 2 of the Gray Limestone Member. On this basis I believe Cooper and Grant's (1972, p. 32) restriction of the Gray Limestone Member to bed 2 is valid, although this too was done primarily on a faunal basis.

The age of the Road Canyon Formation is a major problem in the Glass Mountains, and this involves the position of the boundary between the Leonardian and Guadalupian Series at the type locality of the former. Paramount to this question is that age assignment depends on the particular age-dating invertebrate group used. Fusulinids date it as Guadalupian whereas brachiopods, sponges, and ammonites date it as Leonardian. It is obvious that both age assignments cannot be correct. However, on the basis of the total fauna I would agree with Cooper and Grant's (1972) Leonardian age assigment.

Cooper and Grant (1972, p. 115) on the basis of brachiopods revised the type section of the Leonardian Series, restricting it to the Cathedral Mountain and Road Canyon Formations. They expanded the type

* See addenda at end of paper.
section of the Wolfcampian Series to include the Skinner Ranch and Hess Formations (not-in the ex. panded sense of Cooper and Grant, 1972). However, on the basis of fusulinids both these formations are assigned to the Leonardian Series. This is a most difficult interpretational conflict that needs to be resolved. Wilde (1971, p. 372) has partially resolved this problem by his assignment, on the basis of fusulinids, of the Decie Ranch Member of the Skinner Ranch Formation to the Wolfcampian Series.

However, Wilde's (1971, p. 372) above assignment has in itself created the following subsidiary problem that will require additional detailed field work and paleontological collecting. The key fusulinid Schwagerina crassitectoria, and other characteristic Leonardian fusulinids, have been reported from the basal beds in the undivided Skinner Ranch Formation. These basal beds, according to Cooper and Grant (1972, p. 45, 113), are equivalent to the Decie Ranch Member mainly on the basis of their contained brachiopods, and stratigraphic and facies relationships. S. crassitectoria has not been collected from the Decie Ranch Member nor have Wolfcampian fusulinids been collected from the basal beds of the undivided Skinner Ranch Formation. Cooper and Grant (1973, p. 371-372) believe the absence of S. crassitectoria in the Decie Ranch Member is because of muproper environment. Lithologic evidence (the presence of boulder and cobble sized intraclasts) suggest that this member was probably deposited in a very turbulent environment in which S. crassitectoria evidently could not live.

Cooper and Grant (1972, p. 71, 119) state that a detailed search for fossils in the post-Word Guadalupian sequence in the Glass Mountains needs to be done. The fauna of this sequence is poorly known. The major task will be to find undolomitized parts of the sequence containing well-preserved fossils.

Eastern Shelf. This area consists of most of the hilly country of north-central Texas,. from Brownwood to Abilene to Wichita Falls. The Pennsylvanian and Lower Permian sections consist of interfingering sequences of open marine carbonates, marginal marine deltaic clastics, and fluvial red beds. The Upper Permian is an evaporite-red bed sequence in this area. Accordingly, the stratigraphy is complex. Only the general stratigraphic framework is given in figure. 19. The facies and depositional model relationships and problems of this sequence are discussed by W.E. Galloway elsewhere in this volume.

The major unresolved stratigraphic problem of this area is the position of the base of the Permian. Through the years its placement has ranged from the base of the Thrifty Formation to the top of the Belle Plains Formation. An excellent summary of the problem is given in a publication of the San Angelo Geological Society (1958). A more recent published article dealing with the placement of the Permian boundary, and one with which the majority of current workers agree, is by Kauffman and Roth (1966). They place the base of the Permian immediately below Waldrip Limestone Number One at the base of the Pueblo Formation in the

Solorado River valley and,immediately above the top - of the Crystal Falls Limestone in the Brazos River valley. An important point to keep in mind is that the Eastern shelf is one of the few outcrop areas in the Permian basin region where continuous sedimentation across the Pennsylvanian-Permian boundary took place without other major erosional and depositional breaks that exist in other areas such as the Glass Mountains.

Fusulinids of the Eastern shelf have been studied in moderate detail and do provide a good basic

Figure 19.-Permian stratigraphic framework of the Eastern shelf.
stratigraphic framework. The brachiopods and ammonites are still in need of such study.

SUBSURFACE OF THE PERMIAN BASIN

Most of the iermian rocks of the Permian basin region are in the subsurface. Thus, for a comprehensive understanding of the Permian geologic history and stratigraphy of west. Texas and southeastern New Mexico, detailed subsurface stratigraphic studies are an essential prerequisite. Such studies have been done; hnwever, because of the strongly competitive nature of the oil industry almost all of them remain unpublished in the locked confidential files of oil companies. I urge the publication of these studies as soon as their competitive advantage has passed.

Figure 20 shows the subsurface provinces of the region and figure 21 shows the subsurface Permian stratigraphic framework of these provinces. One major problem is the position of the base of the Permian in the subsurface. T.S. Jones discusses this problem in detail as it exists in the Midland and Delaware basins elsewhere in this volume. The biggest problem in the subsurface is shelf to basin correlations. The Permian shelf-edge deposits are thick, extensive carbonate bank and reef complexes. As a result shelf strata cannot be directly traced into basin equivalents because there are no key beds or markers that extend through the shelfedge banks and reefs from the shelf to the basin. Fossils are of very limited use because shelf, shelf-edge, and basin faunas are quite different with very few forms common to all three. One prominent exception is in the Guadalupe Mountains where, as discussed previously in this paper, the same restricted fusulinid fauna is found in the shelf Tansill Formation and basinal Lamar Member of the Bell Canyon Formation and firmly establishes the correlation of these two units. Also, fossils are difficult to find in significant quantity in the subsurface. The steep depositional topography of the region also complicates the problem.. Therefore, shelf to basin correlations are very difficult to establish. Most of the effort has been directed toward the correlation of the "Glorieta" and Tubb (Drinkard) sands of the Northwest shelf and Central Basin platform to the three Bone Spring sands of the Delaware basin and to the Spraberry and Dean Formations of the Midland basin. The most recent published attempt at shelf to basin correlations of these units is that of Silver and Todd (1969). Using unconformity-bounded sequences in a cyclic sedimentation model, they correlate the Tubb (Drinkard) with the lower Spraberry sand and the Second Bone Spring sand. Most workers, however, would disagree with these correlations and correlate the Tubb (Drinkard) with the Dean Formation and the Third Bone Spring sand. For additional discussion of shelf to basin correlations and one approach to the problem the reader is referred to Silver and Todd (1969).

For many years subsurface geologists have debated the age of the Dean Formation. Some placed the top of the Wolfcampian Series at the upper contact of the

Figure 20.-Subsurface provinces of the Permian basin. The key Permian outcrop areas are also

	Delawore Bosin	Central Basin Platform and Northwest Shelf	Midlond Bosin
	Dewey late	Dewey loke	Dewey Lake
	Rustier	Rusticr	Rustler
	S:1040	Saligio	salado
	Castile	11111	11111
	Bell Canyon	Tonsill	Tonsill
		Yotes	Yotes
	Cherry	Seven Rivers	Seven Rivers
	Brushy Canyon	Queen	Queen
		Grayburg	Grayburg
		San Andres	Son Anares
	$\begin{aligned} & \text { Bone } \frac{1 \text { St } S \text { d }}{\text { 2ndsd }} \\ & \text { Spring } \end{aligned}$	Glorieta	
		Clearfork	Cleor Fork.
			Spraberry
		Tubb-Drinkard	Dean
	Wolfcomp	Abo (WichitaAlbanxl	Wolf camp
		Hueco	
		"Bursum"	

Figure 21.—Generalized Permian stratigraphic framework of the subsurface of the Permian basin.
shown in order to illustrate their geographic relationship to the subsurface provinces.

Dean while others assigned the Dean a Leonardian age. Recently the debate was settled. Silver and Todd (1969, p. 2243) reported definite Leonardian fusulinids below the Dean and Third Bone Spring sand. There are also additional unpublished subsurface data that support a Leonardian age for the Dean.

Shelf-edge and shelf carbonates of early Leonardian age on the Northwest shelf and Central Basin platform are currently termed "Abo", "Wichita", and "WichitaAlbany". This is a nomenclatural conflict that needs to be formally resolved in print. One positive step in this direction is Meyer's (1966, p. 71) recommendation that on the Northwest shelf the early Leonardian carbonates be designated the Wichita Formation and the term "Abo Formation" be restricted to the red beds to the west in central and south-central New Mexico. Silver and Todd (1969, p. 2243) propose a new name be given these carbonates and the terms "Abo" and "Wichita" be restricted to shelf clastic facies. Neither proposal has as yet been widely accepted. Still, the proper nomenclature of these carbonates is a conflict that needs to be resolved.

The San Andres Formation is one of the most prolific Permian oil-producing horizons of the region. It is a thick, widespread unit found in the subsurface of west Texas and both the subsurface and surface of New

Kauffman, A.E., and R.I. Roth, 1966, Upper Pennsylvanian and Lower Permian fusulinids from northcentral Texas: Cushman Found. Foram. Research Spec. Pub. 8, 49 p.

King, P.B., 1930, The geology of the Glass Mountains, Texas; Part 1, Descriptive geology: Univ. Texas Bull. 3038, 167 p. Geol. Survey Prof. Paper 215, 183 p.

1965, Geology of the Sierra Diablo region, Texas: U.S. Geol. Survey Prof. Paper 480, 185 p.
R.E. King, and J.B.

Knight, 1945, geology of Hueco Mountains, El Paso and Hudspeth Counties, Texas: U. S. Geol. Survey Oil and Gas Invs. Prelim. Map 36, 2 sheets.

King, R.E., 1930, The Geology of the Glass Mountains, Texas; Part 2, Faunal summary and correlation of the Permian formations with description of Brachiopoda: Univ. Texas Bull. 3042, 245 p.

Meyer, R.F., 1966, Geology of Pennsylvanian and Wolfcampian rocks in southeast New Mexico: New Mexico Bur. Mines and Mineral Resources Mem. 17, 123 p.

Myers, J.B., 1972, Permian patch reefs in Finlay Mountains, west Texas: Am: Assoc. Petroleum Geologists Bull., v. 56, no. 3, p. 494-502.

Newell, N.D., et al., 1953, The Permian reef complex of the Guadalupe Mountains region, Texas and New Mexico: San Francisco, W.H. Freeman and Company, 236 p.

Rix, C.C., 1953a, Geology of the Chinati Peak Quadrangle, Presidio County, trans-Pecos Texas: Unpub. Ph. D. thesis, Univ. Texas, Austin, 188 p.

1953b, Geology of the Chinati Mountain Quadrangle, in Spring field trip to Chinati Mountains, Presidio County, Texas: West Texas Geol. Soc. Guidebook, p. 1-3.

Ross, C.A., 1963; Standard Wolfcampian Series (Permian), Glass Mountains, Texas: Geol. Soc. America Mem. 88, 205 p.

San Angelo Geological Society, 1958, The base of the Permian - A century of controversy: San Angelo Geol. Soc. Guidebook, 100 p.

Silver, B.A., and R.G. Todd, 1969, Permian cyclic strata, northern Midland and Delaware basins, west Texas and southeastern New Mexico: Am. Assoc. Petroleum Geologists Bull., v. 53, no. 11, p. 22232251.

Skinner, J.W., 1940, Upper Paleozoic section of Chinati Mountains, Presidio County, Texas: Am. Assoc. Petroleum Geologists Bull., v. 24, p. 180-188.

Stewart, W.J., 1968, Schubertellinae from the Wolf. camp, Lower Permian, Franklin Mountains, Texas: Jour. Paleontology, v. 42, no. 2, p. 322-328.:

Tyrrell, W.W., Jr., 1969, Criteria useful in interpreting environments of unlike but time-equivalent carbonate units (Tansill-Capitan-Lamar), Capitan reef complex, west Texas and New Mexico, in G. M. Friedman, ed., Depositional environments in carbonate rocks: Soc. Econ. Palèontologists and Mineralogists Spec. Pub. 14, p. 80-97.

Udden, J.A., 1904, The geology of the Shafter silver mine district, Presidio County, Texas: Univ. Texas Min. Survey Bull. 8, 60 p.

Walter, J.C., Jr., 1953, Paleontology of the Rustler Formation, Culberson County, Texas: Jour. Paleontology, v. 27, p. 679-702.

Wilde, G.L., 1971, Phylogeny of Pseudofusulinella and its bearing on Early. Permian stratigraphy, in Paleozoic perspectives: A paleontological tribute to G. Arthur Cooper: Smithsonian Contrib. Paleobiology 3, p. 363-379.

1968, Guadalupian biostratigraphy and sedimentation in the Apache Mountains region, west Texas, in Guadalupian facies, Apache Mountains area, west Texas: Permian Basin Sec., Soc. Economic Paleontologists and Mineralogists Guidebook, p. 1031.

Williams, T.E., 1963, Fusulinidae of the Hueco Group (Lower Permian), Hueco Mountains, Texas: Peabody Mus. Nat. History Bull. 18, 122 p.

1966, Permian
Fusulinidae of the Franklin Mountains, New Mexico. Texas: Jour. Paleontology, v. 40, no. 5, p. 1142-1156.

Wood, J.W., 1968, Geology of Apache Mountains, trans-Pecos Texas: Texas Bur. Econ. Geology Geol. Quad. Map 35.

ADDENDA

While this paper was in press, I received new information (Garner Wilde, oral communication) that Bostwick's report (1962) of Schwagerina from the Uddenites-bearing Shale Member is invalid and that the total fusulinid fauna of this member is definitely Virgilian. Therefore, on the basis of its ammonites and this new information, I would now regard the age of the Uddenites-bearing Shale Member as. Virgilian and place the base of the Permian at the base of the Gray Limestone Member from which Wilde (1971) has reported definite Permian fusulinids.

geologic map of Texas. Maps sent in by other geologists for use in compiling the map were also consulted, particularly an interesting set of field sheets made by C. L. Baker in southwestern trans-Pecos Texas.

ACKNowledgments

Through the kindness of E. H. Sellards and C. L. Baker, the writer has been permitted to read their unpublished manuscript on the geologic structure of Texas, soon to be published as Bulletin 340 r .oi the Bureau of Economic Geology, University of Texas. The writer has avoided as far as possible duplicating any part of this work, and particularly the extensive descriptive matter which it contains. In places Baker's interpretations on trans-Pecos Texas in this manuscript coincide with, and have to a certain extent influenced those oi. the writer.

The writer is also indebted to W. S. Adkins, formerly of the Bureau of Economic Geology, for many interesting discussions on the Cretaceous strata of the region, and has made extensive use of Adkin's recent valuable summary of the Mesozoic of Texas. ${ }^{3}$ Finally, the writer wishes to acknowledge the receipt of numerous suggestions, and of much useful information on adjacent parts of Mexico, from his brother, Robert E. King.
relation of geographic to structural features
In broader topographic features trans-Pccos Texas consists of two parts. On the west side of Pecos River is a belt of plains and low plateaus $50-100$ miles in width. Beyond that is a region of mountains and intermontane basins. The mountains rise above the plains on the east along an irregular boundary, trending approximately northwestward, and the eastern mountains might empirically be considered as a front range. Actually, a true front range of continuous structural and topographic character does not exist, for the origin of the land forms and the underlying rock structure in different places is most diverse.

The northern part of trans-Pecos Texas, north of the Texas and Pacific Railway, is a part of the Basin and Range province. The mountains here are broad blocks of flat-lying or gently tilted Paleozoic rocks which rest on a pre-Cambrian basement. Their outlines are largely determined by faults which bound their bases, and the intermontane areas are decply filled by detritus washed down from the adjacent highlands (Fig. 5).
${ }^{3}$ W. S. Adkins, "Mesozoic Systems," in "The Geology of Texas," Vol. I, "Stratigraphy," Univ. Texas Bull. 3232, (1933), pp. 239-517.

STRUC South of the Texas and Pacific Railway, normal faulting has a conspicuous effect on the topography in only arther north, and the has been one of greater mocks which form the mountains have been sedimentary and volcanic rocks which folded by post-Mesozoic moveuled, flexed, and the last faulting (Fig. 5). In many places there are masses of intrusive igneous rock. The rocks of this region, of diverse composition and structure, possess a varied resistance to erosion, and impart distinctive fcatures to the different mountain masses and lowlind areas. The topography in most of the district is thus not produced directly by the uplift or depression of blocks of the earth's crust. The southern part of trans-Pecos Texas, in which these features are displayed, is most closely allied to the mountains and highlands of northeastern Mexico, such as the Sierra Madre Oriental, and it forms their northern end (Fig. 6). ${ }^{4}$ +

Depth of pre-Cambrian floor.--Pre-Cambrian rocks are not widely exposed in trans-Pecos Texas. The most extensive outcrops are along the edges of the uplifted blocks of the Basin and Range province where the sedimentary cover is thin. The largest area of outcrop here is at the margin of the southeastern angle of the Diablo Plateau (Fig \mathbf{z}_{2}^{\prime}) near Van Horn; this is the highest. point structurally in transPecos Texas. 5 Its present height is caused largely by block-faulting, but west of Van Horn, Permian rocks overlap the older Paleozoic and rest on the pre-Cambrian over a wide area, and in one part of the district (near Eagle Flat station), the Permian is in turn overlapped by. the Cretaceous. The area has, therefore, had a long positive history. Farther east, near Fort Stockton, pre-Cambrian granites have been penetrated by a boring at a depth of 4,750 feet;' here they are overlain by the Permian, and probably lic on the crest of a similar positive area of basement rocks (Fig: 2).

4 The elation between the physical features of trans-Pecos Texas and those of im ediately adjacent parts of northern Mexico is shown on map of Hispanic Anerica, huahua) of the American Geographical society's millionth map

- Bater "Exploratory Genlogy of a Part of Southwestern Trans-Pecos
 - Texas," Univ. Toxas Bul. 27.5 (1927, dome." To the writer the term have been domemelers to the the complexity of the upliit: : some of the old ly normal faulting.
like, but its present allituce has been prode woic Systems," in "The Geology of
E. H. Sellards, "Pre-Paleozoic and Talcozoic Texas," Y. Sellards, "Straticraphy," Univ. Tc.xus Bull. 3232 (1933), p. 5^{2}

Southeast of Van Horn, in a belt extending. through Marathon the pre-Cambrian rocks probably lic far below the surface, for this was a region of geosynclinal deposition during Paleozoic time. Southwest of Van Horn also, the pre-Cambrian is probably deeply covered, for a great thickness of Mesozoic sediments was laid down there. Southeast of the Paleozoic geosyncline, the pre-Cambrian floor apparently rises again; schists probably of this age have been found by Baker near the axis of the Sierra del Carmen on the Mexican side of the Rio Grande, 80 miles south of Marathon (Fig. 2). ${ }^{7}$ These may lie not far beneath the Cretaceous in a wide area in this part of Coahuila.

Pre-Cambrian structural features in Diablo Plateaut.-The character of the pre-Cambrian basement may best be observed near Van Horn. In the southern part of the area the country rock is schist, which strikes predominantly northeast, ${ }^{8}$ but locally with northwest; east-west, and even north-south strikes. ${ }^{9}$ In the northern part, the country rocks are the little metamorphosed, later pre-Cambrian sediments of the Millican formation (Fig. i).

Richardson, during his work in the area for the Van Horn folio, ${ }^{10}$ did not find the two units in contact, but a few years ago, in the course of field work a little farther west, north of the Texas and Pacific Railway between Allamore and Eagle Flat stations, the writer was able to demonstrate that the contact was one of overthrust (Fig. I), ${ }^{11}$ in which the schists on the south had moved northward across the Millican. The fault trace is exposed at various scattered localities and trends west-northwest; the plane dips about $30^{\circ} \mathrm{S}$. and is intruded by diabase sills. In places the faulted rocks are overlain by Permian rocks. which are not disturbed. Recently the writer discovered some small outlying masses of schistose rocks resting on limestones of the
${ }^{7}$ Emil Biose, "Vestiges of an Ancient Continent in Northeast Mexico," Amer
Jour. Sci., 5th Ser, Vol. 6 (Io23), p. I 33.
C. L. Bater
Vol. 50 ; (1928), p. 358 .
${ }^{8}$ G. 1.
${ }^{8}$ G. B. $\dot{9}$ Richardson, U.S. Gcol. Survey, V́ an IIorn Folio 194(1914), p. 7.
${ }^{9}$ C. L. Baker, op. cill. pp. $7-8$.
${ }^{10} \mathrm{G}$. B. Richardson, op.cit, p. 4.
${ }^{11}$ The writer's interpretation is shown in the structure section of figure 25 in N. H Darton, "Guidebook of the Western United States, Part Fection of ligure 25 in N. Houthern Pacific Lines,"
U.S. Geol. Survey Bull. 845 (igt3), U. S. Geol. Survey Bull. 845 (19.33), D. I25. It is interesting to compare this with the
descriptions and structure section of W descriptions and structure section of W. H. von, Streeruwitz, "Report on the Geology and Mineral Resources of Trans-Pecos Texas," Texas Ccal. Surrcy 2nd Ann. Repi.
(I S9it), p. 682 and section $O P$, Pl. 26, which, excepting the ase assirnments of some oi Ifor $), \mathrm{p}$. 682 and section $O P, \mathrm{M} .26$, which, excepting the age assignments of some of
the rocks, is remarkably accurate.

Fig. 1.-Map of Van Horn region to show pre-Cambrian structural features. Area south of Texas and Pacific Railway mainly after G. B. Richardson and C. L. Baker. Area on north by P. B. King.

They are probably klippen of the overthrust.
North of the fault the limestones of the Millican are sheared and marmorized. For a distance of 3 or 4 miles they and the associated conglomerates and red sandstones are intensely folded with west. northwest strike, but beyond, the metamorphism is no greater than in the overlying Paleozoic, and the formation passes beneath the younger rocks of the Sierra. Diablo to the north with dips of only a few degrees. ${ }^{12}$.The coarse angular conglomerates of the Millican forma. tion in this region consist in small part of fragments of schist and igneous rock, but predominantly of limestone, presumably derived from a lower member of the formation. Another limestone member is also present at the top of the succession at such places as Tumble down Mountain west of Beach Mountain (Fig..I). The conglomerate apparently thins and intergrades with sandstone toward the north, as though derived from an area of uplift near the site of the observed overthrust. The northward thrusting of pre-Cambrian rocks toward a seemingly stable area in the plateau is similar to the structural relations in post-Cretaceous time described later in the paper. Both the schists and unaltered sedimentary rocks are penetrated by numerous small masses of diabase of pre-Cambrian age. The Van Horn sandstone (Cambrian) rests unconformably on them in places, and contains their reworked fragments.

Farther northwest, in the Diablo Plateau, the pre-Cambrian basement apparently consists largely of red granite and rhyolite porphyry. At the base of the Sicrra Diablo escarpment northwest of Van Horn the Cambrian (Van Horn sandstone) is a great mass of red arkose with numerous layers of coarse bouldery conglomerate. Surprisingly enough, few of the fragments come from the underlying schistose and sedimentary rocks, but are instead largely of granite and rhyolite. Some of the rounded boulders reach 3 fect across. These coarse clastics must have come from high lands farther northwest. now largely buried by Paleozoic strata. About 35 miles north of Sierra Blanca, within the plateau, are some low hills of rhyolite porphyry like that in the Cambrian conglomerates on the south (Fig. 2); near by are exposures of Permian and Cretaceous limestones. N. H. Darton has suggested to the writer that these are a projecting summit of the pre-Cambrian floor. ${ }^{13}$ Farther west, at the south end $0 i$
${ }^{12}$ N. H. Darton, op.cill, Fig. 25, p. 125.
${ }^{13}$ N. H. Darton, personal communication, 1930.

Zue-ryuch (Bliss sandstone). ${ }^{14}$ These igneous rocks may be younger nam the Millican formation, for in the Franklin Mountains west of the Huecos, the Llanoria quartzite is overlain by thick rhyolite flows, and

Fig. 2.-Map of trans-Pecos Texas to show pre-Cambrian and pre-
Fig. 2.- Map of trans-P Paleozoic structural features.
both in turn are intruded by red granites. ${ }^{15}$ This quartzite, like the Millican formation, consists of little metamorphosed or folded rocks, probably of late pre-Cambrian age.
. 1 ${ }^{14}$ P. B. King, "Permian Stratig.
mer., Vol. 45 (1934), Fig. 2 D, p. 714 .
${ }^{15}$ G. B. Richardson, U.S. Gcol. Survey El Paso Folio 166 (1goo), p. 6 . The rhyolites here were correctly interpreted by Richardson: but atl the granites were mapped by him as post-Carboniferous. According to J. G. Barry of EL Paso, hey are of in 1933 , in the northern part of the range only. In the southern part, the wricr was, - shown exposures by Barry in which the Cambrian (Bliss) lay on an eroded sarrace red granite.

Pen enhsylvanian a vast succulite of these conctist rocks reach trang,
tic proportion the Haymon part, of the
tured the northe thrown intoptank formand and numond form, and in

$$
\begin{aligned}
& \text { which woud moreo across the strike shortening bugout of which other } \\
& \text { would bee }
\end{aligned}
$$

It is the wht to nearly

$$
\begin{aligned}
& \text { than folded and other vanian, for ividently the which } \\
& \text { form the }
\end{aligned}
$$

$$
\begin{aligned}
& \text { formity. Thed, and in place early peor the rocks they culm produced this } \\
& \text { the orminated }
\end{aligned}
$$

$$
\begin{aligned}
& \text { der beds. The and fay began earlie the older are gently thest, with } \\
& \text { would ho these cond }
\end{aligned}
$$

$$
{ }^{16} \text { The ve been deeply fragments }
$$

$$
\begin{aligned}
& \text { fanpescript dealigraphy and suried if the rocks of themerates section, in } \\
& \text { puples, whe }
\end{aligned}
$$

wog them to th
mpled and bu
-ir parent ledges only near faults and
Paleozoic time was: firstructural history of the M of close of limy, cherty, and fine clastic the early Palcozoic $M_{\text {arathon }}$ basin in time the sedime Llanoria geosy sediments accumpla great thickiness lift of lands on thecame coarchine. ${ }^{2 l}$ Next, in eatled in an area of more rapidly than southeast; the probably as a result pennsylvanian Jing deposits. The before, since the sediments filled the strong upmorphic rocks which fragments are exceed in thickness theosyncline wates anian time; conditio forcign to the wever, of granitic and underly-- that theyear which have a radically changon. Then, in lat metanear they were derived fro hear-by sourco ing and coarse coner Pennforward ond of Pennsylyanian foldsising from the presumption is stron been folded the Dugout. Cian time, the whot geosyncline. Finallg late Pennsylvanian ermian rocks overthrust. This fauluss was driven, tense deform events porlie it unconformabt has not since Extensions of (hobably mark the last ply, so that these - Llanoria geosyncline darathon folds south onase of the inhearly circular Marine did not have southwest
\therefore ard the southwest thon basin, but had same form northeast.- The - neath thin, rocks of geortheast (Fig. a much greater modern,

- folded he Cretaceous cosyclinal facies At the edges of thent to

क edge of ths comes up in ther. On the south in these direct Mara-
\therefore folded the basin (Fire Solitario domest a small patch of be-
\& the M verthrusts lit ${ }^{2} .^{22}$ Here sellai, 35 miles south phe of the southwathon basin. Those southeast of the reports the evist of the thick est is not known further extension Dugout Creek thres of

A few of Cretaceous since in this diren of the folds towned in dred feet des cast of the at and Tertiary they pass bencathe and deep weep penetrate Pennathon basin, wa la flows.
n.E.H. S.

(g $_{322}$), verthrusting in I_{9}.
${ }^{23}$ D. D. Chtic. ${ }^{45-40^{\text {a }}}$,
$T_{\text {exas }}$ D. D. Chl. $\mathcal{S}_{\text {lo }}$
$S_{1 g}($ gis $), p_{p} 1_{1} \sim 12$.
\cdots

Verde County have entered sheared and talcose (and therefore prob ably deformed) shales, possibly of Pennsylvanian age, after passing gests that the strike of course east of the Marathon basin (Fit bends to. an east-southeast to the work of Sellards, Miser, ${ }^{25}$ and. 2 , but farther east, according north and emerges from the Cretaceus cover again bends toward the tains of Oklahoma.

Paleozoic land area of Llanoria.-On the southeast, the Llanoria geosyncline was probably bounded by an area of highlands underlain the crystalline rocks. This has been called Llanoria by analogy with the Ouachita Mount name which is supposed to have lain south of in the Paleozoic sedim. ${ }^{2}$. The existence of such a land is suggested of clastic and cherty sedimen the Marathon basin by the thickening limestones by shales, and southeastward; by the replacement of and by the occurrence in shales by sandstones in this direction; quartz, grains of schistose clastic sediments of pebbles of vein boulder bed) of cobbles of igneous rocks rocks, and (in the Haymond

A positive area which existed in
Mesozoic time may have been a rem northeastern Mexico in early (Fig. 7). In this region which remnant of the older land, Llanoria ${ }^{27}$ Jurassic and early Cretaceus occupied part of northern Coahuila, sented by a marginal clastic facies. ${ }^{2 s}$ Witheither absent or are repreCarmen, the schists reported by Within the area, in the Sierra del tacenus rocks approximately of Glen Rose age, and at Las Delicias, Coahuila (Fig. 7), rocks of the same age rest directly on the Permian. ${ }^{20}$ South and southwest of a line extending westward from Saltillo to ${ }^{29}$
${ }^{24}$ E. H. Sellards, "Pre-Paleozoic and Paleozoic Systems," in "The Gcology of Texas," Vol. I, "Stratigraphy," Uiiv. Texas Bulll. 3232 (1933), pp. roo-9r and Fig.
ro, p. 128 . ${ }^{25} \mathrm{H} . \mathrm{D}$
Gulf Coastal Plain South of the Ouachita Mountains," Bull Found in Wells in the Geol., Vol. 15, No. 7 (July, I931), pp. $807-08$. Mountains," Bull. Amer. A ssoc. Petrol. E. H. Sellards, "Rocks Underlying Co

> Texas,"

- Cous in Balcones Fault Zone of Central

Texas,"'Amer. Jour. Sci., 5 th Ser., Vol. 2 (ı92I), Land Area in Louisiana and Eastern ${ }^{27}$ P. B. King, "An Outline of the Stru2t), pp. 61-89.
book 28 International Geol. Cong. XVI Session, I933, p. 41 of the United States," Guide${ }^{28}$ Emil Böse, "Vestires of an Session, 1933, p. 41.
Jour. Sci, 5th Ser., Vol. 6 (1923), pp. $130-\mathrm{I} 36$. ${ }^{29}$ R. E. King, "The Permin ${ }^{130-136}$.
Ser., Vol. 27 (r934), p. rog.: Permian of Southwesteria Coahuila;" Amcr. Jour. Sci., sth $^{\text {th }}$

Torreon in southern Coanuna, Cos Texas, Jurassic and early Creta

 Chihuahua to western trans-Pecos thickness. Strong post-Mesozoic folding took place in this area of thick sedimentation and the general orthwestward Cordilleran trend is deflected around the positive area. ${ }^{30}$d.Foreland areas northaest of Llanoria geosyncline.-The northwest edge of the Llanoria geosyncline may have lain near the northwest margin of the present Marathon basin. In this district, near the front of the Dugout Creek overthrust, the lowest formation of the PennsylShales, is onlys), a typical geosynclinal deposit of sandstones and southeast it is several thousand fer although a few miles farther south of the outcrop of thousand feet in thickness. ${ }^{31}$ A few miles vician contains large limestone boulders of Cambrian in Ordoage, of foreland facies. ${ }^{32}$ Whether these reached their present posician by normal processes of transportation and deposition, or by some process of tectonic intercalation, they suggest that the foreland arca lay not far on the northwest. The Dugout Creck overthrust may form the boundary between geosynclinal and foreland rocks in this part of the basin, but nothing is known of the older rocks overridden by the fault. In the northeast part of the basin, the disturbance in the Paleozoic rocks appears to die out northwestward by diminution of the folds, so that the highest Pennsylvanian passes beneath tilted Permian of not greatly younger age beyond, without evident difference in dip or strike.

Northwest of the Llanoria geosyncline the nearest exposures of the pre-Permian Paleozoic rocks lic at a distance of a hundred miles or more and are of very different facies. As exposed along the edges of the Diablo Plateau and Franklin Mountains in the Basin and Range province, the section is largely limestone. At the base are Upper Cambrian sandstones resting on the pre-Cambrian basement and followed by several thousand feet of Ordovician and Silurian lime stones. ${ }^{33}$ A number of stages of the Middle Ordovician found at Mara-
${ }^{30}$ Emil Böse, op. cil., Fig. 1, p. 128.
L. B. Kellum, "Keconnaissance Studies in the Sierra de Jimulco." Bull. Geol. Soc. Amer., Vol.43, (1932) pp. 54 1-64. $^{\text {- }}$
${ }^{31}$ "P. B. King, "The Geology of the Glass Mountains," Part I, "Descriptive Geology," Unie. Te.xas Bull. 303 S, pp 3^{1-32}.
${ }^{32}$ P. B. King, "Pre-Carboniferous Stratigraphy of the Marathon Uplift," Bull. Amer. Assoc. Petrol. Geol., Vol. 15, No. 9 (September, 1931), pp. 1063-64.
${ }^{33}$ G. B. Richardson, U. S. Gcol. Survey El Paso Folio 166, pp. 3-4; U. S. Gcol: Survey Van Horn Folio 194, pip. 4-5.
unon are absent here, although the Silurian has no representative a Marathon. The Mississippian and Pennsylvanian together are bu 2,000 feet thick and nearly all limestone. Beds at Marathon equiva lent to part of the section are clastic. The highest Pennsylvanian bed of the Hueco Mountains are of about the same age as the highest ones at Marathon, but in the Sierra Diablo, no strata higher than the lower Pennsylvanian remain. ${ }^{34}$ The Pennsylvanian and older rocks were gently folded and deeply eroded before Permian time, so that the basal Permian strata, containing Schwagerina, rest in the northern Hueco Mountains on the Pennsylvanian, in the southern Hueco Mountains on rocks as old as the Ordovician, and in the southern Sierra Diablo on the pre-Cambrian. In the Pennsylvanian section of the Hueco Mountains there is no evidence of movements before the close of the period of deposition, and it is probable that the deformation in this foreland area corresponds with the culmination of the movements at Marathon

The late Pennsylvanian uplift in the Hueco Mountains follows the general northwest trend of the present range (Fig. 2), with the older rocks dipping more steeply than does the Permian off each side of the axis. In the Sierra Diablo a reconstruction of the late Pennsylvanian folds which are truncated by the Permian indicates that they had a northeast trend (Fig. 2). A particularly well marked broad syncline extends northeastward from the southeast corner of the Sierra Diablo under the Baylor Mountains (Fig. I). The folds in the Hueco Mountains and the Sierra Diablo apparently follow the west and southeast edges of the Diablo Plateau area

East of the Sierra Diablo the Paleozoic foreland rocks are deeply covered by younger strata. Near Fort Stockton, as previously noted pre-Cambrian granites have been penetrated by the drill beneath the Permian. Still farther east; Pennsylvanian limestones and Middle Ordovician shales have been penetrated by deep wells in Reagan County, ${ }^{35}$ and beneath them are limestones probably to be correlated with the Ellenburger farther east. The latter has also been reached by deep borings in Crockett and eastern Pécos countics on the south, ${ }^{36}$ within 100 miles of the Marathon basin. These rocks, like those in northwestern trans-Pecos Texas, are of foreland facies.
${ }^{\text {a }}$ P. B. King, "Permian Stratigraphy of Trans-Picos Texas," Bull. Gcol. Soc. mer., Vol. 45 , pp. 697 -798.
${ }^{35}$ E. H. Sellards, H. P. Bybee, and H. A. Hemphill, "Prorlucing Horizons in the ${ }^{2} \mathrm{~F}$. H. Sellards, "Pre-Paleoz"" Univ. Texas Bull., 300 I (1930), pp. 149-203. Texas," Vol. I, "Stratigraphy," Univ. Te.xas Bulll. 32.32 , (1933), p. So "The Gcology of

After the late Pennsylvanian deformation the former area of subsidence of the Llanoria geosyncline stood as a land area, probably of mountainous character. North and northwest of this land, Permian sediments were deposited in new areas of subsidence, or forcdeeps, ${ }^{37}$ formed on the surface of broadly folded and deeply eroded foreland rocks. The subsidence was apparently irregular, and various facies of Permian sediments were sharply limited.

Stratigraplic relutions. ${ }^{33}$-In such areas in trans-Pecos Texas as the Glass, Guadalupe, Delaware, and Apache mountains, and the Sierra Diablo, great changes in the character of the Permian strata -may be observed along the strike. Thick deposits of siliceous shale are found in the Glass Mountains, and in the north similar rocks are eassociated with black shaly limestone and fine-grained sandstone. -The three types of rock are apparently closely related; the sandstone -grades by diminution of the grain size into siliceous shale, and the shale by increase in calcareous and bituminous matter into black ET limestone. In the Glass Mountains and Shafter district in the south, at least a part of these sediments came from the crosion of the upraised folds of the Llanoria geosyncline, since they contain fragments of granite and of the older Paleozoic cherts and limestones, but the source of the greater part of the Permian clastic sediments is still problematical.

Laterally the clastic sediments interfinger with massive lenticular bodies of limestone which are generally interpreted as limestone recfs. ${ }^{39}$ Beyond the limestone reefs are bedded dolomitic limestones. The direction of this change in facies is the same in all parts of each section, but varics from one mountain area to another. These lateral changes are represented in the stratigraphic diagram of the Glass Mountains by the writer, and that of the Guadalupe Mountains by Crandall. ${ }^{40}$ There was a tendency for rocks of one facies to be derosited in the"same"general area throughout Permian time.
${ }^{37}$ W. A. J. M. van der Gracht, "Permo-Carboniferous Orogeny in the SouthCentral United States," Verh. der Kan. Akad. van Wetenschappen te A msterdam, गoce ${ }^{27}$, No. 3 (1931), pp. $80-8$ r.
${ }^{38}$ The stratigraphic and structural features of the Permian of this region are discussed and interpreted at greater length in the writer's paper on, "Permian Stratigraphy of Trans-Pecos Texas," Bull. Geol. Soc. A mer., Vol. 45 (1934), pp. 697-798.
${ }^{39}$ E. R. Lloyd, "Capitan Limestone and Associated Formations of New Mexico and Texas," Bull. Amer. Assoc. Petrol. Geol., Vol... 3, No. 6 (June, 1929), pp. 645-48.
${ }^{10}$ P. B. King, "Geology of the Glass Mountains," Pt. r, "Descriptive Geology," Univ. Texas Bull. 3038 (1931), Fig. 17, P. 52.
K. H. Crandall," Permian Stratigraphy of Southeastern New Mexico and Adjacent Parts of Western.Texas," Bull. A mer. Assoc. Petrol. Gcol., Vol. 13, No. 8 (August, 1929) Fig. 4, P. 934.

Drilling east of the mountains has disclosed similar relations, and demonstrated that this complex of clastic deposits, limestone reefs, and bedded limestones extends far toward the east. East of Pecos River borings have penetrated a broad uplift of north-northwest trend, not exposed at the surface, known as the Pecos uplift (Central Basin platform). ${ }^{41}$ This is capped on the west side by massive

Fig. 3.-Map of Trans-Pecos Texas to show Permian structural features. Below is hypothetical stratigraphic diagram along line $A B$ of map. Subsurface information
chiefly from Bybee Cartwright and chiefy from Bybee, Cartwright, and Lloyd. Surface information by P. P. King. noted in the text, lies east of it.
"Called Pecos uplift by S
"Called Pecos uplift by Sellards, op. cit., p. 52. Originally named the Central Texas and Southeast New Mexico," Bull A Anerse Section of Permian Basin, West (August, f931), p. 970.
limestone deposits similar to those in the mountain areas farther west. They are shown by drilling to have been connected, in their later stages at least, with the upper limestones of the Glass Mountains on the south, and those of the Guadalupe Mountains on the north (Fig. 3). The black limestones, siliceous shales, and sandstones were inpparently confined in their extent to the area between the limestone reefs in the mountains on the west and those on the Pecos uplift on the east. This intervening area has been called; the Delaware basin. ${ }^{42}$ f: Other similar basins apparently existed on the east and west. East of the Pecos uplift is the Midland basin, ${ }^{43}$ known only from drilling, which was joined with the Delaware basin around the south end Fof the Pecos uplift. West of the Delaware basin, south of the Sierra Diablo, and west of the Glass Mountains, there appears to have been Tanother depression, which has been called the Marfa basin (Fig. 3), ${ }^{44}$ abut this feature is not well known.

During Permian time there was a gradual retreat of the sea southwestward, so that marine conditions persisted in the Midland basin and the area on the northeast only until the middle of the epoch. After this, the basin was cut off from free access to the sea and received only saline deposits and red sedimerits. Marine conditions persisted longer in the Delaware basin, but later on (in post-Capitan time) it too was cut off from the sea, and was filled by the gypsum, anhydrite, salt, and potash deposits of the Castile formation.
Structural features.- The Delaware basin, of which most is now known from a study of exposures and drill records, is believed by the writer to have been a region of subsidence greater than that of the surrounding areas during the time of Permian deposition. As such, git served as a trap for the clastic sediments deposited in it. The subsidence was probably greatest in the center where the deposits appear to be the thickest, but all the basin may have subsided more than the surrounding areas, which were apparently more stable. At many places, in exposures along the margins of the basin, the writer has sobserved that the rocks are bent down toward it on monoclinal flexures, which separate the clastic deposits from the limestone deposits near by.

The outlines of the basin were perhaps determined by lines of
a Originally named the Delaware Mountain liasin by Robin Willis; "Structural Development and Oil Accumulation in Texas Permian," Bull. Amer. Assoc. Petrol Geol., Vol. 13, No. 8 (tugust, 1929), Fig. 1, p. 1034.
${ }^{43}$ So called by Sellards in his unpublished manuscript on the geologic structure of Texas. Originally named the main I'ermian basin by Willis, op. cit., Fig. i, p. 1034.
"F. H. Lahee, "Contributions of P'etroleum Geology to Pure Geology in the Southern Mid-Continent Irea," Bull. Geol. Soć, Amer., Vol. 43 (r932), Fig. 2.
weakness in the basement rocks of the
tains and the Sierra Diablo，the of the region．In the Apache Moun The latter may hase to and parallel withe basin area trend west same lines of weakness been produced by later criary normal faults uplift．Drilling in ats．Asimilar relationcan be muspements along the southern end，has shown one place，near Fort Spected in the Pecos at a relatively shallow de it to be underlain by Stockton toward its norted with block－like outi．On Bybee＇s mapts pre－Cambrian rocks enchorthwest trending parts，composed of a numberm is repre． of ther．The limestone parts which stand in en amber of straigh， this parallif．Although the reefs follow，in a general welon relation to posititarallelism is close ene reefs are crossed by later，the margins on mono to a structural control to suggest that the refinor folds，is environ ina！flexures at the in is possible that slights owe their more favort，on the upper par deposition would movements of limestable than the surparts of the flexures，which about an Diablo Plateand for the growth areas，both for the precipitation deposits during area，west of the Delawe－secreting organisms．The been a relatively stable area，and may，like the received limestone The formation of basins． Permian time was accomplished by platorms in the foreland area during Llanoria geosyncline the southeast，within the are movements．It ments．At Las Delicias，southand Llanoria，there were of the former with province，the Permian western．Coahuila，which stronger move－ thrown indinate marine shales are largely lava fows lie within truded into steep folds，broken by limestones．These and tufis， is older thanite，${ }^{47}$ The deform by small overthrust faults are and fautian the Cretaceous，bution by which this was acts，and in－ however，hav the Llanoria geosyng younger than the stromplished have been a continuation of the same disturbancos．Texas．It may， MESOZOIC AND EARLY TER
In early Mesozoic time the surface stratigraphiy were obliterated by a time the surface features
${ }^{45}$ H．P．Bybee，＂Some ang period of erosion，during which ozoic time
 folding ncarding to information irom the subsiurics of West Texas，＂，Vhiu．Fexcs
 Ser．，Vol． 27 （r934），pp．108－II．
Amcr. Jour. Sci., jth
wis reduced to a peneplain．There was a slight recurrence of down－ Trping in the Permian basin northeast of trans－Pecos Texas，where Triassic red beds（Dockum group）were deposited，${ }^{43}$ but activity on Paleozoic structural lines almost ceased．Deposition commenced in outlines from those of the Paleozoic． ，学妾：

FIG．4．－Map
Shore line at close of Thing here in late Jurassic and of sea during Jurassic and facies of Trinity group C Tity time；stippled area show cxtent of caceous time． \mathcal{B}－ servations of W．S．Adkins，C L L ine at close of Frederickshurg time inal sandstone
time，seas extended into Cretaccous siratigraphy．－In late Jurassic lying west and southwest of northwest－trending geosynclinal area ward the geosynclinc extend South of El Paso and the Eagle，Quitmas the mountains in Mexico the Texas side of Rio Grande．Southeastward，Malone mountains on west side of the carly Mesozoie positive ared，it followed the south－
${ }^{48}$ J．E．Adams，＂Triassic of West Tiwns＂， No． 8 （August，＇r929），pe．1045－54．

STRELILKE

pical geosynclinal section of Jurassic and Lower Cretaceous rocks. exposed along Conchos River in northeastern Chihuahua, across the Rio Grande from trans-Pimestones, and thick sandstones, with 4,00 feet are shales, thim late Jurassic and early Cretaceous (Neocomian and Aptian) age. This is followed by 5,000 feet of massive distid limestone, embracing the upper part of the Trinity, the redericksburg, and the Washita groups of Texas. at Sierra Mojada, Coahuila (Fig. 7). ${ }^{50} \mathrm{~A}$ similar, thinner sequence is found in the Malone and Quitman mountains in Texas. In the foreland area of the 52 Jurassic and early Cretaceous rocks are unknown outside the geosynclinal area, and successive parts of the ater Lower Cretaccous section disappear northeastward by overlap on the Paleozoic (Fig. 4). The thick limestone mans-Pecos Texas the alley thins and loses its identity. In southern mastir massive character Washita and Fredericksburpents and canyon walls several thousand and form imposing cseare Mesa de Anguilla south of Terlingua, and the eet in height in the the east (Fig. 6). ${ }^{53}$ The Trinity part, however, Sierra del Carmen on the alternating limestones and marls, ${ }^{54}$ which northhas changed Marathon region thin to a few hundred feet and are replaced by a marginal sandstone facies which forms the basal deposit of the Lower Cretaceous in central trans-Pecos Texas (Fig. 4). ${ }^{35}$ The Fredericksburg part of the massive rimestone, but in the central toward the northeast as the ed into a marginal sandstone facies, ${ }^{\text {j6 }}$ Diablo Plateall, it also chate, disappears by overlap near the New Mexico which almost, if not quite, dimestones of the Washita group change
line (Fig. 4)." The mand . R. E. King after field work in June
${ }^{49}$ From notes furnishid by W. S. Adkins "Gcology of Northern Mexico," Bol. Soc. d July, 1933 . See also K. .i. Burrows
Geol. Mexicunt, Vol. 7 (1910), pp. I^{-15}. Idkins, January, 1934
so Personal communication from W. S. Adkins, January, 1934. " Vel. ", "Stratig
ai W. S. Adkins, "Mcsozoic Systems," in "The
raphy," Unia. Texus Bull. 3232 (1933), Pp. 29.
${ }^{52}$ W. S. Adkins, op. cil., Fig. 15, P. 292. ${ }^{63}$. J. A. Udden, "'

W.S. Adkins; op. cit., P. 305 .
iv. Texas Bull. $3^{\circ} 3^{8\left(193^{1}\right), \mathrm{p} \cdot 9^{1} \text {. }}$

68 W.S. Adkins, op.cit., P. 353 .
porthward into marls with abundant fossils of neritic facies; near Fort Stockton two tongues of rudistid limestone of the southern facies are
nterbedded ${ }^{53}$
Upper Cretaccous stratigraphy. -The lower part of the Upper Cretaceous, consisting of shales and chalky limestoncs, is extensively texposed over trans-Pccos Texas, and is found in a few patches overlying the Lower Cretaccous in the geosyncline on the west. The upper part (of Taylor and younger age) is preserved, however, only in two surrounding the Chisos Mountains (Figs. 5 and 6). These upper strata, about 3,000 feet thick, record a gradual change from marine to continental conditions. ${ }^{59}$ Resting on fossiliferous marine shales of Taylor age are sandstones, containing marine fossils in their lower part and coal beds and dinosaur remains above (Aguja of Adkins). These are followed by bright colored clays (Tornillo of Udden) which are ap parently the highest Cretaccous in the region. These are overlain by tuffaceous beds which are apparently of Tertiary age. ${ }^{60}$

Similar beds are found in Mexico on the south, at Hacienda de
Mohovano, Coahuila, between Sierra Mojada and Las Delicias (Fig 7), which contain fossil wood and dinosaur bones, as wing conglom erate beds. ${ }^{61}$ No strata of this age have been reported in the geosynclinal area on the west.

Early Tertiary stratigraphy.-Volcanic rocks of Tertiary age occupy a wide tract in central trans-Pecos Texas, including the Davis Mountains on the north, and extending to the Rio Grandc betwes Terlingua and Shafter on the south (1. a thickness of 4,500 feet in of lavas, tuffs, and agglomerard the west. ${ }^{62}$ In the Davis Mountains the Sierra Tierra but even here some escarpments and canyon alls show sections up to 2,000 feet in thickness. Intrusive rocks in the form of dikes, plugs, bosses, and laccoliths, found both in the

${ }^{57}$ Ibid., pp. 354-55.

${ }^{58}$ Ibid., p. ${ }^{661}$, et seq
69 J. A. Udden, op. cil., pp. $4 \mathrm{Al}^{-67}$
W. S. Adkins, op. cit., pp. $5^{-5}-14$.
so J. A. Udden (op. cil. p. 6.S) found no evident brion) and concluded that the Crethe Tornillo and the tuffacenus bedse them. The plasing of the boundary in the pres. I . taceous-Tertiary boundary lay above Cicm. Baker for the Sierra Tierra Vicja and C.F. paper follows the rccent cony.
Ross for the Chisos country.
${ }^{\text {a }}$ C. Burckhardt. "Ftude synthetique sur le Mcsozoique mexicain," Sociêté P'aleontologique Suisse :Icmoircs $49-50$ (1930), pp. 217-50
 Teras," Univ. Texas B:ill. $27+5$ (1927), p. 35.
lava country and in
belong to the same general epoch areas of sedimentary rocks，probably to acidic，${ }^{63}$ but alkalic types are common in aill rocks range from basic

show relation of post－Cretacn Texas and adjacent parts
Kellum，Compiled from various folds of trans－Pecos Texas northeastern Mexico，to Kellum，and R．E．King．various published and unpublished sources，including Badre In the Chisos country the voluding Böse， of Udden）begins with white clays and tuffecesion（Chisos formation rest with abrupt contact on the latest Cretaceous sandstones，which ＂3．F．B．Plummer，＂Cenozoic systems，＂in＂Chetaceous clays below．These raphy，＂Univ．Tcxas Bull．， $3232(\mathrm{r} 933), \mathrm{pp}, 800-03$ ．Ceology of Texas，＂Vol．I，＂Stratig．
are followed by coarser sediments，largely of pyroclastic origin，con－ taining numerous lenses of conglomerate，whose fragments are well－ rounded pebbles and cobbles of igneous rock and of Lower Cretacecus limestones and cherts．These are overlain by lava flows with inter－ bedded agglomerates and tuffs．${ }^{64}$ A similar succession of pyroclastic sediments（Vieja formation of Vaughan），with few lava flows in the wher several thousand feet，has been studied by Baker in the Sierra Tierra Vieja，but at this place it rests with slight angular discordance Son the latest Cretaceous beds below．At the base are conglomerates E㥨hich contain＂huge boulders of Permian and of Lower．Cretaccous rocks．${ }^{\text {j }}$＂ 5 t is possible that Tertiary sedimentation began earliest in these two areas，and that the younger members of the volcanic suc－ Fession overlapped the higher surrounding areas which had been \％ more highly elevated and folded after Cretaceous time．
In areas outside the Chisos country and the Sierra Tierra Vieja the Tertiary volcanic rocks rest，not on the highest Cretaceous，but on a considerable variety of older rocks．At numerous places they lie
on the lower part of the Upper Cretaceous（Eagle Ford and Austin）， and at many others on the Lower Cretaceous．The steeply tilted Cretaceous rocks on the west flank of the Solitario dome are overlain by lavas gently tilted in the same direction．At one place on the north flank these overlap onto the lower beds of the Washita group，and in the basin carved from the crest of the dome，pyroclastic rocks rest on the folded Paleozoic ${ }^{68}$ A short distance to the west，in the dome－ －like uplift of the Shafter district，lavas and tuffs lic on the truncated surface of Lower Cretaceous and Permian rocks．${ }^{67}$ Outlying patches of the volcanics rest with gentle dips on the strongly folded and faulted geosynclinal rocks of the northern Eagle and southern Quitman mountains．Similar small patches are reported by R．E．King near Conchos River in Chihuahua．Here they have been tilted，but not as steeply as are the Cretaceous rocks．

In the southeastern Davis Mountains，Baker has collected plants from tuffs ncar the base of the volcanics，to which an Eocene age has been assigned．${ }^{68}$ Farther north；and also near the base of the vol－
${ }^{64} \mathrm{~J}$. A．Udden，op．cil．，pip．60－66，also personal communications from C．P：Ross， August， 1934.
${ }^{* 5}$ Letter from C．L．Baker，June， 1931.
${ }^{* s}$ As pointed out to the writer in the field by C．P．Ross，August； 1934.
${ }^{67}$ C．L．Baker，＂Note on the Perniagn Chinati Serics，＂Univ．Texas Bull．290， （1929），p． 8 r．
${ }^{68}$ C．L．Baker and W．F．Bowman，＂Geologic Exploration of the Southeastern Front Range of Trans－Pecos＇Iexas，＂Unia．Texas Bull．1753（1917），p．123．
canics, mammalian teeth have been collected by him which are said to be of Oligocene age. ${ }^{69}$ In the western part of the area, Baker has seen only the remains of land tortoises in the volcanics. ${ }^{70}$ At the pres. ent time no fossils of Miocene age have been collected in the succes. sion. That its upper part may be of this age is suggested by the widespread occurrence of Miocene tuffs and lavas in northern New Mexico and elsewhere in the Cordilleran province. The plant and vertebrate fossils in the lower part of the succession furnish conflicting evidence for its age, but they seem definitely to be older than Miocene.

early tertiary structural features

Most of the folding and faulting of the rocks of southern transPecos Texas occurred in the first half of the Tertiary period, and is the northern continuation of structural features in the Sicrra Madre Oriental of northeastern Mexico. In Mexico, south of Saltillo, Coahuila, the Sierra Madre is a single bundle of close folds of northnorthwest trend, which face the Gulf Coastal Plain on the east. In the vicinity of Saltillo the Sierra Madre bifurcates northward (Fig. 7). The lower outer folds, composed largely of Lower and Upper Cretaceous rocks, continue north-northwestward through Coahuila: into eastern trans-Pecos Texas. The main group of folds bends west. following the belt of Jurassic deposition which lies south of the early Mesozoic positive area and then, near Torreon, turns north-northwestward and extends through Chihuahua into the Quitman, Eagle, and Malone mountains of trans-Pecos Texas (Fig. 7).

Western branch of Sierra Madre.-The western group of folds was raised from the thick deposits of the Jurassic and Lower Cretaceous geosyncline, as may be seen by comparing Figures 4 and 5. Both along Conchos River in Chihuahua, and in the Quitman and Eagle mountains in Texas, the geosynclinal rocks are thrown into long steep folds, trending horth-northwest, and are broken by overthrust faults which in Texas have carricd these rocks northeastward over the thinner foreland séquence of the Lower Cretaceous. ${ }^{11}$ Remnant patches of Tertiary lavas rest on the truncated edges of the folds in the northern Eagle and southern Quitman mountains. There appears, however, to have been some broad arching after the lavas were deposited. Thus, they dip. northeast and southwest off the axis of the Quitman Mountains. They are also found low in the intermontane area east of the

$$
{ }^{89} \text { F. B. Plummer, op. citt, p. } 805 .
$$

${ }^{70}$ C. L. Baker, "Exnloratory Geology of a Part of Southwestern Trans-Pecos cexas," Unie. Texas Bull. 27+5 (1927), p. 35 .

Eagle Mountains, whereas in that range and in the next one at the east, they cap the summits. In this range on the east, Baker has found some thrust faults, which displace the volcanics. ${ }^{72}$ In the Conchos River area of Chihuahua, R. E. King has observed down-warped patches of Tertiary lava between the anticlinal areas of Mesozoic rocks. These rest unconformably on more steeply downfolded Upper

Cretaceous strata.

E, Toward the northwest, near the Texas and Pacific Railway, the Intense folding of the western branch of the Sierra Madre dies out along the strike. North of the railway are the gently tilted and block-
faulted rocks of the Diablo Plateau and other mountain areas of
the Basin and Range province. In the western part of the plateau a
line of broad arches extends northwestward from the Quitman Moun-
stains into New Mexico (Fig. 5), closely following the fold of Paleozoic age in the Hueco Mountains (Fig. 2). It is probably an outer branch of the system of close folding.
Eastern folds of Sierra Madre.-The eastern branch of the Sierra Madre enters Texas as the high broad fold of the Sicrra del Carmen (Fig. 6) which dies out south of the Marathon region. It is broken by normal faults, and Baker reports ${ }^{73}$ that in the Mexican part of the range there are one or two great faults on the west side. Two other broad folds west of the Sierra del Carmen in Mexico, the Sierra San Vincente, and Mariscal Mountain, reach up to the Rio Grande or pass beyond it only a few miles before they die out (Fig. 6). ${ }^{74}$ North of the Sierra del Carmen is the much smaller and narrower anticline of the Santiago and Del Norte mountains, which in their northern -. part form the crumpled western edge of the Marathon dome. This fold, like the Sierra del Carmen, is faulted on the western side. The fault is a thrust fault which has carried strata westward, ${ }^{75}$ in a directhat the reverse of the thrusting farther west. Udden ${ }^{76}$ has suggested basin was caused by the competent nature of the deformed Palcozoic
${ }^{72}$ Letter from C. L. Baker, November, 1933.
${ }^{73}$ C. L. Baker, "Desert Range Tectonics of Trans-Pecos Texas," Pan-A mer. Geol., Vol. 50 (1928), pl) $34^{1-73 .}$
${ }^{74}$ J. A. Udden, "Sketch of the Geology of the Chisos Country," Univ. Texas Bull 1907) p. 85 . See also Udden's"The Anticlinal. Theory as Applied to Some Quick silver Deposits,' Unio.Tc.as Bull. I932 (1918), pp. I1-12.
${ }^{75}$. Baker and W. F. Bowman, "Gcologic Exploration of the Southeastern Front Range of 'i rans-Pecos Texas," Uiniv. Texas Bull. 1753 (1917), pp. I 50-51.
p B Kiner "The Geology of the Glass Mountains," Pt. I. "Descriptive Ge-

${ }^{75}$ J. A. Udicen."Sketch of the Geology of the Chisos Country," Univ. Texas Bull 93 (1907), p. 76.
rocks below, but it should also be remembered that the eastern branch of the Sierra Madre is dying out northward.

North of the Marathon region, broad anticlines which lie somewhat east of the north end of the Del Norte Mountains continue with the same trend past the northeast end of the Davis Mountains to the Apache Mountains north of the Texas and Pacific Railway (Fig. 5). The folds both in the Del Norte Mountains and on the north involve Tertiary lavas ${ }^{77}$ and are therefore, in considerable part, at least as young as Oligocene.

Between the western folds of the Sierra Madre and their narrower outer branch on the east is a structurally lower area. On the north it is occupied by the gently dipping lava flows of the Davis Mountains (Fig. 5), which, in part at least, are younger than the main deformation. South of the Davis Mountains, in the Chisos country, near the southern end of the big bend of the Rio Grande, is a broad synclinal area in which strata of late Upper Cretaceous age are preserved, and in which the base of the system extends several thousand feet below sea-level (Fig. 6). ${ }^{78}$ West of the Chisos Mountains the strata rise into the broad, irregular, much faulted uplift of the Terlingua district, ${ }^{79}$ in which Lower Cretaceous limestones are extensively exposed. This uplift culminates in the Solitario dome, in which the base of the Cretaceous lies more than 5,000 feet above sea-level. Northwest of the Terlingua uplift is a broad syncline in the Tertiary volcanics, beyond which Lower Cretaceous and Permian rocks rise again in the dome of the Chinati Mountains near Shafter (Fig. 5). The dome is truncated by erosion and overlain unconformably by lavas. The sedimentary rocks, and perhaps also the lavas, are intruded by large bosses of syenite and diorite. ${ }^{80}$

East of the eastern branch of the Sierra Madre in Texas is the Marathon dome (Fig. 6), a broad irregular uplift from whose central area the Cretaceous cover has been removed by crosion, exposing the deformed Paleozoic rocks of the Llanoria geosyncline. On the east flank of the dome, Cretaceous rocks slope toward Pecos River at angles of a few degrees or less. On the north and south flanks, their inclination is steeper and the base of the system descends from an altitude of more than 6,000 feet near the crest of the dome, to near
${ }^{77}$ C. L. Baker and W. F. Bowman, op. cit., p. 142
${ }^{78}$ The "sunken block" of Udden, op. cil., pp. 80-87.
. 79
J. A. Udden, "The Anticlinal Theory as Applied to Some Quicksilver Deposits," niv. Texas Bull. I Sz2 (19.18), pp. 25-29.
${ }^{80}$ C. L. Baker, "Note on the Permian Chinati Series," Univ. Texas Bull. zgot
${ }_{1929)}$, pp. $79-82$.
crossed by minor northeast-trending arches, now greatly displaced Sraken by normal faults (Fig. 6).
Structural events in late Mesozoic and early Tertiary time.-This survey of the stratigraphic and structural features of late Mesozoic and early Tertiary time permits some generalizations as to the sequence of events. In later Mesozoic time, after the Paleozoic struc tural features had become dormant," deposition began in western trens- lines Texas in a new geosynclinal area which crossed the older confined to the oblique angle. The first deposits laid down were clastic sediments. Some of the area, and were sandstones and finer lands on the northeast but the were probably derived from marginal ther west in Mexico. Over these greater part probably came from farstone, comparable to the erly Pas deposited a great mass of limeAppalachian geosyncline. The mass thins northeastward toward the foreland, where successive parts change first intheast ward toward the facies, and then into marginal sandstone deposits. Upper Cretaceous marine shaly beds follow, and change upward, in the region east of the geosynclinal area, into continental beds,

Cretaceous time was closed by a period of diastrophism, by which the western branch of the Sierra Madre appears to have been strongly folded and faulted, and the foreland area on the east thrown into broader folds and arches. After this movement the Cretaceous and older rocks were deeply eroded in the uplifted areas, and their fragments were distributed through the basal beds of the succeeding early. Tertiary deposits. In early Tertiary time, lava flows and tuffs were spread over the worn-down surface of the foreland, resting in places. beds as old as the Pants of the highest Cretaceous, and in others on the deformied geosynclinal rocks on the locally they overlapped acruss

After the period of carly. Ten the west. movements, by which the Javas were volcanism there were further along the trends of the preceding themselves deformed, chiefly volcanic rocks were broadly arched dermation. In most places the places in the west, along the edged and. downwarped, but in some faults younger than the lavas have of the strongly folded belt, thrust of the Sierra Madre near the Mave been found. In the casteri branch of broad folding appears to Marathon dome, a considerable amount for these different times of move youger than the lavas. The evidence desired, because the la complete as might be not been worked out in detail, and and carly Tertiary rocks have been collected from them. Actually; the deformation may fossils have
occomplished by several more pulsations than the two suggested by the available evidence.

The steepness of many of the mountain ridges in both the eastern and western branches of the Sierra Madre, and the fact that a considerable number consist of uparched or upfaulted rocks, has led Baker ${ }^{33}$ to suggest that most of their structural features are of late date. It seems unlikely to the writer, however, that all the deformation in the region took place at the same time. There have cvidently
been two periods of deformation. Moreover, the mountains may not have been uplifted to their present form and height during these times of folding, but may have been raised by later broad arching or normal fifaulting.
typically prese remembered, also, that hard rocks in desert regions Eypically preserve steep and rugged slopes much later in the cycle of trise abruptly from gently sloping, more extensive plains, even though many of them are relatively small crosion remnants of former high land areas, of which the plains are the worn-down parts. A large number of the mountains in trans-Pecos Texas consist of hard rocks; for example, the limestones of Lower Cretaceous age \dot{e}, which may possess either a monoclinal, anticlinal, or even (as at Malone Mountain) ${ }^{84}$ a synclinal structure. The intervening lowland areas have been produced, not entirely by downfolding, but by the carrying Eaway of non-resistant Upper Cretaceous rocks from synclinal areas, and of early Lower Cretaceous, late Jurassic, or Palenzoic rocks from anticlinal areas. Moreover, in structure sections across the anticlinal mountains, a reconstruction of the folds demonstrates that a great thickness of strata, now croded away, formerly extended over their summits.

Relation of structural cevents in trans-Pccos Texas to sedimentation © on the Gulf Coastal Plaiin.- In trans-Pecos Texas the structural events of Tertiary time can be deduced partly from the nature of the structural features, and partly from the older Tertiary rocks, most of which are of volcanic origin. Interpretations can not be perfect because of the fragmentary nature of the record and the small number of fossils which have so far been collected. In the Gulf Coastal Plain, east iof the Sierra Madre of northeastern Mexico and trans-Pecos Texas, there was, during Tertiary time, more nearly continuous sedimenta-
${ }^{83}$ C. L. Baker, unpublished manuscript and letters to the writer, 19.32-34
${ }^{8}$ C. L. Baker, "Overthrusting in Trans-Pecos Texas," Pan-Amer. Geol., Vol. 53 (1929), Fig. r, p. ${ }^{24}$.
N.H. Darton, "Guidebook of the Western United States, Pt. F, Southern Pacific Lines," U.S. Geol. Survey Bull. 845 (1933), P1. 17 B.
tion, and a more complete sequence of fossils. It is possible that events in the mountains have left their mark on the record in the coastal plain. The same pulsations may have influenced both regions. Moreover, the ancestral Rio Grande, flowing down the coastward slope from trans-Pecos Texas, and streams heading in the newly raised mountains in Mexico, must have carried large quantities of detritus to the coast, and probably influenced the character of sediments deposited there.

No very complete correlation between events in the two regions has ever been attempted, and it is a promising field for study. The record of events in the mountains is probably obscured in the coastal plain by the influence of structural events in other regions, by climatic changes, and by local factors which would cause fluctuations in the strand line. ${ }^{85}$ The record should be plainest in the Rio Grande embayment and the coastal plain of Mexico, nearest the mountain area.

Cretaceous rocks are separated from the oldest Tertiary (Midway group) on the Texas coastal plain by a persistent hiatus and disconformity, and Baker reports that toward the Rio Grande and beyond in Mexico, the discordance is angular. ${ }^{36}$ The succeeding Midway and Wilcox beds thicken southwestward by several thousand feet from Texas into northeastern Mexico. ${ }^{87}$ Above the Wilcox in Texas, over a well-marked unconformity, is the coarse-grained and widespread Carrizo sandstone. Farther south, near Tampico, according to Baker, ${ }^{88}$. the fine-grained clastic deposit of the Velasco shale (latest Cretaceous or earliest Tertiary), well developed toward the east, is replaced between the oil fields and the front of the Cordillera by the Chicontepec formation, in which beds of sand and gravel are interbedded with shale. The gravel consists of fragments of Lower Cretaceous limestone and chert, but the formation is folded equally with the older beds. These features of early Eocene stratigraphy are probably related to the first epoch of diastrophism in the mountains on the west.

The succeeding Eocene deposits of the Texas coastal plain are mostly fine-grained clastics, but toward the top sandstones are again prominent (Fayette) and there is an increasing amount of volcanic detritus (in Yegua and Fayette). Higher in the section is a marked
${ }^{*}$ I'. B. Plummer "Cenozoic Systems" in "The Geology of Texas," Vol. i, "Stratigraphy, " Univ. Texas Bull. 3232 (1933), pp. 526-20.
${ }^{86} \mathrm{~F}$. B. Plummer, op. cit., p. 531 .
${ }^{\text {st R. A. Jones, "Reconnaissance Study of the Salado Arch, Nuevo Leon and }}$ Tamaulipas, Nexico," Bull. Amer. Assoc. Petrol. Gcal., Hol. 9, No. I (January-February, 1925) p. 129.
${ }^{33}$ Personal communication from C. L. Baker. May, res.

Wenconformity at the base of the Catahoula ties of pyroclastic sediments. ${ }^{99}$ At least a part of these are commonly believed to have come from the mountains on that the Catahoula grap Oligocene age,,90 which is apparently in agreement with some of
is of Ole the determinations made on fossils from the volcanics in trans-Pecos Texas. North of Tampico Baker reports a similar unconformity and overlap at the base of the Oligocene.

Above the Catahoula formation in Texas is the Oakville sandstone, of Miocene age, which is also unconformable on older beds, and marks the first occurrence in the Texas Tertiary section of reworked Cretaccous rocks and fossils. It in central Texas, ${ }^{91}$ but might lift of the land behind the Balcones faunic folding in trans-Pecos Texas?
it not also be related to the post-volcan Unconformities are found higher in the section, at the base of. the Goliad and the Lissie, and both formations contain much gravel. Many of the fragments in the latter clearly come from distant sources. ${ }^{92}$ Perhaps the two formations reflect such later events in trans-Pecos Texas as the widespread block faulting, the regional uplift of the area, and the breaking through of the Rio. Grande from its sources in Colorado. These events are discussed in the following paragraphs.
later tertiary and quaternary structural features
At numerous places in trans-Pecos Texas, the rocks are broken by faults which in ground plan are straight, or angular, and with jagged offsets. Where the planes of such faults can be observed, they are either nearly vertical or dip stecply (60° or more) toward the downthrow, and are therefore probably normal faults. Where the rocks of the region are also folded, as in the southern part, the trend of the faults is roughly parallel with that of the anticlines and synclines, and this had led Baker to suggest ${ }^{93}$ that they were formed during the folding of the region. However, where the witer folds and an opportunity to study the detailed relations between folds and faults, as in the Glass Mountains and along the western edge of the Marathon basin, the parallelism is not perfect, and in many places

[^4]endent basin, Eagle Flat, lies west of the Salt Basin in the latitude Tertiary and Quaternary deposits. Some measure of the depression of the rocks in the intermontane areas may be gained from well records. ${ }^{94}$ Several wells in the Hueco Bolson have been drilled to more than 2,000 feet, and one not far from the base of the Franklin Mountains near the New Mexico line to 4,920 feet, without passing out of of Van Horn . In the Salt Basin a well deaving the basin deposits, and one 30 miles south-southeast of Van Horn encountered bed rock at 1,180 feet. In Eagle Flat a well was drilled to 1,000 feet without reaching bed rock. trends (Fig. 5). One system extends in general north and south, but it is highly irregular in detail, with some members trending northnortheast or north-northwest. The eastern boundary fault of the Sierra Diablo, a part of the system, has a bight and cusp pattern. In the Van Horn region the north-south system is crossed by another of west-northwest trend, most of whose members have less displacement than those of the first, but whose pattern is much more regular. Many of these show clear evidence of recurrent movements. Permian limestone reets lie parallel with some of them and were probably formed during a flexing of the underlying rocks along the same trends as the later faults. Some others on the south side of the Sierra Diablo also show striking differences in the example, Cretaceous rocks rest on the pre-Cambrian on the downthrown side, while on the upthrown side they rest on 900 feet of Permian limestone and Cambrian sandstone. An earlicr movement, the reverse of the recent one, evidently took place on this fault. ${ }^{95}$ The recurrent movements along the westnorthwest trending faults suggest that they coincide with persistent lines of weakness in the basement rocks of the region.

Movements on the normal faults have occurred several times. The eastern slope of the Franklin Mountains north of El Paso has been deeply embayed by pediments, yet at many places near its base is an escarpment 100 fect or more in height, produced by recent movements and composed partly of bed rock and partly of fanglomerate ${ }^{96}$
os Well data chiefly from unpublished manuscript by C. L. Baker, 1934.
${ }_{05}$ This fault is shown at the left-hand end of Figure 25 , in N. H. Darton, "Guideook of the Western United States, एt. F, Southern Pacific lines," U.S. Geol. Survey Bull. 845 (1933), p. 125.
. 845 (1933), p. 125 .
${ }^{96}$ noted by G. B. Richardson, U.S. Geol. Survey El Paso Folio r60 (igog), p.9. The two largest areas are the Hueco Bolson and Salt Basin on the east and west sides of the Diablo Plateau. (Fig. 5). A smaller inde-

The lowest points on the floor of the Hueco Bolson on the east lie within a few miles of the base of these mountains, and from here eastward the basin floor slopes gently upward to the much lower Hueco Mountains. This slope may have been caused by recent tilting, perhaps at the same time as the last faulting. In the Sierra Diablo several canyons 5 miles or more in length drain eastward to the downfaulted block, and were probably extended headward from consequent streams draining the faces of the first fault scarps. ${ }^{97}$ The mountain base line is, however, remarkably even, and is fringed with great alluvial fans still in the process of formation. In some places the fans themselves are broken by small faults, along which are escarpments to or 20 feet high. The floor of the Salt Basin on the east is, like the Hueco Bolson, asymmetrical, with a group of salt lakes in the lowest part, close to the high escarpments of the Sierra Diablo. The faults within the Sierra Diablo, including the west-northwest system, do not appear to have shared the last time of movement. Their scarps are considerably dissected; and the scarp bases are free from alluvial deposits. Several well marked high-level pediments and stream terraces in the south part of this mountain area (west of Beach Mountain) were apparently formed prior to its later uplifts.

Faults of southern trans-Pecos Texas.-A great fault system of general north-south or south-southeast trend has been mapped by C. L. Baker in the Sierra Tierra Vieja and southward along the west side of the Chinati Mountains beyond the latitude of Shafter (Fig. 5) .98. It may be considered as a southward extension of the system along the east side of the Sierra. Diablo. The fault pattern as worked out by Baker consists of a number of parallel or en échelon fractures, with the greatest displacement now on one, and now on another. Most of the faults are downthrown to the west, in a direction the reverse of the overthrusting near by. In the north, bed rock is exposed on both sides of the main fault and here the throw is estimated at 2,000 or 3,000 feet; farther south the trace of the main fault follows the even western base line of the mountains and is mostly concealed by late Tertiary deposits. The rocks which cap the upthrown blocks are relatively non-resistant tuffs and lavas, and Baker suggests ${ }^{99}$ that their preservation on the escarpments is evidence for the faults being of relatively recent age.
${ }^{97}$ G. B. Richardson. U.S. Cicol. Survey Van IIorn Folio 107 (1914), p. S.
${ }^{88}$ C. L. Baker, "Exploratory Geology of a Dart of Southwestern Trans-Pecos Texas," Univ. Texas Butl. 2745 (:027), pp. 43-44 and Pl. I, also later uripublished manuscripts and maps of the sane author.
${ }^{9 n}$ C. L. Baker, "Desert Kange Tectonics in Trans-Pccos Texas," Pin-t mer. Geal Vol. 50 (t 2 28), p. 355.
ear Conchos River, in the strongly folded area of the western Sierra Madre, R. E. King has observed some large normal faults which have locally broken the folds. A small part of the topographic features of this region is probably caused by them.

In southeastern trans-Pecos Texas, normal faulting is not as pronounced as on the north, but is almost as extensive. The numerous faults in the belt between the Terlingua and Marathon uplifts and those in the Glass Mountains have already been noted. A great normal fault bounds the east side of the Mesa de Anguila (Fig. 6), and the Rio Grande cuts an imposing canyon through the fault block. ${ }^{100}$ Another lies on the east side of the folded Santiago Mountains in the We south part of the Marathon basin. The latter is not now shown by a - scarp, and the upthrown block has been deeply eroded. The former thrown side high steep escarpment; non-resistant beds lie on its downthrown side, however, and it is probably a fault-line scarp. ${ }^{101}$ The
Sierra del Carmen is long axis of the range. ${ }^{102}$ Their apparent recency also marallel with the caused by the erosion of soft overlying beds from the surface been Lower Cretaceous limestones. Baker ${ }^{63}$ reports that south of the Rio Grande, fine-grained basin deposits lie against the face of the westernmost scarp without displacement.

Late Tertiary and Quaternary basin deposits.-During and after the first period of normal faulting the intermontane areas of the Basin and Range province were filled to a great depth by sediments, as suggested by the well records previously noted. Other areas of thick deposits are found farther south, ${ }^{104}$ as in the Rio Grande valley west of Shafter, and there are smaller remmant areas west of the Sierra del Carmen. The upper parts of the basin deposits are well exposed along the Rio Grande, which has entrenched them to a depth of several hundred feet. Away from the mountains they are gray to flesh-colored silts, ${ }^{105}$ in part gypsiferous, with some sandy lenses. Near the mountains they are interbedded with, and grade into, fan-
${ }^{100}$ J. A. Udden, "Sketch of the Geology of the Chisos Country," Univ. Texas Bull. 93 (1907), p. 80 .
F. B. Plummer, op. cit., Fig. 27, p. 5^{18}
${ }^{101}$ C. L. Baker, ap. cil., p. 356.
${ }^{102} \dot{\text { C. . L. Baker and IV. F. Bowman "Geologic Exploration of the Southeastern }}$ Front Range of Trans-Pccos Texas," Univ. Texas Bull. 1753(1917), Pl. 6, Sec. 2 I .
${ }^{103}$ C. L. Baker, "Desert Range Tectonics of Trans-Pecos Texas," Pan-Amer . Geol., Vol. 50 (1928), p. 358.
${ }^{104}$ C. L. Baker, "Exploratory Geology of a Part of Southwestern Trans-Pecos Texas," Uniu. Te.ras Bull. 2745 (1927), pp. 37-40.
${ }^{105}$ N. H. Darton, op.cil., P1. 17 A.
glomerates and mud-flow deposits. The silts were probably deposited in broad, shallow; and perhaps intermittent lakes. Bones of Elephus and Equus of Pleistocene age have been collected by Richardson ${ }^{106}$ near El Paso, either from the uppermost part of the deposits or from later gravels which lie unconformably above them. The age of the greater part is unknown. Pliocene or late Miocene fossils have been collected from similar beds in northern New. Mexico. ${ }^{107}$ In some places the deposits are faulted ${ }^{108}$. and tilted. ${ }^{109}$

On the piedmont slopes east and west of the Franklin Mountains near El Paso, and probably farther southeast along the Rio Grande, the upper surface of the basin deposits is apparently a pediment rather than an aggraded slope. Overlying the deposits unconformably are coarser fanglomerates and terrace gravels of small thickness. Similar relations are reported along the course of the Rio Grande on the north in New Mexico. ${ }^{120}$ The later faulting of the mountains may be related to these younger deposits. In the Salt Basin, where no recent dissection has taken place, the older basin deposits are probably not exposed. The surface materials here include gypsum dunes and beds of salt in the center, and coarse fanglomerates, which are apparently related to recent faulting at the margins.

River systems of trans-Pecos Texas.-Two important rivers, the Pecos and the Rio Grande, bound the east and southwest sides of trans-Pecos Texas. Their origin and history are in some way related to the development of the later structural features, but as a whole they have not been studied with care. In places their relation to adjacent land forms seems to be anomalous, and they possess many features which have yet to be explained.

The Rio Grande, in its course southeastward from the Sierra del Carmen to the coast, is apparently a consequent stream, which follows the structurally low areas down the regional dip of the beds (Fig. 7). On the northwest in trans-Pecos Texas, however, its course lies in a succession of intermontane desert basins, which it crosses at an oblique angle (Fig. 5). It passes from one basin to another through separating mountain barriers in gorges cut on bed rock. Thus the river crosses the Sierra del Carmen in the great canyons below Boquillas, and the Mesa de Anguila through the impressive Grand Can-
${ }^{106}$ G. B. Richardson, U.S. Ccol. Survey El Paso Folio 166 (rg09), p. 6.
${ }^{107} \mathrm{~N} . \mathrm{H}$. Darton, "'Red beds' and Associated Formations in New Mexico," U.S. Gcol. Survey Bull. 794 (r928), p. 57.
${ }^{108}$ G. B. Kichardson, op. cit., p. 9 and Fig .1 .
${ }^{109}$ C. L.. Baker, op. cil., p. 40 .
${ }^{120}$ Personal communication from Kirk Bry:un, July, 1933.

Pleistocene (Lissie) deposits. ${ }^{114}$ In New Mexico, however, near Albu gravels quite similar to those of thate Tertiary basin deposits "river it likely that a river existed he existing stream." He considers also reports that rounded pebbles as far back as Miocenc time. Lee encountered in water wells in the quartzite and argillite have been Muerto and the Mesilla Bolson.

Pecos River, unlike the Rio
but follows the eastern side of thande, crosses no mounitain barriers, and west Texas. Some miles east of mountains through New Mexico west-facing escarpment is the of the Pecos, beyond a pronounced derlain by several hundred fect of Purface of the High Plains, unmonly supposed to have been wal Plocene deposits. These are comand northwest of Pecos River. 116 Ashed out from the mountains west be cited the apparent beheading As evidence for this conclusion may rado, Brazos, and Canadian rivers be upper tributaries of the Colosurface in the Sacramento Mivers by the Pecos, and the high level scribed by Nye. The latter can be projest of the Pecos valley deley into the plains surface. ${ }^{117} \mathrm{At}$ some time after ward across the valPliocene deposits, for causes not well under the deposition of the lished itself parallel with the mountain front and the Pecos estabthe pre-existing drainage.

In its lower course, from the crossing of the east of Fort Stockton south (he Santa Fe Railway and has carved a canyon through the 5), the Pecos flows on bed rock, feet deep. Farther upstream in the Edwards. Plateau hundreds of deposits $500-1,000$ feet deep. ${ }^{118}$ Many gah basin, it flows overalluvial been deposited because of a many geologists believe these to have least in part by the leaching out of perme basin floor, caused at the Roswell basin, north of Carls Permian salt beds beneath. In somewhat greater than 250 feet has been .New Mexico, alluvial fill tween it and the Toyah basin alluvial deposits bered, although be${ }^{14}$ F. B. Plummer, op. cii., p. 784 ${ }^{115}$ Letter from Kirk Brian, p. 784.
${ }^{116}$ F. B. Plummer, op. cit., Fig. 1 It, 1929
S. S. Nye, "Geology, in " "Geolog, p. 770 .

Artesian Basin," U.S. Geol. Surzey ITater Supply Water Resources of the Roswell ${ }^{117}$ F. B. Plummer, op. cil., p. 77r.
S. S. Nye, op.cit., Fig. I, p. . I , an
${ }^{11} 8$ First reported by G, D. 11, and p. 97.
Pecos Texas North of by Ge. B. Richardson, "Report of a Reconnaissance in Trans
$79-80$. Described in vand Pacific Railway"" 79-80. Described in various later reports, Racluryy," Unia. Texas Buissince in Trans- 2 (igoo.4)
Gale on the Erolocy United States Geological Survey for publication.
of the river are in places only 50 feet deep. ${ }^{119}$ Nye describes four distinct terrace surfaces in the vicinity of the Roswell basin.
Fig. Structural events of late Cenozoic time.-The first epoch of normal faulting, probably of later Tertiary (Miocene or Pliocene) age, apparently disturbed nearly all of trans-Pecos Texas, but its effects Wwere greatest in the north. During and after this epoch, basin deposits were laid down to great thickness in the lower fault blocks. There is no evidence that these areas were connected by any large streams The sediments were probably derived from the immediately adjacent mountains, and were deposited in broad shallow lakes or playas. To ward the end of the epoch of basin filling, their surfaces may have been built up to such a height, and pediments cut back from them so far, that they were more or less connected with adjacent basins at the lowest points on the encircling mountain barriers.
: Later movements apparently took place along the faults of northern trans-Pecos Texas, and continued until relatively recent time. During this time the mountains of the area, which had been greatly eroded during the epoch of basin filling, were again uplifted, and assumed their present form and height. The older basin deposits were somewhat deformed and new deposits were laid down unconformably over the old at the bases of the mountains. Probably few or none of the faults of southeastern trans-Pecos Texas were affected by the later movements. The escarpments which follow them are probably fault-line scarps, many of which are now deeply eroded. Those few which are straight and fresh seem to have been covered at one time by soft, easily removable strata on the downthrown block.

It is probable that the Rio Grande did not take its course across New Mexico and western Texas until long after the first time of faulting, and after the time of basin filling. The first evidence of river action to be seen is in the pediments and terraces eroded on the upper surface of the basin deposits.

The lower consequent course of the river, between the Sierra del Carmen and the gulf, probably came into existence much earlier This ancestral stream may have made important contributions of sediment to Tertiary formations on the gulf coast as far back as the Eocene. An older river may also have existed in central New Mexico, as suggested by the evidence of Lee and Bryan. Lee supposed that for a time this stream did not flow to the sea, but emptied southwest ward into the basin of Laguna Guzman, in northern Chihuahua west of El Paso.

[^5]What could have caused the integration of these disconnected and wholly unrelated streams? A clue has been given by Blackwelder in a recent paper on the origin of Colorado River, ${ }^{120}$ a stream which has many of the same peculiar relations as the Rio Grande. Blackwelder points out that there is evidence of great uplifts in Pliocene and Pleistocene time in the Rocky Mountain region. If such occurred there must have been a marked increase in rainfall in a region that had previously been low and semi-arid. Much water must have been shed off toward the south and southwest, filling near-by desert basins to their rims, overflowing into adjacent lower basins, and eventually establishing through-flowing drainage to the sea. One such throughflowing stream was the Colorado, another the Rio Grande. The increase in the amount of run-off may also have aided the Pecos in establishing its course east of the mountains.

The waters that shed south from the Rocky Mountains may have followed for a distance the river supposed by Bryan and Lee to have existed earlier in central New Mexico, If, however, this stream led to an interior basin, as supposed by Lee, the waters soon sought an outlet into adjacent basins. If the basins had previously been made partly confluent by prolonged filling and pediment cutting, this process may have been easy. That the waters found their outlet to the southeast across trans-Pecos. Texas was largely fortuitous, anddepended entirely on the accidental placing of the structurally low areas. The establishment of through-flowing drainage from Colorado to the sea was perhaps aided in mid-course by uplifts of mountains in Mexico. R. E. King ${ }^{121}$ finds that in the Sierra Mädre Occidental of westein Chihuahua there is a widespread mature surface of broad valleys and low rolling divides at elevations of $6,000-8,000$ feet, which is now being dissected on its west side by tremendous canyons. The uplift of this surface may have given rise to the Rio Conchos, and perhaps for a time to other streams, which joined the Rio Grande west of its crossing of the last mountain barriers. After crossing the last mountain range, the Sierra del Carmen, the waters from the Rocky Mountains, augmented by those from Mexico, joined the ancestral Rio Grande, which had previously existed east of the mountains on the coastal slope.

The subsequent history of the Rio Grande has been onc of downcutting. This is expressed in most of its course by the trenching of the basin deposits, and the cutting of gorges in the more resistant rocks.
${ }^{120}$ Eliot Blackwelder, "Origin of the Colorado River," Bull. Ceol. Soc. A mer., Vol. 45 (1934), pp. 55 I- -6.
${ }_{121}$ R. E. King, personal communication, April, 1933.
the basins nearest the sea, such as that between the Sierra del Carmen and the Mesa de Anguila, greater quantities ofs of hard rock as the intrusives of the Chisos Mountains to stand out in bold relief. to deep cutting in the southeastern basins also perd on lower folds and fault blocks, such as Mariscal Mountain, which had hitherto been concealed. It is possible that some of the fault blocks in southeastern trans-Pecos Texas were, at about this time, subject to renewed normal faulting, and that the stream cut down through them as they were raised. The river has, in fact, been interpreted by some geologists as anteceden the supposed cases fault blocks, and even of the folds, but most of tations. Until furof antecedency are subject to altern most probable that the river is ther evidence is obtained, it seems on most of the structural either consequent to or
features which it croses the here presented have been made by C. L. Interpretations very similar to those here presented "avent mer. Geol., Vol. 50 Baker, in "Desert. Range Tectonics of Trans-Pecos Texs, indebtedness to this earlier (19^{28}), p. 363 , and the writer wishes to acknowne the structure of trans-Pecos Tex paper. In Baker's unpubished manuse
\%

[^0]: THIS LIST CONTAINS 2347 HELLS.

[^1]: * Reliable values
 ${ }^{1}$ Anhydritc.

[^2]: ＊Described by Flawn，but the interpretation here does not neces－ sarily agree．
 \dagger Described by Muehlberger and Denison．
 キDescribed by Flawn and by Muehlberger and Denison．Those not marked are described here for the first time．

[^3]: range of xas, and is for its itan reef this in by King al. (1953) sulting in en, there

 Canyon. Yates and Tansill grade into and overlle the big cliff of Capitan "massive" (reei) facies on
 the north side of the canyon mouth. Steep slopes
 below and in front of the "massive" are forereef子米:
 Whave been no nomenclatural changes in the basic aramework.

 Major stratigraphic problems existing in the

[^4]: ${ }^{89}$ F. B. Plummer, $s p$: cil., p. 720 .
 ${ }^{20}$ Ibid., p: 727.
 is Ibid., p. 734.
 ${ }^{92}$ Ibid., p. 784 .
 ${ }^{93}$ C. L. Bakcr, " 1
 Vol. 50(1928), 1. 372.

[^5]: ${ }^{119}$ S. S. Nye, op. cit., p. 26.

