UNION OIL OF CALIFORNIA
Cove Fort-Sulphurdale Unit 非7-2
Wildcat
Beaver, Utah
Log No. 40826
February 22, 1978

SUMMARY
 GENERAL CONDITION OF CASING

The enclosed Dia-Log Profile Caliper Logs cover 1345' of 13-3/8" O. D. casing and the 1955' interval of 9-5/8' O. D. from 1345' to 3300'. Also enclosed are repeat logs of the upper 500^{\prime} of $13-3 / 8^{\prime \prime} 0$. D. casing and the upper 960^{\prime} of $9-5 / 8^{\prime \prime} 0$. D. casing.

It was reported that the $13-3 / 8^{\prime \prime} 0$. D. casing weighs $56.01 \mathrm{~b} . / \mathrm{ft} . \mathrm{C}$ We are unable to locate any information on casing of this weight. The percentages of the remaining wall thickness, listed on the heading, are based on $54.5 \mathrm{lb} . / \mathrm{ft}$. casing.

$$
13-3 / 8^{\prime \prime} \text { O. D. Casing }
$$

The $13-3 / 8^{\prime \prime} 0$. D. casing shows to be in good condition. There is no indication of corrosion pitting in any of the 34 joints covered with the caliper. The only indication of casing damage is a minor reduction in wall thickness from what apparently is drill pipe wear. The minimum remaining wall thickness recorded is $9 / 32^{\prime \prime}$ in 17 different joints. For $13-3 / 8^{\prime \prime}$ O. D. $54.51 \mathrm{~b} . / \mathrm{ft}$. casing $9 / 32^{\prime \prime}$ is 74.0 percent of the specified nominal wall thickness. Eleven joints logged have 10/32" (82.2 percent) remaining wall thickness. The other 6 joints have $11 / 32^{\prime \prime}$ (90.5 percent) remaining wall thickness.

9-5/8' 0. D. Casing
Casing. damage from both corrosion pitting and drill pipe wear is recorded in this casing string. The most severe damage is recorded in Joint No. 12. The log deflection recorded at 1814' could be a split in the casing, however, there is no indication of an enlarged I. D. which normally would be expected when casing ruptures. Therefore, the damage in this joint is probably from corrosion.

The very wide rounded deflections recorded in Joints Nos. 5, 30 through 32, and 35 through 43 are typical of wall loss from drill pipe wear. Excluding Joint No. 12, the minimum remaining wall thickness recorded is $10 / 32^{\prime \prime}$ recorded in Joints Nos. 13, 31, 40 and 42. For 9-5/8" 0. D. $40.01 \mathrm{~b} . / \mathrm{ft}$. casing $10 / 32^{\prime \prime}$ is 79.1 percent of the specified nominal wall. All other joints calipered have $11 / 32^{\prime \prime}$ (87.0 percent) or more remaining wall thickness.

Sanded dolomite was encountered at 560' in Forminco \#1, and was at least 491' thick, although the total section was not penetrated. This sloughing formation caused the premature abandonment of this well, and resulted in a research effort to develop a method of treating this interval.

The sanded dolomite is believed to occur randomly in the dolomitized sections in the area due to acid gas leaching. Consequently, it is not a lithologic structure that can be mapped, and we must be prepared to combat this problem whenever we encounter it.

For example, sanded dolomite was not encountered in well \#42-7, but it may have been encountered in well \#31-33. An 85^{\prime} interval of unconsolidated sloughing material was encountered in well \#31-33 at 4785', but due to lost circulation problems, no material was circulated back to the surface. However, the interval was treated with a modification of the procedure described below (due to the depth and temperature, acid was not used), and successfully stopped the sloughing and allowed the hole to be completed.

Appendices 1 and 2 give a detailed procedure for conducting this patented* process. As can be seen from the Appendices and the detail given in the patent, this procedure requires a significant amount of extra equipment, as well as stockpiling enough chemicals to do the treatments. These costs are reflected in the higher cost of drilling wells in this area.

[^0]DSP: rmw
Att.

1. Eresh water preflush (Pump fluid with the bit on the bottom.)

140 (0.52) 320
2. Chemical Preflush:

200
(0.757)

370
(1.4)

$\frac{\text { Volumes for Hole Size (Gallons) }}{\frac{83 / 4 \text { in }}{\text { gallons }} \frac{(22.2 \mathrm{~cm})}{\text { cu.meters }} \frac{121 / 4 \text { in }}{\text { gallons }} \frac{(31.1 \mathrm{~cm})}{\text { cu.meters }}}$

0.2% surfactant -5% calcium
chloride- 2% liydrochloric acid
(Pump while raising the bit to
fill about 60 feet (18.4 m) of hole.)

Close the annulus and punp water
to displace the chemical preflush,
but keep the pressure below frac-
turing pressure
100*
(0.378) 180*
(0.68)
4. Open the annulus and lower the bit to the bottom. Pump water to circulate the preflush up into the annulus 230
(0.87) : 370
5. $50 \% 41^{\circ}$ Bé " N " sodium silicate) $.200^{\circ}$
(0.757) 370 50\% water)
(Pump while raising the bit to
fill about 60 feet (18.4 meters) of hole.)
6. Ciose the annulus and pump water to displace silicate. Keep the
pressure below fracturing pressure. $\quad 100 *(0.378)$ 180* (0.68)
7. Open the annulus, lower the bit to the bottom and pump water to circulate the excess sodium silicate stage up into the annulus

530
(2.0)
8. . 5% calcium chloride flush solution. (Pump while raising the bit to fill about 60 fect (18.4 meters of hole.)

370
(1.4)
9. Close the annulus and pump water to displace calciun chloride flush solution. Keep the pressure below fracturing pressure.

100*
(0.378)

180*
10. Open the anmulus and lower the bit to the bottom; pump water to circulate the excess calciun chloride water up into the amulus

140
(0.52)

320
(1.21)
11. Resume normal mud circulation
total volunes and chemical requirements per 30 feet

Water
Calcium Chloride
Surfactant

Concentrated Hydrochloric Acid (37\%)
41° Bé "N" Sodium Silicate Solution

$\begin{aligned} & 82 / 4 \cdot \mathrm{In} \\ & , ~ H o l e \\ & \hline \end{aligned}$	$22.2 \mathrm{~cm})$	$\begin{aligned} & 12.1 / 4 \mathrm{In} . \\ & \mathrm{Hole} \\ & \hline \end{aligned}$	$(31.1 \mathrm{~cm})$
1540 gal	($5.82 \mathrm{~m}^{3}$)	3165 gal.	$\left(12.0 \mathrm{~m}^{3}\right)$
167 db .	(76 Kg)	308 lb .	(140 Kg)
0.40 gal	$\begin{aligned} & (1.51 \\ & \text { liters) } \end{aligned}$	0.74 gal .	$\begin{aligned} & \text { (2.8 } \\ & \text { liters) } \end{aligned}$
9.1 gal.	$\begin{aligned} & (34.4 \\ & \text { 1iters) } \end{aligned}$	16.8 gal.	$\begin{aligned} & (63.6 \\ & \text { ifters) } \end{aligned}$
100 gal.	(0.378 m ${ }^{3}$)	3185 gal.	$\left(0.700 \mathrm{~m}^{3}\right)$

Makcup of 10-Barrel Batches Each Stage
Stage 1

Water
Calcium Chloride
37% lydrochloric Acid
Surfactant
Stage 2
Water
41* Bé " N " Sodium Silicate
Stage 3
Water
Calcium Chloride

$$
\begin{array}{ll}
9.56 \mathrm{bbl} & \left(6.51 \mathrm{~m}^{3}\right) \\
175 \mathrm{lb} & (79.4 \mathrm{Kg}) \\
19 \mathrm{gal} & (71.9 \text { liters }) \\
0.85 \mathrm{gal} . & (3.18 \text { liters })
\end{array}
$$

$$
5.0 \mathrm{bbl} \quad\left(0.80 \mathrm{~m}^{3}\right)
$$

$$
5.0 \text { bb1. } \quad\left(0.80 \mathrm{~m}^{3}\right)
$$

10.0 bbI
($1.59 \mathrm{~m}^{3}$)
175.1 b
(79.4 Kg)
[54] METHOD FOR DRILIING A VELL THROUGI UNCONSOLIDATED DOLOMITE YORMATIONS
[75] Inventors: Psul W. Fischer, Whitier; David S.
Pye, Brea; Julius P. Gallus, Anaheim, all of Calif.
[73] Assignee: Union Oil Company of Californla: Brea, Calif.
[21] Appl. No.: 838,895
[22] Filed:
Oct. 3, 1977
[51] Int. C1. ${ }^{2}$ \qquad E21B 33/138
(52) U.S. Cl. 175/72; 166/292
[58] Ficld of Search
h 175/57, 65, 66, 72, 252/8.5 16

References Cited

U.S. PATENT DOCUMENTS

2,207,739	7/1940	Reimers 166/292
2,252,669	8/1941	Cross et al. 175/72 X
3,149,684	9/1964	Eckel et a!. 166/292 X
3,175,611	3/1965	Hower 166/292
3,259,189	7/1966	Darley 166/292
3,291,214	12/1966	Hower 166/292 X
3,396,790	8/1968	Eaton 166/300 X

1,461,980	8/1969	Kelly, Jr. 166/292 X
3,530,937	9/1970	Bermard 166/292 X
3,592,267	7/1971	Slainback el al. 166/294
3,593,796	7/1971	Slainback et al. 166/292 X
3,692,125	$9 / 1972$	Ruhle 175/72 X
3,965,986	6/1976	Christopher 166/292
4,031,958	$6 / 1977$	Sandiford et al. .i............ 166/292 X

Primary Examiner-Stephen J. Novosad Assistant Examiner-George A. Suchfield Attorney, Agent, or Firm-Richard C. Hartman; Dean Sandford; Daniel R. Farrell

[57]

ABSTRACT

A method for drilling a well through a subterrancan formation containing one or more zones of unconsolidated dolomite, wherein the drilling operation is interrupted periodically to consolidate the newly drilled incompetent dolomite by the injection of a sequence of reactant slugs comprised of (I) an aqueous solution containing an acid, a surface active agent and a precipitating agent for silicates, (II) an aqueous solution containing a water-soluble silicate, and (III) an aqueous solution containing a precipitating agent for silicates.

18 Claims, 11 Drawing Figures

METIOD FOR DRILIING A WELI, TIROUGH UNCONSOLDATED DOLOMITE FORAATIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the drilling of wells, and more particularly concerns an improved method for drilling a well through a formation containing unconsolidated dolomite.
2. Description of the Prior Art

Drilling a well through an incompetent subterranean formation has presented many problems. Conventionally, aqucous-base drilling fluids containing water, clay and various additives are circulated through the bore. hole during the drilling operation to carry drill cuttings from the bore hole to the suriace. These clay-containing drilling fluids form a mud cake on the bore hole walls which reduces the sloughing of the incompetent formation as long as the fluid pressure in the bore hole due to the standing column of drilling nuid, exceeds the pressure of the connate fluid in the incompetent formation. Therefore, drilling through typical incompetent formations per se is not particularly a problem. However, it is commonplace to encounter a lost circulation zone, either in the incompetent formation itself or in an underlying strata, or to lose the column of drilling fluid due to the cumulative effect of individually manageable fluid losses to a plurality of formations. When the lost circulation results in a fluid pressure in the bore hole less than the fluid pressure in the adjacent incompetent formation, the formation will slough into the bore hole. A stuck drill string often results from this sloughing and may lead to abandonment of the drill string and the well.
The incompetent formations normally encountered in drilling oil and gas wells are generally formations which contain quartz sand and/or clay. Accordingly, the prior ast methods of consolidating these formations have been directed to injecting one or more chemical solutions to react with the quartz sand or clay to form a consolidated sheath about the well bore. Depending upon whether or not it is desirable to permanently seal the formation from the well bore. the chemical solutions can be selected such that the resulting -sheath is either. permeable, such as disclosed in U.S. Pat. No. 3,175,611 to Hower, or substantially impermeable, such as disclosed in U.S. Pat. No. b 2.207,759 to Reimers.
Dolomite formations encountered in drilling oil and gas wells are generally competent unless the formation also contains a significant amount of quartz sand or clay. Accordingly, dolomite formations which are substantially free of quartz sand and clay have not required consolidation. However, subterranean formations containing one or more zones oi unconsolidated dolomite have been encountered in drilling core holes for minerals exploration, and in drilting wells to explore geothermal prospects. The incompetent dolomite is believed to result when's zone of dotomite erystals dispersed in a calcite matrix is subjected to ground water leaching. such as hydrothermal leaching by a geothermal nuid. The ground water selcetively leaches the more soluble calcite matrix materials to feave the unconsolidated. fincly divided dolomite crystals. These crystals are relatively free flowing and are prone to sloughing into a 6 void space, such as a tore hole.

- :-........menteth drifl through these unconsoli-
merous cote moies whu an
plore a geothermal prospect have been abandoned due to this problem. Proor art consolidation methods have been found to be inadequate for the consolidation of the incompetent dolomite formations. Therefore, a need exists for a method for drilling through incompetent dolomite formations.
Accordingly, a principal object of this invention is to provide a method for drilling a well through incompetent dolomite formations.

Another object of this invention is to provide a method for drilling through a hydrothermally-leached formation containing incompetent dolomite.

Yet another object of the invention is to provide a method for consolidating an incompetent dolomite formation during the drilling operation sufficiently to prevent subsequent sloughing of the formation into the bore hole during the drilling operation.
A further object of the invention is to provide an improved drilling method by which a relatively thick incompetent zone of dolomite can be penetrated while avoiding sloughing of the dolomite into the bore hole and while reducing fluid loss to the incompetent formation.
Further objects, advantages and features of the invention will become apparent to those skilled in the art from the following description taken in conjunction with the accompanying drawings.

SUMMARY OF THE INVENTION

The invention provides a method for drilling a well through an incompetent dolomite formation. In the method, the drilling operation is periodically suspended after penetrating a distance into the incompetent formation and the portion of the newly drilled formation adjacent the bore hole is consolidated by the injection of a sequence of discrete slugs comprised of (I) an aqueous solution containing an acid, a surface active agent and a precipitating agent for silicates, (II) an aqueous solution containing a water-soluble silicate capable of reacting with solution I to form a silicate gel, and (III) an aqueous solution of a precipitating agent for silicates. Solutions I, II and III react in the newiy drilled portion of the formation to form and set a silicate gel thereby forming a substantially impermeable, consolidated sheath around the bore hole. This sheath serves to prevent sloughing of the incompetent formation during the later stages of the drilling operation and until the well can be completed.

In a preferred embodiment of the method of this invention, formations which contain one or more zones of the incompetent dolomite are drilled by conventional rotary drilling techiniques using an aqueous, substantially clay-and oil-free drilling thuid. The well is drilled in a plurality of inerements and each newly drilled portion of the formation is consolidated by the aforementioned treatment prior to drilling the next increment.

The invention provides the importam suvantage of consolidating each portion of the formation as it is encountered. thereby avoiding the possibility of a stuck drill string due to subsequent sloughing of the formation. The consolidation also substantally eliminates fluid loss to the formation adjacent the consolidated annuiar shesth. Furthermore, the consolidation treatment can be and is preferably conducted without pulling the drill string from the hole and the method does

BRIEF DESCRIPTION OF TIE DRAWINGS

The invention will be more readily understond by reference to the drawings wherein like numerals refer to like elements, in which:

FIGS. 1 through 11 are schematic diagrams of a cross section of earth strata which illustrate the series of steps carried out in a preferred embodiment ot the method of this invention.

DETAILED DESCRIPTION OF THE INVENTION

The method of this invention is applicabie to all drilling operations in which incompetent dolomite formations are to be penetrated, such as core drilling for minerals exploration, rotary drilling in the exploration for oil, gas or a geothermal fluid or in the driling of wells or shafts to gain access to a subterranean formation. The method of this invention finds particular utility in the rotary drilling of a well through an incompetent dolomite formation overlying a geothemal reservoir

A preferred embodiment of the method of this invention is illustrated in FIGS. 1 through 11. As shown in FIG. 1, well 10 extends from the earth surface 12 through a first subterranean formation 14 and a short distance (from point A to point B) into a second subterranean formation 16 . Formation 14 is fairly competent and therefore does not require consolidation. Formation 16, however, contains unconsolidated dolomite which is prone to sloughing into the bore hole: Below formation 16 is a nuid-bearing reservoir 18 such as a reservoir containing oil, gas, steam or high temperature brine, or other mineral deposits of interest. The objective of the rotary drilling operation is to penetrate into formation 18 to tap the fluid contained therein or to obtain core samples of the mineral deposits.

A drill string, shown generally as 20 . is disposed in well 10 in a conventional manner. Drill string 20 in cludes rigid conduit 21 and drill bit 22 attached to the end of conduit 21 . Well casing 24 is disposed in the top of well 10 in a conventional manner to seal off the top strata of formation 14 from the bore hole and to provide a fluid tight pathway from well 10 to blooie line 28 . During the drilling operation, drill string 20 is rotated by a prime mover, not shown. and a driling fluid is circulated by pump 60 from mud pit 62 through line 63. downwardly through drill string 20 , upwardly through well annulus 26 and out throush bloote line 28 back to mud pit 62 . Valve 30 is provided on blooie line 28 to shut in well annulus 26 . The circulating drilling fluid carries drill cuttings from the bore hole to mud pit 62

Chemical injection pump of is provided to inject reactant solutions from tanks 66, 67 and 68 , and spacer liquid from tank 69 through line 63 and into well 10 Three-way valves 70 and 72 are provided to switch from the drilling fluid circulating system to the chemical injection system. Tank 66 cuntains solution I which is an aqueous solution of an acid, a surface netive agen and a water-soluble precipitating agemt. Tank 67 contains solution II which is an aqueous solution of a watersoluble silicate. Tank 68 contains solution III which is an aqueous solution of a water-soluble precipitating agent. And tank 69 contains a spacer liquid which is substantially nonrcactive with respect 10 solutions I. II and 111 sind the drilling thuid. Threc-way valve 72 is provided on blooie line 28 to direet any excess of solution I, 11 and 111 to a disposal site. not shown, through
vumitus ……..... -
of the driling nuid.
FIG. 1 illustrates the seatus of well 10 after the bore hole has been drilled from point a to pome B into formation 16 and the newly drilled portion of the formation has been consolidated in accordance with the method described more fully. hercimater. During this consolidation a substantially impermeable sheath, shown gencrally as 40, was formed around the bore hole, which sheath prevents sloughing of the formation into well 10.

In the method, the bore hole is extended from point B to point C into formation 16 in the conventional manner, i.e., by rotating drill string 20 and circulating a drilling lluid downwardly through conduit 21 and upwardly through annulus 26 . Upon reaching point C, the drilling operation is interrupted and the newly drilled portion of formation 16, i.e., from point B to point C, is consolidated by the sequence of steps illustrated in FIGS: 2 through 11. In these steps, a body of each reactant solution is first positioned in the bottom of the bore hole by slowly raising the drill string as the reactant solution is tlowed into the well. This raising of the drill string reduces the mixing of the reactant solution with the other fluids in the well and also minimizes the time during which the drill string is immersed in the reactant solution. This hatter feature greatly reduces the chances that the drill string will become stuck in the well by premature cementation of the reactant solutions. Next, the well annulus is sealed by one of the methods well known in the art and a spacer slug is injected under pressure to displace the reactant solution into the newly drilled portion of the formation. Although the incompetent formations are normally porous and oiten drain fluid continuously from the bore hole, the reactant solutions are injected under pressure to ensure placement of a sut:icient quantity of the solutions in the formation to : m a sizable consolidated sheath. Furthermore, the r: neability of the formation is significantly reduced by ise injection of solutions I and II, therefore solution Ill must be displaced into the formation under pressure. Typically, the permeability of the consolidated sheath will be on the order of less than one thousandth of the permeability ob the uncom solidated formation.

As shown in FlG. 2, the drilling thuid is dispiaced upwardly through well annulus 26 by injecting a spacge: liquid through conduit 21 while drill string. 20 is rested on the bottom of the well. Then, drill string 20 is raised as a discrete slug of solution I is introduced through conduit 21 into the bore hole to provide body 42 of solution 1 in the bottom of well 10, as shown in FIG. 3. Next, amnulus 26 is shut in by means of valve 30 or any other conventional device, such as an expandable packer, not shown, positioned on drill string 20 . A spacer liquid is injected under pressure into well 10 through conduit 21 to displace solution I into the newly drilled portion of formation 16, ns shown in FIG. 4. The pressure in well 10 is then reduced by openine valve. 30 ; drill string 20 is run to the bottom of well 10 ; and the excess solution 1 is dispiaced out ot annulus 26 by a spacer, as shown in FIG. 5.

Solutions 11 and 111 are each introduced into the bottom of well 10 and displaced into the nevely drilled portion of formation 16 ty the same method as. described above for the injection of solution 1. Brielly, FIG. 6 illustrates body 44 ot solution Il in the bottom of the bore hole, which was formed by the injection of a
 tion 16 by a spacer liquid which was imected into the shut-in well under pressure; FIG. 8 illustrates the displacement of the excess solution II upwardly through the well annulus by a spacer. FIG. 9 illusirates body 46 of solution III in the bottom of the bore hole, which was formed by the injection of a discrete slug of solution 111 through conduit 21 as drill string 20 was raised; and FIG. 10 illustrates the displacement of solution 111 into the newly drilled portion of formation 16 by a spacer nuid which was injected into the shut-in well under pressure.

It is preferred that the amount of mixing of the reactant solutions with other fluids in the well bore, i.e., connate nuids and spacer slugs, be minimized and that the amount of spacer actually displaced into the formation between the reactant solutions be minimized, in order that the reactant solutions become well mixed at the highest possible concentration of reactant chemicals. Accordingly, it is preierred that the slugs of reactant solutions and spacer be sized such that the excess solution remaining in the bore hole after displacement by the spacer completely fills the bore hole adjacent the newly drilled portion of the formation as illustrated in FIGS. 4, 7 and 10. This procedure reduces the amount of spacer displaced into the formation to the small amount due to the natural fluid loss during the displacement of the excess solution from the bore hole illustrated in FIGS. 5 and 8.

As shown in FIG. 10, a portion of each discrete slug of solutions I, II and III has been displaced into formation 16. Although shown in formation 16 as distinct fluids, it will be understood of course that the three. solutions will mix in formation 16 adjacent the bore hole. Solutions I, II and III interact to form a silicate gel which consolidates the formation adjacent the bore hole by forming a substantially impermeable annular sheath about the bore hole. FIG. 11 illustrates the status of well 10 after sheath 48 has set in the newly drilled portion of formation 16. Slieath 40 and sheath 48 together form a substantially continuous sheath which prevents sloughing of formation 16 into the bore hole and substantially eliminates fluid passage between the bore hole and formation 16.
The third and subsequent portions of formation 16 are drilled and treated by repeating these same stens. The formation containing incompetent dolomite will normally be drilled. in a piurality of increments of from about 20 to about 100 feet in depth, preferably between about 20 and about 60 feet in depth. Once the unconsolidated formation has been passed or the fluid-bearing reservoir has been penetrated, the ennsolidation treatment can be suspended and conventional drilling and completion methods can te used to conmplete the well. such as by ruming a well liner or production casing and cementing it in place.
From this.deseription of the preferred process steps. it will be apparent that numerous nodifications can be : made in the nethod of injection of the reactant solutions into the formation. For example, it is contempiated that the solutions can be injected without the raising and lowering of the drill stringe and that one or more of the spacer solutions may be deleted without adversely affeeting the consolidation of the formation. However, since the premature mixing of the reactant solutions or some_other unforeseen probicm could result in the drill
 this result.

In rotary drilling, the drilling fluid cmployed to drill s through strata overlying the unconsolidated dolomite formation is not deemed critical. but rather will be selected according in nethods well known in the art which depend in general upon the type of strata penetrated. However the selection of a drilling fluid for drilling through the unconsolidated dolomite is critical to the success of the method of this invention. Of course, in those drilling methods which do not require drilling fluids, such as cable tool drilling, none will be used.

In rotary drilling through an incompetent formation by the method of this invention, it is desirable to use a clay-free drilling fluid. Clay tends to invade the relatively porous incompetent formations and causes plug: ging problems. In addition, when high temperatures are encountered, a corrosion inhibitor is usually required in the drilling fluid in order to combat the corrosive ef. lects of oxygencontaining gases or carbon dioxide in either the drilling fluid, such as an aerated drilling fluid, or in the connate fluid. However, clay tends to absorb 5 these corrosion inhibitors so they are not available for corrosion protection. Furthermore, while clay-containing drilling fuids normally form a mud cake on the walls of the bore hole which serves to temporarily seal off incompetent formations, this mud cake is usually not adequate to prevent the subsequent sloughing of the incompetent formation when the well goes dry due to lost circulation. However, the mud cake is difficult to remove by chemical treatment and therefore effectively seals of the incompetent formation fom any fluids which are injected into the bore he... o.consolidate this formation. Therefore, in drillin: ibrough incompetent formations by the method of this invention. clay-containing drilling fluids and other driling fluids which form a relatively impermeable and difficult to remove cake on the walls of the bore hole are to be avoided. To the contrary, drilling fluids which form easily removed cakes are preferred.

Similarly, oil-containing fluids are to be avoided when drilling through incompetent formations by the method of this invention. The use of oil-containing fluids often results in rendering oil-wet the formation immediately adjacent the bore hole with a resulting lower mobility to aqueous fluids. This lower mobility undesirably reduces the injectivity of the aqueous treatment solutions. It is critical to the success of the consolidation treatment that the reactant solutions I, II and III penetrate into the unconsolidated formation in an amount sufficient to consolidate a sizable sheath about the bore hole, such as an annular sheath having a differential radius of at least 3 inches and preferably at least 6 inches. In order to consolidate a sheath this large, a fairly substantial quantity of the reactant solutions must be displaced into the unconsolidated formation. Accordingly, any fluid which reduces the permeability of the formation, such as clay- or oilcontaining driliting fluid, should be avoided. In particular, cakeforming conventional drilling fluid additives such as clay, lignite, lignin and lost circulation materials which form cakes which are difficult to remove should be avoided. 65 if possible; while drilling through the sloughing dolomite formation.

Aqueous drilling fluids which are substantially free of oil and clay are preferred for use in drilling through
 brine; however these nuids are often not suitable in a particular weell due to a high lluid loss or low density. As is known, a water-soluble polymer can be adided to increase the viscosity of the drilling fluid and to improve the nuid loss properties of the drilling fluid. While a high fluid loss is to be avoided. a very low fluid loss is also undesirable since this indicates that the formation has been rendered relatively impermeable to water. Preferably the polymer is selected to reduce the fluid loss to an acceptable level without adversely ar. fecting the permeability of the formation to the consolidation solutions. Slightly crosslinked polymers. sucin as slightly-crosslinked acrylic and hydroxyethylcellulose polymers, have been found to be effective. On the other hand, heavily crosslinked heteropolysaccharides and polyacrylamide polymers have been iound to detrimentally affect the consolidation treatment. Preierred polymers included the hydroxyethyleellulose polymars marketed by Hercules. Inc. under the trademark Natrasol. Particulariy preferred polymers are the sodium polyacrylates marketed by American Cyanamid Company under the trademark Cypan and those polymer additives marketed by Rotary Drilling Services and X-L Laboratories under the trademark Ben-EX and by PalMix under the trademark Super.X.
Conventionally, a weighting agent such as calcium carbonate is added to an aqueous based drilling fluid to adjust the fuid density and to improve lluid loss control. A calcium carbonate weighting agent marketed by Brinadd Company under the trademark Sluggit has been found to be suitable.
One suitable drilling fluid is an aqueous solution containing about 1 pound per barrel of Cypan sodium polyacrylate and about 10 pounds per barrel of Sluggit weighting agent.
Although drilling fluids which form easily removed cakes are preferred. it is contempiated that under some well conditions the only suitable drilling lluid will be a clay-containing fluid. The method of this invention can still be used to consolidate the incompetent dolomite adjacent the bore hole but appropriate steps must be taken to remove the mud cake beiore solutions I, II and Ill are introduced into the formation. It may be necessary to remove the mud cake by an acid treatment, such as a flush of hydrofluoric acid, or by means of a mechanical scraper.
Solution I is an aqueous solution containing an acid, a surface active agent and a precipitating agent for silicates. The acid is selected from the water-soluble inorganic and organic acids which form water-soluble salts with the surface active agent and the multivalent cation of the precipitating agent. Dependins, on the particular precipitating agent, suitable inorganic acids include hydrochloric, nitric. hydrowdic, hydrofluoric and hydrobromic acids. Suitable orgamic acids include formic, acetic, propionic and citric acids. Hydrochlone acid is particularly preferred. Solution I will normally contain between about 0.5 and about 20 weight pereent of acid. with good results being obrained with beween 1 and 10 weight percent, and farticularly between 2 and 5 weight percent of acid.
The surface active agents useful in Solution I include anionic, nonionic, cationic and amphoteric agents. (cf. Detergents and Emulsitiers, 1975 Annual. John W. McCutcheon, Inc.) A wide varlety of surfactants are useful, but the preferred surfactant will depend upon
solumon. in gencrah, we sumacham must oc soluve in an aqueous acidic solution containing multivalcot cations. Aceordingly, surface active sulliates and phosphates which form precipitates with multivalent cations are not suitable. Additionally, viscous soaps, such as sodium and potassium salts of processed or modilied rosins, as well as othcr viscosity increasing agents, such as polyacrylamides, are to be avoided since these reagents adversely reduce the mobility of the solution. If the viscosity of solution 1 is increased, the quantity of the reactive solutions displaced into the incompetent formation will be less, thercby reducing the effectiveness of the consolidation treatment.

Surface active amines, alkyl sarcosines, n-alkyl trimethyl ammonium chlorides and sorbitan monolaurates have been found to be uscful in the method of this invention. An ethylene oxide condensation product of the primary fatty amines marketed by Armak Company under the trademark Eihomeen $C / 15$ is an example of the cationic surfactants found to be useful in this invention. Also useful are the cocoy! sarcosines marketed by Ciba-Geigy Corporation under the tradernark Sarkasyl LC (anionic), the n-alkyl trimethyl ammonium chlorides marketed by Armour Industrial Chemical Company under the trademark Arquad T-50 (cationic) and the sorbitan monolaurates marketed by Atlas Chemical Industries under the tradeniark Tween 20 (nonionic).

The most preferied surface active agents are those 30 surface active amines which exhibit corrosion inhibiting properties. Most corrosion inhibitors have surface active properties and, if compatiole with the aqueous acid solution containing multivalent cations, are preterred for use in the method of this invention. Suitable corro35 sion inhibitors which can be used cither alone or in addition to the afore-mentioned surfactants in Solution I include a corrosion inhibitor marketed by the Halliburton Company under the trademark HAl-75 and an amine corrosion inhibitor marketed by The Dow Chemical Company under the trademark Dowell-A-130.

Solution I will contain between about 0.005 and about 5 weight percent of the surface active agent, with good results obtained when the solution contains between 0.05 and 3 weight percent of the surface active agent, more particularly between about 0.1 and 0.5 weight percent. The concentration of the surface active agent should never be enough to cause a significant increase in the viscosity of the solution or to otherwise reduce the mobility of the solution in the dolomite formation.

The prccipitating agents suitable for use in the method of the invention include the water-soluble salts of multivalent cations which react with silicates to form and set a silicate get. Suitable multivalent cations include the alkaline earth metals, such as masnesium, calcium, strontium and barium, and certain of the transition metals, such as zinc, mangancse, iron, mickel and cobali. Iron and calcium are the preferred multivalent cations due to their availability and low cost. Suitable precipitating agents include the multivalent cation salts 0 of inorganic acids, such as hydrochloric. hydrobromic, hydroiodic and nieric acids. and the multivatent cation salts of organic acids, such as formic, acetic, propionic and citric acids. Chloride salts are preferred due to their low cost. with iron and calcium chlorides being particu: 5 larly preferred. Solution I slould contain between about 1 and about 20 weight pereent of the precipitating agent. Good results are obtained when the concentration of the precipitating agent is between about 2 and 10

Solution I comprises an aqueous solution containing from about 0.5 to about 20 weight pereent of a watersoluble acid, from about 0.005 to about 5 weight pereent of a surface active asent, and from about 1 to about 20 weight percent of a water-soluble precipitating agent ! - . \quad. ar silicates. Particularly preierred compositions for use fresh water containing from about 2 to 5 weight percent bydrochloric acid, from about 2 to 10 weight pereent of iron or calcium chloride, and from about 0.1 to about 0.5 weight percent of either HAI-75 corrosion inhibitor or Ethomeen C/IS surfactant or mixtures thereof.

Solution II is an aqueous solution containing a watersoluble silicate which is capable of reacting with the precipitating agent of Solution I to form and set a silicate gel. Suitable silicates include organic silicates, such as ethyl-ortho silicate, and inorganic silicates, such as the alkali metal and ammonium silicates. The alkali metal and ammonium silicates are preferred and sodium silicate is particularly preierred. Sodium silicate is a relatively complex inorganic substance, available in various grades from $\mathrm{Na}, \mathrm{SiO}_{1}$ to $\mathrm{Na}, \mathrm{O} .4 \mathrm{SiO}_{1}$ and any of these grades may be suitable for the purposes of the invention. A sodium silicate marketed by the Philadelphia Quartz Company as a 37% concentrate under the trade name Sodium " N " Silicate is particularly preferred. The concentration of the silicate in Solution II should be at least about 7 weight percent. The concentration of silicate should not however be so large as to render Solution II difficult to pump.
Preferably, Solution II comprises an aqueous solution containing between about 5 and about 40 percent of an alkali metal or ammonium silicate. One suitable silicate ${ }^{4} 3$ solution is made by diluting the sodium " N " silicate concentrate in a one to one ratio with fresh water to yield a 18.5 weight percent solution of sodium silicate.
Solution III is an aqueous solution containing a precipitating agent for silicates. The precipitating agents disclosed above as a constituent of Solution I are also preferred for use in Solution III, and the precipitating agents employed in these solutions can be the same or different precipitating agents selected from the aforementioned precipitating agents. Iron and calcium chlorides are preferred precipitating agents. Solution III should contain between about I and 20 weight percent of the precipitating agent, with good results being obtained when the concentration of the precipitating agent is between 2 and 10 weight percent, particularly 50 about 5 weight percent.
The spacer liquid is an aqueous solution which is non-reactive with the drilling nuid and solutions I, II and 11I. Suitable liquids include fresh water and dilute solutions of alkali metal and ammonimu sales, such as a 3 weight pereent solution of NaCl .
Solutions I, II and III, and the spacer liquid should be substantially oil-free. Any oil injected into the unconsolidated formation will adversely alfect the consolidation treatment by reducing the quantity of reactive solutions injected and by causing the consolidated sheath to be more permeable.
The volumes of the reactant solutions employed to consolidate esch newly driled portion of the incompetent formation will depend, of course, on the diameter of the bore hole, the concentrations of reactants used, the length of the newly drilled portion of the bore hole. and the desired thickness of the consolidated annular
following volumes are presented as exemplary for the treatment of 30 feet of newly driled formntion for the indicated size of bore hole by the method illustrated in FIGS. 1-11.

Treatment Slug	Composition	Volume of Treatment Slug. Gal.	
		Bore Diam. 8.S-inch	Bore Diam. 12-inch
1) Spacer	$3 \% \mathrm{NaCl}$	140	320
2) Solution I	$3 \% \mathrm{CaCl}$	200	370
	$290 \mathrm{HCl}$		
	0.2\% HAI.75		
3) Spacer	$1 \% \mathrm{NaCl}$	100°	180°
		230°	370
4) Solution 11	$18.5 \% \mathrm{Na}_{4} \mathrm{SiO}_{3}$	200	370
5) Spacer	$3 \% \mathrm{NaCl}$	$100{ }^{\circ}$	180°
		230^{*}	530°
6) Solution 111	$9 \% \mathrm{CaCl}$	200	370
7) Spacer	37 NaCl	100	180°
		140^{*}	320*

20 Sruce injected under pressure to displace a the velume of feactant solution into ine fermation.
Spacer introduced to displace exeess reactant solution from the bore hole.
The suitability of a particular combination of reactant solutions for consolidating incompetent dolomite can be determined by a Dolomite Consolidation Procedure, as follows:
Dolomite crystals from a hydrothermally-leached formation are placed into a 1.5 -inch glass tube on a wire screen supported by a rubber stopper, so as to form a loosely packed, 1 -inch thick cake on the screen. The rubber stopper is provided with a \ddagger-inch tubing which provides fluid tight communication between the glass tube and a vacuum tlask.

The dolomite cake is saturated with a 3 weight percent sodium chloride solution and then sequentially contacted with each of solutions I, II. III by placing 40 milliliters of the prepared solution on top of the dolomite cake and drawing a slight vacuum through the ilter cake. Any excess solution which remains on top of the dolomite cake atter 30 minutes is carefully poured off and measured prior to treatment with the next solution. Subsequently the rubber stopper and wire screen are removed from the glass tube and. if the dolomite cake does not fall out the glass tube, the tube and cake are immersed in a beaker of water. After several minutes, the dolomite cake is qualitatively judged for consolidation and rated as follows:

CONSOLIDATION INDEX

0 - Cake falls out of the tube prior to immersion in water.
1 - Cake remains in tube but has a mush consistency.
2 - Cake has a hard top or bottom surface but the other suriace is soft.
3 - Cake has a hard ton or bottom surface with the other surface being semi-hard.
4 - Cake has a hard top and bottom but had a small quantity of loose pieces on the top.
5 - Cake is solid and hard. Based on this test, the combinations of reactant solutions selected should have a Consolidation Index of at least 3 and preferably should have a Consolidation Index of 4 or 5 .
The invention is further illustrated by the following examples which are illustrative of specinic modes of practicing the invention and are not intended as limiting the scope of the invention as defined by the appended claims.

The suitability of various conbinations of reactant solutions for use in the method of this invention is determined by the Dolomite Consolidation Irocedure described above. Solution I of Examples 1-6 lack one or more of the essential ingeredents of the solutions of this invention and are run for comparison with Examples. 7-9 which are within the scope of this invention.

The compositions of the various solutions and their
per the Dolomate Consolitation Procedure.
The compositions of the various aqucous drilling fluids and solutions I. 11 and 111 , and the corresponding 5 Consolidation Indices. are presented in Table 2. The drilling thuds of Exampies $10-14$ are suitable for the method of this invention. However, the drilling fluids of Examples 15 and 16 are clearly unacceptable since they reduce the permeability of the dolomite to the subsequently injected reactant solutions.

TABLE 2

corresponding Consolidation Index are presented in Table 1. The compositions of Examples 7-9 which are within the scope of this invention have Consolidation Indices of 3 or above. And the compositions of Examples 1-6, which are outside the scope of this invention, have Consolidation Indices less than 3 and are not suitable for the purposes of this invention.

While particular embodiments of the invention have been described, it will be understood, of course, that the invention is not limited thereto since many obvious modifications can be made, and it is intended to include within this invention any such modification as will fall within the scope of the appended claims.

- Having now described the invention, we claim:

TABLE 1

$\begin{aligned} & \text { Exsmple } \\ & \text { No. } \end{aligned}$	1	2	3	4	5	6	7	8	9
Solution 1									
ml 30 min	40	33.5	40	40	8	23	11	40	40
CaCl	5\%	5\%	5\%	5\%	3\%	$\stackrel{-}{-}$	5\%	5\%	5\%
HCl	\rightarrow	-	.	-	-	2\%	2\%	2%	2\%
Surfactant	-	0.1%	-	$\therefore 0.1 \%$	0.2\%	0.1\%	0.2%	-0.2\%	. 0.2%
type		$\begin{aligned} & \text { Ethomeen } \\ & \text { C/1s } \end{aligned}$		Elhomeen C/1S	$\begin{gathered} \text { Sarkosyl } \\ \text { LC. } \end{gathered}$	Ethomeen C/1s	Ethomeen C/IS.	$\begin{gathered} \text { Sarkosyl } \\ \text { LC } \end{gathered}$	$\begin{gathered} \text { Tween } \\ 20 \end{gathered}$
Solution II LC. Cl L									
mi/30 min	6	4	12	8.5	7	13	10		
sodium	37\%	37\%	18.5\%	18.5\%	18.5\%	18.5\%	18.5\%	18.5\%	18.5\%
silicate Solution III									
ml/30 min $5 \% \mathrm{CaCl}$,	<1	6	2	1	10	9	8	3	3
Consolidation									
ludex	1	2	2	2	2	0	3	9	4.

Examples 10-16

Similarly, the suitability of various aqueous drilling nuids for use in the nathod of this invention is determined by a modification of the Dolomite Consolidation Procedure. After the dolomite cake is saturated with the 3 weight percemt sodium ciloride solution. a 100 milliliter column of drithing fluid is poured onto the iop of the dolomite cake and a vacuunt is drawn on the bottom of the cake for 16 hours. If the drilling fluid drains quickly, another measured quantity of drilling nuid is added. At the end of 16 hours, any exeess dritling nuid is carefully poured of and measured. Then the

1. In a method for drilling a bore hole through a subterrancan formation containing one or more zones of unconsolidated dolomite, the improvement which comto prises the stens of:
(a) drilling a distance through said subterranean formation, thercby exposing a newly drilled portion of said formation;
(b) interrupting said drilling;
(c) introducing into said bore hole a séquence of discrete reactant slugs of substantially oil-free solutions comprised of (1) an aquecus solution containing a water-soluble acid, a water-soluble surface
 ing a water-soluble silicite; and (III) an aqueous solution containing, a second water-soluble precipitating agent for sidicates;
(d) displacing each of said reactant slugs from said bore hole and into said newly drilled portion of said formation, wherein said reactant slugs become mixed;
(c) allowing said reactant slugs to react in said newly drilled portion of the formation, thereby forming a substantially impermeable, consolidated annular sheath about said bore hole; and
($)$ resuming said drilling.
2. The method defined in claim 1 wherein said bore hole is drilled through said formation in a plurality of increments, each of said increments being drilled and consolidated by said steps (a) through ($)$.
3. The method defined in claim 1 wherein said zones containing unconsolidated dolomite are hydrothermally leached zones which are substantially frec of quartz sand and clay.
4. The method defined in claim 1 wherein said first and second precipitating agents for silicate are watersoluble salts of multivalent cations which. react with silicate to form a silicate gel.
5. The method defined in claim 1 wherein said first and second precipitating agents are selected from the group consisting of calcium chloride and iron chloride.
6. The method defined in claim 1 wherein said surface active agent is selected front the group consisting of surface active amines, alkyl sarcosines, n-alkyl trimethyl ammonium chlorides, sorbitan monolaurates; and mixtures thereof.
7. The method defined in claim 1 wherein said surface active agent is a corrosion inhibiting composition.
8. The method defined in claim 1 wherein said watersoluble acid is selected from the group consisting of organic and inorganic acids which form water-soluble salts with said first precipitating azent.
9. The method defined in chaim i wherein said watersoluble acid is selected from the group consisting of hydrochloric, hydrofluoric, acetic and citric acids.
10. The method defined in cham 1 wherein a drilling nluid is circulated through said bore hole during the drilling step and wherein said reactant slugs are separated from each other and from said drilling fluid by slugs of an inert spacer liquid.
11. The method defined in claim 10 wherein said drilling fluid is circulated downwardly through a drill string disposed in said bore hole and upwardly through the annular space between said drill string and the walls of said bore hole, and wherem each of said reactant slugs are individatly introdaced into said bore bole and. displaced into said newly drilled portion of said fermation by the consecutive steps comprised of llowing said reactant slug downwardly through said drill string as said drill string is raised to a predetermined position, thereby forming a body of said reactant slug in the bottom of said bore hole; temororarily sealing said annular space; injecting a fluid spacer into said drill string while said drill string is manamed in said predetermined position, thersoy displacing at least a portion of said reactant slug into said newly drilled portion of said formation; opening said anmular space; lowering said drill string to a point near the tottom of said bore hole: and circulating a fluid spacer downewardly through said
sug upwardy urougn sald annuar space.
12. The method definced in clam I wherein said solutions I. II, and III are selected such that their Consolidation. Index is at least 3.
13. In a method for drilling a bore hole through a subterranean formation contanning one or more hydrothermally leached zones of unconsolidated dolomite overlying a geothermal reservoir. wherein a subsian0 tially oil- and clay-free drilling huid is passed through the bore hole during the drilling operation, the improvement comprising the steps of:
(a) drilling a short distance through said subterranean formation, thereby exposing a newly drilled portion of the formation;
(b) interrupting said drilling operation:
(c) introducing into said bore hole a sequence of discrete reactant slugs of substantially oil-free solutions comprised of (1) an aqueous solution containing from I to 10 weight percent of a water-soluble acid selected from the group consisting of hydrochloric acid, hydronuoric acid, acetic acid and citric acid, from 0.05 to 3 weight percent of a surface active agent selected from the group consisting of surface active amines, alky! sarcosines, n alkyl trimethyl ammonium chlorides; sorbitan monolaurates and mixtures thereof, and from 2 to 10 weight percent of a first precipitating agent selected from the group consisting of water-soluble multivalent cation salts of hydrochloric acid, hydrofluoric acid, acctic acid and citric acid; (II) an aqueous solution containing from 5 to 40 percent of a water-soluble, inerganic silicate selected from the group consisting of alkali metal and ammonium silicates; and (III) an aqueous solution containing from 2 to 10 weight percent of a second precipitating agent selected from the group consisting of the water-soluble multivalent cation salts of hydrochloric acid, hydrofluoric acid, acetic acid and citric acid, said sequence of said reactant slugs having a Consolidation Index of at least 4, and each of said reactant slugs being scparated irom each other and from said drilling fluid by slugs of an inert spacer liquid;
(d) sequentially displacing each of said reactant siugs from said bore hole into said newly drilled portion of the formation, wherein said slugs become mixed;
(e) allowing said reactant slugs to react in said newly drilled portion of the formation thereby forming a substantially impermeable, consolidated annular sheath about said bore hole; and
(f) repeating said steps a) through e).
14. The method defined in claim 13 wherein said 5 short distance comprises between about 20 to about 100 fect.
15. The method defined in claim 13 wherein said first and second precipitating asents are selected from the group consisting of iron chloride and calcium chloride.
16. The method defined in claim 13 wherein said surface active agent is a corrosion inhibiting composition.
17. The method defined in claim 13 wherein said solution I comprises an aqueous solution containing about 5 weight percent calcium chloride, about 2 weight percent hydrochloric acid and beiween about 0.1 and 0.5 weight percent of an ethylene oxide condensation product of the primary fatty amines.
18. The methed defined in chaim 13 wherein said drilling fluid is circulated downwardly through a drill string disposed in sad bore hole and upwarlly thrnurh the annuiar space between sad drill strme and the walls of said bore hole. and wherein each of said reactant slugs are individually introduced into said bore hole and displaced into said newly driled portoon of said tormation by the consecutive steps comprised of flowing said reactant slug downwardly through said drill string as said drill string is rassed to a predetermined position, thereby forming a body of said reactant slug in the
bottom of said bore hole; tennorarily sealing snid annular space; injecting a lluid spacer into said drill string while said drill strong is mamained in said predeternined position, thereby displacing at least a portion of s said reactant slug into said newly drilled portion of said formation; opening said annular space: lowering said drill strine to a point near the bottom oi sad hore hole; and circulating a huid spacer downwardly through said drill string to displace the remainder of said reactant slug upwardly through said annular space.

Sanded dolomite was encountered at 560' in Forminco \#l, and was at least 491' thick, although the total section was not penetrated. This sloughing formation caused the premature abandonment of this well, and resulted in a research effort to develop a method of treating this interval.

The sanded dolomite is believed to occur randomly in the dolomitized sections in the area due to acid gas leaching. Consequently, it is not a lithologic structure that can be mapped, and we must be prepared to combat this problem whenever we encounter it.

For example, sanded dolomite was not encountered in well \#42-7, but it may have been encountered in well \#31-33. An 85' interval of unconsolidated sloughing material was encountered in well \#31-33 at 4785', but due to lost circulation problems, no material was circulated back to the surface. However, the interval was treated with a modification of the procedure described below (due to the depth and temperature, acid was not used), and successfully stopped the sloughing and allowed the hole to be completed.

Appendices 1 and 2 give a detailed procedure for conducting this patented* process. As can be seen from the Appendices and the detail given in the patent, this procedure requires a significant amount of extra equipment, as well as stockpiling enough chemicals to do the treatments. These costs are reflected in the higher cost of drilling wells in this area.

[^1]DSP: rmw
Att.

1. Fresh water preflush (Pump fluid with the bit on the bottom.)

140
(0.52)

320
(1.21)
2. Chemical Preflush:
0.2% surfactant -5% calcium
chloride- 2% hydrochloric acid
200
(0.757)

370
(1.4)
(Pump while raising the bit to fill about 60 feet (18.4 m) of hole.)
3.: Close the annulus and punp water
to displace the chemical preflush, but keep the pressure below fracturing pressure

100* (0.378) 180*
(0.68)
4. Open the annulus and lower the bit to the bottom. Pump water to circulate the preflush up Into the annulus

230 . (0.87)
370
(1.4)
5. $50 \% 41^{\circ}$ Bé " N " sodium silicate)
(0.757) 370
50% water
)
(Pump while raising the bit to fill about 60 feet (18,4 meters) of hole.)
6. Close the annulus and pump water to displace silicate. Keep the pressure below fracturing pressure.
7. Open the annulus, lower the bit to the bottom and pump water to circulate the excess sodium silicate stage up into the annulus

530
8. . 5% calcium chloride flush solution. (Pump while raising the bxt to fill about 60 feet (18.4 meters of hole:)

200
(0.757)

370
(1.4)
9. Close the annulus and pump water to displace calciun chloride flush solution. Keep the pressure below fracturing pressure. $100 *$ (0.378) 180* (0.68)
10. Open the annulus and lover the bit to the bottom; pump water to circulate the excess calcium chloride

APPENDIX 2

TOTAL VOLUMES AND CHEMICAL REQUIREMENTS PER 30 FEET

Water

Calcium Chloride
Surfactant
Concentrated Hydrochloric Acid (37\%)
$41^{\circ} B e^{\prime \prime} N^{\prime}$ Sodium Silicate Solution

$1540 \mathrm{gal} .\left(5.82 \mathrm{~m}^{3}\right) 3165 \mathrm{gal} . \quad\left(12.0 \mathrm{~m}^{3}\right)$
$167 \mathrm{1b} \quad(76 \mathrm{Kg}) \quad 308 \mathrm{lb}$. $(140 \mathrm{Kg})$
$0.40 \mathrm{gal} \quad(1.51 \quad 0.74 \mathrm{gal} \quad$ (2.8 \quad (inters)
9.1 gal. (34.4 16.8 gal. (63.6

100 gal. $\quad\left(0.378 \mathrm{~m}^{3}\right) 185 \mathrm{gal} . \quad\left(0.700 \mathrm{~m}^{3}\right)$

Makeup of 10 -Barrel Batches Each Stage

Stage 1
Water
Calcium Chloride
37% Hydrochloric Acid
Surfactant

Stage 2

Water
41° Bé " N " Sodium Silicate

Stage 3

Water
Calcium Chloride

$$
\begin{array}{ll}
9.56 \mathrm{bbl} & \left(6.51 \mathrm{~m}^{3}\right) \\
175 \mathrm{lb} & (79.4 \mathrm{Kg}) \\
19 \mathrm{gal} . & (71.9 \text { liters }) \\
0.85 \mathrm{gal} . & (3.18 \text { liters })
\end{array}
$$

$$
5.0 \mathrm{bbl} \quad\left(0.80 \mathrm{~m}^{3}\right)
$$

$$
5.0 \mathrm{bbl} . \quad\left(0.80 \mathrm{~m}^{3}\right)
$$

$$
10.0 \mathrm{bb} 1 \quad\left(1.59 \mathrm{~m}^{3}\right)
$$

$$
1751 \mathrm{~b} \quad(79.4 \mathrm{Kg})
$$

[54] METIIOD FOR DRILLING A WELL THROUGH UNCONSOLIDATED DOLOMITE FORMATIONS
[75] Inventors: Paul W. Fischer, Whittier; David S. Pye, Brea; Julius P. Gallus, Anahcim, all of Calif.
[73] Assignce: Union Oil Company of California. Brea, Calif.
[21] Appl. No.: 838,895
[22] Filed: Oct. 3, 1977
[51] Int. Cl. ${ }^{2}$ \qquad E21B 33/138
[52] U.S. C. \qquad 175/72; 166/292
[58] Field of Search 166/285, 292, 294;

References Cited

U.S. PATENT DOCUMENTS

2,2	7/1940	Reimers 166/292
2,252,669	$8 / 1941$	Cross et al. 175/72 X
3,149,684	$9 / 1964$	Eckel et al. 166/292 X
3,175,611	3/1985	Hower 166/292
3,259,189	7/1966	Darley 166/292
3,291,214	12/1966	Hower 166/292 X

3,461,980	8/1969	Kelly, Jr. 166/292 X
3,530,937	9/1970	Bernard166/292 X
3,592,267	7/1971	Stainback et al. 166/294
3,593,796	7/1971	Stainback et al. 166/292 X
3,692,125	9/1972	Ruhle 175/72 X
3,965,986	6/1976	Christopher 166/292
4,031,958	6/1977	Sandiford et al. 166/292 X

Primary Examiner-Stephen J. Novosad Assistant Examiner-George A. Suchfield Attorney, Agent. or Firm-Richard C. Hartman; Dean Sandford; Daniel R. Farrell

[57]

ABSTRACT

A method for drilling a well through a subterranean formation containing one or more zones of unconsolidated dolomite, wherein the drilling operation is interrupted periodically to consolidate the newly drilled incompetent dolomite by the injection of a sequence of reactant slugs comprised of (1) an aqueous solution containing an acid, a surface active agent and a precipitating agent for silicates, (II) an aqueous solution containing a water-soluble silicate, and (III) an aqueous solution containing a precipitating agent for silicates.

18 Claims, 11 Drawing Figures

METHOD FOR DRILIING A WELL THROUGI UNCONSOLIDATLD DOLOMITE FORAATIONS

BACKGROUND OF TIIE INVENTION

1. Field of the Invention

This invention relates to the drilling of wells, and more particularly concerns an improved miethod for drilling a well through a formation containing unconsolidated dolomite.
2. Description of the Prior Art

Drilling a well through an incompetent subterranean formation has presented many problems. Conventionally, aqueous-base drilling fluids containing water, clay and various additives are circulated through the bore hole during the drilling operation to carry drill cuttings from the bore hole to the surface. These clay-containing drilling fluids form a mud cake on the bore hole walls which reduces the sloughing of the incompetent formation as long as the fluid pressure in the bore hole due to the standing column of drilling fluid, exceeds the pres: sure of the connate fluid in the incompetent formation. Therefore, drilling through typical incompetent formations per se is not particularly a problem. However, it is commonplace to encourter a lost circulation zone, cither in the incompetent formation itself or in an underlying strata, or to lose the column of drilling fluid due to the cumulative effect of individually manageable fluid losses to a plurality of formations. When the lost circulation results in a fluid pressure in the bore hole less than the fluid pressure in the adjacent incompetent formation, the formation will slough into the bore hole. A stuck drill string often results, from this sloughing and may lead to abandonment of the drill string and the well.

The incompetent formations normally encountered in drilling oil and gas wells are generally formations which contain quartz sand and/or clay. Accordingly, the prior art methods of consolidating these formations have been directed to injecting one or more chemical solutions to seact with the quartz sand or clay to form a consolidated sheath about the well bore. Depending upon whether or not it is desirable to permanently seal the formation from the well bore, the chemical solutions can be selected such that the resulting sheath is either 4 permeable, such as disclosed in U.S. Pat. No. 3,175,611 to Hower, or substantially impermeable, such as disclosed in U.S. Pat. No. b 2,207,759 to Reimers.
Dolomite formations encountered in drilling oil and gas wells are generally competent unless the formation also contains a significant amount of quartz sand or clay. Accordingly, dolomite formations which are substantially free of quartz sand and clay have not required consolidation. However, subterranean formations containing one or more zones of unconsolidated dolomite have been encountered in drilling core holes for minerals exploration, and in drilling wells to explore geothermal prospects. The incompetent dolomite is believed to result when a zone of dolomite crystals dispersed in a calcite matrix is subjected to ground water leaching, on such as hydrothermal leaching by a geothermal nuid. The ground water selectively leaches the more soluble -..nir marriak to leave the unconsolidated.
merous core holes and at least one well drilled to explore a geothermal prospect have been aboandoned due to this problem. Prior art consolidation methods have been found to be inadequate for the consolidation of the 5 incompetent dolomite formations. Therefore, a need exists for a method for drilling through incompetent dolomite formations.
Accordingly, a principal object of this invention is to provide a method for drilling a well through incompe10

Another object of this invention is to provide a method for drilling through a hydrothermally-leached formation containing incompetent doiomite.

Yet another object of the invention is to provide a method for consolidating an incompetent dolomite for: mation during the drilling operation sufficiently to prevent subsequent sloughing of the formation into the bore hole during the drilling operation.

A further object of the invention is to provide an improved drilling method by which a relatively thick incompetent zone of dolonite can be penetrated while avoiding sloughing of the dolomite into the bore hole and while reducing fluid loss to the incompetent formation.

Further objects, advantages and features of the invention will bccome apparent to those skilled in the art from the following description taken in conjunction with the accompanying drawings.

SUMMARY OF THE INVENTION

The invention provides a method for drilling a well through an incompetent dolomite formation. In the method, the drilling operation is periodically suspended after penetrating a distance into the incompetent formation and the portion of the newly drilled formation adjacent the bore hole is consolidated by the injection of a sequence of discrete slugs comprised of (I) an aqueous solution containing an acid, a surface active agent and a precipitating agent for silicates, (II) an aqueous solution containing a water-soluble silicate capable of reacting with solution I to form a silicate gel, and (III) an aqueous solution of a precipitating agent for silicates. Solutions I, II and III react in the newly drilled portion of the formation to form and set a silicate gel thereby forming a substantiaily impermeable, consolidated sheath around the bore hole. This sheath serves to prevent sloughing of the incompetent formation during the later stages of the drilling operation and until the well can be completed.
In a preferred embodiment of the method of this invention, formations which contain one or more zones of the incompetent dolomite are drilled by conventional rotary drilling techniques using an aqueous, substantially clay-and oil-free drilling fluid. The well is drilled in a plurality of increments and each newly drilled portion of the formation is consolidated by the atorementioned treatment prior to drilling the next increment.

The invention provides the important advantage of consolidating each portion of the formation as it is encountered, thereby avoiding the possibility of a stuck drill string duc to subsequent sloughing of the forination. The consolidation also substantally eliminates

4

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be more readily understond by reference to the drawings wherein like numerals sefer to like elements, in which:
FIGS. 1 through 11 are schematic diagrams of a cross section of earth strata which illustrate the series of steps carried out in a preferred embodiment of the method of this invention.

DETAILED DESCRIPTION OF THE INVENTION

The method of this invention is applicable to all drilling operations in which incompetent dolomite formations are to be penetrated, such as core drilling for minerals exploration, rotary drilling in the exploration for oil, gas or a geothermal fuid or in the drilling of wells or shafts to gain access to a subterranean formation. The method of this invention finds particular utility in the rotary drilling of a well through an incompetent dolomite formation overlying a geothermal reservoir.
A preferred embodiment of the method of this invention is illustrated in FIGS. 1 through 11. As shown in FIG. 1, well 10 extends from the earth surface 12 through a first subtertanean formation 14 and a short distance (from point A to point B) into a second subterranean formation 16. Formation 14 is fairly compeient and therefore does not require consolidation. Formation 16, however, contains unconsolidated dolomite which is prone to sloughing into the bore hole. Below formation 16 is a fluid-bearing reservoir 18 such as a reservoir containing oil, gas, sieam or high temperature brine, or other mineral deposits of interest. The objective of the rotary drilling operation is to penetrate into formation 18 to tap the fluid contained therein or to obtain core samples of the mineral deposits.
A drill string, shown generally as 20 , is disposed in well 10 in a conventional manner. Drill string 20 includes rigid conduit 21 and drill bit 22 atrached to the end of conduit 21 . Well casing 24 is disposed in the top of well 10 in a conventional manner to seal off the top strata of formation 14 from the bore hole and to provide a fluid tight pathway from well 10 to blooie line 28. During the drilling operation, drill string 20 is rotated by a prime mover, not shown, and a drilling fluid is circulated by pump 60 from mud pit 62 through line 63 . downwardly through drill string 20 , upwardly through well annulus 26 and out through blocie line 28 back to mud pit 62. Valve 30 is provided on blooie line 28 to shut in well annulus 26 . The circulating drilling fluid carries drill cuttings from the bore hole to mud pit 62.
Chemical injection pump of is provided to inject reactant solutions from tanks 66;67 and 68, and spacer liguid from tank 69 through line 63 and into well 10 . Three-way valves 70 and 72 are provided to switch from the drilling fluid circulating system to the chemical injection system. Tank 66 contains solution 1 which is an aqueous solution of an acid, a surface active agent and a water-soluble precipitating agent. Tank 67 contains solution II which is an aqueous solution of a watersoluble silicate. Tank 68 contains solution III which is an aqueous solution of a water-soluble precipitating agent. And tank 69 contains a spacer liquid which isith racnect to solutions I, II into well 10.

In the method, the bote hole is extended from point B to point C into formation 16 in the conventional manner, i.e., by rotating drill string 20 and circulating a 5 drilling fluid downwardly through conduit 21 and upwardly through annulus 26: Upon reaching point C, the drilling operation is interrupted and the newly drilled portion of formation 16 , i.c.; from point B to point C, is consolidated by the sequence of steps illusirated in FIGS. 2 through 11. In these steps, a body of each reactant solution is first positioned in the bottom of the bore hole by slowly raising the drill string as the reactant solution is llowed into the well. This raising of the drill string reduces the mixing of the reactant solution with the other fluids in the well and also minimizes the time during which the drill string is immersed in the reactant solution. This latter feature greatly reduces the chances that the drill string will become stuck in the well by premature cementation of the reactant solu30 tions. Next, the well annulus is sealed by one of the methods well known in the art and a spacer slug is injected under pressure to displace the reactant solution into the newly drilled portion of the formation. Although the incompetent formations are normally porous and often drain fluid continuously from the bore hole, the reactant solutions are injected under pressure to ensure placement of a su:licient quantity of the solutions in the formation to $\because n$ a sizable consolidated sheath. Furthermore, the $\mathrm{r}:$:ncability of the formation is significantly reduced by the injection of solutions I and II, therefore solution III must be displaced into the formation under pressure. Typically, the permeability of the consolidated sheath will be on the order of less than one thousandth of the permeability obthe uncrif solidated formation.

As shown in FIG. 2, the drilling fluid is displazed: upwardly through well annulus 26 by injecting a spaces. liquid through conduit 21 while drill string. 20 is rested on the bottom of the well. Then, drill string 20 is raised as a discrete slug of solution I is introduced through conduit 21 into the bore hole to provide body 42 of solution 1 in the bottom of well 10 , as shown in FIG. 3. Next, annulus 26 is shut in by means of valve 30 or any other conventional device, such as an expandable packer, not shown, positioncd on drill string 20. A spacer liquid is injected under pressure into well. 10 through conduit 21 to displace solution I into the newly drilled portion of formation 16, as shown in FIG. 4. The pressure in well 10 is then reduced by opening valve 30 : drill string 20 is run to the bottom of well 10 ; and the excess solution I is displaced out of annulus 26 by a spacer, as shown in FIG. 5.

Solutions 11 and 111 are each introduced into the bottom of well 10 and displaced into the newly drilled
discrete slug of solution II through conduit 21 as drill string 20 was raised; FIG. 7 illustrates the displacement of solution II imo the newly drilled pontion of formation 16 by a spacer liquid which was injected into the shut in well under pressure: FIG. 8 illustrates the displacement of the excess solution II upwardly through the well annulus by a spacer; FIG. 9 illustrates body 46 of solution Ill in the bottom of the bore hole, which was formed by the injection of a diserete slug of solution III through conduit 21 as drill string 20 was raised; and FIG. 10 illustrates the displacement of solution III into the newly drilled portion of formation 16 by a spacer fluid which was injected into the shut-in well under pressure.
It is preferred that the amount of mixing of the reactant solutions with other fluids in the well bore, i.e., connate fluids and spacer slugs, be minimized and that the amount of spacer actually displaced into the formation between the reactant solutions be minimized, in order that the reactant solutions become well mixed at the highest possible concentration of reactant chemicals. Accordingly, it is preferred that the slugs of reactant solutions and spacer bessized such that the excess solution remaining in the bore hole after displacemient by the spacer completely fills the bore hole adjacent the newly drilled portion of the formation as illustrated in FIGS. 4, 7 and 10. This procedure reduces the amount of spacer displaced into the formation to the small amount due to the natural fluid loss during the displacement of the excess solution from the bore hole illustrated in FIGS. 5 and 8.
As shown in FIG. 10, a portion of each discrete slug of solutions I, II and III has been displaced into formation 16. Although shown in formation 16 as distinct fluids, it will be understood of course that the three. solutions will mix in formation 16 adjacent the bore hole. Solutions I, II and III interact to form a silicate gel which consolidates the formation adjacent the bore hole by forming a substantially impermeable annular sheath about the bore hole. FIG. 11 illustrates the status of well 10 after sheath 48 has set in the newly drilled portion of formation 16. Sheath 40 and sheath 48 together form a substantially continuous sheath which prevents sloughing of formation 16 into the bore hole and substantially climinates fluid passage between the bore hole and formation 16.

The third and subsequent portions of formation 16 are drilled and treated by repeating these same steps. The formation containing incompetent dolomite will normally be drilled in a plurality of increments of from about 20 to about 100 feet in depth, preferably between about 20 and about 60 feet in depth. Once the unconsolidated formation has been passed or the fluid-bearing reservoir has been penetrated, the consolidation treatment can be suspended and conventional drilling and completion methods can be used to complete the well. such as by rumning a well liner or production casing and cementing it in place.

From this description of the preferred process steps, it will be apparent that numerous modifications can be made in the method of injection of the reactant solutions into the formation. For example, it is contemplated that the solutions can be infected without the raising and method of this invention. The use of oil-containing fluids often results in rendering oil-wet the formation immediately adjacent the bore hole with a resulting lower mobility to aqucous fluids. This lower mobility undesirably reduces the injectivity of the aqueous treatment solutions. It is critical to the success of the consolidation treatment that the reactant solutions I, II and III penetrate into the unconsolidated formation in an amount sufficient to consolidate a sizable sheath about the bore hole, such as an annular sheath having a differential radius of at least 3 inches and preferably at least 6 inches. In order to consolidate a sheath this large, a fairly substantial quantity of the reactant solutions must be displaced into the unconsolidated formation. Accordingly, any fluid which reduces the permeability of 60 the formation, such as clay-or oil-containing drilling fluid, should be avoided. In particular, cakeforming conventional drilling fluid additives such as clay, lignite, lignin and lost circulation materials which form ralire which are difficult to remove should be avoided
fncompetent dolomite formations. Suitable drilling fluids can consist essentially of water or a sodium chloride brine, however these fluids are often not suitable in a particular well duc to a high huid loss or low density: As is known, a water-soluble polymer can be added to increase the viscosity of the drilling fluid and to improve the nuid loss properties of the drilling fluid. While a high fluid loss is to be avoided, a very low nuid loss is also undesirable since this indicates that the formation has been rendered relatively impermeable to water. Preferably the polymer is selected to reduce the nuid loss to an acceptable level without adversely affecting the permeability of the formation to the consolidation solutions. Slightly crosslinked polymers, such as slightly-crosslinked acrylic and hydroxyethylcellulose polymers, have been found to be effective. On the other hand, heavily crosslinked hetcropolysaccharides and polyacrylamide polymers have been found to detrimentally affect the consolidation treatment. Preferred polymers included the hydroxyethylcellulose polymers marketed by Hercules, Inc. under the trademark Natrasol. Particularly preferred polymers are the sodium polyacrylates marketed by American Cyanamid Company under the trademark Cypan and those polymer additives marketed by Rotary Drilling Services and X-L Laboratories under the trademark Ben-EX and by. PalMix under the trademark Super-X.
Conventionally, a weighting agent such as calcium carbonate is added to an aqueous based drilling fluid to adjust the fluid density and to improve fluid loss control. A calcium carbonate weighting agent marketed by Brinadd Company under the trademark Sluggit has been found to be suitable.
One suitable drilling fluid is an aqueous solution containing about 1 pound per barrel of Cypan sodium polyacrylate and about 10 pounds per barrel of Sluggit weighting agent.
Although drilling fluids which form easily removed cakes are preferred, it is contemplated that under some well conditions the only suitable drilling fluid will be a clay-containing fiuid. The method of this invention can still be used to consolidate the incompetent dolomite adjacent the bore hole but appropriate steps must be taken to remove the mud cake betore solutions I, II and III are introduced into the formation. It may be necessary to remove the mud cake by an acid treatment, such as a flush of hydrofluoric acid, or by means of a mechanical scraper.
Solution I is an aqueous solution containing an acid, a surface active agent and a precipitating agent for silicates. The acid is selected from the water-soluble inorganic and organic acids which form water-soluble salts with the surface active agent and the nultivalent cation of the precipitating agent: Depending, on the particular precipitating agent, suitable inorganic acids include hydrochloric, nitric, hydrowdic, hydroflucric and hy: drobromic acids. Suitable organic acids include formic. acetic, propionic and citric acids. Hydrochioric acid is particularly preferred Solution I will normally contain between about 0.5 and about 20 weight percens of acid. with good results being obtained with between 1 and 10 weight percent, and particularly between 2 and 5 weich percent of acid. method of the invention include the water-soluble salts of multivalent cations which react with silicates to form and set a silicate gel. Suitable multivalent cations include the alkaline earth metals, such as magnesium, calcium, strontium and barium, and certain of the transition metals, such as zinc, mangancse, iron, nickel and cobalt. Iron and calcium are the preferred multivalent cations due to their avalability and low cost. Suitable precipitating agents include the multivalent cation salts 0 of inorganic acids, such as hydrochloric, hydrobromic, hydroiodic and nitric acids, and the multivalent cation salts of organic acids, such as formic, acetic, propionic and citric acids. Chloride salts are preferred due to their Ineu roct. with iron and calcium chlorides beine narticu-
weight percent, more particularly about 5 weight percent.

Solution I comprises an aqueous solution containing from about 0.5 to about 20 weight percent of a watersoluble acid, from about 0.005 to about 5 weight percent of a surface active agent, and from about 1 to about 20 weight percent of a water-soluble precipitating agent for silicates. Particularly preferred compositions for use as Solution I include aqueous solutions comprised of fresh water containing from about 2 to 5 weight percent hydrochloric acid, from about 2 to 10 weight percent of iron or calcium chloride. and from about 0.1 to about 0.5 weight percent of either HAI-75 corrosion inhibitor or Ethomeen C/15 surfactant or mixtures thereof.
Solution II is an aqueous solution containing a water- is soluble silicate which is capable of reacting with the precipitating agent of Solution 1 to form and set a silicate gel. Suitable silicates include organic silicates, such as ethyl-ortho silicate; and inorganic silicates, such as the alkali metal and ammonium silicates. The alkali metal and ammonium silicates are preferred and sodium silicate is particularly preferred. Sodium silicate is a relatively complex inorganic substance, available in various grades from $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ to $\mathrm{Na}_{2} \mathrm{O}_{2} .4 \mathrm{SiO}_{2}$ and any of these grades may be suitable for the purposes of the invention. A sodium silicate marketed by the Philadelphia Quartz Company as a 37% concentrate under the trade name Sodium " N " Silicate is particularly preferred. The concentration of the silicate in Solution II should be at least about 7 weight percent. The concen.tration of silicate should not however be so large as to render Solution II difficult to pump.
Preferably, Solution II comprises an aqueous solution containing between about 5 and about 40 percent of an alkali metal or ammonium silicate. One suitable silicate ${ }^{0} 35$ solution is made by diluting the sodium " N " silicate concentrate in a one to one ratio with fresh water to yield a $18: 5$ weight percent solution of sodium silicate.

Solution III is an aqueous solution containing a precipitating agent for silicates. The precipitating agents disclosed above as a constituent of Solution I are also preferred for use in Solution III, and the precipitating agents employed in these solutions can be the same or different precipitating agents selected from the aforementioned precipitating agents. Iron and calcium chiosides are preferred precipitating agents. Solution III should contain between about 1 and 20 weight percent of the precipitating agent, with good results being obtained when the concentration of the precipitating agent is between 2 and 10 weight percent, particularly 50 about 5 weight percent.

The spacer liquid is an aqueous solution which is non-reactive with the drilling fluid and solutions I, II and III. Suitable liquids include fresh water and dilute solutions of alkali metal and ammonium salts, such as a ss 3 weight percent solution of NaCl .

Solutions I, II and III, and the spacer liguid should be substantially oil-free Any oil injected into the unconsolidated formation will adversely allect the consolidation treatment by reducing the quantity of reactive 60 solutions injected and by causing the consolidated sheath to be more permeable.
r.1.. ennriant solutions employed to
sheath. Although the volumes can vary widely, the following volumes are presented as exemplary for the treatment of 30 feet of newly drilled formation for the indicated size of bore hole by the method illustrated in FIGS. 1-11.

Treatment Slug		Volume of Treatment Slug. Gal.	
		Bore Diam. 8.5-inch	Bore Diam. 12 -nch
1) Spacer	$3 \% \mathrm{NaCl}$	140	320
2) Solution I	$\begin{aligned} & 5 \% \mathrm{CaCl}, \\ & 2 \% \mathrm{HCl} \end{aligned}$	200 .	370
	0.2\% HAI.75		
3) Spacer	$3 \% \mathrm{NaCl}$	100	180°
		$230{ }^{\text {A }}$	$370{ }^{\text {m }}$
4) Solution II	18.5\% ${ }^{\text {\% }}$ Na, SiO_{1}	200	370.
5) Spacer .	.3\% NaCl	$100{ }^{\circ}$	180°
		$230^{\text {h }}$	530^{*}
6) Solution 111	$\cdots \mathrm{SmCl}$	200	370
7) Spacer	$3 \% \mathrm{NaCl}$	100	$180{ }^{\circ}$
		$140^{\prime \prime}$	$320^{\text { }}$

Sracer injected under pressure to displace a like volume of reactant selution into the Tormation.
Spacer introduced to displace excess reactant solution, from the bere hole:
The suitability of a particular combination of reactant solutions for consolidating incompetent dolomite can be determined by a Dólomite Consolidation Procedure, as follows:
Dolomite crystals from a hydrothermally-leached formation are placed into a 1.5 -inch glass tube on a wire screen supported by a rubber stopper, so as to form a loosely packed, 1 -inch thick cake on the screen. The rubber stopper is provided with a 4 -inch tubing which provides fluid tight communication between the glass tube and a vacuum flask.
The dolomite cake is saturated with a 3 weight percent sodium chloride solution and then sequentially contacted with each of solutions I, II, III by placing 40 milliliters of the prepared solution on top of the dolomite cake and drawing a slight vacuum through the Ilter cake. Any excess solution which remains on top of the dolomite cake after 30 minutes is carefully poured off and measured prior to treatment with the next solution. Subsequently the rubber stopper and wire screen are removed from the glass tube and, if the dolomite cake does not fall out the glass tube, the tube and cake are immersed in a beaker of water. After several minutes, the dolomite cake is qualitatively judged for con-: solidation and rated as follows:

CONSOLIDATION INDEX

0 - Cake falls out of the tube prior to immersion in water.
1.- Cake remains in tube but has a mush consistency.

2 - Cake has a hard top or bottom surface but the other surface is soft.
3 - Cake has a hard top or bottom surface with the other surface being semi-hard.
4 - Cake has a hard top and. botiom but had a small quantity of loose pieces on the top.
5 - Cake is solid and hard. Based on this test, the combinations of reactant solmions selected should have a Consolidation Index of at least 3 and preferably should have a Consolidation Index of 4 or 5 .

EXAMPLES 1-9

The suitability of various conbinations of reactant solutions for use in the method of this invention is determined by the Dolomite Consolidation I'rocedure described above. Solution I of Examples $1-6$ lack one or more of the essential ingredients of the solutions of this invention and are run for comparison with Examples 7-9 which are within the scope of this invention.

The compositions of the various solutions and their
dolomite cake is contacted with the reactant solutions per the Dolomite Consolidation Procedure.
The compositions of the various aqueous drilling Huids and solutions I, II and III; and the corresponding s Consolidation Indices, are presented in Table 2. The drilling fluids of Examples $10-14$ are suitable for the method of this invention. However, the drilling fluids of Examples 15 and 16 are clearly unacceptable since they reduce the permeability of the dolomite to the subsequently injected reactant solutions.

Example No.	10	11.	12	13	14	15	16
Drilling Iluid							
Polymer	-	Super-X	Ben-EX	Natrasol HR250	CYPAN	XC-AL	SC.Polymer
$\mathrm{lb} / \mathrm{Bbl}{ }^{\text {l }}$		1.	0.5	1.5	2	$1{ }^{1}$	1
Sluggit, 1b/bbl	10°	10	10	10.	10	- 10	10
$\mathrm{ml} / 16 \mathrm{hr}$. Solution 1 .	130	26	230	42	50	31	30
$\mathrm{ml} / 30 \mathrm{~min}$	6	13		40	40	<1	<1
CaCl :	5\%	5%	. 9%	5\%	5\%	5\%	\$\%
HCl	2\%	2\%	2\%	2%	2%	2\%	2\%
Surfactant	0.25\%	0.2\%	0.2\%	0.25%	0.25\%	- 0.25%	0.25%
type.	HAl-75	HA1.75	HAL. 75	HA1.75	HAl. 75	HA1-75	\|1A1.75
Solution 11			-				
$\mathrm{ml} / 30 \mathrm{~min}$	9	5	11.	10	22	3.	3
18.5% sodium		.					
silicate Solution III		.					
$\begin{aligned} & \mathrm{ml} / 30 \mathrm{~min} \\ & \mathrm{~S} \% \mathrm{CaCl} \end{aligned}$	4	<1	1	1	2	<1	2
Consolidation							
Index	4	4	5	5	4	0	0

XC.AL is a highly crosslinked heteropolysaccharide marketed by Xanco Oil Field Products
XC.polymer is a high molecular weight heteropolysaccharide marketed by Xanco Oil Field Products
corresponding Consolidation Index are presented in Table 1. The compositions of Examples 7-9 which are within the scope of this invention have Consolidation Indices of 3 or above. And the compositions of Exam- 35 ples 1-6, which are ouside the scope of this invention, have Consolidation Indices less than 3 and are not suitable for the purposes of this invention.

While particular embodiments of the invention have been described, it will be understood, of course, that the invention is not limited thereto since many obvious modifications can be made, and it is intended to include within this invention any such modification as will fall within the scope of the appended claims.

Having now described the invention, we claim:

TABLE 1

Examples 10-16

Similarly, the suitability of various aqucous drilling fluids for use in the method of this invention is determined by a modification of the Dolomite Consolibation Procedure. After the dotomite cake is saturated with the 3 weight percent sodium chloride solution, a 100 millititer column of drilline fluid is poured onto the top

1. In a method for drilling a bore hole through a subterrancan formation containing one or more zones of unconsolidated dolomite, the improvement which comto prises the steps of:
(a) drilling a distance through said subterranean formation, thereby exposing a newly drilled portion of said formation;
active agent and a first water-soluble precipitating agent for silicates; (11) an aqueous solution containing, a water-soluble silicatc; and (lll) an aqueous colution containing a second water-soluble precipitating agent for silicates:
(d) displacing each of said reactant shess from said bore hole and into said newly drilled portion of said formation, whercin said reactant slugs become mixed;
(e) allowing said reactant slugs to react in said newly drilled portion of the formation, thereby forming a substantially impermeable, consolidated annular sheath about said bore holc; and
(f) resuming said drilling
2. The method definced in claim 1 wherein said bore hole is drilled through said formation in a plarality of increments, each of said increments being drilled and consolidated by said steps (a) through (1).
3. The method defined in claim 1 wherein said zones containing unconsolidated dolomite are hydrothermally leached zones which are substantially frec of quartz sand and clay.
4. The method defined in claim 1 wherein said first and second precipitating agents for silicate are watersoluble salts of multivalent cations which react with silicate to form a silicate gel.
5. The method defined in claim 1 wherein said first and second precipitating agents are selected from the group consisting of calcium chloride and iron chloride.
6. The method defined in claim I wherein said surface active agent is selected from the group consisting of surface active amines, alkyl sarcosines, n-alkyl trimethyl ammonium chlorides, sorbitan monolaurates, and mixtures thereof.
7. The method defined in claim 1 wherein said surface active agent is a corrosion innibiting composition.
8. The method defined in claim 1 wherein said watersoluble acid is selected from the group consisting of organic end inorganic acids which form water-soluble salts with said first precipitating agent.
9. The method defined in claim 1 wherein said watersoluble acid is selected from the group consisting of hydrochloric, hydrofluoric, acetic and citric acids.
10. The method defined in claim 1 wherein a drilling 45 Iluid is circulated through said bore hole.during the drilling step and wherein said reactant slugs are separated from each other and from said drilling fluid by slugs of an inert spacer hiquid.
11. The method defmed in chaim 10 wherein said drilling fluid is circulated downwardly through a drill string disposed in said bore hole and upwardly through the annular space between said drill string and the walls of said bore hoke, and wherein each of said reactant slugs are individually intreduced into sad bere hole and displaced into said newly drilled fortion of said formation by the conscoutive steps comprised of howing said reactant slug downwardly hrough said drill string as said drill string is raised to a predetermined position, thereby forming a body of said reactant slug in the boltom of said bore hole; temnorarily sealing said annular space; injecting a fluid spacer into said drill string while said drill string is mamtaned in said predeter--n-at madion thareht disnlacing at least a nuttion of
drill string to displace the remainder of said reactant slug, upwardly through said annular space.
12. The method defaced in claim 1 wherein said solutions I, II, and III are setected such that their Consolida. 5 tion Index is at least 3.
13. In a method for drilling a bore hole through a subterranean formation contaning one or more hydrothermally leached zones of unconsolidated dolomite overlying a geothermal rescrvoir, wherein a substantially oil- and clay-free drilling fluid is passed through the bore hole during the drilling operation, the improvement comprising the steps of:
(a) drilling a short distance through said subterranean formation, thereby exposing a newly drilled portion of the formation;
(b) interrupting said drilling operation;
(c) introducing into said bore hole a sequence of discrete reactant slugs of substantially oil-free solutions comprised of (I) an aqueous solution containing from 1 to 10 weight percent of a water-soluble acid selected from the group consisting of hydrochloric acid, hydrofluoric acid, acetic acid and citric acid; from 0.05 to 3 weight percent of a surface active agent selected from the group consisting of surface active amines, alkyl sarcosines, n alkyl trimethyl ammonium chlorides, sorbitan monolaurates and mixtures thereof, and from 2 to 10 weight percent of a first precipitating agent selected from the group consisting of water-soluble multivalent cation salts of hydrochloric acid. hydrofluoric acid, acetic acid and citric acid; (II) an aqueous solution containing from 5 to 40 percent of a water-soluble, inorganic silicate selected from the group consisting of alkali metal and ammonium silicates; and (III) an aqueous solution containing from 2 to 10 weight percent of a second precipitating agent selected from the group consisting of the water-soluble multivalent cation salts of hydrochloric acid, hydrofluoric acid, acetic acid and citric acid, said sequence of said reactant slugs having a Consolidation Index of at least 4 , and each of said reactant slugs being separated from each other and from said drilling fluid by slugs of an. inert spacer liquid;
(d) sequentially displacing each of said reactant slugs from said bore hole into said newly drilled portion of the formation, wherein said slugs become mixed;
(e) allowing said reactant slugs to react in said newly drilled portion of the formation thereby forming a substantially impermeable, consolidated annular sheath about said bore hole; and
(f) repeating said steps a) through e).
14. The method defined in claim. 13 wherein said short distance comprises between about 20 to about 100 fect.
15. The method defined in claim 13 wherein said first and second precipitating agents are selected from the group consisting of iron chloride and calcium chloride.
16. The method defined in chim 13 wherein said surface active agent is a corrosion inhibiting composition.
17. The method defined in claim 13 wherein said solution 1 comprises an aqueous solution containing
18. The method defined in claim 13 wherein said drilling fluid is circulated downwardly through a drill string disposed in sad bore hole and upwardly throush the annular space between said drill string and the walls of said bore hole, and wherein each of said reactant slugs are individually introduced into said bore hole and displaced into said newly drilled portion of said formation by the consecutive steps comprised of flowing said reactant slug downwardly through said drill string as said drill string is raised to a predetermined position, thereby forming a body of said reactant slug in the
bottom of said bore hole; temporarily sealing said annular space; injecting a fluid spacer into said drill string while sadd drill string is mamained in sad predetermined position, thereby displateing at least a portion of said reactant slug into said newly drilled portion of said formation; opening said annular space: lowering said drill string to a point neair the boltom of said bore hole; and circulating a nuid spacer downwardly through said drill string to displace the remainder of said reactant slug upwardly through said annular space.

- . . .
Contracting Officer
U.S. Department of Energy
Nevada Operations Office
P. O. Box 14100
Las Vegas, Nevada 89114

ATTN: Mr. James Cotter
RE : , Contract No. EG-77-C-08-1522

Pursuant to Article $2 \mathrm{C}(10)$ of Department of Energy Contract No. EG-77-C-08-1522, Procedure for Consolidation of Caving Formation is forwarded as Deliverable Data. Such procedure was patented under United States Patent No. $4,120,369$ on October 17, 1978 and copies of this patent are also forwarded.

We continue to appreciate the cooperation of DOE in our joint effort to evaluate the Cove Fort Sulphurdale KGRA.


```
DEP:IP
cc: Dr. John W. Salisbury
    Dr. Howard RossL
```


[^0]: * Patent 4,120,369 . - copy attached

[^1]: * Patent $4,120,369$ - copy attached

