```
CHAPTER # I
    Geologic Report
    CHAPTER #2
        Well Summary
        CHAPTER #3
        Detailed Well Summary
    CHAPTER #4
        Well History
            i. Casing Detail
            ii. Deviation Surveys
CHAPTER #5
            Fishing Operations
    CHAPTER #6
    Time-Depth Progress Graph
CHAPTER #7
    Logging Data
CHAPTER #8
    Bit Record
CHAPTER #9
    Cementing
            i. Casing Cementation Summary
            ii.. Conclusion:- Lost Circulation Cementing, Casing Cementing
            iii:-...Cementing Detail.
CHAPTER #10.
    Drilling Fluid Summary (Baroid)
        i. Corrosion Data
CHAPTER #1l
    Corrosion, Analysis
```


CHAPTER \#12

```
\(\mathrm{H}_{2} \mathrm{~S}\) Safety Procedures
```


CHAPTER \#13

```
High Temperature Production Logging
```


CHAPTER \#14

```
Flow Testing
i. Subsurface Pressure-Temperature Surveys
```

Geologic Report on the Cove Fort-Sulphurdale Unit Well \#42-7
Beaver County, Utah

Lithology

The \#42-7 well reached a total depth of 7735 feet in serpentine marble. This well is unusual as it penetrated all three basic rock types--igneous, sedimentary and metamorphic. The following is a discussion, by section, of the rock types encountered based on the binocular microscope examination of the well cuttings;

Interval....60'- 2055'
Formation...Bullion Canyon volcanics
Age.........Oligocene and Miocene(?)
Lithology...Andesite
Comments: This sequence of extrusive Mid-Tertiary volcanics can be divided into three units based on variations in the fabric and composition of the samples. From 60' - 740' the upper unit of the Bullion Canyon consists of fine-grained porphyritic andesite.: The fine-grained phenocrysts consist mainly of feldspar, with lesser amounts of biotite, augite and quartz. The percentage of quartz pheoncrysts approaches 10% in several samples indicating that the composition of this unit
is near that of a quartz latite. Beginning at 620' the biotite and augite phenocrysts begin to exhibit signs of alteration-bleaching and microscopic chloritic alteration. However, the groundmass and feldspar phenocrysts remain fresh and unaltered.

The middle unit of the Bullion Canyon volcanics extends from 740' to 1500'. The rock type remains a fine-grained porphyritic andesite, but the composition of the phenocrysts and trace minerals differ slightly from the other units. Microscopic, anhedral grains of magnetite are very common. The percentage of quartz phenocrysts, generally below 3\%, is noticeably less than in the upper unit. Phenocrysts of augite and biotite, which are present in varying amounts, continue to exhibit chloritic alteration and bleaching. This unit, especially the lower half, may be an andesite breccia for there is wide variation in the fabric, composition and color of the cuttings.

The lower unit of the Bullion Canyon volcanics extends from 1500' to 2055'. The rock type is a fine-grained porphyritic andesite breccia. As in the lower part of the middle unit, there is a wide variation of the fabric and composition of the cuttings, indicating the breccia makeup of the rock. Phenocrysts of quartz are scarce to absent. Phenocrysts of biotite, still showing some signs of bleaching or chloritic alteration, decrease in abundance and are absent below 1800': Scattered grains of magnetite are still common but are less abundant than
in the middle unit. The color of the felted groundmass varys from red to brown to gray to greenish-black. The first occurrence of finely disseminated pyrite (FeS) was noted at 1600'. Pyrite remains a trace secondary mineral throughout the rest of this unit.

Interval....2055' - 2800'
Formation...Coconino sandstone
Age. Permian
Lithology...Quartzose sandstone
Comments: A major angular unconformity was penetrated at 2055' representing an apparent stratigraphic hiatus of over 200 million years. The presence of the Coconino sandstone below the Bullion Canyon volcanics and the attendant absence of the Permian Kaibab limestone, Triassic Moenkopi red beds, Jurassic Nugget sandstone, and the Late Cretaceous-Early Tertiary Claron formation indicates that the \#42-7 location underwent considerable erosion sometime between Mid-Mesozoic and Mid-Tertiary time.

The Coconino sandstone consists of very fine-grained, well-cemented, clean, white, quartzose sandstone. All intergranular porosity is filled with secondary silica and/or calcite. Finely disseminated grains and crystals of pyrite are found throughout the sandstone. From the drilling characteristics, the section of the Coconino sandstone from 2120^{\prime} to 2400^{\prime} is soft and highly fractured.

The 745-foot thickness of the Coconino sandstone penetrated in the well is in sharp contrast to the 300 -foot thickness of the formation on outcrop 5 miles to the north. Because the thickness of the Coconino is expected to be uniform, steep dip (confirmed by the dipmeter \log in deeper formations) and/or faulting has caused the 150% increase in the apparent thickness of the formation. A minimum dip of 66° is needed to explain the increase in the apparent formation thickness by structure alone. (Maximum dip of 40° is present in the dipmeter log run between 3380^{\prime} and 5442'.)

Interval....2800' - 3390'
Formation...Pakcon limestone
Age......... Lower Permian
Lithology... Dolomite

Comments: A sequence of aphanitic and cherty dolomite is present in this interval. The dolomite is generally gray to dark-gray in color and aphanitic to very finely crystalline. Cherty dolomite occurs at 3060^{\prime} to 3240^{\prime} and 3320^{\prime} to 3360^{\prime}. The chert is white to gray in color and glassy. The base of this sequence is placed at the top of a prominent sandstone at 3390', which may correlate with a cherty sandstone present on outcrop near the Permian-Pennsylvanian boundary. Secondary sulphide minerals are very common in this interval. Microscopic grains and anhedral crystals of pyrite and possibly other sulphide minerals (i.e., galena, arsenopyrite, marcasite) are present in nearly all samples.

Interval....3390' - 3980'
Formation...Oquirrh formation
Age......... Pennsylvanian
Lithology...Calcareous dolomite
Comments: Slightly fossiliferous calcareous dolomite, interbedded with dark-colored fine-grained sandstone is present in this interval. This sequence is tentatively correlated with the Oquirrh formation. The fossil fragments present from 3740^{\prime} to 3800^{\prime} are crinoid stems. Sulphide minerals are abundant in the dark-colored sandstones but are rare to absent in the carbonate rocks. During drilling a four-foot cavern was encountered between 3484^{\prime} and 3488'.

The dipmeter log was run in this section of the well. The strike and dip of the Oquirrh formation varied from $N 28^{\circ}$ to $64^{\circ} \mathrm{E}, 10^{\circ}$ to $40^{\circ} \mathrm{NW}$. The best average is $\mathrm{N} 40^{\circ} \mathrm{E}, 27^{\circ} \mathrm{NW}$.

From the 3980^{\prime} to 7735^{\prime} the well penetrated a contact metamorphic marble of uncertain age. This marble is a metamorphic facies of the carbonate-rich Pennsylvanian, Mississippian and possibly Devonian formations. A contact metamorphic zone, if measured perpendicular to the igneous contact, is generally no more than several hundred feet in thickness. The presence of over 3700 feet of contact metamorphic marble in the \#42-7 well strongly suggests the possiblity that below 4000 feet a near-vertical igneous contact is close to the well. The presence of a migmatite zone between 7567^{\prime} and 7590' is further evidence of a nearby igneous pluton.

The dipmeter log was run in the upper part of the contact metamorphic zone. The indicated strike and dip within the metamorphic formations varied from $N 64^{\circ} \mathrm{E}$ to $\mathrm{S} 76^{\circ} \mathrm{E}, 10^{\circ}$ to $40^{\circ} \mathrm{NW}$ to NE. The best average for the interval between 3980^{\prime} and 5442^{\prime} is $\mathrm{N} 86^{\circ} \mathrm{E}$, $30^{\circ} \mathrm{NW}$. Since these figures differ only slightly from the strike and dip of the overlying sedimentary section, these figures probably represent relict bedding.

For descriptive purposes, the contact metamorphic zone is subdivided into the following five intervals:
(1) Interval....5160' - 6980^{\prime}

Lithology... Marble
Comments: Finely crystalline, white to light-gray marble dominates this interval. However, several intervals are dark colored and still show relict sedimentary textures, indicating the lack of complete metamorphism of the carbonate rocks. Crinoid fossil fragments are recognizable in samples from 4000^{\prime} to 4060^{\prime} and 4330^{\prime} to 4340^{\prime}.
(2) Interval....5160' - 6980'

Lithológy... Marble
Comments: This interval consists primarily of white to light gray finely-crystalline marble. Scattered microscopic graphite flakes is the major accessory mineral. Two wollastonite marble zones are present from 6080^{\prime} to 6100^{\prime} and 6170' to 6180'.

The wollastonite occurs as interpenetrating tabular crystals (up to 10 mm wide), creating framework porosity and permeability of impressive proportions. The open framework porosity of these zones is indicated by the impressive array of 2- to $4-\mathrm{mm}$, euhedral, scalenohedron crystals of calcite and l-mm; euhedral crystals of quartz found in the samples from 6170' to 6180'.

From 6200' to 6980' the marble probably represents metamorphism of impure limestone for the samples contain an increasing array of metamorphic minerals such as wollastonite, diopside, chlorite, phlogopite, biotite and graphite. The occurrence of pyrite is erratic. Pyrite is common in several zones, specifically 5660'-5700', 6170'-6220' and 6480'-6520', but is uncommon to absent in the intervening sections. Frequently, pyrite has a ruby-red tarnish on its surface, identified as a hydrous iron oxide.
(3) Interval....6980' - 7100'

Lithology...Skarn
Comments: An actinolite biotite marble is present in this interval. The increase in iron-bearing minerals here identifies this interval as a skarn. The introduction of iron into the metamorphic assemblage is likely due to the proximity of the intrusive which caused the metamorphism of the carbonate rocks. Flakes of bright-green chlorite and scattered grains of pyrite are present in minor amounts.
(4) Interval....7100' - 7567'

7590! - 7735'
Lithology...Serpentine marble
Comments: These two intervals, separated by an intervening migmatite zone, consist of serpentine marble. The serpentine marble is yellow-green, green and dark green in color. The rock consists mainly of serpentine, with lesser amounts of fine, xenoblastic crystals of biotite, phlogopite, actinolite, grossularite garnet, chlorite and scapolite(?). The greencolored serpentine contains scattered microscopic patches of white marble. A thin zone of pure marble occurs from 7590^{\prime} to 7610'.

The origin of the serpentine can be explained by the following two equations:
(1) $2 \mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}+\mathrm{SiO}_{2} \xrightarrow[\text { Pressure }]{\text { Heat }} \mathrm{Mg}_{2} \mathrm{SiO}_{4}+2 \mathrm{CaCO}_{3}+2 \mathrm{CO}_{2}$ dolomite forsterite marble
(2) $4 \mathrm{Mg}_{2} \mathrm{SiO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}_{6} \mathrm{Si}_{4}{ }^{0}{ }_{10}(\mathrm{OH})_{8}+2 \mathrm{Mg}(\mathrm{OH})_{2}$ forsterite serpentine brucite

In equation (1) forsterite is formed by thermal metamorphism of impure limestone and dolomite. In equation (2) the unstable forsterite is serpentinized in the presence of water vapor, forming serpentine and brucite. These mineralogically similar end products may be fine-grained and intimately mixed and are difficult to identify individually.

The upper contact of the serpentine marble at 7100 feet may possibly be a relict formation contact between the Lower

Mississippian limestone and the Upper Devonian impure dolomite and quartzite.
(5) Interval....7567' 7590^{\prime}

Lithology... Migmatite
Comments: This 23 -foot interval is a vein of contaminated granitic rock, which probably extends from the nearby pluton that caused the metamorphism of the Paleozoic carbonates. The migmatite zone consists of anhedral fragments of light pink feldspar and stringy, glassy quartz. This interval can be identified on the gamma ray log because of its higher natural radioactivity, a common characteristic of granitic rocks.

Geochemistry

During aerated-water drilling operations (from 2620 to 77.35 feet) formation water constantly flowed into the borehole, mixed with the injection water and circulated to the surface through the flowline. Therefore, to help understand the geochemistry of the geothermal reservoir, flowline samples were obtained near the end of several aerated-water drilling cycles when the drilling fluid system was rich in freshly-produced formation water. The chemical analyses of these samples, done by Ford Chemical Laboratory, Inc., Salt Lake City, are included in the appendix. Two partial analyses, at 6889' and 7735', were done by Union Research, Brea, California. Figures 1 and 2 are graphs of some of the more significant chemical elements plotted
against the depth of the well when the samples were collected. Maximum salinity of 9405 ppm was found in the flowline discharge when the well was 5560 feet deep. The degree of dilution and contamination that these samples have had in the drilling fluid system is difficult to estimate. Some of these samples may have 90% formation water. The increase in salinity from 2633' to 5560^{\prime} is likely due to a decrease in the contamination $?$ of the samples and an increase in salinity with depth of the geothermal reservoir. The decrease in salinity below 5560 feet is likely caused by the increase flow of lower-salinity water into the borehole after the wollastonite marble zones were drilled at 6080' and 6170'. These zones functioned as injection zones for the cooler, lower-salinity waters entering the borehole just below the 9-5/8" casing. Continued drilling permitted more dilution of deeper formation water by this shallow water flow, thus reducing the total salinity of the flowline discharge. Note that the chemistry of the flowline samples collected at 3380^{\prime} and 7523' are very similar. It is thought, therefore, that the analyses of the sample taken at 5560 ! best represents the geochemistry of the deep geothermal reservoir. (The rapid decline in salinity at 7607 feet is caused by the oneday use of injection water with salinity less than 1000 ppm prior to collection of the last samples.)

Data based on the silica and Na-K-Ca geothermometer calculations of the flowline discharge are listed in Table 1 and
2. The best silica reservoir temperature estimate, $363^{\circ} \mathrm{F}$, is from the sample collected at 6100' (Table l). This sample reached the laboratory within one day and was collected when the TDS was near its maximum. Data on the diluted SiO_{2} samples are variable but agree closely with the undiluted sample collected at 6100'.

The Na-K-Ca geothermometer calculations are listed in Table 2. The most reliable Na-K-Ca reservoir temperature estimate, $412^{\circ} \mathrm{F}$, is from the sample collected at 5560^{\prime}. This sample, with its high salinity, has been affected least by dilution and contamination. The $412{ }^{\circ} \mathrm{F}$ reservoir temperature is a minimum among higher, less believable estimates based on more diluted and contaminated samples, This temperature also agrees best with the silica reservoir temperature estimates.

Discussion

- The \#42-7 well penetrated a liquid-dominated geothermal convective system at 2055', with a reservoir consisting of fractured sandstone, dolomite and marble. The reservoir is underpressured and is nearly isothermal. The free water level in the well stands at about +5100 feet above MSL, or about 1320 feet below the surface. A thermal conductive zone is present in the Bullion Canyon volcanics from the surface to 2055' (figure 3). Temperature gradients in this zone vary between 10 and $15 \mathrm{Fo} / 100 \mathrm{ft}$. Based on the latest temperature
surveys (April 4, 1978), the Coconino sandstone (from 2055' to 2800^{\prime}) is an isothermal reservoir at a temperature of $310^{\circ} \mathrm{F}$ $\left(154^{\circ} \mathrm{C}\right)$. Formation temperatures decrease below the Coconino sandstone reaching a minimum of $293^{\circ} \mathrm{F}$ at 3000 feet. Slight temperature increases occur below 3000'. Temperature gradients between 3000^{\prime} and 6000^{\prime} are less than $0.5 \mathrm{~F}^{\circ} / 100 \mathrm{ft}$. A temperature jump of about $30^{\circ} \mathrm{F}$ occurs between 6000^{\prime} and 6200^{\prime}. This temperature increase corresponds to the two permeable wollastonite marble zones present at 6080' and 6170'. These zones were taking fluid prior to completion of the well and, to date, have not reached thermal equilibrium. Based on precompletion temperature surveys (figure 3), a maximum temperature of $354^{\circ} \mathrm{F}$ was recorded at 7320^{\prime} on February 27, 1978. These figures closely agree with the silica geothermometer estimates based on the chemistry of the flowline discharge.

As expected, the \#42-7 well had Bullion Canyon volcanics from the surface to below the deep ground-water table $\left(+5100^{\prime}\right.$ above MSL). The presence of andesite above the deep groundwater table avoided the possiblity of encountering the unconsolidated dolomite sand problem that contributed to the abandonment of the Forminco $\# 1$ well, at a total depth of 1051 feet, in August, 1976. Dolomite samples from below the water table in the $\# 42-7$ well (2800' to 3980^{\prime}) showed no signs of "sanding" (the formation of unconsolidated crystalline dolomite
by acidic solutions), thus supporting the hypothesis that "sanded" dolomites are only a potential drilling hazard where these rocks are structurally above the deep ground-water table and have been exposed to acides formed by oxidized gases, such as $\mathrm{H}_{2} \mathrm{~S}$.

3.
cr
4.
9
2.

2000			3000		4000		5000		6000		7000		
\square	$\square \mathrm{L}$	\square							[\square		
IT	1.	\square	,						\square		\square		
	\square				T			\square	1		T		
\square	- B		-	\cdots	\square	\square		1,	\square	$\square \mathrm{B}$	1]		
-1	\square		-	5	\square	E1		1\%	TC	CIE	G.		
\square	\square		\square		\square	\square		-	P	, 1	-		
	-	C.	-i.	\%.a)	-1,	-	O	-	C\|\%	5	1!		9
6	- +	E,	$0-$	-F	-	9-a	- 0	+t-	$\underline{+5}$	$\pm \pm$	$\square 1$		
CUE	- EtE	- 5	\square	$\square \mathrm{B}$	$\square \square$	$\square \square$	\square	-1F+	$\square \square$	$\square \square$	\%	-	
			$\square=$	\square		\cdots	$\square \square$	$1-$	$\underline{\square}$	- -7	-		
1.	-4	- -	-a	45,	- +	Q	CPE	$1+1$	$\pm \square$	$\square \mathrm{C}$	$\square \square$	¢	
¢ram	$\square \square$	$\square \square+1$	$\square \square$	CGE	-ta	- +0	$\square \square$	-17	- 1 -	-	-	--ay	
$\square-1.4$	- -1	$\cdots+$	$\square 1 \square$	-at-	-	+	-- -1	1 6	- -	---	-4\%	\square	
$\underline{\square}+\mathrm{ta}$	Q+1-	$-5+\square$	-10	-i-1	$\square+$	$\square-1$	$\square \square$	\square	\square	$\square \square$	- - -	- -	$1-$
Eb-	$\square \mathrm{ar}$	G-G	GFa	-4-	- +C	$\square \square$	$\mathrm{GTG-1}$	$\square \square$	-1-7	- -	-GA		
			$\square-$										
-	$\square-1-$	-1-	-1-	- -1.	-1-1-	--1	$1-\quad+$	5	-	\bigcirc	+		
-	+1-1	$\underline{-1-1}$	$+\square$	--1	- +	$\square-1$	-	\square	-1-9	- - -	-1-		
	-1	-1--	\square		- $\square-$	-			-	--	-1-1		-
			$0-$		$1+$,					- - -		
	- +	-1, 1	- +		1	4	-1-	+-1	\square		-	$\mathrm{O}-1$	

UNION OILCO Of CALIFORNIA
Cove Fort-Sulphurdale Unit Well $\# 42-7$ SE NE NW: Sec. 7 :T26S-R6W

$\square-4-1$ $\square 1+$
\qquad

> 位
$\frac{11}{1+1}$
-1
-
r

Estimation of Subsurface Temperatures from
the silica Content of Water from the Flowline
Discharge while Drilling; CFSU No. 42-7,
Beaver Co., Utah
Table 1

Estimation of Subsurface Temperatures from the Empirical Na-K-Ca Geothermometer for Flowline Discharges during. Drilling, CFSU \#42-7,

Beaver Co., Utah
Table 2

APPENDIX

GEOCHEMICAL DATA

WELJ: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7
SE NE NW Section 7, T.26S., R.6W.
Beaver County, Utah

Sample Information
Source...................................... . Flowline
Collection date and time.............. 1/26/78
Depth of well at time of collection.. 2633
Temperature of sampler. ${ }^{\circ}$ F.............. 186°
Date analysis begun..................... $1 / 30 / 78$

Turbidity	170 NTU	Total Hardness of CaCO_{3}	$190 \mathrm{mg} / 1$
Conductivity	8,000 unhos/cm	Iron as Fe (Total)	80.44. mg/1
pH	8.52 Units	Iron as Fe (Filtered)	$5.520 \mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$5,200 \mathrm{mg} / 1$	Lead as Pb	$0.030 \mathrm{mg} / 1$
Alkalinity as CaCO_{3}	$250 \mathrm{mg} / 1$	Magnesium as Mg	$7.20 \mathrm{mg} / \mathrm{l}$
Arsenic as As	$5.060 \mathrm{mg} / 1$	Manganese as Mn	$2.64 \mathrm{mg} / 1$
Bicarbonate as HCO_{3}	$246.44 \mathrm{mg} / 1$	Mercury as Hg	$0.030 \mathrm{mg} / 1$
Barium as Ba.	$0.53 \mathrm{mg} / 1$	Nickel as Ni	$0.006 \mathrm{mg} / 1$
Boron as B	$0.25 \mathrm{mg} / 1$	Nitrate as. $\mathrm{NO}_{3}-\mathrm{N}$	$0.64 \mathrm{mg} / \mathrm{l}$
Cadmium as ca	$0.010 \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	<0.01 $\mathrm{mag} / 1$
Calcium as Ca	$64.0 \mathrm{mg} / 1$	Potassium as K	$1158 \mathrm{mg} / 1$
Carbonate as CO_{3}	48 . mg/l	Selenium as Se	$\underline{0.001} \mathrm{mg} / 1$
Chloride as Cl	$2220 \mathrm{mg} / 1$	Silica as SiO_{2}	110 mg/1
Chromium as Cr (Total)	$0.432 \mathrm{mg} / 1$	Silver as Ag	$0.008 \mathrm{mg} / 1$
Chromium as Cr (Hex)	$0.036 \mathrm{mg} / 1$	Sulfate as SO_{4}	$480 \mathrm{mg} / \mathrm{l}$
Copper as Cu	$0.261 \mathrm{mg} / 1$	Sodium as Na	$1000 \mathrm{mg} / 1$
Surfactants MBAS	$\langle 0.01 \mathrm{mg} / 1$	Zinc as Zn	$1.508 \mathrm{mg} / 1$
Fluoride as F	$5.0 \mathrm{mg} / 1$		

GEOCHEMICAL DATA

```
WELW: Union Oil Company of California
    Cove Fort-Sulphurdale Unit Well #42-7
    SE NE NW Section 7, T.26S., R.6W.
    Beaver County, Utah
```

Sample. Information
Source..................................... .. Flowline
Collection date and time............. 1/27/78
Depth of well at time of collection.. 2700
Temperature of sample, ${ }^{\circ} \mathrm{F}0^{\circ} \mathrm{F}$
Date analysis begun..................... . $1 / 30 / 78$

GEOCHEMICAL DATA

WELL: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7
SE NE NW Section 7, T.26S., R.6W. Beaver County, Utah

Sample Information

Source....................................... . . Flowline
Collection date and time............. 2/7/78, 1100 Hrs
Depth of well at time of collection.. 3760
Temperature of sample, ${ }^{\circ}$ F............. 201°
Date analysis begun..................... 2/15/78

Turbidity	1000 NTU	Total Hardness of CaCO_{3}	$20 \mathrm{mg} / 1$
Conductivity	12,360 umhos/cm	Iron as Fe (Total)	$2.589 \mathrm{mg} / 1$
pH	11.76 Units	Iron as Fe (Filtered)	$0.540 \mathrm{mg} / \mathrm{l}$
TDS at $180^{\circ} \mathrm{C}$	$8034 \mathrm{mg} / 1$	Lead as Pb	$0.001 \mathrm{mg} / \mathrm{l}$
Alkalinity as $\mathrm{CaCO}_{3}{ }^{\prime}$	$2380 \mathrm{mg} / 1$	Magnesium as Mg	$\leq 1.0 \quad \mathrm{mg} / 1$
Arsenic as As	$7.26 \mathrm{mg} / 1$	Manganese as Mn	$0.047 \mathrm{mg} / 1$
Bicarbonate as HCO_{3}	$634.44 \mathrm{mg} / 1$	Mercury as Hg	$0.0010 \mathrm{mg} / 1^{\circ}$
Barium as Ba	$0.080 \mathrm{mg} / 1$	Nickel as Ni	$0.121 \mathrm{mg} / 1$
Boron as B	$0.150 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$2.00 \mathrm{mg} / \mathrm{l}$
Cadmium as ca	$0.156 \mathrm{mg} / 1$	- Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	$\leq 0.01 \mathrm{mg} / 1$
Calcium as Ca	$8.0 \mathrm{mg} / 1$	Potassium as K	247 mg/1
Carbonate as CO_{3}	$<0.01 \mathrm{mg} / 1$	Selenium as Se	$\underline{60.001} \mathrm{mg} / \mathrm{I}$
Chloride as Cl	$2190 \mathrm{mg} / 1$	Silica as SiO_{2}	$340 \mathrm{mg} / 1$
Chromium as Cr (Total)) $0.138 \mathrm{mg} / 1$	Silver as Ag	$\underline{0.021} \mathrm{mg} / 1$
Chromium as Cr (Hex)	$\langle 0.001 \mathrm{mg} / \mathrm{I}$	Sulfate as SO_{4}	$760 \quad \mathrm{mg} / \mathrm{l}$
Copper as Cu	$0.264 \mathrm{mg} / \mathrm{l}$	Sodium as Na	$2653 \mathrm{mg} / \mathrm{l}$
Surfactants MBAS	$<0.01 \mathrm{mg} / 1$	Zinc as Zn	$0.062 \mathrm{mg} / 1$
Fluoride as F	$5.0 . \mathrm{mg} / \mathrm{l}$		

GEOCHEMICAI DATA

WELL: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7
SE NE NW Section 7, T.26S., R. 6W.
Beaver County, Utah
Sample Information

Turbidity	380 NTU	Total Hardness of CaCO_{3}	$226 \mathrm{mg} / 1$
Conductivity	10,094 umhos/cm	Iron as Fe (Total)	$3.406 \mathrm{mg} / 1$
pH	9.36 Units	Iron as Fe (Filtered)	$1.210 \mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$6561{ }^{\circ} \mathrm{mg} / 1$	Lead as Pb	$<0.001 \mathrm{mg} / 1$
Alkalinity as $\mathrm{CaCO}_{3}{ }^{\prime}$	$1030 \mathrm{mg} / 1$	Magnesium as Mg	$10.08 \mathrm{mg} / 1$
Arsenic as As	$4.36 \mathrm{mg} / 1$	Manganese as Mn	$0.131 \mathrm{mg} / 1$
Bicarbonate as $\mathrm{HCO}_{3} \because$	$817.4 \mathrm{mg} / 1$	Mercury as Hg	$0.0011^{\mathrm{mg}} / 1$
Barium as Ba	$0.120 \mathrm{mg} / 1$	Nickel as Ni	$0.295 \mathrm{mg} / 1$
Boron as B	$0.240 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$1.30 \mathrm{mg} / \mathrm{l}$
Cadmium as Cd	$0.120 \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	<0.01 $\mathrm{mg} / 1$
Calcium as Ca	$73.6 \mathrm{mg} / \mathrm{I}$	Potassium as K	$241 \mathrm{mg} / \mathrm{l}$
Carbonate as CO_{3}	$360 \mathrm{mg} / \mathrm{I}$	Selenium as Se	$<0.001 \mathrm{mg} / 1$
Chloride as Cl	$2250 \mathrm{mg} / 1$	Silica as SiO_{2}	$150 \mathrm{mg} / 1$
Chromium as Cr (Total	$0.083 \mathrm{mg} / 1$	Silver as Ag	$0.018 \mathrm{mg} / 1$
Chromium as Cr (Hex)	$0.005 \mathrm{mg} / 1$	Sulfate as SO_{4}	$920 \quad \mathrm{mg} / \mathrm{l}$
Copper as Cu	$0.219 \mathrm{mg} / 1$	Sodium as Na	1885 mg/l
Surfactants MBAS	$<0.01 \mathrm{mg} / 1$	Zinc as zn	$0.052 \mathrm{mg} / \mathrm{l}$
Fluoride as F	$\text { 5.5. } \mathrm{mg} / 1$		

WELL: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7 SE NE NW Section 7, T. 26S.; R.6W. Beaver County, Utah

Sample Information

```
Source................................. Flowline
Collection date and time............. 2/10/78, 0545 Hrs
Depth of well at time of collection.. 4940
Temperature of sample, }\mp@subsup{}{}{\circ}\textrm{F}............ 204`%
Date analysis begun.................. 2/15/78
```

Turbidity	400 NTU	Total Hardness of CaC	$184 \mathrm{mg} / 1$
Conductivity	10,880 umhos/cm	Iron as Fe (Total)	$2.268 \cdot \mathrm{mg} / 1$
pH	9.34 Units	Iron as Fe (Filtered)	$0.450 \mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$7072 \mathrm{mg} / 1$	Lead as Pb	S0.001 $\mathrm{mg} / 1$
Alkalinity as $\mathrm{CaCO}_{3}{ }^{\prime}$	$1250 \mathrm{mg} / \mathrm{l}$	Magnesium as Mg	$5.76 \mathrm{mg} / 1$
Arsenic as As	$4.14 \mathrm{mg} / 1$	Manganese as Mn	$0.074 \mathrm{mg} / 1$
Bicarbonate as HCO_{3}	$1085 \mathrm{mg} / 1$	Mercury as Hg	$0.009 \mathrm{mg} / 1$
Barium as Ba	$0.120 \mathrm{mg} / 1$	Nickel as Ni	$0.284 \mathrm{mg} / 1$
Boron as B	$0.200 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$0.40 \mathrm{mg} / 1$
Cadmium as Cd	$0.156 \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	$\underline{0.01} \mathrm{mg} / 1$
Calcium as Ca	$64.0 \mathrm{mg} / 1$	Potassium as K	242 mg/l
Carbonate as CO_{3}	$360 \mathrm{mg} / \mathrm{I}$	Selenium as Se	$<0.001 \mathrm{mg} / 1$
Chloride as Cl	$2340 \quad \mathrm{mg} / \mathrm{l}$	Silica as SiO_{2}	150 mg/1
Chromium as Cr (Total)	$0.083 \mathrm{mg} / 1$	Silver as Ag	$\underline{0.016 ~ m g / 1 ~}$
Chromium as Cr (Hex)	$0.010 \mathrm{mg} / 1$	Sulfate as SO_{4}	$1080 \mathrm{mg} / 1$
Copper as Cu	$0.116 \mathrm{mg} / 1$	Sodium as Na	$2495 \mathrm{mg} / \mathrm{l}$
Surfactants MBAS	$<0.01 \mathrm{mg} / 1$	Zinc as Zn	$0.019 \mathrm{mg} / 1$
Fluoride as F	$\text { 5.3. } \mathrm{mg} / 1$		

WELL: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7 SE NE NW Section 7., T.26S., R. 6W. Beaver County, Utah

Sample Information

```
Source
Flowline
Collection date and time............. 2/12/78, 1700 Hrs
Depth of well at time of collection.. 5560
Temperature of sample, o
Date analysis begun.................. 2/15/78
```

Turbidity	550 NTU	Total Hardness of CaCO_{3}	$116 \mathrm{mg} / 1$
Conductivity	14,469 imhos/ cm	Iron as Fe (Total)	$2.829 \mathrm{mg} / \mathrm{I}$
pH	9.98 Units	Iron as Fe (Filtered)	$1.140^{m g / 1}$
TDS at $180^{\circ} \mathrm{C}$	$9405 \mathrm{mg} / 1$	Lead as Pb.	$<0.001_{\mathrm{mg}} / \mathrm{l}$.
Alkalinity as $\mathrm{CaCO}_{3}{ }^{\text {a }}$	$2380 \mathrm{mg} / \mathrm{l}$	Magnesium as Mg	$12.0 \mathrm{mg} / \mathrm{l}$
Arsenic as As	$6.080 \mathrm{mg} / 1$	Manganese as Mn	$0.098 \mathrm{mg} / 1$
Bicarbonate as HCO_{3}	$\underline{1322 \mathrm{mg} / 1}$	Mercury as Hg	$0.014 \mathrm{mg} / 1$
Barium as Ba	$0.100 \mathrm{mg} / 1$	Nickel as Ni	$0.493 \mathrm{mg} / 1$
Boron as B	$0.180 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$1.8 \mathrm{mg} / 1$
Cadmium as cd	$0.128 \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	$<0.01 \mathrm{mg} / 1$
Calcium as Ca	$26.4 \mathrm{mg} / 1$	Potassium as K	$225^{\circ} \mathrm{mg} / \mathrm{l}$
Carbonate as CO_{3}	$\underline{<0.01} \mathrm{mg} / \mathrm{l}$	Selenium as Se	$<0.001_{\mathrm{mg} / 1}$
Chloride as Cl	$2450 \mathrm{mg} / 1$	Silica as SiO_{2}	$180 \mathrm{mg} / 1$
Chromium as Cr (Totai)	$0.085 \mathrm{mg} / 1$	Silver as Ag	$0.015 \mathrm{mg} / 1$
Chromium as Cr (Hex)	$0.012 \mathrm{mg} / 1$	Sulfate as SO_{4}	$1280 \mathrm{mg} / \mathrm{l}$
Copper as Cu	$0.324 \mathrm{mg} / \mathrm{l}$	Sodium as Na	$3460 \mathrm{mg} / \mathrm{I}$
Surfactants MBAS	$<0.01 \mathrm{mg} / 1$	Zinc as Zn	$0.075 \mathrm{mg} / 1$
Fluoride as F	$4.7 \mathrm{mg} / 1$		

GEOCHEMICAL DATA

WEIU: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7
SE NE NW Section 7, T.26S., R.6W.
Beaver County, Utah
Sample Information

Turbidity	590 NTU	Total Hardness of CaCO_{3}	$26 . \mathrm{mg} / 1$
Conductivity	12,893 umhos/cm	Iron as Fe (Total)	$1.125 \mathrm{mg} / 1$
pH	10.02 Units	Iron as Fe (Filtered)	$0.250 \mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$8381 \mathrm{mg} / 1$	Lead as Pb	$<0.001 \mathrm{mg} / 1$
Alkalinity as $\mathrm{CaCO}_{3}{ }^{\prime}$	$1650 \mathrm{mg} / 1$	Magnesium as Mg	$\leq 1.0 \mathrm{mg} / 1$
Arsenic as As	$3.78 \mathrm{mg} / 1$	Manganese as Mn	$0.037 \mathrm{mg} / 1$
Bicarbonate as HCO_{3}	$1.061 \mathrm{mg} / 1$	Mercury as Hg	$0.0008_{\text {rig }} / \mathrm{I}$
Barium as Ba	$0.040 \mathrm{mg} / 1$	Nickel as Ni	$0.383 \mathrm{mg} / 1$
Boron as B	$0.080 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$2.4 \mathrm{mg} / 1$
Cadmium as Cd	$0.089 \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	<0.01 mg/l
Calcium as Ca	$10.4 \mathrm{mg} / \mathrm{l}$	Potassium as K	$199 \mathrm{mg} / \mathrm{l}$
Carbonate as CO_{3}	$780 \mathrm{mg} / \mathrm{l}$	Selenium as Se	$<0.001 \mathrm{mg} / 1$
Chloride as Cl	$2000 \mathrm{mg} / \mathrm{l}$	Silica as SiO_{2}	$210 \mathrm{mg} / \mathrm{l}$
Chromium as Cr (Total)	$0.093 \mathrm{mg} / \mathrm{I}$	Silver as Ag	$0.017 \mathrm{mg} / 1$
Chromium as Cr (Hex)	$<0.001 \mathrm{mg} / 1$	Sulfate as SO_{4}	$1500 \mathrm{mg} / \mathrm{l}$
Copper as Cu	$0.096 \mathrm{mg} / 1$	Sodium as Na	$2828 \mathrm{mg} / \mathrm{l}$
Surfactants MBAS	$<0.01 \mathrm{mg} / 1$	Zinc as Zn	$0.021 \mathrm{mg} / 1$
Fluoride as F	$\text { 5.0. } \mathrm{mg} / 1$		

GEOCHEMICAI DATA

Turbidity	220 NTU	Total Hardness of CaCO_{3}	$44 \ldots \mathrm{mg} / 1$
Conductivity	8000 umhos/cm	Iron as Fe (Total)	$0.827 \mathrm{mg} / 1$
pH	9.14 Units	Iron as Fe (Filtered)	$0.367 \mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$5858 \mathrm{mg} / 1$	Lead as Pb	$0.055 \mathrm{mg} / 1$
Alkalinity as CaCO_{3}	$1000 \mathrm{mg} / 1$	Magnesium as Mg	$6.24 \mathrm{mg} / 1$
Arsenic as As	$4.120 \mathrm{mg} / 1$	Manganese as Mn :	$0.163 \mathrm{mg} / 1$
Bicarbonate as HCO_{3}	$\underline{732 \mathrm{mg} / 1}$	Mercury as Hg	$0.0007 \mathrm{mg} / 1$
Barium as Ba	$0.08 \mathrm{mg} / 1$	Nickel as Ni	$0.104 \mathrm{mg} / \mathrm{l}$
Boron as B	$0.30 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$2.20 \mathrm{mg} / 1$
Cadmium as cd	$0.020 \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	<0.01 mg/l
Calcium as Ca	$7.2 \mathrm{mg} / \mathrm{l}$	Potassium as K	$\underline{185 \ldots \mathrm{mg} / 1}$
Carbonate as CO_{3}	$240 \mathrm{mg} / \mathrm{l}$	Selenium as Se	<0.001 mg/1
Chloride as Cl	$\underline{1940} \mathrm{mg} / 1$	Silica as SiO_{2}	$150 \quad \mathrm{mg} / 1$
Chromium as Cr (Total)	$0.057 \mathrm{mg} / \mathrm{l}$	Silver as Ag	$0.028 \mathrm{mg} / 1$
Chromium as Cr (Hex)	$<0.001 \mathrm{mg} / 1$	Sulfate as SO_{4}	$1180 \cdots \mathrm{mg} / 1$
Copper as Cu	$0.108 \mathrm{mg} / 1$	Sodium as Na	$\underline{2140 \ldots \mathrm{mg} / 1}$
Surfactants MBAS	$<0.01 \mathrm{mg} / 1$	Zinc as Zn	$0.053 \mathrm{mg} / \mathrm{l}$
Fluoride as F	$5.2 \mathrm{mg} / 1$		

GEOCHEMICAL DATA


```
WEL工: Union Oil Company of California
    Cove. Fort-Sulphurdale Unit Well #42-7
    SE NE NW. Section 7, T.26S., R.6W.
    Beaver County; Utah
Sample Information
    Source..................................Suction
    Collection date and time.............2/18/78
    Depth of well at time of collection..6889', 0910 Hrs
    Temperature of sample, }\mp@subsup{}{}{\circ}\textrm{F}.............204**',
    Date analysis begun
```

Turbidity	NTU	Total Hardness of CaCO_{3}	$\mathrm{mg} / 1$
Conductivity	umhos/cm	Iron as Fe (Total)	mg/l
pH	9.1 Units	Iron as Fe (Filtered)	$\mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$\mathrm{mg} / 1$	Lead as Pb	$\mathrm{mg} / 1.1$
Alkalinity as CaCO_{3}	$\mathrm{mg} / 1$	Magnesium as Mg	$5 \mathrm{mg} / 1$
Arsenic as As	$\mathrm{mg} / 1$	Manganese as Mn	mg/1
Bicarbonate as HCO_{3}	$603 \mathrm{mg} / 1$	Mercury as Hg	$\mathrm{mg} / 1$
Barium as Ba	mg/l	Nickel as Ni	mg/l
Boron as B	$7.0 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$\mathrm{mg} / 1$
Cadmium as cd.	mg/l	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	$\mathrm{mg} / 1$
Calcium as Ca	$10 \mathrm{mg} / 1$	Potassium as K	$212 \mathrm{mg} / 1$
Carbonate as CO_{3}	267 mg/l	Selenium as Se	$\mathrm{mg} / 1$
Chloride as Cl	1920 \% mg / l	Silica as SiO_{2}	$\mathrm{mg} / 1$
Chromium as Cr (Total)	mg/l	Silver as Ag	$\mathrm{mg} / 1$
Chromium as Cr (Hex)	$\mathrm{mg} / 1$	Sulfate as SO_{4}	$1100 \mathrm{mg} / \mathrm{l}$
Copper as cu	$\mathrm{mg} / 1$	Sodium as Na	$2200 \mathrm{mg} / \mathrm{l}$
Surfactants MBAS	$\mathrm{mg} / 1$	Zinc as Zn	mg / l

Fluoride as F
mg / l

GEOCHEMICAI DATA

WELJ: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7 SE NE NW Section 7.T.26S., R.6W. . Beaver County, Utah

Sample Information

Source.................................... . Flowline
Collection date and time.............. 2/22/78, 1030 Hrs
Depth of well at time of collection.. 7523
Temperature of sample, ${ }^{\circ} \mathrm{F}200^{\circ}$
Date analysis begun.................... 2/27/78

Turbidity	260 NTU	Total Hardness of CaCO_{3}	50 mg/l
Conductivity	7000 umhos/cm	Iron as Fe (Total)	$0.925 \mathrm{mg} / 1$
pH	9.27 Units	Iron as Fe (Filtered)	$0.643 \mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$5349 \mathrm{mg} / \mathrm{l}$	Lead as Pb	$0.044 \mathrm{mg} / \mathrm{l}$
Alkalinity as CaCO_{3}	$880 \mathrm{mg} / 1$	Magnesium as Mg:	$0.96 \mathrm{mg} / \mathrm{l}$
Arsenic as As	$4.560 \mathrm{mg} / 1$	Manganese as Mn	$0.344 \mathrm{mg} / \mathrm{l}$
Bicarbonate as HCO_{3}	$634.4 \mathrm{mg} / 1$	Mercury as Hg	$0.0006_{\mathrm{mg} / 1}$
Barium as Ba	$0.12 \mathrm{mg} / 1$.	Nickel as Ni	$0.149 \mathrm{mg} / 1$
Boron as B	$0.50 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$4.4 \mathrm{mg} / \mathrm{l}$
Cadmium as cd	$0.017 \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	<0.01. mg/1
Calcium as Ca	$18.4 \mathrm{mg} / \mathrm{l}$	Potassium as K	$161.9 \mathrm{mg} / \mathrm{l}$
Carbonate as CO_{3}	$216 \mathrm{mg} / 1$	Selenium as Se	$<0.001 \mathrm{mg} / 1$
Chloride as Cl	$1620 \mathrm{mg} / \mathrm{l}$	Silica as SiO2	150. mg/l
Chromium as Cr (Total	$)^{0.116} \mathrm{mg} / 1$	Silver as Ag	$0.026 \mathrm{mg} / 1$
Chromium as Cr (Hex)	<0.01 mg/l	Sulfate as SO_{4}	$1160 \quad \mathrm{mg} / 1$
Copper as Cu	$0.092 \mathrm{mg} / 1$	Sodium as Na	$1860 \mathrm{mg} / \mathrm{l}$
Surfactants MBAS	$\underline{0.01} \mathrm{mg} / \mathrm{I}$	Zinc as Zn	$0.054 \mathrm{mg} / \mathrm{l}$
Fluoride as F	6.8. mg / l		

GEOCHEMICAL DATA

```
WELJ: Union Oil Company of California
    Cove Fort-Sulphurdale Unit Well #42-7
    SE NE NW Section 7, T.26S., R.6W.
    Beaver County, Utah
```


Sample Information

```
Source................................... Flowline
Collection date and time............. 2/24/78, 1245 Hrs
Depth of well at time of collection.. 7607
Temperature of sample, }\mp@subsup{}{}{\circ}\textrm{F}............ 206o
Date analysis begun................... 3/6/78
```

Turbidity	340 NTU	Total Hardness of CaC	$126 \ldots \mathrm{mg} / 1$
Conductivity	5000 umhos/cm	Iron as Fe (Total)	$17.69 \mathrm{mg} / 1$
pH	9.11 Units	Iron as Fe (Filtered)	$2.88 \mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	$3178 \mathrm{mg} / 1$	Lead as Pb	$0.210 \mathrm{mg} / 1$
Alkalinity as CaCO_{3}	780 _mg/l	Magnesium as Mg	$5.28 \mathrm{mg} / 1$
Arsenic as As	$3.170 \mathrm{mg} / 1$	Manganese as Mn	$0.370 \mathrm{mg} / 1$
Bicarbonate as HCO_{3}	439.2. $\mathrm{mg} / 1$	Mercury as Hg	$0.0015 \mathrm{mg} / 1$
Barium as Ba:	$0.17 \mathrm{mg} / 1$	Nickel as Ni	$0.045 \mathrm{mg} / 1$
Boron as ${ }^{\text {B }}$	$0.65 \mathrm{mg} / 1$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$	$3.85 \mathrm{mg} / \mathrm{l}$
Cadmium as Cd	$\underline{0.001} \mathrm{mg} / 1$	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$	$\underline{<0.01 ~ m g / l ~}$
Calcium as Ca	$41.6 \mathrm{mg} / 1$	Potassium as K	$181.5 \mathrm{mg} / 1$
Carbonate as CO_{3}	$252 \mathrm{mg} / \mathrm{I}$	Selenium as Se	$<0.001 \mathrm{mg} / 1$
Chloride as Cl	340 mg/1	Silica as SiO_{2}	$160 \ldots \mathrm{mg} / \mathrm{l}$
Chromium as Cr (Tot	1) ${ }^{0.177} \mathrm{mg} / 1$	Silver as Ag	$0.020 \mathrm{mg} / 1$
Chromium as Cr (Hex	$\underline{\underline{0.001} \mathrm{mg} / 1}$	Sulfate as SO_{4}	$1160 \quad \mathrm{mg} / 1$
Copper as Cu	$0.201 \mathrm{mg} / 1$	Sodium as Na	$966 \ldots \mathrm{mg} / 1$
Surfactants MBAS	$<0.01 \mathrm{mg} / 1$	Zinc as Zn	$0.072 \mathrm{mg} / 1$
Fluoride as F	6.6 . mg/l		

GEOCHEMICAI DATA

WELU: Union Oil Company of California Cove Fort-Sulphurdale Unit Well \#42-7 SE NE NW Section 7, T.26S., R.6W. Beaver County, Utah

Sample Information


```
Collection date and time............. 2/26/78
Depth of well at time of collection..7735', 0845 Hrs
Temperature of sample, }F............. 202**
Date analysis begun
```

Turbidity	NTU	Total Hardness of CaCO_{3}		$\mathrm{mg} / 1$
Conductivity	umhos/cm	Iron as Fe (Total)		$\mathrm{mg} / 1$
pH	7.7. Units	Iron as Fe (Filtered)		$\mathrm{mg} / 1$
TDS at $180^{\circ} \mathrm{C}$	mg / l	Lead as Pb		$\mathrm{mg} / 1$
Alkalinity as CaCO_{3}	$\mathrm{mg} / 1$	Magneșium as Mg	13	$\mathrm{mg} / 1$
Arsenic as As	mg/l	Manganese as Mn		$\mathrm{mg} / 1$
Bicarbonate as HCO_{3}	$412 \mathrm{mg} / 1$	Mercury as Hg		$\mathrm{mg} / 1$
Barium as Ba	$0.13 \mathrm{mg} / 1$	Nickel as Ni		mg/l
Boron as B	$10 \mathrm{mg} / \mathrm{l}$	Nitrate as $\mathrm{NO}_{3}-\mathrm{N}$		mg/l
Cadmium as Cd	mg/1	Nitrite as $\mathrm{NO}_{2}-\mathrm{N}$		$\mathrm{mg} / 1$
Calcium as Ca	$68 \mathrm{mg} / 1$	Potassium as K	28	mg / l
Carbonate as CO_{3}	$0 \mathrm{mg} / 1$	Selenium as Se		$\mathrm{mg} / 1$
Chloride as Cl	$2240 \mathrm{mg} / 1$	Silica as SiO_{2}		$\mathrm{mg} / 1$
Chromium as Cr (Total)	$\mathrm{mg} / 1$	Silver as Ag		$\mathrm{mg} / 1$
Chromium as Cr (Hex)	$\mathrm{mg} / 1$	Sulfate as SO_{4}	900	$m g / 1$
Copper as Cu	mg / l	Sodium as Na	1830	mg/l
Surfactants MBAS	mg/l	Zinc as Zn		$\mathrm{mg} / 1$
Fluoride as F	- mg/1	Ammonia	13	mg / l

WELL SUMMARY

PREFACE

The well summary is as stated, a brief of the operation involved during the drilling of this well. All technical data is found within the confines of the main report.

The well summary gives a description of the problems encountered and procedures used to drill to depth.

Due to severe losses in circulation and formation water being produced when drilling, different techniques had to be developed to drill; properly set pipe at proposed depths and reach total depth. Hopefully this summary will give you a guide to go by to pinpoint any technical areas you want to review in depth within the main part of this report.

OUTLINE

I. General Information

II. Drilling Operations
A. Rig Information
B. Preparation of Location and Setting Conductor
C. Spudding (26" Hole at 255', 20" Casing at 251')
D. 17-1/2" Hole 1557': 13-3/8" CAsing at 1552'

1. General Description of Hole Drilled
2. 17-1/2" Hole Section: Problems Encountered
a. Twist-off at 715'
(1) Resolution
b. Lost Circulation at 1388'
(1) Resolution
c. Twist-off at 1452'
(1) Resolution
d. Lost Circulation at 1494'
(1) Resolution
E. 12-1/4" Hole 3448': 9-5/8" Liner 1345' to 3357'
3. General Description of Hole Drilled
4. 12-1/4" Hole: Problems Encountered
a. Lost Circulation (1559' to $3448^{\prime \prime}$)
(1) Resolution
b. 9-5/8" Liner - "Second Stage" Cement Job
(1) Resolution
```
F. 8-3/4" Hole 7735': 7" Liner 3084', to 7615'
```

1. General Description
2. 8-3/4" Hole: Problems Encountered
a. Lost Circulation 3495'
(1) Resolution
b. Failure of 7" Hanger Running Tool to Release
(1) Resolution
c. Second Stage $7^{\prime \prime}$ Liner Cementing Job
(1) Resolution

GENERAL INFORMATION SHEET

LOCATION:

1143.28' South and 2387.37^{\prime} East of the Northwest corner of Section 7, T26S, R6W, S.L.M.

ELEVATION:

(Ground Level) 6421.6. above Mean Sea Level

SPUD DATE:

11/29/77 at 0400 hours

COMPLETION DATE:
$3 / 14 / 77$ at 2000 hours

HOLE AND CASING INTERVALS:

$\begin{aligned} & \text { HOLE } \\ & \text { SIZE } \end{aligned}$	$\begin{aligned} & \text { HOLE } \\ & \text { DEPTH } \end{aligned}$	CASING DATA	CASING DEPTH
$36^{\prime \prime}$	30^{\prime} G.L.	$30^{\prime \prime}$ Conductor	30^{\prime} G.E.
$26^{\prime \prime}$	255 ${ }^{\prime}$ RKB	20" 94\# H-40 Buttress Casing	251' RKB
17-1/2"	1557. RKB	13-3/8" 54.50\# K-55 Buttress Casing	1552! RKB
12-1/4"	3448' RKB	9-5/8" 40\# K-55 Buttress Casing	1345'-3357'
8-3/4"	7735^{\prime} RKB	$\begin{aligned} & \text { 7" } 26 \# \text { K- } 55.8 \mathrm{RD} \text { LT\&C } \\ & \text { Blank 72. Jts. - Perf. } 36 \mathrm{Jts.} \\ & \text { Perfs. - (20-2-6-60) } \end{aligned}$	3084' - 7615'

Cove Fort Sulphurdale Unit 42-7
General Information Sheet
Pg 2

HOLE SIZE	HOLE DEPTH	CASING DATA	CASING DEPTH
13-3/8" Casing	Tie-Back	$7{ }^{\prime \prime}$ 26\# K-55 8RD LT\&C	$0-3084^{\prime}$

T.D.:
'7735' RKB
E.T.D.:
7610^{\prime} RKB

TOTAL COST:
$\$ 2,056,000$

COST PER FOOT:
\$266

CONTRACTING SERVICES/AGENCIES:

AAA Welding
Bariod
Basin Power Tongs
Big "K" Corporation
Bovaird. Supply
Byron Jackson

```
Del-Mar Construction
Dia-Log
Dotco
Dowell
DrilItrol
Duane Hall Trucking
Eastman Whipstock
EMCO
ESSE
Flint Engineering
Francis Engine Service
GO Wireline Services
Grant Oil Tool
Halliburton
Homeco
Hughes Tool Co.
IMCO
Jenkins Oil Co.
La Sal Oil Co.
Lynes
Mac's Welding
Magcobar (Dresser)
Mid-Continent Supply
Mountain States Inspection
Northwest Carriers
Oilind Safety Engineering
```

CONTRACTING SERVICES/AGENCIES (cont'd)

```
Oilwell Supply
Philadelphia Quartz
Pipe Sales Co.
R.F. Smith
Reed Tool
Republic Supply
San Juan Casing Service
Schlumberger
Smith Tool
Sperry-Sun
Texas Reamer Co.
Textillana (Henkel)
Thatcher Chemical
```

UNION OIL CO. OF CALIFORNTA
GEOTHEIMAL DIVISION
WELI, RECORD

- •

SLOTTED LINER

SEE ATTACHED LINER DETAIL
TEST DATA

DRILLING OPERATIONS

A. RIG INFORMATION:

Loffland Brothers Rig \#184. This is a Lee C. Moore Cantilever Mast and substructure with a Midcontinent U-712A drawworks. The rig is rated to drill to a depth of $15,000^{\prime}$. The rig is powered with three (3) caterpillar D-398TA rated at 640 INT. horsepower at 1100 RPM. The Cantilever Mast is 142^{\prime} in height. The rotary table is an Oilwell 27-1/2". The rig is limited to a 450,000\# casing capacity.

B. PREPARATION OF LOCATION AND SETTING CONDUCTOR:

Prior to moving the drilling rig on location, various operations were conducted to prepare for drilling. The location, sump and roads were built to specifications laid out in the "Approved Unit Plan of Operations". A $36^{\prime \prime}$ conductor hole was drilled to 30'. G.L. by Dale Martin Rathole Service. Thirty inch (30") conductor pipe was run and cemented to surface at 30^{\prime} G. L. with Ready-Mix Cement.
C. $26^{\prime \prime}$ HOLE SECTION -255^{\prime} (20". Casing Set at 251')

LoEfland Rig \#184 was moved in on location $11 / 28 / 77$ at 0800 hours. Drilled mouse and ratholes. Well was spudded in at 0400 hours on $11 / 29 / 77$.

The 26" hole section was drilled with no problems to 255'. A 17-1/2" pilot hole was drilled first, and then opened to $26^{\prime \prime}$. Twenty inch (20") casing was run and cemented to surface with no problems. The 20" casing head, double Shaffer and Hydril were nippled up. The B.O.E. were tested to Union Oil specifications and held okay.

D. 17-1/2" HOLE SECTION - 1557' (13-3/8" Casing at 1552')

1. General Description of Hole Drilled

The 17-1/2" hole section was drilled to 1557^{\prime} with some hole problems. Briefly these problems consisted of two fishing jobs and two lost circulation zones. After overcoming these difficulties, the well was drilled to the effective total depth of 1557'. Here 13-3/8". casing was successfully run and cemented at l552'. The.13-3/8" casing head, 12": 900 double Shaffer and Hydril were nippled up. The B.O.E. were tested to Union Oil specifications and held okay.
2. 17-1/2" Hole Section: Problems Encountered
a. Twist-off at 715'

Drilled $17-1 / 2^{\prime \prime}$ hole to 746^{\prime} and lost pump pressure. P.O.H. and had parted pin on bottom stabilizer.
(1) Resolution Caught and retrieved fish using lll-3/4" Bowen Overshot. Drilling assembly was inspected and drilling operations continued.
b. Lost Circulation at 1388^{\prime}

The 17-1/2" hole was drilled to 1388' and a lost circulation zone was encountered.
(1) Resolution

Mixed lost circulation material and was able to regain circulation.
c. Twist-off at 1452'

The 17-1/2" hole was drilled to 1452' and twisted pin off stabilizer in BHA.
(1) Resolution

Caught and retrieved fish with ll-3/4". Bowen Overshot with 8" grapple. Drilled ahead after inspect'ing drilling assembly.
d. Lost Circulation at 1494'

The 17-1/2" hole was drilled to 1494 ' and lost returns.
(1) Resolution

Two cement lost circulation plugs totalling $398 \mathrm{ft}^{3}$ were required to seal off this thieving zone. The well was then drilled to 1557^{\prime} and preparations were made to run casing.
E. 12-1/4" HOLE SECTION 3448': 9-5/8" LINER 1345' to 3357'

1. General Description of Hole Drilled

The 12-1/4" hole was drilled to depth with severe lost circulation problems. After drilling good firm cement in the $13-3 / 8^{\prime \prime}$ casing through the casing, lost circulation was
first encountered at 1559'. This loss of circulation was present from 1559' to casing point. A futile effort of 35 lost circulation cement plugs (6880 ft ${ }^{3}$ cement) were attempted throughout drilling operations to casing point, When water was used as drilling fluid, loss of circulation occurred. Foam drilling was attempted. Due to the fact that formation water was produced at a rate of $600 \mathrm{bbls} / \mathrm{hr}$ and that the only means of disposing of this produced water was by trucking, foam drilling was discontinued. It was obvious that trucking could never keep up with drilling operations and the.economics involved were massive. Aerated mud using jet subs was used to drill to a depth of 3448'. The procedure was to drill with aerated water until the sump filled, then drill by pumping the produced water thru the bit without returns to empty the sump. Electric 'logs were run at 3448'. The 9-5/8" liner was run from 1345' to 3357'. The first stage: of cementation went okay. Due to heat, there was a problem with the isolation in the second stage of liner cementation. This was soon resolved using an RTTS tool to inflate an external casing open hole packer and the liner was cemented in place. The liner lap was tested to $.86 \mathrm{psi} / \mathrm{ft}$ equivalent for 25 minutes and held okay. A cement bond log verified proper bond on liner.
2. 12-1/4" Hole: Problems Encountered
a. Lost Circulation (Starting at 1559' to 3448^{\prime} E.T.D.) The 12-1/4" hole was drilled to 1559' and the well started losing returns. In order to get the hole drilled to a point where the agreed "proposed casing point" was located and hopefully put these thief zones behind pipe, many cement plugs were required:
(1) Resolution

A total of 35 cement plugs for a total of $6880 \mathrm{ft}^{3}$
were used to get to casing point (see cement data sheet for details). When water was used as drilling
fluid, the hole took fluid. Foam drilling caused formation water to be produced at a massive rate where it was neither economical or practical to, use. Aerated mud was used until the sump became full and then drilling using sump water with no returns was the best method to drill the hole. Plug \#35 was put in place at E.T.D. to establish circulation in order to get a good cementing job on the 9-5/8." liner.
b. 9-5/8" Liner "Second Stage" Cement Job The F.O. isolation packer, due to heat, could not be used to inflate the open hole Lyons packer.
(1) Resolution

A 9-5/8" RTTS tool was used to successfully inflate the open hole Lyons packer for cementing the second stage of the 9-5/8" liner.
F. 8-3/4" HOLE SECTION TO 7735' - 7" Liner 3084' to 7615'

1. General Description of Hole Drilled

The 8-3/4" hole was drilled to 3495' using mud as drililing fluid with full returns. At this point a 4^{\prime} void plus lost çirculation were encountered. The $8-3 / 4^{\prime \prime}$ hole was drilled using aerated mud. Again the hole made fluid using aerated mud and when the sump filled, the hole was drilled using produced water without returns. Jet subs were used when drilling with aerated mud to help lift the fluid in the hole. The 8-3/4" hole was drilled in this manner to 7735^{\prime} where pipe was stuck while drilling. Pipe was worked free. At this point, evaluation logs were run and the decision made to run the $7^{\prime \prime}$ liner.

The 7" combination blank and slotted liner was run from 3084' to 7615'. After hanging the liner, the setting tools would not release from the 7 " hanger. The 7 " liner was pulled and a different type (Midway) liner hanger was run in hole.

Due to lost circulation, the liner cementation job was performed with difficulty. The first stage went okay, however on the second stage, it took six attempts for a total of
$3304 \mathrm{ft}^{3}$ before a successful "lap" job could be accomplished.

A 7" casing tie-back was run from the liner hanger tie-back sleeve to surface in tension leaving a $38^{\prime \prime}$ free travel in tie-back receptacle. The liner was hung off in the 12" $900 \times 10 " 600$ casing head spool. No cement job was done on the tie-back.

The well was left shut-in with 400 psi on well head. The location was cleaned and terminated in accordance with the approved plan of operations.
2. 8-3/4". Hole Section: Problems Encountered
a. Lost Circulation 3495'

An 8-3/4" hole was drilled with mud to 3495^{\prime} where a 4^{\prime} void and loss of circulation were encountered.
(1) Resolution

The 8-3/4" hole had to be drilled to 3495^{\prime} E.T.D. using aerated mud until the sump became full and then switching over to drilling with sump water without returns until the sump drained.
b. Failure of Running Tool on 9-5/8" x 7" Burns Liner Hanger The 7" liner was run and hung from 3163! to 7605'. Unable to release from setting tools.
(1) Resolution

Backed off above hanger and ran bumper sub. Hopefully due to past experiences; this would have jarred running tool free. However, what happened was that the hanger slips broke: This in turn released the
liner. Therefore, the liner was pulled out of hole and Burns hanger was replaced with Midway 9-5/8". x 7". heavy duty hanger. The liner was run and successfully hung off from 3084' to 7615'. c. Second Stage 7" Liner Cementing Job Due to lost circulation problems, the second stage cementation process was very difficult.
(1) Resolution

A total of six squeeze jobs (3304 ft ft^{3} of cement) were done before a good cement job was accomplished.

DRILLING OPERATIONS

SPUDDING

Rigged up Dale Martin Rathole Services rig and drilled a 36" diameter hole to a depth of 30^{\prime} below. ground level. A $30^{\prime \prime}$ conductor pipe was run into the hole, on September 10, 1977, to a depth of 30^{\prime} and cemented with $5-1 / 2$ cubic yards of ReadyMix cement. Moved in and rigged up Loffland Brothers Rig \#l84 on November 28, 1977. Rig commenced dayrate operations at 0800 hours, November 28, 1977. Installed the mouse hole and rat hole and picked up the kelly and 26" hole opener. spudded 26". hole at 0400 hours, November 29, 1977.

26" HOLE SECTION 50^{\prime} to 255^{\prime} (Measured from Kelly Bushing) Drilled 26" diameter hole from 50' to 55'. Changed over to 17-l/2" drilling assembly and drilled 17-1/2" hole from 55' to 255' with a maximum hole deviation of one degree from vertical. Opened the $17-1 / 2^{\prime \prime}$ hole to $26^{\prime \prime}$ from 55^{\prime} to 255^{\prime} with a Security pilot hole opener. The maximum flowline temperature was $116^{\circ} \mathrm{F}$ with a suction temperature of $90^{\circ} \mathrm{F}$. A bottom hole temperature of $110^{\circ} \mathrm{F}$ was recorded during the deviation survey at a depth of 232'.

Ran 6 joints (252') of 20", 94\#, H-40 buttress casing in the hole. Circulated to clean and condition the hole for cementing casing in place. Halliburton mixed and pumped $649 \mathrm{ft}^{3}$ of class
"B" cement, with $2 \% \mathrm{CaCl}_{2}$, through open ended 20 " casing at 251'. Displaced cement with $464 \mathrm{ft}^{3}$ water. Pumped $175 \mathrm{ft}^{3}$ of excess cement to the sump. Waited on cement for three hours and landed 20" casing at 251'. Installed a $20^{\prime \prime}$ flange and nippled up blowout equipment consisting of a $20^{\prime \prime}$ double Shaffer and Hydril on the $20^{\prime \prime} \times 2000 \#$ flange which was welded to the 20 " casing. Installed the kill and choke lines and tested blowout equipment to 500 psig with water for thirty minutes: The test was approved by a U.S.G.S. representative.

17-1/2" HOLE SECTION 255' to 1557'

Changed over to $17-1 / 2^{\prime \prime}$ bottom hole assembly. Ran in the hole and cleaned out cement from 233^{\prime} to 255'. Drilled 17-1/2" diameter hole from 255^{\prime} to 746^{\prime}. Pump pressure decreased. Pulled out of hole and found that the pin on the bottom stabilizer had parted leaving one 9" drill collar, reamer, and bit in the hole. Ran in hole to top of fish at 715! with ll-3/4" Bowen." overshot with 8"grapple. Engaged the fish and chained out of the hole with full recovery of fish.. Inspected the drilling assembly and continued drilling 17-1/2" hole from 746' to 1221'. Ran deviation survey and pulled out of hole to unplug bit. Ran back in the hole and driiled 17-1/2" hole from 1221' to 1257'. Lost 500 psi pump pressure. Pulled out of hole to check for washout. Changed out bit which was washed out around two jet nozzles. Ran in the hole and continued drilling l7-1/2" hole from 1257^{\prime} to 1388^{\prime}. Commenced losing circulation. Mixed mud and lost circulation materials. Lost approximately 650 barrels
of mud prior to establishing full returns.

Loffland's corrosion coupons at this time showed a corrosion rate of 3.7468 lbs/ft2/yr. Continued drilling from 1388' to l452' with full returns. Drilling assembly parted, leaving a l7-1/2" bit, 3-point reamer; one drill collar, one stabilizer, one shock sub and two 8" drill collars in the hole. Ran in the hole with an overshot and engaged and recovered this portion of the bottom hole assembly. Replaced 17-1/2". bottom hole assembly and drilled 17-1/2" hole from 1452' to 1494'. Lost circulation at 1494'. Pulled drilling assembly out of hole and ran in hole to 1457' with open ended drill pipe. Halliburton mixed and pumped $198 \mathrm{ft}^{3}$ of class "B". cement mixed in a l:l ratio with Perlite with 40% Silica Flour, 3\% Gel, 0.5\% CFR-2, and 0.3\% HR-7. Displaced cement with $100 \mathrm{ft}^{3}$ of water. Pulled to shoe of $20^{\prime \prime}$ casing and waited for cement to set up. Attempted unsuccessfully to fill the hole with 200 barrels of mud. Continued to wait on cement and subsequently fill the hole with 100 barrels of mud.

Ran in the hole with open ended drill pipe to top of cement at 1445'. Circulated with full mud returns to the surface. Pulled up the hole to a depth of 1353'. Closed the pipe rams and pressured to 100 psig. Pressure bled off as the hole took fluid. Halliburton mixed and pumped $200 \mathrm{ft}^{3}$ of class "B" cement, mixed in a l:l ratio with Perlite, 40% Silica Flour, 3\% Gel, 0.5\% CFR-2 and $0.3 \% \mathrm{HR}-7$, through open ended drill pipe hung at 1353^{\prime}. Displaced cement with $100 \mathrm{ft}^{3}$ water. Pulled out of hole and
waited on cement for three hours. Filled the hole with 75 barrels of mud. Closed the complete shut-off rams and pressured to 100 psig. No pressure loss was observed. Installed 17-1/2" drilling assembly and ran in the hole to top of cement at 1335'. Drilled cement from 1335' to 1475'. Continued drilling 17-1/2" diameter hole from 1494' to 1557'. Circulated to clean and condition the hole for running casing.

Rigged up equipment and ran in hole with 40 joints of 13-3/8"; 54.5\#, K-55 buttress casing. Hung casing with shoe at l552' and baffle plate at 1513'. Circulated drilling fluid to condition the hole for cementing. Halliburton mixed and pumped $2071 \mathrm{ft}^{3}$ of class "B" cement mixed in a l:l ratio with Perlite, 40% Silica Flour, 3\% Gel, 0.5\% CFR-2 and 0.3\% HR-7. Followed this slurry with 184 ft ${ }^{3}$ of class "B" cement with 40% Silica Flour and 0.5\%. CFR-2. Maintained fluid flow to the surface throughout, the job. Bumped plug against baffle plate with 600 psig during displacement. Rigged down blowout equipment and waited for cement to set up. Cut off $20^{\prime \prime}$ casing and welded on $13-3 / 8^{\prime \prime} \times 12^{\prime \prime}$ - 900 casing head. Tested weld successfully to 1000 psig. Installed spacer spool, choke and kill spool, l2" - 900 double Shaffer and 12" - 900 Hydril. Thawed out lines repeatedly with cold water while testing blowout preventers to 1500 psig. Kelly cock lost pressure from 1500 psig to l200 psig in 5 minutes. The test was witnessed and approved by Mr . John Reeves of the U.S.G.S.

Formation drilled during the interval of 55^{\prime} to 1557^{\prime} consisted primarily of Andesite. The maximum recorded flowline temperature
was $132^{\circ} \mathrm{F}$ with a suction temperature of $120^{\circ} \mathrm{F}$. The maximum recorded hole deviation was one degree and 30 minutes with a bottom hole temperature of $125^{\circ} \mathrm{F}$.

12-1/4" HOLE SECTION 1557' to 3448!
Ran in the hole with 12-1/4" drilling assembly to top of hard cement at 1497'. Drilled cement to 1513', drilled baffle plate at 1513' and drilled cement to 1557'. Drilled 12-1/4" diameter hole to 1559'. Lost returns to the surface. Regained circulation after mixing mud and lost circulation materials. Total mud lost to the formation was approximately 350 barrels. Attempted unsuccessfully to continue drilling. Pulled out of the hole and found that the cones on the bit were locked up and also found indications that the bit had been rotating on junk. Inspected drill collars, subs; swivel and kelly. Laid down one cracked drill collar. Ran in the hole with 12-1/4" drilling assembly and continued drilling 12-1/4" hole from 1559' to 1836'. Lost all returns to the surface. Mixed mud and lost circulation materials. Regained circulation and continued drilling 12-1/4" hole from 1836' to 1850'. Lost returns at 1850.'. Pulled bit up the hole to 1550'. Mixed and continued pumping mud. Regained.circulation after a total loss of approximately 150 barrels of fluid. Drilled 12-1/4". hole from 1850^{\prime} to 1970^{\prime} with a loss of approximately 50 additional barrels of mud. Continued drilling $12-1 / 4$ " hole to 2123' prior to losing full returns. Pulled bit to 1450'. Mixed mud and lost circulation material in order to restore mud volume in tanks.

The additional mud loss was an estimated 475 barrels. Gained full returns and continued drilling to 2175^{\prime}. Lost returns at 2175'. Estimated additional loss was 450 barrels. Pulled.bit to 1390^{\prime}. Mixed mud and lost circulation materials. Ran back in the hole to 2175' and continued drilling to 2218^{\prime} with full returns. Lost returns totaling approximately 450 barrels. Pulled bit up hole to 1500^{\prime}. Mixed mud and lost circulation materials and continued drilling to 2238^{\prime} without returns. Lost an estimated 400 additional barrels of mud. Pulied bit to 1475^{\prime}. Mixed mud and lost circulation materials. Ran back in the hole to top of fill at 2225'. Cleaned out fill to 2238'. Drilled 12-1/4' hole from 2238^{\prime}, to 2244^{\prime} without returns, losing an additional 400 barrels of mud. Pulled out of the hole and stood back 12-1/4." drilling assembly. Ran in the hole to 2202' with open ended drill pipe. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite', 40\% Silica Flour, and 3% Gel (plug \#1). Displaced cement with $33 \mathrm{ft}^{3}$ of water. Pulled pipe up the hole to 1450^{\prime} and waited on cement to set up. Ran in the hole to top of cement at 2119'. Attempted unsuccessfully to fill the hole with 300 barrels of mud. Pulled up the hole to 2046'. Halliburton mixed and pumped $120 \mathrm{ft}^{3}$ of class "B". cement, mixed in a $1: 1$ ratio with Perlite, 40% Silica Flour and 3\% Gel, through open ended drill pipe at 2046! (plug \#2). Displaced cement with $30 \mathrm{ft}^{3}$ of water. Pulled up the hole to 1506^{\prime} and waited four hours for cement to set up. Ran in the hole to top of cement at 2119'. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class "B" cement, mixed in a l:l ratio with Perlite,
40% Silica Flour and 3% Gel, through open ended drill pipe at 2046' (plug \#3). Pulled pipe to 1475' and waited for cement to set up. Ran in the hole to top of cement at 2084'. Attempted unsuccessfully to fill the hole with 250 barrels of mud. Halliburton mixed and pumped $150 \mathrm{ft}^{3}$ of class "B" cement, mixed in a l:l ratio with Perlite, 40% Silica Flour and 3\% Gel, through open ended drill pipe hung at 2060^{\prime} (plug \#4). Pulled out of the hole and waited on cement to set up for four hours. Filled the hole with 150 barrels of mud. Picked up the 12-1/4" drilling assembly and ran in the hole to a cement stringer at 1636'. Plugged the bit while attempting to clean out this stringer. Pulled out of the hole and cleaned out the bit and bottom drill collar. Ran back in the hole and continued cleaning out cement stringers from 166^{\prime} to 1990^{\prime}. Drilled hard cement from 1990' to 2214^{\prime} with only partial returns from 2184^{\prime} to $2214^{\prime \prime}$. Lost all returns at 2214^{\prime}. Pulled out of the hole. Removed drilling assembly and ran in the hole to 2172^{\prime} with open ended drill pipe. Halliburton mixed and pumped $396 \mathrm{ft}^{3}$ of class "B" cement mixed in a $2: 1$ ratio with Perlite, 40% Silica Flour and 3% Gel (plug \#5). Displaced cement with $45 \mathrm{ft}^{3}$ of water. Pulled out of the hole and waited for cement to set up. Filled the hole with mud. Closed the pipe rams and pressured to 200 psig surface pressure. Continued waiting on cement an additional three hours. Ran in the hole and cleaned out cement stringers from 1760^{\prime} to 1940'. Drilled firm cement from 1940' to 2244'. Lost circulation at 2244'. Continued drilling $12-1 / 4^{\prime \prime}$ hole from 2244^{\prime} to 2250^{\prime} without returns.

Lost a total of approximately 450 barrels of mud. Pulled out of hole and stood back bottom hole assembly. Ran in the hole to 2205' with open ended drill pipe. Halliburton mixed and pumped $142 \mathrm{ft}^{3}$ of Thix-Set cement premixed with 13% gilsonite and $1 / 2 \mathrm{lb}$ of Flocele/sack (plug \#6). Displaced cement with $196 \mathrm{ft}^{3}$ of water. Pulled out of hole and waited on cement to set up... Pumped 450 barrels of fluid in the hole over a seven hour period with no indications of hole filling. Ran back in the hole with open ended drill pipe to top of cement at 2222'. Pulled out of hole. Fluid level was at approximately 1850'. Ran in the hole to 2220^{\prime} with 12-1/4" bit. Obtained a bottom hole temperature survey of $175^{\circ} \mathrm{F}$. Drilled hard cement from 2222' to 2230'. Mixed mud and lost circulation material. Ran in the hole to 1829' with open ended drill pipe. Halliburton mixed and pumped $142 \mathrm{ft}^{3}$ of Thix-Set cement premixed with 13% gilsonite and 0.5% Flocele (plug \#7). Displaced cement with $140 \mathrm{ft}^{3}$ of water. Pulled out of hole and pumped 200 barrels of mud over the next four hour period while waiting on cement. No returns to the surface. Ran in the hole to 2230° with no indication of top of cement plug. Pulled out of the hole. Fluid level remained at approximately 1700'. Ran in the hole with open ended drill pipe to 1860^{\prime}. Halliburton mixed and pumped $240 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour and 3\% Gel (plug \#8).. Displaced cement with $151 \mathrm{ft}^{3}$ of water. Pulled out of the hole and waited for cement to set up. Ran in the hole to $2230!$ with no indication of top of cement plug. Pulled
out of the hole. Found fluid level to be at approximately 1875'. Ran in hole with open ended drill pipe to 2209'. Mixed and pumped a 100 barrel lost circulation material plug. Halliburton mixed and pumped $120 \mathrm{ft}^{3}$ of class "B" cement premixed in a $1: 1$ ratio with Perlite, 3% Gel, through open ended drill pipe at 2209' (plug \#9). Displaced cement with $196 \mathrm{ft}^{3}$ of water. Pulled out of the hole and waited on cement for ten hours. Fluid level in wellbore was at approximately 1500'. Ran in hole to: 2230.' without encountering obstructions. Pulled out of hole. Dry drill pipe indicated no fluid level. Ran in the hole to 2169^{\prime} with open ended drill pipe. Pumped 45 bärrels of water followed by $193 \mathrm{ft}^{3}$ of class " B " cement premixed in a $2: 1$ ratio with Perlite, 40% Silica Flour and 3% Gel (plug \#lo). Displaced cement with $196 \mathrm{ft}^{3}$ of water. Pulled out of the hole and waited for cement to set up. Ran back in the hole to 2230^{\prime} with no obstructions. Pulled up hole to shoe of 13-3/8" casing. No fluid level was indicated on pipe. Ran back in the hole to 2220'. Pumped a treatment of 20 barrels of fresh water followed by 20 barrels of $3 \% \mathrm{CaCl}_{2}$ with 400 lbs of sand, followed by 5 barrels of water and 30 barrels of NaSi_{2}. Displaced with 30 barrels of fresh water. Pulled out of the hole and waited four hours for the solution to set up. Ran in the hole to $2170^{\prime \prime}$ with open ended drill pipe. Halliburtion mixed and pumped $180 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:1 ratio with Perlite, 40% Silica Flour and $3 \% \mathrm{Gel}$ (plug \#ll). Displaced cement with $190 \mathrm{ft}^{3}$ of water. pulied out of the hole and waited for cement to set up.

Ran in the hole with open ended drill pipe to top of cement plug at 1953'. Filled the wellbore with 325 barrels of mud. Lost returns after circulating for 2 hours. Pulled out of the hole. Fluid level was at approximately l79'. Ran in the hole to 1946! with open ended drill pipe. Halliburton mixed and pumped $100 \mathrm{ft}^{3}$ of Thix-Set cement premixed with 19% gilsonite, 0.5% Flocele, and 0.1\% Tuff-Plug (plug \#12). Displaced cement plug with $145 \mathrm{ft}^{3}$ of water. Pulled out of hole and waited four hours for cement to set up. Fluid level was at approximately 45^{\prime} from the surface. Filled the hole with 75 barrels of mud. Ran in the hole and cleaned out cement stringers from 1535' to 1861'. Cleaned out firm cement from 1861^{\prime} to 2235^{\prime}. Cleaned out soft cement or fill from 2235 ' to 2250^{\prime} while maintaining full returns. Drilled 12-1/4" hole to 2252'. Lost full returns. Hole on vacuum. Drilled from 2252' to 2275^{\prime} without returns. Pulled bit into $13-3 / 8^{\prime \prime}$ casing. Mixed drilling mud. Ran in the hole to 2275'. No fill on bottom. Continued drilling 12-1/4" hole from 2275' to 2298^{\prime} without returns. Lost approximately 500 barrels of mud. Pulled bit into $13-3 / 8 "$ casing. Fluid level was at approximately 360'. Mixed mud and lost circulation materials. Ran in the hole to 2298'. No fill. Drilled 12-1/4" hole from 2298' to 2324' without returns to the surface. Pulled bit into the $13-3 / 8^{\prime \prime}$ casing and mixed mud and lost circulation materials. Ran in the hole and drilled 12-1/4" hole from 2324' to. 2342' without returns to the surface: Pulled out of the hole and stood back drilling assembly. Ran in the hole to 2201' with open ended
drill pipe. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of water followed by $112 \mathrm{ft}^{3}$ of $6 \% \mathrm{CaCl}_{2}$ water with 400 lbs of plaster sand added followed by $28 \mathrm{ft}^{3}$ of water and $128 \mathrm{ft}^{3}$ of NaSi_{2} mixed in a ratio of l:1 with water (plug.\#13). Displaced with $196 \mathrm{ft}^{3}$ of water. Pulled pipe up hole to 2108'. Halliburton mixed and pumped $223 \mathrm{ft}^{3}$ of Thix-Set cement premixed with 25\# gilsonite, l-l/4\# Flocele and l/8\# of Tuff Fiber per sack. Displaced with $182 \mathrm{ft}^{3}$ of water. Pulled pipe up the hole to 1475' and waited for cement to set up. Ran in the hole to top of cement at 2242^{\prime}. Pulled pipe to 1475^{\prime}. Unable to fill hole after pumping 400 barrels of mud. Ran in the hole to 2232'. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of Gel water consisting of WG-11, CL-11 with 1680 lbs of Unibeads, $420 \#$ of gilsonite and $420 \#$ TLC- 80 , followed by $59 \mathrm{ft}^{3}$ of class "B" cement with 2% CaCl_{2} and..100\# Flocele (plug \#14). Pulled pipe to 1495 and waited for cement to set up. Ran in hole to top of cement at 2242'. Attempted unsuccessfully to fill the wellbore. Pulled up hole to 2232'. Halliburton mixed and pumped ll2 ft^{3} of Ge (water consisting of WG-11, CL-11 with 1680 lbs of Unibeads, $420 \#$ of gilsonite and 420\# TLC-80, followed by 118 ft 3 of class. "B" cement premixed with $2 \% \mathrm{CaCl}_{2}$ and 200 \# of Flocele (plug \#15). Displaced with $157 \mathrm{ft}^{3}$ of water. Pulled pipe to 1510° and waited for cement to set up. Ran in the hole to top of cement at 2139'. Pulled back up the hole to 1475^{\prime}. Filled the wellbore with 310 barrels of mud. Continued waiting for cement to set up. Ran in the hole and drilled firm cement from 2l39' to 2244'. Commenced losing
mud at a rate of 1 barrel per minute at 2219^{\prime} and 3 barrels per minute at 2229'. Pulled out of the hole and stood back drilling assembly. Ran in the hole with open ended drill pipe to 2201'. Halliburton mixed and pumped $56 \mathrm{ft}^{3}$ of Frac Gel consisting of WG-11, CL-11, 840.\# Unibeads, 210\# gilsonite and 210\# TLC-80, followed by $210 \mathrm{ft}^{3}$ of class " B " cement premixed with $2 \% \mathrm{CaCl}_{2}$ and 75\# of Flo Seal. Displaced with. 151 ft3 of water (plug \#16). Pulled up the hole to 1450^{\prime} and waited for cement to set up. Filled the hole with 170 barrels of mud. Mud fell away slowly. Ran in the hole to top of cement at 2184'. Pulled out of the hole to pick up drilling assembly and wait for cement to set: up. Ran back in the hole to 2184' and filled the hole with 275 barrels of mud. Drilled solid cement to 2228^{\prime} with full returns. Space from 2228^{\prime} to 2244°. was void. Commenced losing mud at a rate of three barrels per minute while circulating. Pulled out of the hole and stood back bottom hole assembly. Ran in the hole to fill at 2227°. Unable to clean out fill. Pulled out of the hole and picked up 12-1/4" bit. Ran in the hole and cleaned out fill from 2227° to 2231^{\prime}. with partial returns. Lost full returns while cleaning out from 2231' to 2242'. Lost a total of approximately 400 barrels of mud. Pulled out of the hole and stood back drilling assembly. Ran in the hole with open ended drill pipe to 2232^{\prime}. Halliburton mixed and pumped $56 \mathrm{ft}^{3}$ of Frac Gel consisting of 25 \# WG-11, and 7\# CL-11 followed by $112 \mathrm{ft}^{3}$ of $3 \% \mathrm{CaCl}_{2}$ water, $56 \mathrm{ft}^{3}$ water, $258 \mathrm{ft}^{3} \mathrm{NaSi}_{2}$ mixed in a $1: 1$ ratio with water, $5.6 \mathrm{ft}^{3}$ water and $136 \mathrm{ft}^{3}$ of class "B" cement with $2 \% \mathrm{CaCl}_{2}$ and $1 / 2 \mathrm{lb} /$ sack Flocele (plug \#i7).

Displaced with $168 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 1490^{\prime} and waited for cement to set up. Ran back down the hole to 2239' and didn't locate the top of plug \#17. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of Frac Gel consisting of 500 lbs of gilsonite, 500 lbs of Unibeads, 350 lbs of moth balls, 50 lbs of $\mathrm{WG}-11$ and 15 lbs of cL-ll followed by $136 \mathrm{ft}^{3}$ of class "B" cement with 2% CaCl_{2} and $1 / 2$ lb Flocele/sack (plug \#l8). Pulled drill pipe to 143^{\prime} and waited for cement to set up. Ran back in the hole to 2240' with no trace of plug \#18. Also, the hole appeared to be void of any fluid. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of 3% CaCl 1_{2} water, $56 \mathrm{ft}^{3}$ of water and $134 \mathrm{ft}^{3}$ of NaSi_{2}. Displaced with $65 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 2201' and pumped $98 \mathrm{ft}^{3}$ of class "B" cement with 6% gilsonite, $1 / 2$ Ib Flocele and $2 \% \mathrm{CaCl}_{2}$. Displaced with $57 \mathrm{ft}^{3}$ of water (plug \#19). Pulled drill pipe to 1490^{\prime} and waited for cement to set up. Ran in hole to top of cement plug at 2187'. Pulled out of the hole and picked up drilling assembly. \quad Ran in the hole and drilled cement from 2187^{\prime} to 2250^{\prime} with full returns. Drilled without returns from 2250^{\prime} to 2280^{\prime}, losing: approximately 350 barrels of fluid. Pulled out of the hole and stood back drilling assembly. Ran in the hole with open ended drill pipe to top of fill at 2260^{\prime}. Attempted unsuccessfully to wash through fill. Ran in the hole with 12-1/4" bit and cleaned fill from $2260^{\prime \prime}$ to 2278^{\prime} without returns. Lost an additional 400 barrels of fluid. Ran in the hole to 2263^{\prime} with open ended drill pipe. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of water, $112 \mathrm{ft}^{3}$ of CaCl_{2} water, $67 \mathrm{ft}^{3}$ of water
and $67 \mathrm{ft}^{3}$ of NaSi_{2}. Displaced with $112 \mathrm{ft}^{3}$ of water. Pulled pipe to 1496^{\prime} and waited for cement to set up. Ran in the hole to 2232'. Halliburton mixed and pumped $88 \mathrm{ft}^{3}$ of class "B" cement with $2 \% \mathrm{CaCl}_{2}$, 12% gilsonite and $1 / 2 \mathrm{lb}$ of Flocele/sack. Displaced with 156. ft^{3} of water (plug \#20). Pulled up hole and waited for cement to set up. Ran in the hole with open ended drill pipe to top of cement plug at 2240'. Unable to fill the hole with water. Pulled pipe to 2233'. Halliburton mixed and pumped $88 \mathrm{ft}^{3}$ of class " B " cement with 8 lbs gilsonite, 2% CaCl_{2} and $1 / 2 \mathrm{lb}$ Flocele/sack. Displaced with $168 \mathrm{ft}^{3}$ of water (plug \#21). Pulled pipe to 1510^{\prime} and waited for cement to set up. Ran in hole to top of plug \#20 at 2240'. No trace of plug \#21. Hung open ended drill pipe at 2232'. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of Frac Gel consisting of 500 lbs Unibeads, 150 lbs Flocele, 150 lbs gilsonite, 150 lbs moth balls, 75 lbs WG-11 and 15 lbs CL-11. Followed by $161 \mathrm{ft}^{3}$ of class "B" cement premixed in a $2: 1$ ratio with Perlite, 40% Silica Flour and 3% Gel followed by $98 \mathrm{ft}^{3}$ of class "B"cement with $2 \% \mathrm{CaCl}_{2}, \mathrm{l} / 2 \mathrm{lb}$ Flocele and 8 lbs gilsonite/sack. Displaced with $86 \mathrm{ft}^{3}$ of water (plug \#22). Pulled pipe to 1505^{\prime} and waited for cement to set up. Ran in the hole to 2240^{\prime} with no trace of plug. \#22. Pulled pipe to 2232'. Halliburton mixed and pumped 112 ft . of water; $112 \mathrm{ft}^{3}$ of $3 \% \mathrm{CaCl}_{2}$ water, $28 \mathrm{ft}^{3}$ of water and $67 \mathrm{ft}^{3}$ of NaSi_{2}. Displaced with $162 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 2201 and waited 2 hours. Mixed and pumped l6l ft^{3} of class "B" cement premixed in a 2:1 ratio with Perlite, 40% Silica Flour, $3 \% \cdot \mathrm{Gel}$ and $3 \% \mathrm{CaCl}_{2}$. Displaced with $168 \mathrm{ft}^{3}$ of water (plug \#23). Pulled pipe up hole and waited for cement to set up. Ran in the
hole to top of cement at 2215^{\prime}. Pulled pipe up hole to 1500^{\prime} and attempted unsuccessfully to fill the hole with 300 barrels of fluid. Ran in the hole to 2201'. Halliburton mixed and pumped a $112 \mathrm{ft}^{3}$ slurry consisting of 600 lbs Gely 75 lbs Flocele, 100 lbs Unibeads and 300 lbs of lost circulation material followed by $352 \mathrm{ft}^{3}$ of class "B" cement premixed in a $1: 1$ ratio with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and $3 \% \mathrm{CaCl}_{2}$. Displaced with $134 \mathrm{ft}^{3}$ of water (plug \#24). Pulled pipe to 1475' and waited for cement to set up. Filled the wellbore with 30 barrels of water. Repaired rig drawworks and laid down 75 joints of drill pipe. Installed banjo box, Grant rotating head and flowline in preparation for aerated drilling. : Picked up 50 joints of 5", 19.5 \#/ft, Grade-3 drill pipe. Successfully. tested blowout equipment. Ran in the hole to 1535^{\prime} with 12-1/4" drilling assembly. Blew the wellbore dry in attempt to aerate fluid. Continued running in the hole to 1601'. Cleaned out cement stringer from 1601' to 1842^{\prime} with full returns of non-aerated mud. Cleaned out solid cement from l842' to 2090' with full returns using mud as the circulating medium. Commenced aerating mud with a 35-1 airmud ratio. Cleaned out cement and fill from 2090^{\prime} to 2342^{\prime} with full returns, using aerated mud as the circulating medium. Drilled $12-1 / 4^{\prime \prime}$ hole from 2342^{\prime} to 2400^{\prime} with intermittent returns to 2390^{\prime} and no returns from 2390^{\prime} to 2400^{\prime}. Pulled bit to 1475^{\prime}. (Fluid level at l750'.) Formation takes air at 325 psig surface pressure. Ran in the hole to 1750^{\prime} and broke circulation with aerated mud. Ran in the hole to 2400'. Unable to circulate.

Pulled to 2000' and broke circulation with aerated mud. Ran in the hole to 2400'. Unable to circulate. Pulled out of the hole to rig up for foam drilling. Ran in the hole to 2375'. Unable to circulate with foam. Pulled up hole to 2015' and broke circulation. Drilled $12-1 / 4^{\prime \prime}$ hole from 2400^{\prime} to 2486^{\prime} using foam as circulating medium. Hole was producing water at a rate of 600 barrels per hour. After filling the sump with water, drilled 12-1/4" hole from 2486^{\prime} to 2606^{\prime} by pumping water back into the hole without returns. Pulled four stands of drill pipe to replace rotating head rubber. Encountered 34^{\prime} of fill while running to bottom. Unable to break circulation with air foam below 2100.'. Pulled out of hole and stood back drilling assembly. Ran in the hole to 2575^{\prime}, with open ended drill pipe. Ran maximum reading thermometer to 2575'. Temperature after 14 hours static was $192^{\circ} \mathrm{F}$. Pumped 425 barrels of water through drill pipe. Halliburton mixed and pumped $367 \mathrm{ft}^{3}$ of class "B" cement premixed in a ratio of l:2 with Perlite, 5% Gel and $2 \% \mathrm{CaCl}_{2}$. Displaced with $34 \mathrm{ft}^{3}$ of water. Stuck drill pipe while cementing. Worked free with 200,000 \# pull over weight of drill pipe. Pulled up; hole to 1575^{\prime} and cleared drill pipe with $168 \mathrm{ft}^{3}$ of water. Pulled out of hole and waited for cement to set up. Ran in the hole to top of soft cement at 2089'. Pulled out of hole and picked up bottom hole assembly. Ran in the hole to top of cement at 2027'. Drilled cement stringers with foam and aerated mud from 2027' to 2089'. Drilled hard cement from 2089! to 2165'. The hole produced approximately 1680 barrels of water at approximately

10 barrels/minute while drilling from 2120^{\prime} to 2165'. Pulled out of hole and stood back drilling assembly. Ran in the hole to 1500^{\prime} with open ended drill pipe. Pumped 1680 barrels of water in the hole. Unable to fill the wellbore. Ran in the hole to 2139'. Halliburton mixed and pumped $215 \mathrm{ft}^{3}$ of class "B". cement premixed in a $1: 1$ ratio with Perlite, 4% Gel and $2 \% \mathrm{CaCl}_{2}$. Displaced with $168 \mathrm{ft}^{3}$ of water (plug \#29). Pulled drill pipe to 1475' and pumped $280 \mathrm{ft}^{3}$ of water on top of cement. Pulled up hole and waited for cement to set up. Ran in the hole to top of cement at 2077^{\prime}. Pulled up hole to 2046'. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class " B " cement premixed in a l:l ratio with Perlite, 40% Silica Flour and 3% Gel. Displaced cement: with $100 \mathrm{ft}^{3}$ of water (plug \#30). Pipe commenced sticking: Worked pipe up the hole pulling $150,000 \#$ over weight of pipe. Pumped 500 barrels in the hole. Unable to fill the wellbore. Ran down hole and tagged top of cement at 1885'. Pulled up hole to 1860!. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour and $3 \% \mathrm{Gel}$. Displaced cement with $140 \mathrm{ft}^{3}$ of water (plug \#31). Pulled pipe to 1425^{\prime} and waited for cement to set up. Ran in the hole to top of cement at 1697'. Pulled up hole to 1675'. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and $2 \% \mathrm{CaCl}_{2}$. Displaced with $134 \mathrm{ft}^{3}$ of water (plug \#32). Pulled out of hole and waited for cement to set up. Filled the wellbore with 125 barrels of water. Ran in the hole to top of cement at 1553'. Closed pipe rams and squeezed away $168 \mathrm{ft}^{3}$ of water to the formation at 250 psi surface pressure. Halliburton mixed and pumped through
open ended drill pipe at. 1490', $250 \mathrm{ft}^{3}$ of class " B^{\prime} cement premixed in a l:l ratio with Perlite, 40% Silica Flour and 3% Gel. Displaced with $112 \mathrm{ft}^{3}$ of water (plug \#33). Pulled drill pipe to 560'. Closed pipe rams and squeezed away $14 \mathrm{ft}^{3}$ of mud at 900 psig surface pressure. Released pressure and pulled out of hole. Ran in the hole with 12-1/4" bit to top of cement at 1368'. Shut down operations due to heavy snows and ground blizzard on January 23 , 1978, opened road to the rig and relieved crews. Drilled firm cement from 1368' to 2006', using mud, with full returns. Circulated to clean the wellbore and pulled out of the hole to change the drilling assembly. Installed a jet sub and rigged up for aerated driling. Ran in the hole and broke circulation with aerated mud. Drilled firm cement from 2006' to 2300.' with full returns and no additional fluid entry in the wellbore. Drilled soft cement from 2300^{\prime} to 2393^{\prime} and firm cement from 2393' to 2582'. Cleaned out fill from 2582' to 2606' with good returns using aerated mud. There was no indication of fluid entries. Drilled $12-1 / 4^{\prime \prime}$ hole from 2606^{\prime} to 2616'. Hole commenced making approximately 300 barrels of water per hour. Continued drilling $12-1 / 4^{\prime \prime}$. hole from 2616' to 2804^{\prime} using aerated fluid. The producing rate of water from well continued increasing with depth from 300 barrels/hour at 2680^{\prime} to 750 barrels/hour at 2760'. Due to the lack of freeboard in sump, the hole was drilled from 2760^{\prime} to 2804^{\prime} by pumping water through bit, without air, with no returns. Pulled out of hole and stood back drilling assembly. Ran in the hole to an obstruction at 2780^{\prime} with open ended drill pipe. Pumped 9000 barrels of water into the wellbore
from the sump. Halliburton mixed and pumped, through open ended drill pipe at $2765^{\prime}, 312 \mathrm{ft}^{3}$ of class " B " cement premixed in a 1:l ratio with Perlite, 40% Silica Flour, $0.5 \% \mathrm{CFR}-2$, and $3 \% \mathrm{Gel}$. Displaced cement with $224 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 1472' and waited seven hours for cement to set up. Ran in the hole to top of cement at 2754'. Pulled drill pipe to 2731'. Halliburton mixed and pumped $312 \mathrm{ft}^{3}$ of class " B " cement premixed in a l:l ratio with Perlite, 40% Silica Flour, and 3% Gel. Displaced cement with 223 ft t^{3} of water (plug \#34). Pulled drill pipe to 1510^{\prime} and waited for cement to set up. Ran in the hole to top of cement at 2543'. Pulled out of hole and made up drilling assembly. Ran back in the hole to top of cement at 2543: and broke circulation with aerated mud. Cleaned out cement from 2543' to 2804'. Had a water entry at 2650'. Drilled 12-1/4" hole with aerated mud from 2804' to $3304^{\prime \prime}$. Pulled out of hole and stood back drilling assembly. Ran in the hole with open ended drill pipe to top of fill at 3201'. Ran drift surveys and maximum reading thermometers as follows: 3192^{\prime} : $5^{\circ} 15^{\prime}, 282^{\circ} \mathrm{F}$ at 5 hours static and $288^{\circ} \mathrm{F}$ at 6 hours static. Pulled out of the hole. Made up 12-1/4" bit and relocated jet subs. Ran in the hole and cleaned out fill from 3201' to 3304'. Drilled 12-1/4" hole from 3304' to 3448'. Pulled out of the hole and prepared to run Electric Logs. . Pumped sump water to cool the wellbore while rigging up Schlumberger equipment. Ran DIL-8 from 3443^{\prime} to 1552^{\prime}. Ran Neutron-Gamma Ray with Caliper from 3443' to $1552^{\prime} . \quad$ Ran Temperature \log from 3443^{\prime} to the surface. Rigged down Schlumberger equipment. Ran in the hole with open ended drill pipe to 3259 P Pumped 600 barrels of water down
the wellbore. Ran down hole to 3440^{\prime}. Halliburton mixed and pumped $187 \mathrm{ft}^{3}$ of class "B" cement premixed in a ratio of $1: 1$ with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and 0.5% CFR-2. Displaced cement with $258 \mathrm{ft}^{3}$ of water while working pipe up and. down. Pipe commenced sticking. Stopped displacing and worked pipe free. Pulled out of the hole to wait for cement to set up. Picked up drilling assembly and ran in the hole to top of cement at 3165'. Unable to break circulation. Pulled out of the hole and installed jet subs in the drill string. Drilled cement from 3165^{\prime} to 3360° while circulating with aerated fluid. Continued circulating with aerated system to clean and condition the wellbore for running cașing. Rigged up equipment and ran 51 joints (2014.55') of 9-5/8", 40\#, K-55 buttress casing. Hung casing inside of 13-3/8" casing with shoe at 3357', baffle collar at 3278', Lyons ECP packer at 2014', HOWCO F.O. cementer at 2004' and Burns $13-3 / 8^{\prime \prime} \times 9-5 / 8^{\prime \prime}$ single slip liner hanger at 1345^{\prime}. Pulled out of the hole and laid down liner setting tools. Ran in the hole with HOWCO F.O. running tools and stabbed into the baffle collar. Pumped 300 barrels of water to cool the wellbore and prepare for cementing first stage. Halliburton cemented the first stage, through drill pipe stabbed into the baffle collar at 3278. as follows: preceded cement with $336 \mathrm{ft}^{3}$ of water and 112 ft^{3} of HY-VIS Gel pill. Mixed and pumped $1250 \mathrm{f} \mathrm{t}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}, 0.5 \% \mathrm{CFR}-2$ and $0.4 \% \mathrm{HR}-7$, followed by $326 \mathrm{ft}^{3}$ of class " B " cement premixed with 40% Silica Flour, $0.75 \% \mathrm{CFR}-2$ and 0.2% HR-7. Displaced with $294 \mathrm{ft}^{3}$ of water. Seated latch-in plug with 1500 psig surface pressure. Pulled the F.O. isolation packer
up hole to 470^{\prime}. Attempted to inflate Lyons packer. Isolation packer failed. Pulled out of the hole and replaced cups on isolation packer. Ran in the hole and worked packer into the liner. Pressured to 1600 psig to inflate Lyons packer. Experienced a sudden loss of pressure. Pulled out of the hole and replaced damaged packer. cups. Ran back in the hole and attempted unsuccessfully to pressure Lyons packer. Pulled out of the hole and found by-pass valve stuck in open position. Repaired valve and ran back in the hole. Packer failed again. Pulled out of the hole and found cups damaged.. Ran in the hole and set 9-5/8" RTTS at 1918'. Inflated Lyons packer with 1500 psig. Released pressure and opened F.O. cementer. Pulled out of the hole and laid down RTTS packer. Ran in the hole and set HOWCO EZSV Retainer at 1805'. Pumped 500 barrels of sump water through F.O. ports to cool the wellbore. Halliburton mixed and pumped, through F.O. ports at 2004', $750 \mathrm{ft}^{3}$ of class "B" cement pre-. mixed in a $1: 1$ ratio with Perlite, 40% Silica Flour, 3% Gel and 0.5\% CFR-2. Displaced with $185 \mathrm{ft}^{3}$ of water. Pressure built up during last half of job. Maximum pump pressure was 800 psig. pulled out of the hole and changed out drill collars while waiting for cement to set up. Ran in the hole with 12-1/4" bit and cleaned out cement from 1323' to 1345'. Pulled out of the hole and stood back $12^{\prime}-1 / 4^{\prime \prime}$ drilling assembly. Ran in the hole with 8-3/4" drilling ässembly and drilled cement stringers from 1345' to 1805'. Successfully tested liner lap to 580 psig surface pressure (ll62 psig at the lap) for 25 minutes. The test was witnessed by a U.S.G.S. representative. Ran in the hole with $8-3 / 4$ " assembly and drilled out EZSV Retainer. Continued cleaning out cement
from 1810^{\prime} to 2007^{\prime}. Made wiper run to 3065^{\prime} and pulled out of the hole. Rigged up Schlumberger equipment and ran temperature \log from 3052' to surface. Maximum temperature at 3052' was $322^{\circ} \mathrm{F}$. Ran in the hole with $8-3 / 4^{\prime \prime}$ bit and cleaned out cement from 3065' to 3278'. Drilled baffle collar at 3278' and cement to 3312.' Pulled out of the hole. Rigged up Schlumberger equipment and ran "Cement Bond Log" from 3310^{\prime} to 1345^{\prime} with the following results: poor bond from 3310^{\prime} to 3130^{\prime}; poor bond from 3130^{\prime} to 2990'; fair bond from 2990' to 2700'; good bond from 2700^{\prime} to 2014!; and excellent bond from 2014: to 1345:. Rigged down Schlumberger equipment and ran in the hole to 3312' with 8-3/4" drilling assembly. Cleaned out cement to $3448^{\prime} \therefore$ The maximum recorded deviation in the $12-1 / 4$ " hole was 5 degrees and 30 minutes at a depth of 2776^{\prime} with a temperature of $300^{\circ} \mathrm{F}$.

8-3/4" HOLE SECTION 3448^{\prime} to
Drilled 8-3/4" hole from 3448^{\prime} to 3495^{\prime} with full returns, using mud as the circulating medium. Encountered a 4^{\prime} void at $3495^{\prime \prime}$ and lost full returns. Drilled. 8-3/4" hole from 3499' to 3629' while pumping water through the bit, without returns to the surface. Unable to register surface pressure with a pump rate of 960 gallons per minute. Pulled out of the hole and placed jet subs 500^{\prime} and 1000' above the bit. Ran in the hole to 3629^{\prime} and broke circulation with aerated mud. Drilled 8-3/4" hole from 3629' to 3800' with aerated water with returns to the surface. Drilled from 3800^{\prime} to 3975^{\prime} by injecting water at a rate of 720 gallons per minute without returns to the surface. Broke circulation at 3960^{\prime} and clean-
ed fill from 3960^{\prime} to 3975^{\prime} after tripping for new bit. Drilled with aerated water from 3975' to 4135'. Drilled 8-3/4" hole from 4135' to 4325' without returns while injecting sump water through bit at a rate of 880 gallons per minute (gpm). Broke circulation with aerated water and continued drilling 8-3/4" hole from 4325^{\prime} to 4415^{\prime}. Cleaned out fill from 4372^{\prime} to 4415^{\prime} after tripping for new bit. Continued drilling. 8-3/4" hole from 4415^{\prime} to 4550^{\prime} using aerated water as the circulating medium. Due to lack of sump capacity, shut off air and continued drilling 8-3/4" hole from 4550^{\prime} to 47899^{\prime} by injecting sump water through the bit without returns. Broke circulation with aerated water and cleaned out fill from 4716^{\prime} to 4789^{\prime} after tripping for bit. Drilled 8-3/4" hole from 4789' to 4944' with aerated water; from 4944' to 5018' while pumping sump water through the bit without returns; from 5018' to 5023' using aerated water; from 5023' to 5140^{\prime} while pumping produced water through the bit without returns and from 5140' to 5216' with aerated water. Drilled 8-3/4". hole from 5216^{\prime} to 5385' while pumping water through the bit without returns; from 5385' to 5414' with aerated water; from 5414' to 5486' pumping sump water through the bit without returns and from 5486' to 5619' with aerated water. Spline on compound shaft parted while pulling out of the hole. Continued pulling out of the hole with one engine. Changed bit and ran in the hole to 5619' with no fill. Drilled 8-3/4" hole to 5710' with aerated water . Sump full. Unable to drill while injecting because of inability to use \#l pump due to parted shaft in compound.

Pulled bit up hole to 3205^{\prime} and injected sump water while repairing compound. After repairing compound, injected with both pumps for four hours. Ran to bottom without encountering fill and broke circulation with aerated water. Drilled 8-3/4." hole from 5710' to 5815' with aerated water; from 5815' to 5980' by pumping sump water through the bit without returns; from 5980' to 6120' with aerated water and from 6120' to 6168' while pumping sump water through the bit without returns. Tripped to change out bit and reposition jet subs. Ran in the hole to 6158! and broke circulation. Drilled 8-3/4" hole from. 6158' to 6290' with aerated water; from 6290' to 6451' while injecting sump water through bit without returns; from 6451' to 6555' with aerated water and from 6555'. to 6671' while pumping sump water through bit without returns. Drilled with aerated water from 6671^{\prime} to $6727^{\prime \prime}$ and drilled from 6727^{\prime} to 683^{\prime} while pumping sump water through the bit without returns. Tripped for new bit and continued drịling 8-3/4" hole from 6835' to 6875' with aerated water. Pump suction collapsed:while attempting to pump sump water. Pulled bit to 3300^{\prime} and replaced suction on pumps. Ran in the hole. Pumped sump water through bit without returns while driliing 8-3/4" hole from 6875' to 6947'. Drilled from 6947' to 7003' with aerated water. Rigged and ran temperature survey at 6970\%. Temperature = $326^{\circ} \mathrm{F}$. Drilled $8-3 / 4^{\prime \prime}$ hole from 7003' to 709^{\prime} while pumping water through the bit without returns; from 7069' to 7167' wịth aerated water; from 7167^{\prime} to 7273^{\prime} while pumping sump water through the bit without returns and from 7273^{\prime} to 7323^{\prime} with aerated water.

Pulled out of the hole and laid down two joints of split drill pipe. Ran in the hole to 7323' without encountering fill. Drilled $8-.3 / 4^{\prime \prime}$ hole from 7323' to 7386' while pumping sump water through bit without returns and from 7386' to 7512' with aerated water. Commenced pumping sump water through bit. Pressure built to 1700 psig as bit plugged, then decreased to 300 psig. Hole commenced circulating with aerated water. Worked stuck pipe free and pulled out of the hole checking for washout in drill pipe. Moved jet subs up the hole to 1760° and 2260^{\prime} respectively and ran in the hole to top of fill at 7312'. Washed fill from 7312' to 7354' with aerated water. Unable to circulate cuttings out of the hole. Pulled out of the hole to check for washed out drill pipe. Laid down one joint of split pipe. Ran in the hole to 3325^{\prime} with a slick bottom hole assembly. Jets were placed at a distance of 4000' and 5000' from the bit. Pumped sump water into the hole and ran in the hole to fill at 7316^{\prime}. Broke circulation with aerated water and cleaned out fill from 7316' to 7485'. Hole was clean from 7485' to 7512!. Drilled 8-3/4" hole from 7512' to 7530' with aerated water. Pulled the bit up hole to 3345^{\prime}. Hole was tight from 7485' to 7316'. Pumped approximately 12,000 barrels of sump water into the hole. Pulled out of the hole to check bit. Ran in the hole to an obstruction at 7316'. Washed and reamed from 7316' to 7327^{\prime} with aerated fresh water. Hole was clean from 7327' to 7530'. Continued drilling 8-3/4" hole with aerated fresh water from 7530^{\prime} to 7542'. Pipe commenced sticking while running survey at 7482'. Cut survey wire, dropping instrument and worked
pipe, from 7482' to 7400^{\prime} before pulling free. Pulled out of the hole. No tight hole indicated from 7327' to 7316'. Pumped sump water down hole to cool wellbore for casing inspection log. Rigged and ran Dia-Log 13-3/8". Casing Profile Caliper Log from 1345' to surface. ${ }^{\prime}$ Log indicated 74% to 90% of wall thickness remaining. Ran Dia-Log 9-5/8" Casing Profile Caliper Log. Tool failed. Pulled out of the hole and pumped water to cool the wellbore. Re-ran 9-5/8" Casing Caliper Log from 3325' to 1345'. Log indicates less than 50% of original wall thickness from 1814' to 1815^{\prime} and a loss of wall thickness varying from 5% to 21% for remainder of 9-5/8" casing. Rigged down Dia-Log equipment. Ran in the hole to 3325^{\prime} with $8-3 / 4^{\prime \prime}$ drilling assembly.. Pumped remaining sump water into the hole. Ran in the hole to 7414 '. Washed and reamed from 7414' to 7542' and drilled from 7542' to 7615' with aerated water. Tripped for bit. Ran in the hole to 3320^{\prime} and injected water from sump into the hole. Ran in the hole to 7495' and broke circulation with aerated water. Washed and reamed from 7495' to 7615' and drilled 8-3/4' hole from 7615' to 7700'. Pulled bit to 6250' and pumped approximately 12,000 barrels of sump water into the hole. Ran in the hole to 7625' and broke circulation with aerated water. Washed and reamed to 7700' and drilled 8-3/4" hole from 7700' to 7735'. Pipe stuck while drilling. Worked pipe free after two hours. Pulled out of the hole and stood back bottom hole assembly. Ran in the hole to 3312' with open ended drill pipe. Injected air through drill pipe at 3312^{\prime} unloading water for 30 minutes while rigging up "Go International"
logging equipment. Ran "Go Internaṭional". temperature survey to top of obstruction at 7320'. The recorded temperature from 3440^{\prime} to 6125^{\prime} started at $299^{\circ} \mathrm{F}$ and increased gradually to $339^{\circ} \mathrm{F}$ at 7320'. Ran Spinner Survey. Fluid level was at 1310'. Tool failed. Pulled out of the hole and waited 12 hours for temperature build-up. Re-ran temperature survey. Survey indicated $340^{\circ} \mathrm{F}$ at 2500^{\prime} and 298° to $300^{\circ} \mathrm{F}$ from 3500^{\prime} to 6000^{\prime}. Temperature gradually increased from $300^{\circ} \mathrm{F}$ at 6000^{\prime} to $344^{\circ} \mathrm{F}$ at 7300^{\prime}. Waited 9 additional hours for temperature build-up. Ran "Go International" temperature log \#3 to 7334^{\prime} and recorded temperatures as follows: $200^{\prime}=120^{\circ} \mathrm{F}, 1000^{\prime}=218^{\circ} \mathrm{F}, 2500^{\prime}=332^{\circ} \mathrm{F}, 3000^{\prime}=$ $320^{\circ} \mathrm{F}, 4000^{\prime}=295^{\circ} \mathrm{F}, 5000^{\prime}=295^{\circ} \mathrm{F}, 6000^{\prime}=297^{\circ} \mathrm{F}$ and $7334^{\prime}=$ $341^{\circ} \mathrm{F}$. Ran "Go International" Spinner Survey. Survey indicated no fluid movement at 3450^{\prime}. Fluid was moving down the hole at a rate of 55 gallons per minute at 3515^{\prime} and at a rate of 73 gallons per minute at 3900^{\prime}. Tool failed. Pumped water thru kill line at a rate of 522 gallons per minute with no response from Spinner. Ran temperature $\log \# 4$ with the following results: $3300^{\prime}=207^{\circ} \mathrm{F}$, $6000^{\circ}=242^{\circ} \mathrm{F}, 6200^{\prime}=327^{\circ} \mathrm{F}$, and $7320^{\prime}=353^{\circ} \mathrm{F}$. Pulled out of the hole and rigged down "Go International" logging equipment. Pulled drill pipe out of the hole and made up 8-3/4" drilling assembly. Ran in the hole to 7375' and broke circulation with aerated water. Washed and rotated through tight hole from 7375' to 7425'. Ran in the hole to 7641'. Broke circulation with aerated water and washed and reamed from 7641' to 7705'. Circulated to clean the wellbore and pulled up the hole to 7200'. Pumped
water from sump into the wellbore. Made wiper run to 7700'. Pulled out of the hole and rigged up Schlumberger equipment. Ran DIL-SP Log from 7682' to 3357'. Maximum temperature reading was $331^{\circ} \mathrm{F}$. Ran Gamma Ray-Sonic Log from 7681^{\prime} to 3357^{\prime} and Gamma Ray-Neutron Density with Caliper from 7678' to 3357'. Schlumberger ran temperature log from 7550' to surface with a maximum temperature of $337^{\circ} \mathrm{F}$ at 7550'. Ran Dipmeter from 6000' to 3357'. Rigged down Schlumberger and ran in the hole with 8-3/4" bit to obstruction and tight hole at 7663'. Pulled out of the hole and prepared to run 7" combination blank and slotted liner. Ran 106 joints (4441.77') of $7^{\prime \prime}, 26 \#, \mathrm{~K}-55, \mathrm{LT} \& \mathrm{C}$ combination blank and slotted (20-2-6-60) casing liner. Hung liner with Halliburton cement guide shoe at 7605', Baker baffle collar at 4049', Lyons ECP packer at 3995', cementing port collar at 3992', and top of Burns 9-5/8". x 7" liner hanger at 3l63'. Slotted joints were spaced at various intervals from 7560' to 4200'. Unable to release setting tools after setting liner hanger. Also, liner would not move up hole. With Lyons packer set and cementing ports open, pumped cool water through drill pipe in an attempt to shrink setting nut. Continued working right-hand torque into setting tools in an attempt to release from liner hanger. Rigged up "Go International" and fired three separate string shots in liner hanger in an attempt to jar tools free. All attempts were unsuccessful. Fired string shot and backed off at top of setting tools. Pulled out of the hole and ran in the hole with bumper sub and six $7^{\prime \prime}$ drill collars. Screwed into top of.setting tools.

Pumped cold water through hanger while bumping down and torquing to the right. Unable to move the setting nut. After ten hours, slips on casing hanger released. Pulled casing up the hole to replace Burns liner hanger. Burns liner hanger was distorted (necked down below slip area, slip grooves bulged and top of tie-back receptacle rolled inward): Rigged up to lay down 7" liner. Laid down Burns liner hanger, Lyons ECP packer (rubber element missing) and 106 joints of $7^{\prime \prime}, 26 \#$, LT\&C blank and slotted casing. Damaged four joints of casing while attempting to break connections. Rigged down casing tools. Made up 8-3/4" bit on three $7^{\prime \prime}$ drill collars. Ran in hole to obstruction at 7653^{\prime}. Pulled bit to 3345^{\prime} and broke circulation with aerated water. Circulated for four hours and let well die. Ran in the hole to 5480^{\prime} and regained circulation. Circulated for two hours to cool the wellbore, then let the well, die. Ran in the hole to 7653^{\prime} with no additional fill. Pulled out of the hole and rigged up to rerun $7^{\prime \prime}$ liner. Ran 72 joints of 7 ", 26\#, K-55, LT\&C blank casing and 36 joints of 7 ", 26\#, K-55, LT\&C perforated casing (4507'). Hung liner with Halliburton cement guide shoe at 7615', Baker baffle plate at 4053', Lynes ECP packer at 399°, cementing collax at 3997^{\prime} and Midway liner hanger at 3084^{\prime}. Halliburton mixed and pumped $560 \mathrm{ft}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$ and 138. ft^{3} of gel $\mathrm{H}_{2} \mathrm{O}$ followed by $187 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:1 ratio with Perlite, 40% Silica Flour, 3% Gel, $0.5 \% \mathrm{CFR}-2$ and $0.4 \% \mathrm{HR}-7$. Followed this with $81 \mathrm{ft}^{3}$ of class "B" cement with 40% Silica Flour. Displaced with $49 \mathrm{ft}^{3} \mathrm{H}_{2} \mathrm{O}$. Closed cementing port with 800 psig surface pressure. Pulled out of the hole and laid down liner setting and cementing tools. Ran in the
hole to 2850^{\prime} with open ended drill pipe. Laid down $5^{\prime \prime}$ drill pipe, 15 - 7" drill collars and 6-8" drill collars. Ran in the hole with 8-3/4" bit to top of $7^{\prime \prime}$ liner at 3084'. Attempted unsuccessfully to fill the wellbore with water. Pulled out of the hole and picked up Halliburton $9-5 / 8 "$ RTTS packer. Ran in the hole and set packer at 3034'. Filled annulus with water. Halliburton mixed and pumped through packer, $560 \mathrm{ft}^{3}$ of water followed by $187 \mathrm{ft}^{3}$ class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour, 3% Gel and 0.5% CFR-2 followed by $81 \mathrm{ft}^{3}$ class "B" cement with 40% Silica Flour. Displaced cement with $330 \mathrm{ft}^{3}$ water. No pressure build-up. Pulled out of the hole and ran back in with packer and unsuccessfully tried to set it. Pulled out of hole and found rubber packing elements missing. Ran O.E.D.P. to 2l00'. and pumped water to cool hole. Ran and set RTTS packer at 3034'. Filled annulus with water and then pumped $560 \mathrm{ft}^{3}$ water through the packer at a flow rate of 8 barrels per minute and with a surface pressure of 800 psig. Mixed and pumped $244 \mathrm{ft}^{3}$ "B" cement premixed with 40\% Silica Flour and 0.5\% CFR-2. The pressure increased to 850 psig . The packer started leaking at that pressure. The packer was released and pulled out of the hole. The packer rubbers were damaged and had to be changed. Ran and set packer at 2921!. The annulus was filled with water. Halliburton mixed and pumped. $560 \mathrm{ft}^{3}$ water through the drill pipe. The water was followed by $1000 \mathrm{ft}^{3}$ " B^{\prime} cement premixed in a l:l ratio with Perlite, 40% Silica Flour, 3% Gel, and 0.5% CFR-2. It was displaced with $336 . \mathrm{ft}^{3}$ water. Pressure built to 900 psig and then broke back
to 400 psig. Released the packer and pulled out of the hole. Ran in the hole with $6-1 / 8^{\prime \prime}$ bit to an obstruction in the $7^{\prime \prime}$ casing at 3137^{\prime}. Started circulating with water and cleaned out cement and rubber from 3137^{\prime} to 3140^{\prime} with full circulation. Pulled out of hole. Ran and attempted to set a 7" RTTS packer at 3l00'. The packer failed and was pulled out of the hole. Ran and set a 9-5/8" RTTS packer at 3010'. Pressure tested liner lap to a surface pressure of 400 psig. The hole went on vacuum. The packer was pulled and reset to 2915', and the annulus was filled with water. Halliburton mixed and pumped $280 \mathrm{ft}^{3}$ water followed by $675 \mathrm{ft}^{3}$ "B" cement premixed in a l:l ratio with Perlite, 3\% Gel, 40\% Silica Flour, and 0.5% CFR-2. That was followed by $200 \mathrm{ft}^{3}$ of the same mixture plus $2 \% \mathrm{CaCl}_{2}$. It was displaced: with $319 \mathrm{ft}^{3}$ water. Unseated packer and pulled out of the hole. Cleaned out cement with $8-3 / 4^{\prime \prime}$ bit from 2427^{\prime} to $3084^{\prime \prime}$. Pulled out of hole and ran in with 6-1/8" bit to 3243'. Pushed packing rubber which was obstructing the hole to 3990^{\prime}. Pulled out of hole and ran and set a 9-5/8" RTTS packer at 3040'. Tested lap to a surface pressure of 300 psig. Hole went on vacuum. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ gel-water mixture followed by $750 \mathrm{ft}^{3}$ "B" cement, premixed in a $1: 1$ ratio with Perlite, 40% Silica Flour, and 3% Gel: Pump pressure built to 500 psig and then broke to 100 psig . The mixture was displaced with $360 \mathrm{ft}^{3}$ water. Ran in hole with $8-3 / 4^{\prime \prime}$ bit to top of liner at $3084^{\prime \prime}$. No cement was found on the top of the liner. Pulled out of hole and ran in with open ended drill pipe to 3080^{\prime}. Halliburton mixed and pumped $56 \mathrm{ft}^{3}$ high viscosity gel-water mixture followed
by $167 \mathrm{ft}^{3}$ "B" cement premixed in a l:1 ratio with Perlite, 40\% Silica Flour, $3 \% \mathrm{Gel}$ and $2 \% \mathrm{CaCl}_{2}$. That was displaced with 263 ft^{3} water. Pulled out of hole and ran in to top of cement at 2920^{\prime} with an 8-3/4" bit. Drilled out cement from 2920^{\prime} to liner top at 3084'. No fluid was lost. Pulled out of hole and ran in with a $6-1 / 8^{\prime \prime}$ bit to 3084^{\prime}. Attempted to circulate, but the bit plugged. Pulled out of hole and cleaned bit. Ran in hole and started circulating. Drilled cement from 3084' to 3088'. Ran in hole to 3990'. Drilled plug in port collar from 3990' to 4001 ' with full returns. Ran in hole to baffle at 4050^{\prime}. Drilled out baffle and lost returns. Pulled out of hole and ran in with a $6-1 / 8^{\prime \prime}$ bit to 7610^{\prime} pushing junk from baffle and plugs ahead. Pulled out of hole. Removed the blow out preventers and installed a casing hanger spool, spacer spool, and a WKM master valve. Reinstalled the blow out preventers. Ran 75 joints (3095.15') of 7", 26\#, K-55, LT\&C casing into the tie-back receptacle at 3084°. Picked up the blow out preventers and installed the casing head slips. The 7" liner was landed with stab-in mandrel, 14 " inside the tie-back receptacle, leaving room for $38^{\prime \prime}$ of free travel to the bottom of the receptacle. Reinstalled the blow out preventers and ran in hole with a 6-1/8" bit to 4710!. Pulled out of hole laying down drill pipe and tools. closed the master valve and removed the blow out equipment. Pumped water from sump into well followed by: 400 barrels of fresh water. Applied 400 psig air surface pressure to well. Closed well in and released the rig.

date	DEPTH	PROGRESS HISTORY
9/10/77		Rigged up Dale Martin Rathole Services rig and drilled a $36^{\prime \prime}$
		diameter hole to a depth of 30^{\prime} below ground level. A $30^{\prime \prime}$
		conductor pipe was run into the hole to a depth of 30^{\prime} and
		cemented with 5-1/2 cubic yards of Ready-Mix cement.
11/28/7		Moved in and rigged up Loffland Brothers Rig \#184 on
		11/28/77. Rig commenced dayrate operations at 0800 hours,
		11/28/77. Installed the mouse hole and rat hole and picked
		up the kelly and $26^{\prime \prime}$ ' hole opener.
11/29/77	157'	spudded 26 " hole at 0400 hours. Center punched 26 " hole
		from 50' to 55'. Made up 17-1/2" drilling assembly. Drill-
		ed 17-1/2'* hole from 55' to 157'
11/30/77	255 ${ }^{\prime}$	Drilled 17-1/2' hole from 157' to 255'. R.I.H. with $26^{\prime \prime}$
		pilot hole opener and opened $17-1 / 2^{\prime \prime}$ hole to $26^{\prime \prime}$ hole from
		55' to 85'.
2/01/77	255.	Opened 17-1/2"' hole to $26^{\prime \prime}$ hole from 8^{\prime} ' to 255 ${ }^{\prime}$
12/02/7p	. 25.1 .	Rigged and ran 6 joints, 20 ", 94\#, $\mathrm{H}-40$, buttress casing
		(252') landed at 251'. Halliburton mixed and pumped
		through the open ended 20 " casing, 649 cu. ft. class "B"
		cement, with $2 \% \mathrm{CaCl}_{2}$, displaced with 464 cu. ft. water.
		Pumped 175 cu. ft. excess to sump. Waited on cement for

${ }^{1}$	1452'	Regained circulation. Drilled from 1388' to 1452'. Twisted off and left a bit, reamer, drill collar, shock sub, and two 8" drill collars in the hole. The pin had twisted off of the top stabilizer. R.I.H. with overshot and caught fish.
12/16/77	$1494{ }^{\prime}$	Recovered fish and changed tools. R.I.H. and drilled 17-1/2" hole from 1452' to 1494'. Lost circulation and P.O.H. R.I.H. with O.E.D.P. to 1457'. Mixed and pumped 198 ft ${ }^{3}$ of class "B" cement, $1: 1$ Perlite, 40% Silica Flour, 3% Gel, 0.5% CFR-2, 0.3% HR-7. That was displaced with $100 \mathrm{ft}^{3}$ of water. Cement in place at 2400 hours.
12/17/77	$1494{ }^{\prime}$	Pulled out to shoe of the $20^{\prime \prime}$ casing and waited for cement to set up. Attempted unsuccessfully to fill the hole with 200 bbls of mud. W.O.C. and mixed mud. Pumped 100 bbls of mud and filled the hole. Found the top of the cement at 1445'. Circulated with no mud loss. P.O.H. to 1353^{\prime} and closed rams. Pressurized the hole to 100 psig at the surface and the hole took fluid. Mixed and pumped through O.E.D.P. at 1353', $200 \mathrm{ft}^{3}$ class "B" l:1 Perlite cement with 40% Silica Flour, 3% Gel, 0.5% CFR-2 and $0.3 \% \mathrm{HR}-7$. The cement was displaced with $100 \mathrm{ft}^{3}$ water. P.O.H. and W.O.C. for 3 hours. Filled the hole with 75 bbls mud. The rams were closed and the well was pressurized to 100 psig at the surface with no fluid loss. R.I.H. with $17-1 / 2^{\prime \prime}$ drilling assembly and located cement at 1335'.
12/18/77	$1557{ }^{\prime}$	Drilled cement from 1335' to 1475'. Drilled :17-1/2" hole from 1494' to 1557' and circulated. P.O.H. and laid down tools.
12/19/77	$1557{ }^{\prime}$	Rigged up and ran 40 joints of 13-3/8", 54.5\#. K-55 buttress casing. The shoe was located at 1552' and the baffle at 1513'. Halliburton mixed and pumped $2071 \mathrm{ft}^{3}$ of class "B" I:l Perlite cement with 40% Silica Flour, 3% Gel, 0.5% CFR-2, $0.3 \% \mathrm{HR}-7$. That was followed by $184 \mathrm{ft}^{3}$ class "B" cement with 40% Silica Flour and 0.5% CFR-2. Fluid flow to the surface was maintained throughout the job. Bumped plug with 600 psig. W.O.C. and rigged down the blowout equipment.
12/20/77	1557 !	The blowout preventers were removed and the 201 casing cut off. A 13-3/8" casing head was welded on and tested to 1000 psig. No pressure was lost. A spacer spool, choke-kill spool and 12" - 900 double Shaffer and Hydril were installed.
12/21/77	1557°	Completed blowout preventer installation. The blowout preventers were tested to 1500 psig. The lines had to be thawed out repeatedly while conducting

1.2/21/77		Continued
		tests. The Kelly cock would not hold full pressure. It would bleed from 1500 psig to 1200 psig in five minutes. The test was witnessed and approved by a U.S.G.S. representative.
12/22/77	$1576{ }^{\prime}$	R.I.H. with a 12-1/4" bit to top of cement at 1497'. Drilled out cement to 1557'. Drilled 12-1/4" hole to 1559^{\prime} and lost 350 bbls mud. Mixed mud and lost circulation material and regained circulation. P.O.H. and found bit locked. Changed bottom hole assembly and R.I.H. Drilled 12-1/4" hole from 1559' to 1576^{\prime}.
12/23/77	1806^{\prime}	Drilled 12-1/4" hole from 1576^{\prime} to 1806^{\prime}.
12/24/77	$1970{ }^{\prime}$	Drilled 12-1/4" hole from 1806' to 1836' and lost total returns. Mixed mud and lost circulation material and regained circulation. Drilled 12-1/4" hole from 1836' to 1850^{\prime} and lost circulation. Pulled bit to 1550' and mixed mud. Regained circulation after a mud loss of 150 bbls. Drilled $12-1 / 4^{\prime \prime}$ hole from 1850' to 1970^{\prime} with a loss of 50 bbls of mud.
'2/25/77	2218'	Continued drilling $12-1 / 4$ " hole to 2123 ' prior to losing full returns. Pulled bit to 1450'. Mixed mud and lost circulation material in order to restore mud volume in tanks. The additional mud loss was an estimated 475 barrels. Gained full returns and continued drilling to 2175'. Lost returns at 2175'. Estimated additional loss was $450 \mathrm{bbls}$. Pulled bit to "1390'. Mixed mud and lost circulation materials. Ran back in the hole to 2175' and continued drilling to 2218^{\prime} with full returns. Lost returns totaling approximately 450 bbls. Pulled bit up hole to 1500^{\prime}. Mixed mud and lost. circulation materials.
12/26/77	2244^{\prime}	Continued drilling to 2238^{\prime} without returns. Lost an estimated 400 additional barrels of mud. Pulled bit to 1475'. Mixed mud and lost circulation materials. Ran back in the hole to top of fill at 2225'. Cleaned out fill to 2238'. Drilled 12-1/4" hole from 2238'. to 2244' without returns, losing an additional 400 bbls of mud. P.O.H. and stood back 12-1/4" drilling assembly. R.I.H. to 2202' with O.E.D.P. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed in a $1: 1$ ratio with Perlite, 40% Silica Flour and 3\% Gel. Displaced cement with 33 ft 3 of water. Pulled pipe up the hole to 1450^{\prime} and W.O.C. to set up.

12/28/77 2244' P.O.H. and cleaned out the bit and bottom drill collar. Ran back in the hole and continued cleaning out cement stringers from 1636' to 1990'. Drilled hard cement from 1990^{\prime} to 2214^{\prime} with only partial returns from 2184' to 2214'. Lost all returns at 2214'. P.O.H. Removed drilling assembly and R.I.H. to 2172' with O.E.D.P. Halliburton mixed and pumped $396 \mathrm{ft}^{3}$ of class."B" cement mixed in a $2: 1$ ratio with Perlite, 40% Silica Flour and 3% Gel. Displaced cement with $45 \mathrm{ft}^{3}$ of water. Pulled out of the hole and waited for cement to set up. Filled the hole with mud. Closed the pipe rams and pressured to 200 psig surface pressure. Continued W.O.C. an additional three hours.
R.I.H. and cleaned out cement stringers from 1760' to 1940'. Drilled firm cement from 1940' to 2244'. Lost circulation at 2244'. Continued drilling l21/4" hole from 2244^{\prime} to 2250^{\prime} without returns. Lost a total of approximately 450 bbls of mud. P.O.H. and stood back bottom hole assembly. R.I.H. to 2205' with O.E.D.P. Halliburton mixed and pumped $142 \mathrm{ft}^{3}$ of Thix-Set cement premixed with 13% Gilsonite and $1 / 2 \#$ of Flocele/sack. Displaced cement with $196 \mathrm{ft}^{3}$ of water. P.O.H. and W.O.C. to set up.

12/30/77 2250' Pumped 450 bbls of fluid in the hole over a seven hour period with no indications of hole filling. Ran back in the hole with O.E.D.P. to top of cement at 2222'. P.O.H. Fluid level was at approximately 1850'. R.I.H. to 2220^{\prime} with $12-1 / 4^{\prime \prime}$ bit. Obtained a bottom hole temperature survey of $175^{\circ} \mathrm{F}$. Drilled hard cement from 2222' to 2230'. Mixed mud and lost circulation material. R.I.H. to 1829^{\prime} with O.E.D.P. Halliburton mixed and pumped $142 \mathrm{ft}^{3}$ of Thix-Set cement premixed with 13% gilsonite and 0.5% Flocele. Displaced cement with $140 \mathrm{ft}^{3}$ of water. P.O.H. and pumped 200 bbls of mud over the next four hour period while waiting on cement. No returns to the surface. R.I.H. to 2230^{\prime} with no indication of top of cement plug.

12/31/77 2250' P.O.H. Fluid level remained at approximately 1700^{\prime}. R.I.H. with O.E.D.P. to 1860'. Halliburton mixed and pumped $240 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:1 ratio with Perlite, 40% Silica Flour and 3\% Gel. Displaced cement with $151 \mathrm{ft}^{3}$ of water. P.O.H. and waited for cement to set up. R.I.H. to 2230' with no indication of top of cement plug. P.O.H. Found fluid level to be at approximately 1875'. R.I.H. with O.E.D.P. to 2209'. Mixed and pumped a 100 barrel lost circulation material plug. Halliburton mixed and pumped $120 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 3% Gel, through O.E.D.P. at 2209'. Displaced cement with 196 ft3 of water. P.O.H. and.W.O.C. for ten hours. Fluid level in wellbore was at approximately 1500 .. R.I.H. to 2230' without encountering obstructions. P.O.H. Dry drill pipe indicated no fluid level.

1/01/78 2250' R.I.H. to 2169^{\prime} with O.E.D.P. Pumped 45 bbls of water followed by $193 \mathrm{ft}^{3}$ of class "B" cement premixed in a $2: 1$ ratio with Perlite, 40% Silica Flour and 3\% Gel. Displaced cement with 196 ft ${ }^{3}$ of water. P.O.H. and waited for cement to set up. Ran back in the hole to 2230' with no obstructions. Pulled up hole to shoe of $13-3 / 8^{\prime \prime}$ casing. No fluid level was indicated on pipe. Ran back in the hole to 2220'. Pumped a treatment of 20 bbls of fresh water followed by 20 bbls of $3 \% \mathrm{CaCl}_{2}$ with 400 \# of sand, followed by 5 bbls of water and 30 bbls of NaSi_{2}. Displaced with 30 bbls of fresh water. P.O.H. and waited four hours for the solution to set up. R.I.H. to 2170' with O.E.D.P. Halliburton mixed and pumped $180 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour and 3% Gel. Displaced cement with $190 \mathrm{ft}^{3}$ of water. P.O.H. and waited for cement to set up.

1/02/78 2250' R.I.H. with O.E.D.P. to top of cement plug at 1953'. Filled the wellbore with 325 bbls of mud. Lost returns after circulating for two hours. : P.O.H. Fluid level was at approximately 179'. R.I.H. to 1946' with O.E.D.P. Halliburton mixed and pumped $100 \mathrm{ft}^{3}$ of ThixSet cement premixed with 19% gilsonite, 0.5% Flocele, and 0.1% Tuff-Plug. Displaced cement plug with $145 \mathrm{ft}^{3}$ of water. P.O.H. and waited four hours for cement to set up. Fluid level was at approximately 45' from the surface. Filled the hole with 75 bbls of mud. R.I.H. and cleaned out cement stringers from 1535' to 1861'. Cleaned out firm cement from 1861' to 1994'.
$1 / 03 / 78$

Drilled without returns from 2307^{\prime} to 2324^{\prime}. Pulled bit into the 13-3/8" casing and mixed mud and lost circulation materials. R.I.H. and drilled $12-1 / 4$ " hole from 2324^{\prime} to 2342^{\prime} without returns to the surface. P.O.H. and stood back drilling assembly. R.I.H. to 2201' with O.E.D.P. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of water followed by $112 \mathrm{ft}^{3}$ of $6 \% \mathrm{CaCl}_{2}$ water with $400 \#$ of plaster sand followed by $28 \mathrm{ft}^{3}$ of water and 128 ft 3 of NaSi_{2} mixed in a ratio of l:l with water. It was displaced with $196 \mathrm{ft}^{3}$ water. Pulled pipe up hole to 2l08'. Halliburton mixed and pumped $223 \mathrm{ft}^{3}$ of Thix-Set cement premixed with 25\# gilsonite, l-1/4\# Flocele and l/8\# of Tuff Fiber per sack. Displaced with $182 \mathrm{ft}^{3}$ water. Pulled pipe up the hole to 1475' and waited for cement to set up.
l/05/78 2342' R.I.H. to top of cement at 2242'. Pulled pipe to 1475'. Unable to fill hole after pumping 400 bbls mud. R.I.H. to 2232'. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of Gel water consisting of WG-ll, CL-ll with $1680 \#$ of Unibeads, 420\# of gilsonite and 420\# TLC-80, followed by $59 \mathrm{ft}^{3}$ of class "B" cement with $2 \% \mathrm{CaCl}_{2}$ and loo\# Flocele. Pulled pipe to 1495^{\prime} and waited for cement to set up. R.I.H. to top of cement at 2242'. Attempted unsuccessfully to fill the wellbore. Pulled up hole to 2232'. Halliburton

2342' P.O.H. to pick up drilling assembly and wait for cement to set up. Ran back in the hole to 2184 ' and filled the hole with 275 bbls of mud. Drilled solid cement to 2228' with full returns. Space from 2228' to 2244.' was void. Commenced losing mud at a rate of 3 bbls per minute while circulating. Pulled out of the hole. and stood back bottom hole assembly. R.I.H. to fill at 2227'. Unable to clean out fill. P.O.H. and picked up l2-1/4" bit. : R.I.H. and cleaned out fill from 2227' to 2231' with partial returns. Lost full returns while cleaning out from 2231' to 2242'. Lost a total of approximately 400 bbls of mud. P.O.H. and stood back drilling assembly. R.I.H. with O.E.D.P. to 2232'. Halliburton mixed and pumped $56 \mathrm{ft}^{3}$ of Frac Gel consisting of 25\# WG-11, and 7\# of CL-11 followed by $112 \mathrm{ft}^{3}$ of $3 \% \mathrm{CaCl}_{2}$ water, $56 \mathrm{ft}^{3}$ water, $258 \mathrm{ft}^{3} \mathrm{NaSi}_{2}$ mixed in a l:l ratio with water, and $136 \mathrm{ft}^{3}$ of class "B" cement with $2 \% \mathrm{CaCl}_{2}$ and $1 / 2$ \#/sack Flocele. Displaced with $168 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 1490^{\prime} and waited for cement to set up.

1/08/78 2342' Ran back down the hole to 2239' and didn't locate the top of plug. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of Frac Gel consisting of $500 \#$ gilsonite, 500\# Unibeads, $350 \#$ moth balls, $50 \#$ WG-11 and 15\# Cl-ll followed by $136^{\circ} \mathrm{ft}^{3}$ of class "B" cement with $2 \% \mathrm{CaCl}_{2}$ and l/2\# Flocele/sack. Pulled drill pipe to 1430^{2} and waited for cement to set up. Ran back in the hole to 2240^{\prime} with no trace of the plug. Also, the hole appeared to be void of any fluid. Halliburtion mixed and pumped $112 \mathrm{ft}^{3}$ of $3 \% \mathrm{CaCl}_{2}$ water, $56 \mathrm{ft}^{3}$ of water and $134 \mathrm{ft}^{3}$ of NaSi_{2}. Displaced with 65 .ft ${ }^{3}$ of water. Pulled drill pipe to 2201' and pumped $98 \mathrm{ft}^{3}$ of class."B" cement with 6% gilsonite, $1 / 2 \#$ Flocele and $2 \% \mathrm{CaCl}_{2}$. Displaced with $57 \mathrm{ft}^{3}$ of water. Pulled drill pipe ${ }^{2}$. to 1490' and waited for cement to set up.

1/09/78

1/10/78
R.I.H. to top of cement plug at 2187'. Pulled out of the hole and picked up drilling assembly. R.I.H. and drilled cement from 2187^{\prime} to 2250^{\prime} with full returns. Drilled without returns from 2250^{\prime} to 2280', losing approximately 350 bbls of fluid. P.O.H. and stood back drilling assembly. R.I.H. with O.E.D.P. to top of fill at 2260'. Attempted unsuccessfully to wash through fill. R.I.H. with 12-1/4" bit and cleaned fill from 2260^{\prime} to 2278' without returns. Lost an additional 400 bbls of fluid. R.I.H. to 2263' with O.E.D.P. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ of water, $112 \mathrm{ft}^{3}$ of CaCl_{2} water, 67 ft 3 of water and $67 \mathrm{ft}^{3}$ of NaSi_{2}. Displaced with $112 \mathrm{ft}^{3}$ of water. Pulled pipe to 1496^{\prime} and waited for cement to set up. R.I.H. to 2232'. Halliburton mixed and pumped 88 ft 3 of class "B" cement with 2\% CaCl $2,12 \%$ gilsonite and l/2\# Flocele/ sack. Displaced with 156 ft 3 of water. Pulled up hole and waited for cement to set up.

2342' R.I.H. with O.E.D.P. to top of cement plug at 2240\%. Unable to fill the hole with water. Pulled pipe to 2233'. Halliburton mixed and pumped 88 ft3 of class "B". cement with 8\# gilsonite, $2 \% \mathrm{CaCl}_{2}$ and l/2\# Flocele/sack. Displaced with $168 \mathrm{ft}^{3}$ of water. Pulled pipe to 1510^{\prime} and waited for cement to set up. R.I.H. to top of plug at 2240. No trace of the plug. Hung open ended drill pipe at 2232'. Halliburton mixed and pumped 112 ft 3 of Frac Gel consisting of $500 \#$ Unibeads, $150 \#$ Flocele, $150 \#$ gilsonite, l50\# moth bails; 75\# WG-1I and 15\# CL-11. Followed by 161 f.t ${ }^{3}$ of class "B" cement premixed in a $2: 1$ ratio with Perlite, 40% Silica Flour and 3\% Gel followed by $98 \mathrm{ft}^{3}$ of class ' B^{\prime} cement with $2 \% \mathrm{CaCl}_{2}$, $1 / 2 \#$ Flocele and 8\# gilsonite/sack. Displaced with $86 \mathrm{ft}^{3}$ of water. Pulled pipe to 1505' and waited for cement to set up. R.I.H. to 2240^{\prime} with no trace of the plug. Pulled pipe to 2232'. Halliburton mixed and

1/10/78

1/11/78 2342' Pulled pipe up hole to 1500' and attempted unsuccessfully to fill the hole with 300 bbls of fluid. R.I.H. to 2201'. Halliburton mixed and pumped a $112 \mathrm{ft}^{3}$ slurry consisting of $600 \#$ Gel, $75 \#$ Flocele, 100\# Unibeads and $300 \#$ of lost circulation material followed by $352 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour, 3% Gel and 3\% CaCl_{2}. Displaced with $134 \mathrm{ft}^{3}$ of water. Pulled pipe to 1475' and waited for cement to set up. Filled the wellbore with 30 bbls of water. P.O.H. and repaired rig drawworks. R.I.H. and laid down 75 joints of drill pipe.
$1 / 12 / 78$

1/13/78
$1 / 14 / 78$

1/15/78
$1 / 16 / 78$
Continued -
pumped $112 \mathrm{ft}^{3}$ of water, $112 \mathrm{ft}^{3}$ of $3 \% \mathrm{CaCl}_{2}$ water, $28 \mathrm{ft}^{3}$ of water and $67 \mathrm{ft}^{3}$ of NaSi_{2}. Displaced with $162 \mathrm{ft}^{3}$ water. Pulled drill pipe to 2201' and waited two hours. Mixed and pumped l6l ft^{3} of class "B" cement premixed in a $2: 1$ ratio with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and $3 \% \mathrm{CaCl}_{2}$. Displaced with $168 \mathrm{ft}^{3}$ of water. Pulled pipe up hole and waited for cement to set up. R.I.H. to top of cement at 2215^{\prime}. 3.
\qquad

8		Continued
		R.I.H. to 1750^{\prime} and broke circulation with aerated mud. R.I.H. to 2400'. Unable to circulate. Pulled to 2000! and broke circulation with aerated mud. R.I.H. to 2400'. Unable to circulate. P.O.H. to rig up for foam drilling. R.I.H. to l510.'
1/17/78	2543 '	R.I.H. to 2375'. Unable to circulate with foam. Pulled up hole to 2015' and broke circulation. Drilled 12-1/4" hole from 2400^{\prime} to 2486^{\prime} using foam as circulating medium. Hole was producing water at a rate of 600 bbls per hour. After filling the sump with water, drilled 12-1/4" hole from 2486^{\prime} to 2543^{\prime} by pumping water back into the hole without returns.
1/18/78	2606^{\prime}	Continued drilling to 2606^{\prime} while pumping sump water through bit without returns. Pulled four stands of drill pipe to replace rotating head rubber. Encountered 34 ' of fill while running to bottom. Unable to break circulation with air foam below 2100'. P.O.H. and stood back drilling assembly.
1/19/78	2606 ${ }^{\prime}$	R.I.H. to 2575^{\prime} with O.E.D.P. Ran maximum reading thermometer to 2575'. The temperature after having the hole static for 14 hours was $192^{\circ} \mathrm{F}$. Pumped 425 bbls of water through drill pipe. Halliburton mixed and pumped 174 ft ? of Thix-Set cement premixed, with lo\# gilsonite per sack, and $2 \% \mathrm{CaCl}_{2}$. It was displaced with $234 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 1455' and waited on cement for four hours. R.I.H. and located the top of the plug at 2468'. Halliburton mixed and pumped through O.E.D.P. set at 2448', $175 \mathrm{ft}^{3}$ Thix-Set cement premixed with lo\# gilsonite per sack and $2 \% \mathrm{CaCl}_{2}$. It was displaced with $212 \mathrm{ft}^{3}$ of water. W.O.C. for four hours. Located the top of the cement at. 2449'. Halliburton mixed and pumped through drill pipe set at $2418^{\prime}, 247 \mathrm{ft}{ }^{3}$ " B^{\prime} cement premixed in a $2: 1$ ratio with Perlite, $5 \% \mathrm{Gel}$ and $2 \% \mathrm{CaCl}_{2}$. It was displaced with $196 \mathrm{ft}^{3}$ of water.
1/20/78	2606 ${ }^{\prime}$	R.I.H. with O.E.D.P. and located the top of the cement at 2248'. Halliburton mixed and pumped $367 \mathrm{ft}^{3}$ of class "B" cement premixed in a ratio of 2:1 Perlite, $5 \% \mathrm{Gel}$ and $2 \% \mathrm{CaCl}_{2}$. Displaced with $34 \mathrm{ft}^{3}$ of water. Stuck drill pipe while cementing. Worked free with 200,000\# pull over weight of drill pipe. Pulled up hole to 1575^{\prime} and cleared drill pipe with $168 \mathrm{ft}^{3}$ of water. $\mathrm{P} . \mathrm{O} . \mathrm{H}$. and waited for cement to set up. R.I.H. to top of soft cement at 2089'.
1/21/78	2606°	P.O.H. and picked up bottom hole assembly. R.I.H. to top of cement at 2027^{\prime}. Drilled cement stringers

$1 / 21 / 78$
$1 / 22 / 78$
$1 / 23 / 78$
$1 / 24 / 78$

Continued -

with foam and aerated mud from 2027' to 2089' Drilled hard cement from 2089' to 2165'. The hole produced approximately 1680 bbls of water at approximately 10 bbls/minute while drilling from 2120' to 2165'. P.O.H. and stood back drilling assembly. R.I.H. to 1500 ' with O.E.D.P. Pumped 1680 bbls of water in the hole. Unable to fill the wellbore. R.I.H. to 2139'. Halliburton mixed and pumped $215 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, $4 \% \mathrm{Gel}$ and $2 \% \mathrm{CaCl}_{2}$. Displaced with $168 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 1475! and pumped $280 \mathrm{ft}^{3}$ of water on top of cement. Pulled up hole and waited for cement to set up.
R.I.H. to top of cement at 2077'. Pulled up hole to 2046'. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class. "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour and 3% Gel. Displaced cement with $100 \mathrm{ft}^{3}$ of water. Pipe commenced sticking. Worked pipe up the hole pulling $150,000 \#$ over weight of pipe. Pumped 500 bbls in the hole. Unable to fill the wellbore. Ran down hole and tagged top of cement at 1885'. Pulled up hole to 1860'. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour and 3% Gel. Displaced cement with $140 \mathrm{ft}^{3}$ of water. Pulled pipe to 1425^{\prime} and waited for cement to set up. R.I.H. to top of cement at l697'. Puiled up hole to l675'. Halliburton mixed and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and $2 \% \mathrm{CaCl}_{2}$. Displaced with $134 \mathrm{ft}^{3}$ of water. P.O.H. and waited for cement to set:up. Filled the wellbore with 125 bbls of water. R.I.H. to top of cement at 1553'. Closed pipe rams and squeezed away $168 \mathrm{ft}^{3}$ of water to the formation at 250 psi surface pressure. Halliburton mixed and pumped through O.E.D.P. at 1490', $250 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l. ratio with Perlite, 40% Silica Flour and 3% Gel. Displaced with $112 \mathrm{ft}^{3}$ of water.

2606' Pulled drill pipe to 560'. Closed pipe rams and squeezed away $14 \mathrm{ft}^{3}$ of mud at 900 psig surface pressure. Released pressure and pulled out of hole. R.I.H. with 12-l/4" bit to top of cement at l368'. Shut down operations due to heavy snows and ground blizzard.

Opened road to the rig and relieved crews. Drilled firm cement from 1368' to 1750^{\prime} using mud, with full returns.

1/25/78.	$2606{ }^{\prime}$	Drilled firm cement from 1750' to 2006^{\prime} with full returns. Circulated to clean the wellbore and P.O.H. to change the drilling assembly.. Installed a jet sub and rigged up for aerated drilling. R.I.H. and broke circulation with aerated mud. Drilled firm cement from 2006' to 2300' with full returns and no additional fluid entry in the wellbore.
1/26/78	$2681{ }^{\prime}$	Drilled soft cement from 2300' to 2393' and firm cement from 2393' to 258^{\prime}. Cleaned out fill from 2582' to 2606^{\prime} with good returns using aerated mud. There was no indication of fluid entries. Drilled 12-1/4" hole from 2606' to 2616'. Hole commenced making approximately 300 bbls of water per hour. Continued drilling 12-1/4" hole from 2616' to 2681' using aerated fluid.
1/27/78	2804^{\prime}	Drilled 12-1/4" hole from 2681' to 2760!. The producing rate of water from well continued increasing with depth from $300 \mathrm{bbls} / \mathrm{hour}$ at 2680^{\prime}, to $750 \mathrm{bbls} /$ hour at 2760'. Due to the lack of freeboard in sump, the hole was drilled from 2760^{\prime} to 2804^{\prime} by pumping water through bit, without air, with no returns. P.O.H. and stood back drilling assembly. R.I.H. to an obstruction at 2780^{\prime} with O.E.D.P. Pumped 7000 bbls of water into the wellbore from the sump.
1/28/78	2804^{\prime}	Continued pumping sump water into the hole for a total of 9000 bbls. Halliburton mixed and pumped, through O.E.D.P. at 2765', 312 ft ${ }^{3}$ of class "B" cement. premixed in a l:1 ratio with Perlite, 40% Silica Flour, $0.5 \% \mathrm{CFR}-2$, and $3 \% \mathrm{Gel}$. Displaced cement with $224 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 1472' and waited seven hours for cement to set up. R.I.H. to top of cement at 2754'. Pulled drill pipe to 2731 . Halliburton mixed and pumped $312 \mathrm{ft}^{3}$ of class "B" cement premixed in a $1: 1$ ratio with Perlite, 40% Silica Flour, and 3% Gel. Displaced cement with $223 \mathrm{ft}^{3}$ of water. Pulled drill pipe to 1510^{\prime} and waited for cement to set up. R.I.H. to top of cement at 2543'. P.O.H. and made up drilling. assembly. Ran back in the hole to 1500^{\prime}.
1/29/78	3029^{\prime}	Continued running in hole to top of cement at 2543'. and broke circulation with aerated mud. Cleaned out cement from 2543' to 2804'. Had a water entry at 2650'. Drilled 12-1/4" hole with aerated mud from 2804^{\prime} to 3029'.
1/30/78	3304 ,	Drilled 12-1/4"hole from 3029' to 3304'. P.O.H. and stood.back drilling assembly. R.I.H. with O.E.D.P. to top of fill at 3201'. Ran drift surveys and maximum reading thermometers as follows: 3192': $5^{\circ} 15^{\prime}$,

1/30/78 \quad Continued -

1/31/78 . 3448' Made up 12-1/4" bit and relocated jet subs. R.I.H. and cleaned out fill from 320 l' $^{\prime}$ to 3304^{\prime}. Drilled 12-1/4" hole from 3304' to 3448'. P.O.H. and prepared to run Electric Logs.

2/01/78 3448' Pumped sump water to cool the wellbore while rigging up Schlumberger equipment. Ran DIL-8 from 3443' to 1552'. Ran Neutron-Gamma Ray with Caliper from 3443' to 1552'. Ran Temperature Log from 3443' to the surface. Rigged down Schlumberger equipment. R.I.H. with O.E.D.P. to 3259 '. Pumped 600 bbls of water down the wellbore. Ran down hole to 3440^{\prime}. Halliburton mixed and pumped $187 \mathrm{ft}^{3}$ of class "B" cement premixed in a ratio of $1: 1$ with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and 0.5% CFR-2. Displaced cement with $258 \mathrm{ft}^{3}$ of water while working pipe up and down. Pipe commenced sticking. Stopped displacing and worked pipe free. P.O.H. to wait for cement to set up. Picked up drilling assembly and R.I.H. to top of cement at 3165'.
/02/78: 3448' Unable to break circulation. P.O.H. and installed jet subs in the drill string. Drilled cement from 3165' to 3360^{\prime} while circulating with aerated fluid. Continued circulating with aerated system to clean and condition the wellbore for running casing. Rigged up equipment and ran 5l joints (2014.55') of 9-5/8", 40\#, K-55 buttress casing. Hung casing inside of 13-3/8" casing with shoe at 3357'; baffle collar at 3278', Lyons ECP packer at 2014', HOWCO F.O. cementer at 2004' and Burns 13-3/8" x 9-5/8" single slip liner hanger at l345'. P.O.H. and laid down liner setting tools. R.I.H. with HOWCO F.O. running tools and stabbed into the baffle collar. Pumped 300 bbls of water to cool the wellbore and prepare for cementing first stage.

2/03/78
3448' Halliburton cemented the first stage, through drill pipe stabbed into the baffle collar at 3278' as follows: preceded cement with $336 \mathrm{ft}^{3}$ of water and 112 ft3 of HY-VIS Gel pill. Mixed and pumped $1250 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour, 3\% Gel, $0.5 \% \mathrm{CFR}-2$ and $0.4 \% \mathrm{HR}-7$, followed by $326 \mathrm{ft}^{3}$ of class "B". cement premixed with 40% Silica Flour, 0.75% CFR-2 and 0.2% HR-7. Displaced with $294 \mathrm{ft}^{3}$ of water. Seated latchin plug with 1500 psig surface pressure. Pulled the

2/03/78

2/04/78

2/05/78 3448' Continued drilling EZSV retainer. Cleaned out cement from 1810' to 2007'. Made wiper run to 3065^{\prime} and P.O.H. Rigged up Schlumberger equipment and ran Temperature Log from 3052' to surface. Maximum temperature at 3052^{\prime} was 322° F. R.I.H. with 8-3/4" bit and cleaned out cement from 3065' to 3278!. Drilled baffle collar at. 3278! and cement to 3312'. P.O.H. Rigged up Schlumberger equipment and ran "Cement Bond Log". from 3310' to 1345 ' $^{\prime}$ with the following results: poor bond from 3310' to 3130'; poor bond from 3130' to 2990'; fair bond from 2990' to 2700'; good bond from 2700' to 2014'; and excellent bond from 2014' to 1345'.
Continued -
F.O. isolation packer up hole to 470^{\prime}. Attempted to inflate Lyons packer. Isolation packer failed. P.O.H. and replaced cups on isolation packer. R.I.H. and worked packer into the liner. Pressured to 1600 psig to inflate Lyons packer. Experienced a sudden loss of pressure. P.O.H. and replaced damaged packer cups. Ran back in the hole and attempted unsuccessfully to pressure Lyons packer. P.O.H. and found by-pass valve stuck in open position. Repaired valve and ran back in the hole. Packer failed again. P.O.H. and found cups damaged. R.I.H. and set 9-5/8". RTTS at 1918'. Inflated Lyons packer with 1500 psig. Released pressure and opened F.O. cementer.

3448' P.O.H. and laid down RTTS packer. R.I.H. and set HOWCO EZSV Retainer at 1805'. Pumped 500 bbls of sump water through F.O. ports to cool the wellbore. Halliburton mixed and pumped, through F.O. ports at 2004', $750 \mathrm{ft}^{3}$ of class "B" cement premixed in a l:1 ratio with Perlite, 40% Silica Flour, 3% Gel and 0.5\% CFR-2. Displaced with $185 \mathrm{ft}^{3}$ of water. Pressure built up during last half of job. Maximum pump pressure was 800 psig. P.O.H. and changed out drill collars while waiting for cement to set up. R.I.H. with 12-1/4" bit and cleaned out cement from 1323' to 1345'. P.O.H. and stood back 12-1/4" drilling assembly. R.I.H. with 8-3/4" drilling assembly and drilled cement stringers from 1345' to 1805'. Successfully tested liner lap to 580 psig surface pressure (ll62 psig at the lap) for 25 minutes. The test was witnessed by a U.S.G.S. representative. R.I.H. with 8-3/4" assembly. and drilled out EZSV retainer.

Rigged down Schlumberger equipment and R.I.H. to 3312' with 8-3/4" drilling assembly. Cleaned out cement to 3448'. Drilled 8-3/4" hole from 3448' to 3495' with full returns, using mud as the circulating medium.

2/13/78	5740^{\prime}	Spline on compound shaft parted while pulling out of the hole with one engine. Changed bit and R.I.H. to 5619' with no fill. Drilled 8-3/4" hole to 5710' with aerated water. Sump full. Unable to drill while injecting because of inability to use \#l pump due to parted shaft in compound. Pulled bit up hole to 3205^{\prime} and injected sump water while repairing the compound shaft. After repairing the compound shaft, injected with both pumps for four hours. Ran to bottom without encountering fill and broke circulation with aerated water. Drilled 8-3/4" hole from 5710' to 5740^{\prime} with aerated water.
2/14/78	6159^{\prime}	Drilled with aerated water from 5740' to 5815', and from 5815° to 5980^{\prime} by pumping sump water through the bit without returns. Drilled from 5980' to 6120^{\prime} with aerated water and from 6120' to 6159' while pumping sump water through the bit without returns.
2/15/78	6329^{\prime}	Drilled 8-3/4" hole from 6159' to 6168' while pumping sump water without returns. . Tripped to change out bit and reposition jet subs. R.I.H. to 6158' and broke circulation. Drilled 8-3/4" hole from 6158' to 6290' with aerated water; from 6290' to 6329' while injecting sump water through bit without returns.
./16/78	6555^{\prime}	Drilled 8-3/4" hole from 6329' to 6451' while pumping sump water through the bit without returns. Drilled from 6451' to 6555' with aerated water.
2/17/78	6835^{\prime}	Drilled from 6555' to 6671' while pumping sump water through bit without returns. Drilled with aerated water from 6671' to 6727' and drilled from 6727' to 6835' while pumping sump water through the bit without returns.
2/18/78	6973^{\prime}	Tripped for new bit and continued drilling 8-3/4" hole from 6835' to 6875' with aerated water. Pump suction collapsed while attempting to pump sump water. Pulled bit to 3300^{\prime} and replaced suction on pumps. R.I.H. Pumped sump water through bit without returns while drilling 8-3/4" hole from 6875' to 6947'. Drilled from 6947' to 6973' with aerated water.
2/19/78	7125°	Drilled from 6973' to 7003' with aerated water. Rigged and ran temperature survey at 6970'. Temperature $=$ $326^{\circ} \mathrm{F}$. Drilled $8-3 / 4^{\prime \prime}$ hole from 7003' to 7069' while pumping water through the bit without returns; from 7069' to 7125' with aerated water.

2/20/78 7386' Drilled 8-3/4" hole from 7125' to 7167' with aerated water; from 7167' to 7273' while pumping sump water through bit without returns and from 7273' to 7323' with aerated water. P.O.H. and laid down two joints of split drill pipe. R.I.H. to 7323' without encountering.fill. Drilled 8-3/4" hole from 7323' to 7386' while pumping sump water through bit without returns.

2/21/78 7512' Drilled from 7386' to 7512' with aerated water. Commenced pumping sump water through bit. Pressure. built to 1700 psig as bit plugged, then decreased to 300 psig. Hole commenced circulating with aerated water. Worked stuck pipe free and P.O.H. checking for washout in drill pipe. Moved jet subs up the hole to 1760^{\prime} and 2260^{\prime} respectively and R.I.H. to top of fill at 7312'. Washed fill from 7312' to 7354' with aerated water. Unable to circulate cuttings out of the hole. P.O.H. to check for washed out drill pipe. Laid down one joint of split pipe.

2/22/78 7530' R.I.H. to 3325^{\prime} with a slick bottom hole assembly. Jets were placed at a distance of 4000^{\prime} and 5000' from the bit. Pumped sump water into the hole and R.I.H. to fill at 7316'. Broke circulation with aerated water and cleaned out fill from 7316' to 7485'. Hole was clean from 7485' to 7512'. Drilled 8-3/4" hole from 7512' to 7530' with aerated water. Pulled the bit up hole to 3345'. Hole was tight from 7485' to 7316'. Pumped approximately $12,000 \mathrm{bbls}$ of sump water into the hole.

2/23/78 7542' P.O.H. to check bit. R.I.H. to an obstruction at 7316'. Washed and reamed from 7316! to 7327! with aerated fresh water. Hole was clean from 7327' to 7530'. Continued drilling 8-3/4" hole with aerated fresh water from 7530' to 7542'. Pipe commenced sticking while running survey at 742^{\prime}. Cut survey wire, dropping instrument and worked pipe from 7482' to 7400^{\prime} before pulling free. P.O.H. No tight hole indicated from 7327' to 7316'. Pumped sump water down hole to cool wellbore for casing inspection log. Rigged and ran Dia-Log 13-3/8" Casing Profile Caliper Log. Tool failed. P.O.H. and pumped water to cool the wellbore. Re-ran 9-5/8" Casing Caliper Log from 3325' to l345'. Log indicates less than 50\% of original wall thickness from 1814' to 1815' and a loss of wall thickness varying from 5% to 21% for remainder of 9-5/8" casing.

2/24/78

2/27/78 7735 ${ }^{\circ}$
$2 / 28 / 78$

2/25/78 7735' R.I.H. to 7495' and broke circulation with aerated water. Washed and reamed from 7495' to 7516' and drilled 8-3/4" hole from 7615' to 7700'. Pulled bit to 6250^{\prime} and pumped approximately 12,000 bbls of
sump water into the hole. R.I.H. to 7625^{\prime} and broke bit to 6250' and pumped approximately 12,000 bbls of
sump water into the hole. R.I.H. to 7625^{\prime} and broke circulation with aerated water. Washed and reamed to 7700' and drilled 8-3/4". hole from 7700' to 7735'. Pipe stuck while drilling. Worked pipe free after two hours.

2/26/78 7735' Pulled out of the hole and stood back bottom hole assembly. R.I.H. to 3312' unloading water for 30 minutes while rigging up "Go International" logging equipment. Ran "Go International" temperature survey to top of obstruction at 7320^{\prime}. The recorded temperature from 3440^{\prime} to 6125' started at $299^{\circ} \mathrm{F}$ and increased gradually to $339^{\circ} \mathrm{F}$ at 7320^{\prime}. Ran Spinner Survey. Fluid level was at.1310'. Tool failed. P.O.H. and waited 12 hours for temperature build-up. Re-ran temperature survey. Survey indicated $340^{\circ} \mathrm{F}$ at 2500^{\prime} and 298° to $300^{\circ} \mathrm{F}$ from 3500^{\prime} to 6000'. Temperature gradually increased from $300^{\circ} \mathrm{F}$ at 6000^{\prime} to $344^{\circ} \mathrm{F}$ at 7300^{\prime}.

Waited 9 additional hours for temperature build-up. Ran "Go International". Temperature Log \#3 to 7334' and recorded temperatures as follows: $200^{\prime}=120^{\circ} \mathrm{F}$, $1000^{\prime}=218^{\circ} \mathrm{F}, 2500^{\prime}=332^{\circ} \mathrm{F}, 3000^{\prime}=320^{\circ} \mathrm{F}, 4000^{\prime}=$ $295^{\circ} \mathrm{F}, 5000^{\prime}=295^{\circ} \mathrm{F}, 6000^{\prime}=297^{\circ} \mathrm{F}$ and $7334^{\prime}=$ $341^{\circ} \mathrm{F}$. Ran "Go International" Spinner Survey.. Survey indicated no fluid movement at 3450^{\prime}. Fluid was moving down the hole at a rate of 55 gallons per minute at 3515^{\prime} and at a rate of 73 gallons per minute at 3900'. Tool failed. Pumped water thru kill line at a rate of 522 gallons per minute with no response from Spinner. Ran Temperature Log \#4 with the following results: $3300^{\prime}=207^{\circ} \mathrm{F}, 6000^{\circ}=242^{\circ} \mathrm{F}, 6200^{\circ}=$ $327^{\circ} \mathrm{F}$, and $7320^{\prime}=353^{\circ} \mathrm{F}$. P.O.H. and rigged down "Go International" logging equipment. Pulled drill pipe out of the hole and made up 8-3/4" drilling assembly.
Rigged down Dia-Log equipment. R.I.H. to 3325^{\prime} with 8-3/4" drilling assembly. Pumped remaining sump water into the hole. R.I.H. to 7414'. Washed and reamed from 7414' to 7542' and drilled from 7542' to 7615^{\prime} with aerated water. Tripped for bit. R.I.H. to 3320^{\prime} and injected water from sump into the hole.
R.I.H. to 7375' and broke circulation with aerated water. Washed and rotated through tight hole from 7375' to 7425'. R.I.H. to 7641'. Broke circulation

2/		Continued
		with aerated water and washed and reamed from 7641' to 7705'. Circulated to clean the wellbore and pulled up the hole to 7200^{\prime}. Pumped water from sump into the wellbore. Made wiper run to 7700'. P.O:H. and rigged up Schlumberger equipment. Ran DIL-SP Log from 7682' to 3357'. Maximum temperature reading was $331^{\circ} \mathrm{F}$. Ran Gamma Ray-Sonic Log from 7681' to 3357' and Gamma Ray-Neutron Density with Caliper from 7678' to 3357^{\prime}.
3/01/78	7735^{\prime}	Schlumberger ran Temperature Log from 7550' to surface with a maximum temperature of $337^{\circ} \mathrm{F}$ at 7550^{\prime}. Ran Dipmeter from 600.' to 3357^{\prime}. Rigged down Schlumberger and R.I.H. with $8-3 / 4$ " bit to obstruction and tight hole at 7663'. P.O.H. and prepared to run 7" combination blank and slotted liner.
3/02/78	7735^{\prime}	Ran 106 joints (4441.77') of 7", 26\#, K-55, LT\&C combination blank and slotted (20-2-6-60) casing liner. Hung liner with Halliburton cement guide shoe at 7605', Baker baffle collar at 4049', Lyons ECP packer at 3995', cementing port collar at 3992', and top of Burns 9-5/8" x 7" liner hanger at 3163'. Slotted joints were spaced at various intervals from 7560' to 4200'. Unable to release setting tools after setting liner hanger. Also, liner would not move up hole. With Lyons packer set and cementing ports open, pumped cool water through drill pipe in an attempt to shrink setting nut.
3/03/78	7735^{\prime}	Continued working right-hand torque into setting tools in an attempt to release from liner hanger. Rigged up "Go International" and fired three separate string shots in liner hanger in an attempt to jar tools free. All attempts were unsuccessful. Fired string shot and backed off at top of setting tools. P.O.H. and R.I.H. with bumper sub and six $7^{\prime \prime}$ drill collars. Screwed into top of setting tools. Pumped cold water through hanger while bumping down and torquing to the right. Unable to move the setting nut. After ten hours, slips on casing hanger released.
3/04/78	7735^{\prime}	Pulled casing up the hole to replace Burns liner hanger. Burns liner hanger was distorted (necked down below slip area, slip grooves bulged and top of tieback receptacle rolled inward). Rigged up to lay down 7" liner. Laid down Burns liner hanger, Lyons ECP packer (rubber element missing) and 106 joints of 7 ", 26\#, LT\&C blank and slotted casing. Damaged four joints of casing while attempting to break connections. Rigged down casing tools.

$3 / 05 / 78$

3/06/78

3/07/78

3/08/78

3/09/78

7735' Made up 8-3/4" bit on three 7" drill collars. R.I.H. to obstruction at 7653'. Pulled bit to 3345' and broke circulation with aerated water. Circulated for four hours and let well die. R.I.H. to 5480' and regained circulation. Circulated for two hours to cool the wellbore, then let the well die. R.I.H. to 7653' with no additional fill.

7735' P.O.H. and rigged up to rerun 7" liner. Ran 72 joints of 7", 26\#, K-55, LT\&C blank casing and 36 joints of 7", 26\#, K-55; LT\&C perforated casing (4507'). Hung liner with Halliburton cement guide shoe at 7615', Baker baffle plate at 4053', Lynes ECP packer at 3999', cementing collar at 3997' and Midway liner hanger at 3084'. Halliburton mixed and pumped 560 ft 3 of $\mathrm{H}_{2} \mathrm{O}$ and $138 \mathrm{ft}^{3}$ of gel $\mathrm{H}_{2} \mathrm{O}$ followed by $187 \mathrm{ft}^{3}$ of class "B" cement premixed in a 1:1 ratio with Perlite, 40% Silica Flour, 3\% Gel, 0.5\% CFR-2 and 0.4% HR-7. Followed this with $81 \mathrm{ft}^{3}$ of class "B". cement with 40% Silica Flour, Displaced with $49 \mathrm{ft}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$. Closed cementing port with 800 psig surface pressure.

7735' P.O.H. and laid down liner setting and cementing tools. R.I.H. to 2850' with O.E.D.P.. Laid down 5" drill pipe, 15 - 7". drill collars and 6-8", drill collars. R.I.H. with $8-3 / 4^{\prime \prime}$ bit to top of $7^{\prime \prime}$ liner at 3084'. Attempted unsuccessfully to fill the wellbore with water. $\mathrm{P} . \mathrm{O} . \mathrm{H}$. and picked up Halliburton 9-5/8" RTTS packer. R.I.H. and set packer at. 3034'. Filled annulus with water. Halliburton mixed and pumped through packer, $560 \mathrm{ft}^{3}$ of water followed by $187 \mathrm{ft}^{3}$ class "B" cement premixed in a l:l ratio with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and 0.5% CFR-2 followed by $81 \mathrm{ft}^{3}$ of class "B" cement with 40% Silica Flour. Displaced cement with $330 \mathrm{ft}^{3}$ of water. No pressure build-up.

7735' P.O.H. and ran back in with packer and unsuccessfully tried to set it. P.O.H. and found rubber packer elements missing. Ran O.E.D.P. to 2100' and pumped water to cool hole.

7735' Ran and set RTTS packer at 3034'. Filled annulus with water and then pumped $560 \mathrm{ft}^{3}$ water through the packer. Pressurized to a surface pressure of 800 psig. Mixed and pumped $244 \mathrm{ft}^{3}$ "B" cement premixed with 40% Silica Flour and 0.5\% CFR-2. The pressure increased to 850 psig. The packer started leaking at that pressure. The packer was released and P.O.H. The packer rubbers were damaged and had to be changed. Ran and set packer at 2921'. The annulus was filled with water. Halliburton mixed and pumped $560 \mathrm{ft}^{3}$ water through the drill pipe. The water was followed by

3/11/78 .7735' Ran and set a 9-5/8". RTTS packer at 3040'. Tested lap to a surface pressure of 300 psig. Hole went on vacuum. Halliburton mixed and pumped $112 \mathrm{ft}^{3}$ gelwater mixture followed by $750 \mathrm{ft}^{3}$ " B " cement, premixed in a l:l ratio with Perlite, 40% Silica Flour and 3\% Gel. Pump pressure built to 500 psig and then broke to 100 psig. The mixture was displaced with $360 \mathrm{ft}^{3}$ water. R.I.H. with $8-3 / 4$ " bit to top of liner at 3084'. No cement was found on the top of the liner. P.O.H. and ran in with O.E.D.P. to 3080'. Halliburton mixed and pumped $56 \mathrm{ft}^{3}$ of high viscosity gel-water mixture followed by $167 \mathrm{ft}^{3}$ "B" cement premixed in a 1:1 ratio with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and 2\% CaCl_{2}. That was displaced with $263 \mathrm{ft}^{3}$ water. P.O.H. and ran in to top of cement at 2920^{\prime} with 8-3/4" bit.

3/12/78 7735'. Drilled out cement from 2920^{\prime} to liner top at 304^{\prime}. No fluid was lost. P.O.H. and ran in with a 6-1/8" bit to 3084'. Attempted to circulate, but the bit plugged. P.O.H. and cleaned bit. R.I.H. and started circulating. Drilled cement from 3084' to 3088^{\prime}. R.I.H. to 3990^{\prime}. Drilled plug in port collar from 3990' to 4001' with full returns. R.I.H. to baffle at 4050'. Drilled out baffle and lost returns. P.O.H.

3/13/78
$3 / 14 / 78$

Continued -
baffle and plugs ahead. P.O.H. Removed the blow out preventers and installed a 12" - 900 x 10" - 600 casing hanger spool, $10^{\prime \prime}-600 \times 10^{\prime \prime}-600$ spacer spool, and l0" - 600 WKM master valve. Reinstalled the blow out preventers. Ran 75 joints (3095.15') of 7", 26\#, K-55, LT\&C casing into the tie-back receptacle at 3084^{\prime}. . Picked up the blow out preventers and installed the casing head slips. The 7" liner was landed with stab-in mandrel, 14" inside the tieback receptacle, leaving room for $38^{\prime \prime}$ of free travel to the bottom of the receptacle. Reinstalled the blow out preventers and R.I.H. with a 6-1/8" bit to 4710^{\prime}.

7735' P.O.H. laying down drill pipe and tools. Closed the master valve and removed the blow out equipment. Pumped water from sump into well followed by 400 bbls of fresh water. Applied 400 psig air surface pressure to well. Closed well in and released the rig.

Cove Fort Sulphurdale Unit Well -42-7

CASING DETAIL

NO. JTS.	DESCRIPTION	LENGTH	TOP	BOTTOM
. 1	30" Conductor Pipe	--	--	35.00
	20" CASING			
6	94\# H-40 Buttress Casing	--	Surface	251
	13-3/8" CASING			
1	HowCo Guide Shoe	2.05	1549.95	1552
40	13-3/8" 54.5\# K-55 Buttress	1525.70	24.25	1549.95
	Casing			
1	.12" $900 \times 13-3 / 8{ }^{\prime \prime}$ WKM S.O.W.	1.75	22.50.	24.25
	Casing Head			
	Landed Below zero	22.50	--	22.50
	TOTAL :	1552.00		
	9-5/8' CASING			
1	HOWCO Guide Shoe	1.98	3355.02	3357
2	9-5/8! ${ }^{\text {- }}$ (6\# K-55 Buttress Casing	79.06	3275.96	3355.02
1	HOWCO Baffle Collar	1.74	3274.22	3275.96
32	9-5/8" 36\# K-55 Buttress Casing	1259.55	2014.67	3274.22
1	Lynes E.C.P. Packer	9.65	2005.02	2014.67
1	HOWCO F.O. Cementing Tool	4.85	2000.17	2005.02
$\begin{array}{r} 17 \\ 1 \end{array}$	9-5/8" 36\# K-55 Buttress Casing	649.38	1350.79	2000.17
	9-5/8" ${ }^{\prime \prime}$ 13-3/8" Burns Liner :	5.28	1345.51	1350.70
	Landed Below Zero	1345.51		
	TOTAL :	3.357 .00		
	7" LINER			
1	7" HOWCO Guide Shoe .	1.58	7613.42	7615
86	7" 26\# K-55 8RD (Blank and Slotted)	3602.51	4010.91	7613.42
1	7" Lynes E.C.P. Packer	11.60	3999.31	4010.91
1	7" Lynes Cement Collar	2.35	3996.96	3999.31
22	7" $26 \#$ K-55 8RD Blank	904.07	3092.89	3996.96
1	7" x 9-5/8" Midway Liner Hanger		3084.19	3092.89
	Landed Below Zero	3084.19		
	TOTAL:	7615.00		
	7" TIE-BACK			
1	7" 26\# K-55 Cut-off	$\begin{gathered} 36.04 \\ \text { (14" tie-back) } \end{gathered}$	3049.13	3085.17
74	7" 26\# K-55 8RD Blank	3028.63	20.50	3049.13
1	$\begin{aligned} & 12 " 900-10 " 600 \text { with } 7 " \text { Slips } \\ & \text { and Packer - Shaffer Casing } \end{aligned}$	2.00	18.50	20.50
	Hanger			
	R.K.B.	18.50	--	18.50
	TOTAL:	3085.17		.

7", 26\#, K-55, LT and.C 8 Rd;. Blank and Slotted Liner Detail

Type Liner	Bottom	Top
Blank	7613.42	7576.37
slotted	7576.37.	7532.67
Blank	7532.67	7496.38
Blank	7496.38	7453.16
Blank	7453.16	7413.66
Blank	7413:66	7375.40
Slotted	7375.40	7331.60
Slotted	7331.60	7288.93
Blank	7288.93	7249.65
Slotted	7249.65	7207.35
Blank	7207.35	7167.41
Blank	7167.41	7128.75
Blank	7128.75	7085.60
Blank	7085.60	7047.53
Slotted	7047.53	7005.18
Slotted	7005.18	6962.65
Blank	6962.65	6919.24
Blank	6919.24	6879.00
slotted	6879.00	6836.82
Slotted	6836.82	6794.14
Blank	6794.14	6759.14
Blank	6759.14	6716.52
slotted	6716.52	6673.82
slotted	6673.82	6631.08
Blank	6631.08	6587.38
Blank	6587.38	6550.91
Blank	6550.91	6508.95
Blank	6508.95	6456.27
Blank	6465.27	6422.33
slotted	-6422.33	6379.98
slotted	6379.98	6338.46
slotted	6338.46	6296.31
Blank	6296.31	6254:03

Type Liner	Bottom	Top
Blank	6254.03	6210.40
Blank	6210.40	6168.80
slotted	6168.80	6126.53
Slotted	6126.53	6084.30
Slotted	6084.30	6039.92
Blank	6039.92	5996.47
Slotted	5996.47	5953.12
Slotted	5953.12	5911.36
slotted	5911.36	5874.40
Slotted	5874.40	5833.54
Blank	5833.54	5790.00
Blank	5790.00	5746.14
Blank	5746.14	5702.76
Biank	5702.76	5660.28
Slotted	5660.28	5618.36
Slotted	5618.36	5575.32
Slotted	5575.32	5533.71
Blank	553.3 .71	5489.86
Blank	5489.86	5447.44
Blank	5447.44	5404.51
Blank	5404.51	5361.59
Blank	5361.59	5318.62
Slotted	5318.62	5277.59
Slotted	5277.59	5233.09
slotted	5233.09	5190.96
Slotted	5190.96	5153.71
Slotted	5153.71	5111.78
Blank	. 5111.78	5067.16
Blank	5067.16	5023.73
Blank	50.23 .73	4988.53
Slotted	4988.53	4945.97
Slotted	4945.97	4902.54
Slotted	4902.54	4860.32
Blank	4860.32	4818.25
Blank	4818.25	4775.01

Type Liner	Bottom	Top
Blank	4775.01	4732.61
Slotted	4732.61	4691.44
Slotted	4691.44	46.48.56
Slotted	4648.56	4605.59
Blank	4605.59	4561.36
Blank	4561.36	4516.78
Blank	4516.78	4472.96
Slotted	4472.96	4432.33
Slotted	4432.33	4397.18
Slotted	4397.18	. 4353.25
Blank	4353.25	4310.30
Blank	4310.30	4267.72
- Blank	4267.72	4226.99
Blank	4226.99	4183.81
Blank	4183.81	4138.97
Blank	4138.97	4095.99
Blank	4095.99	4053.22
Blank	4053.22	4010.91
Lynes Packer	4010.91	3999.31
Cementing Collar	3999.31	3096.96
22 JTS. Blank	3096.96	3092:89
Liner Hanger	3092.89	3084.19

- Cove Fort Sulphurdă_e Unit 42-7

DEVIATION SURVEYS

MEASURED DEPTH	DRIFT ANGLE	TRUE VERTICAL DEPTH	MAXIMUM POSSIBLE COURSE DEVIATION
116^{\prime}	$0^{\circ} 45^{\prime}$	115.99	1.52
143^{\prime}	$0^{\circ} 45^{\prime}$	142.99	1.87.
232^{\prime}	$1^{\circ} 0^{\prime}$	231.97	3.42
306^{\prime}	10°	305.96	4.71
420^{\prime}	$2^{\circ} 0^{\prime \prime}$	419.89	8.69
$581{ }^{\prime}$	$1^{\circ} 15^{\prime}$	580.86 "	12.20
704^{\prime}	$1^{\circ} 15^{\prime}$	703.83	14.88
865^{\prime}	$1^{\circ} 0^{\prime}$	864.80	17.69
1022^{\prime}	$1^{\circ} 15^{\prime \prime}$	1021.76	21.11
1210°	$1^{\circ} 30^{\prime}$	1209.70	26.03
1550^{\prime}	$1^{\circ} 0^{\prime}$	1549.65	31.96
1750°	$0^{\circ} 15^{\prime}$	1749.65	32.83
1938°	$0^{\circ} 15^{\prime}$	1937.65	33.65
2730^{\prime}	Not Good		
2776^{\prime}	$3^{\circ} 0^{\prime}$	2774.50	77.51
3192'	$5^{\circ} 15^{\prime}$	3188.75	115.57
3525.'	$5^{\circ} 30^{\prime}$	3520.22	147.49
3930^{\prime}	Not Good		
$4374{ }^{\prime}$	$5^{\circ} 15^{\prime}$	4365.66	225.17
5156 ${ }^{\prime}$	$5^{\circ} 30^{\prime}$	5144.06	300.12
5570'	$5^{\circ} 0^{\prime \prime}$	5556.48	336.20
6440^{\prime}	$4^{\circ} 30^{\prime}$	6423.80	40.4 .46
7482^{\prime}	Not Good		
7250^{\prime}	$4^{\circ} 45^{\prime}$	7231.02	471.53
7735 ${ }^{\prime}$	$4^{\circ} 45^{\prime \prime}$ **	7714.35	511.69

** No survey was taken at total depth of 7735 so the previous drift angle of $4^{\circ} 45^{\prime}$ was used to extrapolate to total depth.

FISHING

Fishing Job \#I

Well Depth: 746'
Date: : $12 / 8$ to 12/9/77
Cause: Parted pin on stabilizer
Results: Fish was recovered with overshot

DETAILS OF OPERATION
While drilling a $17-1 / 2$ " hole through Andesite, pump pressure was lost. When pulling out of the hole, the pin on the bottom stabilizer parted; leaving a bit, 3 point reamer and one $9^{\prime \prime}$ drill collar in the hole.

The top of the fish was located at 715'. An 11-3/4" Bowen overshot with an $8^{\prime \prime}$ grapple was run in the hole and the fish was recovered immediately.

Fishing Job \#2
Well Depth: 1-452'
Date : 12/15/77
Cause : Pin on stabilizer twisted off
Results. : Fish was recovered with overshot

DETAILS OF OPERATION
While drilling a $17-1 / 2^{\prime \prime}$ hole through Andesite the pin on the top stabilizer twisted off. A bit, 3 point reamer, stabilizer, shock súb, and three $8^{\prime \prime}$ drill collars were left in the hole. An overshot was run in the hole and the fish was recovered without prob-

SCHLUMBERGER

LOGGING DATA

DATE	-TYPE OF LOG RUN	LOGGED INTERVAL	TOTAL DEPTH
1 Feb. 78	Dual Induction-Laterolog with linear correlating log; SP	1520!-3444'	3447.
1 Feb. 78	Compensated Neutron Log; GR	50'-3428'	3445^{\prime}
1 Feb. 78	Temperature Log	1320'-3447	3447'
4 Feb .78	Cement Bond Log	162' - 3314'	3323'
4 Feb. 78	Temperature Log	0^{\prime} - 3058'	3065'
28 Feb. 78	Dual Induction-Laterolog with linear correlation log; SP	3358' - 7692'	7695'
28 Feb. 78	Borehole Compensated Sonic Log; GR-	3358' - 7674'	$7681{ }^{\prime}$
$28 \cdot \mathrm{Feb} .78$	Compensated Neutron-Formation Density with GR, Caliper	3358' - 7679'	7680°
28 Feb. 78	Temperature Log	$300^{\prime \prime}-7550$	7680°
1 Mar. 78	Four-arm continuous Dipmeter	3358'-6003'	6004 '
	$\frac{\text { "GO-INTERNATIONAL" }}{\text { LOGGING DATA }}$		
DATE	TYPE OF LOG RUN	LOGGED INTERVAL	TOTAL DEPTH
26 Feb. 78	Temperature Log	3450' - 7327	7332'
26 Feb .78	Temperature Log	300'-7327'	$7332{ }^{\prime}$
27 Feb. 78	Temperature Log	$300^{\prime}-7327^{\prime}$	7332^{\prime}
41 Feb .78	Temperature Log	1200' - 7320^{\prime}	7332 '

heno. $8-1 / 7 C O 2$

TDENOTE GY (N)-NO. (L)-LIGGT, (M)-MEDIUMOR (H)-HEAVY ROUNDING OF GAGE

-DENOTE BY (N)-NO, (L)-LIGHT. (M)-MEDIUM OR (H)-HEAVY ROUNDING OF GACE

CEMENTING

LOST CIRCULATION PLUGS

During drilling operations at the Cove Fort-Sulphurdale Unit well 42-7, drilling fluids were intermittently lost to the formation while drilling through fractures and/or void spaces. Attempts were made to seal off these voids and fractures while drilling from the surface to a depth of 3448' in order to effectively cement casing strings and to circulate formation cuttings to the surface. The slurries used to fill these voids and fractures are described below.

Lost circulation first occurred after drilling 17-1/2" hole to 1494'. O.E.D.P. was hung at 1457^{\prime} and $198 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite, 40% Silica Flour, 3% Gel, 0.5% CFR-2 and $0.3 \% \mathrm{HR}-7$ was pumped through it (plug \#l). The wellbore was filled with 300 barrels of mud. The top of the cement plug was located at 1445^{\prime} which was 77^{\prime} below the theoretical. fill. This indicated a loss of $82 \mathrm{ft}^{3}$ of cement to the formation.

The fluid was squeezed into the formation with a surface pressure of 100 psig. O.E.D.P. was hung at 1353^{\prime} and $200 \mathrm{ft} \mathrm{J}^{\prime}$ of class "B" cement premixed 1:I with Perlite, 40% Silica Flour, 3% Gel, 0.5% CFR-2 and $0.3 \% \mathrm{HR}-7$ was pumped into the hole (plug \#2). The wellbore was filled with 75 barrels of mud and a surface pressure of 100 psig was applied with no fluid loss. The top of the cement was located at 1335^{\prime}. This was ten feet below the theoretical fill indicating a small loss of cement to the formation.

A 12-1/4" hole was drilled to 2244: before again losing circulation. O.E.D.P. was hung at 2202^{\prime} and $250 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite, 40% Silica Flour and 3% Gel was pumped
into the hole (plug \#3). The top of the cement was found at 2119' which was 180^{\prime} below the theoretical fill. This indicated a loss of $147 \mathrm{ft}^{3}$ of cement to the formation.

The wellbore was filled with 300 barrels of mud and O.E.D.P. was hung at 2046'. One hundred and twenty cubic feet of class "B" cement premixed I:l with Perlite, 40% Silica Flour and 3% Gel was pumped into the hole (plug ${ }^{\# 4} 4$). Found top of plug \#4 at 2119', same as top of plug \#3, indicating a total loss of plug \#4 to the formation.

Left O.E.D.P. at 2046' and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed $1: 1$ with Perlite, 40% Silica Flour and 3% Gel (plug \#5). Found top of cement at 2084', 270' below theoretical fill. This indicated a loss of approximately $220 \mathrm{ft}^{3}$ of cement to the formation.

Filled the wellbore with 250 barrels of mud. Pumped $150 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite, 40% Silica Flour and 3% Gel through O.E.D.P. hung at 2060^{\prime} (plug $\frac{\|}{\nabla} 6$). Found top of firm cement at 1990'. 90° below theoretical fill, indicating a loss of approximately $75 \mathrm{ft}^{3}$ of cement to the formation.

Cleaned out cement to 2214' and lost full returns. Pumped 396 ft 3 of class "B" cement premixed l:l with Perlite, 40% Silica Flour and 3% Gel through O.E.D.P. hung at 2172° (plug \#7). Filled the wellbore with mud and squeezed away fluid with 200 psig surface pressure. Found top of cement at $1940^{\circ}, 210^{\circ}$ below theoretical fill. Approximately $170 \mathrm{ft}^{3}$ of cement was lost to the formation.

Cleaned out cement to 2244^{\prime} and lost returns. Continued drilling 12-1/4" hole to 2250!. Hung O.E.D.P. at 2205' and pumped $142 \mathrm{ft}^{3}$ of "Thix-Set" cement with 13% Gilsonite and $1 / 2 \#$ Flocele per sack: of cement (plug \#8). Unable to fill the wellbore with 450 barrels of mud. Located top of cement at 2222' and cleaned out to 2230^{\prime}. Top of cement was 145' below theoretical fill which indicates a loss of approximately $120 \mathrm{ft}^{3}$ of cement to the formation.

Hung O.E.D.P. at 1829^{\prime} and pumped $142 \mathrm{ft}^{3}$ of cement premixed with 13\% Gilsonite and $1 / 2 \#$ Flocele per sack of cement (plug \#9). Unable to fill the wellbore with 200 barrels of mud. Found top of cement at 2230^{\prime} indicating a. 100% loss of plug $\# 9$ to the formation:

Hung O.E.D.P. at 1860^{\prime} and pumped $240 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite, 40% Silica Flour and 3% Gel (plug \#10). Again, located top of cement at 2230° indicating a 100% loss of plug \#10 to the formation.

Hung O.E.D.P. at 2209 and pumped $120 \mathrm{ft}^{3}$ of class "B" cement premixed 1:l with Perlite and 3\% Gel. (plug \#ll). Found top of cement at 2230^{\prime} indicating plug \#ll was 100% lost to the formation.

Hung O.E.D.P. at 2169^{\prime} and pumped $193 \mathrm{ft}^{3}$ of class. "B" cement premixed 2:l with Perlite, 40% Silica Flour and 3% Gel (plug \#12). Ran in the hole to top of cement at 2230', indicating that 100% of plug \#12 was lost to the formation.

Hung O.E.D.P. at 2170' and pumped $180^{\circ} \mathrm{ft}{ }^{3}$ of class "B" cement premixed 1:1 with Perlite, 40% Silica Flour and 3% Gel (plug \#13).

Located top of cement at 1953', 60' above theoretical fill. This indicates a bridge, fill, or backflow of approximately $50 \mathrm{ft}^{3}$ of cement into the wellbore. Filled the wellbore with 325 barrels of mud and lost returns after circulating for two hours.

Hung O.E.D.P. at 1946' and pumped $100 \mathrm{ft}^{3}$ of "Thix-Set" cement premixed with 19\% Gilsonite, 0.5\% Flocele and 0.1\% Tuff-Plug (plug \#14). Filled the wellbore with 75 barrels of mud and found top of firm cement at 1861^{\prime}. This was 30^{\prime} below theoretical fill, indicating a loss of 25 ft 3 of cement to the formation.

Cleaned out cement to 2250' and drilled 12-1/4" hole to $2342^{\prime \prime}$. Drilled without returns from 2275' to 2342'.

Hung O.E.D.P. at 2201' and pumped. $112 \mathrm{ft}^{3} \mathrm{H}_{2} \mathrm{O}, 112 \mathrm{ft}$ of 6% CaCl_{2} water with $400 \#$ of plaster sand, $28 \mathrm{ft}^{3} \mathrm{H}_{2} \mathrm{O}$ and 128 ft 3 NaSi_{2} mixed l:l with $\mathrm{H}_{2} \mathrm{O}$ followed by $223 \mathrm{ft}^{3}$ of "Thix-Set" cement premixed with $25 \#$ Gilsonite, $1-1 / 4 \#$ Flocele and $1 / 8 \#$ Tuff-Fiber per sack of cement (plug \#15). Found top of cement at 2242', 172 ft3 below theoretical fill, indicating a loss of approximately $140 \mathrm{ft}^{3}$ of cement to the formation. Unable to fill the wellbore with 400 barrels of mud.

Hung O.E.D.P. at 2232' and pumped $112 \mathrm{ft}^{3}$ gel water with WG-1.l, CL-11 with $1680 \#$ of Unibeads, $400 \#$ Gilsonite, and $420 \#$ TLC- 80 followed by $59 \mathrm{ft}^{3}$ of class " B " cement with $2 \% \mathrm{CaCl}_{2}$ and $100 \#$ Flocele (plug \#16). Found top of cement at 2242', indicating that all of plug : $n 16$ was lost to the formation.

Left O.E.D.P. at 2232^{\prime} and pumped $112 \mathrm{ft}^{3}$ of gel water with WG-11, CL-11 with $1680 \#$ Unibeads, $420 \#$ Gilsonite and $420 \#$ TLC- 80 followed by $118 \mathrm{ft}^{3}$ of class "B" cement premixed with $2 \% \mathrm{CaCl}_{2}$ and 200% Flocele (plug \#17). Found top of cement at 2139', 40' below theoretical fill, indicating that approximately $30 \mathrm{ft}^{3}$ of cement was lost to the formation. Filled the wellbore with 310 barrels of mud.

Cleaned out cement to 2244^{\prime}. Hung O.E.D.P. at 2201' and pumped $56 \mathrm{ft}^{3}$ Frac Gel with WG-11, CL-11, $840 \#$ Unibeads, $210 \#$ Gilsonite, and 210 \# TLC-80 followed by $210 \mathrm{ft}^{3}$ of class "B" cement with 2% CaCl_{2} and $75 \#$ Flocele (plug \#18). Filled the wellbore with 170 barrels of mud. Found top of cement at 2184', 200' below theoretical fill, indicating a loss of approximately $165 \mathrm{ft}^{3}$ of cement to the formation.

Cleaned out cement to 2244'. Hung O.E.D.P. at 2232. and pumped $56 \mathrm{ft}^{3}$ Frac Gel with $25 \#$ WG-ll and $7 \frac{4}{\pi} \mathrm{CL}-11$ r.ll2 ft^{3} of 3% CaCl_{2} water, $56 \mathrm{ft}^{3}$ water, $258 \mathrm{ft}^{3} \mathrm{NaSi}_{2}$ mixed $1: 1$ with water, $56 \mathrm{ft}^{3}$ water and $136 \mathrm{ft}^{3}$ of class " B " cement premixed with 2% CaCl_{2} and $1 / 2 \#$ Flocele per sack (plug \#19). Ran in the hole to 2239' with no trace of plug, \#19:

Hung O.E.D.P. at 2239^{\prime} and pumped $112 \mathrm{ft}^{3}$ of Frac-Gel with $500 \#$ Gilsonite, $500 \#$ Unibeads, $350 \#$ mothballs, $50 \#$ WG-11 and 15\# CL-11 followed by: $136 \mathrm{ft}^{3}$ of class " B "cement with $2 \% \mathrm{CaCl}_{2}$ and $1 / 2$ \# of Flocele per sack of cement (plug \#20). Ran in the hole to 2240^{\prime} with no trace of plug ${ }^{W} 20$.

Hung O.E.D.P. at 2232^{\prime} and pumped $112 \mathrm{ft}^{3}$ of $3 \% \mathrm{CaCl}_{2}$ water, $56 \mathrm{ft}^{3}$ water and $134 \mathrm{ft}^{3} \mathrm{NaSi}_{2}$ followed by $98 \mathrm{ft}^{3}$ of class "B" cement with $2 \% \mathrm{CaCl}_{2}, 6 \%$ Gilsonite and $1 / 2 \#$ of Flocele per sack of cement (plug \#21). Found top of cement at 2187^{\prime}, approximately 60^{\prime} below theoretical fill. This indicates a loss of approximately $50 \mathrm{ft}^{3}$ of cement to the formation.

Cleaned out cement to 2280^{\prime} and hung O.E.D.P. at 2263'. Pumped $112 \mathrm{ft}^{3}$ of water, $112 \mathrm{ft}^{3}$ of CaCl_{2} water, $67 \mathrm{ft}^{3}$ of water and $67 \mathrm{ft}^{3} \mathrm{NaSi}_{2}$. Pulled pipe to 2232^{\prime} and pumped. $88 \mathrm{ft}^{3}$ of class "B" cement premixed with $2 \% \mathrm{CaCl}_{2}$, 12% Gilsonite and $1 / 2 \#$ of Flocele per sack of cement (plug \#22). Found top of plug \#22 at 2240', approximately 70.' below theoretical fill, indicating a loss of $60 \mathrm{ft}^{3}$ of cement to the formation:. Unable to fill the wellbore with water.

Hung O.E.D.P. at 2233^{\prime} and pumped $88 \mathrm{ft}^{3}$ of class "B" cement premixed with $2 \% \mathrm{CaCl}_{2}, 8 \#$ Gilsonite and $1 / 2 \#$ Flocele per sack of cement (plug \#23). Found top of cement at 22.40^{\prime} indicating that all of plug $\# 23$ was lost to the formation.

Hung O.E.D.P. at 2232^{\prime} and pumped 112 ft. of Frac-Gel with 500% Unibeads, 150\# Flocele, 150\# Gilsonite, $150 \#$ mothballs, $75 \#$ WG-ll and 15 \# CL-ll followed by $161 \mathrm{ft}^{3}$ of class "B" cement premixed 2: 1 with Perlite, 40% Silica Flour and 3% Gel, followed by $98 \mathrm{ft}^{3}$ of class "B". cement with $2 \% \mathrm{CaCl}_{2}$, l/2\# Flocele and $8 \#$ Gilsonite per sack of cement (plug \#24). Found top of cement at 2240' indicating that all of plug \#24 was lost to the formation.

With O.E.D.P. hung at 2232', pumped $112 \mathrm{ft}^{3}$ of water, $112 \mathrm{ft}^{3}$ of $3 \% \mathrm{CaCl}_{2}$ water, $28 \mathrm{ft}^{3}$ water and $67 \mathrm{ft}^{3} \mathrm{NaSi}_{2}$. Pulled drill pipe to 2201: and pumped $161 \mathrm{ft}^{3}$ of class "B" cement premixed 2:1 with Perlite, 40% Silica Flour, $3 \% \mathrm{Gel}$ and $3 \% \mathrm{CaCl}_{2}$ (plug \#25). Found top of cement at 2215', 170' below theoretical fill. This indicates a loss of approximately $140 \mathrm{ft}^{3}$ of cement to the formation. Unable to fill the wellbore with 300 barrels of mud.

Hung O.E.D.P. at 2201' and pumped ll2 ft ${ }^{3}$ of Frac-Gel with $75 \frac{\#}{\#}$ Flocele, $100 \#$ Unibeads, and $300 \# \mathrm{LCM}$ followed by $353 \mathrm{ft}{ }^{3}$ of class "B" cement premixed l:l with Perlite, 40% Silica Flour, 3% Gel and $3 \% \mathrm{CaCl}_{2}$ (plug \#26). Filled the wellbore with 30 barrels of water. Located top of hard cement at 1842', 60' below theoretical fill. This shows a loss of approximately $50 \mathrm{ft}{ }^{3}$ of cement to the formation.

Cleaned out cement to 2342' and continued drilling 12-1/4" hole to 2605^{\prime} with intermittent returns.

Hung O.E.D.P. at 2575^{\prime} and pumped $174 \mathrm{ft}^{3}$ of "Thix-Set" cement with $2 \% \mathrm{CaCl}_{2}$ and $10 \#$ of Gilsonite per sack of cement (plug ${ }^{\#} 27$). Found top of cement at 2468', 75' below theoretical fill. Sixty cubic feet of cement was lost to the formation.

Hung O.E.D.P. at 2448^{\prime} and pumped $175 \mathrm{ft}^{3}$ of "Thix-Set" cement premixed with $2 \% \mathrm{CaCl}_{2}$ and $10 \#$ Gilsonite per sack of cement (plug \#28). Located top of cement at 2449', 195' below theoretical fill. Lost $160 \mathrm{ft}^{3}$ of plug \#28 to the formation.

Pumped $247 \mathrm{ft}^{3}$ of class " B " cement premixed $2: 1$ with perlite, 5\% Gel and $2 \% \mathrm{CaCl}_{2}$ through O.E.D.P. at 2418^{\prime} (plug \#29). Located top of cement at 2248', 100' below theoretical fill. Eighty cubic feet of plug \#29 was lost to the formation.

Pumped $367 \mathrm{ft}^{3}$ of class "B" cement premixed 2:l with Perlite, 5\% Gel and $2 \% \mathrm{CaCl}_{2}$ (plug \#30). Located top of firm cement at 2089', 290' below theoretical fill, indicating a loss of approximately $240 \mathrm{ft}^{3}$ of cement to the formation. Unable to fill the wellbore.

Cleaned out cement to 2165' and hung O.E.D.P. at 2139'. Mixed and pumped $215 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite, 4% Gel and $2 \% \mathrm{CaCl}_{2}$ (plug \#31). Located top of cement at 2077°, 175' below theoretical fill. Approximately $145 \mathrm{ft}^{3}$ of plug \#31 was lost to the formation.

Hung O.E.D.P. at 2046^{\prime} and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed 1:l.with Perlite; 40% Silica Flour and 3\% Gel (plug \#32). Unable to fill the wellbore with 500 barrels of water. Ran in the hole and located top of cement at 188^{\prime}, 115^{\prime} below theoretical fill. Approximately $95 \mathrm{ft}^{3}$ of cement was lost to the formation.

Hung O.E.D.P. at 1860^{\prime} and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed 1:l with Perlite, 40% Silica Flour and 3\% Gel (plug \#33). Found top of cement at 1697^{\prime}, approximately 120^{\prime} below theoretical fill. One hundred cubic feet of plug \#33 was lost to the formation.

Hung O.E.D.P. at 1675" and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite, 40\% Silica Flour and 3\% Gel: (plug \#33).

Found top of cement at 1697', approximately 120^{\prime} below theoretical fill. One hundred cubic feet of plug \#33 was lost to the formation.

Hung O.E.D.P. at 1675^{\prime} and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite with 40% Silica Flour, 3% Gel and 2% CaCl_{2} (plug \#34). Filled the wellbore with 125 barrels of water. Found top of cement at 1553', 160^{\prime} below theoretical fill, indicating a loss of $130 \mathrm{ft}^{3}$ of cement to the formation,

Squeezed away $168 \mathrm{ft}^{3}$ of fluid at a surface pressure of 250 psig. Hung O.E.D.P. at 1490^{\prime} and pumped $250 \mathrm{ft}^{3}$ of class "B" cement premixed 1:1 with Perlite, 40% Silica Flour and 3% Gel. (plug \#35).

Squeezed away $14 \mathrm{ft}^{3}$ of cement at 900 psig surface pressure. Ran in the hole and located top of cement at 1368* indicating a total loss of approximately $100 \mathrm{ft}^{3}$ of cement to the formation.

Cleaned out cement to 2606° with good returns and drilled 12-1/4" hole from 2606^{\prime} to 2804' using aerated fluid and pumping water without returns. Hung O.E.D.P. at 2765^{\prime} and pumped $312 \mathrm{ft}^{3}$ of class "B" cement premixed $1: l$ with Perlite, 40% Silica Flour 0.5% CFR-2 and $3 \% \mathrm{Gel}$ (plug \#36). Located top of cement at 27.54%; indicating a loss of $270 \mathrm{ft}^{3}$ of cement to the formation.

Hung O.E.D.P. at 2731" and pumped $312 \mathrm{ft}^{3}$ of class "B" cement premixed l:l with Perlite, 40% Silica Flour and 3\% Gel (plug \#37). Located top of plug \#37 at 2543', 170' below theoretical fill. Approximately $140 \mathrm{ft}^{3}$ of cement was lost to the formation.
cleaned out cement and drilled 12-1/4" hole to 3448'. Ran and cemented 9-5/8" casing with. shoe at 3357'. Continued drilling 8-3/4" hole to total depth with aerated fluid and by injecting water without returns.

CASING CEMENTATION

SUMMARY

In the following section, a general description of the cement slurries used for casing is given. A detailed description with volumes used, well depth, and casing depth can be found in the enclosed cement detail.

The $20^{\prime \prime}$ casing was landed in $26^{\prime \prime}$ hole at 251^{\prime} with a hole depth at 255'. The cement slurry was composed of $649 \mathrm{ft}^{3}$ of class "B" cement with $2 \% \mathrm{CaCl}_{2}$ as an accelerator. It was displaced with $464 \mathrm{ft}^{3}$ of water; displacing $175 \mathrm{ft}^{3}$ of excess cement to the surface.

The $13-3 / 8^{\prime \prime}$ casing was cemented in one stage with a retarded, light weịght slurry, followed by a more dense, unretarded slurry, for placement at the casing shoe. The casing shoe was set at•1552' with the baffle at 1513'. The light slurry was run ahead of the heavy slurry in an effort to reduce the hydrostatic head and thereby the pressure exerted on the weaker formations. It consisted of class "B" cement with 40% Silica Flour mixed in a one to one ratio with Perlite and 3\% Gel. The Perlite and Gel are both additives to reduce the specific gravity of the slurry. The slurry was retarded to a desired temperature to allow sufficient placement time.

The more dense slurry was class "B" cement with 40% Silica Flour. Its application was primarily to provide a well cemented shoe with hard set cement of high compressive strength. Both slurries were
displaced. with water and good fluid returns were obtained at the surface.

The 9-5/8." casing was set with the shoe at 3357^{\prime}, the baffle at 3278^{\prime}, a Lynes ECP packer at 2014^{\prime} with a Halliburton F.O. cementer at 2004', and a Burns hanger at 1345'. A two stage cementation process was applied because of the height of the cement column and the resulting high pressures that would occur in a one stage process. The first stage consisted of a light weight slurry followed by a heavier slurry. Again the light slurry was run first to reduce the hydrostatic head to reduce break down of the weaker formations. It consisted of class "B" cement with 40% Silica Flour mixed in a one to one ratio with Perlite and 3% Gel. As in cementing the $13-3 / 8^{\prime \prime}$ casing, it was retarded so that it would allow sufficient pumping time due to the elevated hole temperatures. The light weight slurry was followed by the more dense slurry of class "B" cement with 40% Silica Flour to place extremely dense cement around the shoe.

There was difficulty in inflating the Lynes packer, but it was inflated with 1500 psi surface pressure. An unretarded light weight slurry consisting of class."B" cement with 40% Silica Flour, mixed in a one to one ratio with perlite and $3 \% \mathrm{Gel}$, was pumped through the F.O. ports at 2004'. The cement was allowed to set and the liner lap was tested to a gradient of $0.86 \mathrm{psi} / \mathrm{ft}$ and held for 22 minutes without a loss of pressure indicating a satisfactory liner lap test.

Prior to completion of CFSU 42-7, a cold water entry immediately below the $9-5 / 8^{" ~ c a s i n g ~ s h o e ~ w a s ~ i n d i c a t e d ~ f r o m ~ t e m p e r a t u r e ~ s u r v e y s . ~}$ It was necessary, then, to seal off the cold water entry from the hot production water. A 7". combination perforated and blank liner was run after drilling the well to total depth. The liner was landed with the shoe at 7615', a baffle plate at 4053', a Lynes E.C. packer at 3999', a cement collar at 3997' and the liner hanger at 3084'. The blank section of the liner was positioned on top of the perforated section, across from the cold water entry, making it possible to pump cement into the annulus around the blank portion of the liner and thereby eliminating the possibility of communication between hot and cold waters.

In order to perform this operation, the Lynes E.C. inflatable packer was installed between the blank and slotted liners with two B \& W metal expanding. cement baskets installed just below the packer. Both the baskets and packer were used to seal the annulus below the blank liner to prevent the cement slurry from falling down the annulus and plugging the perforated liner slots. The drillable baffle seal plate was placed inside the $7^{\prime \prime}$ casing below the packer to keep the cement slurry from going down the inside of the liner. A hydraulically activated cement port collar was placed above the Lynes E.C. packer.

Pressure, built up in the pipe from cement pumped down the liner against the baffle plate, inflated the Lynes packer against the hole wall. Application of additional pressure from the cement pumps opened the ports in the cement collar allowing cement to flow into the annulus and up past the water entry and liner lap.

It was found that insufficient cemerit was pumped in the first stage to seal off the weak zone. It was necessary to squeeze cement downward around the 7 " casing. liner hanger into that zone. In all, six squeeze jobs were necessary. The squeeze jobs were performed by setting a Halliburtion RTTS packer in the 9-5/8" casing and pumping cement below it. A total of $3572 \mathrm{ft}^{3}$ cement was required to seal the water entry and liner lap.

The first stage of the cement job consisted of class "B" cement with 40\% Silica Flour mixed in a one to one ratio with Perlite followed by a heavier slurry of " B " cement with 40% Silica Flour. Again the heavier slurry was applied for competency. The cement ports were closed with 800 psi and preparations were made to squeeze the liner lap. The exact mixture and volume of each slurry can be found in the cement detail. In general, the various slurries were squeezed around the casing and liner hanger in an attempt to place good cement from the Lynes packer at 3999' to the liner hanger at 3084'. All of the slurries applied contained class "B". cement mixed with 40% Silica Flour. Most of the slurries also contained Perlite, for it was felt that a lighter slurry would not be lost to the formation as easily. However, more dense slurry in the first squeeze job and the entire slurry in the second squeeze job were mixed without Perlite. The lap was tested twice without success. After the sixth squeeze job was completed, the cement, cement collar, and baffle plate were drilled out, establishing a competent cement bond from the liner top of the 7" liner to the Lynes packer and exposure of uncemented perforated liner from the shoe at 7615' to the Lynes packer at 3999'.

CONCLUSION: LOST CIRCULATION CEMENTING,
CASING CEMENTING

The basic reasons behind placement of the many cement plugs to eliminate loss of fluid in both the $17-1 / 2 "$ and $12-1 / 4 "$ wellbore was primarily to allow the placement of a competent column of cement around the $13-3 / 8^{\prime \prime}$ casing string and 9-5/8" liner, casing string. The cement slurry, in a fluid state, weighing in excess of the mud employed to drill the hole, would have readily escaped to the weak formations and/or voids, never reaching the surface in the case of the $13-3 / 8 "$ string, or the liner top in the case of the $9-5 / 8 "$ string.

In order to establish a competent column of cement surrounding a desired casing string, any loss of circulation to the formation must be reduced to a minimal amount. In the case of CFSU 42-7; all of the losses could be considered severe deterring proper cementing practices until the losses were corrected by cementing and proper slurry design.

It should be understood that cementing was the single most costly service in drilling Cove Fort Sulphurdale 42-7. Huge amounts of cement were used for both loss circulation plugs and casing. Loss circulation plugs alone required $7412 \mathrm{ft}^{3}$ with casing requiring an additional $8950 \mathrm{ft}^{3}$. The total amount of cement used was $16,362 \mathrm{ft}^{3}$.

DATE	WELL DEPTH	OEDP DEPTH	$\begin{aligned} & \text { HOLE } \\ & \text { DIA. } \end{aligned}$	'PLUG	SLURRY VOLUME	PLUG COMPOSITION	RESULTS
12/16/77	1494	1457	17 1/2"	1	$198 \mathrm{ft}^{3}$.	Class "B" cement, perlite l-1, 40% Silica flour, 3% gel, 0.5% CFR-2 and 0.3\% HR-7.	Filled the wellbore with 300 barrels. Found top of cement at 1445'. Squeezed fluid into the formation with 100 psig surface pressure.
$12 / 16 / 77$ \%i	1494	1353	17 1/2"	2	$200 \mathrm{ft}^{3}$	Class "B" cement, perlite l-1, 40% Silica flour, 3% gel, 0.5% CFR-2 and $0.3 \% \mathrm{HR}-7$.	Filled the wellbore with 75 barrels of mud. Pressured wellbore to 100 psig surface pressure with no fluid loss. Found top of cement at 1335'.
12/26/77	2244	2202	$12 \mathrm{l} \mathbf{4}^{\prime \prime}$	3	$250 \mathrm{ft}^{3}$	Class "B" cement, perlite l-1, 40% Silica flour and 3% gel.	Found top of cement at 2119'. Unable to fill wellbore with 300 barrels of mud.
12/27/77	2244	2046	$121 / 4^{\prime \prime}$	4	$120 \mathrm{ft}^{3}$	Class "B" cement, perlite 1-1, 40% Silica flour and 3% gel.	Found top of cement at 2119^{\prime}, same as plug \#3. Apparently plug \#4 was completely lost to formation.
12/27/77	2244	2046	$121 / 4 "$	5	$250 \mathrm{ft}^{3}$	Class "B" cement, perlite 1-1, 40\% Silica flour, and 3% gel.	Found top of cement at 2084'. Unable to fill the wellbore with 250 barrels of mud.
12/27/77	2244	2060	$12 \mathrm{l} \mathbf{4}^{\prime \prime}$	6	$150 \mathrm{ft}^{3}$	Class "B" cement, perlite 1-1, 40% Silica flour, and 3% gel.	Found top of firm cement at 1990'. Lost partial returns from 2184' to 2214' and lost full returns at 2214'.
12/28/77	2244	2172	12 1/4"	7	$396 \mathrm{ft}^{3}$	Class "B" cement, perlite 2-1, 40% Silica flour and 3% gel.	Filled wellbore and squeezed away cement with 200 psig surface pressure. Found firm cement at 1940'. Cleaned cement and lost returns.

DATE	WELL DEPTH	OEDP DEPTH	$\begin{aligned} & \text { HOLE } \\ & \text { DIA. } \end{aligned}$	PLUG	SLURRY VOLUME	PLUG COMPOSITION	RESULTS
12/29/77	2250	2205	$121 / 4^{\prime \prime}$	8	$142 \mathrm{ft}^{3}$	Thix-set cement, 13\% Gilsonite, l/2 lb. Flocele/sack of cement.	Unable to fill the wellbore with 450 barrels of mud. Found top of cement at 2222'. Drilled cement to 2230^{\prime}.
12/30/77	2250	1829	12 1/4"	9	$142 \mathrm{ft}^{3}$	Thix-set cement, 13% Gilsonite, l/2 lb. Flocele/sack of cement.	Unable to fill wellbore with - 200 barrels of mud. Found top of cement at 2230'.
--131/77.	2250	1860	$12 \mathrm{l} \mathbf{4}^{\prime \prime}$	10	$240 \mathrm{ft}^{3}$	Class "B" cement, perlite l-1, 40% Silica flour, and 3% gel.	Ran in the hole to 2230' without finding plug \#lo.
12/31/77	2250	2209	12 1/4"	11	$120 \mathrm{ft}^{3}$	Class "B" cement, perlite l-l, and 3\% gel.	Ran in the hole to 2230° without finding plug \#ll.
1/7/78	2250	2169	12 1/4"	12	$293 \mathrm{ft}^{3}$	Class "B" cement, perlite 2-1, 40% Silica flour and 3% gel.	Ran in the hole to 2230' without finding plug \#12.
1/1/78	2250	2170	12 1/4"	13	$180 \mathrm{ft}^{3}$	Class "B" cement, perlite 1-1, 40% Silica flour, and 3% gel.	Found top of cement at 1953'. Filled the wellbore with 325 barrelis of mud. Lost returns after circulating : . for two hours.
1/2/78	2250	1946	$12 \mathrm{l} \mathbf{4}^{\prime \prime}$	14	$100 \mathrm{ft}^{3}$	Thix-set cement, 19\% Gilsonite, 0.1% Flocele and 0.1% TuffPlug.	Filled the wellbore with 75 barrels of mud. Found top of firm cement at 1861. C.O. cement to 2250'. Lost returns after drilling to 2275'.
1/4/78	2342	2201	$12 \mathrm{l} \mathbf{4 "}^{\prime \prime}$	15	$223 \mathrm{ft}^{3}$	$112 \mathrm{ft}^{3} \mathrm{H}_{2} 0,112 \mathrm{ft}^{3}$ 6\% CaCl H. O w/4002 plaster sand, $28 \mathrm{ift}^{3}$ NaSL_{2} mixed $1-1$ with $\mathrm{H}_{2} \mathrm{O}$.. Thix-set cement, 25\# Gilsonite, 1 1/4\# Flocele and 1/8\# Tuff fiber per sack of cement.	Found top of cement at 2242'. Unable to fill wellbore with 400 barrels of mud.

DATE	WELL DEPTH	$\begin{aligned} & \text { OEDP } \\ & \text { DEPTH } \end{aligned}$	$\begin{aligned} & \text { HOLE } \\ & \text { DIA. } \end{aligned}$	PLUG	SLURRY VOLUME	PLUG COMPOSITION	RESULTS
1/5/78	2342	2232	$12 \mathrm{l} \mathbf{4}^{\prime \prime}$	16		$112 \mathrm{ft}^{3}$ gel water with WG-ll, CL-11 with 1680 lbs . of unibeads, 420 lbs. Gilsonite and 420 lbs. TLC-80.	Found top of cement at 2242'. Apparently all of plug \#l6 entered the formation.
					$59 \mathrm{ft}{ }^{3}$.	Class "B" cement with $2 \% \mathrm{CaCl}_{2}$, and 100 lbs. Flocele.	
1/5/78	2342	2232	12 1/4"	17		$112 \mathrm{ft}^{3}$ gel water with WG-11, CL-ll with 1680 lbs. of unibeads, 420 lbs. Gilsonite and 420 lbs. TLC-80.	Found top of cement at 2139'. Filled wellbore with 310 barrels of mud. Cleaned out cement to 2244'. Started losing mud.
					$118 \mathrm{ft}^{3}$	Class "B" cement, $2 \% \mathrm{CaCl}_{2}$ \& 200 lbs. Flocele.	
1/6/78.	2342	2201	12 1/4"	18	$56 \mathrm{ft}^{3}$	FracGel, WG-11, CL-11, 840 lbs. unibeads, 210 lbs. Gilsonite, and 210 lbs. TLC \#80.	Filled wellbore with 170 barrels of mud. Found cement at 2184'. C.O. to 2244'.
- .		!.			$210 \mathrm{ft}^{3}$	Class "B" cement with $2 \% \mathrm{CaCl}_{2}$ and 75 lbs. Flocele.	
1/7/78	2342	2232	12 1/4"	19	$56 \mathrm{ft}^{3}$	Frac-Gel, 25\# WG-11 \& 7 \# CL-11.	Ran in the hole to 2239' with no trace of plug \#19.
	.				$\begin{aligned} & 112 \mathrm{ft}^{3} \\ & 56 \mathrm{ft}^{3} \\ & 258 \mathrm{ft}^{3} \\ & 56 \mathrm{ft}^{3} \\ & 136 \mathrm{ft}^{3} \end{aligned}$	```3%. CaCl }2\mp@subsup{\textrm{H}}{2}{}\textrm{O}\mathrm{ . H2O. NaSi2 mixed l-l with H2O. H2O. Class "B" cement with 2% CaCl.2 & l/2 lb/sk Flocele.```	
1/8/78	2342	2239	$121 / 4^{\prime \prime}$	20	$112 \mathrm{ft}^{3}$ \therefore $136 \mathrm{ft}^{3}$	Frac Gel, 500 lbs. Gilsonite, 500 lbs. unibeads, 350 lbs. mothballs, 50 lbs. WG-11 and 15 lbs . CL-11. Class "B" cement, 2\% CaCl 2 and 1/2 lb. Flocele/sack.	Ran in the hole to 2240', with no trace of plug \#20.

DATE	WELL DEPTH	$\begin{aligned} & \text { OEDP } \\ & \text { DEPTH } \end{aligned}$	DIA.	PLUG	VOLUME	PLUG COMPOSITION	RESULTS
1/11/78	2342	2201	$12 \mathrm{l} / 4^{\prime \prime}$.	26	$112 \mathrm{ft}^{3}$	600 lbs. gel, 75 lbs. Flocele,	Filled wellbore with
-						100 lbs. unibeads and 300 lbs. LCM.	30 bbls: of water. Found top of solid cement at 1842'.
					$353 \mathrm{ft}^{3}$	Class "B" cement, Perlite l-1 40% Silica flour, 3% gel and $3 \% \mathrm{CaIC}_{2}$.	
1/19/78	2606	2575	12 1/4"	27	$174 \mathrm{ft}^{3}$	Thix-set cement, lo\# Gilsonite per sack and $2 \% \mathrm{CaCl}_{2}$.	Found top of cement at 2468'.
-'19/78	2606	2443	$121 / 4^{\prime \prime}$	28	$175 \mathrm{ft}^{3}$	Thix-set cement, lo\# Gilsonite per sack and $2 \% \mathrm{CaCl}_{2}$.	Located top of cement at 2449'.
1/19/78	2606	2418	12 1/4"	29	$247 \mathrm{ft}^{3}$	Class "B" cement, Perlite 2-1; 5% gel and $2 \% \mathrm{CaCl}_{2}{ }^{\circ}$	Located top of cement at 2248.
1/20/78	2606	--	12 1/4"	30	$367 \mathrm{ft}^{3}$	Class "B" cement, Perlite l-2, 5% gel and 2\% ${ }^{\circ}{ }^{\circ}$	Located top of firm cement at 2089'. Unable to fill the wellbore. c.o. to 2165'.
1/21/78	2606	2139	12 1/4"	31	$215 \mathrm{ft}^{3}$	Class "B" cement, Perlite l-1, 4% gel, and $2 \% \mathrm{CaCl}{ }_{2}$.	Located top of cement at 2077'.
1/22/78	2606	2046	$121 / 4^{\prime \prime}$	32	$250 \mathrm{ft}^{3}$	Class "B" cement, Perlite 1-l, 40% Silica flour and 3% gel.	Unable to fill the wellbore with 500 barrels of water. Found top of cement at 1885'.
1/22/78	2606	1860	12 1/4"	33	$250 \mathrm{ft}^{3}$	Class "B". cement, Perlite l-1, 40% Silica flour and 3% gel.	Found top of cement at 1697^{\prime}.
1/22/78	2606	1675	12 1/4"	34	$250 \mathrm{ft}^{3}$	Class "B" cement, Perlite l-l, 40\% Silica flour, 3\% gel, $2 \% \mathrm{CaCl}_{2}$.	Filled wellbore with 125 barrels of water. Found top of cement at 1553'. Squeezed away $168 \dot{\mathrm{f}} \mathrm{t}^{3}$ of $\mathrm{H}_{2} \mathrm{O}$ at a surface pressure ol 250 psig.
-/22/78	2606	1490	12 1/4"	35	$250 \mathrm{ft}^{3}$	Class "B" cement, Perlite l-1, 40\% Silica Flour, 0.5\% CFR-2, 3\% gel.	Squeezed away $14 \mathrm{ft}^{3}$ at 900 psig surface pressure. Found top of cement at 1368'

DATE	DEPTH	DEPTH	DIA.	PLUG	VOLUME	PLUG COMPOSITION	RESULTS
1/28/78	2804	. 2765	$121 / 4^{\prime \prime}$	36	$312 \mathrm{ft}{ }^{3}$	Class "B" cement, Perlite l-1 40\% Silica flour, 0,5\% CFR-2, 3\% gel.	Found top of cement at 2754'.
1/28/78	2804	2731	$121 / 4^{\prime \prime}$	37	$312 \mathrm{ft}^{3}$	Class "B" cement, Periite l-1, 40% Silica flour, 3\% gel.	Found top of cement at 2543'.

PLUG
COMPOSITION
2nd stage
Class "B" cement
premixed 1-1
perlite, 40\% Silica flour, 38 gel, .5\% CFR-2.
ist stage
Class "B" cmt. premised w/l-1 perlite, 40\% Silica Flour, 3\% gel, . 05\% CFR-2, . 04\% HR-7.
Tail-end-class B 40% Silica flour.

RESULTS

Cemented through F.O.. ports at 2004' and EZSV at 1801'. Displaced w/l85 ft ${ }^{3}$ of water. Pressure built up during last half of job: Maximum pump pressure was 800-psi. Pulled out of stinger \& POH. Picked up $83 / 4$ " BHA. Drilied cmt. stringers from 1345' to: 1805'. Tested liner lap to $.86 \mathrm{psi} / \mathrm{ft}$ held o.k.
Drilled retainer. Drilled
cmt. from 1810' to 2007'
Feli thru to 3065^{\prime}. Drililed cmt. from 3065' to 3278^{\prime}. Drilled baffle collar at 3278'. Drilled cmt. to 3357 ; csg shoe. Drilled cmt. from shoe to 3448^{\prime}.

After running $7^{\prime \prime}$ liner and not being able to release from hanger, the $7^{\prime \prime}$ liner was POH. The Burns hgr was replaced with a Midway hgr.
Ran 72 JTS of $7^{\prime \prime}$ 26\# K-55 LT\&C blank csg. 36 JTS 7"-26" K-55 LT\&C perforated csg. HOWCO cmt guide shoe at 7615. Baker Baffle plate at 4053'. Lynes EC. packer at 3999.'. Cmt collar at 3997'. Midway liner hanger at. $3084^{\prime \prime}$.

Displaced w/49 ft^{3} of water Closed cement port with 800 psi. POH. Laid down liner setting and cementing tools. Picked up RTTS tool and set at 3034'.

DATE	WELL DEPTH	$\begin{aligned} & \text { O.E.D.P. } \\ & \text { DEPTH } \end{aligned}$	$\begin{aligned} & \text { HOLE } \\ & \text { DIA. } \end{aligned}$	PLUG	SLURRY VOLUME	$\begin{gathered} \text { PLUG } \\ \text { COMPOSITION } \end{gathered}$	RESULTS
$\begin{aligned} & 3 / 10 / 78 \\ & (\text { cont'd.) } \end{aligned}$					$200 \mathrm{ft}^{3}$	```Class B l:1 Perlite, 3% Gel, 40% Silica Flour, .5% CFR-2 w/2% CaCl}```	Displaced w/319 ft^{3} water. P.O.H. Cleaned out cement from 2927' to 3084'. P.O.H. Picked up 6-1/8" bit and R.I.H. to 3243^{\prime}. Pushed obstruction to 3990'. P.O.H. Picked up 9-5/8" RTTS packer.
3/11/78	7.615^{\prime} shoe of 7" liner		$8-3 / 4{ }^{\prime \prime}$		$750 \mathrm{ft}^{3}$	Second stage Squeeze \#5 Class B premixed 1:1 Perlite, 40\% Silica Flour, 3\% Gel	Set RTTS at 3040'. Cemented. Displaced with $360 \mathrm{ft}^{3} \mathrm{H}_{2} \mathrm{O}$. No significant pressure buildup. P.O.H. Picked up 8-3/4" bit. R.I.H. to 3084' - no cement to top of liner. P.O.H
		.	-		$167 \mathrm{ft}^{3}$	Second stage Squeeze.\#6 Class "B" premixed l:l Perlite, 40\% Silica Flour, 3\% $\mathrm{Gel}, 2 \% \mathrm{CaCl}_{2}$	R.I.H. with O.E.D.P. to 3080^{\prime}. Displaced with $263 \mathrm{ft}^{3}$ water. P.O.H. . Picked up 8-3/4" bit. Tagged cement at 2920'. Drilled cement to top of liner at 3084'. P.O.H. Picked up 6-1/8" bit. Drilled port collar. Drilled baffle collar and lost returns.

Well Analysis and Summarization Union Geothermal Well 非 42 - 7 Sec. 7 - 26S - 6W Beaver County, Utah

May 8, 1978

Prepared by:
Ronald B. Peterson
NL Baroíd Petroleum Services P.O. Box 369

Vernal, Utah. 84078

Prepared for:
Mr. Don Ash
Union Geothermal Division
Union Oil Company of California
2099 Range Avenue, P.O. Box 6854
Santa Rosa, Califormia 95406

Table of Contents

Introduction I
The First Interval I
The Second Interval II
The Third Interval II
The Fourth Interval. II
The Fifth Interval III
Summary III
Conclusions. III
Appendix
Baroid Mud Program 1
Revised Mud Program. 3
Equipment. 7
Drilling Mud Record. 8
Bit Record 11
Drilling Fluid Cost Breakdown \& analysis 13
Mud Cost Analysis-0' to 250' 14
Mud Cost Analysis-250' to 1552' 15
Mud Cost Analysis-1552' to 3357^{\prime} 16
Mud Cost Analysis-3357' to 7735' 17
Graphic Record 18
Daily Operations Summary 19
Corrosion Record 29
Scale Analysis 31

Covefort Sulphurdale Unit
 We11 非42-7

Drilling Mud History

Introduction:

In September 1977, NL Baroid Petroleum Services submitted to Union Oil Company of California; Geothermal Division, a suggested mud program for drilling in the Covefort Sulphurdale Unit. The proposed program, geological information furnished by Mr. Steve 0. Maione, and recommendations made by Mr. Steve Pye and Mr. Paul Fischer, were reviewed and modified by Mr. V. K. Varma in August 1977. A copy of $N L$ Baroid's proposed program is included in the appendix on pages 1 and 2. A copy of the modified program is included in the appendix on pages $3-6$. This paper will analyze the proposed program, the accepted program, and the actual program used. It will also attempt to explain any deviations and the reasons therefore. This analysis should also help to explain any cost variances. Suggested mud parameters and general instructions; along with variances are listed by hole size intervals.

The First Interval (0^{\prime} to $\left.300^{\prime}\right)$
Baroid suggested the use of a spud mud consisting of Quick Gel or Aquagel and Lime to drill the $26^{\prime \prime}$ surface hole. This was modified to include Caustic Soda instead of lime, with pill treatments of LCM to be used to combat lost circulation. Cement plugs were to be used in the event of severe lost circulation. The mud system was continuously monitored for $\mathrm{H}_{2} \mathrm{~S}$ intrusion. This modified mud program was successfully used. No severe drilling hazards were encountered in this interval. The Second Interval (300' to 1500^{\prime})

Baroid suggested a DAPP (diammonium phosphate) mud system to drill the $17 \frac{1}{2}{ }^{\prime \prime}$ conductor hole. The DAPP system was developed as a nonpollutant circulating medic: suitable for use on federal land. The modified mud program suggested the use of a fresh water gel fluid with caustic for pH, lignite thinners for rheological
control, and WL 100 for filtration control. The treatment for lost circulation was to be LCM sweeps and cement squeezes as necessary. It was recommended that Zinc Carbonate and Sodium Sulfite be used as corrosion control agents. The actual drilling was accomplished using the modified mud program. Moderate to severe lost circulation was encountered between 1300^{\prime} and 1500'.

The Third Interval (1500^{\prime} to 2250^{\prime})
Baroid recommended the use of the DAPP system through this interval. The revised mud program called for the same program as that used in the second interval. The revised mud program was used. Due to severe lost circulation throughout this interval, completion was accomplished only through the use of repeated cement squeezes. A copy of the daily operations summary can be found in the appendix on pages 19 through 28.

The Fourth Interval (2250 to 3200)
Baroid recommended the use of a DAPP system through this zone. The revised mud program called for the same program as used in the previous two intervals, with the addition of sepiolite as necessitated by hole conditions. Lost circulation through this zone became so severe that it was necessary to convert to an aerated system. Aerated mud was tried unsuccessfully followed by foam drilling techniques. The success of these two systems was limited due to extreme water intrusion into the well bore. The method finally implemented was that of using aerated, treated water alternately pumping reserve pit water into the hole with complete lost returns. This method was necessitated because the hole was making a large volume of water (600 barrels per hour) and there was no way to dispose of it other than pumping it back into the hole. Corrosion became a severe problem in this interval due to the aerated drilling fluid environment and the temperatures involved. Although several methods of corrosion treatment were attempted, none of those useci were as successful as desired; however, a limited amount of reduction was observec. A copy of corrosion ring records is included in the appendix pages 29 and 30. A copy of a drill pipe scale analysis is included in the appendix on page 31. The third and fourth intervals were part of the same casing interval.

The Fifth Interval (3200' to 7735')
Baroid recommended a DAPP circulating medium through this zone. In the revised program, a Polymer and Calcium Carbonate system was recommended. An attempt was made to go back to a fresh water, dispersed gel system. Due to severe lost circulation and continuous water intrusion, it became necessary to revert to the same system used in the previous interval; the same problems were encountered concerning corrosion. Although additional methods of corrosion control were attempted in this interval, none of those tried were successful in bringing the corrosion rate within acceptable limits.

Summary:
Primary problems encountered in drilling this well were:

1. Both moderate and severe lost circulation. Approximate cost $\$ 34,097$ - a cost analysis is included in the appendix on pages 14 through 17 with a breakdown on page 13.
2. Corrosion problems associated with the aerated drilling system and the high temperature of the well bore. Cost - \$91,792 - refer to cost sumary, appendix page 13.
3. High volume of water encountered at 2500^{-1}.
A. Made it impossible to drill with air.
B. Increased corrosion control costs considerably.

Conclusions:

Although we feel that either the Baroid or the revised program would have been adequate under normal conditions, the severity of lost returns dictated the actual well site mud system used. Corrosion problems accounted for $\$ 91,792$ or 50% of the actual mud bill. Most of this expense was incurred while drilling with an aerated system. Although many alternative corrosion control methods were tried, none were successful.. For this reason, Baroid would suggest that a Baroid corrosion control laboratory and technician be utilized on the next project of this type.

APPENDIX

Remarks: Recommend 400 bbl of saltwater be maintained in storage to quench well during trips.

Recomend use of a Baroid Mud Cleaner and Baroid Double Deck Shaker for solids control.

Recommend COAT-777 for corrosion control and additions of AMMONIUM HYDROXIDE if $\mathrm{H}_{2} \mathrm{~S}$ is encountered.

Please refer to Detailed Mud Plan and Contingency Section for specifics on D.A.P. systems, lost circulation and the above recommendations.

Estimated cost for mud moterials: 80,000 with moderate lost circulation Recommended Progrom Based Upon 65-70 days drilling time including moderate lost circulation problems.

The above recommendations are statements of opinion only, and are made without any warranty of any kind as to performance and without assumption of any liability by NL Industries, Inc., or its agents.

DETAIIED MJD PLAN

0 to 300^{\prime}

AQUAGEL and LIME are recommended to maintain a 45 to $50 \mathrm{sec} / \mathrm{qt}$ funnel viscosity and a $10+\mathrm{pH}$. Mud density should be maintained at 8.9 ppg or less. Previous operations in the area have encountered loose unconsolidated gravel bed while drilling conductor hole. For this reason, setting conductor pipe as quickly as possible and control of potential problems created by loose gravel are essential to reduce drilling time, lost circulation and overall costs.
300° to T.E.

A Diammonium Phosphate system is recommended for this interval. Diammonium Phosphate (D.A.P.) exhibits thermal stability, positive corrosion control and reduces wetting of water sensitive formations. Since volcanic formations encountered are of the acid extrusive type, the common oil field practice of maintaining a high pH is futile, expensive and, in the case of a D.A.P. system; unnecessary. Furthermore, the lower the pH and the higher the temperature, the greater the solubility of ammonia. D.A.P. will not create amonia handing or safety problems for rig personnel if a pH of 7.2 to 8.3 is maintained.

Formations encountered below 600' are usually Dyrite and produce "gun barrel" well bores until production zones are encountered. Since unnecessarily high viscosities could damage production zones it is recommended that they be maintained no higher than necessary to achleve good hole cleaning as dictated by hole conditions.

四期运四

August 31， 1977

TO：Mr．Dè Pyle／Mr．Don Ash
FM：V．K．Varma

On the basis of geological information furnished by Steve Maione and recommendations made by Steve Pye and Paul Fischer on August ll，1977，the mud programme for Cove Fort Fed．\＃42－7，Utah，has been modified and revised．

Suggested mud parameters and general instructions are listed by hole size intervals．

I．Conductor Hole $\because 66 \mathrm{~cm}$（26＂）
$\frac{\text { Depth }}{0-250^{\prime}} \frac{\text { Exp．Lithology }}{\text { Ailuvium，Andesites }} \frac{\text { Weight }}{8.4-9.0 \mathrm{ppg}} \frac{\text { Viscosity }}{\text { As Required }} \frac{\text { Filterate Loss }}{\text { N．A．}} \frac{\text { Ph }}{10.5-11.0}$

Remarks

Drill conductor interval with gel，caustic and water with sufficient viscosity and yield point to clean hole．

In the event of loss of returns；pill Treatments with LCM to be pumped in to regain circulation．Cement plug（s）be placed in case of severe losses．

To ensure that maximum safety conditions are met，the mud system will be monitored continually for $\mathrm{H}_{2} \mathrm{~S}$ ．

II．Surface Hole 44．4cm（17－1／2＂）
$\frac{\text { Depth }}{250^{\prime}-1500^{\prime}} \frac{\text { Exp．Lithology }}{\text { Andesite（Volcanics）}} \frac{\text { Weight }}{8.8-10 \mathrm{ppg}} \frac{\text { Viscosity }}{45-55} \frac{\text { Filterate Loss }}{8-12 \mathrm{cc}} \frac{\mathrm{Ph}}{10.5-21.5 \mathrm{~m}}$

Material

Quebracho
Bentonite
Tannathin
Caustic．Soda
Cypan
Barite（if needed）

P．V．as per AFD（Annular Flow Dynamics）
Gels 2／6
Y．P．as per AFD．
Solids 4－128
Bentonite 18－22 \＃／Bbl

Commencing with this interval, the desander and desilter should be utilized to maintain minimum mud weights for maximum penetration rates. Adjust mud rheology and/or rig hydraulics to maintain laminar flow in the annulus for maximum hole cleaning and minimum hole erosion.

If lost circulation occurs, sweep treatments of one or more of the following: Cotton seed hulls, mica; nut plug and Kwik-Seal are recommended to regain returns. If lost circulation persists, a "Diaseal-M" or cement squeeze may be required to regain circulation.

Corrosion and hydrogen sulfide protection should be initiated through this interval and continued to total depth with additions of Zinc Carbonate, Sodium Sulfide, Unisteam and a water soluble organic phosphate scale inhibitor.

Ratio: Zinc Carbonate - $2 \frac{\pi}{\pi} / \mathrm{Bbl}$ (and as conditions dictate).
Sodium Sulfite (catalyzed) - Sufficient to maintain 100-300 ppm at flow line.
SI-1000 (organic phosphate) - In conjunction with Sodium Sulfite to maintain 10-20 ppm at flow line.
III. Intermediate Hole 31.lcm (12-1/4")

The mud(s) type to be used in this hole section will largely depend upon lighology and temperatures. Depths set below are tentative and mud systems may have to be changed as and when warranted by encountered formations and temperatures.

System No. 1 (Gel-Liqnite)

Depth	Exp. Lithology	Weight	Viscosity	Filterate	Ph
1500'-2250' (?)	Conglomeratic Ss, Shale, Siltstone	$\begin{aligned} & 8.8-10 \mathrm{ppg} \\ & 66-75 \mathrm{pcf} \end{aligned}$	45-55	8-10cc	10.5-11.5m

Materials

Bentonite : P.V. as per AFD
Quebracho . Yp as per AFD
Tannathin
Gels $2 \% 6$
Caustic Soda
Solids 4-12\%
Cypan
Bentonite 18-22\#/Bbl

Lost circulation and corrosion to be controlled as described for the $44.4 \mathrm{~cm}\left(17-1 / 2^{\prime \prime}\right)$ hole.

Should the well bore temperatures become detrimental to mud parameters, causing excessive gelation, flocculation and 1 i instability, the system will be:changed over to a sepiolite base system.

System No. 2. (Sepiolite)

Materials

Sepiolite (Geo-Gel)	P.V. as per AFD
Bentonite	Yp as per AFD
Cypan	Gels $1 / 2$
Caustic Soda	Solids 6%
Resinex/WL-100-Avoid usage unless essential	
Bentonite $4 \mathrm{lb} / \mathrm{Bbl}$	

System No. 3 (Consolidation Treatment) 'Special'

CONFIDENTIAL
i ${ }^{\prime} .3$ socument contains confictraia! infomation.
1 ra, cis Co. ca Calil.
IS: 5 :noris of this
ca:-ment ree rot to be
receicd to any rerson
Sa crisent of Un
C-ct catiorni

COIFIDEMTIAL

- ...scesevnent contair:s csinfic!-a::=1 irizrmation lan!i ie froprictary to
1 in Cui Co of Cnlif.
in. (:itney ci tiou
C....e.it wre rot iy to
r caicsi is anjo person

1. $\because \because$ にU tic capres
: \because ar cisent of Union

IV. Production Hole $22.2 \mathrm{~cm}\left(8-3 / 4^{\prime \prime}\right)$

As recommended in memo $E \& p p 77-108 \mathrm{M}$, a polymer and Calcium Carbonate mud system will be used to drill carbonate rocks.

Depth	Expl. Lithology	Weight	Viscosity	Filterate Ph
3200'?-10,000 \pm	Limestone, Dolomite (Carbonate rocks)	$\begin{aligned} & 8.5-9 \mathrm{ppg} \\ & 63.5-67 \mathrm{pcf} \end{aligned}$	$\begin{aligned} & 28-35 \\ & \text { (low) } \end{aligned}$	$\underset{\text { (high) }}{>\operatorname{lig}^{2 \mathrm{~L}}}$

Material

Calcium Carbonate

Yp/Pv - As necessary for good hole cleaning
Gels - 0/2 Solids - 6 q

- General Instructions

1. A minimum of 1000 sacks of Barite will be readily available at all times during drilling operations.
2. Pre-treatments for hydrogen sulfide will begin at spud a $2 \frac{H}{\pi} / \mathrm{Bb}$ Zinc Carbonate and adjusted as conditions dictate. A "HACH" test for hydrogen sulfide in the mud system will be run on a routine basis.
3. Corrosion coupons will be installed in the kelly saver sub and the first joint above the drill collars. These coupons will be changed at loo hour intervals and monitored for type and severity of corrosion. Precision weight measurements will have to be made for accuracy of results.
4. For maximum corrosion protection, a catalyzed sodium sulfite oxygen scavanger will be injected into the pump suction in quantities sufficient to maintain concentrations of sulfite at 100-300 ppm at the flowline. SI-l000, a water soluble organic phosphate scale inhibitor may be used in conjuntion with sodium sulphite to prevent scale buildup on tubular goods. SI-1000 concentrations should be maintained at $10-20 \mathrm{ppm}$ at the flowline.

In addition, Magco Inhibitor 202, a water soluble filming amine, will be used, if conditions warrant, to coat the drill string on trips.

Inhibitors may change from time to time as a result of continuing research.

Equipment

1. Three station. (Shakers, cellar and rig floor) hydrogen sulfide gas detectors ($0-100 \mathrm{ppm}$) with audio warning device will be in continuous operation during drilling operations.
2. Drager multi gas detectors (hand operated) will be available for spot checks.
3. Degasser, desilter and desander.
4. High-low lcvel mud pit indicator complete with visual and audio warning device.
5. Temperature recorder with chart for continuous monitoring of flowline and suction temperatures.
cc: Steve Pye! Paul fischer
Steve Maione

EQUIPMENT

1. Three station $\mathrm{H}_{2} \mathrm{~S}$ gas detectors with audio warning device.
2. Drager multi gas detectors (hand operated) for spot checks.
3. Degasser.
4. Double deck shaker.
5. Mud cleaner.
6. Mud cooling tower.
7. High-low leve1 mud pit indicator.
8. Temperature recorder.
9. Two 2500 CFM Air Compressors.

BAROIN DIVISION
 NLIna -tries, Inc.
 DRILIIIN
 ID RECOSAD

CASING PROGRAM
20
$13-3 / 8$ inch of 155 ?
$\frac{9-5 / 8}{7}$ inch of $\frac{3357}{7500}$
7 inch 7500 .
stoerfoint Milford, Utah
DATE 3-22-78
SEC 7 TWP 26 S KNL 6 W
OTAL DEPTH 7735

Date	DEPTH	WEICHT	VISCOSITY		Y_{p}	$\begin{array}{\|c\|} \hline \text { GELS } \\ \hline 10.50 c^{\prime} \\ 10 . \mathrm{min} \end{array}$	$\left\lvert\, \begin{array}{\|c\|} \hline \text { pH } \\ \hline \text { Surip } \\ \text { Herer } \\ \hline \end{array}\right.$	FILTRATION			FILTRATE ANALYSIS				SAND	RETORT			CEC	REMARKS AND TREATMENT
	fool	16/gol	$\left[\begin{array}{ll} \operatorname{Sec} A P I \\ \mathrm{C} & O F \end{array}\right.$	$\begin{gathered} \mathrm{FV} \\ \hline \end{gathered}$				$\begin{gathered} m 1 \\ A P 1 \end{gathered}$	$\left\lvert\, \begin{gathered} H T H P \\ \therefore \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{l} \text { Cake } \\ 32 n d s \end{array}\right\|$	Pf	Mf	$\begin{array}{cl} \mathrm{Cl} \\ \mathrm{gPm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{ppm} \end{gathered}$		Solids \because	$\begin{gathered} 0,1 \\ 7 \end{gathered}$	Water $\%$		
11-28	-0-	8.7	57				8.5	NC					400							Spud Mud
11-28	144	8.8	58	30	40	$5 / 20$	9	20		3			450		0	10	0	90		Vis-45 to $50 \mathrm{Wt-8.6}$ to 8.9
11-30		9.2	50	30	40	$8 / 20$	9	22		3			450			10	0	90		Reaming Hole to 26'1
12-1-77		9.2	46	25	35	$5 / 20$	8.5	20		3			450			12	0	88		Circ. for $20^{\prime \prime}$ casing
12-2		9.2	50	30	40	$8 / 20$	8.5	22		3			450			12	0	88		Setting $20^{\prime \prime}$ casing \& Nippling
																				up BOP
12-3		9.2	50	30	40	$8 / 20$	8.5	22		3			450			12	0	88		Testing BOP
12-4	Tight	8.8	40	20	35	6/12	11.5	18		2			400	200		8	0	92:		Drilling Cement
12-5	Tight	8.8	41	10	20	$4 / 10$	11	15		2	1.4	2.0	750	40	0	4	0	96		Dirlling Ahead
12-6	Tight	8.8	46	15	30	$5 / 10$	11.5	15		2	1.3	32.0	500	80	0	5	0	95		Drilling Ahead
12-7	600	9	39	12	3	$2 / 8$	11	14		2	. 3	. 7	1500	60	0	3	0	97		Drilling Ahead
12-8	746	9.3	39	16	14	$4 / 10$	10.5	14		2	. 3	. 6	600	80	0	8	0	92		Trip for fish 1 drill collar\& bi
12-9	815	9.2	41	25	9	$3 / 10$	10.5	13		2	. 3	. 6	600	70.	0	10	0	90		Drilling Ahead
12-10	897	9.2	43	23	6	$4 / 15$	10.5	14		2	3	. 8	400	60		12	0	88		Drilling Ahead
12-11	1086	9.3	43	32	12	4/12	10.5	8		2	. 3	. 8	300	90		12	0	88		Drilling Ahead
12-12	1221	9.4	36	20	10	4/8	10	2		2	. 3	. 8	350	80		12	0	88		Tripping for plugged jet
12-13	1301	9.3	43	25	12	4/8	10.5	9		2	. 4	. 7	350	70	0	9	0	91		$\mathrm{NaSO}_{2} 70 \mathrm{ppm} \mathrm{H}_{2} \mathrm{~S} 0$ Drilling
12-14	1388	9.2	49	40	85	10/30	10	19		3	. 3	. 8	300	60	0	8	0	92		$\mathrm{NaSO}_{2} 60 \mathrm{H}_{2} \mathrm{SO}$ Lost Returns
12-15	1452	9.2	43	32	20	$8 / 15$	10	15		2	. 4	. 7	300	70	0	7	0	93	$\begin{array}{r} \text { TCM } \\ 5 \% \end{array}$	$\mathrm{NaSO}_{2} 60 \mathrm{H}_{2} \mathrm{SO}$ Fishing for Collar
12-16	1494	9.2	40	25	15	4/10	10	1.4		2	. 4	. 9	300	80		8	0	92		$\mathrm{NaSO}_{2}^{2} 80 \mathrm{H}_{2}^{2} \mathrm{SO}$ Cementing :
12-17	1494	9	37	26	12	4/10	10.5	14		2	. 3	. 8	300	90		8	0	92		$\mathrm{NaSO}_{2} 80 \mathrm{H}_{2} \mathrm{SO}$ Waiting on Cement
12-18	1537	9.1	41	30	20	$8 / 20$	11	15		2	. 3	1.0	400.	150	0	8	0	92		$\mathrm{NaSO}_{2} 80 \mathrm{H}_{2} \mathrm{SO}$ Tripingo rum 13-3/6
12-20	1557	8.9	34	9	2	$0 / 10$	12	12		2		3.1	100	280.	0	4	0	96		$\mathrm{NaSO}_{2} 25 \mathrm{H}_{2} \mathrm{SO}$ Nipple up 13-3/8c¢
12-22	1557	8.6	28	2	1	$0 / 0$	12	20		1	2.3	34.0	150	440	0	2	0	98		$\mathrm{NaSO}_{2} 25 \mathrm{H}_{2} \mathrm{SO}$ Drlg Cement
12-22	1557	9	44	22	13	$2 / 8$	10.5	12		2	. 48	¢1. 4	150	440	Tr	5	0	95	13\%	$\mathrm{NaSO}_{2} 25: \mathrm{H}_{2} \mathrm{SO}$ No Returns
12-22	1559	9.	44	22	13	$2 / 8$	10.5	12		2	. 5	1.4	150	440	Tr	5	0	95	13\%	$\mathrm{NaSO}_{2} 25 \mathrm{H}_{2} \mathrm{SO}$ Recovered returns
12-23	1603	8.9	39	14	3	$0 / 2$	10.5	8		1	. 45	1.1.	200	528.	Tr	4	0	96	10\%	$\mathrm{NaSO}_{2} 25 \mathrm{H}_{2} \mathrm{SO}$ Tripping
$12-24$	1815	8.7	38	12	3	$0 / 4$	12	12.8	8	2	1.5	2.4	140	400	0	2	0	98	10\%	$\mathrm{NaSO}_{2} 25 \mathrm{H}_{2} \mathrm{SO}$ Lost Returns
12-24	1818	8.8	33	6	3	$0 / 5$	10.5	11.6	6	2	1.0	1.9	170	468	Tr	4	0	96	8\%	$\mathrm{NaSO}_{2} 25 \mathrm{H}_{2} \mathrm{SO}$ Partial Returns
12-25	2045	8.9	41	12	8	$2 / 9$	11	9.6		2	1.0	1.9	150	40	1/4	4	0	96	5\%	$\mathrm{NaSO} j 25 . \mathrm{H}_{2} \mathrm{SO}$ Drilling
12-26	2218	8.6	34	10	4	$0 / 3$	9	16		2	. 2	. 45	150	120	0	2	0	98	10\%	Coat $450 \mathrm{H}_{2} \mathrm{SO}$ NaSO 20 Lost Retr
12-27	2244		40																10\%	Waiting on Cement
12-28	2244	8.7	58.	18	15	14/29	12.5	12.8	8	2	1.4	2.4	150	12 Q	Tr	3	0	97	12\%	$\mathrm{NaSO}_{2} 0 \mathrm{H}_{2} \mathrm{SO}$ Circ to Drl Cement
12-28	2244	8.8	36	8	4	$2 \angle 11$	12.5	15.2		2	58	. 2	. 150	40	$1 / 4$	3	0	97	6\%	$\mathrm{NaSO}_{2} 0 \mathrm{H}_{2} \mathrm{SO}$ Drilling Cement
12-29	2244	8.9	41	14	4	1./40	12.5	16.8		2	6.3	111	150	0	Tr	4	0	96	12\%	$\mathrm{NaSO}_{2} \mathrm{O} \mathrm{H}_{2} \mathrm{SO}$ Drilling Cement

$\therefore 19$

BAROIT DIVISION
 NLInr stries, inc.

COMPANY Union Oil of Californis Geothermal Div.
CONTRACTOR Loffland Brothers Drilling Rig \#184
STOCKFONT Milford, Utah DATE 3-22-78
DATE DEPTH WEIGHT VISCOSTTY
-DATE 3-22-78

CASING PROGRAM: $\quad 20$ inch of 251
$13-3 / 8$ inch o 1552
9-5/8 inch ot 3357
RNG 6 W
county Beaver
LOCATION Wildcat
SEC 7 TWP
$26 S$
baroid engineer Jim Goldsby/Randy Rhodes/Ron Peterson

FILTRATION	FILTRATE ANALYSIS	SANO	RETORT	CEC

	foet	$\mathrm{lb} / \mathrm{gal}$	$\left\lvert\, \begin{array}{ll} \text { Sec } A P 1 \\ \vdots & O F \end{array}\right.$	$P V$		10 see. .10 min	Sirip O	$A_{\text {mp }}$	HTHP	$\begin{array}{\|c\|} \hline \text { Coke } \\ \hline 32 \mathrm{nds} \\ \hline \end{array}$	f	Mi	$\begin{gathered} \mathrm{Cl} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { Ppm } \end{gathered}$	$\%$	$\left[\begin{array}{c} \text { solint } \\ \vdots \\ 0 \end{array}\right.$	$\begin{aligned} & 011 \\ & \% \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Warer } \\ \% \\ \hline \end{gathered}\right.$	LCM	remarks and treatment
12-30	2250	8.6	30	3	2	0/3	7.2	NC		2	0	3	150	80	Tr	2	0	98	5\%	$\mathrm{NaSO}_{2} \mathrm{OH}_{2} \mathrm{SO}$ Waiting on Cement
12-31	2250	8.6	30	3	2	0/3	7.2	NC		2	0	. 3	150	80	Tr	2	0	98	10\%	$\mathrm{NaSO}_{2} \mathrm{OH}_{2} \mathrm{SO}$ Tripping
1-1-78	2248	8.6	40	12	5	$1 / 8$	7.6	NC		2	0	. 3	150	40	0	2	0	98		Cementing
1-3	2248	8.8	51	16	11	5/48	12.5	13.2		4	2.43	3.9	150	0	Tr	4	0	96	10\%	$1 \mathrm{SO}_{2}$ O $\mathrm{H}_{2} \mathrm{SO}$ Drilling cement
1-4	2311	8.8	32	6		/3	7.2	NC		NC	0	. 2	150	40	Tr	4	0	96	10\%	$\mathrm{NaSO}_{2} \mathrm{OH}_{2} \mathrm{SO}$ Drilling No Proplet
1-5	$\underline{2} 844$	8.8	30				7.2	NC			0	. 3	150	40	0	4	0	96	10\%	m-0 NaSO_{2} O $\mathrm{H}_{2} \mathrm{SO}$ Drlg no return:
1-6	2345	8.8	40	12	5	2/8	7.2	NC			0	. 3	150	20	TR	4	0	96	10\%	P-0 $\mathrm{NaSO}_{2} \mathrm{O} \mathrm{H}_{2} \mathrm{SO}$ Cementing
1-7	2345	8.8	44	13	7	$2 / 10$	7.8	NC			0	. 4	150	40	0	4	0	96	8\%	$\mathrm{NaSO}_{2} \mathrm{O}^{-} \mathrm{H}_{2} \mathrm{SO}$ Waiting on Cement
1-8	2345																			No mud in pits
1-9	2345	8.8	42	12	4	1/8	7.8	NC			0	. 3	150	20	0	4	0.	96	8\%	Pm 0 Waiting on cement
1-10	2345	8.8	40	10	4	$1 / 8$	7.8	NC			0	. 4	150	40	0	4	0	96	4\%	Pm 0 Waiting_on Cement
1-11	2345	8.8	40	10	4	1/8	7.8	NC.			0	. 4	150	40	0	4	0	96	8%	Pm 0 Waiting on Cement
1-12	2345																			Waiting to drill withair.
1-13	2345																			Nippling up for air drilling
1-14	2345																			Nippling up for air drilling
I-15	2345	8.6	30	3	1	$0 / 0$	2.5	NC			5.	1.1	150	0	0	2	0	98		Tripping in
7-16	2368	8.3	46	7	4	$3 / 5$	12	NC		3		1.8	80	44	14	3	0	97		Drilling with air
1-17	2406	8.4	28	1	2	0/0	11.5	NC		NC.		. 99	60	14	TR	1	0	99		Drilling with foam
1-18	2600	8.4	28	1	2	0/0	11.5	NC		NC	44.	. 99	60	14	TR	1	0	99		Drilling with foam
1-21.	2600	8.4	28	1	2	0/9	11	NC					200	40						Drilling with foam
1-25	2600	8.4	35	2	4	0/0	11.5	NC			2.03	3.5	150	100		1	0	99		Drilling Cement
1-26	2600	8.4:	28	1	2	0/0	11	NC				1.1		40						Air Drilling Cement
$\underline{-27}$	2741	8.4	28	1	2	$0 / 0$	9.5	NC		N	25	. 63	250	100		1	0	92		Drilling
1-28	2804	8.4	28	0	1	$0 \angle 0$	9	NC		NC		. 58	250	100		1	0	99		Waiting on Cement
1-29	2808	8. 4	28.	0	1	$0 / 0$	9.5	NC		NC	42.	. 54	186	36	Tr	1	0	99		Drilling with air
1-30	3169	8.4	28	0	1	$0 / 0$	9.2	NC		NC.		68.	215	32	Tr	1	0	99		Drilling with air
1-3i	3326	8.4	28	0	1	$0 / 0$	71.5	NC		NCP		2.0	220	40	Tr	1	0	99		Drilling with air
$2-1$	3448	8.4	28	0	1	0/0	10	NC.		NC.		, 86	188	40	Tr	1	0	92		Drilling with air
2-7	3448	8.8	45	10	7	$3 / 6$	12	16.8		4	1.92	2.6	186	0	3	4	Q°	96		Drilling cement
2-8	3678	314	28.	0	1	. $0 / 0$	12.5	NC		NCD	2.5	3.5	220	0	Tr	1	0	99		Drilling with air
2-8	4036	8.4	28	2	1	0/0	11	NC			. 45	1.7	218	0	Tr	1	0	99		Drilling with air
2-9	4414	8.4	28	2	1	-0/0	11.5	NC		NC,	1.3	1.8	2200	0	Tr	1	0	99		
2-10	4789	8.4	28	2	1	$0 / 0$	10.5	NC		NCh		11.22	2100	60	Tr	1	0	99		Drilling with air
2-11	5146	8.5	28	3	1	$0 / 0$	11.5	NC,			1. 3	1.8	2200	58	0	1	0	99		Drilling with air
2-12	5404	8.5	28	2	1	$10 / 0$	11	NC			. 95	1.7	2500	64	Tr	1		99		Drilling with air

[^0]
Union Oil of California Geothermal Div STATE Utah

$\operatorname{compAny} \frac{\text { Union Oil of California Geothermal Div }}{\text { Cove Fort Federal Unit } 42-7}$ county Beaver
LOCATION Wildcat

251
13-3/8 inch of

1552
9-5/8 inch at $\frac{3357}{7500}$ 357 f.
contactor. Loffland Brothersprilling Rig 184

DATE	DEPTH	WEICHT	VISCOSITY	
	- lont	16, 1	$\begin{aligned} & \text { Sec API } \\ & \hline \end{aligned}$	$\begin{gathered} P V \\ \% \end{gathered}$
$2-13$	5656	8. 5	28	1
2-14	5822	8.5	28	1
2-15	6264	8.5	28	1
$2-16$	6444	8.4	28	1
2-17	6654	8.4	28	1
2-18	6838	8.4	28	1
2-19	7003	8.4	28	1
2-20	7240	8.4	28	1
2-21	7510	8.4	28	1
$\underline{2-22}$	7512	3.4	28	1
2-23	7530	$8.3+$	-28	1
2-24	7542	8.4	28	1
2-25	7633	8.4	28	1
2-26	7735	8.4	28	1
2-28	7735	8.4	28	1
3-1.	7735	8.4	28	1
3-2	7735	8.4	28	1
\cdot				

TY Baroid
Lay Petroleum Services
MUD MATERIALS
Used (Total)
Mhmg onecont

Bit No．	Size， Inch	－Make and I＇ype		Hozzle		Depth Out， Feet	Depth In， Feet	Footage	Rotating Time， Hr	Drijl String								
				Collars	Drill Pipe													
				No．	Size，inch					No．	OD	ID	T－jpe	OD	10			
1 768956	123	Sec	S42J			3		15／32	Drille	d Mouse	and rathol			8		IF	5	
625936	17⿺𠃊⿳亠丷厂彡	Reed	473J	3	14／32		133	55	78.	1132		8		IF	5			
315305	173／2	Reed	473J	3	13／32	255	133	122	12		8		IF	5				
HONN 1 68674	26	Sec	H 0	3	20／32	255	55	200	$27 \frac{1}{2}$		8		IF	5				
$\begin{aligned} & \hline \text { RR3 } \\ & 315305 \\ & \hline \end{aligned}$	173	Reed	473J	3	12／32	288	255	33	10		8		IF	5				
$4 \text { BB439 }$	173	STC	4JS	3	16／32	892	288	604	104		8		IF	5				
5711851	1712	Sec	S84	3	16／32	1257	892	365	48		8		IF	5				
$\begin{aligned} & \mathrm{RR4} \\ & \text { BB439 } \\ & \hline \end{aligned}$	173	STC	4JS	3	16／32	1452	1257	195	403		8		IF	5				
$\begin{array}{r} \hline \text { R5 } \\ 711851 \\ \hline \end{array}$	17312	Sec	S84	3	16／32	1494	1452	42	1032		8		IF	5				
$\begin{array}{r} \hline \text { RRS } \\ 711851 \\ \hline \end{array}$	173／2	Sec	S84	3	16／32	1557	1494	63	$263 / 4$		8		IF	5				
768956 6	123	Sec	S42J	3	15／32	1559	1557	2	1		8		IF	5				
${ }^{6} 403948$	$12 \frac{1}{4}$	Reed	S21J	3	15／32	1613	1559	54	312		8		IF	5				
$257 \mathrm{YL}$	123／2	HTC	J33	3	15／32	2400	1613	787	$56 \frac{1}{4}$		8		IF	5				
$\begin{array}{\|c} 8 \\ 129 \mathrm{LP} \\ \hline \end{array}$	$12 \frac{1}{4}$	STC	3JS	－－	－－－	2606	2400	206	$25 \frac{1}{4}$		8		IF	5				
$\begin{array}{r} 9 \\ \hline 984 \mathrm{JZ} \\ \hline \end{array}$	$12 \frac{1}{4}$	STC	7JA	－－	－－－	2804	2606	198	1812	\because	8		IF	5				
$\begin{array}{\|r} \hline 10 \\ \hline \end{array}$	$12 \frac{1}{4}$	Sec	H7SG	－－	－－－	2804	Used to	clean cement			8		IF	5				
$\begin{array}{r} 11 \\ 688 \mathrm{BJ} \\ \hline \end{array}$	123／4	STC	7JA	－－	－－－	3304	2804	500	$253 / 4$		8		IF	5				
$\begin{array}{r} 1233653 \\ \hline \end{array}$	123	Reed	562 J	－－	－．－	3448	3304	144	71／2		8		IF	5				

FL－36

BIT AND DRILI : ING RECORD

Union Geothermal
Union Oil Company of California
Cove Fort Sulphurdale Unit
Federal 非42-7
Drilling Fluid Cost Breakdown and Analysis
Normal Mud Maintenance Costs \$ 57,000 $\$ \quad 57,000$
Lost Circulation:
Lost Circulation Material 26,604
Bicarbonate of Soda for drilling cement squeeze 7,493
Total cost of Lost Circulation \$ 34.097
Sub Total Well Costs
Corrosion Control:

Caustic Soda to maintain pH

(less \$12,676 for normal maintenance) \$ 33,650

Sodium Nitrite

Sodium Nitrite 26,531 26,531 26,531 26,531 26,531 26,531 26,531 26,531 26,531 26,531 26,531

DAPP 50

DAPP 50 427 427 427 427 427 427 427 427 427 427 427

DAPP 80

DAPP 80 1,918 1,918 1,918 1,918 1,918 1,918 1,918 1,918 1,918 1,918 1,918

Coat 888

Coat 888 3,399 3,399 3,399 3,399 3,399 3,399 3,399 3,399 3,399 3,399 3,399

Surflo H35

Surflo H35 13,874 13,874 13,874 13,874 13,874 13,874 13,874 13,874 13,874 13,874 13,874

Nickle Chloride

Nickle Chloride 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250 1,250

Coat 415

Coat 415 1,887 1,887 1,887 1,887 1,887 1,887 1,887 1,887 1,887 1,887 1,887
Surflo H351
Surflo H351 5,181 5,181 5,181 5,181 5,181 5,181 5,181 5,181 5,181 5,181 5,181
Coat 45
Coat 45 3,675 3,675 3,675 3,675 3,675 3,675 3,675 3,675 3,675 3,675 3,675
Total cost of Corrosion Control $\$ \quad 91,792$
,TOTAL WELL COST
\$ 91,097

A. Mud Type: Low Solids Non-Dispersed Aquagel-water

3. Typical Mud properties at beginning of Interval: 0-250'
Mud Weight
Viscosity
Pv/Yp
Gels
Filtrate. API $\frac{\frac{8.7}{57}}{\frac{50 / 40}{20}}$

pH	
Solids	
Oil	
Water	
HPHT	$\frac{9.0}{90}$

C. Typical mud properties at bottom of Interval:

Mud Weight	9.2	pH	8.5
Viscosity	50	Solids	12
Pv/Yp	$30 / 40$	Oil	0
Gels	8/20	Water	88
Filtrate API	22	HPHT	

Mud cost at bottom of interval:	\$	1180
Uud cost at top of interval:	\$	-0-
Interval mud cost:	\$	1180
Zud cost per day:	\$	169
\therefore ?ud cost per foot:	\$	4.65
亿ud cost per barrel per day:	\$. 35
\therefore aintenance cost ${ }^{*}$	\$	1180
Average daily maintenance cost:*	\$	169
rrouble cost:	\$	-0-

 and alteration of mud properties.
A. ' Mud Type: Dispersed Fresh Water Gel

Aquagel, Lignite thinners, WL100 water loss control
3. Typical Mud properties at beginning of Interval: 250': - 1552^{\prime}

Aud Weight	8.8	OH	11
Viscosity	40	Solids	8
PV/Yp	20/35	Oil.	0
Gels	6/12	Water	92
Filtrate API	18	HPHT	

C. Typical Mud properties at bottom of Interval:

Mud Weight	8.9	pH	11.
Viscosity	34	Solids	8
Pv/Yp	9/2	Oil	0
Gels	0/10	Water	92
Filtrate API	15	HPKT	0

Mud cost at bottom of interval: \qquad
Mud cost, at top of intervai:
$\$ \quad 1180$
Interval mud cost:
$\$ 10424$
:iud cost per day:
5.580

Mud cost per foot:

$\$ 18$
$\$ \$ 1.20$
$\$ \$ 300$

* \because aintenance costs as used in this summary include maintenance and alteration of hud properties..

MUD COST ANALYSIS

A. Mud Type: Dispersed Fresh Water Gel at top of Interval Aerated treated water and foam at bottom of Interval.
5. Typical Mud properties at beginning of Interval: 1552'-3357'

Huò Weicint	8.9	pH	10.5
Viscosity	39	Solids	4
.Pv/Yp.	14/3	Oil	0
Gels	$0 / 2$	Water	96
Filtrate API	12	HPHT	

C. Typical mud properties at bottom of Interval:

Mud Weight	8.4	pH	11.5
Viscosity	28	Solids	1
Pv/Yp	$0 / 1$	Oil	0
Gels	$0 / 0$	Water	99
Filtrate API	NC	HPHT	

sud cost at bottom of interval:	\$	68000
$\because u d$ cost at top of interval:	s	11604
Interval mud cost:	S	56396
$\because u d$ cost per day:	\$	1200
:3ud cost per foot:	\$	31.25
Aud cost per barrel per day:	\$	1.32
:aäntenance cost :* projected	\bigcirc	19200
uverage daily maintenance cost:*	\$	109
Trouble cost:	\$	37196

* : Aaintenance costs as used in this summary include maintenance and elteration of mud properties.
A. . Mud Type: Dispersed Fresh Water Gel was tried but due to formation fracture condition, it became necessary to revert back to Aerated treated water.

5. Typical Mud properties at beginning of Interval: 3357' - 7735'

Gud Weight	8.8	P\%	12
Viscosity	45	- Solicas	4
Pv/Yp	10/7	Oil	0
Gels	3/6	water	0
Filtrate API	16.8	HPHT	

C. Typical Mud properties at bottom of Interval:

Mud Weight	8.4	pH	11.5
Viscosity	28	Solids	1
Pv/Yp	$1 / 1$	Oịl	0
Gels	$0 / 0$	Water	99
Filtrate API	NC	HPHT	

Mud cost at bottom of interval:

\$	182890
s	68000
\leqslant	114890
\$	$3282^{\text { }}$
\$	26.25
\$. 35
§	29320
\$	714
5	85603

* \because aintenance costs as used in this summary include maintenance Erc elteration of mud properties.

COMIAEATS B

RILIIAG HAZARDS

Lost

1388 Circulation Cementing
2244 Circulation Problems

2342 Aerated drl

Corrision
3448 control
problems Continued
Aerated drlg
Hole making
water
Lost
circulation environment

Bullion Canyon
Volcanics
Mid Tertiary Andesite Upper Oligocene possibly miocen

2055-2800
Coconino Sand
Permian
lots of uniform
temperature
water
2800-3380
Pakoon Limestone

3380-3980
Oquirrh Pennsylyanian

3980-7735
Contact Metamorphics
in Paleozoic section
Marbles

No recognizable

Few sedimentary

Zone from 7100
to 7735 was metamorphic Serpentine Marbi that kept slougt into the hole.

tops
10,000 beds
N. Baroid GRAPIIIC RECORD

DAILY OPERATIONS SUMMARY

DAILY OPERATIONS SURAMARY

DAILY OPERATIONS SUMMARY

DAILY OPERATIONS SUMAMARY

DAILY OPERATIONS SUMARARY

DAILY OPERATIONS SUMMARY

Date T	Tour	Depth	Hours	Operation
1-18-78		$2606{ }^{\prime}$		Continued drilling while pumping sump water without
				returns. Pulled off bottom to replace rotating rubber,
				encountered 34 ft fill while returning to bottom. Poll
1-19-78		2606 ${ }^{\prime}$		RIH with OEDP to run temp survey. POH Commenced cement-
				ing operations.
$\begin{aligned} & 1-20-78 \\ & 1-21-78 \end{aligned}$		$2606{ }^{1}$		Continued cementing operations.
		$2606{ }^{\prime}$		RIH and commenced cleaning hole with foam and aerated m
				as circulating medium. Hole started making water again
				POH and pumped 1680 bbls water into hole with no fill.
				Commenced cementing operations.
$\begin{array}{r} 22-78 \\ 1-23-78 \end{array}$		$\begin{aligned} & 2606! \\ & 2606^{\prime} \end{aligned}$		Continued cementing operations.
				Continued cementing operations. Had to shut down opera
				tions due to blizzard.
1-24-78		2606 ${ }^{\prime}$		Opened road to rig and relieved crews. Commenced clean
				ing hole using mud as circulating medium with full
				returns to 1750 .
1-25-78		2606^{\prime}		Continued cleaning hole to 2006'. POH and rigged up fo
				aerated drilling. RIH and continued cleaning hole to
				2300' with full returns.
$1-26-78$		2681^{\prime}		Finished cleaning hole and began drilling nev hole. Hole
				commenced making 300 bbls water per hour. Continued
				drilling using aerated fluid.
1-27-78		2804^{\prime}		Continued drilling with aerated system until sump fille
				Emptied sump by pumping fluid through bit without retur
				while drilling Approximately 7000 bbls.

DAILY OPERATIONS SUMMARY

Date Tour		Depth	Hours	Operation
$\begin{gathered} 2-8-78 \\ 2-9-78 \end{gathered}$		4336' (Cont	.)	and no returns to 4325'. Drilled with aerated water
				to 4336^{\prime}.
		4690^{\prime}		Drilled with aerated water to 4550'. Drilled to 4690^{\prime}
				while injecting water with no returns.
2-10-78		5023 '		Drilled to 4789' injecting water with no returns. Dril
				to $5018{ }^{\prime}$ injecting water with no returns. Drilled to
				5023' with aerated water.
2-11-7\%		5291'.		Continued drilling operations alternating circulating
				medium as necessary.
2-12-78		5619^{\prime}		Continued drilling operations alternating circulating.
				medium as necessary.
2-13-7\%		$5740^{\prime \prime}$		Drilled to 5710' with aerated water, pumped sump down
				while repairing spline on compound shaft. Drilled to
				5740^{\prime} with aerated water.
2-14-7¢		6159^{\prime}		Continued drilling alternating circulating mediums.
2-15-7\%		6329^{\prime}		Continued drilling while alternating circulating medium
2-16-7		6555°		Continued drilling while alternating circulating medium
2-17-7\%		6835 ${ }^{\prime}$		Continued drilling while alternating circulating medium
2-18-78		6973°		Continued drilling while alternating circulating medium
				Had to shut down rig to repair pump suction at 6875^{\prime}.
2-19-76		7125'		Continued drilling while alternating circulating medium
	1			ran temperature survey.
2-20-78		$7386{ }^{1}$		Continued drilling while alternating circulating medium
				POH at 7323^{\prime} and laid down two joints split drill pipe.
				RIH continued drilling.

Date	Tour	Depth	Hours	Operation
2-21-78		7512^{1}		Continued drilling with aerated water. Bit plugged then
				opened up again. Pi.pe stuck, worked stuck pipe frec. POH
				to check drill string. Relocated jet subs. RIH still
				couldn't circulate. POH and laid down one joint split.
		7530^{\prime}		pipe.
2-22-78				RIH cleaned fill out of hole. Continued drilling to 7530
				then pumped $12,000 \mathrm{bb} 1 \mathrm{~s}$ sump water into hole.
2-23-78		. $7542{ }^{\prime}$		POH checked bit. RIH to clean hole for logging. Comnenc
				running logs.
2-24-78		7615 ${ }^{\text {' }}$		Rigged down dia-log equipment. RIH Washed and reamed
				hole. Contimued drilling to 7615!, tripped for bit and
				pumped sump water into hole.
2-25-78		7735'		Continued drilling, washing, and reaming pipe stuck while
				drilling. Worked free after two hours.
2-26-78		. 7735^{\prime}		POH Pumped sump water into hole while rigging logging
				equipment. Conmenced logging operations with Go
				International Spinner Survey. Tool failed.
2-27-78		7735^{\prime}		Attempted to rerun spinner survey. Tool failed, Com-
				pleted Go International logs, rigged down equipment.
2-28-78		. 7735^{\prime}		Washed and reamed hole. Rigged up Schumberger Equipment.
3-1-78		7735°		Ran Schumberger logs.. POH to run casing.
3-2-78		7735 ${ }^{\prime}$		Ran casing.
3-3-78		7735^{\prime}		Couldn't get tools to release from liner hanger.
$\begin{array}{lr}3 & 78 \\ 3-5-78\end{array}$		7735^{1}		P.O.H. with casing:
		7735^{\prime}		RIH with drill string to circulate and clean hole.

Corrosion in $\mathrm{lbs} / \mathrm{ft}^{2} /$ year

Dates	Coupon 非's	Air Time	Total Time	Treatment used
2/7-2/8	21434	28	12.9	pH 11-12 (NaOH) Unisteam . 45 gpm Ammonia .45 gpm .
2/8-2/9	21378	30	12	pH 11-12 (NaOH) Unisteam $.45 \mathrm{gpm} \frac{1}{2}$ time Ammonia .45 gpm Unisteam .45 gpm Ammonia .45 gFm $\frac{3}{2}$ time H 35.63 gpm pH 11-12 (NaOH)
$2 / 9-2 / 11$	21417	20	9.3	Unisteam . 45 gpm Ammonia . 45 gpm H35 . 63 gpm $\frac{1}{2}$ time $\frac{\mathrm{pH} 11-12(\mathrm{NaOH})}{\text { Ammonia } .45 \mathrm{gpm}}$ H35. . 63 gpm $\mathrm{pH} 11-12(\mathrm{NaOH})$ $\frac{3}{2}$ time $\mathrm{Na}_{2} \mathrm{SO}_{3}$ on water only
2/10-2/11	21353	13.8	8.0	Ammonia .45 gpm H35 .63 gpm pH 11-12 (NaOH) $\mathrm{Na}_{2} \mathrm{SO}_{3}$ on water only Unisteam residual present
2/11-2/13	$\begin{aligned} & 21379 \\ & 21359 \end{aligned}$	$\begin{aligned} & 22.7 \\ & 19.0 \end{aligned}$	$\begin{gathered} 12.1 \\ 10.1 \end{gathered}$	$\begin{aligned} & \text { Ammonia } .45 \mathrm{gpm} \\ & \frac{\mathrm{H} 35 \quad .63 \mathrm{gpm}}{\mathrm{pH} 11-12(\mathrm{NaOH})} \\ & \mathrm{Na}_{2} \mathrm{SO}_{3} \text { on water only } \end{aligned}$
2/13-2/15	21362 $10753 A$	$\begin{aligned} & 15.6 \\ & 16.4 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 7.6 \end{aligned}$	Unisteam . 45 gpm Ammonia . 45 gpm pH 11-12 (NaOH) $\mathrm{Na}_{2} \mathrm{SO}_{3}$ on water only H35 residual present
$\begin{aligned} & 2 / 15-2 / 16 \\ & 2 / 16-2 / 18 \\ & 2 / 15-2 / 18 \end{aligned}$	21356 21398 21360	46.6 33 30	16. 11.4 10.5	Unisteam . 45 gpm $\mathrm{Na}_{2} \mathrm{SO}_{3}$ on water only
2/18-2/19	21342	17	9.7	
2/19-2/20	21220	23	9.9	Unisteam . 45 gpm
2/18-2/20	6889A	20.2	8.2	Ammonia .45 gpm
2/20-2/21	21397	40.2	13.4	pH 11-12 (NaOH)
2/21-2/22	21373	42.2	14.1	.6\# min on water

Corrosion in $\mathrm{lbs} / \mathrm{ft}^{2} /$ year

Union Geothermal．
Union Oil Company Cove Fort Sulphurdale Unit Federal 非42－7
Beaver County，UUtah
Loffland Rig 非184

Analysis of deposit removed from the outside surface of drill pipe

Date	Stand 第	Xray analysis	per cent
2－25－78	21	Calcium Carbonate	75\％
		Magnetite	25\％
2－25－78	42	Calcium Carbonate	46\％
		Magnetite	54\％
2－28－78	4，5，6	Calcium Carbonate	75\％
		Magnetite	25\％
2－28－78	21	Calcium Carbonate	67\％
		Magnetite	33\％

Technical Memorandum

Research Department
Union Oil Company of California
Union Research Center, Brea, California

[170176

To:	Mr. G. W. Hendricks	Memo: E\&PP 78-5.7M
From:	D. S. Pye	Date: March 15, 1978
		\because
Division:	Exploration \& Production Research	Project:638-18810
Subject:	CORROSION PROBLEMS WHILE DRILLING COVE FORT SULFURDALE UNIT 42-7	Supervisor: F. Krueger

cc: Library.(2)
Patent
W. C. Allen
D. L. Ash, Santa Rosa
P. W. Fischer
C. Otte, UOC
D. E. Pyle, UOC

DON L. ASH
MAY 221978
D. L. Ash, Santa Rosa
P. W. Fischer
C. Otte, UOC
D. E. Pyle, UOC

During late January and February I was asked to investigate severe drill pipe corrosion being experienced during the drilling of exploratory geothermal well Sulfurdale $42-7$ at Cove Fort, Utah. This report is a summary of the problems and the attempted remedies.

CORROSION RATES BECAME SEVERE WHEN AERATED
WATER WAS USED AS THE DRILLING FLUID
Due to severe lost circulation problems and the costs associated with maintaining circulation under these adverse conditions, the drilling fluid was changed over from mud to aerated water. The aerated water reduced the wellbore pressure below formation pressure, which allowed the drilling fluid to circulate, but it also resulted in the production of formation fluids.

Two problems resulted from this change in the drilling method. The first was

- the produced fluids. The increased volume of fluid could only be disposed of in the well, so when the surface storage was full, the water was reinjected into well. Most of the time drilling was continued while the water was being injected (drilling "blind" with no fluid returns to the surface), but due to hole problems, drilling was halted during the water injection after February.

The second problem is the subject of this report. This problem was the increase in the corrosion rates that were experienced when oxygen containing air was injected with the water.

CHEMICAL TREATMENTS REDUCED, BUT DID NOT SOLVE THE CORROSION PROBLEM

Various chemicals were used in an effort to bring the corrosion under control, but none worked satisfactorily. The best results were obtained with a combination of water soluble amine (Unisteam), organic phosphonate ($\mathrm{H}-35$ or $\mathrm{H}-351$), amonium hydroxide and pH control l_{2} (with caustic). This combination reduced the corrosion rate from over $30 \mathrm{lbs} / \mathrm{ft}^{2} / \mathrm{yr}$ to between 7 and $8 \mathrm{lbs} / \mathrm{ft}^{2} / \mathrm{yr}$ on average. However, this is far from our desired maximum of. $2 \mathrm{lbs} / \mathrm{ft}^{2} / \mathrm{yr}$. These high corrosion rates were reflected in severe damage to the drill pipe. There were 218 joints of premium grade drill pipe (\#1) in the hole. Only 101 joints remained grade \#1. 82 joints were downgraded to \#2 pipe, 28 joints were downgraded to $\# 3$ pipe, and 7 joints went to junk. These adverse corrosion rates can also be seen in the casing caliper \log on the $9-5 / 8$-inch casing, although the damage is not as severe as that experienced by the drill pipe. The maximum corrosion rates occurred at the bottom of the drill string, and there was no casing in the hole at this point, which is why the casing did not show as severe a damage as the drill pipe.

DISCUSSION OF THE CORROSION CONTROL
METHODS THAT WERE ATTEMPTED, THEIR APPLICATION, AND RELATIVE SUCCESS

When the corrosion problem was first recognized, we began to combat it using a method which had been successful in the past. This method utilized a water soluble amine, ammonium hydroxide, and pH control. with caustic. It took about five days to set up the equipment and line up the supplies required to properly implement this treatment. This delay was dictated by the drilling method which required continuous treatment. Since formation water was produced, the total returns were placed in the sump, and then fluid was withdrawn from the sump and used as the drilling fluid. This fluid was basically untreated, so the total fluid going downhole had to be treated continuously. Since drilling rigs are set-up to treat a circulating fluid to maintain given concentrations rather than to continuously treat all the fluid, extensive modifications had to be made on the rig treating system. These modifications are shown schematically in FIGURE 1. The large quantities involved in continuous treatment also created supply problems which required a few days to straighten out, primarily because of adverse weather conditions at the time.

TABLE 1 summarizes the corrosion control chemicals used and their effectiveness. This table lists the chemicals used, their rate of injection (TABLE 2 lists the measured concentrations, and pH of the injected and returning fluids), the dates over which they were used, and the measured corrosion rates. The measured corrosion rates are calculated in two different ways. The first.calculation assumes that all the corrosion took place while air was being injected, and calculates the rate during this time. The second calculation assumes that the corrosion took place uniformly during the time the coupon was in the drill string, and this represents the average corrosion rate on the drill pipe. For the purpose of the following discussion, I will use the corrosion rates in TABLE 1 based on the time that air was injected. All these corrosion rates are based on the weight loss experienced by corrosion rings placed in the drill string at the top of the drill collars. (TABLE 3 lists all the coupon results).

Initial treatments with caustic, ammonium hydroxide, and Unisteam (treatments 1 and 2) reduced the corrosion rates to $28 \# / \mathrm{ft}^{2} / \mathrm{yr}$. Since this was still too high, we tried adding an organic phosphonate ($\mathrm{H}_{\overline{2}} 35$) to the mixture, (Mixture.3) but the rate stayed almost the same $-20-30 \frac{\pi}{H} / \mathrm{ft}^{2} / \mathrm{yr}$. We then tried a combination of organic phosphonate ($H-35$), ammonium hydroxide, and caustic during the air injection phase (basically eliminating the Unisteam), and added a catalyzed sodium sulfite oxygen scavenger during the period when air was not injected (Treatment 5): This combination reduced the corrosion rate to about $20 \# / \mathrm{ft}^{2} / \mathrm{yr}$. However, we noted that during the transition time when a residual amount of Unisteam was present (Treatment 4), the rate was down to about $144 / \mathrm{ft} / \mathrm{yr}$. Due to the cost and the ineffectiveness of H35 alone, we switched back to a Unisteam, ammonium hydroxide, caustic treatment, except that we also treated with sodium sulfite oxygen scavenger during the time that air was not being injected. (Treatment 7). This resulted in corrosion rates of 30 to $40 \mathrm{H} / \mathrm{ft} / \mathrm{yr}$. The increase in these rates over treatments 1 and 2 is probably due to the increasing depth of the well which increases the corrosion rate.

We noted again that the corrosion rate decreased during the interim period when the chemical change was made (treatment 6) where corrosion rates were only $16 \# / \mathrm{ft}^{2} / \mathrm{yr}$.

The next test used an inhibitive salt, sodium nitrite. The initial results were not too bad $20 \# / \mathrm{ft}^{2} / \mathrm{yr}$, but this rate did not hold, and rates of up to $40 \# / \mathrm{ft}^{2} / \mathrm{yr}$ were recorded, and this test was abandoned.

We switched back to a mixture which would approximate the interim mixtures which had appeared to gixe us the best results so far (Treatment 9). This gave corrosion rates of $27-28 \frac{\pi}{\pi} / \mathrm{ft}^{2} / \mathrm{yr}$. On the theory that the inhibiting nature of these chemicals was being defeated by the produced brines, a test was made using fresh water (treatment 11), but no significant improvement was noted. One last test was conducted using diammonium phosphate (Treatment 12), but it also proved negative, with corrosion rates of $30 \pi / \mathrm{ft}^{2} / \mathrm{yr}$.

TABLE 1 provides a brief overview of this discussion. This table is augmented by TABLE 4. which shows the time interval that each coupon was exposed, and the : treating fluids used at that time. TABLE 2 lists the actual measured quantities of the treating materials that were in the fluids going down the hole and the fluids that were returning from the hole, and TABLE 3 lists all the test coupons that were run and their results.

OTHER METHODS WERE CONSIDERED

Two other methods of corrosion control were considered, but were not tried.
The first was the use of chromates. This method was not used because of environmental problems. The second method was the elimination of oxygen by using an inert gas such as nitrogen. This method was not tried because of the excessive costs and long lead times which may have exceeded the remaining drilling time on the well.

DSP:ms.
Att.

TABLE 1
SUMMARY OF THE CORROSION CONTROL CHEMICALS USED AND THEIR EFFECTIVENESS

Compounds Used
1). Unisteam 0.45 gpm Ammonia 0.45 gpm NaOH pH 11-12
2) Unisteam 0.45 gpm

Ammonia 0.45 gpm
NaOH pH 11-12
(1/2 of coupon life)
3) Unisteam 0.45 gpm

Ammonia 0.45 gpm
$\mathrm{H}-35 \quad 0.63 \mathrm{gpm}$
$\mathrm{NaOH} ; \mathrm{pH}$ 11-12
(0ther $1 / 2$ of coupon life)

1/2 exposed to treatment 3
and $1 / 2$ to treatment 420
4) Ammonia 0.45 gpm
$\mathrm{H}-35$. 0.63 gpm
$\mathrm{NaOH}, \mathrm{pH} 11-12, \mathrm{NO}_{2} \mathrm{SO}_{3} \quad 13.8$
on water, residual onisteam
5) Ammonia 0.45 gpm
$\begin{array}{lll}\text { Anma } & 0.63 \mathrm{gpm}\end{array}$
NaOH
$\mathrm{Na}_{2} \mathrm{SO}_{3}$.
6). Unisteam 0.45 gpm Ammonia 0.45 gpm NaOH, pH 11-12
$\mathrm{Na}_{2} \mathrm{SO}_{0}$ on water
H-35 residual present.
7) Unisteam 0.45 gpm Ammonia 0.45 gpm NaOH , pH 11-12 $\mathrm{Na}_{2} \mathrm{SO}_{3}$ added on water
8) Unisteam 0.45 gpm Ammonia" 0.45 gpm $\mathrm{NaNO}_{2} \sim 6 \stackrel{4}{n} / \mathrm{min}$.
$\# / f t^{2} / \mathrm{yr}$.
Air Time

28
12.9
12.9

Dates
Coupons
2/7-2/8 21434
--
\because
;
\square --

30
12.0

2/7-2/9
21378
9.3
8.0
$2 / 10-2 / 11$
21353
22.7
19.0
12.1
$2 / 11-2 / 13$
21379
21359
15.
16.4 7
7.6
$2 / 13-2 / 15$
21362
10753 A
46.6
33.0
30.0
16.0
11.4
10.5
$2 / 15-2 / 16$
$2 / 16-2 / 18$
21356
17.0
23.0
20.2
40.2
42.2
9.
9.9
8.2
13.4
14.7
14.1

2/18-2/19
21342
$\begin{array}{rr}2 / 19-2 / 20 & 21220 \\ 2 / 18-2 / 20 & 6889 \mathrm{~A}\end{array}$

- 2/18-2/20

21397
21373

TABLE 2

measured concentrations and ph of the inuected and returning fluids

Date	Time		\underline{H}	$\frac{\mathrm{H}-35}{\mathrm{SuC}}$	$\mathrm{SuC}^{\mathrm{NO}_{2}}{ }^{\mathrm{ktn}}$	$\begin{aligned} & \mathrm{SO}_{3} \\ & \text { Resid. } \end{aligned}$	Remarks
1/28	2400	12.0	10				Dritling Cement
1/29	0100	11.8	11.7				Upped caustic to $1 \mathrm{sk} / \mathrm{hr}$ (13 gal unisteam, 10 gal NH_{4}, 2-1/2 gal Quick foam 19.5 bbls, pump 6 gpm) Caustic tank empty First returns on surge Avg. caustic $6 \mathrm{sk} / 5 \mathrm{hrs}$.
	0200	10.2	8.4				
	0330	10.3	10.6				
	. 0400	9.4	11.2				
	0430	10.8	7.911.1				
	0440						
	0450	10.9					
	0740	9.1					Pit sample while tripping .
	1230						Deleted Foamer and Increased
			9.1				Caustic to $2 \mathrm{sk} / \mathrm{hr}$. $\quad \because$
	1545	10.4					Derrick man says he can't keep pH above 10 with $2 \mathrm{sks} / \mathrm{h}$
	1600	10.5	9.3				
	1630	9.2	8.2				
	1700	10.1	7.8				
	1730	9.7	8.0				Made connection
	1800	9.9	8.0				limiting caustic addition to
	2100	8.9	9.4				100\#/hr until new supplies arrive.
	2130	9.5					
	2145						Increased caustic to $4 \mathrm{sk} / \mathrm{hr}$
	2200	10.4	10.2				
	2230	10.9	9.0				
	2300	11.0	10.9				
	2330	9.4	11.3				
1/30	0630	9.7	$\begin{array}{r} 9.5 \\ 8.3 \\ 10.0 \end{array}$				Communication gap with derric man, dropped back to $2 \mathrm{sk} / \mathrm{hr}$ for 6 hrs , back to $4 \mathrm{sk} / \mathrm{hr}$. nc Caustic Supplies have arrivec Start trying for higher pH.
	0830	9.8					
	0900	9.8					
	1035	10.3					
	1100	10.4	8.5				
	1130	10.4	10.8				Returns still foamy. Single unload
	1136						
	1140		10.4				
	1200	10.8					
	1230	10.5	8.7				
	1300	10.4	9.1				All 1 head Sump pH $=9.3$
	1310		9.0				
	1313		11.5				
	1316		8.8				
	1330	11.3					
	1630	11.7					Sump $\mathrm{pH}=9.6$ Trip to measure BHT-288

Table 2 - Cont'd.

. TABLE 2-Cont'd.

TABLE 2 - Cont'd.

TABLE 3
RESULTS OF CORROSION COUPON TESTS
NOTE: All coupons were at the top of the drill collars except those followed by KSS which were in the kelley saver sub at the top of the drill string. The corrosion. rings were for 4-1/2 IF tool joints, and had a K factor of 253

	Depth		In		Out		Weioht		Total Hrs.	$\frac{\pi / \mathrm{ft}^{2}}{} / \mathrm{yr} .$
Coupon No.	In	Out	Date	Time	Date	Time	Original	Final		
Unknown	I-	2528	-	-	1/28	1800	79.4208	76.953	$\overline{86}$	7.26
5127	2528	2758	1/28	1800	1/29	0900	80.5351	79.341	15	21.0
10783A	2777	3304	1/29	1200	1/30	1900	81.165	79.92	31	10.2
6695A	2777	3304	1/29	1200	1/30	1900	80.497	78.752	31	14.2
10910A	3304	3448	1/31	0030	$2 / 1$	0330	80.0203	78.36	27	15.6
21328	3453		2/6	1130	2/7	0140	80.2645	80.08	14	3.3
21307	3453	3980	2/6	1130	2/7	2330	80.3381	79.05	36	9.1
21434	3629	4414	2/7	0140	2/9	0730	80.6539	77.92	54	12.9
21378	3975	4787	2/7	2330	2/10	0730	81.0735	78.42	56	12.0
21353	4787	5216	2/10	1700	2/11	1500	78.7073	77.70	32	8.0
21417	4414	5216	2/9	0700	2/11	1500	79.2884	77.22	56	9.3
21357 KSS	5216	5619	2/11	1600	2/13:	0315.	79.3599	79.23	35	0.9
21379	5216	5619	2/11	1600	2/13	0055	80.6510	79.08	33	12.1
21359	5216	5619	2/11	1600	2/13	0045	78.8140	77.51	33	10.1
21439 KSS	5619	6168	2/13	0315	2/15	0445	80.1146	79.83	49.5	1.4
10753A	5619	6168	2/13	0100	2/15	0430	82.0930	80.54	51	7.6
21362	5619	6168	2/13	0045	2/15	0430	79.6304	78.15	52	7.1
21356	6168	. 6489	2/15	0300	2/16	1530	78.8827	76.58	36.5	16.0
21398	6489	6835	2/16	1500	2/17	2200	79.4851	78.09	31	11.4
21360	6168	6835	2/15	0300	2/18	0000	78.0566	75.20	69	10.5
21337 KSS	6168	6835	2/15	0315	2/18	0230.	80.3938	80.02	71.25	. 1.3
21342	6835	7003	2/18	0000	2/19	0830	78.2639	77.02	32.5	9.7
21220	7003	7323	2/19	0830	2/20	1320	80.3410	79.20	29	9.9
6889A	6835	7323	2/18	0000	2/20	1315	78.9159	76.92	61.25	8.2
10989A KSS	. 6835	7323	2/18	0230	2/20	1530	79.0156	78.93	61	0.4
21397	7323	7512	2/20	1320	2/21	1300	80.0125	78.74	24	13.4
21373	7323	7512	2/20	1315	2/21	1300	80.8633	79.53	24	14.1
21495	7512	7530	2/21	1300	2/22	2250	80.7664	79.69	35	7.8
21324	7512	7530	2/21	1300	2/23	0030	80.5405	79.44	35.5	7.8
21365 KSS	7323	. 7530	2/20	1530	2/23	0020	80.2124	80.10	57	0.5
21377	7530	7542	2/23	0100	2/23.	1455	80.64	79.95	14	12.5
21490	7530	7542	2/23	0100	2/23	. 1455	80.44	79.88	14	10.1
21462 KSS	7530	7542	2/23	0800	2/23	1530	79.5048	79.43	7.5	0
21420	7542	7735	2/24	0100	2/26	0500	80.1468	78.67	52	7.2
21306	7542	7735	2/24	0100	2/26	. 0500	79.3884	77.92	52	7.1
21399 KSS	7542	7735	2/24	0100	2/26	0500	79.79	79.70	52	0.4
			2/27		2/28				10.5	22.8
			2/27		2/28				10.5	19.5

TADLE 4
coupon results as a fulction of time and the corrosion control treatment KSS - Kelley Saver, () air time only.

'TABLE 4 (Cont'd.)

FIGURE 1

H_{2} S SAFETY PROCEDURES

Protection of all people on and around the Cove Fort-Sulphurdale 42-7 location from possible $\mathrm{H}_{2} \mathrm{~S}$ gas poisoning was of the utmost importance to Union Oil Company of California.

With the help of Oilind Safety Engineering, Inc., Union Oil developed and implemented a state of the art safety program to ensure the safety of everyone. The safety equipment and personnel consisted of:

1) Safety trailer with 15 - 300 C.F. cylinder cascade air supply system.
2) Two thousand feet of low pressure air line hose with quick connects.
3) High pressure air compressor.
4) Five low pressure manifolds:
5) Fourteen air line masks with escape:cylinders.
6) Thirteen 30 minute self contained oxygen units.
7) Two head-fixed $\mathrm{H}_{2} \mathrm{~S}$ monitor systems.
8) Warning sirens and revolving amber light.
9) Three wind socks.
10) First aid kit.
11). Two resuscitators with cylinders (oxygen powered).
12). Flare gun with shells.
13). Gas detector (pump type).
11) Safety supervisor.

One $H_{2} \mathrm{~S}$ gas monitor was located on the rig floor, one under the rig floor at the flow nipple, and one at the mud shakers. The monitors were set to detect $\mathrm{H}_{2} \mathrm{~S}$ concentrations in excess of 10 ppm and automatically activate a warning siren and revolving amber light. In the event of a warning, the men on the rig floor were instructed to immediately put on air breathing apparatus with escape cylinders and alternate reserve air line. Air was supplied to the masks through manifolds from the cascade air supply system. If for some reason there was a malfunction in the air supply system, the masks were equipped with escape cylinders which would supply air for sufficient time to allow a person to leave the area.

After it was determined that everyone was wearing a mask, either a safety supervisor or drilling foreman would check the area for $\mathrm{H}_{2} \mathrm{~S}$ using a hand operated gas detector. One of the 30 minute self-contained units was worn by the foreman so that he could move safely around the location while making the check. If an H_{2} S concentration of over 10 ppm was found in or around the work area, the men were required to continue work wearing the masks. If less than 10 ppm $\mathrm{H}_{2} \mathrm{~S}$ was found, the men could continue work without the masks. Constant monitoring was continued until the gas dissipated.

Three wind socks were located strategically around the location. If the warning siren sounded when an employee was away from either a self-contained air unit or air line mask, he could observe the wind sock and move quickly up wind escaping the gas.

Cove Fort Sulphurdale Unit Well 42-7

In addition to the above, two oxygen resuscitators and a flare gun were on location at all times. The resuscitators were to be employed to revive any individual overcome by $\mathrm{H}_{2} \mathrm{~S}$. If it was determined that any $\mathrm{H}_{2} \mathrm{~S}$ leak was adequate to endanger human or animal life in an area adjacent to the location, use of the flare gun would be a last resort measure to ignite and eliminate the gas.

All presonnel required to be present or perform any type of service on or in the proximity of the CFSU 42-7 location were given instruction relating to safe operating procedures in the presence of $\mathrm{H}_{2} \mathrm{~S}$ gas. Safety instruction was conducted in all cases by a qualified representative of Oilind Inc.. In addition to instruction, an inspection for broken eardrums was made by an M.D. and all personnel were required to be cleanly shaven to ensure an airtight fit of the available breathing apparatus.

Many scheduled and unscheduled $\mathrm{H}_{2} \mathrm{~S}$ drills were conducted, exposing each person associated with the drilling operation to at least one drill. The drills were triggered by manual activation of the $\mathrm{H}_{2} \mathrm{~S}$ alarm system.

In actuality, no $\mathrm{H}_{2} \mathrm{~S}$ gas problems were encountered while drilling Cove Fort Sulphurdale 42-7. The warning alarm did sound several times, but a 10 ppm or greater $\mathrm{H}_{2} \mathrm{~S}$ concentration was never found during extensive area by area checks.

RESULTS OF HIGH TEMPERATURE
 PRODUCTION LOGGING ON CFSU 42-7
 BEAVER COUNTY, UTAH
 Brian Maassen
 Union Oil Company of California
 Santa Rosa

SUMMARY

Four continuous temperature surveys were run on the CFSU 42-7, in Beaver County, Utah, with Gearhart-Owen high temperature production logging equipment. The first three surveys were made with the well static from one.to twenty-four hours after a thirty minute flow period. These surveys indicated maximum temperatures of $340^{\circ} \mathrm{F}$ at 2500^{\prime} and $344^{\circ} \mathrm{F}$ at 7327^{\prime} with a 2500 foot $290^{\circ} \mathrm{F}$ isothermal zone from $\pm 3600^{\circ}$ and $\pm 6100^{\prime}$. Using a radioactive tracer tool, flow rates of $26,000 \mathrm{lb} / \mathrm{hr}$ and $34,000 \mathrm{lb} / \mathrm{hr}$ downward were measured at depths of 3515^{\prime} and 3900^{\prime} respectively. An injection temperature profile indicated that fluid was exiting the wellbore at 6100^{\prime} which is the bottom of the isothermal zone.

OBJECTIVES

The CFSU 42-7 was the first well completed in the Cove fort, Sulphurdale Unit located in Beaver County, Utah. Upon reaching a T.D. of 7735', the well was logged with Gearhart-Owen tomperaturc and spinner tools built for high temperature conditions. The objectives of the logging prograin were:

1) To evaluate wellbore conditions with high temperature tools prior to cooling the hole for conventional clectric logging.
2) To test these tools to determine their diagnostic capability.
3) To determine why the well would produce hot fluids while drilling with an air-water mixture immediately after injecting several throusand barrels of cold water.
4) To design the completion program based on the evaluation of the data from these surveys and other geologic information.

TOOL DESCRIPTION

The temperature log was a combination temperature and differential temperature survey. The output was in the form of two traces consisting of absolute temperature in degrees Fahrenheit and differential temperature (the rate of change in the absolute temperature). The differential temperature readings were a qualitative indicator which pointed out small changes in temperature which were not noticeable on the absolute temperature trace.

The temperature and differential temperature tool consists of a thermal couple temperature probe attached to some electronics kept cool in a Dewar flask. The Dewar flask is effective for 4. to 5 hours at $550^{\circ} \mathrm{F}$. The tool sends only absolute temperature to the surface, then the temperature differential reading is calculated by comparing the present reading with a reading taken at a fixed time interval prior to the present reading. This comparison is made by electronics in the logging truck. The high temperature spinner tool is essentially similar to a standard
spinner tool constructed with high temperature componerits good to $550^{\circ} \mathrm{F}$. Both tools are run on a 2 conductor logging cable able to withstand temperatures up to $565^{\circ} \mathrm{F}$.

PROCEDURE

Upon reaching total depth at 7735', the drilling assemply was pulled out of the hole. Open ended drill pipe was run to 3000° and the well was flowed on air assist for 30 minutes. The fluid temperatures measured at the pit were $203^{\circ} \mathrm{F}$. Logging began one hour after the flow.

Static Surveys

The first log was a temperature and differential temperature run from 3450^{\prime} to 7327'. All the surveys touched bottom at. 7327'. At 4000 ' the tool worked erratically but indicated temperatures seemed to be accurate. "Temperatures of $340^{\circ} \mathrm{F}$ were found at 7300^{\prime} with an $298^{\circ} \mathrm{F}$ isothermal zone from 3500^{\prime} to 6120'.

The isothermal zone seemed to indicate movement of fluid up or down the wellbore. A spinner survey was run while the well was static to verify this. The spinner tool found the fluid level at 1310'. The results of this survey were inconsistent and were disregarded because the tool bearings were found to be damaged when inspected after the run. Thirteen hours after the flow a second temperature survey was run from 300^{\prime} to 7327^{\prime}. The differential temperature was not run because the tool was still operating erratically. The fluid level was found at 1310% The highest temperatures were $340^{\circ} \mathrm{F}$ at 2500^{\prime} opposite the coconino sandstone and $344^{\circ} \mathrm{F}$ at 7327^{\prime} (T.D.). The $298^{\circ} \mathrm{F}$ isothermal zone
was still present between 3600' and 6075'.

Twenty-four hours after the flow a third temperature survey was run. A new control panel which did not support the differential temperature function was used on this run in hopes of correcting the problem of erratic tool operation. The new panel read temperatures about $5^{\circ} \mathrm{F}$ lower. The well was logged from 300^{\prime} to 7327' and produced the same characteristic profile as the previous two surveys. The fluid.level was again detected at 1310\%.

Following the third temperature survey, a conventional (normal temperature) R / A tracer and spinner tools were run. The R / A tracer tool indicated that there was no flow in the wellbore at 3450', $26,000 \mathrm{lb} / \mathrm{hr}$ downward flow at 3515', and 34,000 lb/hr downward flow at 3900'. More R / A shots were planned but the R / A and spinner tools failëd due to overheating.

Injection Temperature Profile

It was planned to run an injection profile with the spinner tool. However, when the tool overheated during the prior R / A work, an injection temperature profile was run in its place. The injection rate was 553 gal per minute of $70^{\circ} \mathrm{F}$ water and the survey was started when 1 wellbore volume was displaced. Injection continued during the survey and a total of 3.25 wellbore volumes had been injected by the survey's completion. The temperatures above 6060' showed cooling of the wellbore and the temperatures below 6060.' were unchanged. This indicated that a large portion of the fluid was exiting at 6060°. This depth also corresponds with the bottom of the isothermal zone.

1) The maximum temperature recorded was $344^{\circ} \mathrm{F}$ at 7320^{\prime}.
2) Fluid was entering the wellbore at $\pm 3600^{\prime}$ and exiting at $\pm 6100^{\prime}$ creating a 2500 foot $298^{\circ} \mathrm{F}$ isothermal zone. Whether this is due to natural conditions or is the result of disturbances created by drilling is yet to be determined.
3) The production logging equipment proved an effective method of determining what was going on in the wellbore. The high temperature spinner needs further improvements in its design.

FLOW TEST RESULTS AND ANALYSIS

The following data is not a complete summation of the information gained from the CFSU 42-7 flow test.

Water samples, now being analyzed, are necessary for a complete flow test conclusion.

Upon completion of the water analysis, the flow test summary will be forwarded with the Reservoir assessment report.

May 23, 1978

TO: Mohinder Gulati
 FM: Brian Maassen

 $\mathrm{RE}:$ Preliminary Results of CFSU 42-7 Flow Test

Static Survey

A static temperature and differential survey was run on 5/15/78 prior to the flow test. The survey indicated a maximum temperatore of $328^{\circ} \mathrm{F}$ at 6040^{\prime} where a bridge was encountered. The 2500 foot isothermal zone from ± 3600 to $\pm 6100^{\prime}$ found in surveys run prior to completion of the well was no longer present.: A sensitive spinner tool was hung at several points in the zone and no flow was detected.

Flow Period

Open ended coiled tubing was run into the well on 5/16/78 at ± 50 feet $/ \mathrm{min}, ~ c i r c u l a t i n g ~ n i t r o g e n ~ a t ~ 1500 ~ c u b i c ~ f e e t ~ p e r . ~$ minute. An obstruction was encountered at 591 feet. When an attempt was made to back off 50', the tubing parted and 591 feet was lost down hole. Coiled tubing was again run into the well with a $3^{\prime \prime}$ washing jet on the end to act as a guide shoe. The tubing was run at the same speed and nitrogen rate as above, past the bridge at 6040', until it tagged bottom at 721.1'. Several attempts were made to get past 72ll' but all were unsuccessful. The well was lifted on nitrogen assist for 6 hours. At times, the well produced a small amount of black, sandy grit. Flow continued unassisted at a rate of $\pm 48,000 \mathrm{lb} / \mathrm{hr}$ at 3 psid of wellhead pressure and decreased gradually over the next 7 hours to $43,000 \mathrm{lb} / \mathrm{hr}$. The well was shut in at 7:00 atm. on $5 / 17 / 78$. Shortly after shut-in a $3^{\prime \prime}$ valve was opened on the wellhead, a noncondensible gas head was bled off and the wellhead pressure dropped to 0 psi.

Post Flow Survey
Twelve hours after shut-in a second temperature and differential temperature survey was run. This survey indicated a maximum temperature of $340^{\circ} \mathrm{F}$ at 61.0^{\prime} and a $336^{\circ} \mathrm{F}$ temperature at 6900^{\prime}. The fluid level was at 1270'.

Injection Period

The produced fluid was injected into the well for 17 hours at an average rate of $53,000 \mathrm{lb} / \mathrm{hr}$ on a vacuum. A spinner: survey was run but the results were inconclusive. The fluid level was found at 1370°. A radioactive tracer survey showed fluid leaving the wellbore at the following locations:

Slotted Interval	Percent
$4353^{\prime}-4473^{\prime}$	51
$4860^{\prime}-4989^{\prime}$	3
$512^{\prime}-5319^{\prime}$	20
$5534^{\prime}-5660^{\prime}$	13
below 5800^{\prime}	13

No tracer shots were made below 5800' due to temperature limitations on the tool. The injection flowing bottom hole pressure and pressure falloff were measured with Kuster tools, but the results are not yet available.
$\mathrm{BWM} / \mathrm{bls}$

	C. Otte
	D. Pyle
	N. Stefanides
	V. Sutex
	S. Lipman
	O. Whitescarver
	D. Ash
	R. Dondanville
	F. Corbin
	S. Maione

(07)

GEOTHERMAL DIVISION
SUBSURFACE SURVEY
owner Union 0.1 Company
field cove fort
well name Sulaherdate $42-7$
 Date: $4 / 15-6 / 78$ $\begin{array}{r}\text { LINER DESCRIPTION: } \quad \text { "rom } 0 \text { to } 2615 \\ \hline \text { fie bank a } 3084 \\ \hline\end{array}$ zERO POINT Such rate (vs $\left.5^{-1}\right)$ DEPTH $2615^{-}\left(K B+20^{\prime}\right)$

Remarks: Fluid level ~ 1850 Ft
"culet UnTek ENTry" AT 12786
purpose Gradient Survey - traverse From 1500 to 6050 ft

SHUT IN: -
ON PRODUCTION:

 comments: Bridge @ 6064 -Tool sTicking badly at This point 19050 ET winclive on drum

 GEOTHERMAL DIVISION

 SURSURFACE TEMPERATURE SURVEY
ownen UnLon oil Compout
rimo Covo Furt wfun name Sulfercelale 42-7 cas tuv - 6420 DATE $9 / 5-6 / 78$
limen deachirtion \qquad zero point $\frac{\text { Swad Ga }}{76 / 5}$
nocuosacamion \qquad instrument $104-76 \overline{\mathcal{E}}$ - FAB SERIAL NO 10172
ruaroar Pressure/Temporiture Gradicut by Traverse max 1 mm 325 or © 6050 nemana: Fluid level ~ 1850 fT.

(107307

GEOTHERMAL DIVISION

SUBSURFACE SURVEY
 Field Work Sheet: CFSU 42-7- 52-PT

 Tie back e 3084 DEPTH $7615\left(K Q Q+20^{\prime}\right)$

REMARK: Fluid level $1760 \pm$

[^1]
 GEOTHERMAL DIVISION

SUBSURFACE PRESSURE SURVEY

Pncsoutise-	GAUGE	5098
casing. esi		
$\begin{gathered} \text { DERTM } \\ 0 \end{gathered}$	159	GMadient
$1000-209$		
2000291		
$1000-677$		
$4000 \quad 1084$		
-5000 1479		
-6000-1877		
$6050 \quad 1890$		

GEOTHERMAL DIVISION
SUBSURFACE SURVEY
Field Work Sheet

$$
\text { CFSu } 42-7-53-T
$$

owner Union $0_{i l}$ Company field Cove Fort weLl NAME Sulpherfule 42-7 CASING ELEV: 6420 Date: $5 / 17178$
Liner description: $7^{\prime \prime}$ forum 0-76/5 POINT SW4Q GATE $\left.+13^{\prime}\right)$ zero point
depth $7211 \quad(K B)$
REMABKS: FLuid level 1270
purpose To check Gccarajo it GO Tempercatione log
ELEMENT Temp - SERIAL NO 10172 clock 17454 TURN STABLLZATION PERIOD
\qquad ${ }^{\text {MAX }}{ }^{\circ}{ }^{\circ}$

EPSAGESTLUS 1620
DISENGAGE STYLUS
\qquad
 WELL STATUS
SHUT IN:
ON PRODUCTION: \qquad

:AMENTS:

Open Swab Gate Close swab rato -
con csc. PRESS.
PICKUP E:
TM E ON BOTTOM
Y隹

世目目比羿山目 GEOTHERMAL DIVISION

SUESURFACE PRESSURE SURVEY

CFSU 42－7－S4－PPT－PFO

ressauma．	gquag	BONB
casinc rs		
$\begin{array}{r} \text { DEPTH } \\ \hline 1000 \\ \hline \end{array}$	min	GMADIENT
2200	min	
3000	231	
4000	240	
－ 5000	249	
－6000	267	

QTm 96

GEOTHERMAL DIVISION
SUBSURFACE SURVEY
Field Work Sheet

$$
\text { CFSU } 42-7-55-P T
$$

owner UNión dil Compayy. Feled Cuve Port

CASERGESCRIPTION: 7° To 7615 -6920
Tie l.ke 3084 Date: $5 / 19 / 78$

[^0]: $107-1$

[^1]: OMMENTS:

