COMPLETION REPORT

GEOTHERMAL EXPLORATORY WELL S-89-4

Sulphurdale, Utah

For
Mother Earth Industries, Inc.
7350 E. Evans, Suite B
Scottsdale, Arizona 85260

COMPLETION REFORT

For
Mother Earth Industriss, Inc.
7\%SO E. Evans, Suite E Scottsdale, Arizona g与260

Frepared by
Geothermal Management Company, Inc. F.D. Box 2980

Evergreen, Colorado 804.3

July 1989

TABLE OF CONTENTS

I. ABSTFACT Fage 3
II. LDCATIDN 4
ITI: WELL DFILLING AND CDNSTFUCTIDN HTSTDFY 5
IU. GEDLDGY. 6
V. FEFMITS 6
VI. COSTS. ε

EIGURES

AFFENDICES

AFFENDIX A \quad S-Gg-4 Drillirig History
AFFENDIX E Slim Hole Drilling Flan
AFFENDIX C A Lithologic Evaluation of Drill Luttings
AFFENDIX D Fermits and related correspondance
AFFENDIX E Sumnary Cost Estimate
AFFENDIX F

FLATE (in oocleet)

FLATE I - Survey Flat of MEI Froduction Area

COMPLETION REPDRT FOR

5-89-4

Sulphurdale, Utah

I. ABSTRACT

A geothermal exploratory "slim hole" designated 5-89-4 was drilled on Fee land controlled by Mother Earth lindustries, Inc. between the dates of May 31 and June 5 ; 1989. The well is 3460 ft. south and 643 ft . east of the northwest corner of Section 7, T26S, ROW, SLBEM.

After penetrating approximately 120 feet of acid leached alluvial materials and bedrocks typical of the local Sulphur Fit the well encountered a landslide block containing highly altered and, fractured rocks of the upper portion of the Three Creevs Tuff member of the Bullion Canyon Volcanic series (Moore and Samberg, 1979) and rocks thought to be the Wales Canyon Formation. A significant flow of steam was encountered at a depth of 615 feet within a white metasandstone or quartzite (Coconino Formation) and the well was drilled, in this formation, to a total depth of 625 feet kB .

The prime contractor for the well was Grimshaw orilling Inc.; surveys were done by Sunrise Engineering, Inc. of Fillmore, Utah: Safety Services were provided by Bell Safety of Evanston, Wyoming; wellsite geological supervision was by Geothermal Management Company, 'Inc. Of Evergreen, Colorado: and petrographic examination of drill cuttings was done by Joseph Moore of Salt Lake City, Utah. All other activities were conducted by Mother Earth Industries, Inc.

II. LOCATION

This report pertains to MEI exploratory slim hole S-89-4 located near Sulphurdale, in Beaver County, Utah within the Cove Fort-Sulphurdale kgRA.

Specifically, the well is on MEI controlled fee land approwimately s460 feet south and s4s feet east of the northwest corner of Section 7, T26S, RGW, SLEsM, It is about 1480 feet from well 34-7A (Linda), about 595 feet from the nearest previously drilled production well F-Es-2 (Loretta), and about 280 feet southeast of exploration well S-89-1.

Figure 1 depicts the location of the well relative to the cection corner; Flate I (in the pocket) is a survey plat of the entire MEI production area.

III. WELL DFILLING AND CONSTRUCTION HISTORY

In order to cost-effectively search for extensions of the dry steam geothermal resource discovered to date, exploratory well $5-89-4$ was drilled in a "slim hole" configuration as follows:

On May 31 , 1989, Grimshaw Drilling, Inc. equipment was moved from the site of 5-89-1 to the 5-89-4 locetion and rig up was begun. Ey 1000 hrs on June 1 a 17.5 hole had been
 It.oft., $\mathrm{K}-55$, ET\&C surface casing was set and cemented by Dowell/Schlumberger. Dn June 3 and 4, following miscellaneous repairs and further rig-up, an B.62s" hole was drilled to उ60'RB. Three hundred fifty (S50) feet of $7^{\prime \prime}, 26$ lb=/ft. $\mathrm{K}-55$, ET\&C casing was run and cemented by Dowell using high temperature cement plus 40% silica fiour. On June 5, after mippling up a double ram EOF stack, the well was drilled to a total depth of s28'kB in only -5 hours: The first steam entry was logged at 6is'te. Note that we is equal to Ground level plus 10 feet.

A drilling history, describing daily events between May Zl and June 5, 1999, drilling activity sheets, and tour reports accompany this document as Appendix A. Figure 2 is aprofile of the well as completed; figure \mathcal{Z} is a drilling curve showing the rate of drilling progress; and figure 4 shows the Blowout Freventer stack used on the 7 " casing. Appendix E, attached, is MEI's basic drilling procedure developed for slim exploratory wells. Appendix F comprises the geolograph charts that document the drilling rate from 379 kE to 620'KB.

IV. GEDLOGY

The Cove Fort--Sulphurdele region, in southwestern Utah, comprises folded and faulted sedimentary and metasedimentary rocks of Faleozoic to Mesozoic age that are overlain, sequentially, by oligocene to Miocene age ash-flow tuffs and Quaternary basalts. All of the rocks except the baselts have been intruded locally by Wiocene quartz monzonite andfor latite porphyry stacks, sills, and dikes.

The rocks penetrated in S-95-4 comprise brectias and ashflow tuffs: reworked and hydrothermally aitered to verying extents, that have been designated as the Three creeks Tuff Member of the Bullion Canyon Volcanics (one of the oldest of the local volcanic units): The Three Creeks Tuff has three distinct zoness an upper and a lower zone of red to grey densely welded tuff and a middle zone of poorly welded white tuff. Only the lower sone of the Three Creeks Tuff has been mapped in the Cove Fort area of interest.

This lowermost zone of the Three Creeks Tuft has been Further subdivided into two cooling unite. The upper unit is characterized by euhedral plates of biotite up to several millimeters wide and euhedral (beta morphology) quartz crystals while the rocks of the lower cooling unit are mineralogically the same but much finer grained. The lower unit ctentatively correllated with the Wales canyon Formation) is found in $5-89-4$ at a depth of about 370 feet.

S-89-4 initially penetrated approximately 120 kE of alluvium, colluvium, leached, silicified, and variably pyritized Three Creels Tuff (Tbt) that is typical of the materials found.in the main Sulphur Fit. Froin 120 to 220 kB , a zone of reworked Tbt, possibly created along a landslide movement plane, was penetrated. This zone was characterized by accumulations of tot phenocrysts without the normal rock: matrix.

Eelow 220'KE, S-89-4 transected variably fractured, brecciated, pyritic and altered (argillic and silicic) light grey to medium grey to green-grey Tbt. The mineralogically similiar, but argillically altered, smectitic wales Canyon Fm. was found at 370 KB. Commonly, the textures of the Tbt and of the Wales Canyon rocks were $80-100 \%$ obliterated by alteration to calcite, sericite, clay, quartz, and pyrite.

At oloke the well encountered a white, vitreous, fremtured. pyritic pre-Tertiary age metasandstone or quartaite thought to be the Coconino Fin. Steam was first noticed near the contact, but the first significant entry was at bis'kB.

Atteched, as Appendix $E, i \leq$ a petrographic description of drill cuttinge from this well together with some interpretive comments.

V. FERMITS

Because well S-89-4 was drilled on privately owned land and not on Federal property, the permitting reguired was minimal. Attached as Appendix D is a copy of the relevant permit from the Utah Division of Water Fesources (UDWFy. Archeological clearance for the. well was given as a result of studies encompessing the whole prospect area that ware previously accomplished and documented. When the EOF stact on S-89-4 was pressure tested in accordance with state regulations, the test wes witnessed and approved by uDhf representitive John Solum.

VI. SUMMAFY COST ESTIMATE

Attached to this report as Appendix E is a "Field Cost Estimate" for the drilling of $5-89-4$. The costs are iower than those for some of the other slim holes previously drilled by MEI because: 1) The hole was repidly and efficiently drilled, and 2 , the depth to steam was significantly less than in any other well drilied in the tield to date. These chenges resulted in derreased rig time and consultant/service compeny utilization, so that the approximate cost per foot of 5-59-4 was \$62.37.

AFPENDIX A

S－89－4 DRILLING HISTORY

```
5-31-89
```



```
8-1-99
    0700 - 1800
    1800 -- 2000
    2000 - 2200
    2000 - 2400
6-2-89
    0000 - 0780
    0750 - 0800
    0500 -- 1200
    1200 -- 2400
6-3-89
    000 - 0200
    0200 - 0600 Ereak subs off 17.\Xi" bit.
    0600 -- 0800 DA to 76'RE usjng mud. Hole Eloughing.
    0800 - 1000 Euild up mud vigcosity amd weight.
    1000-1110 DA 7S-100'RE.
    1110-1200 Welding and repeirs.
    1200 -- 1425 DA 100-165.EE.
    1425 - 1855 Fiepair pump, refilll mud tank.
    1855-2400 DA 169-300'EE.
WOC, FUL mud and light systems.
Cut off 1S. צ7S" casing, further rig up.
Fepair mud tants.
Mascellaneous rig-up snd repairsm
    ML flow line and weld in place.
6-4-89
    0000 - 0E40 DA ZOO-X6O'KE. setting depth for 7"
    Casing.
    0340-0.445
    Circulate and nondition hole.
    044S - 0SEO Shortt trip, FIH, tag bottom, no fill.
    05SO-0730 circulate and condition hole. Survey at
    36'f゙B, Deviation =. .75 degreg.
    FOOH, LD EOllars.
    0730-1000
    FU to run e ioints of 7'口, 2b株/ft, &-5s,
    BT&C casing.
    1300-1350
    13SO -- 21SO WOC.
    Cementing by Dowell. CIF at 1SSO Mrs.
    2130-2400 Cut off casingsy MU b" Sow flange and begin
    to Nu EOF Ftack.
```

```
6-5-89
    0000 - 1200
    1200 - 1745
    1745-1925
    19% -- 200
    200 - 2400
```

NU EOF stact, MU blooie lime, Test EDF' Test witnessed and approved by J. \quad olum. (750 psi to $740 \mathrm{p}=1$ in 15 mimutes.)
Drill Eement from S4l'KB to उborb.
DA उ6O-62G'FE with air/foami. First stacm entry at $\triangle 15$ E
Condition hole.
FOOH, LD DF, Crew released exagpt for one watchman while well was flowed.

R-Agular get a Il L ines discunected oft of K -
D Talbut I 1 = orer..... 3 uild new drill pid.

- KiAichins get musd syotem un hooket get elechal systy discoreded start pituijup all the 1 themesiegusion get thi $R_{i} g$ whoved off. substacter pul:a...s: wover ta JTGrimshap New hecution ard act i theted and oroweiend pice of sab over winn forkft and iet i bolte an t Keveld ru: Move R gig on substucter t get it lersed up get dericit in aice get the B a p Nipptei Nomo. and stacked out on cement pad. get plate a Blecter valve Nippled on well. Blow well. then putit on Blecd. move Sheirciant le New site te Start_ te Rig. app

TTMDRILLING ACTVTYLOG VETUTS.89-2] AMENTS DATE $(6-1 \quad 189]$
07:00! M Harris Get pad fluter out for doghouse
R Augur get doghouse moved in get all Rental
0 Talbot tools Rounded up and stcitte oat on Cement pad get Air Corpiterer moved on Location
)
$)$
\qquad
 mows mister pap by Pair coporess-r chang out Bolts on valve well 5.89-1 got unoved off ald loaction start t get dog house Raged up move water tank onto drill pad get Big Light plant $t h$ Lith Light plant woéath get air compressor plumbelin 4 mistpump-plumedin drag dow Eure tain and get it plumbed, in to the air caripnose. and mist pun get Light plant wived in and allthe hight we could find that would work get 40 ft of 13 zs conductor Casing moved ow to pipe Racks.

to 0700 RK Get location Ready move ali Compensson un kook light plants and move to location and sett mp take Blewe line armpit and move to Location clean il is. bit up to dill with take Rotating head of Take fuel off li f? P. move Cat walk oud Beaver side to big and Rig up move $61 / 4 \mathrm{Callar}$ and Subs move $133 / \mathrm{k}$. Casing to Cat walk. Rig up fur L line and water tank pick up Lin bit Bit Sub 4 crossover subs make up on Kelly and Drill Kelly Down Clean Hole pick up Calla and Drill to So' k B Stand Callas Bit and Subs Back and hun Casing $50^{\prime \prime} k B$ and bremen

17 hours
17 ours 17 hours of
 D talbot moved moved $L_{4}=$ mus pump and got it out of the my when we was do: that Rick ported on Lights after we moved mud perm out thad to move mud pit couldn't get rough traction on that end to get $i t$ up out of the hols= it is instant is still got a Lot of Solidsint.) had to goDot $h=0$ tier end drill pipe t pipe Racks in Liezoay hail Risk. move them while he is moving had Dare get tocchovir to Rig ti cut of 133 Cassis 6° Below tais. Belt cam= oft on fort Lift had to put if Bark an it came of agon and weput it back on about the 5^{4} bi 6^{41} time ituouldny Slay on henge enoag to messwith finish moving drill pipe t pipe Rect with bact hae e pall out mud tank 4 pulled it over to the Rig parked it into placer, pu, fed, 1 , mud pump, Started to meld

DEDRILING ACTVITYLOG WE - $15=89-2, \quad$ DATE $163-891$ TTMCTDEPTH MAME
12:00 100"1 R 7 Dr $1 / 7$ PF take goose neck off andturn 12:55iLO7" RH make Conection Collar G'/t
2205138 RA make Covection. Collar $6 / 4$
250169 ll BH make Conection Daill pipe $3 \% / 2$
13:30. 169 Lose pand presure check and take apacT

punp Replaced 2-6"I Swabs fix wench
$7.45 / 198$ RH Govection 10 P
nut down to ADJ Clutch

HIDRILINGACTMTYLOG VE $15 \frac{89}{\text { COMMENTS }}$ OATE $(C-4-8 \varphi 1)$ TTMETEPTH NAME
$2400^{\circ} 300$ mume dolling golg fair dilling in sol
Flow Line $t=m p 107^{\circ} 344 f$ from G. D dilling has

110350 Et f. Oncel 360 K.B. TO for $7^{\prime \prime}$
Circlating hole + condishongit. Get Caseing Ready ξ strapeel
short Trip Irip Back to Bottom no
モil-
circ \& Cond Hole sTrap (a) Joint;
of 7"@ 396.30 \qquad
Survey@ 350 3/4\%
Trip out Hole to Run Caseing $\&$ LayDown
D.C 4 of them
Rig up te R en Caseing Run 8 joint's

1200 34 tag loment Q $34 /$ Drill ont Cement x shoe
1348 RQ1 hap ont with 6 Bit pick up hammer trip in

"Slim Hole" Drilling Program

Objective: Drill/Complete exploratory hole to $\pm 1500^{\circ}$ TO and evaluate formation. Conductor casing $133 / 8^{\prime \prime}$ set at $\pm 40-120^{\circ}$, surface casing set at $\pm 250^{\circ}-400^{\circ}, 61 / 4^{\prime \prime}$ open hole to 1500° or producing =formation.

Prepared by: Jay C. Hauth, July 1988
Version 2: October, 1988
Version 3: April, 1989

Sequence of Operations

1. Construct location and sump per rig requirement.s.
2. MRU rotary urilling rig.
3. Mix spud mud per attached drilling fluids program
$3 a$ Dhil 2614" hole for 20 "Conductor Cavirs.
4. Spud well with $171 / 2^{\prime \prime}$ bit and drill to $\pm 40-120^{\circ}$. Run and cement 13 $3 / 8^{\prime \prime}$ conductor per attached cementing program. Optionally, run $12^{\prime \prime} 00 \mathrm{X}$. 375° wall ASTM A53 gr B, seamless or ERW pipe, w/butt weld ends. Optionally, install master valve and rotating head w/ 6" flowline per attached drawing, per supervision/geology direction. Note requirement for $\pm 50^{\circ}$ handwheel extension with optional master valve.
5. Visually inspect and note on Tour Sheet whether all drill pipe is white banded, specifying that it meets AAODC API Class II inspection as to the following:
6. Electromagnetic inspection of tubes (Sconoscope or Scanalog)
7. Wall thickness and cross-sectional area (Ultrasonic or gamma ray)
8. Tool jt inspection (electronic or mag particle)

Also check to see that all drill collar connections have been mag particle. inspected and that all bottom hole assemblies have been magnafluxed prior to delivery. Note condition on Tour Sheet. Ensure that $7^{\prime \prime}$ casing is on location and in position to run. Ensure all casing accessories, wellhead equipment, and circulat ing head are on hand.
6. RIH with $97 / 6^{\prime \prime}$ bit and drill with mud to $\pm 250^{\circ}-400$, depending on geology. Rerriove thread protectors, clean threads, drift and measure casing while drilling surface hole. Measure KB height and log on Tour Sheet. After rasing point has been selected, drill any additional hole that might be required so that casing can be landed within I' of bottom, and still space out correctly on surface. Maintain hole as straight. as possible while drilling. Take drift shots every 100-200'. Run maximum reading thermometer on each survey. Maximum angle at TD 4 degrees or less. Maximum rate of change 1 degree per 100. Monitor and record flow line temperatures every hour. Catch 2 sets of formation samples every 10°.
7. Upon reaching desired depth, circulate and condition mud until shaker screen is clean and viscosity is less than $45 \mathrm{sec} / \mathrm{qt}$. Make wiper trip. Check for fill. If hole is in good condition, circulate bottoms up, POOH , and laydown $97 / 8^{\circ \prime}$ drilling assembly. If tight hole was encountered on wiper
trip, then make another wiper trip. It may also be necessary to further condition mud.
8. Rig up and run 7" casing to TD, per attached casing program. Run in hole slowly to avoid breaking down formation and losing circulation. Circulate past any bridges encountered. Use proper makeup torque on casing, and geothermal casing dope on threads.
9. Once casing has been run to TD, circulate hole clean, while reciprocating casing, with at least two full circulations. Circulate until hole is clean, mud is in good shape; and viscosity is less than $45 \mathrm{sec} / \mathrm{qt}$. Check bottoms up time to be sure mud is not channeling.
10. When mud is in good shape, cement casing as per attached cement program. Monitor and record cement data to assure adherence to cmt . program. Catch cement samples. If possible, reciprocate casing while purnping cernent. Land casing approximately 1 off bottom. Center casing in rotary table.
11. WOC 8 hrs . (check samples to determine if additional time is req'd) Monitor cement in annulus. If it falls back, bring it back to surface with $\mathrm{I}^{\prime \prime}$ pipe.
12. Land and cut off 7 " casing. Weld on $7 \times \times 300$ SR Starter flange. Test between welds. Check with level to be sure flange is on correctly. Callout surveyors to survey casing head location.
13. Make sure that BOP equipment has been inspected by the manufacturer or an authorized agent prior to arrival and that all equipment is proper and in good shape on delivery. Nipple up BOP equipment per attachment. Test 7" casing and BOP equipment to 500 psi with BLM representative present to witness. Log test data and request BLM witness to sign name and successful test completion on Tour Sheet.
14. Trip in hole with $61 / 4^{\prime \prime} \mathrm{mIII}$ tooth bit and tag cement. Log top of cement on Tour Sheet. Drill out baffle plate, cement and float shoe from 7 " csg with spud mud. Drill 10° of formation and then trip to pick up button bit or hammer/hammer bit. If the decision is made to air drill, run float in bit sub and unload mud out of hole with air on the trip back in. If the decision is made to drill with mud, then displace the spud mud out of the hole with the gel/water/polymer system when you reach bottom with bit. See attached mud system detalls.
15. Orill $61 / 4^{\prime \prime}$ hole with air, foam, or mud to 1500°, or until producing formation is encountered. Test formations per engineer's direction, log per permit and engineer/geologist requirements. Operate BOP on each trip out of hole and \log on Tour Sheet. Ensure accumulator is holding pressure.
16. Upon reaching TD, circulate hole clean, laydown drill string, ND BOPs, clean location and release rig.
17. Submit all reports as required by regulatory agencies.

Drilling Fluids Program

$171 / 2^{*}$ and $97 / 8^{" ~ s u r f a c e ~ h o l e . ~} 0- \pm 250^{\circ}-400^{\circ}$

Mud System: Gel, lime, water, LCM (Spud Mud)
Mix $15-20 \mathrm{Lb} / \mathrm{Bbl}$ bentonite in fresh water. Flocculate with lime.
Weight: As low as possible with mechanical. solids control equipment
Viscosity: 45-55 sec/qt or as needed to clean hole
Water loss: No control
Total hardness: No control
pH : Mix lime through chemical barrel to maintain 9.5-10.5 pH
Comments: Lost circulation through this interval is possible. No formation pressures are anticipated. Keep plastic viscosity down and yield point up. Run solids control equipment cont inuously. Break circulation slowly and trip slowly. Use Desco to thin mud if necessary.

6 $1 / 4^{\circ}$ Hole, $\pm 250^{\circ} / 400^{\circ}-$ TD

Mud system: Polymer, gel, soda ash, Desco, high temp thinner. Drill out cement with Spud Mud and then dump Spud Mud. Build new system. Mud up in clean steel pits by mixing, with fresh water, $1 / 2 \mathrm{lb} / \mathrm{bbl}$ caustic soda and a ratio of 8 bentonite to 1 Drispac regular. Mix bentonite first and then slowly add ($30 \mathrm{~min} / \mathrm{sk}$) Drispac. (Substitute a high molecular weight anionic liquid polymer such as Magcobar Rapid Mud for Drispac if so desired)

Weight: As low as practical with water and mechanical solids control equipment.

Viscosity: $38-45 \mathrm{sec} /$ qt with bentonite and Drispac (8:1 ratio of bentonite:Drispac) Stay on this ratio to maintain viscosity af ter Mud-up.

Water Loss: No control
Total Hardness: Below 300 ppm with soda ash.

Rheology: Control flow properties at reasonable levels with Desco thinner. If downhole temperatures increase to where Desco is not effective, then use high temp thinner

Torque, Orag, Hole Stability, and high temp lubricant: Add 2 ppb Soltex additive as necesary.

Lost Circulation (surface to TD): Methods to be used as follows:

1. Lost circulation materials such as nut plug, cotton seed hulls, saw dust, medium Kwik-Seal, etc.
2. Gunk Squeezes
3. Cement
4. Lighter-than-water drilling fluids

Abnormal Presure: Weight material (barite) should be on location at all times.

Corrosion: Add corrosion inhibitors such as oxygen scavengers or scaling amines to control corrosion.

Stable Foam Make-up:
Mix $1 / 2-2$ ppb Drispac in water
1-2 ppb soda ash
5-10\% foamer fust before use (use alpha olef in sulfonate for high temp foamer)
Air-Mud ratio required $=100: 1$ to $300: 1$
Special considerations:

1. Drilling recorder to monitor rate of penetration
2. Catch drill cutting samples (2 sets) every 10 , cleaned, sacked, and labeled in accordance with geologist direction. Collect samples every 5° on conductor.
3. All lost circulation zones encountered shall be recorded in Tour book, recording both the depth at which the loss occurred, as well as amount and rate of fluid lost.
4. In and Out temperatures, both mud and air, shall be recorded in Tour book every hour.
5. Temperatures should be taken with every directional survey by running a maximum registering thermometer in the survey instrument.

Casing Program

Conductor casing: $\pm 40-120^{\prime} 133 / 8^{\prime \prime} 61$ ppf $\mathrm{J}-55 \mathrm{BT} \& \mathrm{C}$ in $171 / 2^{\prime \prime}$ hole Optional: $\quad \pm 40-120^{\circ} 12^{\prime \prime} 00 \times .375^{\prime \prime}$ wall ASTM AS3 gr B, seamless or ERW plpe, w/butt weld ends, in 17 1/2" hole.

Surface Casing: $\pm 250^{\circ}-400^{\circ} \times 7^{\prime \prime} \mathrm{J}-5520 \mathrm{ppf}$ ST\&C Range 2 Casing
Torque: 3200 ft -lbs
Drift ID: 6.331°
Strength ratings:
Yield - 2992 psi
Collapse - 1816 psi
Tension-187,200 lb
Accessories:
Float equipment: flapper type conventional float shoe on bottom of string and baffle plate installed one ft up from bottom

Centralizers: 2 centralizers installed in the middle of the bottom 2 jts ($7^{\prime \prime}$ $\times 97 / 8$ " bow type)

Wellhead equipment: 7 " $\times 300$ SR SOW starter flange for wellhead. 300 SR gate valve for master valve.

Notes:

- Tack weld shoe, also top and bottom of couplings on bottom three jts - Lower casing in hole slowly to avoid formation breakdown and lost circ.
- Use geothermal grade thread dope on casing threads

Cementing program

$\pm 250^{\circ}-400 \times 97 / 8^{\prime \prime}$ hole $\times 7^{\prime \prime}$ casing surface job

Slurry description: API Class " G " or " "H" cement mixed with 5.0 gal/sk water Requires: $.2301 \mathrm{sk} /$ linear ft in $97 / 8^{\prime \prime}$ annulus

Slurry wt: $15.8 \mathrm{lbs} / \mathrm{gal}$ or $118 \mathrm{lbs} / \mathrm{cu}$. ft .
Yield: 1.15 cu.ft./sk
Water requirement: $5.0 \mathrm{gal} / \mathrm{sk}$ or $0.67 \mathrm{cu} . \mathrm{ft} . / \mathrm{sk}$
Pump time: 1-2 hrs
24 compressive strength: 2915 psi
7゙ J-55 20 ppf ST\&.C casing displacement $=.0404$ bbl/linear ft or .2273 cu.ft./linear ft.

Note: calculate cement job with 100\% excess in open hole; 50\% in cased hole is OK.

H2S Safety

The H2S safety company will be called out to perform certification training, install and maintain properly operating H2S monitors, and provide onlocation advice and expertise regarding safety related items. The monitors will be rigged up prior to spudding the hole, and the safety man will be available on location no later than drilling out the production casing.

In all matters of safety, the H2S safety man has the FINAL WORD on procedures. NO DRILLING OPERATIONS SHALL BE CONDUCTED CONTRARY TO THE H2S SAFETY MAN'S DIRECTION. NO EXCEPTIONS.

H2S monitors will be installed at the following locations:

1. Mud return line
2. Vicinity of floor
3. Vicinity of wellhead/BOP's
4. Additional locations per Safety Man direction, MEI/contractor recornmendations.

Windsocks will be installed as to be visible from various areas of location. An H2S warning sign (with green/yellow/red warning flags) is to be installed on the access road, and the appropriate flag will be displayed, depending on current operations. Two different briefing areas will be established, to allow safe briefing in any wind condition. Emergency breathing equipment (5 min . and working-size Scott Air Packs; workline hose; high-pressure air bottles in safety traller, etc.) will be avallable.

Prior to spud, all rig personnel shall successfully complete an H 2 S training/certification course presented by the safety man. This will include Air Pack use, operation and location of H2S monitors around the rig, location and use of briefing areas, and general information regarding safety. Throughout drilling operations, rig personnel will have procedural update brlef ings, safety meetings, etc., as needed.

H2S ALARM PROCEDURE POST PROMINENTLY IN DOGHOUSE

IN CASE OF H2S ALARM:

1. MASK UP WITH ESCAPE UNIT

2. GO IMMEDIATELY TO THE UPWIND BRIEFING AREA

NO EXCEPTIONS UNLESS DIRECTED BY H2S SAFETY MAN ON LOCATION

8"900* rotating head with diverter

Double Hydraulic ram BOP 6" 900"
1-CSO
1-Drillpipe

Choke \& Kill spool
1 valved outlet;
1 valve and check

8" 300* RF Gate valve 1100 psi test; 680 psi @ 300 F WOG

Ground Level

Slim Hole Completion Details

Blowout Preventer Details; 13 3/8" casing (optional, as req${ }^{\circ} d$ on slim hole program)

$\pm 50 \mathrm{ft}$. extension on handwheel

LITHOLOGIC LOG OF MET WELL S-89-4

Prepared for

Mother Earth Industries, Inc.
7350 E. Evans Road, Suite B
Scottsdale, Arizona 85260

By
Joseph N. Moore
Salt Lake City, Utah

July, 1989

EXECUTIVE SUMMARY

MEI well S-89-4 was drilled into a structurally complex fault block. The rocks encountered in this well are similar to those in other MEI wells and include alluvial deposits and soils, Three Creeks Tuff, Wales Canyon Tuff, a pyroxene-bearing dike, and the Coconino Sandstone. However, repetition of the Wales Canyon Tuff and the underlying soils developed on the Coconino Sandstone demonstrate that the upper 460 feet of s-49-4 are part of a gravitational glide block that moved from east to west.

The Coconino Sandstone which hosts the steam reservoir was encountered at a depth of 600 feet in S-89-4 and at 850 feet in $S-$ 89-1. These relationships indicate that $5-89-4$ is located in a different fault block than s-89-1. The most likely orientation of the fault that separates these blocks is easterly, with movement down to the north.

The volcanic and sedimentary rocks of $\mathrm{S}-89-4$ have been intensely altered to mixtures of quartz, pyrite, calcite, and sericite. These minerals indicate that temperatures during hydrothermal alteration did not exceed 200° to $225^{\circ} \mathrm{C}$.

MEI well S-89-4 was sampled to a depth of 620 feet. This report describes the lithologies and alteration assemblages encountered in the well.

LITHOLOGIC RELATIONSHIPS

The lithologies encountered in 5-89-4 are illustrated in the attached log. The rocks encountered in this well include alluvial deposits and altered soils(?), the Three Creeks Tuff, the Wales Canyon Tuff, a pyroxene-bearing dike, and the Coconino Sandstone. However, as discussed below, gravitational gliding has resulted in a repetition of the Wales Canyon Tuff and the sedimentary deposits overlying the Coconino Sandstone.

The alluvial deposits in S-89-4 extend from the surface to a depth of 120 feet. These deposits consist of poorly consolidated sands and gravels composed of the volcanic and sedimentary rocks exposed in the adjacent hills. Layers of gravel, consisting of coarse rounded clasts of these lithologies occur at 60-70, 90-100, and 110-120 feet.

The cuttings between 120 and 160 feet consist dominantly of light-gray Three Creeks Tuff, although a variety of sedimentary and volcanic rock fragments, and aggregates of sulphides are also present. These fragments appear to represent material derived from the shallow alluvial deposits.

Between 160 and 350 feet, the cuttings consist of uniformly gray Three Creeks Tuff. This ash-flow tuff is characterized by approximately 50% phenocrysts of quartz, plagioclase, biotite, potassium feldspar, and hornblende in a matrix of densely welded shards and ash. The Three Creeks Tuff is distinguished from other ash-flow tuffs by the common occurrence of dipyramidal quartz and its coarse grain size. Thin sections of the Three Creeks Tuff from S-89-4 show that the phenocrysts and matrix of the rock have been strongly altered to clays, sericite, quartz, and carbonate.

The Three Creeks Tuff in S-89-4 appears to rest on densely welded Wales Canyon Tuff. Although also crystal-rich and mineralogically similar to the Three Creeks Tuff, the Wales Canyon Tuff is finer grained and lacks the conspicuous quartz phenocrysts that characterizes the overlying ash-flow tuffs. Thin sections show that the Wales Canyon Tuff, like the Three Creeks Tuff has been intensely altered. Nevertheless, the general features of the Wales Canyon Tuff can still be distinguished.

Two intervals of Wales Canyon Tuff, separated by altered soil(?) containing fragments of Coconino Sandstone, were encountered in the well. The Wales Canyon Tuff is present between 350 and 450 feet and again between 460 and 590 feet. The lower section of Wales Canyon Tuff ranges from medium-gray(460-560 feet) to light-gray(560-600 feet) in color.

Fragments of a porphyritic pyroxene-bearing dike are present near the base of the Three Creeks Tuff at 360 feet and in the underlying Wales Canyon Tuff. Thin sections from 350-360 show that the dike contains phenocrysts of enstatite accompanied by minor altered olivine(?) and clinopyroxene. The matrix of the dike consists of fine-grained plagioclase, clinopyroxene, potassium feldspar, and magnetite. In contrast to the associated ash-flow tuffs which are strongly altered, fragments of the dike are relatively fresh.

The mineralogy of the dike fragments is similar to that of the "latite" dikes and domes mapped by Moore and Samberg (1978) in the Sulphurdale area. Based on the mapped relationships, it can be shown that the "latite" was emplaced after the Three Creeks Tuff at 27 my but before the Osiris Tuff at 22 my . Moore and Samberg (1978) concluded that the "latites" were related to intrusion of a quartz monzonite stock that underlies Sulphurdale.

Fragments of Coconino Sandstone occur in a 20 foot zone between 440 and 460 feet and below 590 feet. Chips from a depth of 450-460 feet contain clasts of both Coconino Sandstone and highly altered Wales Canyon Tuff. These clasts occur in a matrix
of fine-grained quartz and sericite. The presence of both lithologies suggests that this clastic rock represents a fault breccia.

In contrast, chips from a depth of 590-610 feet consist of fragments of sandstone in a matrix of sericite and quartz. These chips are interpreted as representing soil developed on the underlying Coconino Sandstone prior to the deposition of the Wales Canyon Tuff.

The top of the Coconino Sandstone was encountered at a depth of 600 feet. Thin sections show that the sandstone consists dominantly of quartz cemented by quartz overgrowths.

HYDROTHERMAL ALTERATION

With few exceptions, the rocks encountered in 5-89-4 display intense argillic alteration. In order to better characterize the alteration assemblages and textures, thin sections of selected intervals were examined. The location of the thin sections is shown on the accompanying log. Brief descriptions of the thin sections are presented in Appendix 1.

The alluvial deposits have been hydrothermally altered to clays and aggregates of sulphides. X-ray diffraction analyses of similar aggregates from S-89-5 indicate that the sulphide minerals include both pyrite and marcasite.

Petrographic examination of a thin section from 134-140 feet which contains abundant sluffed material indicates that some of the fragments of Three Creeks Tuff contain fine-grained clay (probably kaolin), calcite, and sericite (mixed layer illite/smectite or illite). Textural relationships suggest that calcite was partially dissolved prior to deposition of the clay.

Both the matrix and the phenocrysts of the ash-flow tuffs have been intensely altered. Plagioclase phenocrysts have been altered to mixtures of clays or sericite, and calcite. Biotite phenocrysts throughout the well have been replaced by fine-grained mixtures of
quartz, sheet silicates (clays, sericite, and light green chlorite/smectite?), pyrite, magnetite, and leucoxene. All of the hornblende originally present in the rocks has been completely altered to calcite, clays or sericite, and opaque minerals.

The matrix of the ash-flow tuffs has been variably altered to mixtures of quartz and sericite (or clays). Much of this quartz probably represents recrystallization of cristobalite formed during devitrification of the originally glassy shards and ash matrix. Similarly, the sheet silicates present in the matrix appear to represent an alteration product of the potassium feldspar formed during devitrification. Silicification of the ash-flow tuffs was observed in the thin section from 450-460 feet.

Pyrite is the only sulphide identified in the volcanic and sedimentary rocks beneath the alluvium. It occurs as disseminated crystals within the matrix of the ash-flow tuffs, as a replacement of biotite, and in veins where it is commonly associated with calcite.

In contrast to the intense alteration that characterizes the Three Creeks and Wales Canyon Tuffs, alteration of the pyroxenebearing dike is very weak. Phenocrysts of a ferromagnesian mineral that appears to have been olivine(?) have been completely altered to serpentine, chlorite, and a pleochroic sheet silicate (celadonite?). Although the pyroxenes are generally fresh, the margins of some of the phenocrysts have been replaced by finegrained amphibole.

Veins are common throughout the wells and are found in all rock types. Vein assemblages in chips of the ash-flow tuffs include: calcite + pyrite \pm quartz, calcite + quartz, calcite, quartz \pm sericite, calcite + barite + quartz + sericite + pyrite, and pyrite. Veins of chalcedony + calcite + sericite cut fragments of the pyroxene-bearing dike whereas veins and open space fillings of quartz, pyrite, and quartz + pyrite + sericite are present in the Coconino Sandstone.

In summary, the secondary mineral assemblages observed in S -89-4 are similar to those encountered in other MEI wells. These assemblages are typical of low to moderate temperature regimes. The presence of both interlayered illite/smectite and chalcedony, for example, suggest that temperatures were probably no higher than $200-250^{\circ} \mathrm{C}$ during alteration (Henley and Ellis, 1983; Fournier, 1985). Significantly, minerals typical of higher temperature regimes (225 to $250^{\circ} \mathrm{C}$) such as epidote have not been observed in this well.

The differences in the degree of hydrothermal alteration between the pyroxene-bearing dike and the ash-flow tuffs suggests that either the dike postdates the bulk of the alteration or that it has been relatively impermeable to the geothermal fluids. It is not possible to provide a definitive answer to this question since volcanic rocks younger than the dike have not been encountered in the wells.

STRUCTURAL RELATIONSHIPS

The distribution of volcanic and sedimentary rocks in S-89-4 demonstrate that this well was drilled within a gravitational glide block adjacent to steeply dipping faults. The accompanying lithologic log shows that this gravitational glide block extends to a depth of 460 feet and includes both the Three Creeks and Wales Canyon Tuffs. The similarity between the fault breccia and soil encountered at 440-460 and 590-610 feet respectively suggests that the glide plane was localized within incompetent horizons developed on top of the Coconino Sandstone. As noted above, this fault zone is marked by a breccia containing clasts of both the Coconino Sandstone and the Wales Canyon Tuff.

Fault breccia is also present near the base of the well at 600-610 feet. A thin section from this interval shows that the breccia is cemented by fine-grained quartz. Minor silicification is also present in cuttings from the base of the Wales Canyon Tuff.

The depth to the Coconino Sandstone in S-89-4 (600 feet) is approximately 250 feet shallower than it is in well S-89-1. These relationships indicate that $\mathrm{S}-89-4$ is in an upthrown block relative to S-89-1. The most likely orientation of the fault between these wells is easterly, parallel to the major east-west trending structure located adjacent to wells 24-7 and S-87-3. However, the presence of silicification in chips from the base of the wales Canyon Tuff indicates that faulting postdates deposition of these volcanic rocks.

REFERENCES

Fournier, R.O., 1985, The behavior of silica in hydrothermal systems: Reviews in Economic Geology, v. 2, pa. 45-61.

Henley, R.W., and Ellis, A.J., 1983, Geothermal systems, ancient and modern: a geochemical review: Earth Science Reviews, v. 64, p. 599-612.

Moore, J.N. and Samberg, S.M., 1979, Geology of the Cove FortSulphurdale KGRA: University of Utah Research Institute Report 18, 44p.

APPENDIX 1
 THIN SECTION DESCRIPTIONS

130-140 feet: Chips in this sample consist of approximately equal amounts of Three Creeks Tuff and fragments of alluvium. These fragments consist of Coconino Sandstone, Bullion Canyon lava flows, limestone, and dacite. Alteration of the Three Creeks Tuff is intense. Plagioclase, biotite and hornblende have been altered to sericite, chlorite/smectite, kaolin(?), pyrite, leucoxene, and iron oxides. Veins of pyrite and calcite + pyrite \pm quartz are present. Textural relationships suggest that dissolution of calcite occurred prior to deposition of koalin. Unaltered potassium feldspar is present in many chips.

180-190 feet: Intensely altered Three Creeks Tuff. Phenocrysts have been altered to sericite, quartz, calcite, leucoxene, and pyrite. Fresh potassium feldspar is common. 30-50\% of the matrix of the ash-flow tuff has been altered to quartz and sericite. Veins of calcite + pyrite are present. Disseminated calcite and pyrite are also present in the matrix.

260-270 feet: Intensely altered Three Creeks Tuff as above. Approximately 60-75\% of the matrix of the ash-flow tuff has been altered. Veins of calcite + pyrite \pm quartz \pm sericite and calcite + quartz are present.

360-370 feet: Intensely altered Three Creeks Tuff as above and approximately 30% chips of a pyroxene-bearing dike. Phenocrysts in the dike consist primarily of enstatite accompanied by minor altered olivine (?) and clinopyroxene. The matrix of the dike is completely crystalline and consists of plagioclase, clinopyroxene, potassium feldspar, and magnetite. Alteration of the dike is limited to replacement of the olivine by serpentine, chlorite, and a pleochroic sheet silicate (celadonite?) and to minor alteration
of the pyroxene rims to fine-grained amphibole. Veins of chalcedony + calcite + sericite cut the dike.

450-460 feet: Intensely altered Wales Canyon Tuff and breccia. Feldspar phenocrysts of the Wales Canyon Tuff have been altered to sericite and calcite whereas the ferromagnesian minerals have been replaced by sericite, calcite, leucoxene, and pyrite. The ash-flow tuff is cut by veins of calcite + pyrite, quartz + sericite, calcite + barite + quartz + sericite + pyrite. The edges of the barite crystals show evidence of being resorbed. Minor silicification of the Wales Canyon Tuff, and open space fillings of quartz are present.

The breccia contains clasts of Coconino Sandstone and Wales Canyon Tuff in a matrix of quartz and sericite. The breccia is cut by veins of calcite.

480-490 feet: Intensely altered Wales Canyon Tuff as above. Veins of calcite + pyrite and pyrite are common.

590-600 feet: Intensely altered Wales Canyon Tuff as above and altered soil(?). Fragments of silicified tuff containing open space fillings of quartz and pyrite are present. In contrast to chips from 480-490 feet, carbonate is a minor alteration product. The altered soil(?) consists of fragments of Coconino Sandstone in a matrix of sericite, quartz and pyrite.

600-610 feet: Coconino Sandstone. Approximately 30% of the chips consist of breccia containing fragments of Coconino Sandstone in a matrix of fine-grained quartz. veins of pyrite, quartz + sericite + pyrite and open space fillings of quartz are present.

DrILL BOLE $\frac{5-89-4}{\text { LOCIVIN }} \mathrm{l}$
LOGGED Brinnm

DEPARTMENT OF NATURAL RESOURCES DIVISION OF WATER RIGHTS
Norman II．Bangerter
Ganeriur
Dree C．Hathsen
Exarintiw－Itireviner

Stiate Fimsioner

1636 West North Temple．Suite 220
Sall Lake City．Utan $84116-3156$ 801－538－7240

April 14， 1989

Mr．Jay C．Hauth，Operations Manager
Mother Earth Industries，Inc．
3761 South 7.00 East，Suite 200
Salt Lake City，UT 84106
RE：Request to Drill Slim Holes S89－1 through S89－7 Expiration Date：October 14， 1989
Dear Mr．Hauth：
Reference is made to your request of April 5，1989，to drill seven＂slim hole＂ geothermal wells as part of MEI＇s continued field development program at the Cove Fort／Sulfurdale KGRA．The location of the wells is to be：

S89－1 South 3211 feet and East 609 feet from the NW Corner of Section 7，T26S，R6W，SLB\＆M；

S89－2 South 2853 feet and East 578 feet from the NW Corner of Section 7，T26S，R6W，SLB\＆M；

S89－3 South 3597 feet and East 1108 feet from the NW Corner of Section 7，T26S，R6W，SLB\＆M；

S89－4 South 3456 feet and East 354 feet from the NW Corner of Section 7，T26S，R6W，SLB\＆M；

S89－5 South 3684 feet and West 225 feet from the NE Corner of Section 12，T26S，R7W，SLB\＆M；

S89－6 South 3369 feet and West 465 feet from the NE Corner of Section 12，T26S，R7W，SLB\＆M；

S89－7 South 3129 feet and West 915 feet from the NE Corner of Section 12，T26S，R7W，SLB\＆M．

By this letter you are hereby granted permission to drill，subject to the following conditions：

1．Your request is approved as a test well application only．If，at a later date，it is desired to bring the well to production，it will be necessary to obtain the State Engineer＇s approval on the appropriate water right application（s）at or previous to that time．
2. The driller must be bonded and have a current well driller's permit from the Division of Water Rights. A federal bond covering the well will satisfy the bonding requirement.
3. These wells may be drilled to a maximum of 1500 feet. The applicant must obtain written permission from the State Engineer prior to drilling to a depth significantly beyond 1500 feet, i.e., to a depth requiring changes or additions to the Plan of Operations submitted to the State Engineer, or posing a threat to the safety of personnel rig equipment and/or the structural integrity of the well.
4. The applicant must notify the Division of Water Rights at least 24 hours prior to 1) the commencement of drilling, and 2) testing the BOP equipment and the surface casing, so that a representative may be on site for the inspections. The applicant must also notify the Division prior to testing the well for flow or resource characteristics so that a representative of the Division may observe the test.
5. The casing shall be installed according to the schedule in the plan of operations in the request to drill, summarized as follows:
A. The conductor casing (13-3/8 inch) shall be installed to a depth of $40-120$ feet and the annular space shall be cemented back solid to the surface.
B. The surface casing (7 inch) shall be set to a depth of 250-400 feet and cemented back to the surface. Blow-out prevention equipment shall be installed and tested before drilling further.
C. The well may be drilled open-hole below the surface casing.

Any variances from the Plan of Operations must be approved by the State Engineer prior to their implementation.
6. The BOP Equipment and the surface casing shall be pressure tested in accordance with federal regulations as contained in Federal GRO Order No. 2. The applicant shall notify the Division prior to the test so that a representative of the Division may witness the test.
7. Mud return temperatures shall be monitored and recorded at least with the addition of each new drill pipe, or 30 feet, whichever is less. If the return temperatures reach 125 degrees Fahrenheit before the surface casing has been set, drilling shall cease inmediately until casing has been set and/or BOP equipment has been installed and successfully tested.
8. The driller shall take all necessary precautions to prevent fires, blow-outs, or others hazards and to conduct all activities in a safe and workmanlike manner. The driller shall be prepared with proper equipment and drilling techniques to handle either artesian or thermal pressure, or both, particularly in.the bedrock layers which apparently form the reservoir matrix. The driller shall utilize such equipment as is necessary to contain the well at any stage, whether above or within the bedrock layer. Appropriate H2S warning devices shall be utilized during all drilling and testing operations, and personnel shall be instructed in proper emergency procedures and the use of emergency equipment.
9. The applicant shall provide for proper and safe disposal of any geothermal fluids produced during the drilling or testing of the well. Plans for disposal pits or other facilities must be approved by the State Engineer prior to the commencement of testing. No more water may be diverted from any of the wells than is necessary to conduct the tests associated with drilling. Any extended flow test to determine the production capabilities of the well must be approved in writing by the State Engineer prior to the commencement of testing.
10. In case of any emergency, the applicant shall immediately notify the Division at one of the numbers listed below:

Work
Gerald Stoker (801) 586-4231 John Solum (801) 538-7406 Kent Jones (801) 538-7405

Home
(801) 546-1979
(801) 561-9901

It is the responsibility of the applicant to notify the Division.
11. The applicant shall submit to the Division all drilling reports and logs at the completion of drilling, and geologic data, chemical analyses, and test results at the completion of testing or earlier if the State Engineer determines that the information is necessary for immediate decisions regarding the management of the resource. This information will, at the request of the applicant, be held confidential until it is released by the applicant.
12. This approval is conditioned upon the proper easements and trespass agreements being obtained from Provo City, the fee hold of the land where the proposed well S89-3 will reside. A copy of such agreements shall be provided the Division of Water Rights before the approval of S89-3 is considered final.

This is permission for the licensed driller to begin drilling the geothermal test well. Note that the expiration date of this letter is October 14, 1989.

Please notify Gerald Stoker, the Area Engineer, at 586-4231 or John Solum, at 538-7406 prior to the commencement of drilling operations.

This is not permission for you to develop a final test well to be used for production purposes, but is only intended to develop sufficient information to determine if a likely geothermal resource is available in the area. It is the responsibility of the applicant to obtain proper water rights and other necessary permits.

KLJ:JS:rc
cc: Gerald W. Stoker Jerry Bronicel
Delano Development Company

S89-4 Field Cost Est				
Based on Grimshaw Drig, Inc. proposed costs				
1000° T0, Not incl MEI administrative costs				
or 07, Eackhoe, etc.				
Item				
	GDI Est	5/31/89	6/1/89	6/2/89
Mob/rigup	2000	2000		
Construet Pad	250	250		
Drill 171/2" hole 40 0 (31/1t	1240		1240	
Run $133 / 8^{\prime \prime}$ Cornuctor	150		150	
Cernent conductor, WOC 6 hir's	600			600
Run 7" $\operatorname{cosing} \times 300$ (4 hrs)	400			
Cement 7" casing, WoC (16 hirs tot)	1600			
NU/Test BOPE (16 hrs)	1600			
Drill $61 / 4^{\prime \prime}$ hole 360'-500' $\$ 12.50 / \mathrm{ft}$	2500			
	7500			
Trip out/2 hr flowtest/"trip in" (5 hrs)				
GDI Subtotal:				
	17840			
Land \& Marine Rentals	2500			
Drilex Rentals	1350			
Compressar rental ($1 / 2 \mathrm{mo}$)	2400	2400		
Casing 40 133/8@ \$19.00/ft	0		760	
Casing 320 $\mathrm{ft}^{\text {7"@ }}$ \$7.00/ft	0			
Single shot/geolograph (Eastman)	112			
Mud/chemicals	2500			
Fuel/lubricants	2500			1588.73
Cement Conductor (Carling)	300		450	
Cement 7" (Dowell)	3500			
H2S Safety	1500			
Geologist	1000			
Wellheadequip	1630			
$97 / 8^{\prime \prime} \mathrm{bit}$				
Weldir	500			
Mechanic, repairs	0			
Generator rental (1 wk)	0	700		
	\$37,632			
Daily Total:		\$5,350	\$2,600	\$2,189
Cum Total:		\$5,350	\$7,950	\$10,139

S89-4 Field Cost Est				
Eased on Grimshaw Drig, inc. proposed costs				
1000 ${ }^{\circ}$ T0, Not incl MEI administrative costs				
or 07, Backhue, eta				
			(Final)	
Item	6/3/89	6/4/89	6/5/89	Totals
Mow/rigup				2000
Construct Pad				250
Orill $171 / 2^{\prime \prime}$ hale 40 0 ¢ $\$ 31 / \mathrm{ft}$				1240
Run 133/8" Conductor				150
Cerment conductor, WOC 6 trs				600
Drill $97 / 8^{\prime \prime}$ hole 310' @ \$18/ft	5580	.		5580
Run 7" casing x 300' (4 hrs)		400		400
Cement 7" casing, wOC (16 hrs tot)		1600		1600
NU/Test BOPE (16 hrs)			1600	1600
Drill 6 1/4" hole 360'500'@ ${ }^{\circ} 12.50 / \mathrm{ft}$			1750	1750
Drill 6 1/4" nole $500^{\circ}-626$ e $\$ 15 / \mathrm{ft}$			1890	1890
Trip out/2 hr flowtest/"trip in" (5 hrs)			500	500
GDI Subtatal:				
Land \& Marine Rentals			889	889
Drilex Rentals			1325	1325
Compressor rental ($1 / 2 \mathrm{mo}$)				2400
Casing 40' 13 3/8@ \$19.00/ft				760
Casing 320 $\mathrm{ft}^{\text {7" }}$ \$ $\$ 7.00 / \mathrm{ft}$		2240		2240
Single shot/geolograph (Eastman)	28	28	28	84
Mud/chernicals			1125	1125
Fuel/lubricants				1589
Cement Conductor (Carling)				450
Cement 7" (Dowell)		3793.66		3794
H2S Saiety		385	1050.56	1436
Geologist			950	950
Wellhead equip		1630		1630
$97 / 8^{\prime \prime} \mathrm{bit}$	200			
Welder		320		320
Mechanic, repairs	54.10			54
Generator rental (1 wk)				700
			Cantingency	1865
Daily Total:	\$5,862	\$10,397	\$11,108	
Cum Total:	\$16,001	\$26,397	\$37,505	\$39,170

Plate I

