6401622

A COMPREHENSIVE STUDY OF LASL WELL C/T-2
ROOSEVELT HOT SPRINGS KGRA, UTAH, AND

APPLICATIONS TO GEOTHERMAL WELL LOGGING:
by

William E. Glenn :
Jeffrey B. Helen
Dennis L. Nielson
Preliminary Cops of Los Alamo Sci. Lab report LA-86 86
(9.1)

EARTH SCIENCE LABORATORY
UNIVERSITY OF UTAH RESEARCH INSTITUTE
420 Chipeta Way, Suite 120
Salt Lake City, Utah 84108
PAGE
ABSTRACT
CONTENTS
I. . INTRODUCTION
A. Background
B. Location
C. Geology of the Roosevelt Hot Springs KGRA
II. LITHOLOGIC LOGGING AND ALTERATION STUDIES
A. Methods and Procedures
B. Lithology, Alteration, and Inferred Structure1. Lithology
a. Biotite-Quartz-Feldspar Gneiss
b. Biotite-Pyroxene-Hornblende Dioritec. Hornblende-Biotite Granodiorite toQuartz Monzonite
d. Hornblende-Biotite Quartz Monzonite
e. Hornblende-Biotite Granite
f. Microdiorite and Andesite
2. Alteration and Inferred Structure
a. Discussion
3. Intervals Selected for Detailed Geochemical andIsotopic Investigation
III. GEOCHEMISTRYA. Introduction
B. Methods and Procedures
C. Geochemistry of Composite Samples
D. Geochemistry of Detailed Study Intervals
E. Rare Earth Element Analyses
F. Fluid Chemistry
IV. OXYGEN AND CARBON ISOTOPE ANALYSES
A. Introduction
B. Sample Preparation and Analysis
C. Results
D. Discussion

1. Frequency Distribution
2. Isotope Geothermometry
E. Identification of Fluid Entries
V. PHYSICAL PROPERTY MEASUREMENTS
A. Bulk Density and Magnetic Susceptibility
B. Thermal Conductivity

VI. GEOPHYSICAL INTERPRETATION

A. Introduction
B. ${ }^{\prime}$ Log Descriptions

1. Temperature Log
2. Caliper Log
3. Acoustic (Velocity) Logs
4. Neutron Logs
5. Density Logs
6. Electrical Conductivity and SP Logs
7. Gamma-Ray Logs
8. Summary of Log Evaluations
C. Cross Plots
9. Basis for Plots
10. Neutron-Density Cross Plots
11. Neutron-Velocity Cross Plots
12. Density-Velocity Cross Plots
13. MN, AK and Z Plots
14. Gamma-Ray Cross Plots
15. Log Data - Chemical Data Cross Plots
D. Summary of Lot Interpretations
VII. SUMMARY
VIII. ACKNOWLEDGEMENTS
IX. REFERENCES

TABLES
Table 2.1 Petrographic summary, selected samples from Well C/T-2 .
Table 2.2. Microprobe chemical analyses of selected rockforming and alteration minerals from Well C/T-2

Table 2.3 Mineralogy of clay separates, selected samples from Well C/T-2 as determined by X-ray diffraction

Table $3.1 \quad$ Chemical analyses of composite whole rock samples from Well C/T-2

Table 3.2 : Chemical analyses of selected whole rock samples from Well C/T-2

Table 3.3" Neutron activation analyses of selected samples from Well C/T-2

Table $3.4 \quad$ Water analyses from Well C/T-2
Table 4.1 Oxygen and carbon isotope data from Well C/T-2

Figure $4.5 \because$ Frequency histograms of temperatures calculated from oxygen and carbon isotope values from Well C/T-2

Figure 4.6 Calculated oxygen and carbon isotopic temperatures plotted against lead values of composite samples from Well C/T-2

Figure 5.1 Plot of magnetic susceptibility and density of cuttings from LASL C/T-2

Figure 6.1 Dresser Atlas versus Schlumberger Neutron; depth interval 1280.9 to 1462.3 m (4202.5 to 4797.5 ft); $1.52 \mathrm{~m}(5 \mathrm{ft})$ data averages

Figure 6.2 Dresser Atlas versus Schlumberger Neutron; depth interval 1585.7 to 1767.1 m (5202.5 to 5797.5 ft); 1.52 m (5 ft) data averages

Figure 6.3 Dresser Atlas versus Schlumberger Neutron; depth interval 1890.5 to 2071.9 m (6202.5 to 6797.5 ft); 1.52 m (5 ft) data averages

Dresser Atlas versus Schlumberger Gamma-Ray; depth interval 1158.5 to 1317.7 m (3801 to 4323 ft); $.61 \mathrm{~m}(2 \mathrm{ft})$ data averages

Figure 6.5 Dresser Atlas versus Schlumberger Gamma-Ray; depth interval 1531.6 to 1744.3 m (5025 to 5723 ft); $.61 \mathrm{~m}(2 \mathrm{ft})$ data averages

Figure 6.6 Dresser Atlas versus Schlumberger Gamma-Ray; depth interval 1958.3 to 2085.8 m (6425 to 6843 ft); $.61 \mathrm{~m}(2 \mathrm{ft})$ data averages

Figure 6.7 Density versus neutron porosity cross plot grid for "rock 1" composition in Table 6.4

Figure 6.8. Density versus neutron porosity cross plot grid for "rock 2 ". composition in Table 6.4

Figure 6.9 Expanded scale version of Figure 6.7 and includes a demonstrated use of grid

Figure 6.10 Bulk density versus neutron porosity; depth interval 1752.9 to 1813.2 m (5751 to 5949 ft); $.61 \mathrm{~m}(2 \mathrm{ft})$ data averages

Figure $6.11 \therefore$ Bulk density versus neutron porosity; depth interval 1924.2 to 1957.7 m (6313 to 6423 ft); .61 m (2 ft) data averages

Figure $6.12 . \therefore$ Bulk density versus neutron porosity; depth interval 2012.0 to 2072.3 m (6601 to 6799 ft); .61 m (2 ft) data averages

Figure 6.13 Velocity versus neutro porosity; depth interval 1752.9 to 1813.2 m (5751 to 5949 ft); .61 m (2 ft) data averages

Figure 6.14 Velocity versus neutron porosity; depth interval 1924.2 to 1957.7 m . (6313-6428 ft); . 61 m (2 ft) data averages

Figure 6.15 Velocity versus neutron porosity; depth interval 2012 to 2072.3 m (6601 to 6799 ft); . $61 \mathrm{~m}(2 \mathrm{ft}$) data averages

Figure 6.16 Velocity versus bulk density; depth interval 1752.9 to 1813.2 m (5751 to 5949 ft); . 61 m (2 ft) data averages

Figure 6.17 Velocity versus bulk density; depth interval 1924.2 to 1957.7 m (6313 to 6423 ft); . 61 m (2 ft) data averages

Figure 6.18 Velocity versus bulk density; depth interval 2012 to 2072.3m (6601 to 6799 ft);". 61 m

$$
(2 \mathrm{ft}) \text { data averages }
$$

Figure 6.19 ` Z-plot, bulk density versus neutron porosity with gamma-ray in Z direction; depth interval 1752.9 to 1813.2 m (5751 to 5949 ft); . 61 m (2 ft) data averages

Figure 6.20 Z-plot, bulk density versus neutron porosity with gamma-ray in Z direction; depth interval 1924.2 to $1957.7 \mathrm{~m}(6313$ to 6423 ft$) ; .61 \mathrm{~m}(2 \mathrm{ft})$ data averages

Figure 6.21 Z-plot, bulk density versus neutron porosity with gamma-ray in Z direction; depth interval 2012.0 to 2072.3 m (6601 to 6799 ft); . 61 m
(2 ft) data averages
Figure 6.22Gama-ray versus a) neutron porosity and b) bulk density; depth interval 1752.9 to 1813.3m (5751 to 5949 ft); . 61 m (2 ft) data averages .

Figure 6.23 Gamma-ray versus a) neutron porosity and b) bulk density; depth interval 1924.2 to 1957.7 m (6313 to 6423 ft$)$; . $61 \mathrm{~m}(2 \mathrm{ft})$ data averages

Figure 6.24

Figure 6.25

Figure 6.26

Figure 6.27 Gamma-ray versus K_{20}; depth interval 2023.8
$\begin{array}{ll}\text { Figure } 6.27 & \text { Gamma-ray versus } \mathrm{K}_{2} \mathrm{O} \text {; depth interval } 2023.8 \\ \text { to } 2057.4 \mathrm{~m}(6640 \text { to } 6750 \mathrm{ft}) ; 3.1 \mathrm{~m}(10 \mathrm{ft})\end{array}$ data averages

Figure $6.28: \mathrm{Fe}^{0}+\mathrm{Mg} 0$ versus bulk density; depth interval 1761.7 to 1804.4 m (5780 to 5920 ft); 3.1 m (10 ft) data averages
Gamma-ray versus $\mathrm{K}_{2} \mathrm{O}^{\text {; }}$ depth interval 1905.0
1935.5 m (6250 to 6350 ft); 3.1 m (10 ft)
data averages
Gamma-ray versus a) neutron porosity and b) bulk density; depth interval 2012.0 to 2072.3m (6601 to 6799 ft$)$; . $61 \mathrm{~m}(2 \mathrm{ft})$ data averages

Gamma-ray versus K_{20}; depth interval 1759.9 to 1804.4 m (5770 to 5920 ft); 3.1 m (10 ft) data averages
$\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{MgO}$ bulk density. depth
interval 1908.0 to 1938.5 m (6260 to 6370 ft);
$3.1 \mathrm{~m}(10 \mathrm{ft})$ data averages.
Figure $6.30 \quad \begin{aligned} & \text { Fe } 203\end{aligned}{ }^{+}$Mg0 versus bulk density; depth interval data averages

Figure 6.31 Loss versus neutron porosity; depth interval 1761.7 to 1804.4 m (5780 to 5920 ft), 3.1 m (10 ft) data averages

Figure 6.32 Loss versus neutron porosity; depth interval 2023.9 to $2057.4 \mathrm{~m}(6640$ to 6750 ft); 3.1 m (10 ft) data averages

PLATES
Plate I Log composite of LASL C/T-2 (Utah State Geothermal Well 9-1) Roosevelt Hot Springs KGRA, Beaver County
Utah
Log composite of selected logs, LASL C/T-2 (Utah State Geothermal Well 9-1), Roosevelt Hot Springs KGRA, Beaver County, Utah

Plate III \quad Chemical radiometric and X-ray fluorescence data for LASL C/T-2

Plate IV. $\because C$ Chemical analysis (Loss, $\mathrm{MgO}, \mathrm{Fe}_{203}$ and Fe 203 + MgO) for LASL Well C/T-2 (Utah
State Geothermal Well. 9-1)

I. \therefore INTRODUCTION

A. Background

The Earth Science Laboratory (ESL)/University of Utah Research Institute (UURI), on behalf of Los Alamos Scientific Laboratory (LASL) has completed a comprehensive study of cuttings and well logs from LASL Well C/T-2 (Utah State Geothermal Well 9-1) in the Roosevelt Hot Springs KGRA, Beaver County, Utah. (Figure 1.1 and 1.2). The study was undertaken as part of LASL's Geothermal Log Interpretation Development Program (Mathews, 1978), the objective of which is the establishment of an effective geothermal logging industry in the United States. In support of this objective, Phillips Petroleum Company has donated the use of Utah State Geothermal Well 9-1 to LASL for calibration and testing of well-logging equipment in the hot, corrosive, geothermal environment. LASL has renamed the well C/T-2.

Well C/T-2 was collared March 3, 1975 âd completed April 18, 1975 at a total depth of 2099.0 m (6885 ft). The well encountered anomalously high temperatures (maximum $227^{\circ} \mathrm{C}\left(440^{\circ} \mathrm{F}\right)$ at 2099.0 m$)$, but no significant thermal fluid production zones. Cuttings samples and well logs obtained by ESL for well C/T-2 have been studied by various methods as herein reported. The report is organized by specific tasks outlined in Contract No. 4-N29-4988H-1. B. Location

Well C/T-2 is located in the Roosevelt Hot Springs KGRA in Beaver County, Utah. The nearest town is Milford, Utah which is served by regularly scheduled commuter flights. The nearest rental cars are in Cedar City, roughly 50 miles southeast of Milford. "Well C/T-2 can be reached by traveling three miles north of Milford on Highway 257, then turning east onto a graded

Explanation for Geologic Rfap and Cross Section (Figures 1.2.\&1.3)

$0 \mathrm{o}$	Opaline and chalcedonic sinter
$\stackrel{\sim}{\alpha}$ Ocal	Silica-cemented alluvium
$\stackrel{\text { cren }}{\sim}$	Hematite-cemented alluvium
0 Ool	Alluvium
Oro	Air-fall and non-welded ash-flow tuff
Tds	Diabase dikes
Tmo	Microdiorite dikes
$\underset{\sim}{x} \mathrm{Tg}$	Granite dikes; fine-grained
$\underset{\sim}{\substack{4}}$	Granite; medium- to coarse-grained
Ts	Syenite; medium-grained
Tpg	Biotite granite; medium- to coarse-grained
Tam	Quartz monzonite
	Biotite granodiorite; fine- to medium-grained
hgn	Hornblende gneiss; medium- to coarse-grained meta-quartz monzonite

T PCb Banded gneiss; conspicuously layered feldspar-quartz-biotite gneiss, schist and migmatite.

Contact, dashed where uncertain
Fault, intruded by microdiorite dike; arrow shows dip
Fault, dashed where inferred, dotted where concealed; arrow shows dip
$\stackrel{\rightharpoonup}{\nabla} \nabla^{\Delta}$
Brecciation
Strike and dip of inclined and vertical joints
Strike and dip of inclined ard vertical foliation
Prospect
Shallow diamond drill hole
Geothermal well
county road and driving seven miles. The access road to the well takes off to the northeast. The county and access roads are marked with signs which point toward "LASL Well C/T-2".

C. Geology of the Roosevelt Hot Springs KGRA.

The geology of Roosevelt Hot Springs KGRA has been described in detail by Nielson et al. (1978). In addition, a summary of the geology, geochemistry and geophysics has been published by Ward et al. (1978). Lithologic logs of available holes can be found in Hulen (1978) and Nielson et al. (1978). An evaluation of well logs from Utah State Geothermal Wells 72-16, 14-2, and 52-21 and temperature gradient hole GPC-15 can be found in Glenn and Hulen (1979a). A more regional picture of the geology of the central Mineral Mountains is presented in Sibbett and Nielson (1980).

The Roosevelt Hot Springs KGRA is located on the western edge of the Mineral Mountains in Beaver County, Utah. Exploration for geothermal resources at Roosevelt Hot Springs was initiated by Phillips Petroleum Company in 1975. The known geothermal resource is owned by Phillips and a joint venture of Thermal Power, AMAX, and 0'Brien Mines. The geology of the presently known producing area is shown in Figure 1.2 , which also shows the location of Well C/T-2 and ten producing test holes in the Roosevelt field. In general, the Roosevelt Hot Springs geothermal system is a hot-water dominated geothermal resource. Fluid temperatures in the producing region are in excess of $265^{\circ} \mathrm{C}$ (5090F). The geothermal reservoir is structurally controlled, occupying faults and fractures which cut plutonic and high-grade metamorphic rocks.

The lithologies which are present in the area are described in detail in

FIGURE 1.3 GEOLOGIC CROSS-SECTION OF THE ROOSEVELT HOT SPRINGS GEOTHERMAL AREA SHOWING WELL C/T-2.

Nielson et a1. (1978) and Sibbett and Nielson (1980). The detailed logging of lithologies in hole $C / T-2$ will be related to the units observed in the Mineral. Mountains.

The structure of Roosevelt Hot Springs KGRA is dominated by three principal fault directions. The oldest of these faults was developed during a period of low angle normal faulting. This activity has produced zones of cataclastic, silicified rock both along the low angle faults and along high angle faults in the hanging wall. A second series of faults, trending generally east-west, are high angle normal faults and are thought to be fairly long lived structures. The most recent faults in the area are north-south to northeast trending normal faults. These faults are represented in the geothermal area by the Opal Mound Fault (Figure 1.2) which has controlled the deposition of siliceous sinter in the recent past.

Nielson et al. (1978) proposed that the geothermal production is controlled by increased permeability developed at the zones of intersection of two or three of these principal fault directions. These zones of intersection are responsible for an uper level reservoir zone and the geothermal fluids have been channeled from depth along steeply dipping faults such as the Opal Mound fault.

Figure 1.3 is an east-west geologic cross section of the Roosevelt Hot Springs geothermal field through Well C/T-2. Note that the hole is located west of a horst which is bounded on the east by the Opal Mound Fault. A low angle normal fault passes through the hole at about 844.3 m (2770 ft). The relationships which were mapped on the surface hold true within well C/T-2: the hanging wall of this fault is extensively brecciated while the footwall
has been intersected only by an occasional discrete fault. The rocks above $844.3 \mathrm{~m}(2770 \mathrm{ft})$ have been extensively altered by hydrothermal fluids. No significant fluid entries have been reported and the entire hole intersects rocks with low permeability and is considered dry.
II. LITHOLOGIC LOGGING AND ALTERATION STUDIES
A. Methods and Procedures

Drill cuttings from well C/T-2 were collected by Phillips Petroleum Company generally at 4.6 m (15 ft) intervals above a depth of 686.8 m (2250 ft), and at $3.1 \mathrm{~m}(10 \mathrm{ft}$) interval below this depth, to the bottom of the well. These cuttings were thoroughly washed to remove drilling mud and lost circulation material. Chipboards were prepared from small portions (roughly 1.5 g) of the cuttings.

Cuttings from well $\mathrm{C} / \mathrm{T}-2$ were first logged in detail by conventional binocular microscope at 8-40X magnification. Data logged include lithology, style and intensity of alteration and mineralization, and physical evidence of structural disruption, including amounts of fault gouge, microbreccia and mylonite present in each sample. This lithologic log is presented on Plate 1. Petrographic study of selected cuttings samples from well C/T-2 resulted in more accurate characterization of rock types and alteration phases identified during binocular microscopic examination. Seventy-five grain-mount thin sections were examined. Half of each section was stained with sodium cobaltinitrite to aid identification of potassium feldspar. The sections were prepared from samples collected at roughly 30.5 m (100 ft) intervals, except where lithologic complexity and/or alteration dictated closer sample spacing. For representative samples apparently consisting wholly or mostly of a single
rock type, modes were obtained (Table 2.1) by a combination of visual estimation and abbreviated point-count (200-300 points). Such point counts are not adequate for determination of trace and minor mineral percentages, but are believed to be more accurate than visual estimation for determination of major rock-forming mineral quantities.

Alteration mineralogy in well C/T-2 was further investigated by X -ray diffraction of clay separates ($<2 \boldsymbol{n}$) from representative cuttings samples. The clay fraction was prepared by pulverizing a 10 g sample-split in a Spex shatterbox with tungsten carbide components, peptizing the pulverized sample with calgon, and centrifuging. X-ray diffraction patterns were obtained for oriented smears on glass slides following air-drying, and, if appropirate, vapor glycolation and heating to $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right.$) and $550^{\circ} \mathrm{C}$ ($1022^{\circ} \mathrm{F}$).

Microprobe analyses of selected alteration and rock-forming minerals were obtained using a 3 -channel ARL electron microprobe at an acceleration voltage of 15 kV . X-rays were counted at an average of 5 spots on each grain for approximately 16 seconds. Clinopyroxene and kaersutite standards were used for most major and minor elements. A biotite standard was used for potassium, a barium oxide glass standard for barium, a fluorphlogopite standard for fluorine, and a scapolite standard for chlorine. Bence-Albee matrix corrections (Bence and Albee, 1968) were then calculated using a computer program developed by G. H. Ballantyne, J. M. Ballantyne and W. T. Parry, of the University of Utah Department of Geology and Geophysics. Input for this program requires an ideal water content for the mineral analyzed. The initial oxide data are corrected by an iterative routine which yields successively
more accurate approximations of actual bound water content (Ballantyne, J. M., 1978)
B. Lithology, Alteration and Inferred Structure

A major fault zone between depths of $835.1 \mathrm{~m}(2740 \mathrm{ft}$) and 844.3 m (2770 ft ; Pl. I; Figure 1.3) divides well C/T-2 into two distinct structural, lithologic, and alteration regimes. Above this fault zone, lithology is complex, alteration is moderate to locally intense, and evidence of structural disruption is abundant. Below the fault zone, only a few rock types are present, and these are relatively unbroken and only weakly altered.

Lithologic units defined through logging well C/T-2 have been tentatively correlated with rock types mapped at the surface and identified in other wells and drill holes within and near the Roosevelt Hot Springs KGRA by Niel son et al. (1978) and Sibbett and Nielson (1980). Correlation was accomplished primarily through comparison of chip samples from well C/T-2 with representätive surface samples crushed, screened, and washed to simulate drill cuttings.

Cuttings collected from well C/T-2 are extremely fine, averaging less than 0.5 mm in diameter above $899.4 \mathrm{~m}(2950 \mathrm{ft})$ and less than 0.3 mm in diameter below this depth. The minuteness of these cuttings may hinder accurate characterization of certain parameters in the well, such as grain size and texture of coarser-grained rocks. Different minerals in a given rock may also have responded differently to fine-grinding at the drill bit in $C / T-2$. Feldspar and quartz, for instance, would pulverize readily, the original. feldspar and quartz in a rock could be powdered and removed from cuttings along with drilling mud during sample collection and washing. This process
would yield a cuttings sample richer in biotite (and thus denser) than the rock penetrated.

References to grain size and texture of a given rock type in the discussions which follow apply only where drill chip size permits description of these parameters. In general, grain size can be determined with reliability only above a depth of $899.4 m(2950 \mathrm{ft})$. Below this depth, drill chips average about 0.3 mm in diameter, less than the average grain size of most of the rocks. " Modes for 61 samples from C/T-2 as determined by point-counting and visual estimation, are presented in Table 2.1.

1. Lithology.
a. Biotite-Quartz-Feldspar Gneiss. Several zones of fine- to medium-grained biotite-bearing gneiss were penetrated in $\mathrm{C} / \mathrm{T}-2$, but only above the major fault zone centered on $838.2 \mathrm{~m}(2750 \mathrm{ft})$ does this rock type occur in significant quantities. The gneiss is commonly foliated, even in drill cuttings. Identification of massive gneiss is based upon similarity to coexisting or nearby foliated varieties and upon comparision with surface: samples of gneiss crushed to simulate drill cuttings.

Both foliated and massive (in cuttings) gneisses in the drill hole are typically xenomorphic to hypidiomorphic fine- to medium-grained aggregates of quartz, feldspar, biotite and hornblende, in highly variable ratios, with relatively high apatite content, minor sphene and magnetite-ilmenite, and local traces of zircon. Intergrain boundaries, where preserved, are highly irregular, and may show mortar texture. Quartz is generally strained and typically forms irregular aggregates--elongate in foliated varieties--of smaller interlocking irregular grains. Plagioclase $\left(\mathrm{An}_{20}-\mathrm{An}_{30}\right)$ is commonly

twinned, occasionally kink-banded, and may show vague gradational normal zoning. Biotite, al so locally kink-banded, shows yellow-brown pleochroism and forms irregular grains with ragged terminations which may show sub-parallel alignment. These biotite grains are often riddled with inclusions of magnetite-ilmenite and/or apatite. Potassium feldspar, commonly with microcline twinning, occurs both as larger grains intergrown with other rock-forming minerals and as minute irregular interstitial grains. Hornblende typically forms rather stubby subhedral crystals which are pleochroic from medium brownish-green to deep bottle green.

Two varieties of apatite are usually present in the gneiss: 1) larger stubby crystals up to 0.2 mm in length with $2: 1$ to $4: 1$ length:width ratios and 2) minute acicular needles less than 0.02 mm in length. The former tend to be concentrated in mafic minerals whereas the latter are concentrated in plagioclase.

Sphene in the gneiss (up to 5%) forms irregular crystals up to 0.2 mm in maximum dimension as well as aggregates of these crystals up to 0.7 mm in maximum dimension. Sphene may also form discontinuous rims around magnetite-ilmenite grains.

Variation in composition, grain size, and foliation of the gneisses in C/T-2 causes them to resemble other rock types. Felsic varieties may resemble granitic -intrusives. Mafic gneisses, if sufficiently fine-crystalline, may look like Tertiary microdiorite dikes. For example; between 826 m (2710 ft) and $835.1 \mathrm{~m}(2740 \mathrm{ft})$, a dense, dark greenish-gray rock originally identified as microdiorite was identified in thin-section as a very fine-grained gneiss. All the gneisses in C/T-2 occur with coarser-grained granitic material.

This granitic rock, represents either felsic segregations, original compositional variations, or intrusions into the gneiss.

Comparison of the gneisses in C/T-2 with surface rock types described by Nielson et al. (1978) and Sibbett and Nielson (1980) strongly suggests correlation with the Precambrian banded gneiss (PEbg; Nielson et al., 1978, p. 8), the oldest rock exposed within the Roosevelt Hot Springs KGRA. In thin section, the granitic rocks associated with gneiss above $798.5 \mathrm{~m}(2620 \mathrm{ft})$ in C/T-2 (213.3-222.5m (700-730 ft), 276.8-280.4m (905-920 ft), 307.8-312.4m (1010-1025 ft), 317.3-320m (1040-1050 ft), 332.2-336.8m (1019-1105 ft)) are observed to range in composition from granite to quartz monzonite. . They are xenomorphic to hypidiomorphic-granular aggregates of quartz, potassium feldspar, plagioclase, and minor biotite with accessory apatite, magnetite-ilmenite, and sphene and traces of zircon. An absence of hornblende and relatively high quartz content, together with local foliation and development of strong undulatory extinction in quartz, distinguish these granitic rocks from others in the hole.
b. Biotite-Pyroxene-Hornblende Diorite. A very distinctive pyroxene-bearing diorite was penetrated in well C/T-2 in scattered intervals between $483.1 \mathrm{~m}(1585 \mathrm{ft})$ and the major fault zone at $844.3 \mathrm{~m}(2770 \mathrm{ft})$. With the exception of cataclasite, to be discussed in a subsequent section, the diorite is the most pervasively and strongly altered rock type encountered in the drill hole. The alteration commonly obscures original mineralogy and texture, so that the diorite may be mistaken for the mafic-rich gneiss with which it commonly occurs. The latter, however, is devoid of pyroxene,
relatively impoverished in hornblende and magnetite-ilmenite, and enriched in biotite and quartz. The diorite is also invariably massive and equigranular, while the gneiss is commonly well-foliated.

The diorite has no reported surface equivalent at Roosevelt. Of rock types mapped within and near the KGRA, only the hornblende gneiss (hgn), biotite granodiorite (gd), and biotite diorite (Td) (Sibbett and Nielson, 1980; Nielson, et al., 1978) are even vaguely similar to the diorite in C/T-2. Except for Tertiary microdiorite, the hornblende gneiss (hgn) and biotite diorite (Td) are the only surface rock types reported to contain pyroxene, but in much lower amounts (tr. -1%) than the diorite in $\mathrm{C} / \mathrm{T}-2$ (up to 13%). The diorite in the hole is also much richer in total mafic minerals. The biotite grandiorite (gd) is mafic-rich, but with no reported pyroxene. Nielson et al. (1978), however, describe this rock as "highly variable". Possibly the diorite of $\mathrm{C} / \mathrm{T}-2$, with its high mafic content and lack of schistosity, may be a pyroxene-rich variant of either the biotite diorite (Td) or biotite granodiorite (gd).

In thin-section, the diorite appears as a fine-grained equigranular aggregate of plagioclase, hornblende, biotite, and pyroxene with minor quartz, K-feldspar, magnetite-ilmenite, and sphene and traces of apatite and zircon. The rock typically shows a distinctive, well developed mosaic fabric, but may also be xenomorphic- to hypidiomorphic-granular.

Plagioclase (An32-36), averaging about 30 volume percent of the diorite, typically occurs as equant to slightly elongate grains up to 1 rm in diameter or length which are very commonly twinned. The twinning is seldom parallel to grain boundaries and is often kink-banded. The plagioclase is invariably partially altered to various combinations of sericite, calcite, epidote, and clay.

The three mafic components of the diorite--biotite, hornblende, and clinopyroxene--occur in highly variable ratios, depending largely on the extent to which pyroxene is replaced by hornblende and biotite and hornblende is replaced by biotite. All three minerals, which may reach at least 1 mm in maximum dimension, tend to be equant and irregular, or partially irregular and partially bound by straight margins not related to cleavage traces or crystallographic axes. Microprobe analyses of pyroxene, hornblende and biotite from the diorite at $483.1-487.7 \mathrm{~m}(1585-1600 \mathrm{ft})$ are listed in Table 2.2. Pyroxene is colorless to very slightly brownish-tinged. In addition to being partially altered to hornblende and/or biotite, the pyroxene is also very commonly replaced by subsequent reticulating epidote (\pm chlorite) veinlets, which may occupy up to 50% of the original crystal volume. Hornblende is strongly pleochroic, from light brown or light brownish to yellowish-green to deep green or brownish green. Biotite is also pleochroic

Table 2.2. Microprobe Chemical Analyses of Selected Rock-Forming and Alteration Minerals from LASL C/T-2 (Utah State Geothermal Well 9-1)

	BIOTITE			HORNBLENDE pYROXENE			CHLORITE	
	1	2	3	द	5	6	7	8
	185.174877	$\begin{array}{r} 1901.9- \\ 1908.0 \end{array}$	$\begin{gathered} 2026.0 \\ 2029.9 \end{gathered}$	$\begin{gathered} 183.12 \\ 1877 \end{gathered}$	$\begin{array}{r} 19019- \\ 1900.0 \end{array}$	$\begin{array}{\|c\|} \hline 183.1- \\ 187.7 \end{array}$	$\begin{array}{r} 7150.8- \\ x>53.0 \end{array}$	$\begin{gathered} 2026.8- \\ 2029.9 \end{gathered}$
	$1585-$ 1600	$\begin{array}{r} 6250- \\ 6260 \end{array}$	$\begin{gathered} 6650 \\ 6660 \end{gathered}$	$\begin{array}{r} 1585- \\ 1600 \end{array}$	$\begin{array}{\|} 6250- \\ 6260^{\prime} \end{array}$	$\begin{array}{r} 15850 \\ 1600 \end{array}$	$\begin{array}{r} 1760- \\ 4770 \end{array}$	$\begin{array}{r} 6650- \\ 6660 . \end{array}$
SiO_{2}	36.98	36.89	37.28	45.47	44.68	52.18	29.24	26.69
TiO_{2}	3.71	4.02	3.65	0.98	1.61	0.19	0.02	0.18
$\mathrm{Al}_{2} \mathrm{O}_{3}$	14.21	14.21	14.32	8.42	9.51	1.76	19.37	20.51
FeO	17.74	17.95	18.11	16.22	15.48	8.74	27.39	22.47
Mn0	0.21	0.15	0.34	0.33	0.30	0.47	0.56	0.28
Mgo	13.29	12.72	13.36	12.19	12.58	12.86	13.84	17.58
Ca0	0.27	0.18	0.07	12.29	12.19	23.26	0.14	0.13
$\mathrm{K}_{2} \mathrm{O}$	10.22	9.89	10.18	1.11	1.28	0.07	0.32	0.27
$\mathrm{Na}_{2} \mathrm{O}$	0.26	0.23	0.23	1.32	1.63	0.58	0.21	0.14
BaO	0.30	0.60	0.32	0.00	0.02	0.00	0.02	0.00
C1	0.07	0.06	0.06	0.06	0.05	0.00	0.02	0.08
F	0.26	0.27	0.42	0.11	0.14	0.00	. 0.19	0.16
$\mathrm{H}_{2}{ }^{\text {* }}$	3.70	3.70	3.63	1.94	1.93	0.00	11.33	11.52
$0 \equiv \mathrm{Cl}$	0.02	0.01	0.01	0.01	0.01	0.00	0.01	0.02
$0 \equiv F$	0.11	0.11	0.18	0.05	0.06	0.00	0.08	0.07
TOTAL	101.09	100.75	101.78	100.38	107.39	99:51	102.56	99.92

NOTES:
(1) Biotite from biotite-pyroxene-hornblende diorite: 5 grains
(2) Biotite from hornblende-biotite granodiorite: 5 grains
(3) Biotite from hornblende-biotite granodiorite: 5 grains
(4) Hornblende from biotite-pyroxene-hornblende diorite: 5 grains
(5) Hornblende from hornblende-biotite granodiorite: 5 : grains
(6) Pyroxene from biotite-pyroxene-hornblende diorite: 7 grains
(7) Chlorite intergrown with sericite in cataclasite: 2 grains
(8) Chlorite replacing biotite in hornblende-biotite granodiorite: 2 grains

* calculated $\mathrm{H}_{2} \mathrm{O}$
from light yellowish-brown to dark brown or greenish-brown. Alteration products of hornblende include biotite (earliest) and epidote, calcite, and chlorite in various combinations. Biotite is partially altered to chlorite, which may be accompanied by sagenitic rutile.

The diorite is relatively rich in magnetite-ilmenite (up to 5\%) and sphene (3-4\%). Magnetite-ilmenite forms irregular to subhedral grains up to 0.3 mm in diameter which are invariably intergrown with and commonly rimmed by sphene. Sphene-magnetite-ilmenite intergrowths may reach 1 mm in maximum dimension. Individual crystals of sphene are generally texturally similar to those of magnetite-ilmenite, although a few scattered sphene crystals are euhedral and reach 0.7 mm in length (contamination?).

Quartz and K-feldspar in the diorite are commonly highly strained. K-feldspar is otherwise texturally similar to plagioclase. Quartz occurs as individual irregular grains up to 1 mm . in diameter or as aggregates of the same size formed of smaller irregular grains as little as 0.05 mm in diameter. Quartz is unaltered: K-feldspar may be lightly dusted with clay.
c. Hornblende-Biotite Granodiorite to Quartz Monzonite. ${ }^{1 *}$ Between $838.2 \mathrm{~m}(2750 \mathrm{ft}$) and 1082 m (3550 ft) and between 1776.9 m (5830 ft) and 2095.4m (6875 ft), well C/T-2 encountered mafic-rich, possibly weakly metamorphosed intrusives varying in composition from granodiorite through plagioclase-rich quartz monzonite. The upper interval is generally impoverished in mafic minerals relative to the lower interval, but is otherwise very similar and

[^0]almost certainly part of the same intrusive sequence. Drill chips throughout most of the two intervals are too small for accurate characterization of the grain size and texture of the rock. A few larger chips indicate that the upper interval is medium-grained and the lower interval fine- to medium-grained, with both intervals hypidiomorphic-granular.

The upper contact of the upper granodiorite interval is apparently in fault contact with broken and altered gneiss between $838.2 \mathrm{~m}(2750 \mathrm{ft})$ and $844.3 \mathrm{~m}(2770 \mathrm{ft})$. The lower contact of this interval seems to be gradational between $1072.8 \mathrm{~m}(3520 \mathrm{ft})$ and $1082 \mathrm{~m}(3550 \mathrm{ft})$ (the three $3.1 \mathrm{~m}(10 \mathrm{ft})$ intervals above 1082 m , (3550 ft), contain about 20% granite each). The upper contact of the lower interval is sharp and may be fault-controlled.

The granodiorite encountered in $\mathrm{C} / \mathrm{T}-2$ correlates most readily with the biotite diorite (Td) mapped by Sibbett and Nielson (1980) in the northern Mineral Mountains. Samples of the diorite studied to date, however, are devoid of allanite, which is ubiquitous in the granodiorite of the drill hole. The granodiorite is also richer in clinopyroxene, which is present only in trace amounts in the diorite. The meta-granodiorite also closely resembles. the biotite granodiorite (gd; Sibbett and Nielson, 1980), which, however, is: apparently devoid of clinopyroxene.

Plagioclase (avg. 33\% by volume) in the granodiorite ranges in composition from An_{30}. to An_{35}. It occurs as anhedral to subhedral grains, up to 0.5 nm in maximum dimension, as very rare myrmekitic intergrowths with quartz, and as exsolution blebs in perthite. It is invariably partially altered to one or more of the minerals sericite, epidote, and calcite. Potassium feldspar (avg. 15\%) in the granodiorite is essentially unaltered and
is texturally similar to coexisting plagioclase.
Quartz accounts for an average 12% of the granodiorite It occurs as lightly strained to unstrained anhedral grains and grain aggregates up to 0.3 mm in diameter.

Biotite (avg. 25\%) is the dominant mafic constituent in the granodiorite. It is pleochroic from medium yellowish, greenish, or orange-brown to deeper values of the same hues. It occurs as subhedral-euhedral crystals up to 0.5 mm in diameter or length, and may contain local traces of magnetite-ilmenite and apatite. A few crystals in both the upper and lower granodiorite intervals are sharply kink-banded. The biotite is generally partially altered to chlorite with very low first order or anomalous blue, red, and yellow-brown interference colors. Microprobe analyses of unaltered biotite from 1904.9-1908.0m (6250-6260 ft) and 2026.8-2029.9m (6650-6660 ft) are listed in Table 2.2.

Hornblende averages about 4.5% of the rock, but ranges from 1.5 to 9%. Subhedral crystals and fragments of hornblende, commonly enclosing small crystals of apatite and dark opaque minerals, reach 0.7 mm in maximum dimension. The hornblende is pleochroic from medium, slightly brownish to yellowish-green to deeper values of the same hues or intense deep bottle green. Table 2.2 provides a microprobe analysis of hornblende from 1904.9-1908m (6250-6260 ft). The hornblende commonly partially replaces clinopyroxene, and is in turn partially replaced, generally along cleavage planes, by biotite. It may also be replaced by various combinations of chlorite, calcite, and epidote. The chlorite replacing hornblende is a different variety from that forming after biotite--it is yellowish- to
brownish-green with substantially higher birefringence.
Traces of clinopyroxene occur nearly in all samples of the granodiorite. The clinopyroxene locally accounts for 2% of the total rock volume. Subhedral crystals of the clinopyroxene tend to be stubbÿ or equant, and apparently do not exceed 0.3 mm in maximum dimension. They are colorless to very slightly brownish- to bluish-green, and are almost always partially replaced by hornblende and, to a lesser extent, by biotite, epidote, calcite, and chlorite.

Magnetite-ilmenite (avg. 2\%), sphene (avg. 1.5\%) and apatite (avg. 1\%) in the granodiorite are texturally very similar to their occurrence in the mafic-rich diorite discussed previously. Sphene in the granodiorite, in particular, shows a strong tendency to form small rims around magnetite-jlmenite grains: Apatite may form larger euhedral crystals than in the diorite--up to $0.4 \times 0.2 \times 0.1 \mathrm{~mm}$.

The presence of allanite in all samples of the granodiorite examined distinguishes this rock type from all others in well C/T-2. The allanite occurs in anhedral; generally equant crystals and crystal fragments up to 0.05 mm in diameter, but usually less than 0.01 mm in diameter, which may rarely form irregular aggregates up to 0.3 mm in diameter. The mineral may be intergrown with, or, more rarely, rimmed by colorless to pistachiocolóred epidote.

Local traces of zircon and rutile are present in the granodiorite. Zircon is texturally similar to its occurrence in the previously discussed diorite higher in the well. The rutile is secondary, occurring with chlorite as an alteration product of biotite, and occurs as sagenitically arranged
acicular crystals less than 0.05 mm in length.
\therefore d. Hornblende-Biotite Quartz Monzonite. Between $1249.6 \mathrm{~m}(4100 \mathrm{ft})$ and 1776.9 m (5830 ft), well $\mathrm{C} / \mathrm{T}-2$ penetrated hornblende biotite quartz monzonite. Drill cuttings from this interval average about 0.5 mm in diameter and do not exceed 1.5 mm , so grain size and texture of the rock cannot be accurately determined. Larger chips, however, indicate the rock to be hypidiomor-phic-granular and at least medium-grained.

The quartz monzonite is uniform in composition except where modified by hydrothermal alteration. Its upper contact with hornblende-biotite granite is gradational; its lower contact with mafic-rich granodiorite is sharp and may be fault-controlled.

Comparison of the quartz monzonite with surface rock types mapped by Nielson et al. (1978) and Sibbett and Nielson (1980) suggests it most closely correlates with their Tqm (Tertiary quartz monzonite). Drill chips of the quartz monzonite in C/T-2 may contain local traces of pyroxene, which could result from caving of pyroxene-bearing units higher in the hole. Average biotite content in the quartz monzonite of the drill hole (10\%) is somewhat higher than that of Tqm (4\%; Nielson, et al., 1978, Table 3). The higher biotite content probably reflects proximity to, and possible assimilation of, mafic-rich units such as the granodiorite in the lower portion of C/T-2.

Plagioclase forms $23-30 \%$ of the quartz monzonite in the drill hole and averages about 27%. It occurs as: 1) anhedral to subhedral, commonly twinned grains averaging at least 1 mm in diameter, 2) irregular to subhedral, optically continuous patches, rods and spindles in perthite, and 3) rare myrmekitic intergrowths with quartz. Twin lamellae in the plagioclase are
undeformed. The plagioclase is invariably partially replaced by one or more of the minerals sericite, calcite, clay, and epidote, which will be discussed in a separate alteration section.

Potassium feldspar, texturally similar to coexisting plagioclase, accounts for $35-40 \%$ (avg. 37%) of the quartz monzonite. Both perthitic and non-perthitic varieties are present. The mineral is generally fresh, but a .. few crystals may contain a little sericite and/or calcite, which may actually be replacing cryptocrystalline patches of included plagioclase.

Quartz, mildly strained and nearly free of inclusions, forms an average 13% (11-17\%) of the quartz monzonite. It occurs as individual anhedral crystals up to 0.5 mm in diameter and as minute irregular grains as small as 0.05 mm in diameter forming equally irregular aggregates up to 0.7 mm in diameter. In larger drill chips, these aggregates are seen to occur interstially to the other main rock-forming minerals. Quartz also occurs as wormy intergrowths with plagioclase (myrmekite) and with hornblende.

Biotite, pleochroic from yellowish- or reddish-brown to deeper values of the same hues, accounts for $5-17 \%$ (avg. 10%) of the quartz monzonite. It occurs primarily as subhedral to euhedral crystals up to 0.7 mm in length or diameter, but also locally as small patches partially replacing original rock hornblende. Rare wormy intergrowths of biotite and quartz may represent total replacement of similarly-textured hornblende-quartz intergrowths. Biotite commonly contains small inclusions of euhedral apatite and anhedral magnetite-ilmenite. It is rarely intergrown with apatite, sphene, and magnetite-ilmenite in irregular aggregates up to 0.7 man in diameter. A portion of the biotite in all samples of the quartz monzonite is partially replaced by
pleochroic green chlorite, locally accmpanied by sagenitic rutile.
Hornblende (avg. 1.5\%) in the quartz monzonite is also pleochroic from slightly yellowish- or brownish-green to medium to deep bottle green. Its main occurrence is as subhedral to euhedral crystals with maximum dimensions of $0.7 \times 0.3 \times 0.2 \mathrm{~mm}$. A few hornblende grains throughout the quartz monzonite are riddled with wormy stringers and blebs of quartz. Many crystals contain small inclusions of apatite and dark opaque minerals. Throughout the quartz monzonite, but especially near probable fault zones, the hornblende is partially to completely replaced by various combinations of chlorite, epidote, and calcite.

Magnetite-ilmenite (avg. 2\%), sphene (avg. 1.5\%) and apatite (avg. 0.5\%) are the dominant accessory minerals in the quartz monzonite. Magnetite-ilmenite occurs primarily as anhedral-subhedral equant grains up to 0.2 mm in diameter and as inclusions less than $0.05 m$ in diameter in mafic minerals. It is commonly partially to completely replaced by red to maroon submetallic hematite. Sphene, usually partially replaced by leucoxene, forms subhedral grains up to 0.5 mm in maximum dimension. Apatite typically occurs as euhedral prisms, up to $0.04 \times 0.15 \mathrm{~mm}$ in diameter, most commonly embedded in biotite but also in hornblende and plagioclase. Various combinations of these accessory minerals, commonly together with biotite and/or hornblende, form local irregular intergrowths up to at least 0.7 mm in diameter.

Zircon and rutile are present in the quartz monzonite in local traces. Zircon occurs as euhedral prisms measuring less than $0.05 \times 0.02 \mathrm{~mm}$ and rutile occurs as sagenitic needles measuring up to $0.1 \times<0.01 \mathrm{~mm}$ in chlorite replacing biotite.

Pyroxene in the quartz monzonite is very rare, and may owe its presence to caving. It is very light, slightly brownish- to bluish green to colorless, and non-pleochroic and is identical to pyroxene occurring higher in the drill hole. It is commonly replaced by hornblende and/or biotite, and by chlorite, epidote, and calcite.

Alteration of the quartz monzonite and other rock types will be fully discussed in a separate section.
e. Hornblende-Biotite Granite. A distinctive quartz-poor granite was intersected in C/T-2, between 798.5 m (2620 ft) and $826.0 \mathrm{~m}(2710 \mathrm{ft}$) and in a major intercept between 1082.0 m (3550 ft) and 1249.6 m (4100 ft). Larger drill chips indicate this granite to be medium-grained and hypidiomorphic granular. The rock is distinguished from granitic material associated with gneiss above 798.5 m (2620 ft) by its relatively low quartz content and by the ubiquitous presence of small amounts of hornblende. Among surface rocks mapped at Roosevelt, Tertiary syenite (Ts; Nielson, et al., 1978, p. 26, Table V) correlates most closely with the granite in C/T-2. The syenite, however, is even more impoverished in quartz, contains abundant microcline, which is not present in the granite, and is generally richer in mafic minerais and sphene.

Potassium feldspar (avg. 52\%), plagioclase (avg. 23\%) and quartz (avg. 11%) occur in the granite both as discrete crystals and as various types of intergrowths. Plagioclase and quartz in the granite commonly form myrmekite. Graphic-intergrowths of potassium feldspar and quartz are rare. Quartz in the granite typically forms irregular aggregates of equally irregular interlocking grains, some of which are mildly to moderately strained.

Biotite, hornblende, sphene, magnetite-ilmenite and apatite also occur in the granite either as individual grains or in various combinations as irregular grain aggregates. Zircon is present in local traces. Biotite (2-5\%) crystals are subhedral, pleochroic from light to dark orange-brown, and up to 1 mm in length or diameter. Subhedral hornblende ($\operatorname{Tr}-1 \%$) is also pleochroic, in various shades of brownish-green, and measures up to $1 \times 0.5 \mathrm{~mm}$ in longitudinal section. Sphene ($0.5-1 \%$) is honey yellow and anhedral to subhedral in crystals up to 0.3 mm in length or diameter. Magnetite-ilmenite (1.5-2\%) forms disseminated anhedral equant grains up to 0.2 mm , but generally less than 0.05 mm in diameter. Apatite (0.5%) may occur either as larger stubby crystals averaging about 0.1 mm in length with 2:1 to $4: 1$ length:width ratios, or as minute acicular microlites less than $0.02 m$ in length. Zircon is euhedral in prisms less than 0.02 mm in length with $2: 1$ to $3: 1$ length: width ratios.

The granite is weakly hydrothermally altered. Plagioclase may be partially altered to various combinations of sericite, calcite, and epidote; hornblende to chlorite, calcite and epidote; biotite to chlorite \pm rutile; sphene to leucoxene, and magnetite-ilmenite to hematite and/or, more rarely, leucoxene. Alteration will be more fully discussed in a later section.

Relatively large grains of colorless to pale green muscovite, texturally similar to and commonly interlayered with biotite, occur in scattered traces throughout the granite. The muscovite may be primary in origin or it may be a hydrothermal or deuteric alteration product of biotite, although this relationship is not clearly demonstrated.
f. Microdiorite and Andesite. Dense gray microdiorites and andesites and their porphyritic equivalents occur in minor amounts in several short sample intervals in C/T-2 above 838.2 m (2750 ft); 298.7-303.3m (980-995 ft); 423.7-428.3m (1390-1405 ft); 464.8-469.4m (1525-1540 ft); 758.9-762m (2490-2500 ft) and form the bulk of samples between $1045.4 \mathrm{~m}(3430 \mathrm{ft})$ and $1063.7 \mathrm{~m}(3490 \mathrm{ft})$. All are characterized by the presence of golden-brown to deep russet-brown oxyhornblende. Although compositionally similar, these rocks may be texturally disparate, even within a single chip sample. All gradations exist between sparsely porphyritic ândesites with cryptocrystalline matrix and phaneritic-microcrystalline diorites. A given variety may be either flow-foliated or massive. Such variation probably reflects both multiple cogenetic intrusion as well as chilling and differential flowage within a single intrusion.

The microdiorites and andesites in C/T-2 are almost certainly correlative with the Tertiary microdiorite (Tmd) dikes mapped at the surface by Nielson et al. (1978, p. 29). A typical example of microdiorite in the drill hole intrudes granodiorite between 1045.4 m (3430 ft) and 1063.7 m (3490 ft). In thin-section, this rock is primarily a microcrystalline aggregate of plagioclase, oxyhornblende and biotite with lesser amounts of quartz, potassium feldspar, magnetite-ilmenite, tremolite, apatite and sphene.

Plagioclase and oxyhornblende are typically elongate, averaging about 0.07 x 0.2 mm (up to $0.4 \times 0.2 \mathrm{~mm}$) in longitudinal section, and are randomly oriented. Biotite (12\%), pleochroic from light greenish-brown to medium greenish-brown, forms disseminated irregular shreddy crystals averaging about 0.07 mm (up to 0.2 win) in length or diameter, as well as irregular aggregates of the crystals up to 0.5 mm in maximum dimension. Quartz (7%) and potassium feldspar (7%), singly or intergrown, occur in irregular to polygonal masses up to 0.1 mm in diameter interstitial to the main rock-forming minerals. Tremolite, conspicuously anomalous at 7% of the microdiorite, occurs as acicular slightly greenish transparent needles, up to $0.1 \times 0.01 \mathrm{~mm}$ in longitudinal section, which commonly form oriented clusters of 10 or more crystals. The mineral is most commonly embedded in plagioclase, but also to a lesser extent in other rock-forming minerals. Apatite (3\%) is texturally identical to, and commonly difficult to distinguish from, tremolite, but the latter, by contrast, shows inclined extinction and generally higher birefringence. Magnetite-ilmenite, also abundant in the microdiorite (5%), occurs as disseminated anhedral to subhedral equant grains averaging less than 0.01 mm in diameter. Sphene (0.7%) forms anhedral grains up to 0.2 mm in length or diameter.

Microdiorites above 838.2 m (2750 ft) in $\mathrm{C} / \mathrm{T}-2$ are mineralogically very similar to the microdiorite just described (though devoid of tremolite) but are generally porphyritic to seriate in texture. Plagioclase and oxyhornblende phenocrysts may form up to 10% and 17%, respectivelly; of the porphyritic variants: Plagioclase phenocrysts are euhedral, commonly twinned and/or vaguely zoned, may be either lath-shaped or roughly equant ${ }^{\prime}$, and may reach 1 mm (avg. 0.3nm) in maximum dimension. Lath-shaped euhedral
oxyhornblende phenocrysts may reach 0.2 mm (avg. 0.1 mm) in length. Groundmass in these microdiorite porphyries is nearly identical to, though more finely crystalline than, the microdiorite between $1045.4 \mathrm{~m}(3430 \mathrm{ft}$) and 1063.7 m (3490 $f t)$. It may be locally prominently flow-foliated.

The sample interval between $423.7 \mathrm{~m}(1390 \mathrm{ft})$ and $428.2 \mathrm{~m}(1405 \mathrm{ft})$ contains, in addition to microdiorite, about 15% oxyhornblende andesite porphyry. The porphyry is formed of sharply euhedral oxyhornblende and plagioclase phenocrysts embedded in a dense, locally flow-foliated cryptocrystalline groundmass, which, like all microdiorites in the drill hole, is rich in disseminated magnetite-ilmenite.
2. Alteration and Inferred Structure. All rock types along the entire sampled length of Well C/T-2 have been more or less altered, particularly within and near probable fault or cataclasite zones. Alteration minerals documented to date in C/T-2 by petrographic examination and X-ray diffraction comprise quartz, sericite, mixed-layer illite-montmorillonite, chlorite, epidote, leucoxene, hematite, calcite, secondary potassium feldspar and anhydrite. These minerals, except potassium feldspar and anhydrite, are typical of propylitic alteration or lower greenschist-facies metamorphism. Alteration minerals identified petrographically and by X-ray diffraction are listed, respectively in Tables 2.1 and 2.3.

Alteration and inferred structural disruption are notably more intense above $844.3 \mathrm{~m}(2770 \mathrm{ft})$ than below this depth. At least three major and numerous minor altered cataclasite zones were penetrated above this footage: only two such zones were encountered between 844.3 m (2770 ft) and 2095.4 m $(6875 \mathrm{ft}): 1450.8-1453.8 \mathrm{~m}(4760-4770 \mathrm{ft})$ and $1764.7-1770.8 \mathrm{~m}(5790-5810 \mathrm{ft})$.

Table 2.3: Mineralogy of Clay Separates, Selected Samples from Hell C/T-2 as Determined by X-Ray Diffraction

SAMPLE INTERVAL

Meters Feet

213.4-222.5	700-730	X	X	X		X	X
329.2-332.2	1080-1090	X	X			X	X
364.2-368.8	1195-1210	X	X	X		χ	X
464.8-469.4	1525-1540	X	X			X	X
492.3-496.8	1615-1630	X	X	x	X	X	X
592.8-897.4	1945-1960	X		X	X	X	X
835.2-838.2	2740-2750	X	X	X		X	x
914.8-944.9	3090-3100	X		X		X.	X
1051.6-1054.6	3450-3460	X			X	X	X
1350.3-1353.3	4430-4440	X.		X		X	X
1450.8-1453.9	4760-4770	x		x		X	x
1527.0-1530.1	5010-5020	x		X		X	X
1764.8-1767.8	5790-5800	X		X		x.	X
1905.0-1908.0	6250-6260	x			X	x	x
2026.9-2030.0	-6650-6660	X		X		X	X

Altered cataclasites in C/T-2 are typically dense, light to medium grayish-green, and aphanitic to very fine-crystalline. They locally display prominent streaky foliation. In thin section, the cataclasites are observed to consist of finely comminuted rock flour, with scattered larger clasts, microveined or cemented and partially replaced by one or more of the minerals quartz, chlorite, sericite and calcite with minor epidote, hematite, leucoxene, and pyrite.

Chlorite in the altered cataclasites is light yellowish- to brownish-green with moderately high birefringence. It occurs as a constituent of microveinlets and matrix and partially to completely replaces original mafic minerals, or rarely plagioclase. It may form fans and rosettes up to 0.3 mm (but generally less than 0.05 mm) in diameter. These textures are best developed in the cataclasite zone between 1450.8 m (4760 ft) and 1453.8 m (4770 $\mathrm{ft})$. A microprobe analysis of chlorite from this zone is shown in Table 2.2.

Two varieties of secondary quartz occur in the altered cataclasites. The typical and most widespread variety consists of highly irregular grains averaging less than 0.02 mm in diameter or length and forming, generally together with other alteration minerals, microveinlets and irregular mosaic matrix aggregates. Between $838.2 \mathrm{~m}(2750 \mathrm{ft})$ and $844.3 \mathrm{~m}(2770 \mathrm{ft})$ and in traces between $675.1 \mathrm{~m}(2215 \mathrm{ft})$ to $679.7 \mathrm{~m}(2230 \mathrm{ft})$ and $734.5 \mathrm{~m}(2410 \mathrm{ft})$ and 740.6 m (2430 ft), secondary quartz forms late-stage, terminated, clear euhedral crystals up to 2 mm in length and 1 mm in diameter.

Sericite in the cataclasite typically forms minute fibers less than 0.05 mm in length replacing plagioclase and rock flour, or intergrown with other alteration minerals in microveinlets and matrix. It also forms rare
larger slightly greenish to transparent crystals (actually muscovite) apparently pseudomorphing original biotite.

Calcite and epidote in the cataclasites occur as minor microveinlet and matrix constituents and partially replace hornblende, pyroxene and plagioclase. Calcite may also locally partially replace sphene.

All the cataclasites contain minor magnetite-ilmenite and sphene. The former is invariably partially replaced by maroon- to brick-red submetallic hematite \pm leucoxene; the latter by dense light gray to white leucoxene \pm calcite. Magnetite-ilmenite apparently has a dual origin in the cataclasites. Most cataclasite is fragmental and obviously derived from the pre-existing rock. Vermiform blebs of magnetite-ilmenite in microveinlets and matrix, however, suggest addition to the cataclasites during hydrothermal alteration. Hematization of dark opaque minerals occurs along the entire length of $\mathrm{C} / \mathrm{T}-2$ and is clearly secondary in origin. Sphene is apparently all relict.

With few exceptions, alteration mineralogy away from cataclasite zones in C/T-2 is petrographically similar to, though much less intense than, alteration within these zones. Microveinlets and veinlet fragments of the principal alteration minerals in all combinations are ubiquitous, but rarely account for more than a fraction of a percent of a given sample. Chlorite and sericite as microveinlet constituents increase in frequency and volume with proximity to cataclasite zones.

Partial replacement of original rock-forming minerals is the dominant alteration mode away from the cataclasites. Plagioclase is replaced by . sericite and epidote and, above 838.2 m (2750 ft), by clay, presumably of supergene origin. X-ray diffraction of representative samples shows the clay
to be mixed-layer illite-montmorillonite (Table 2.3). Hornblende, and, to a lesser extent, pyroxene, are replaced by chlorite, calcite, epidote, and clay. The chlorite replacing these mafics is petrographically identical to the chlorite of the cataclasite zones. Biotite is also partially chloritized, but by a distinctive bright green chlorite with anomalous blue, red, and yellowish-brown birefringence: This chlorite locally contains sagenitically arranged rutile needles. Quartz and potassium feldspar are generally unaltered, although the local cloudy appearance and mottled extinction of the latter may be due to very weak argillization.

Pyrite, rarely accompanied by texturally similar chalcopyrite, occurs at least in traces throughout $C / T-2$. It is, however, concentrated within and adjacent to cataclasite zones and hornblende-rich units above 844.3m (2770 $f t$). The pyrite is found as disseminated, anhedral to subhedral grains up to 0.30 mm , but typically less than 0.10 mm in diameter, but it also occurs as similar grains with other alteration minerals in microeinlets and matrix aggregates. Among the rock forming minerals, magnetite-ilmenite, hornblende and plagioclase are the preferred hosts, in decreasing order of susceptibility, for sulfide replacement.

Anhydrite first appears in thin-section between 574.5 m (1885 ft) and 583.7 m (1915 ft) where it occurs as a single fragment, $0.15 \times 0.1 \mathrm{~mm}$ in size, cut by a chlorite microveinlet. It next occurs in plagioclase between 1018 m (3340 ft) and $1021 \mathrm{~m}(3350 \mathrm{ft}$) as a microveinlet and adjoining irregular replacement patch, measuring $0.1 \times 0.03 \mathrm{~mm}$. Anhydrite is then absent until $1615.4 \mathrm{~m}(5300 \mathrm{ft})$ below which it is present in nearly every sample. In all these lower samples, it occurs only as discrete drill-broken crystal
fragments, up to 0.2 mm in diameter, almost certainly derived from veins.
Secondary potassium feldspar first appears in C/T-2 between 574.5 m (1885 ft) and $583.7 \mathrm{~m}(1915 \mathrm{ft}$). Here it is present in trace amounts as irregular discontinuous selvages on quartz and quartz-chlorite veinlets. Similar trace occurrences were documented in the following samples: 829 m (2720 ft) to $832.1 \mathrm{~m}(2730 \mathrm{ft}), 838.2 \mathrm{~m}(2750 \mathrm{ft})$ to $841.2 \mathrm{~m}(2760 \mathrm{ft}), 841.2 \mathrm{~m}(2760 \mathrm{ft})$ to 844.3 m (2770 ft). Secondary potassium feldspar is probably more abundant in the drill hole than reported here. In finely ground drill cuttings, secondary potassium feldspar is difficult to distinguish from primary potassium feldspar in perthite, antiperthite, or in granophyric intergrowths with quartz.

Calcite, an alteration production which can be readily separated from its host rock, was extracted from selected samples from C/T-2 for oxygen and carbon isotope analysis. The calcite partially replaces, in descending order of susceptibility to alteration, plagioclase, nornblende, pyroxene, and sphene. It also occurs as a common constituent of microveinlets and cataclasite. Calcite is ubiquitous in well $C / T-2$, but is concentrated in the upper portion of the well (above $838.2 \mathrm{~m}(2750 \mathrm{ft})$) and in fault and cataclasite zones, particularly those centered on 838.2 m (2750 ft), 1453.8 m (4770 ft) and 1767.8 m (5800 ft). Paragenetic relationships for calcite relative to other alteration minerals in well C/T-2 are ambiguous, but cross-cutting veinlets indicate multiple periods of calcite deposition.

The small size of drill cuttings from $\mathrm{C} / \mathrm{T}-2^{\prime}$ hinders determination of paragenetic relationships among alteration minerals. Where larger chips. and/or pervasive alteration permit such a determination, these relationships are generally ambiguous. In one sample, for instance, a given alteration
mineral may clearly pre-date another, whereas in a second sample the reverse may be true. In spite of these difficulties, a number of paragenetic relationships among alteration minerals in $\mathrm{C} / \mathrm{T}-2$ can be established with some confidence:

1) Hornblende and biotite after clinopyroxene, and biotite after hornblende are the earliest alteration products. They are consistently replaced by or cut by microveinlets of all other alteration minerals, and are probably magnatic, deuteric, or metamorphic in origin.
2) Microveinlets of chlorite \pm quartz \pm magnetite-ilmenite \pm pyrite post-date all other alteration minerals except clay in the upper portion of the hole and quartz between $835.1 \mathrm{~m}(2740 \mathrm{ft})$ and $838.2 \mathrm{~m}(2750 \mathrm{ft})$. The chlorite in these microveinlets is petrographically identical to the chlorite of cataclasites mapped at the surface by Nielson and others (1978).
3) Small, clear euhedral quartz crystals in the altered fault zone between $835.1 \mathrm{~m}(2740 \mathrm{ft})$ and $838.2 \mathrm{~m}(2750 \mathrm{ft})$ apparently line open spaces in the veinlets described above, and therefore post-date these veinlets.
4) Veinlets and irregular patches of illite-montmorillonite are confined to the portion of the hole above $838.2 \mathrm{~m}(2750 \mathrm{ft})$ and post-date all other alteration minerals. The clay may be largely of supergene origin. a. Discussion. Hydrothermal alteration observed in well $\mathrm{C} / \mathrm{T}-2$ is texturally and mineralogically similar to that observed at intermediate to deep levels in other holes within the Roosevelt Hot Springs KGRA; including Utah State Geothermal Wells 72-16 (Rohrs and Parry, 1978), 14-2 (Parry, 1978;

Ballantyne and Parry, 1978; Ballantyne, J. M., 1978) and 52-21 (Ballantyne, G. H., 1978) (Figure 1.2). Near-surface alteration in C/T-2 could not be characterized due to an absence of cuttings between ground level and 121.9 m (400 ft).

The age of alteration in C/T-2 relative to present geothermal activity is unknown. Sinter deposits and altered alluvium penetrated by shallow diamond drill holes along the Opal Mound Fault (DDH 1A, 1B and 76-1; Bryant and Parry, 1977; Parry, et al., 1980) (Figure 1.2) and altered alluvium in Utah State 72-16 (Rohrs and Parry, 1978) are clearly of recent geothermal origin. Other alteration at Roosevelt, however, may be partially paleohydrothermal. Cataclasites and mylonites and adjacent host rocks exposed in the west-central Mineral Mountains and within the KGRA, for instance, are typically altered to various combinations of chlorite, sericite, quartz, hematite and epidote (Nielson, et al., 1978). Epidote normally forms at temperatures greater than $220^{\circ} \mathrm{C}$ (Zen and Thompson, 1964). Its present occurrence at the surface at Roosevelt suggests formation at deeper levels prior to present geothermal activity, then subsequent exposure by erosion. :B. Sibbett (personal communication, 1980) has observed fresh glassy rhyolite flows, dated at 0.8 to 0.5 m.y. (Lipman, et al., 1978), resting on strongly chloritized, silicified and hematized cataclasite within the KGRA. This relationship strongly suggests a pre-geothermal origin for the alteration.
3. Intervals selected for Detailed Geochemical and Isotopic

Investigation. Four intervals in well C/T-2 were selected for detailed geochemical and isotopic study: $1066.7-1097.2 \mathrm{~m}$ ($3500-3600 \mathrm{ft}$); 1758.6-1804.3m (5770-5920 ft); 1904.9-1935.4m (6250-6350 ft); and 2023.8-2057.3m (6660-6750
ft). The upper interval is in the cased portion of the hole and was chosen to provide calibration data for gamma-ray logging tools at moderate temperatures. The three lower intervals are all uncased, and were selected as potentially useful for calibrating gamma-ray and neutron logging equipment at high temperatures.

The interval 1066.7-1097.2m (3500-3600 ft) spans the contact at 1082.0 m (3550 ft) between the upper hornblende biotite granodiorite and subjacent hornblende-biotite granite.

The interval 1758.6-1804.3m (5770-5920 ft) includes the contact at 1776.9 m (5830 ft) between hornblende biotite quartz monzonite and the lower granodiorite. The interval also includes a fault zone between 1764.7 m (5790 ft) and $1770.8 \mathrm{~m}(5810 \mathrm{ft})$

The two lower intervals, 1904.9-1935.4m (6250-6260 ft) and 2923.8-2057.3m (6650-6750 ft), are both in the lower hornblende-biotite granodiorite. Both intervals show strong gamma-ray and neutron log anomalies which do not correlate with readily apparent lithologic variations. Both intervals, however (especially 2023.8-2057.3m (6650-6750 ft)) are characterized by slightly more intense alteration and mineralization than is typical for the lower portion of C/T-2.

III. GEOCHEMISTRY

A. Introduction

Chemical analyses of cuttings from hole $C / T-2$ have been completed with two principal objectives in mind. First, various types of analyses can be useful in the interpretation of the genesis of geothermal systems and location of fluid entries within drill holes. Second, several of the geophysical logging techniques which will be discussed in a subsequent section measure chemical properties. The most obvious of these is the gamma log which measures the gamma radiation produced by the natural decay of uranium, thorium, and potassium. In addition, several elements have extremely large thermal neutron capture cross sections and are thus important in the evaluation of neutron logs.

B. Methods and Procedures

All cuttings samples for chemical analysis from well C/T-2 were initially thoroughly washed to remove drilling mud, lost circulation material and other contaminants. The samples were then cleaned of iron drill bit and drill rod shavings with a hand magnet. Composite samples were prepared at the rate of one gram of sample per foot of drill hole. Prior to analysis both individual and composite samples (except for closed-can gama-ray spectrometry) were pulverized to a fine powder (<<270 mesh) in a Spex shatterbox.

Individual samples from the selected intervals of well C/T-2 were analyzed for Si, Ti, Al, Fe, Mn, Mg, Ca, P, Nb, $\mathrm{Zr}, \mathrm{Y}, \mathrm{Sr}, \mathrm{Rb}, \mathrm{Th}, \mathrm{Pb}, \mathrm{Ba}$ and U by X-ray fluorescence (XRF) using a Norelco (Phillips Electronics Instruments) X-ray fluorescence spectrograph. For each sample, two disks were prepared for analysis. Fused glass disks were used for Si, Ti, Al, Fe, Mn,

Mg, Ca and P. All other analyses were obtained from powder disks prepared by mixing one gram of chromatographic cellulose with one gram of sample and pressing the mixture into an aluminum cap with 20 tons pressure. XRF analytical techniques used for $\mathrm{Si}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}, \mathrm{Ca}$ and P are those of Norrish and Hutton (1969). U analyses required the methods of James (1977). All other XRF analyses were obtained by the methods of Jack and Carmichael (1969): For Ba, these methods were modified by F. Brown, of the University of Utah Department of Geology and Geophysics. Na and K analyses were obtained by lithium metaborate fusion and flame photometry using techniques outlined by Suhr and Ingamells (1966).

Sulfur analyses for the four selected intervals from well C/T-2 were completed with a LECO sulfur analyzer. For each analysis by this method, measured quantities of sample, Sn and Fe are inductively furnace-heated in a stream of oxygen, producing SO_{2} which is then analyzed by titration with potassium iodide.
U in samples from the selected intervals was also determined by fluorometry, using a Jarrel-Ash fluorometer. In fluorometric analysis, each sample is digested in $\mathrm{HCLO}_{4}, \mathrm{HNO}_{3}$ and HF , then mixed with ethyl acetate. The resulting mixture is fused with a flux in a platinum disk, then excited by ultra-violet radiation, causing the sample to fluoresce. The fluorescence of the sample is compared with that of standards containing known quantities of U.

Closed-can gamma-ray spectrometry was used to determine K, Th, and U concentrations in samples from the selected intervals of well $\mathrm{C} / \mathrm{T}-2$. Analyses were obtained with a Tracor-Northern multichannel gamma-ray spectrometer.

Each cuttings sample was completely sealed in a can to prevent leakage of radon gas. The sealed sample was allowed to sit for four hours, then counted for 2000 seconds. A second reading of the same duration was obtained four days later, the results averaged, and the counts converted to K, Th and U values.

Arsenic concentrations in samples from the four selected intervals and in 100-foot composite samples were obtained by colorometric methods. Sample preparation for colorimetry begins with digestion in $\mathrm{HF}, \mathrm{HClO}_{4}$ and HCl : Arsenic in the acidified sample is reduced to a trivalent state by the addition of potassium iodide and stannous chloride solutions. Zinc is added and reacts with the acid, liberating hydrogen gas, which forms arsine from the arsenic in the sample. The arsine is bubbled into a solution of pyridine and silver diethyldithiocarbamate, with which the arsine forms a colored complex which is compared to standards.

Mercury analyses for composite samples and samples from the selected intervals of C/T-2 were obtained with a Jerome Instruments Model 301 gold-film detector. For this technique a weighed portion of each sample is heated in a closed tube to greater than $600^{\circ} \mathrm{C}$ to release Hg vapor. The vapor collects on a gold film, and concentration is measured by the resultant change in electrical resistance of the film.

Individual samples from the four selected intervals from well C/T-2 and 100-foot composite samples from the entire sampled length of the well were analyzed for the following elements by plasma spectrometry: $\mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mg}$, $\mathrm{Fe}, \mathrm{Al}, \mathrm{Ti}, \mathrm{P}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Au}, \mathrm{Ag}, \mathrm{Sb}, \mathrm{Bi}$, Te, $\mathrm{Sn}, \mathrm{W}, \mathrm{Li}, \mathrm{Be}, \mathrm{Zr}, \mathrm{La}, \mathrm{Ce}$, and Th. Analyses were obtained with a Model

137 Applied Research Laboratories Inductively Coupled Plasma Quantometer (ICPQ) with a 1080 1ine per millimeter grating and computer operating system which automatically performs calibration, matrix interference correction and background subtraction

Sample preparation for analysis by ICPQ commences with oven-drying a one-gram portion for at least two hours at $120^{\circ} \mathrm{C}$. This dried portion is then digested, in several stages, in $\mathrm{HF}, \mathrm{HClO}_{4}, \mathrm{HCl}$, and HNO_{3}. This digestion yields for analysis an aqueous solution with approximate concentrations of 5% $\mathrm{HClO}_{4}, 10 \% \mathrm{HNO}_{3}$ and 1% total dissolved solid.
C. Geochemistry of Composite Samples

Numerous studies have drawn attention to the analogy between geothermal systems and the systems which have produced hydrothermal ore deposits (Ewers and Keays, 1977). The suite of metals which are concentrated in geothermal systems are similar to those which are found in epithermal ore deposits. Efforts are presently underway to understand the geochemical relationships in these systems and to adapt this understanding to the formulation of geochemical exploration methods (Bamford, 1968; Bamford, et al.; 1980).

Several periods of hydrothermal activity can be documented in the Roosevelt geothermal area. The youngest period is the present one with alteration and mineral deposition being concentrated along the three major structural trends which have been discussed previously. Low angle normal faulting, the oldest fault episode recognized in the area was accompanied by hydrothermal activity. Numerous small exploration pits containing shows of malachite, chalcopyrite, and pitch 1 imonite have been found along the mapped fault zones (Nielson, et al., 1978; Sibbett and Nielson, 1980). In addition, ata

small mineralized areas within the plutonic phases suggest that the intrusive episodes may have generated small hydrothermal systems, al though age relationships are speculative at this time.

A geochemical reconnaissance study of C/T-2 Was done to help evaluate the evolution of the geothermal system in this area and to allow comparison with data from the rest of the field. Whole rock samples were composited at 30.5 meter (100 ft) intervals and analyzed using an Induction Coupled Plasma Quantometer. - These results are ghown in Table 3.1 and selected elements are plotted as a function of depth in Figure 3.1. : Bamford et. al. (1980) have suggested that $\mathrm{Li}, \mathrm{As}, \mathrm{Hg}, \mathrm{Mn}, \mathrm{Zn}$, and Sr , are important elements in evaluating the behavior of the geothermal system. In well $\mathrm{C} / \mathrm{T}-2, \mathrm{Mn}, \mathrm{Sr}$, and In show a strong correlation with rock type and are probably not geothermal indicators.

The hanging wall of the low angle fault (above 844.0 m (2750 ft)) shows anomalous concentrations of Li , As , and Hg . An especially strong Hg anomaly is present in the 204.0-241.0m (670-790 ft) section. Detailed analysis of this interval shows 2800 ppb Hg in the 204.0-213.0m (670-700 ft) interval which is the location of the alluvium-bedrock contact. It is felt that this anomaly was produced by thermal waters which at one time leaked from the 0pal Mound Fault or the western boundary fault of the Opal Mound horst (Figure 1.2). The entire hanging wall, however, shows a geochemical signature which is compatible with hydrothermal alteration. It will be seen in the next section that this area is characterized by $\delta 180$ lows produced by equilibrium with thermal waters.

A zone of brecciation and alteration located between 1451.0 m and 1454.0 m

TABLE 3.1 CHEMICAL ANALYSIS OF COMPOSITE

WHOLE ROCK SAMPLES FROM C/T-2

TABLE 3.1 CONTINUED

TABLE 3.1, CONTINUED

TABLE 3.1 CONTINUED

(

TABLE 3.1 CONTINUED

TABLE 3.1 CONTINUED

TABLE 3.1 CONTINUED

TABLE 3.1 CONTINUED

TABLE 3.1 CONTINUED

TABLE 3.1 CONTINUED

(4760-4770 ft) contains a Li and As anomaly in the composite geochemistry. This zone does not show an associated Hg anomaly, but Hg is probably not stable at the temperatures which exist in this area (J. N. Moore, personal communication). No other zones which are beneath the casing show evidence of hot water entries using reconnaissance geochemical techniques.
D. Geochemistry of Detailed Study Intervals

The intervals selected for detailed log interpretation have been analyzed chemically at ten foot intervals. These analyses are presented in Table 3.2. In addition, Table 3.2 contains several spot analyses from the upper portion of the drill hole.
E. Rare Earth Element Analyses

The thermal neutron capture cross sections of several of the Rare Earth Elements is quite large. . In particular gadolinium, samarium, and europium have capture cross sections of $46,000,5,600$, and 1,400 Barns respectively. In order to evaluate the influence of these elements on the neutron logs, several spot samples were analyzed by neutron activation techniques. These results are shown in Table 3.3.
F. Fluid Chemistry

Table 3.4 gives two analyses of water from well C/T-2. The first analysis is from Parry et al. (1976). The second analysis is of water collected in 1979 (Newman, 1979). Since water in the well is stagnant, some change in chemistry may be expected. In addition; chemical gradients may exist or develop in the fluid in the borehole.

Table 3.2. Chemical analyses of composite whole rock somples from Hell C/T-2.

HATA		2005 00		2170.00		2240.00		2:140.00		こ^し0. 00	ri
		611.1		661.4		$68 \overline{8} .8^{-}$		719.3		749.8	METERS
5102		63.00		53.51		48. 17		¢6. 2		4.47	W1 \%
71022		0. 01		2. 14		2. 12		1. 92		1. 11	WT \%
AL:O3		17.28		14. 97		14.37		15.45		15. 50	WT \%
re=03		3.12		8. 29		11.01		8. 19		4.93	WT \%
MNO		0. 13		0. 14		0.15		O. 12		0.07	WT \%
meo		0. 8.5		1. 77		3. 17		3. 10		1. 42	WT \%
Cno		1. 89		5. 71		7. 3		6. 37		3. 11	WT \%
120		\therefore 4. 52		3. 35		2. 30		3.20		5. 36	WT \%
NA2O		4. 83		4. 57		- 4.79		4. 47		4. 55	HT \%
reos		0. 15.		0. 67		-0. 18		. 0.37		0. 33	WT \%
503		0. 03		..-0.21	-	0. ${ }^{1}$		$\therefore 0.10$		0. 04	WT \%
Loss	,	1. 12		2. 08		1. 70	,	1.90		1. 17	WT \%
total		99. 53		98. 18		97. 54		102. 07		- 000.06	
NB		25. 00		40.00		35.00		30.00		30.00	prr
2R		110.00		180.00		170.00		150.00		210.00	fPr
Y		20. 00		30.00		20.00		25.00		2כ. 00	PPM
SR		350.00		815.00		760.00		190.00		600. 00	PPN
RB		90.00		45.00		ES. 00		70.00		125.00	PPM
Pb		25. 00		10.00		10.00.		15.00		00.00	PPr
BA		700.00		700.00		100. 00		400.00		1:50.00	Pris
v	$<$	150.00	$<$	150.00		141.00	$<$	150.00	$<$	150.00	PRM
CR		24.00		2t. 00		46.00		35.00		36. 00	PPri
CO		23.00		39.00		38.00		33.00		26. 00	PPN
$N 1$	$<$	S. 00		17.00		27.00		17.00		B. 00	PPM
Cu		16. 00		56.00		93.00		60. 00		19.00	PPri
Ho	$\dot{<}$	50.00	$<$	50.00	$<$	50.00	$<$	20. 00	$<$	50. 00	PPM
ZN		44.00		124.00		104.00		B2. 00		65.00	PPM
CD	\leqslant	5. 00	$<$	5. 00	$<$	5.00	$<$	5. 00	\leqslant	5. 00	PPM
AG	\leqslant	2. 00	$<$	2. 00	\leqslant	2. 00	$<$	2. 00	\leqslant	2. 00	PPN
AU	$<$	4. 00	$<$	4. 00	$<$	4. 00	\leqslant	4. 00	$<$	4. 00	PPM
AS	$<$	1.00		18. 00		2. 10		+3.00		4. 00	PPM
SB	$<$	30.00		. 30.00	$<$	30.00	$<$	130.00	$<$	30.00	PPN
B1	6	100.00	$<$	100.00	$<$	100.00	$<$	100.00	$<$	100.00	PPM
TE	$<$	50.00	$<$. 50.00	$<$	50.00	<	50.00.	$<$	50.00	PPN
SN	$<$	3. 00		7.00		7.00		7.00		5. 00	PPM
LI		- 9.00		17.00		22.00		10.00		14.00	PPM
BE		$\therefore 1.20$		2. 20		2.30		2. 30		2.60°	PPM
LA	\cdots	. 72.00		64.00		40.00		44. 00.		54.00	PPM
CE		157.00		130.00		72.00		77.00		73. 00	PPM
HIG		5. 00		25. 00		20.00		15.00		10.00.	PPH
U (XRF)	$<$	2. 00	$<$	2. 00	$<$	2.00	$<$	2. 00	$<$	2.00	PPM
U (F)		1.69		2. 12		3. 39		2.12		-3. 39.	PPr
U (R)											PPM
TH (R)											PPM
TH (XRF)	'	15.00	$<$	5. 00		. 10.00		5. 00		10.00	PPM
											PPM

Table 3.2 continued
(IDHILIRF: 7-I

Table 3.2 continued
IHILLIPG 9-1

DATA		3:20. 00		3540.00		3550.00		$3: 60.00$		3570.00	FT
		. 1072.9		1079.0		1082.0		1085.1		j08B. 1	MĖTERS
53112		54.27		54. 06		55.43		27. 70		40. 72	WT $\%$
T1u2		1. 44		1. 47		1. 36		1. 08		0.93	WT $\%$
AL 203		19.09		19.39		19.18		19.03		19. 21	WT \%
rezo3		7. 50		6. 81		6. 36		4. 82		9. 03	WT ${ }^{\text {W }}$
MINO		0. 11		0. 10		0.07		0. 18		0.06	WT \%
med		2. 20		2. 01		1. H6		1. 19		1. 144	WT \%
CAO		5. 11		4. 52		4.:77		3. 10		2. 73	WT \%
H20		3. 19		3. 65		3. 41		5. 16		c. 39	UTT \%
NA2D		4. 99		5. 04		5. 30		9. 81		4. 90	WT \%
P205		0. 44.		0. 36		0. 37		0. 26		0. 21	WT \%
503		0. 11		0. 11		0. 11		0. 08		0.136	LT \%
Loss		0.99		0. 96		1.07		0. 86		0. 84	WT Z
tutal		99. 52		98. 48		99.89		101.07		j01. 15	
NB		20.00		25. 00		25. 00		15.00		15. 00	PPM
2R		205.00		430.00		345.00		185.00		465.00	PPM
Y		20. 00		20. 00		20.00		15.00		15.00	FPM
57		1240.00		1300. 00		1250.00		685.00		500.00	PPN
RB		55.00		55.00		55.00		65.00		70.00	PPM
PB		75.00		35. 00		25.00		А5. 00		50.00	PPM
BA		2150.00		2500.00		2450.00		12:0.00		1200.00	PPM
v	$<$	150.00	$<$	150.00	$<$	150.00	$<$	150.00	$<$	150.00	PFM
CR		53.00		29. 00		41.00		39.00		37.00	PPM
CO		22. 00		19.00		17.00		20.00		15.00	PPM
NI		13.00		6. 00		b. 00		6. 00	$<$	5. 00	PPM
cu		37.00		21.00		22. 00		20.00		11.00	PPM
MO	$<$	50.00	$<$	50.00	$<$	50.00	$<$	50.00	\leqslant	co. 00	PPM
219		97.00		B0. 00		80.00		56.00		18. 00	PPH
CD	\leqslant	5. 00	$<$	5. 00	$<$	$\therefore 5.00$	$<$	5.00	$<$	5. 00	PPN
AG	$<$	2.00	$<$	2. 00	\leqslant	2. 00	$<$	2. 00	$<$	2. 00	PPM
AU	$<$	4. 00	$<$	4. 00	\leqslant	4. 10	$<$	4. 00	$<$	4. 00	PPM
AS		1. 00	<	1. 00		1. 00		1. 00	\leqslant	1. 00	PPM
SB	$<$	30. 00	$<$	30.00	$<$	30.00	$<$	30.00	$<$	30. 00	PPM
B1	c	100.00	<	100.00	$<$	100.00	$<$	100.00	\leqslant	100.00	PPM
TE	$<$	50.00	\leqslant	50.00	$<$	50.00	\leqslant	50.00	\leqslant	50.00	PPM
5N	$<$	5. 00	\leqslant	5.00	PPM						
LI		1200		10.00		8. 00		7. 00		5.00	PPM
BE		2. 70		2. 50		. 2. 30		2. 00		1. 70	PPM
LA		89.00		97.00		91.00		78.00		71.00	PPM
CE		102. 00		113.00		100.00		83. 00		67.00	PPM
HG		5. 00	$<$	5. 00		5. 00		5.00	$<$	5.00	PPB
U (XRF)	$<$	2. 00	$<$	2. 00		4. 00	$<$	2. 00	$<$	2.00	PPM
U (F)		1.69		1. 27		1. 27		1.69		1.27	PPM
U (R)	$<$	E. 47	<	8. 47	$<$	B. 47	$<$	8. 47	$<$. B. 47	PPM
TH (R)	$<$	10.00	\leqslant	10.00	$<$	10.00	$<$	10.00	$<$	10.00	PPM
TH (XhF)	$<$	5. 00	$<$	5. 00	$<$	5. 00		5. 00		25.00	PPM
$K(R)$		3. 80		3. 80		4. 30		6. 50		6. 20	PPM

Table 3.2 continued
PrIILLIPE 9-1

DATA		3:00. 00		3270. 00		3400. 00		5100.00		5770.00	FI
		10951.2		$1094 . \overline{2}$		1097.3		1761.7		1764.8	METERS
5102		60.90		60. 18		c2. 10		57.07		57.71	WT \%
T102		0. 86		O. 80		0. 40		1. 06		1. 01	WT $\%$
AL: 23		20. 85		18. 40		19.22		10. 78		10.72	WT \%
FE203		3. 79		3. 85		2. 36		4. 59		4.07	WT \%
Mind		0.07		0. 17		0. 66		0. 07		0. 07	WT $\%$
MGO		0.47		- 00		0. 85.		1. 41		1. 38	WT \%
CAO		2. 45		2. 03		2. 18		3. 14		3. 34	WT \%
H. 20		6. 67		6. 57		7. OB		5. 80		5. 90	WT \%
NAZO		5. 22		5. 08		5. 17		4. 136		4. 63	WT \%
P20S		0. 18		0. 15		O. 34		0. 24		0. 24	WT \%
503		0.04		0. 03		0. 03		0.07		0.04	WT \%
LOSS		0.85		0. 53		0. 73		1.49		2. 30	WT \%
TOTAL		100. 57		78. 57		101.80		98.60		99.43	
NB.		15. 00		15. 00		15. 00		15. 00		20.00	PPM
2R		620.00		835. 00		420.00		110.00		215.00	PPM
Y		15. 00		15.00		15.00		15. 00		15.00	PPM
SR		435.00		445. 00		355. 00		1085.00		1035.00	PPM
RB		70.00		60.00		60.00		70.00		65.00	PPM
PB		35. 00		40. 00		40. 00		5s. 00		35.00	PPM
BA		900.00		850. 00		700.00		3550.00		3650.00	.rPN
\checkmark		220.00	$<$	150.00	$<$	150.00	$<$	150.00	$<$	150.00	PPM
CR		50. 00		39. 00		39.00		55.00		61.00	PPM
CD		20.00		17.00		17.00		33.00		35.00	PPM
N1		7. 00	\leqslant	5. 00	$<$	5. 00		5. 00	\leqslant	5.00	PPM
cu		19.00		14.00		12.00		13. 00		B. 00	PPN
MD	\leqslant	50.00	c	50.00	$<$	50. 00	$<$	50.00	\leqslant	50.00	PPM
2N		72. 00		47.00		47.00		73. 00		65.00	PPM
CD		5. 00	$<$	5. 00	$<$	5. 00	$<$	5. 00	$<$	5. 00	PPM
AG		8. 00	<	2. 00	$<$	2. 00	$<$	2. 00	$<$	2. 00	PPM
AU		10.00	$<$	4. 00	$<$	4. 00	$<$	4. 00	\leqslant	4. 00	PPM
AS	$<$	1.00		1. 00		1. 00	$<$	1. 00	\leqslant	1.00	PPM
Sb		52.00	$<$. 30.00	$<$	30.00		41.00	$<$	30.00	PPM
BI	c	100.00	\leqslant	100.00	$<$	100.00	$<$	100.00	$<$	100.00	PPM
TE	\leqslant	50.00	\leqslant	50.00.	\leqslant	. 50.00	$<$	50.00	$<$	50.00	PPM
SN	<	5. 00	$<$	5. 00	\leqslant	5. 00	$<$	5. 00	\leqslant	5. 00	PrM
LI		13.00		6. 00		6.00		18:00		25. 00	PPM
BE		1. 70		1. 30		1. 20		1. 90		1. 70	PPM
LA		-88.00		109.00		116.00		69.00		58. 00	PPM
CE		127.00		119.00		121.00		92. 00		¢ 63.00	PPM
HC	\leqslant	5. 00	\leqslant	5.00	$<$	5. 00		5. 00		5. 00	PPY
U (XRF)		3. 00	$<$	2.00	$<$	2. 00	$<$	2. 00	$<$	2. 00	PPM
U (F)		1. 27		0. 85		1.69.		1. 27		1. 27	PPM
U (R)	\leqslant	8. 47	$<$	E. 47	$<$	E. 47°	\cdots				PPM
TH (R).	<	10.00	$<$	10.00	$<$	10.00					PPM
TH (XRF)		15. 00	\leqslant	5. 00		5. 00	$<$	5. 00	$<$	5.00	PPM
k (R)		7. 20		7.40		7.40					PPM

Toble 3.2 contínued
PHILLIPG 9-1

DATA	54100.00	5010.00	5820. 00	51130.00	5040.00	FT
	1767.8	1770.9	1773.9	1777.0	1780.0	METERS
5102	54. 46	58. 76	58. 15	37.17	54.60	थT \%
T102	1. 14	1. 20	1. 05	1.07	1. 75	WT \%
AL:203	18. 28	19.11	19.34	19.28	19.07	WT \%
FE:23	4. 48	5. 10	4. 24	4. 32	7.42	WT \%
rivo	0.09	0.09	0. 09	0. 08	0. 12	WT \%
rico	1. 35	1.31	1. 41	1. 27	2. 23	WT \%
CAD	2. 83	2.91	3. 13	3. 21	4. 31	WT \%
M20	5.98	6. 14	6. 04	5. 71	4. 65	WT \%
NA20	-4.11	4. 70	4. 81	4. 70	5. 01	WT \%
P205	-0.31.	0. 32	0. 25	0. 24	0. 44	WT \%
503	0.09	0. 10	0. 04	0.03	0. 11	WT \%
LOSS	2. 40	2. 48	1. 55	1. 54	1. 17	WT \%
total	97.92	102. 22	100. 10	.97. 04	j00.88	

NB		20.00		15.00		15.00		20.00		25. 00	PPM
2R		745. 00		510.00		175.00		$\because 0000$		350.00	PPM
$\boldsymbol{\gamma}$		15.00		15.00		15.00		15.00		15.00	PPM
SR		705. 00		910.00		12.05 .00		1215.00		1050.00	PPM
RB		70.00		75. 00		60. 00		60.00		65.00	PPM
PB		40.00		30.00		25. 00		30.00		30.00	PPM
BA		3650.00		3700.00		4000.00		3750. 00		2700.00	PPM
v	$<$	150.00		332. 00	$<$	150.00	$<$	150.00	$<$	150.00	PPM
CR		70.00		69.00		61.00		60.00		66. 00	PPM
CD		19.00		17. 00		18. 00		17.00		18. 00	PPM
NI	$<$	5. 00		7. 00	$<$	5. 00	$<$	5. 00		8. 00	PPM
CU		11.00		17.00		B. 00		9. 00.		16. 00	PPM
MO	$<$	50.00		72. 00	$<$	50.00	\leqslant	50.00	<	50.00	PPM
ZN		87.00		103.00		75.00		74.00		99.00	PPM
CD	$<$	5. 00		b. 00	$<$	5. 00	$<$	5.00	$<$	5. 00	PPM
AG	$<$	2. 00		10.00	$<$	2. 00	$<$	2. 00	$<$	2. 00	PPM
AU	$<$	4. 00		B. 00	$<$	4. 00	\leqslant	4. 00	\leqslant	4. 00	PPM
AS		3. 00		3. 00	$<$	1. 00		1.00		1. 00	PPM
SB	$<$	30.00		63.00	$<$	30.00	$<$	30.00	-	30. 00	PPM
日I	$<$	100.00	$<$	100.00	$<$	100.00	$<$	100.00	<	100.00	PPM
.TE	$<$	50.00		51:00	<	50.00	$<$	50. 00	<	50.00	PPM
SN	$<$	5. 00	$<$	5. 00	$<$	5. 00	\leqslant	5. 00	<	5. 00	PPM
LII	.	24.00		28. 00		16. 00		15.00		13. 00	PPM
BE		2. 00		2. 10		1. 40		1. 70		2. 30	PPM
LA		64.00		90.00		54.00		66.00		98. 00	PPM
CE		75.00		141.00		58.00		70.00		113.00	PPM
HG		10.00		5. 00		5. 10	$<$	5.00		10.00	PPE
U (XRF)	$<$	2.00	$<$	2. 00	$<$	2. 00	\leqslant	2. 00	$<$	2.00	PPM
U (F)		1. 69		1. 69	-	1. 27		1. 27		1.27	PPM
U (R)	$<$	8. 47	. $<$	8. 47	$<$	B. 47	$<$	8. 47	$<$	8.47	PPM
TH (R)	c	10.00	$<$	10.00	$<$	10.00	$<$	10.00	$<$	10.00	PPM
TH (XRF)		5. $00 \cdot$	\leqslant	5.00	$<$	5. 00		10.00		5. 00	PPM
K (R)		6.30	;	6. 50		5. 40		- 6. 50		4. 90	PPM

Table 3.2 contínued
IHIILIPS 9－1

DATA	5050.00	5ULO． 00	5870.00	5080． 00	5070． 00	$\dot{F} \boldsymbol{T}$
	1783.1	1786．1	1789.2	1792.2	1795.3	METERS
5102	53.90	54.03	53.05	55． 25	55.38	WT \％
T102	1． 57	1.57	1． 118	1．39	1.45	WT \％
ALこ03	18.66	18．89	19．16	19．84	19．40	WT \％
FE203	6． 86	6． 79	7.97	7． 37	6.65	WT \％
miso	0． 11	0． 12	0． 12	0． 13	0． 11	WT \％
MGO	2． 02	1． 94	2． 17	2． 42	2． 35	WT \％
CAO	4． 20	4． 17	4． 37	4． 36	4． 39	WT \％
K20	4． 58	4． 72	4． 60	4． 75	4． 60	WT \％
Nazd	4． 74	4.87	4． 79	4． 80	5． 19	WT \％
r20s	0． 41	0． 40	0． 50	0． 41	0． 43	WT \％
503	0． 10	O． 08	0． 14	O． 13	0.06	LTT \％
Loss	1． 19	1.17	0.95	0． 87	O． 80	WT \％
total	98． 34	90． 77	100． 50	101． 92	100． 81	

NB		20.00		25． 00		30． 00		20．00		20． 00	PPM
ZR		335.00		310.00		475.00		－ 355.00		180.00	PPM
Y		15.00		15.00		20.00		15． 00		15.00	PPM
SR		1070.00		1085.00		1055.00		1070．00		1095.00	PPM
RB		60．00		65． 00		60． 00		60． 00		60.00	PPM
PB		20． 00		20.00		40． 00		30． 00		20.00	PPM
BA		2950.00		2\％00．00		2250.00		ごフก0．00		3000.00	PPM
V	$<$	150.00	$<$	150.00	$<$	150.00.	$<$	150.00	$<$	150.00	PPM
CR		66.00		67.00		64． 00		58． 00		47．00	PPM
CO		16． 00		16.00		15．00		14．00		13． 00	PPM
NI	\leqslant	5． 00	$<$	5． 00	$<$	5.00	$<$	5． 00	$<$	5． 00	PPM
CU		．15．00		9：00		13． 00		7． 00		7．00，	PPM
MO	$<$	50.00	$<$	＇50．00	$<$	50.00	$<$	50.00	\leqslant	50． 00	PPr ${ }^{\text {a }}$
ZN		94.00		92.00		94． 00		67． 00		81． 00	PPM
CD	$<$	5． 00	\leqslant	5． 00	$<$	5． 00	$<$	5． 00	$<$	5． 00	PPM
AG	$<$	2． 00	$<$	2． 00	$<$	2． 00	$<$	2． 00	$<$	2． 00	PPM
AU	$<$	4． 00	\leqslant	4.00	$<$	4． 00	$<$	－4． 00	$<$	4． 00	PPM
AS		1.00	$<$	1.00	$<$	1.00	$<$	1． 00	$<$	1． 00	PPN
SB		31.00	$<$	$\therefore 30.00$	$<$	30.00	$<$	30.00	$<$	50.00	PPM
BI	$<$	100.00	\leqslant	100.00	6	100.00	$<$	100.00	\leqslant	100.00	PPM
TE	$<$	50.00	$<$	50.00	$<$	50.00	$<$	50.00	\leqslant	50． 00	PPM
SN	$<$	5． 00	$<$	5.00	$<$	5.00	$<$	5． 00 －	$<$	5． 00	PPM
LI		15.00		9.00	－	7． 00		B． 00		8． 00	PPM
BE		2． 20		1.40		1． 50		1． 30		1． 20	PPP1
LA		86.00		61.00		74.00		48． 00		39． 00	PPr
CE		101.00		90.00		115.00		71.00		57.00	PPM
HG		5． 00		10.00		5.00	$<$	5.00	$<$	5． 00	PPD
U（XRF）	$<$	2.00	$<$	2． 00	$<$	2． 00	$<$	2.00	$<$	2． 00	PPM
U（F）		2.27		0． 85		0． 85		1． 27		1． 27	PPM
U（R）	$<$	8． 47	$<$	B． 47	$<$	B． 47					PPM
TH（R）	$<$	10．00	$<$	10．00	$<$	10．00					PPM
TH（XRF）	$<$	5． 00	$<$	5． 00	$<$	5.00	＜	5． 00	$<$	5． 00	PPM
K（R）		5． 50		5.70		5． 30		．			PPN

Table 3.2 contínued
HHILLIFS 9-1.

Table 3.2 continued

IHIIALIF: 9-1

LATA	C2BO. 00		6:90. 00		6300.00		(3) 0.00		6.720. 00		FT	
		1914.1		1917.2		1920.2		1923.3		1926.3	MEIERS	
5102		51.01		52. 06		57.54		57.19		49. 86	WT	$\%$
TJ02		1. 73	;	1. 132		1. 12		1. 16		1. 74	W7	\%
AL203		15.82		15.96		14.46		15. 12		16. 27	WT	$\%$
FE203		10. 59		10.80		7. 14		7. 99		10.27	WT	$\%$
MNO		0. 15		0. 15		0. 11		0. 11		0.15	WT	7
MCO	: ${ }^{\prime}$	4. 09		4. 132		3. 43		4. 32		4. 50	WT	\%
CAD		7. 19		6. 75		5. 00		5. 58		6. 74	WT	$\%$
$1: 20$		2. 81		2. 39		3. 55		3. 42		3. 02	WT	$\%$
NA2O		4.04		3. 52		3. 43		3. 55		3. 67	WT	$\%$
P205		0.42		0. 41		O. 28		- 28		0. 56	WT	\%
503		0.20		O. 17		-0.14		0. 13		- 0.23	WT	\%
L055		0.72		0.86		O. 83		0. 89		0.85	WT	$\%$
rotal		100.37		100. 23		97.83		99.74		97.89		
NR		25.00		25. 00		25. 00		25.00		30.00	PPM	
ZF		275.00		330.00		200.00		205.00		230.00	PPM	
Y		25. 00		20.00		25.00		25.00		30.00	PPM	
SR		915.00		910.00		625.00		470.00		UO5. 00	PPN	
RE		50.00		55.00		85. 00		B5. 00		75.00	PPM	
PD		275.00		230.00		125.00		75.00		60.00	PPM	
BA		3450.00		1250.00		800. 00		750.00		850. 00	PPM	
V	$<$	150.00	$<$	150.00	$<$	150.00	$<$	J 50.00	$<$	150.00	PPM	
CR		249.00		226.00		177.00		376.00		130.00	PPM	
CO		61.00		71.00		40.00		43. 00		51.00	PPM	
NI		115.00		113.00		91.00		93. 00		74. 00	PPM	
CU		65.00		61.00°		39.00		40.00		53. 00	PPM	
MO	$<$	50.00	$<$	50.00	$<$	50. 00	$<$	50.00	\leqslant	50. 00	PPM	
2N		236.00		180.00		113.00		110.00		126.00	PPM	
$C D$	$<$	5. 00	$<$	5. 00	$<$	5.00	$<$	5. 00	$<$	5.00	PPPI	
AG	$<$	2. 00	$<$	2. 200	$<$	2. 00		3. 00		3. 00	PPM	
AU	\leqslant	A. 00	$<$	4. 00	$<$	4.00	$<$	4. 00	$<$	4. 00	PPN	
AS		2. 00		2.00	\leqslant	1. 00	$<$	1. 00		1. 00	PPM	
SB	$<$	30.00	$<$	30.00	$<$	30.00	$<$	30. 00	$<$	$\cdots 30.00$	PPM	
B I	$<$	100.00	$<$	100.00	$<$	100.00	$<$	100.00	$<$	-100.00	PPM	
TE	$<$	50.00	$<$	50.00	C	50.00	$<$	50. 00	$<$	50. 00	PPM	
SN	\leqslant	5.00	$<$	5. 00	\leqslant	5. 00	$<$	5.00	\leqslant	5. 00	PPM	
LI		9. 00	-	9. 00		9. 00		9. 00		9. 00	PPM	
BE		2. 20		2. 20		2. 20		2. 30		2. 50	PPM	
LA		57.00		56. 00		78.00		70. 00		65.00	PPM	
CE		96.00		93.00		112.00		107.00		116.00	PPM	
HG		5. 00		10.00		5. 00	$<$	5. 00		10.00	PPB	
U (XRF)	$<$	E. 00	$<$	2. 00	$<$	2. 00	$<$	2. 00	$<$	2. 00	PPM	
U (F)		1.69	.	1. 69		1.69		1.89		1.89	PPM	
U (R)	$<$	8. 47	\leqslant	8. 47	$<$	B. 47	$<$	8.47		84. 70	PPM	
TH (R)	$<$	10.00	$<$	10.00	$<$	10.00	$<$	10.00	\leqslant	10.00	PPM	
TH (XIRF)		5. 00		10.00		15.00		10.00	$<$	5.00	PPM	
K (R)		2. 70		3.10		3. 50		3. 70		5. 40	PPM	

Table 3.2 continued
PHILLIf: 7-1.

Toble 3.2 continued
Plllatift 7-リ

DATA		C८70. 00		LLOU. 00		6670.00		$6 \% 00.00$		6\%10.00	F1
		2035.0		2036.1		2039.1		20-42. ${ }^{-1}$		2045.5	METERS
5102		53.69		50.90		52.49		51.64		31.47	WT \%
1102		1. 42		1. 78		1. 11		1. 78		1. 30	WT \%
AL203		17.75		18. 48		18. 87		17.47		18.97	WT \%
FESO3		7. OB		E. $\mathrm{BC}^{\text {9 }}$		B. 67		9.22		9. 24	WT \%
Hiso		0. 11		0.13		0. 12		0. 14		0. 13	WT \%
Higo		2. 43		3. 13		3. 59		3. 17		3. 04	WT \%
CAO		4. 24		4. 71		5. 10		5. 2n		5.17	WT \%
K.20		4. 94		4. 12		4. 00		3. 81		3. 75	WT \%
NA20		3. 4θ		3. 41		4. 63		3. 85		4. 24	WT \%
P205		0. 48		0.45		0. 51		0. 59		0. 54	UT \%
503		0. 13		0. 16		0. 16		0. 20		0. 17	WT \%
LOSS		1. 68		2. 35		1.58		1. 67		0. 73	WT \%
total		97. 73		97.23		101.43		97. 52		99. 37	
NB		15. 00		15.00		15.00		20. 00		20.00	PPr
2R		. 495.00		225.00".		270.00 ${ }_{1}$		290. 00		¿'5. 09	PRN
V^{-}		20. 00		15. 00°		$15.00{ }^{-}$		20. 00		'25.00	PPM
$5 R$		1155.00		102000		1055.00		1035.00		1050.00	PPM
RB		65.00		45.00		60.00		60.00		65.00	PPM
PB		25. 00		25.00		30.00		15.00		25.00	PPM
BA		4000.00		2450.00		2550.00		2260.00		1650.00	FPM
v	$<$	150.00	$<$	150.00	$<$	150.00	$<$	150.00	$<$	150.00	PPM
CR		80.00		05. 00		84.00		31.00		73. 00	PPM
CO		26. 00		24.00		22.00		24.00		20.00	FPM
NI		7. 00		B. 00		8. 00		7. 00		9. 00	PPH
Cu		15. 00		14. 00		15.00		20. 00		19.00	PPM
Mo	$<$	50.00	$<$	50.00	$<$	50.00	$<$	50.00	$<$	50.00	PPM
2N		107.00		133.00		120.00		125.00		112.00	PPM
$C D$	$<$	5. 00	$<$	5. 00	\leqslant	5. 00	$<$	5.00	\leqslant	5.00	PPM
AG	$<$	2.00	$<$	2. 00	\leqslant	2. 00	$<$	2. 00	$<$	2. 00	PPM
AU	$<$	4.00	\leqslant	4.00	$<$	4.00	$<$	4. 00	$<$	4. 00	PPM
AS	$<$	1. 00	<	1.00	$<$	1. 00	$<$	1.00		1. 00	PPM
SB	\leqslant	30.00	$<$	30. 00	$<$	30: 00		32.00	\leqslant	30.00	PPM
BI	$<$	100.00	$<$	100.00	$<$	100.00	$<$	100.00	c	100.00	PPM
TE	$<$	50.00	$<$	50. 00	$<$	50. 00	$<$	50.00	$<$	50. 00	PPM
SN		6. 00		7.00	$<$	5.00	$<$	5.00	$<$	5.00	PPM
LI		10.00		14. 00		11.00		12. 00		12. 00	PPM
BE		1. 10		1. 20		1. 40		1. 50		1.60	PPM
LA		50.00		42. 00		53.00		68. 00		63. 00	PPr1
CE		B6. 00		73. 00	\bullet	88. 00		123.00		95. 00	PPM
HG		5.00		10.00		5. 00		5.00	\leqslant	5.00	PPb
U (XRF)	$<$	2.00	$<$	2. 00	$<$	2. 00	$<$	2. 00	\leqslant	2.00	PPM
U (F)		1. 27	$<$	0. 85		1. 27	<	0. 85	$<$	0. 85	PPM
U (R)								16.94		25.41	PPM
TH (R)							$<$	10.00	\leqslant	10.00	PPM
TH (XRF)		5. 00		5. 00		5. 00		5. 00		5. 00	PPM
K (R)								b. 10		4. 70	PPM

Table 3.2 continued
PHIILIPS 9-3

Table 3.3 Neutron activation analyses of selected samples from Well c/T-2

$$
\binom{\text { data hot }}{\text { arilabe yet }}
$$

$$
\mathrm{C} / \mathrm{T}-2
$$

FIGURE 3.1 COMPOSITE WHOLE ROCK ANALYSES OF WELL C/T-2 AS A FUNCTION OF DEPTH.

C/T-2

FIGURE 3.1 CONTINUED.

FIGURE 3.1 CONTINUED.

FIGURE 3. 1. CONTINUED.

C/T-2

FIGURE 3.1 CONTINUED.

Table 3.4. Water Analyses from Well C/T-2

IV. OXYGEN AND CARBON ISOTOPES

A. Introduction

Stable isotopes of carbon and oxygen have been used effectively to estimate the temperatures of deposition of hydrothermal minerals (Ohmoto and Rye, 1979; Taylor, 1979). This estimate is accomplished by measurement of the isotopic compositions of minerals and either a measurement or an estimation of the isotopic compositions of fluids with which the minerals are in equilibrium. Carbon and oxygen isotopic analyses of alteration phases such as calcite have been useful in predicting fluid entries in some geothermal systems (Kendall, 1976, Elders, et al., 1978).

In order to document and quantify the hydrothermal processes effecting hole $C / T-2$, twenty-six samples were selected for stable isotope analysis of carbonate minerals. Analyses of carbon and oxygen isotopes in calcite will provide a base from which temperatures may be estimated and trends of isotopic enrichment or depletion which can be correlated with entries identified by logging or geochemical signatures such as mercury or arsenic anomalies.

Calcite is a common alteration phase in the Roosevelt Hot Springs geothermal system and is particularly abundant in highly altered zones which are related to fault structures (see section on lithologic logging). Carbonate veins cross-cutting older carbonate veins have been observed in thin section, along with carbonate replacements in plagioclase. In addition, altered zones frequently contain veinlets of fine grained quartz which are also related to the hydrothermal process. However, efforts to sample these veins for isotopic analysis were unsuccessful because of their fine-grain size.

B. Sample Preparation and Analyses

The samples analyzed were frorn drill cuttings collected at 3.1 and 4.6 m (10 and 15 ft) intervals. . Thus, the analyses presented are average values for these intervals and no distinction is made fo separate carbonates of different ages. Cuttings from selected 3.1 or 4.6 m (10 or 15 ft) intervals were crushed to less than 200 mesh. For several intervals, the samples of 80 to 150 mesh were analyzed to test the influence of grain size on the isotopic values. Approximately 500 mg of sample was reacted with 100% distilled phoṣphoric acid for 12 to 15 hours at $25^{\circ} \mathrm{C}$ (micCrea, 1950). The liverated CO_{2} gas was then extracted and purified for carbon ad oxygen isotopic analysis. The gas was analyzed on a Micromass Model 602D, twin-collecting, 900 mass spectrometer.

The isotope data are reported as $\delta 180$ or $\delta^{13} \mathrm{C}$ where:

$$
\delta=\left(\frac{R_{\text {sample }}}{R_{\text {standard }}}-1\right) 1000
$$

and $R_{\text {sample }}$ is the $180 / 160$ or ${ }^{13} \mathrm{C} / 12 / \mathrm{C}$ ratio in the sample and $\mathrm{R}_{\text {standard }}$ is the corresponding ratio for the standard. The standards used are Standard Mean Ocean Water (SMOW) for oxygen (Craig, 1961) and the Chicago PDB Standard for carbon (Craig, 1957). A δ-value $=+5$ would mean that the sample is 5 per mil (5 parts per thousand) or 0.5 percent richer in 180 than SMOW or ${ }^{13} \mathrm{C}$ than PDB. Negative numbers signify relative depletion in the heavy isotopes. C. Results

The oxygen and carbon isotopic analyses for hole C/T-2 are listed in Table 4.1 and plotted as a function of depth in Figures 4.1 and 4.2. In addition, the $\delta 180$ and $\delta 13 \mathrm{C}$ values are plotted against each other in figure

Table 4.1. Oxygen and Cargon Isotope Data from Well C/T-2

INTERVAL		ALTERATION			POWDERED		COARSE	
Meters	Feet	W	M	S	$\delta^{18} 0 \%$	$\delta^{13} C^{0} \% 0$	$\delta^{38} 0 \%$	$\delta^{13} \mathrm{C}^{0} / 00$
236.2-240.8	775-790		X		+6.7	-3.6		
275.8-280.4	905-920	X			+9.3	-2.4		
359.7-364.2	1180-1195			X	+0.4	-3.1		
368.8-378.0	1210-1240		x		+0.4	-1.8		
446.5-451.1	1465-1480		X		+0.8	-0.7	-0.3	-0.9
492.3-496.8	1615-1630			x	+7.8	-3.5	+0.7	-2.6
515.1-519.7	1690-1705		x		+2.2	-3.8		
592.8-597.4	1945-1960			X	+0.7	-3.3	-0.7	-3.2
611.1-615.7	2005-2020		x		+2.6	-4.7		
615.7-620.3	2020-2035		X		+2.5	-4:1		
734.6-737.6	2410-2420		X		+4.7	-5.0		
835.2-838.2	2740-2750			X	-0.3	-4.5	-1.1	-4.3
862.6-865.6	2830-2840	x			+5.2	-5.5		
1002.8-1005.8	3290-3300		χ		+1.3	-4.1		
1063.8-1066.8	3490-3500	X			+7.0	-3.4		
1185.7-1188.7	3890-3900	X			+3.5	-3.5		
1292.4-1295.4	4240-4250	x			+7.3	-7.3		
1450.8-1362.5	4760-4770			x	-0.4	-5.0	-1.0	-4.8
1505.7-1508.8	4940-4950	X		-	+7.2	-3.8		
1734.3-1737.4	5690-5700	x			+6.6	-5.4		
1764.8-1767.8	5790-5800		X		-0.2	-5.1		
1795.3-1798.3	5890-5900	x			+5.3	-4.5		.
1895.9-1898.9	6220-6230	X			+7.6	-6.5	:	
1914.1-1917.2	6280-6290	X			+5.7	-5.4		
1941.6-1944.6	6370-6380	X			$+9.7$	-8.2		
2026.9-2030.0	6650-6660	X			+4.8	-4.0		

Analyst: DAVID ROHRS
Alteration: $H($ weak) ; M(moderate); S(strong)
Powdered Samples $=200$
Coarse Samples $=+80$ to +150 mesh

FIGURE 4.1 OXYGEN ISOTOPE VALUES AS A
FUNCTION OF DEPTH IIN WELL C/T-2. OPEN CIRCLES ARE COARSE SAGPLES AND CLOEED CIRCLES ARE FOWDEPED SAIVPLES.

FIGURE 4.2 CARBON ISOTOPE VALUES AS A FUNCTION OF DEPTH IN WELL C/T-2. OPEN CIRCLES ARE COARSE SAMPLES AND CLOSED CIRCLES ARE POWDERED SAMPLES.
4.3. The $\delta 180$ values range from -0.4 to $+9.70 / 00$ and exhibit no systematic variation with depth except for a gross trend of increasing $\delta 180$ with depth. Conversely, the $\delta^{13} \mathrm{C}$ values show less scatter and a pronounced decrease with increasing depth, with values ranging from -0.7 to 8.20%. The $\delta 180$ values of the coarse grained samples are isotopically lighter than their fine grained equivalents, while similar $\delta{ }^{13} \mathrm{C}$ values were obtained for both the coarse and the fine grained fractions.

The ${ }^{13} \mathrm{C}$ and $\delta 180$ data shown in Figure 4.3 exhib'it a general trend of decreasing $\delta^{133} \mathrm{C}$ with increasing $\delta 180$ in the calcites. This trend is opposite that typically observed in hydrothermal carbonates. For example, carbonates associated with felsic extrusives at the Tui Mine, New Zealand (Robinson, 1974) and the Sunnyside Mine, Colorado (Casadevall and Ohmoto, 1977) display a trend of increasing $\delta^{13} \mathrm{C}$ with increasing $\delta^{18} 0$. This trend has been correlated with a decrease in the temperature of formation. The range in $\delta 180$ and $\delta{ }^{13} \mathrm{C}$ values from these deposits is however similar to the range observed in C/T-2, and is typical of many hydrothermal carbonate minerals which occur in ore deposits in various types of host rock, regardless of whether or not carbonate rocks are known, or inferred, to be in the area (Bethke and Rye, 1979).

In general, the left-hand portion of the $\delta{ }^{13} \mathrm{C}-\delta 180$ trend is composed of carbonates found in strongly altered zones (Zone A, Figure 4.3). The central portion of the plot is comprised of carbonates from moderate-to-weakly altered rocks (Zone B), while the right-hand segment is characterized by carbonates from weakly altered lithologies (Zone C).

D. Discussion

The interpretation of data given in Table 4.1 and plotted in Figures 4.1, 4.2, and 4.3 is hindered by several factors which include: (1) our inability at present to evaluate isotopically various generations of calcite, (2) lack of fluid inclusions which could be analyzed to ascertain the isotopic composition of fluids in equilibrium with the alteration phases, and (3) our poor understanding of the temporal relationship between the present-day fluid and the alteration assemblages. Although these obstacles cannot be imnediately overcone, the evaluation of the data distribution, application of geothermometers, and correlation of calculated temperatures with measured temperatures and trace element distribution patterns may aid in quantifying the hydrothermal processes which effected C/T-2.

1. Frequency Distribution. The oxygen and carbon isotopic data given in Table 4.1 are graphically depicted in the form of frequency histograms in Figure 4.4. This plot shows that the oxygen isotopic data are composed of two distinct populations, while the carbon isotopic data are confined to one population. The oxygen isotope population I contains carbonates which occur above about 915.0 m (3000 ft) in the zone of moderate to strong alteration. Population II consists of carbonates from below 915.0 m in the zone of weak alteration.

Vastly different, temperature regimes could explain the split of $\delta 18_{0}$ values into two populations. However, one might also expect a similar split in the ${ }^{13} \mathrm{C}$ values. A more plausible alternative might be the presence of different types of water, where $\delta 180$ fluid values varied, but the $\delta^{13} \mathrm{C}$ fluid composition remained essentially constant. Superimposed on this behavior

FIGURE 4.4 FREQUENCY HISTOGRAMS OF OXYGEN AND CARBON ISOTOPE VALUES FROM WELL C/T-2

could be slightly different temperatures not nearly so drastic as those required to produce the split in the populations. The break between these two $\delta^{18} 0$ groups appears to coincide with the position of the low-angle fault which cuts the hole at about 838.0 m . The upper plate is badly brecciated and more permeable than the lower plate thereby permitting greater access by downard percolating groundwaters.

Application of the chloride-enthalpy mixing model (Fournier, 1979) to the C/T-2 fluid (analysis 1, Table 3.4) indicates that approximately 33% mixing with a cold water component is likely. If we assume that the bulk of this mixing occurs above the fault, and that a $\delta 180$ value of -12.6 observed in hole 14-2" (unmixed) a few miles away is typical of the deep fluid and -15.70% is representative of cold groundwater, a mixed fluid $\delta 180$ of about -13.7% is computed. We might conclude from this that below the fault, a 180 fluid value of about -12.6% dominates; while above the fault, a value of -13.7% prevails. The presence of one $\delta^{13} \mathrm{C}$ population for the carbonates suggests that the ${ }^{13} \mathrm{C}$ value of the fluid varied little and probably averaged around $-7 \% / 00$, typical of many groundwaters (Ohmoto and Rye, 1979)
2. Isotope Geothermometry. If we assume that these $\delta 180$ and $\delta^{13} \mathrm{C}$ fluid values are reasonable, then temperatures of formation for the carbonates can be computed using isotope geothermometry. The application of isotope geothermometry depends on the establishment of equilibrium between the fluid and the phase being deposited. Thus, in the system calcite-water, the oxygen and carbon isotopic fractionation factors can be defined as:

$$
\alpha_{c c-w}^{o}=\frac{\left({ }^{18} 0 /{ }^{16} 0\right) c c}{\left({ }^{18} 0 /{ }^{16} 0\right) w}
$$

$$
\alpha_{c C-W}^{o}=\frac{\left({ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}\right) \mathrm{cc}}{\left({ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}\right) \mathrm{w}} \text {, respectively. }
$$

The fractionation factor (α) is related to the equilibrium constant (K) of the appropriate isotopic exchange reaction in the following way,

$$
\alpha=k^{1 / n}
$$

where n is the number of exchanged atoms.

Note that from the definition of given previously, that

$$
\ln \alpha_{c c-w}=\ln \left(1+\frac{\delta_{c c}}{1000}\right)-\ln \left(1-\frac{\delta_{w}}{1000}\right)
$$

which simplifies to: $10001 n \alpha_{c c} w^{\prime}$, with $\delta_{c c}$ and δ_{w} representing either δ^{180} or $\delta^{13} \mathrm{C}$ values. The fractionation factor (α) has been shown to be a function of $1 / T^{2}$ and relationships have been derived from the experimental calibration of calcite-water isotopic exchange to give:

$$
10001 n_{c_{c}^{-} w}=2.78\left(10^{6}\right) / T^{2}-2.89
$$

for oxygen (Friedman and $0^{\prime} N e i l, 1976$) and from theoretical work by Bottinga (1968) for carbon:

$$
\left.10001 n_{\alpha_{C^{-}} W}=-8.914\left(10^{8}\right) / T^{3}+8.557\left(10^{6}\right) / T^{2}+-18.11\left(10^{3}\right) / T+8.2\right)
$$

taken from Ohmoto and Rye (1979). Temperature in these equations is in Kelvin. Therefore, by relating the difference between $\delta 180$ or ${ }^{13}{ }^{13} \mathrm{C}$ values of carbonates and water in C/T-2 with these expressions, the temperatures of formation can be determined.

Temperatures estimated in this manner are given in Table 4.2 and plotted

Table 4.2. Estimates of Carbon and Oxygen Isotopic Temperatures in Well C/T-2

Interval (feet)	$10001 \mathrm{n}{ }^{\text {cc-w }}$	$\begin{aligned} & T_{\mathrm{cay}}^{\mathrm{oxy}} \\ & \left({ }^{\mathrm{o}} \mathrm{C}\right) \end{aligned}$	$10001 \mathrm{na}{ }_{\text {cc-w }}^{\text {c }}$	$\begin{aligned} & T_{\text {carb }}^{\text {calc }} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$
$775-790$	20.4	70	3.4	111
905-920	23.0	55	4.6	90
1180-1195	14.1	132	3.9 \%	103
1210-1240	14.1	132	5.2 E	82
1465-1480	14.5	127	6.3	67
1615-1630	15.5	117	3.5	110
1690-7705	15.9	110	3.2	115
1945-1960	14.4	130	3.7	107
2005-2020	16.3	105	2.3	133
2020-2035	16.2	107	2.9	120
2410-1420	18.4	90	2.0	140
$2740-2750$	13.4	140	2.5	130
2830-2840	18.9	85	1.5	150
$3290-3300$	13.5	140	2.9	120
3490-3500	19.2	83	3.6	108
$3890-3900$	15.7	112	3.5	110
4240-4250	19.5	80	-0.3	200
4760-4770	11.8	160	2.0	140
4940-4950	19.4	82	3.2	115
5690-5700	18.8	86	1.6	148
5790-5800	12.0	160	1.9	142
5890-5900	17.5	98	2.5	130
6220-6230	19.8	78	0.5	175
6280-6290	17.9	94	1.6	148
6370-6380	21.9	64	-1.2	240
6650-6660	17.0	102	3.0	119

NOTE:

in frequency histogram form in Figure 4.5. The two distinct populations present in the $\delta 180$ raw data (Figure 4.4) are now replaced by one population with a mean temperature somewhat less than the mean predicted for the carbon isotopic temperature distribution. The oxygen isotopic temperatures never exceed about $170^{\circ} \mathrm{C}$, while carbon isotopic temperatures reach as high as $240{ }^{\circ} \mathrm{C}$ in the deeper part of the hole. Little can be said about the validity of these temperatures because the fluid isotopic data is assumed and not measured. In a very general way, carbon isotopic temperatures increase with depth, while oxygen isotopic temperatures exhibit distinctive highs and lows which seem to alternate back and forth with depth. The oxygen isotopic temperatures are generally less than the measured temperatures except in the upper part of the hole, 304.8-594.4m (1000-1950 ft).

E. Identification of Fluid Entries

A graphical comparision of the oxygen and carbon isotopic temperature profiles with Pb distribution is shown in Figure 4.6. The enrichments of Pb , As or Hg over some background concentration have generally been correlated with permeable, fluid entries in the rock. Many of the oxygen isotopic temperature spikes correlated quite closely with the highs observed in these trace elements. This is particularly true for oxygen and Pb below about 1200 m (4000 ft). Typically, carbon isotopic temperatures do not correlate with trace element highs. Rather, they mimic, in a gross way, the present temperature distribution in the system.

These data suggest that the oxygen isotopic compositions of carbonates may have continually re-equilibrated with fluids moving through the system. Carbon isotopes, on the other hand, have retained their initial values fixed

FIGURE 4.5 FREQUENCY HISTOGRAMS OF TEMPERATURES CALCULATED FROM OXYGEN AND CARBON ISOTOPE VALUES FROM WELL C/T-2

FIGURE 4.6 CACULATED OXYGEN AND CARBON ISOTOPIC temperatures plotted against lead VALUES FROM WELL C/T-2
at the time of deposition. This hypothesis fits in well with experimental isotopic exchange rate data which predict much faster rates of exchange for oxygen than carbon. This trend coupled with the possibility that the CO_{2} concentration in the fluid may have decreased significantly since the deposition of the carbonates would result in a case where the $\delta{ }^{13} \mathrm{C}$ values remain essentially unchanged. This conclusion is substantiated to a certain degree by the fact that coarse and fine grained carbonates have essentially the same $\delta{ }^{13} \mathrm{C}$ values, indicating the presence, through time, of a uniform $\delta^{13} \mathrm{C}$ value in the fluid and absence of re-equilibration in response to variations in temperature.

V. PHYSICAL PROPERTY MEASUREMENTS

A. Bulk Density and Magnitude Susceptibility Measurements

Bulk density and magnetic susceptibility measurements were obtained for 335 cuttings samples between 122 m (400 ft) and 2092 m (6885 ft) in LASL C/T-2 (Table 5.1). Magnetic susceptibility was measured using a Bison Susceptibility Bridge (Model 3101) and bulk density was determined by fluid displacement and sample weight. The latter measurement was quite difficult because the chips' size was very small. The small size made it difficult to saturate the volume of grains with water. Trapped air would lower any density measurements. Every effort was made to eliminate this problem.

The magnetic susceptibility values ranged between 40 and $200 \mu \mathrm{cgs}$ in the alluvium and between 2000 and $600 \mu c g s$ in the crystalline rocks. No clear, general correlation is evident between lithology and magnetic susceptibility, although the highest values tend to be associated with the microdiorite and Precambrian gneisses which are rocks containing the highest amount of mafic minerals.

The bulk density values indicate a correlation with rock type. The more mafic rocks, primarily the biotite-pyroxene-hornblende diorite and hornblende microdiorite, are more dense than the felsic granitic rocks such as the hornblende, biotite granite.

Figure 5.1 is a plot of density versus magnetic susceptibility and indicates increasing density correlates with an increase in magnetic susceptibility. This result is due to the higher density of magnetite and the fact that the rocks containing more mafic minerals, which have higher densities, have higher magnetic susceptibilities.

Table 5.1 - Magnetic Susceptibilities and Densities of Cuttings from LASL C/T-2.

（feet）	（meters）	$\begin{aligned} & \text { DENSITY } \\ & (\mathrm{gm} / \mathrm{cc}) \end{aligned}$		MAG SUSCEP $\left(x 10^{6} \mu c g s\right)$
350：5． 0	1373.1	2.63		2336．
ィכi？S． 0		2． 68		15 \％．
4うへ5．0	．	2． 66		2452.
4565.0		2． 64		16．3？
95635． 0		2． 65		1270.
7605．0	1403.6	2． 57		14 in ．
4625． 0		2． 60		1117.
9645．0		2． 66		20.11.
4665.0		2． 64		2372.
4605.0		c． 64		3nin．
1715.0	1437.1	2． 81		2ら： 1.
4735.0		2． 67		26：13．
4780		2． 66		$15 \% 0$.
4785． 0		2． 60		1．0：30．
1905． 0	1464.6	2． 66		10 ± 7.
1325.0		2． 82		16 ¢\}3.
4845．0		2． 64		2231.
4365． 0		2． 69		20：77．
4985． 0		2． 65		$16: 32$.
9905.0	1495.0 －	2． 65		12 A ，
49 25． 0		2． 59		2130.
1945．0：		2． 68	$=$	22\％3．
1975．0：	．	2． 63	$\because .$.	21.12
1795．0	－\therefore	2． 75	－－	14is＇5．
5015．0	1528.6	2． 57		$15 \therefore 3$.
5035.0	：	2． 58		$10 \wedge \%$
5055． 0		2． 63		10 aro．
5075． 0		2． 67		1601.
5095.0		2.63		1006.
5115.0	1559.1	2． 63		20：3\％
5135．0		2． 60		1773.
5155.0		2． 58		$20: 31$.
5175．0		2． 67		ЗААВ．
5200． 0	1585.0	2． 61		2160.
5225.0	：	2． 64		14 \％3．
5245．0		2． 65		3213.
5275.0		2． 60		1616.
5300.0	1615.4	2． 63		1730.
5335． 0		2． 67		31115.
5360.0		2． 66		1724.
5385.0		2． 68		2337.
5405． 0	1647.4	2． 71		$25 ¢ 7$.
5425．0		2.74		$19 \% 2$.
5415.0		2． 77		18.11.
5765.0		2． 67	．	2204.
5185.0		2． 71		1707.
53？0． 0	1682.5	2． 77		2117.
5 5＾5． 0		2． 80		1871.
5565．0		2． 76		18016.
5535： 0		2． 70	．	2051.
5605.0	1708．4	2． 70		1817.
5625.0		2． 73		2030.
5645.0		2． 69		2155.
5665.0		2． 64		2630.
5685.0		2． 68		2391.
5705.0	1738.9	2． 70		1911.
5725.0		2． 51		$54 \% 3$.

DENSITY VS MAG SUSCEPT

FIGURE 5.1 PLOT OF MAGNETIC SUSCEPTIBILITY AND DENSITY OF CUTTINGS FROM LASL C/T-2.

Table 5.2. Thermal Conductivity Measurements on Chip Samples in C/T-2 at 15 C and Well Bore Temperature. (Values are for dry, non-pörous rock.)

Table 5.2. Continued

B. Thermal Conductivity.

Thermal. conductivity values were obtained on 59 cuttings samples from LASL $C / T-2$, between $213.4 \mathrm{~m}(700 \mathrm{ft})$ and $2075.7 \mathrm{~m}(6810 \mathrm{ft})$ and are listed in Table 5.2. These measurements were made on a divided bar apparatus (Sass, et al., 1971) which was calibrated with fused and crystalline quartz (Ratcliffe, 1959). Measurements were :nade at $15^{\circ} \mathrm{C}$ using the cell technique described by Sass et al. (1971) and adjusted for the appropriate borehole temperature using the method described by Wilson and Chapinan (1980).

The temperature correction is computed using the following expression.

$$
K_{S}^{\star}=K_{0} e^{-\alpha T}
$$

where $\quad \alpha=0.609 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$
and $K_{o}=K_{s}^{*} e^{15 \alpha}$
K_{s} is the measured solid rock thermal conductivity at $15^{\circ} \mathrm{C}$ and $\mathrm{K}_{\mathrm{s}}^{*}$ is the temperature corrected thermal conductivity at temperature $T\left({ }^{\circ} \mathrm{C}\right)$. Borehole temperatures were taken from the Dresser Atlas \log of $C / T-2$ obtained by LASL. The sample depths, K_{S}, T and K_{S}^{*} are listed in Table 5.2. The thermal conductivity data are given in SI units, Watts/mok. To obtain cgs units, mcal/cm ${ }^{\circ} \mathrm{C}$ sec, simply multiply the data by 2.39.

The thermal conductivities appear to be lower than might be expected. Typical values for these rock types fall between 2 and 3.5 Watts $/ \mathrm{m}^{\circ}{ }^{\circ} \mathrm{K}$ (approximately). The measurements have a precision of 2% or better and an accuracy of 10% or better. However, measurements are made on chips and a mixing formula is used to convert these measurements to ones for solid material. The measurement system was checked using crushed quartz standards with good results. However, C/T-2 chips are quite small and difficulties may
arise from use of the mixing formula or from estimating solid material volume. The latter problem existed in the density measurements. Several experiments have been proposed and are scheduled to study the problems of estimating thermal conductivities from chip samples.

A further problem, noted earlier, is that the quartz and feldspar grains may have been crushed to such a size that these minerals were depleted in the chip samples at the time of collection and later during the washing process. The greater concentrations of mafic minerals, particularly biotite, would lower the thermal conductivity.

The data in Table 5.2 would represent zero porosity material. If porosity corrections were made, the thermal conductivities would be lowered (Plewa, 1976). However, porosity of these rocks is quite low (<2\%, with few exceptions) and the correction would be small.

A.

 IntroductionA number of well logs have been obtained in $\mathrm{C} / \mathrm{T}-2$ by Phillips Petroleum Company (PPC) and LASL. The PPC logs are confidential and were examined but not analyzed. The LASL logs have been digitized at 0.15 m (0.5 ft) increments, plotted at 12 and $24 \mathrm{~m} / \mathrm{cm}$ (100 and 200 ft per inch) scales and interpreted in terms of geologic and geophysical properties. The logs have been correlated where possible to each other and to geologic rock types.

The well was cased to 1280.1 m (4200 ft) and the casing cemented prior to logging by LASL. Hence the log data are not studied in detail above this depth. Unfortunately most of the interesting, varied geology occurs above $844.3 \mathrm{~m}(2770 \mathrm{ft})$, as noted earlier, and lies behind casing. All logs. available for study are listed in Table 6-1. The table lists the logging company, log type, log data, logged interval, cased interval and bottom hole temperature.

Both Schlumberger (Schl) and Dresser Atlas (DA) natural gamma logs were recorded with the neutron logs. The caliper \log was recorded with the temperature log. The electric log was obtained with an induction tool. Each \log will be discussed individually and interpretations of each \log and \log data cross plots will be presented and discussed.

The log data have been plotted in Plate I at a $24 \mathrm{~m} / \mathrm{cm}$ ($200 \mathrm{ft} / \mathrm{inch}$) scale and in the same units in which they were recorded. A lithology log and columns showing (1) altered cataclasite, gouge and microbreccia, (2) chlorite after mafic minerals, (3) estimated volume per cent sulfides and (4) estimated volume per cent "limonite" are included in Plate I. The magnetic

TABLE 6.1 Wel1 Logs Obtained in C/T-2 by LASL ${ }^{1}$

LOG NAME	LOGGING COMPANY	LOG DATE	LOGGED INTERVAL meters (ft)	BOTTOM HOLE TEMP. ${ }^{\circ} \mathrm{F}\left({ }^{\mathrm{C}}\right.$)
Diff. Temperature	Dresser Atlas	11/14/78	$\begin{aligned} & 0-2079.6 \\ & (0-6823) \end{aligned}$	442 (227.8)
Gamma-Ray Neutron ${ }^{2}$	Dresser Atlas	11/16/78	$\begin{aligned} & 234.7-2080.8 \\ & (770-6827) \end{aligned}$	446. (230.0)
Comp. Densilog ${ }^{3}$	Dresser Atlas	11/17/78	$\begin{aligned} & 234.7-2080.2 \\ & (770-6825) \end{aligned}$	443 (228.3)
Acoustic CBL/VDL	Dresser Atlas	11/17/78	$\begin{aligned} & 231.6-1767.8 \\ & (760-5800) \end{aligned}$	446 (230.0)
Borehole Comp. Sonic ${ }^{4}$	Schlumberger	2/5/79	$\begin{aligned} & 1287.4-2087.8 \\ & (4224-6850) \end{aligned}$	440 (226.7)
Induction - $S P^{5}$	Schlumberger	2/5/79	$\begin{aligned} & 1297.8-2085.9 \\ & (4258-6844) \end{aligned}$	440 (226.7)
Gamma-Ray Neutron ${ }^{6}$	Schlumberger	2/5/79	$\begin{aligned} & 243.8-2089.0 \\ & (800-6854) \end{aligned}$	440 (226.7)
NOTES: ${ }^{1}$ Hole was cased to $1280.1 \mathrm{~m}(4200 \mathrm{ft})$ for all logs. ${ }^{2}$ Thermal Neutron - NT $=N, 130$. $3_{\text {Both }}$ long and short detector spacings recorded. ${ }^{4}$ No transmitter - receiver separation available to calculate interval travel time. ${ }^{5}$ Single Induction log - 6FF40. ${ }^{6}$ Thermal Neutron - GNT/N.				

susceptibility and density measurements obtained from chip samples and discussed earlier are plotted in Plate 1.

A second plot, at $12 \mathrm{~m} / \mathrm{cm}$ (100 ft/inch) scale and for the portion of the hole below casing, $1280.1-2099.4 \mathrm{~m}$ (4200-6855 ft), has been created and is shown in Plate Il. A few of the logs shown on Plate l have been excluded, new data added, thermal conductivity and temperature gradient, and the DA neutron and density logs are shown converted to porosity and density units, respectively.

Reference to Plates I and II will be made frequently in following sections. All data recording parameters were in English andor 0il Field units. SI and the original units are both shown on Plates I and II as they will be throughout the rest of this report.
B. Log Descriptions.

1. Temperature Log. DA recorded their Differential Temperature Log in $\mathrm{C} / \mathrm{T}-2$ at $30.5 \mathrm{~m} / \mathrm{min}(100 \mathrm{ft} / \mathrm{min})$. Both absolute temperature and a differential temperature \log were recorded. Only the absolute temperature. \log has been digitized and it is plotted in Plate I. Temperature gradients have been computed from this 10 g using 3.05 and 15.3 m (10 and 50 ft) depth intervals, and are plotted in Plate II.

A curious feature of the temperature \log is the several, quite smooth near zero gradient intervals throughout the log; examples can be noted between 472.4 and 499.9 m (1550 and 1640 ft) and between 823.0 and 883.9 m (2700 and 2900ft): Either these intervals reflect instrument malfunction or small. convective cells in the borehole. Instrument problems (intermittent ones) would be the most probable cause of these features. An earlier PPC .
temperature \log does not exhibit any similar features and the DA tool did fail at the bottom of the hole before any post survey calibration could be made.

The temperature gradient exhibits larger variations in the 3.05 m (10 ft) interval values than in the 15.3 m (50 ft) interval values. These variations cannot be completely explained by thermal conductivity changes (see Plate II). Remember that the thermal conductivity measurements are for zero porosity rock and that thermal conductivity decreases with increasing porosity. Note that the low temperature gradient interval between 1630.7 and 1691.6 m (5350 and 5550 ft) correlates with a low, near zero neutron porosity. Below 1706.9 m (5600 ft) the neutron porosity correlates with a temperature gradient increase. The neutron porosity reflects the presence of both porosity and. hydrous minerals and both would lower the thermal conductivity and increase the gradient.
2. Caliper Log. The DA caliper \log was recorded simultaneously with the temperature log. Several abrupt, unexplained recording offsets occurred in the caliper \log and these were removed before the data were plotted in Plate I. The \log shows insignificant hole enlargement or caving which might indicate fracture intercepts in the well bore. Fault gouge was noted in drill chips in intervals centered at 1453.9 m (4770 ft) and $1767.8 \mathrm{~m}(5800 \mathrm{ft})$ and neither interval has generated any hole enlargement which suggests both fractured intervals are well sealed.

The caliper log shows a decreasing hole size with depth in casing and an increasing hole size with depth in the open hole. A temperature effect should result in only a single type of variation such as an increase in apparent hole diameter with depth. Note too, that the casing depth is clearly lower on the
caliper 10 than reported by PPC. This discrepancy appears on nearly all the logs and indicates a depth recording problem in the logging of $C / T-2$. This problem will be discussed further in a later section.
3. Acoustic (Velocity) Logs. LASL obtained a Schl. Borehole Compensated Sonic Log (BHC) and a DA Acoustic Cement Bond Log (VDL) in C/T-2. Little of particular interest for this study is contained in the VDL $10 g$ and it is not shown in Plate I. This log is referenced where it contains information supporting an interpretation of another log. The Schl. log contains a Δt measurement using a single receiver, an amplitude neasurement and a variable density (wave form peaks) measurement. The Δt and amplitude log data are reproduced in Plate I. Again the variable density log exhibits very little of interest and is not shown on Plate I. The Schl. log was recorded only in the open hole. The BHC log exhibits only minor problems of cycle skipping. However, the tool did experience a transmitter failure below 1944.6 m (6380 ft) and data were lost between 1944.6 and 1966.0 m (6380 and 6450 ft). A second transmitter in the tool was used successfully thereafter. Notes on the log indicate a switch was made to a different receiver at 1834.3 m (6018 ft) and that the Δt data are invalid (no reason given) between 1318.3 and 1325.9 m (4325 and 4350 ft). The Δt curve shifts to longer travel times between 1834.3 and 1925.7 m (6018 and 6318 ft) due to a change in transmitter receiver separation.

The tool was centralized and pulled at $15.2 \mathrm{~m} / \mathrm{min}(50 \mathrm{ft} / \mathrm{min})$. No transmiter-receiver separations were reported; therefore, the data cannot be converted to conventional units of $\mu \mathrm{sec} / \mathrm{m}$ ($\mu \mathrm{sec} / \mathrm{ft}$).
4. Neutron Logs. Both a DA thermal neutron $\log (N-T N)$ and a Schl.
thermal neutron $\log (G N T-N)$ were obtained in $C / T-2$. The $D A \log$ was obtained at $10.7 / \mathrm{m} / \mathrm{min}(35 \mathrm{ft} / \mathrm{min})$ and a time constant of two seconds and the Schl. log was obtained at $18.3 \mathrm{~m} / \mathrm{min}(60 \mathrm{ft} / \mathrm{min})$ and time constant of one second. Both logs were recorded in API units although the DA log scale was calibrated for an air-filled hole and labeled as $N-T N / \phi$ units. A simple multiplication of the DA neutron log scale by 12 converts it to the correct API units, as noted. on Plate I. The corrected \log is plotted in Plate II. Clearly the logs from the two companies do not compare favorably. First, there is a depth offset, , which will be discussed later, between the two logs; second, the DA log exhibits a much greater variability than the Schl. log although changes in response are coincident (allowing for the depth offset) and three, the Schl. \log response in the open hole is beyond the limit of the calibration curve (much less than 1% porosity) for this tool given in Schlumberger (1972) whereas the DA tool response is largely within the calibration range shown on their calibration graph (Dresser Atlas, 1980). Figures 6.1, 6.2, and 6.3 are cross plots of data from the two neutron logs for three: arbitrarily selected intervals. The data have been averaged on 1.52 m (5 ft) intervals. Since both logs are in API units they should be expected to show closer agreement. Of the three intervals plotted, only the one between 1866.9 and 1988.8 m (6125 and 6525 ft) demonstrates any significant variability in the Schl. log. A linear relationship between the two logs was determined from data in this interval to be

$$
\begin{equation*}
D A=10137-3.50 \text { Schl. } \tag{6-1}
\end{equation*}
$$

A third degree polynmial was fit to the DA calibration curve and was used to convert the DA log to porosity units (Table 6.2). The polynominal

DA NEUTRON VS SCHL. NEUTRON

DA NEUTRON VS SCHL. NEUTRON

DA NEUTRON VS SCHL. NEUTRON

TABLE 6-2: COMPARISON OF POROSITY VALUES READ FROM DA CALIBRATION CURVE AND POLYNOMIAL EQUATION.

API	POROSITY (GRAPH)	POROSITY (CALC.)	
300	40.5	37.5 :	
600 !	26.5	26.3	
900	. 19.2	19.2	
1200	13.5	13.7	
1500	9.6	9.8	
1800	7.1	7.0	\because
2100	5.2	5.0	
2400	3.75	3.6	
2700	2.75	2.6	
3000	1.9	1.8	
3300	1.3	1.3	
3520	1.0	1.0	
4000	---	- . 6	
5000	---	. 2	

equation is:

$\log \phi=1.72-4.86 \times 10^{-4} \mathrm{~A}-8.11 \times 10^{-11} A_{r}^{2}$,
where A is in API units.

The data in Table 6.2 indicate that the polynomial equation used to convert the DA neutron log from API to porosity units is quite good for the normal porosity range of rocks. The neutron porosity data are plotted in Plate II and indicate the porosity of rocks intersected by C/T-2 below 1280.2 m (4200 ft) averages less than 4% and nowhere exceeds 8%. A component of the neutron porosity is due to hydrous numerals which will be demonstrated later.
5. Density Logs. LASL obtained a DA dual spacing DENSILOG in C/T-2. The log was run at $15.2 \mathrm{~m} / \mathrm{min}(50 \mathrm{ft} / \mathrm{min}$) and a time constant of one second. The detector spacings were $19 . \mathrm{cm}(7.5 \mathrm{in})$, the long spacing, and 33 cm (13 in), the short spacing. The data were recorded in counts/min for both short and long spaced logs. These data are plotted in Plate I. The upper portion of the long spaced \log varied widely and was not digitized. Therefore, it is not shown in Plate I. Apparently the scales shown on the original logs are reversed. To correct this error simply divide the long spaced data by two and multiply the short spaced data by two. These operations are noted on Plate I.

Based on calibration curves supplied by DA we determined the following equations to convert counts to bulk density.

Short Spaced: $X_{D}=2.722-2.559 \log X_{C}$
(Aluminuin calibrator counts: 7500)

Long Spaced: $X_{D}=2.739-1.035 \log X_{C}$
(Aluminum calibrator counts: 11475).
where X_{C} is counts and X_{D} is bulk density. The log counts are first divided by the aluminum calibration counts and then used in the formula. Dennis Lynch of DA, Ventura, California informed us that the long spaced counts should yield the better density estimates. The bulk densities were computed using the above formulas and are plotted on Plate II. The short spaced values are consistently lower than would be expected for these rock types whereas the long spaced counts appear reasonable.

Note that the densities determined from chip samples are plotted by points along with the DA bulk densities. With few exceptions, the chip values are significantly greater than those calculated from the well logs below 1623.lm (5325 ft). Although the data do not agree, they do show the same. variations. Above 1623.1 m (5325 ft) the data show better agreement. The chip densities might reflect sampling problenis. A greater amount of heavier minerals may have been concentrated in the chip samples below 1623.1m (5325 ft). The density \log may be underestimating the density of rocks high in mafics; however, this error should not be greater than several tenths of a $\mathrm{gm} / \mathrm{cc}$. Assuming no error, the difference could be explained by approximately 8\% porosity which seems too high and is not suported by the neturon porosity values. We suspect all three factors have contributed to the descrepancy between the two measurements.
6. Electrical Conductivity and SP Logs. The Schl. 6FF40 induction log was run in $\mathrm{C} / \mathrm{T}-2$ at a speed of $305 \mathrm{~m} / \mathrm{min}(1000 \mathrm{ft} / \mathrm{min})$. The tool was not centered and a borehole correction of -25 millimhos was used. Both a conductivity and resistivity \log were recorded and linear scales were used. An SP \log was also obtained. No values of $R_{m}, R_{m f}$, or $R_{m c}$ were recorded. The
logs were obtained long after the hole was completed and the borehole fluid at the time of the logging was water. The water samples analyses (Table 3.4) indicates the borehole fluid contains approximately 6200 ppm TDS... Using the temperature range 185 to $227^{\circ} \mathrm{C}$ (365 and $440^{\circ} \mathrm{F}$), observed in the drill hole between 1280.1 and 2098.5 m (4200 and 6885 ft), the borehole fluid resistivity ranges between 0.19 and 0.15 (Schlumberger, 1972a, p.9) ohm/m and little or no contrast should exist between the borehole and formation fluid resistivities. Schlumberger (1972b, p. 31 and 1974, p.3) notes that induction logs, including the 6FF40, yield poor resolution and accuracy where formation resistivities exceed 100 ohm-m, and there may be a $2 m$ mho zero error as well. The induction \log conductivity values in $C / T-2$ are almost entirely below 10 mmos/m (greater than 100 ohm-m resistivity) and numerous intervals show a 2mmho/m or lower conductivity. Also Schlumberger (1974, p.3) notes that the 6FF40 tool requires standoff for best accuracy. The casing diameter being less than the open hole diameter precluded use of centralizers on the induction tool. Hence, the electrical resistivity (or conductivity) measurements in C/T-2 are probably inaccurate. This problem was observed in electrical logging of other Roosevelt Hot Srings' drill holes (Glenn and Hulen, 1979).

The SP \log contains a few interesting variations. The fault at 1453.9 m (4770 ft), and the 57.9 m (190 ft) immediately above the fault, show a right deflection (shale direction) on the log. The right deflection may reflect the presence of clay minerals in the fault intercept at 1453.9 m (4770 ft) and the probability that the fault either parallels the drill hole over a 61.0 m (200 ft) interval or the fault zone is $61.0 \mathrm{~m}(200 \mathrm{ft})$ thick. A similar, shorter
response occurs opposite the fault at 1767.8 m (5800 ft) and again reflects the presence of clay minerals in the fault.

Several left deflections occur between the bottom of casing at 1280.1 m (4200 ft) and 1399.0 m (4590 ft). We offer no explanation for these events, although permeable fractures may be responsible.
7. Gaimma-Ray Logs. Two gamma-ray logs were obtained in C/T-2, one by DA and one by Schl. Both logs were obtained simultaneously with the neutron logs and were recorded in API units. The Schl. log was run at $15.2 \mathrm{~m} / \mathrm{min}$ (50 $\mathrm{ft} / \mathrm{min}$) and a one second time constant, whereas the $D A \log$ was run at $10.7 \mathrm{~m} / \mathrm{min}$ and a two second time constant. Unlike the neutron logs, the two gamma-ray logs agree reasonably well. Both logs are shown in Plate I and for simplicity only the DA \log is shown in Plate II. Note the depth offset between the two logs. Plots of the DA Gama-Ray $10 g$ data versus the Schl. Gama-Ray \log data are shown in Figures 6.4, 6.5, and 6.6 for three arbitrary depth intervals. The data are averages over . $61 \mathrm{~m}(2 \mathrm{ft}$). A forty-five degree line has been drawn in each figure for reference.

As expected, the more acidic rock units generate the highest and the more mafic rock units generate the lowest gamma-ray counts. In particular, the hornblende-biotite granite/syenite has a distinct high gamma-ray count, for example interval 1080.0 to 1249.7 m (3540 to 4100 ft), and the hornblende-biotite granodiorite has a distinct low gamma-ray count, forexample 804.6 to 1079.0 m (2640 to 3540 ft).

DA: GAMMA RAY VS SCHL. GAMMA RAY

C/T-2 FIGURE 6.4
at
$3801.00-4323.00$ FEET, $1158.5-1317.7$ METERS 2.00 DEPTH UNIt intervgls, 61 METER intervals

DA GRMMA RAY VS SCHL. GAMMA RAY

The high counts over short intervals, such as seen at 1920.2 m (6300 ft), are attributed to anomalous values of uranium, thorium and/or their daughters in these intervals. Analyses presented earlier for 1920.2-1923.3m (6300-6310 $f t)$ substantiates this conclusion. We noted earlier that the anomalous contributions at 1920.2 m (6300 ft) were from thorium, and uranium and thoriun daughters. The uranium has been largely depleted.
8. Summary Log Evaluations. The Dresser Atlas temperature and caliper logs exhibited characteristics attributed to tool malfunction. The temperature tool did fail shortly after reaching the bottom of the hole. The log contained several short intervals of near zero temperature variation with depth and a number of descrete offsets. Otherwise the log appears quite good and the botton hole temperature agrees with the previously reported value. The caliper log displayed both an increasing, in casing, and decreasing, in the open hole, hole size with depth. One, but probably not both changes can be attributed to temperature affects.

Thermal conductivity measurenents obtained from chip samples could not explain all the variations seen in the temperature gradient curve computed from the temperature log. The gradient curve correlated in many instances to the neutron porosity log.

The Schlumberger acoustic logs appear reasonably good. Tool malfunctions did occur with some loss of data. A single receiver measurement was made which may mean the data are less accurate than would have been possible with a two receiver measurement. Also, a transmitter receiver separation was not supplied and the travel times could not be converted to interval transit time or velocities. This separation was not constant for the entire log.

The two neutron logs were recorded in API units although the Dresser Atlas log was miscalibrated. The miscalibration was easily corrected. However, the Schlumberger \log exhibitied very little variability and the data were all well beyond the calibration curve, implying porosities close to zero throughout the open hole interval. Our guess is that the Schlumberger tool lost sensitivity in the high temperature environment although an error by the equipment operator cannot be excluded.

The Dresser Atlas density \log was recorded in counts/min for both the long and short spaced detectors. The scales were labelled in reverse and the correction was trivial. As predicted by Dresser Atlas, the long spaced measurement yielded the more reasonable density estimates. A significant descrepancy between the density \log and the chip sample densities occurred in the lower portion of $C / T-2$. The differences can be attributed to one or more of the following: errors in the chip samples densities, larger than expected lower estimates of density in heavy mineral rocks by the density tool and an anomalous high porosity, up to 8%, which cannot be supported by the neutron log.

The electric \log was Schlumberger's $6 F F 40$ induction \log and a SP \log was recorded simultaneously. The rock resistivities, as might be anticipated, were greater than 100 ohm-m and not particularly suited for logging by an induction device. The tool could not be centralized because of casjng size above $1280.1 \mathrm{~m}(4200 \mathrm{ft})$. Therefore, the resistivity \log yields probable minimum values and very little quantitative data. The $S P$ log exhibited characteristic shale deflections opposite clay gouge and alteration mineral assemblages in fracture and fault zones. Several short sand type deflections
may indicate permeable fractures:
The Schlumberger and Dresser Atlas gamma-ray logs were both recorded in API units and agree reasonably well. The logs showed common characteristics; acidic rocks generated higher gamma-ray counts than did the more mafic rocks. Fractures corresponded to anomalously high gamma-ray counts. Analyses indicated this response could be attributed to presence of uranium and thorium and/or their daughters.

A problem mentioned earlier, but addressed now, is the one of disagreement in recording of depth among the logs. Commonly, logs can be aligned using a point of distinct response observed across a suite of logs. In C/T-2 several such features are available for comparing the logs. The most obvious feature is the bottom of casing which Phillips Petroleum Company reported to be at $1280 \mathrm{~m}(4200 \mathrm{ft})$. We have listed in Table 6.3 the casing point as seen on the various logs. Three points of distinct log response have also been picked on the various logs and listed in Table 6.3. These points are the three fault or fracture intercepts at. $1453.9 \mathrm{~m}(4.770 \mathrm{ft}), 1767.8 \mathrm{~m}$ $(5800 \mathrm{ft})$ and $1920.2 \mathrm{~m}(6300 \mathrm{ft})$: The only accurate depths appear to be found on Schl. neutron, gamma-ray and velocity logs. All but the DA neutron seems to remain a fixed distance off throughout the hole. The DA neutron depth error appears to increase with depth from about 4.6 m (15 ft) near the top of the hole to about 9.1m (30 ft) at the bottom of the hole. In the next section, various data cross plots are studied and all logs were adjusted to common depths prior to making the cross plots.
C. Cross Plots

1. Basis for Plots. A common log interpretation technique utilized by

TABLE 6-3: COMPARISON OF DEPTHS TO VARIOUS DISTINCT FEATURES AS SEEN ON THE DIFFERENT LOGS. THE DATA ILLUSTRATES THE INCONSISTENT DEPTH RECORDING AMONG THE LOGS AND TO THE TRUE DEPTH OF THE FEATURES.

log analysts in the oil and gas industry is the cross plot (Savre, 1963; Burke, et al., 1969; Poupon, et al., 1970; Pickett, 1973). Two or more sets of \log data are plotted versus each other for the purpose of identifying distinct lithologies and estimating better porosity values. Very few logs, and often only in particular instances, respond to a single rock property. Hence one log may produce one set of data but two or more unknowns. To illustrate we will examine the commonly accepted response equations for the three so-called "porosity" tools, the neutron, the density and the velocity tools.

The response equations are (ϕ is porosity in each case):

$$
\begin{equation*}
\text { neutron: } N D(\text { counts })=C+D \log \phi_{N} \tag{6-5}
\end{equation*}
$$

where C and D are empirical constants,

$$
\begin{equation*}
\text { density } \rho_{b}=\rho_{g}\left(1-\phi_{D}\right)+\rho_{f} \phi_{D} \tag{6-6}
\end{equation*}
$$

where ρ_{b} and ρ_{g} are the bulk and grain densities, respectively and ϕ_{f} is the fluid density, and

$$
\begin{equation*}
\text { velocity: } \quad \Delta t=\Delta t_{m}+B \phi_{V} \tag{6-7}
\end{equation*}
$$

where Δt and Δt_{m} are the interval transit time from the \log and the matrix travel time (assumed constant) and B is an empirical constant.

The porosity in each case is given a subscript to indicate which log was used to compute it, N for neutron, D for density and V for velocity. The practice is to eliminate porosity from each pair of equations and a plot of the one log versus the other should yield values for the matrix constants C, D, ρ_{g} and Δt_{m}. Note that any plot involving the neutron \log will be a log-log plot unless the neutron \log is in porosity units. In this instance equation $6-5$ simply reduces, to ϕ_{N}. The measurement of ϕ_{N} is dependent on
lithology and neutron logs are commonly calibrated in limestone, sandstone and dolomite units.

These three equations are often expanded to describe several matrix components, each having a different response on the various logs (Edmundson and Raymer, 1979). The paper by Glenn and Hulen (1979) describes this expansion in the way most suitable to a study of igneous and metamorphic rocks. The neutron porosity is assumed to be composed of three parts, the pore porosity, ϕ_{p}, the bound water "porosity", ϕ_{b}, and an error term, ϕ_{e}, due to any nunber of things including calibration error. The matrix density is assumed composed of lighter, non-hydrous minerals such as quartz and feldspars which constitute the bulk of most common igneous and metanorphic rocks, heavier, non-hydrous minerals, usually metallic minerals, and heavier hydrous minerals, usually the mafic minerals, the micas, the amphiboles and chlorite. Clays, if present may be considered as either heavy or light. hydrous minerals and are difficult to handle. The bound water in hydrous minerals is used to obtain a value for ϕ_{b}. The contribution of the various matrix minerals to the velocity equation is more complex. The increaseddensity of the mafic minerals may produce higher velocities but if present in significant amounts and if mostly platey minerals such as chlorite and the micas, the velocity may be reduced (Glenn and Hulen, 1979b).

In any case the previous equations can be rewritten as

$$
\begin{equation*}
\phi_{N}=\phi_{\mathrm{p}}+\phi_{\mathrm{b}}+\phi_{\mathrm{e}} \tag{6-8}
\end{equation*}
$$

where ϕ_{e} may be assumed to be zero, a constant or unknown and ignored.

$$
\begin{equation*}
\rho_{b}=\rho_{s}\left(1-\phi_{D}-X\right)+\rho_{f} \cdot \phi_{D}+\rho_{m} X \tag{6-9}
\end{equation*}
$$

where ρ_{s} is the density of the non-hydrous minerals and ρ_{m} and X are
the density and volume fraction, respectively, of the hydrous mafic minerals.

$$
\begin{equation*}
\Delta t=\Delta t_{s}(1-X)+\Delta t_{m} X+B \phi_{v} \tag{6-10}
\end{equation*}
$$

where Δt_{s} and Δt_{m} are the travel tines of the non-hydrous and hydrous mineral components in the matrix. The assumption that these components do not appreciably affect B is somewhat tenuous.

To illustrate the cross plot technique we will use a model presented by Glenn and Hulen (1979b) and we will use the neutron density cross plot as an illustration.

Many of the hydrous mafic minerals in igneous and metamorphic rocks are denser than quartz and feldspar, which are commonly the predominant mineral constituent of the rock. Hence, these minerals should contribute to the response of both the neutron porosity and bulk density tools.

To illustrate, we will use two rock compositions shown in Table 6.4.

TABLE 6.4
MINERAL
ROCK 1
ROCK 2
Density (gm/cc) Vol. $\mathrm{ZH}_{2} \mathrm{O}$ Density(gm/cc) Vol. $\% \mathrm{H}_{2} \mathrm{O}^{\mathrm{O}}$

Non-Hydrous Silicates	2.60	0.	2.60	0.
Hydrous Mafic Minerals	3.15	8.0	2.80	30.
Water (Porosity)	1.00	100.	1.00	100.

TABLE 6-4: Two arbitrary, generalized igneous/metamorphic rock compositions.

The grids shown in Figure $6.7,6.8$, and 6.9 were constructed using these compositions and the log response equations. The grid lines with negative slopes are the usual porosity trends and each line represents a constant grain density and bound water content. The grid lines with a positive slope represent expected trends produced by varying hydrous mineral content at a constant porosity. If both porosity and hydrous mineral variations occur simultaneously, the data may plot in a very scattered fashion, a not uncommon experience. Figures 6.7 and 6.8 illustrate the effect of changing both the density and bound water content of the hydrous mafic minerals. Figure 6.9 is an expanded version of Figure 6.7 and depicts the typical density and neutron porosity ranges that occur in igneous and metamorphic rocks. Figure 6.9 illustrates the determination of true porosity, true grain density and per cent hydrous mineral for some arbitrary data point P. Note that one doés not extrapolate to zero porosity and the bulk density axis at zero neutron porosity to obtain the grain density, but to the zero mafic minerals line.

The plots shown in Figures 6.7, 6.8 and 6.9 ignore any calibration effects or non-linear effects known to exist at low porosities. Most logs are recorded using limestone or sandstone calibrations. No calibrations exist for any of the variety of igneous and metamorphic rocks encountered in C/T-2 but the authors' experience suggests that most of these rocks would exhibit data trends that would fall between the limestone and sandstone calibration lines. Natrix effects are often present in the neutron response and, for example, sandstone porosity using a limestone calibration, begins at -1.5% porosity for Schlumberger's compensated neutron log. Non-linear effects are also evident, particularly at low porosities. Glenn and Hulen (1979b) showed empirically

FIGURE 6.7 Density versus Neutron Porosity Cross Plot Grid for "Rock 1 " Composition in fable 6.4

FIGUPE 6.8 Density versus Neutron Porosity Cross Plot Grid for "Rock 2^{2} Composition In Table 6.4

that matrix porosity for the Schlumberger CNL tool in Roosevelt Hot Springs rocks is minus one to two per cent. Edmundson and Raymer (1979) have calculated -1.0 to -2.0% porosity for feldspars and the Schlumberger neutron tools and a limestone calibration. The DA neutron tools' zeros may be -2 to -4 per cent (Dresser Atlas, 1979). Therefore, the porosity zero for C/T-2 rocks should be at least -1 to -2 per cent using a limestone calibration and approximately zero using a sandstone calibration. A limestone calibration curve was used to convert the DA neutron \log data to porosity data. The densities of many heavy minerals may be underestimated 0.01 to $0.03 \mathrm{gm} / \mathrm{cc}$ by a density tool. A few minerals have errors outside this range or possibly an over estimate of density. These errors are not examined here.

Data analyses, primarily cross plots, have been made for selected open hole intervals. The intervals have been selected as representative of different log response characteristics. Only two rock types occur in the open hole interval of C/T-2 and it is not possible to study all the lithologies intersected by the drill hole.
2. Neutron-Density Cross Plots. The neutron log was shifted downhole by 6.7 m (22 ft) and the density \log by 3.7 m (12 ft) to correct for the depth offset problem noted earlier. Three depth intervals are cross plotted in Figures $6.10,6.11$ and 6.12 and the intervals include the ones where chip samples were analyzed in detail. The values used to compute the grid in each case are included in the figures. The density and neutron porosity of water are assumed to be $1 \mathrm{gm} / \mathrm{cc}$ and 100% and the apparent neutron porosity of the non-hydrous minerals is assumed to be -2.0%.

BULK DENSITY VS NEUTRON POROSITY

BULK DENSITY VS NEUTRON POROSITY

BULK DENSITY VS NEUTRON POROSITY

$C / T-2$
FIGURE 6.12

All three plots, particularly Figure 6.11, demonstrate the neutron and density measurement dependence on the mafic mineral content of the rock. The parameters used to construct the yrids appear to be reasonable choices both in terms of the grids' fit the data and to the known composition of the rock. The data in Figure 6.10 follow a trend wich exhibits a strong density variation and a very small neutron response. This trend arises in part, because the data interval crosses the quartz monzonite and granodiorite contact. The intervals plotted in Figure 6.11 and 6.12 are entirely within the granodiorite. The log interpretations verify the analyses shown in Table 2.1 and the differentiation of two distinct rock units. The granodiorite contains 5 to 10 percent more mafic minerals than the quartz monzonite. The data in Table 2.1 suggest a slightly higher mafic mineral content than does the 109 data. We have stated earlier that the chips may have been depleted in quartz and feldspar minerals due to the very fine grained state of the chip samples. The log data tend to support this conclusion.
3. Neutron-Velocity Cross Plots. The velocity log was not shifted in depth since we were not positive where true depth on this log occurred. Also, the absence of a transmitter-receiver separation precluded the construction of the commonly used neutron and velocity cross plots. Three plots, for the same intervals discussed above, are shown in Figures 6.13, 6.14, and 6.15. No clear trends are evident in the data, although both porosity and grain density affects can explain the scatter in the points. The main difference is the apparent average travel times observed between the quartz monzonite and the granodiorite, 260 microseconds for the former and 250 microseconds for the latter rock type.

TRAVEL TIME VS NEUTRON POROSITY

TRAVEL TIME VS NEUTRON POROSITY

4. Density-Velocity Cross Plots. The lack of transmitter and receiver separation again precludes construction of standard cross plots. However, the DA bulk density data are plotted versus the Schl. travel time data for the same three intervals used above. The plots are show in Figures 6.16, 6.17 and 6.18. Greater correlation exists between the travel time and the density than observed between the neutron and travel time data. The common rock property affecting both logs is probably density and density is principally related to the mafic mineral content. The density and velocity (reciprocal of travel time) are both higher in the granodiorite than in the quartz monzonite.
5. $M N, A K$ and Z Plots. $M N$ and Z plots are special data cross plots advocated by Schlumberger $(1972,1974)$ and the former is a registered trademark of that company. Dresser Atlas (1979) proposes the use of the MN plot and the AK plot wich has similar properties to the $M \mathbb{N}$ plot.

The MN and AK plots are constructed from the neutron, density and velocity \log data as follows:

$$
\begin{align*}
& M=\frac{\Delta t_{f}-\Delta t}{\rho_{b}-\rho_{f}} \quad \times 0.01 \tag{6-11}\\
& N=\frac{\phi_{N f}-\phi_{N}}{\rho_{b}-\rho_{f}} \tag{6-12}
\end{align*}
$$

and

$$
\begin{align*}
& A=\frac{\rho_{b}-\rho_{f}}{1-\phi_{N}} \tag{6-13}\\
& K=0.01 \times \frac{\Delta t_{f}-\Delta t}{\phi_{N f}-\phi_{N}} \tag{6-14}
\end{align*}
$$

These equations are developed from the basic log response equations

TRAVEL TIME VS BULK DENSITY

TRAVEL TIME VS BULK DENSITY

TRAVEL TIME VS BULK DENSITY

whereby primary porosity has been eliminated. Hence these quantities are viewed to be primarily lithology dependent. Particular rock types have characteristic pairs of $M N$ and $A K$ values. We did not plot either the $M N$ or $A K$ plot since they require interval travel time data.

The Z-plot is simply a presentation which incorporates a third set of log data into a standard cross plot. The third set of \log data is plotted as a scaled value at the corresponding plot point of the other two log values. A common \log plotted as the Z variable is the gama-ray log.

The Z-plots, using the DA gamma-ray \log for Z and the neutron and density cross plot, for the intervals discussed above, are shown in Figures 6.19, 6.20 and 6.21. Only the interval 1753 to 1813 m (5751 to 5949 ft) exhibits any particular pattern. Highest neutron porosities correlate with gamma-ray counts between 100 and 120 API units and represented by a 4 in Figure 6.19. These data probably indicate the presence of clay minerals which contain both potassium and bound water: Clay minerals also have a range in densities consistent with the wide distribution of points indicated in Figure 6.19.
6. Gamma-ray Cross Plots. The DA gamma-ray data have been plotted versus both density and neutron data for all three intervals and the plots are shown in Figures 6.22, 6.23 and 6.24.

In the 1752.9-1813.2m (5751-5949 ft) interval the gamma-ray and bulk density data appear to be better correlated than the neutron and gama-ray data (Figures 6.22a and 6.22b). The only neutron and gamma-ray correlation is the one at higher neutron porosities previously noted on the Z-plot (Figure 6.19). Remember that this interval crosses the quartz monzonite and granodiorite contact. The higher gamma-ray and lower density values reflect

BULK DENSITY VS NEUTRON POROSITY

-. C/T-2 FIGURE 6.19

BULK DENSITY VS NEUTRON POROSITY

BULK DENSITY VS NEUTRON POROSITY

GAMMA RAY VS NEUTRON POROSITY

C/T-2
FIGURE 6.22a
AT
5751.00 - 5949.00 FEET, 1753.9-1813.3 METERS 2.00 DEPTH UNIT INTERVALS, .61 METER INTERVALS

GAMMA RAY VS. BULK DENSITY

GAMMA-RAY VS. NEUTRON POROSITY

GAMMA-RAY VS BULK DENSITY

GAMMA RAY VS NEUTRON POROSITY

BULK DENSITY VS GAMMA RAY

C/T-2 FIGURE 6.24b
AT
2012.0-2072.3 METERS
6601.00 - 6759.22 FEET 2.00 DEPTH UNIT INTERVALS . 61 METER INTERVALS
the greater amount of potassium feldspar and lower amount of heavier mafics in the quartz monzonite.

In the 1924.2-1957.7m (6313-6423 ft) interval the ganma-ray data are highly correlated to both bulk density and neutron porosity data. Increasing gamma-ray counts (API units) correspond to lower neutron porosity and lower bulk density. This result is consistent with the conclusions made for the 1752.9-1813.2m (5751-5949 ft) interval. The potassium variation (gama-ray log) is due primarily to potassium feldspar variations. Potassium feldspar has a density between 2.55 and $2.62 \mathrm{gm} / \mathrm{cc}$ and is non-hydrous.- The higher neutron porosity, higher density and lower gamma-ray reflect the decreasing K-feldspar content and increasing anounts of hydrous, lower potassium minerals, the mafic minerals.

The third interval, 2012.0-2072.3m (6601-6799 ft), exhibits similar, although less compact, trends to the above interval. The relationships are those already described.
7. Log Data-Chemical Data Cross Plots. Various cross plots were constructed between density, neutron and ganma-ray logs and $\mathrm{K}_{2} \mathrm{O}, \mathrm{Fe}_{2} \mathrm{O}_{3}$, MgO , Li and loss data where Loss, is assumed to be water lost during fusion of the sample. The most interesting plots are presented here. The same three intervals studied above are used except only those portions of the intervals that have chemical data are plotted. The $10 g$ data were averaged on 3.1 m (10 $f t$) intervals to correspond to the chip sample length used for the chemical analyses.

The three interval plots of $K_{2} 0$ versus gamma-ray data are shown in Figures $6.25,6.26$ and 6.27 . With few exceptions, mostly in the deepest

:K2 O VS CAMMA

k2 0 VS GAMMA

interval, the gamma-ray and $\mathrm{K}_{2} 0$ data correlate quite well. This correlation has been used for lithologic identification in mineralized igneous rocks using well. logs (Glenn and Nelson, 1977). We will show later that in three short intervals, believed to be fracture or fault intercepts, the gamma-ray response is partly due to uranium and thorium and/or their daughters.

The bulk density \log data were plotted versus $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and MgO data and good correlation was evident between the \log data and both substances. Therefore plots were made between the logs and a sum of $\mathrm{Fe}_{2} 0$ and MgO . These plots are shown in Figures 6.28, 6.29 and 6.30. Both $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and MgO are largely in the mafic minerals. Some iron, although reported as $\mathrm{Fe}_{2} \mathrm{O}_{3}$, is in magnetite as $\mathrm{Fe}_{3} \mathrm{O}_{4}$. In either case, the correlation between density and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and MgO is expected.

Lithium was also plotted versus the gamma-ray data and exhibits a good correlation which suggests the lithium is in the potassium feldspar. It can also occur in the mica lepidolite.

Neutron porosity data were plotted versus the Loss observed in the chemical analyses (Figures 6.31, and 6.32). The Loss is assumed to be largely water, both pore and bound. Since the analyses were done on chips, the water loss is primarily bound water. Although the correlation is not particularly good, the level of loss indicates enough bound water is present to explain most of the neutron response.

Two plots of chemical data are shown in Plates III and IV at $12 \mathrm{~m} / \mathrm{cm}$ (100 $\mathrm{ft} / \mathrm{in})$. These.plots enable one to make a direct comparison of the chemical data to the \log data in Plate II. Only data that have demonstrated some correlation have been included in the plots.

FE2 03 + MG O VS BULK DENSITY

1761.7-1804.4 METERS
$C / T 2$
FIGURE 6.28
$5780 . \mathrm{ee}$ - $5928 . \mathrm{E}$ FEET
RT
10.80 DEPTH UNIT INTERVRIS
3.1 METER INTERVALS

FE2 03 + MG O VS BULK DENSITY

FE2 03 + MG O VS BULK DENSITY

LOSS VS NEUTRON POROSITY

LOSS VS NEUTRON POROSITY

The chemical data clearly mark the rock contact at $1917.2 \mathrm{~m}(6290 \mathrm{ft})$ and the several interpreted fracture or fault intercepts at 1453.9 m (4770 ft), 1767.8m (5800 ft) and 1920.2m (6300 ft). Uranium and thorium and/or their daughters, in addition to potassium, are concentrated in these intervals. These elements may be mostly in alteration minerals, primarily clay minerals. D. Summary of Log Interpretations.

Various standard well \log data interpretation cross plots were constructed from the LASL C/T-2 neutron, density, acoustic and gamma-ray well logs. Cross plots of \log data versus selected chemical data were plotted.

Neutron and density \log cross plots were interpreted in terms of both porosity and dense, hydrous mineral variations. In typical, low porosity igneous and metamorphic rocks, these two logs' response is principally due to mineralogic variations in the rocks. The logs obtained in C/T-2 further illustrate this characteristic.

The two rock types, quartz monzonite and granodiorite, occurring in the open hole interval of C/T-2 exhibit distinct responses on several logs. The quartz monzonite has a higher gamma-ray, lower density, lower neutron porosity and a lower velocity than the granodiorite. The rock contact at 1917.2m (6290 ft) is clearly defined by each log. Average and range of \log values for each rock type are listed in Table 6.5.

	Neutron Porosity \%	Bulk Density $\mathrm{gm} / \mathrm{cc}$	Gamina-Ray API
Quartz Monzonite	. 5 (0-1)	$\begin{gathered} 2.62 \\ (2.64-2.73) \end{gathered}$	$90(70-100)$
Granodiorite	$1.5(1-3)$	$\begin{gathered} 2.68 \\ (2.64-2.73) \end{gathered}$	50 (30-70)

The resistivity and SP:7ögs; in addition to the above logs mark three possible fracture or fault intercepts in the open hole interval centered at 1453.9 m (4770 ft), 1767.8 m (5800 ft) and $1920.2 \mathrm{~m}(6300 \mathrm{ft})$. The first two are clearly identified by analyses of chip samples.

The resistivity \log indicates the rocks have a resistivity of 100 ohm-m or greater. The log was obtained with a decentralized induction tool and the data are probably inaccurate. Induction logs in other Roosevelt holes exhibited similar limitations (Glenn and Hulen, 1979). In these holes resistivity log saturation occurred at 1500 to 2000 ohm-m.

Acoustic velocities for the two rock types were not computed since no transmitter receiver separation was recorded on the log. However, for the separation used the quartz monzonite generated a 10μ second faster travel time than did the granodiorite.

ACKNOWLEDGEMENTS

Completion of this study would have been impossible without valuable contributions from many of our associates at the Earth Science Laboratory and the University of Utah Department of Geology and Geophysics. H. Crecraft, J. M. Ballantyne and S. H. Evans facilitated obtaining and interpreting microprobe analyses of selected rock-forming and alteration minerals. We thank F. Brown and J. Mason for chemical analyses by X-ray fluorescence. Mason also prepared clay separates of selected samples and analyzed them by X-ray diffraction. R. Kroneman completed arsenic analyses by colorimetry and all analyses by plasma spectrometry. Mercury analyses were done by B. Cerling. Carbon and oxygen isotopic analyses were completed by D. Rohrs and interpreted by D. Cole, who also wrote most of Section IV of this report. Chemical and Mineralogical Services, Salt Lake City, provided potassium, uranium and thorium analyses by closed-can gamma-ray spectrometry and uranium analyses by fluorometry. \quad T. Dustman measured magnetic susceptibilities and densities. W. Wilson and D. Chapman provided thermal conductivity measurements. J. Atwood, M. Diely and M. Hyland contributed to digitizing, checking and plotting the well log data. Illustrations were prepared by D. Cullen and D. Bolaris. The manuscript was typed by L. Stout with assistance from H. Baker.

REFERENCES

Ballantyne, J. M., "Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah: modal mineralogy, and geochemistry of sericite, chlorite and feldspar from altered rocks, Thermal Power Co. well Utah State 14-2", Salt Lake City, Univ. of Utah Dept. of Geology and Geophysics Rept., 42 p. (1978).

Ballantyne, J. M., and Parry, W. T:, "Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah: petrographic characterization to 2 kilometers' depth", Salt Lake City, Univ. of Utah Dept. of Geology and Geophysics Rept., 21 p. (1978).

Ballantyne, G. H., "Hydrothermal alteration at the Roosevelt Hot Springs thernial area, Utah: characterization of rock types and alteration in Getty Oil Company well Utah State 52-21", Salt Lake City, Univ. of Utah Dept. of Geology and Geophysics Rept., 24 p. (1978).

Bamford, R. W., "Geochemistry of solid materials from two U. S. geothemal systems and its application to exploration", Univ. of Utah Research Inst., Earth Science Laboratory, Rept. 6, Salt Lake City, 196 p. (1978).

Eamford, R. K., Christensen, 0. D., and Capuano, R. M., "Multielement geochemistry of solid materials in geothermal systems and its applications Part 1: The hot-water system at the Roosevelt Hot Springs KGRA, Utah", Univ. of Utah Research Inst., Earth Science Laboratory Rept. 30, Salt Lake City, (1980).

Bence, A. E., and Albee, A. L., "Empirical correction factors for the electron microanalysis of silicates and oxides", Jour. Geol. v. 76, p. 382-403 (1968).

Bethke, P. M., and Rye, R. 0., "Environment of ore depostion in the Creede mining district, San Juan Mountains, Colorado: Part IV. Source of fluids from oxygen, hydrogen and carbon isotope studies": Econ. Geology, v. 74, p. 1832-1851, (1979).

Bottinga, Y., "Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water": J. Phys. Chem., v. 72, p. 800-808, (1968).

Bryant, N. L., and Parry, W. T., "Hydrothermal alteration at Roosevelt Hot Springs KGRA-DDH 1976-1", Salt Lake City, Univ. of Utah Dept. of Geology and Geophysics Rept., 87 p. (1977).

Burke, J. A., Schmidt, A. W., and Campbell, Jr., R. L., "The litho-porosity crossplot"; The Log Analyst, Nov.-Dec., also in SPWLA Reprint v. Gamma Ray, Neutron and Density Logging, March (1978).

Casadevall, T., and Ohmoto, H., "Sunnyside mine, Eureka mining district, San Juan County, Colorado: Geochemistry of gold and base metal ore formation in the volcanic environment": Econ. Geology, v. 72, p. 1285-1320, (1977).

Craig, H., "Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon. dioxide": Geochim. Cosmochim. Acta, v. 12, p. 133-149, (1957).

Craig, H., "Standard for reporting concentrations of deuterium and oxygen-18 in natural waters": Science, v. 133, no. 3467, p. 1833-1834 (1961).

Dresser Atlas, "Log Interpretation Charts", Dresser Industries, Inc., Houston Texas, p. 107, (1979).

Dresser Atlas, "personal communication", (1980).
Edmundson, H., and Raymer, L. L., "Radioactive logging parameters for common minerals": SPWLA Twentieth Annual Logging Symposium Transactions, Paper 0, (June, 1979).

Elders, K. A., Hoagland, J. R., and Olson, E. R., "Hydrothermal mineralogy and isotope chemistry in the Cerro Prieto Field, Mexico, III, Practical applications", Trans. Geotherm. Res. Council, v. 2, p. 177-180. (1978).

Ewers, G. R., and Keays, R. R., "Volatile and precious metal zoning in the Eroadlands geothermal field, New Zealand", Econ. Geology, v. 72, p. 1337-1354, (1977).

Fournier, R. 0., "Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of undergound conditions in hot-spring systems": J. Volcanol. Geotherm. Res., v. 5, p. 1-16.(1979).

Friedman, I., and 0'Neill, J. R., "Compilation of stable isotope fractionation factors of geochemical interest", U. S. Geol. Survey Prof. Paper 440-KK, (1976).

Glenn, W. E., and Hulen, J. B., "Interpretation of well log data from four drill holes at Roosevelt Hot Springs KGRA", Univ. of Utah Res. Inst., Earth Sience Laboratory Rept. 28, Salt Lake City, 74 p. (1979a).

Glenn, K. E., and Nelson, P. H., "Sorehole logging techniques applied to base metal ore deposits": Exploration 77 Symposium, Ottawa, Canada (1977) and in Geol. Surv. of Canada Economic Geology Rept. 31, p. 273-294 (1979).

Hulen, J. B., "Stratigraphy and alteration, 15 shallow thermal gradient holes, 员oosevelt Hot Springs KGRA and vicinity, Millard and Beaver Counties, Utah": Univ. of Utah Res. Inst., Earth Science Laboratory Rept. 9, 14 p. (1978).

Jack, R. N., and Carmichael, I. S. E., "The chemical "fingerprinting" of acid volcanic rocks", in short contributions to Califronia geology, Calif. Div. Mines and Geology Spec. Rept. 100, p. 17-32, (1969).

James, G. W., "Parts-per-million determinations of uranium and thorium in geologic samples by x-ray spectrometry", Analytical Chem., v. 49, p. 967-968.

Kendall, C., "Petrology and stable isotope geochemistry of three wells in the Buttes area of the Salton Sea geothermal field, Imperial Valley, California, U.S.A.", Univ. of Calif., Riverside, Inst. of Geophys. and Planet. Phys. Rept. UCR/IGPP-76/17, 211 p., (1976).

Lipman, P. W., Rowley, P. D., Mehnert, H. H., Evans, S. H., Nash, W. P., and Brown, F. H., "Pleistocene rhyolite of the Mineral Mountains, Utah--geothermal and archaeological significance": Jour. Res., U. S. Geol. Surv. 6, p. 133-147; (1978).

Mathews, M., "Log responses from the Geothermal Calibration Test Well C/T-2": SPWLA Twentieth Annual Logging Symposium Transactions, v. II, Paper SS (1979).

McCrea, J. M., "The isotopic chemistry of carbonates and a paleotemperature scale": J. Chem. Phys., v. 18, p. 849, (1950).
Nevman, K. L., "Calibration/Test well management", Geothermal Log Interpretation Program. First yearly topical report (1979).

Nielson, D. L., Sibbett, B. S., McKinney, D. B., Hulen, J. B., Moore, J. N., and Samberg, S. M., "Geology of Roosevelt Hot Springs KGRA, Beaver County, Utah", Univ. of Utah Res. Inst., Earth Science Laboratory Rept. 12, Salt Lake City, 121 p. (1978).

Norrish, K., and Hutton, J. T., "An accurate X-ray spectrographic method for the analysis of a wide range of geologic samples": Geochim. et Cosmochim. Acta, 33, no. 4, p. 431-454, (1969).
Ohmoto, H., and Rye, R. O., "Isotopes of sulfur and carbon", in Geochemistry of Hydrothémal ore deposits, (Barnes, H. L., ed.), 2nd ed.; New York, Wiley, p. 50,9-567. (1979)
Parry, W. T., "Mineralogy of the clay fraction from cuttings, Thermal Power Co. well Utah State 14-2", Salt Lake City, Univ. of Utah Dept. of Geology and Geophysics Rept., 8 p.(1978).

Parry, W. T., Ballantyne, J. M., Bryant, N. L., and Dedolph, R. E., "Geochemistry of hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah", Geochim. Cosmochim. Acta, 44, p. 95-102 (1980).

Parry, W. T., Bryant, N. L., Dedolph, R. E., Ballantyne, J. M., Ballantyne, G. H., Rohrs, D. T., and Mason, J. L., "Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah", Salt Lake City, Univ. of Utah Dept. of Geology and Geophysics Rept., 29 p. (1978).

Parry, W. T., Benson, N. L., and Miller, C. D., "Geochemistry and hydrothermal alteration at selected Utah Hot Springs", Univ. of Utah Dept. of Geology and Geophysics Rept., Salt Lake City, 131 p, (1976).

Pickett, G. R., "Pattern recognition as a means of formation evaluation"; SPWLA Fourteenth Annual Logging Symposium. Trans., Paper A. (1973).

Plewa, S., "Correlation between therma conductivity and other physical parameters of rocks", in KAPG Geophysical Monograph, A., Adam, editor, Akademcai Kidao, Budapest, (1976).

Poupon, A., Hoyle, W. R., and Schmidt, A. W., "Log analysis of sand-shale sequences--a systematic approach"; J.P.T., July, (1970).

Ratcliffe, E. H., "Thermal conductivities of fused and crystalline quartz," British Jour. Applied Physics, v..10, p. 22-25, (1958).

Robinson, B. W., "The origin of mineralization at the Tui mine, Te Aroha, New Zealand, in the light of stable isotope studies": Econ. Geology, v. 69, p. 910-925, (1974).

Rohrs, D., and Parry, W. T., "Hydrothermal alteration at the Roosevelt Hot Springs Thermal Area, Utah: Thermal Power Co. well Utah State 72-16", Salt Lake City, University of Utah Dept. of Geology and Geophysics Rept., 23 p. (1978).

Sass, J. H., Lachenbruch, A. H., and Monroe, R. J., "Thermal conductivity of rocks from measurements on fragments and its application to heat-flow. determinations", Jour. Geophys. Res., v. 76, no. 14, p. 3391-3401, (1971).

Savre, W. C., "Determination of more accurate porosity and mineral composition in complex lithologies with the use of sonic, neutron, and density surveys"; J.P.T., Sept., (1963).

Schlumberger, "Log Interpretation Charts", Schlumberger Limited, New York, p. 92, (1972).

Schlumberger, "Log interpretation, Volume II--Applications," Schlumberger Limited, New York, p. 116, (1974).

Sibbett, B. S., and Nielson, D. L., "Geology of the central Mineral Mountains, Beaver County, Utah", Univ. of Utah Res. Inst., Earth Science Laboratory Rept. (1980; in final review).

Suhr, N. H., and Ingamells, C. 0., "Solution technique for analysis of silicates," Anal. Chem., 38, p. 730-734., (1966).

Taylor, H. P., "Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits", in Geochemistry of hydrothermal ore deposits, (Barnes, H. L., (ed)), 2nd ed.: New York, Wiley, p. 236-277, (1979).

Ward, S. H., Parry, W. T., Nash, W. P., Sill, W. R., and Cook, K. L., Smith, R. B., Chapman, D. S., Brown, F. H., Whelan, J. A., and Bowman, J. R., "A summary of the geology, geochemistry and geophysics of the Roosevelt Hot Springs thermal area, Utah", Geophysics, 43, no. 7, p. 1515-1542, (1978).

Wilson, W. R., and Chapman, D. S., "Thermal studies at Roosevelt Hot Springs, Utah", Univ. of Utah Tech. Rept., DOE/DGE, Contract DE-ACO7-78ET28392, (1980).

Zen, E., and Thompson, A. B., "Low-grade regional metamorphism: Mineral equilibrium relations", Ann. Review Earth and Planetary Sciences, 2, p. 179-212, (1974).

[^0]: 1* For convenience of reference, this rock type will be referred to in the text as granodiorite.

