GL01793

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

CHEMICAL AND ISOTOPIC DATA FOR WATER FROM THERMAL SPRINGS AND WELLS OF OREGON

Open-File Report 80-737

٠.

Menlo Park, California

January 1980

CONTENTS

Page 3 Abstract---------Introduction-----2 Data-----7 Geothermometry-----34 Summary-----45 Acknowledgment-----45 ------45 References-----

ILLUSTRATIONS

Figure 1. Example of a complete Geotherm record------3 2. Physiographic divisions, Known Geothermal Resource Areas, and other features of possible geothermal importance------

TABLES

Page

Page

Table 1.	Chemical composition of thermal spring	
	and well waters	8
2.	References for analyses	24
3.	Gas and isotopic composition of thermal	32
4.	Geothermometer calculations (°C)	37

III

CHEMICAL AND ISOTOPIC DATA FOR WATER FROM THERMAL SPRINGS

AND WELLS OF OREGON

By R. H. Mariner, J. R. Swanson, G. J. Orris, T. S. Presser, and W. C. Evans

ABSTRACT

ť

C

C

The thermal springs of Oregon range in composition from dilute NaHCO₃ waters to moderately saline CO₂-charged NaCl-NaHCO₃ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO_2 as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO₃ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Springs, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systms (>150°C).

INTRODUCTION

Data presented in this paper are stoned in the U.S. Geological Survey Geotherm file. Geotherm is a computerized file created and maintained as part of the Geological Survey's Geothermal Research program (Teshin and others, 1979). Geotherm contains information on the physical characteristics, geology, geochemistry, and hydrology of national and some international geothermal resources. The data include published information, data from other computer files, personal communications, and compilations of various government and private organizations. Retrievals are available to the public in a variety of formats: tape, punched cards, listings, or tables. Requests should be sent to: Geotherm Project, Mail Stop 84, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025.

Geotherm is currently composed of three subfiles: geothermal fields/areas, chemistry and physical properties of thermal wells and springs (sample file), and geothermal drill holes. In addition to these subfiles, there is a file containing the references listed in each record. The data retrieved from the sample file were formatted and special programs were written to calculate temperatures using geothermometers and to create the tables. The records in Geotherm contain more data than are listed in the tables. An example of a complete record is illustrated in figure 1.

ĺ

€.

C

e

Ć

E

£

The physiographic provinces of Fenneman (1946), shown on figure 2, have differing geologic settings which, in large part, determine the chemical character of the thermal fluids. The Basin and Range province is characterized by a thick sequence of nonmarine volcanic and sedimentary rocks of Cenozoic age, broken by faults which bound the major topographic features (Walker and Peterson, 1969). The volcanics range from basalt to rhyolite and the sedimentary rocks contain considerable volcanic debris. The Owyhee Uplands of southeastern Oregon make up a relatively unbroken plateau consisting of basaltic, andesitic, and rhyolitic sheets and their associated pyroclastics of middle to late Cenozoic age (Corcoran and Walker, 1969). The High Lava Plains of southcentral Oregon also consist of basalt, andesite, and rhyolite flows and their associated sedimentary rocks (Walker, 1969). The Blue Mountains are generally made up of intrusive rock, Quaternary basalts, and older sediments and volcanics, some of which are highly metamorphosed. Intrusive rocks of two ages are present, an older Permian to Triassic suite

GEOTHERN FILE IDI 0000711 GEOTHERM SAMPLE FILE NAME OF SAMPLE SOUNCE ... HOT LAKE WARING NUMBER 11 COURDINATES LOCATION TOWNSHIP-RANGE COUNTRY UNITED STATES 045 039E 05 NW OF SE LAT/LONG... 45-14.63 N 117-57.51 W STATE OREGON COUNTY UNION MAP REFERENCE CRAIG MTN. 1124000, GHANGEVILLE 11250000 SAMPLE DESCRIPTION AND CONDITIONS DATE/COLLECTOR 1972/00/00 BARNES GROUP TEMPERATURE (C) 80.0 DISCHARGE 1500. L/HIN WATER TREATMENT PRESSURE-FILTERED THROUGH A .45 MICROMETRE MEMBRANE, PORTION ACIDIFIED, DILUTED. DEPOSITS OR ALTERATION TRAVERTINE PERTINENT LITHOLOGY BASALT AND HYLONITE WATER ANALYSIS 9.21 PH......... SPECIFIC CONDUCTANCE 688. ISOTOPES (0/00) ANALYSIS IN MG/L DEL D OF WATER -127.7 AG L 0.02 CU3.... 0.03 58... L 0.2 12. LI... L 0.1 sc... DEL O(18) OF WATER ... MG ... -16.56 AL CH DEL 0(18) OF 504 AS 0.01 CS.... L 0.1 MN . . . L 0.02 SE 4,63 AU.... L 0.1 MO... CU.... 0.01 5102. 48. 8 2.9 F 1.7 NA ... 130. FE+3.... BA L 0.1 NA+K. 504 ... 56. 8E L 0.1 FE(TOT). L 0.02 NB ... SR L 0.05 0.4 BR 75. CA 4.9 HC03.... CA+HG. HG..... 0.0032 PB... L 0.06 P04 .. CD L 0.01 0.09 H25.... CL 140. 80.0 R8... L 0.02 1..... CO.... L 0.05 K 2.7 GAS ANALYSIS ANALYSIS IN VOLUME & ISOTOPES (00/0) CH4 ... 9. C2H6. N2 ... 90. CO2.. L 1. OTHER ANALYTICAL DATA ... 02+AR=2 -REFERENCE AND IDENTIFICATION COMPILER AFFILIATION ... U.S. GEOLOGICAL SURVEY COMPILER CROSS INDEX ... 02 REFERENCE...... MARINER AND OTHERS, 19741 MARINER AND OTHERS, 19751 NEHRING AND OTHERS, 1979

 \bigcirc

and a state

14.4

1. A. C.

記書は読みのな

Figure 1. Example of a complete Geotherm record

ω

 \cap

which ranges from peridotite to granite, and a Lower Cretaceous suite which ranges from gabbro to granodiorite (Thayer and Wagner, 1969). Several of the younger intrusives are outliers of the Idaho batholith. The Cascade province consists of two subdivisions, the High Cascades and the Western Cascades. The High Cascade Subprovince is a relatively narrow plateau of basalt and andesite flows of Pleistocene and Pliocene Age. The Western Cascade Subprovince is made up of slightly deformed and altered volcanic and pyroclastic rocks that range from late Eocene to late Miocene in age. A few small diorite intrusions also occur in the altered zones of the Western Cascades. The southern end of the Cascades is underlain by a complex of graywacke, siltstone, and interbedded volcanics of Triassic to Cretaceous age, some of which have been regionally metamorphosed. Intrusives associated with these rocks range from granite to peridotite (Griggs, 1969). This type of basement rock extends from the Klamath Mountains in southwestern Oregon to the Blue Mountains in northeastern Oregon. The northern part of the Cascades is underlain by marine and estuarine deposits of Eccene age which are exposed in the Coast Ranges to the west.

í

Ċ

C

6:

Ć

Ċ

C

NAR CONTROP

the state of state being a state

Thirteen KGRA's (Known Geothermal Resource Areas) have been designated in Oregon: Mt. Hood, Cary Hot Springs, Breitenbush Hot Springs, Belknap-Foley Hot Springs, and McCredie Hot Springs in the Cascades; Klamath Falls, Lakeview, Crump Geyser, Alvord, and Summer Lake Hot Springs in the Basin and Range province, Newberry Caldera and Burns Butte in the High Lava Plains; and Vale Hot Springs in the Owyhee Uplands. Groh (1966) pointed out several other areas of potential geothermal importance: Jordan Craters in the Owyhee Uplands; Diamond Craters in the Harney Basin; the area southeast of Newberry Caldera in the High Lava Plains; and the Warner Range in the southern part of the Basin and Range province.

<u>Brook and others (1979)</u> list eight areas which they believe have mean reservoir temperatures of <u>more than 150°C</u>: <u>Newberry Caldera 230°</u> (230°C), Crump's Hot Spring (167°C), <u>Mickey Hot Springs (207°C)</u>, <u>Alvord Hot Springs (181°C)</u>, <u>Hot (Borax) Lake (181°C)</u>, Trout Creek Area (154°C), <u>Neal Hot Springs (188°C)</u>, and Vale Hot Springs (157°C). These areas are estimated to have an aggregate thermal energy of 90 x 10¹⁸ joules, most of which is in the Vale, Alvord, and Newberry areas. About 55 x 10¹⁸ joules are estimated to be present in 20 systems of lower temperature (90° to 150°C), with approximately 70 percent of this amount in the Klamath Falls and Lakeview areas. The temperatures used in the estimates are mean temperatures for the

respective systems and do not reflect the maximum and minimum temperatures of the reservoirs. Since volumes of the individual systems are more important in determining the amount of stored heat than the temperatures, and since the volume estimates may undergo considerable change as drillhole and geophysical data become available, changes in the estimated quantities of thermal meat available in longon are anticipated.

Chemical data exist for many of Oregon's thermal waters, but they are often scattered in the literature or in unpublished files. A compilation of the raw chemical data for Oregon, as it was entered into Geotherm, has recently been published by the Oregon Department of Geology and Mineral Industries as Open-File Report 0-79-3. The data stored in Geotherm cannot be considered to be of uniform quality since they were collected for a myriad of purposes and by different techniques. Anyone considering a sampling program should consult the available literature on general water sampling, such as Brown and others (1970), and the special techniques described for handling geothermal waters such as those given by Presser and Barnes (1974).

-244

.

- in

÷.

.....

.

C

The approximately 170 thermal springs and wells identified in Oregon are not distributed uniformly over the state (Bowen, Peterson and Riccio, 1979; Waring, 1965). The largest number of springs issue in the Basin and Range province of southeastern Oregon, with progressively fewer springs in the High Lava Plains, Owyhee Uplands, Blue Mountains, and Cascade Range. The Coastal Plain, Coast Range, Klamath Mountains, and Willamette Valley of western Oregon are devoid<u>of thermal springs</u>. Curiously, most hot springs do not occur in the areas of most recent volcanic activity. Crater Lake, formed some 7,000 years ago by a violent volcanic eruption, has no hot springs associated with it, and the smaller Newberry Caldera has only two areas of weak thermal springs. The springs at Newberry may be drowned fumaroles; they issue in or at the edges of the lakes and appear to be dominantly gas vents. Diamond Craters in the eastern <u>High Lava Plains and Jordan Craters in the Owyhee Uplands are also of</u> <u>Holocene_age</u>, but neither has thermal springs nearby. With the exception of Mt. Hood, which has a fumarole on it and a weak thermal spring at its base, the prominent volcanoes of the High Cascades, which have all been formed in the last three million years, do not have thermal springs directly associated with them. Most of the thermal springs in the Cascades issue to the west of the crest, near the contact of the High Cascades and the older Western Cascades.

Chemical data for the springs and wells (table 1) are arranged by county and numbered to correspond to the thermal springs and wells on a map prepared by Bowen and others (1978). This compilation represents all of the chemical and isotopic data in Geotherm as of October, 1979. Entries for springs that have been analyzed several times are arranged chronologically. Sources of data, topographic map coverage, and year of collection are listed in table 2. Two of the chemical analyses have gross imbalances of ionic charge and hence are incomplete or otherwise inaccurate. Joaquin Miller Hot Springs in Grant County has 25.3 millequivalents cations to 5.5 milliequivalents anions. A sample recently collected by us indicates that the reported alkalinity is low by more than a factor of 10. The sodium concentration of the sample from Camp Collins in Multnomah County seems to be excessively small. If the sodium concentration were greater by a factor of 10, the charge balance would be much better, 4.88 milliequivalents cations to 4.80 milliequivalents anions rather than the 0.95 to 4.80 as reported.

Waters from several geographic areas can be distinguished on the basis of their chemical composition. Thermal waters in the Western <u>Cascades</u> from Austin to Kitson and McCredie Hot Springs are high in chloride, but low in sulfate and bicarbonate. These sodium chloride waters may originate from the Eocene sediments which are thought to underlie this part of the Cascades. Ratios of B/C1, Br/C1, and HCO₃/Cl are similar to those reported for connate waters (White, 1960). Connate marine waters have been noted in springs and wells in the Coast Range, the Western Cascades, and at depths of as little as 30 meters in the Willamette Valley (Piper, 1942). Farther south in the Cascades, the water of Umpqua Hot Springs is similarly high in chloride, but is also high in CO_2 . Many CO_2 -charged mineral springs issue in Douglas County (Wagner, 1959). CO_2 -charged thermal waters also issue from Weberg Hot Springs in southwestern Grant County; this area also has many cold CO₂-charged springs. The water issuing from Weberg Hot Springs differs from that of Umpqua Hot Springs in that it contains very little chloride. The rest of Grant County, and the southern part of Umatilla, Union, and western Baker counties, all in the northeastern part of Oregon, have thermal springs which issue dilute, highpH thermal water similar to waters from thermal springs in granitic rocks of the Idaho batholith. Bagby Hot Springs in the Cascades is another spring that yields the dilute, high-pH waters associated with granitic rock. These waters are high enough in pH to require corrections to the silica concentrations, as discussed in the section on

7

DATA

. A. Cak

i. 17 .:

Sec. Bak

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen, Peterson, and Riccio 1978; Concentrations in mg/l; (ND) not detected]

Ń

:

Ę

ş

٠.

Major Elements

Mar Coc	o Name de	Location	Date Yr/Mo	Sp Cond (umho)	Temp (()	рН	Silica (SiO2)	Sodium (Na)	Potas- sium (K)	- c'əl - c i ön ((Ca)	Mag- nestus (Mg)	A 14 4- Linfey CHC 059	Sulfaie (SOF)	Chide ide (Ci)	Fluor- ide
BAKEI 01	R COUNTY RADIUM HOT SPRINGS	44-55.82 117-56.36 075/0396 -28 NE	55/05	290	57.2	9.7	80.	63.	2.0	16		101	31.	17.	1.0
01	RADIUM HOT SPRINGS	44-55.82 117-56.36 075/039E -28 NE	72/00	290	58.	9.56	78.	58.	1.1	- 1% -5	0.1	141	34	17.	1.3
02	SAM-O SPRING	44-46.76 117-48.65 D95/040E -16 SE	77/02	891	27.0	8.1	67.6	171.	12,2	16.2	6.	519	51	15.9	1.2
. 05	KROPP HOT SPRING	45-00.8 117-53.1 065/039E -25 NW		445	43.0	7.3	58.	93.	1.5	7.1	0.1	52	31.6	80.8	1.19
06	FISHER HOT SPRING	44-58.48 118-02.61 075/038E -10 NW	72/06	197	37.0	9.8	38.9	40.		1.4	<0,1	83	12.	1.8	0.4
CLACI	CANAS COUNTY	/ 5-77 E 171-/ 4 A	74104	227		7 ['] 8	10		0.2.	6.1	2.4		7 2 ¹ .	•	
01	ON MT. HOOD	025/0096 -29	10/00	221		J.0	17.		0.2	1.7.	£ . O		1,1 .	1.	
. 02.	SWIM WARM SPRINGS	45-17.7 121-44.3 035/8.5E -24 SM	76/12	1 300	26.0	7.3	72.3	136.	11.7	6 Ú*.	48.	216	205.	161.	0 , 2 3 , 0
03	AUSTIN HOT SPRINGS (CAREY)	45-01.30 122-00.50 065/007E -30 NW	72/00	1720	86.0	7.63	81.	300.	7.1	35.	0.1	58	140.	430.	1.4
04	BAGBY HOT SPRINGS	44-56.15 122-10.35 075/005E -26 NW	70/03	290	\$7.2	9.7	81.5	54.	0.8	3-7	01	68	33.7	14.6	0 📫 8 👘
04	BAGBY HOT SPRINGS	44-56.15 122-10.35 078/005E -26 NW	77/09		58.	9.37	74.	53.	0.74	3.3	<0.05	69	42.5	14.	0.66 .
05	GEOTHERMAL GRADIENT TEST NEAR AUSTIN H	45-01.65 121-57.80 07 065/007E -21 SW	76/08	282	35.6	7.6	36.	48.	2.8	1 25.	56	162	J'#6	2.	0.71.
	WHITER CANNEY														
01	EAST LAKE HOT	43-43,1 121-12.2	73/00	396	62.0	6.49	36.	32.	3.8	385	1.6.	1.8.4	58.4	0.4	0.2
01	EAST LAKE HOT	43-43,1 121-12.2	75/08	767	49.	6.42	199.	53.		70.	34.	567	25.#	1.7	0.16
02	SPRINGS Paulina hot springs	215/013E -29 SW 43-43.7 121-45.0	77/07			6.82	205.	140.	17.	56.	60%	856	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6.0	0.57.
02	WARM WELL AT LITTLE CRATER CAMPGROUND	43-42.9 121-14.5 215/012E -36 NW	75/08	900	35.5	6.46	161.	.83′.	10.	-54.	4.8:,	679	<1.	5.1	0.6
DOUG	LAS COUNTY									•				1 2 1 21 1	
01	UNPQUA HOTI SPRINGS	43-17.70 121-21.90 265/004E -20 NE	77/09	11300	46.5	6.37	90.	2400.	6"3'.	34 ⁷ 0%	41.	1380	193.4	3500.	1.5
01	UMPQUA HOT SPRINGS	43-17.70 121-21.90 265/004E -20 NE	78/06	10920	46.	6.2	96.	2150.	62.	628.	420.4	1120	139 22	3340.	1.2
6 P A M	T COUNTY			•							2.	•			
01	RITTER HOT SPRINGS	44-53.60 119-08.50 085/030E -08 N₩	73/00	319	41.0	9.68	70.	72.	0.62	1.4	*0. 05	114:5	9 .	29.	4 .:0
04	BLUE MOUNTAIN HOT	44-21.30 118-34.40 145/034E -13 5/2	72/00	<mark>ه 61</mark> 0	58.0	7.96	47.	140.	3.3	2.2	0.2	329	11.	15.	10.6
05	JOAQUIN MILLER RESORT	44-16.81 118-57.36 155/031E -11 SE	78/07	2194	40.	6.8		500.	11.2	45.Ż	12.1	10'3	1.6	121.	7 1

ω

Sec. 1

3

~

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to dowen, Peterson, and Riccio, 1978; Concentrations in mg/l; (ND) not detected; (m) monomeric aluminum]

1.7

١

£.

4

ħ

1.2

1.1

2 .

Minor and Trace Elements

Map Cod	e.	Name	Boron (B)	Lithium (Li)	Rubidium (Rb)	Cesium (Cs)	Strontium (Sr)	Bromide (Br)	Iodide (1)	Nitrate (NO3)	Atuminum (At)	[ron (Fe)	Nanganese (Hn)	Mercury (Hg)
BAKER 01	COUNTY RADIUM	HOT SPRINGS		1						0.2	 ND	ND	NÔ	;
01	RADIUM	HOT SPRINGS	0.42	0.01	<0.02	<0.1	<0.05	0.01	0.007			<0,0ž	<0.02	0.0005
02	SAM-O S	PRING	1.6	0.06							0.43	<0.1	0.05	
05	KROPP H	OT SPRING	3.3	<0.1							0.04	<0.03	<0.03	
06	FISHER	HOT SPRING	2.8	1.0							0.07	<0.03	<0.03	: :
CLACK 01	AMAS CO ACID-SU ON MI	UNTY LFATE SPRING - HOOD	· ·	<0.01			•			· .				
02	SWIM WA	RM SPRINGS	0.32	0.13	، نیچہ •					<0.02	<0.05	<0.05	<0.05	R
03	AUSTIN	HOT SPRINGS	2.6	0.4	0.03	<0.1	0.33	2.	0.33			<0.02	<0.02	0.0002 澤
04	BAGBY H	OT SPRINGS	0.6								0.2			
04	BAGBY H	OT SPRINGS	0.07	0+02										
05	GEOTHER TEST	MAL GRADIENT NEAR AUSTIN HOT	0.42	0.01	••		 .			0.38	<0.05	18.	2 m 1 2 m 2 4 m 2	न्त्र्य सन्द
DESCH	UTES CO	UNTY												¥
01	EAST LA SPRIN	KE HOT GS	0.93	0.01	<0.02	<0.1	0.14					<0.05	0.10	0.0003
01	EAST LA SPRIN	KE HOT GS	1.1	0,04	0.03	<0.1					0.008.	0.66	0.90	
02	PAULINA	HOT SPRINGS	0.87	0.22	0.04	<0.1				-				
02	WARM WE CRATE	LL AT LITTLE R icampground	2.5	0.12	0.02	<0.1					0.002m	4.	ð.25	<0.0001
DOUGL D1	AS COUN Umpqua	TY HOT SPRINGS	41.	2.4	0.16	0.2					<0.002m	Ö.44		<0.0001
01	UMPQUA	HOT SPRINGS	41.2	2.4							2.2	ù.2		
GRANT	COUNTY	HAT SPRINGS	3 4	0.01	<0.03		<u>.</u>					<u> 20 85</u>	(0.0)	0.0005
		nui jrkinuj	<i>C</i> • O	0.01	10.02	VU. 1	NU .UJ	_				NU-UZ	NU. NC	0.0007
04	BLUE MO Sprin	UNTAIN HOT GS	1.6	0.07	<0.02	<0.1	<0.05	0.04	0.01			<0.05	<0.02	0.0004
05	JOAQUIN RESOR	MILLER T	12.7	0.25						2.Ú2	0.08	0.1	1.8	-

9

÷ .:

÷*

. . . .

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen; Peterson; and Riccio 1978; Concentrations in mg/l; (NU) not detected]

Major Elements

Δ

Map Cod	Name e	Location	Date Yr/Mo	Sp Cond (umho)	Temp (C)	рH	Silica (SiO2)	auibo2 (wa)	Potas- sium (K)	Cal- cfuñ (Ca)	Řág- neslůň (Mĝ)	ALLA- CIALCY CHC033	S ũ ť f a tře (S 0 4)	Chlor- ide (Cl)	Fluor ide (F)
GRANT 07	COUNTY Weberg hot spring	44-00.1 119-38.8 185/026E -18	72/00	2570	46.0	6.53	82.	610.	36.	38.	7.38	1712	13.	50.	3.9
	Y COUNTY														
01	UNNAMED SPRING	43-39.76 118-44.30	31/09		22.					16.		8 c ⁴	6.	1.9	
02	O. J. THOMAS	22\$/32.5E-14 SW 43-37.65 118-51.75	68/09	716	72.0	9.5	89.	157.	1.8	1.0	5.0	236	89 er	38.	2.8
04	MILLPOND SPRING	43-32.43 119-04.86 23\$/030E -35 NE	31/08		26.			•		14,		109	11.0	.8.	
05	HARNEY VALLEY DEV CO. DIL TEST WELL	43-30.25 118-54.30 245/032E -08 SE	68/09	60Z	46.0	9.6	.72.	135.	1.6	0.8	0.2	265	212	11.	12.
08	ISLAND RANCH WELL	43-25.40 118-55.95 255/032F -07 NH	69/08	1450	41.0	9.3	54.	386.	4.4	0.5	0.2	967	8.	۶.	19.
09	CRANE HOT SPRINGS	43-26.45 118-38.30 245/033E -34 SW	31/08		49.					2.	1	2 1 B	80.	82.	
09	CRANE HOT SPRINGS	43-26.45 118-38.30 245/033E -34 SW	68/09	814	80.0	8.3	80.	170.	3.6	3.8	0.2	211	81.7	78.	9.3
09	CRANE HOT SPRINGS	43-26.45 118-38.30 245/033E -34 SW	72/00	810	78.0	8.1	83.	170.	3.9	3.7	0.1	208	85.	79.	9.0
10	WARM SPRING NEAR VENATOR	43-23.7 118-18.4 255/036E -16 SW	77/06	650	41.0	9.1	373.	100.	1.0	2.7	011	134	51.	70.	1.1
15	UNNAMED HOT SPRING	43-10.6 119-03.6	31/08		59.		92.	622.	12.	13.	3.0	601	140.	562.	
15	NEAR HARNET LAKE	275/29.5E-36 SE 43-10.6 119-03.6 275/29 SE-36	72/00	2970	68.0	7.26	92.	630.	13.	12.	1.8	568	140.	590.	3.3
22	MICKEY SPRINGS	42-40.6 118-20.7 335/035E -13	70/07	2 2 0 0	85.	8.5	167	478.	20.	۷.	1.2		205*.	230	19.6
22	MICKEY SPRINGS	42-40.6 118-20.7 335/035E -13	72/00	2490	73.0	8.05	200.	550.	35.	Ó.9	0.1	796	230.	240.	Íð.
55	MICKEY SPRINGS	42-40.6 118-20.7 335/035E -13	76/09	S 500	86.	8,31	214.	550.	31.	1.0	Ő.	304	213.	240.	16.
22	MICKEY SPRINGS	42-40.6 118-20.7 335/035E -13	76/09	2220	86.	8.31	214.	550.	30.	1.0	0,1	814	553**	240.	17.
22	MICKEY SPRINGS	42-40.54 118-20.67 335/035E -13	76/09	2290			230.	560.	325.	0.6	<0•,1	836	223.	245.	17.
23	ALVORD HOT SPRINGS	42-32.6 118-32.1 345/0346 -33 SF	55/11	4490	82.2	7.3	135.	1040.	66.	13.	110	1250	ŹŸŸ	760.	7.2
23	ALVORD HOT SPRINGS	42-32.6 118-32.1 345/0346 -33 NH	72/00	4 5 9 0	76.0	6.73	120.	96Ò.	69 ×	ĩs.	2.2	1198	2 2 3	780.	10.2
·23	ALVORD HOT SPRINGS	42-32.6 118-32.1	76/09	4100	78.5	6.90	129.	990.	64.	1-2 .	2.1	1225	180	7,70.	9.56
23	ALVORD HOT SPRINGS	42-32.6 118-32.1	76/09	4070	78.5	6.89	128.	1000.	63.	1.2.	2.2	12 10	185.	770.	11.
24	HOT BORAX LAKE	42-19.60 118-36.17	53/09	2227	29.4	7.7	184.	488.	23.	17:	· 2	424	343.	286.	8.
24	HOT BORAX LAKE	42-19.60 118-36.17 37\$/033E -15 \$W	61/06	2410	31.1	7.8	193.	516.	27.	16.	Ò.5	4 50	367.	305.	9-7

10

1

6

 \frown

. ---

 \cap

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND JELL WATERS [Map code refers to Bowen/ Peterson/ and Riccio/ 1978; Concentrations in mg/l;(ND) not detected; (m) monomeric aluminum]

£_1

 $\{\cdot\}$

٦,

£

Minor and Trace Elements

Map Cod	Name e	Boron (B)	Lithium (Li)	Rubidium (Rb)	Cesium (Cs)	Strontium (Sr)	Bromide (Br)	Iodide (1)	Nitrate (NO3)	Atuminum (AL)	lron (fe)	Manganese (Mn)	Mercury (Hg)	
GRANT 07	COUNTY WEBERG HOT SPRING	15.	0.7	0.09	<0.1	2.1	0.1	Ö . 1	· .		6,24	0.00	0.0003	•
HARNE 01	Y COUNTY UNNAMED SPRING		•						1.0					
02	O. J. THOMAS	3.99							HD.		0.03			
04	MILLPOND SPRING								1.1					
05 08	HARNEY VALLEY DEV Co. Dil test well Island Ranch well	4.11							0.2		0.20	· **-		
09	CRANE HOT SPRINGS			•	-				1.4			· **:		
09	CRANE HOT SPRINGS	. 6.2							ND		0.02			
09	CRANE HOT SPRINGS	, 7.9	0.09	0.03	<0.1	0.06	0.1	٥.٥٢		0.022	<0.02	<0.02	0.0005	
10	WARM SPRING NEAR VENATOR	2.2									0.03	N STR		
15	UNNAMED HOT SPRING								0.5		0.03			
15	UNNAMED HOT SPRING	11.3	0.45	0.08	<0.1	0.11	29.	5.Ú.		0.005	0.05	0.04	0.0001	
22	MICKEY SPRINGS	9.2	<0.2						0.02	<0.01	0.05	0.02		
22	MICKEY SPRINGS	10.5	. 1.1	0.20	0.1	0.15	1.	0.39		0.058m	<0.05	<0.02	1000.0	
22	MICKEY SPRINGS	11.	0.90	0.18	. 0.1									
22	MICKEY SPRINGS	11.	0.90	0.14	< 0 _. 1					0.008=	<0.02			
22	MICKEY SPRINGS	11.	0.85	0.15	<0.1									
23	ALVORD HOT SPRINGS	28.							1.1		0.07	N		
23	ALVORD HOT SPRINGS	30.	2.1	0.33	0.2	0.92	2.	0,39.		Ő.003a	0.12	0.02	0.0001	
23	ALVORD HOT SPRINGS	35.	1.9		0.1									
23	ALVORD HOT SPRINGS	36.	1.9	0.24	0.1									
24	HOT BORAX LAKE ,	17.9	<1.5						ż.5					
24	HOT BORAX LAKE	18.												

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen, Peterson, and Riccio 1978; Concentrations in mg/l; (ND) not detected]

Major Elements

\$

					-								e e e		
Map Cod	Name e	Location	Date Yr/Mo	Sp Cond (umho)	Temp (C)	рH	Silica (SiO2)	Sodium (Na)	Potais- sium (K)	Ca'l- ĉiun (Ca)	Magin nes lium (Hg)	Alka- Cinilly (HC03)	S <u>ul 1</u> a t e (504)	Chiốr- ide (Ci)r	Ftuor- ide (F)
	Y COUNTY														
24	HOT BORAX LAKE	42-19.60 118-36.17	72/00	2410	36.0	7.28	190.	500.	31.2	16%	0.3	422	333.	300'.	9.0
-,		37\$/033E -15 SW							` •	<i>a</i>			. <i>te</i> -		
27	UNNAMED HOT SPRING	42-11.3 118-23.0	70/08	1060		8.3	79.	230.	25.	18.4	0.%		177.	226.	12.0
	NEAR TROUT CREEK	395/037E -16								• • ·	÷ •	5		.	
27	UNNAMED HOT SPRING	42-11.3 118-23.0	72/00	1168	52.0	6.//	105.	270.	10.8	18%	0.8	4.6.1	3041	24.	12.8
10	NEAR TROUI CREEK	393/U3/E -10 43-11 73 110-04 83	68/09	210	22 0	75	66	15	3 2	ć j	• 1	٥ś	423	,	0.6
37	(HOTCHKISS)	235/030F -35 SF	00/0/	210					785	0.8.6		72		· •	0.0
43	UNNAMED HOT SPRING	42-20.17 118-36.08	53/09	2050	73.9	7.6	119.	430.	27.	15.		382	319.	255.	7.0
	NEAR HOT BORAX LAKE	375/033E -11 SW							-						
43	UNNAMED HOT SPRING	42-19.82 118-36.16	53/09	2160	79.4	8.1	173.	456.	30.	14.	0.3	416	139.	270.	7.0
	NEAR HOT BORAX LAKE	375/033E -14 NW										÷.,			
43	UNNAMED HOT SPRING	42-20.08 118-36.11	57/05	2190	87.0	7.5	160.	426.	29.	9.6		425	-325.	265.	6.5
	NEAR HOT BORAX LAKE	375/033E -11	77/04	2020		7 70	140			Ζ.	- ⁻ -	S	141	360	• •
43	UNNAMED HUI SPRING	42-20.17 118-30.08	1,3700	2020	90.0	1.50	100.	420.	20.	14.	0.3	202	.4 34 .	230.	1.0
43	HEAR HUT BURAL LAKE	62-20.17 118-36.08	76/09	1990	91.	7.96	189.	460.	29.	1.5%	0.13	636	3.26	270.	2.5
43	NEAR HOT BORAX LAKE	375/033F -11 SW							• • •			- L.			
43	UNNAMED HOT SPRING	42-20.08 118-36.11	76/09	1840	97.	7.36	169.	435.	24.	13.	0.32	389	303.	250.	7.6
	NEAR HOT BORAX LAKE	375/033E -11													
43	UNNAMED HOT SPRING	42-19.82 118-36.16	76/09	1910	90.5	7.04	154.	435.	26.	15.	0.3	420	303.	250.	7.0
	NEAR HOT BORAX LAKE	375/033E -14 NW							• •						
43	UNNAMED HOT SPRING	42-19.82 118-36.16	76/09	2040	86.	8.67	157.	450.	26.	14.	0.3	423	309.	250.	7.7
13	NEAR HUI BURAX LAKE	37370336 -14 NW	74/00	18/0	07	7 74	141	125	21	• •	0.2	1.2.2	107 *	250	7 /
4.5	NEAD NOT BODAY LAVE	12-20-17 118-30-08 175/0335 -11 50	10/04	1040	7/.	1.20	103.	4634	24.	1 6.4	0.2	21.6	303.	230.	(• •
43	UNNAMED HOT SPRING	42-19-82 118-36-16	76/09	1890	84.	7.48	166.	440.	25.	12.	0.2	¥88	511-2	250.	2.5
	NEAR HOT BORAX LAKE	375/033E -14 NW			• • •						•••				
44	HOTCHKISS WELL	43-31.42 119-03.83	31/08		27.		51.	30.	2.4	9.6	1.7	95	134	5.2	
		245/030E -01 NE												•	
44	HOTCHKISS WELL	43-31.42 119-03.83	68/09	194	27.	8.1	46.	31.	2.9	5.5	1.4	93	12 🖉	5.	0.5
		24S/03DE -01 NE			26.0			••			÷			•	t.
4 3	HINES LUMBER LU.	23540306 -35 NE	68/0/	~~~~	22.0	1.0	»»•	22*	4.	11.	2.*	105	16.	<i>r</i> •	0.5
4.6	CITY OF HINES WELL	43-33,57 119-05.31	68/07	289	17.0	7.8	60	15	A 0	1	67	1-2 8	1.4	13	n ś
		235/030E -23 SW		207									• 3 •		0.7
JACKS	ON COUNTY							2			ţ.		- ¹ A ₁₋		,
01	JACKSON HOT SPRING	42-13.30 122-44.65 385/001E -48 SW	52/04	460	35.0	9.3	65.	95.	1.2	2 - 8	1.4	-87	26.	80.	5.0
										•					
KLANA	ALEPEN LACOHSEN	62-07 65 121-66 60	76705	20/1	10 0	7 6	45	40	12	6.7	ວີ ເ	1.6.5		7 9	n'i
	ACTRED SACODSCH	395/009E -34 NE	14707	270	30.0		07.	• 7 •	1 2 4	3.1		100		• • •	0
	BILL HILL ·	42-03.55 121-36-60	74/06	245	20.0	7.7	26.	19.	6.4	9%-1	13.	148	4.6	4.2	
		405/010E -26 NW				-				-				, 'r	•
	CLAUDE SHUCK MEN	42-11.35 121-39.80 398/010E -08 SE	74/05	250	24.	8.2	57.	25'.	6,2	9.7	4.1	1*1 2	152	2'. 8	0.2
								·							

 $\overline{}$

 $\overline{}$

0

 \frown .

12

~

 \frown

-. ...

 \sim

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen/ Peterson/ and Riccio/ 1978; Concentrations in mg/l; (ND) not detected; (m) monomeric aluminum]

Z!

()

 (\cdot, \cdot)

.

Minor and Trace Elements

Map Cod	n Na Ie	•••		Boron (B)	Lithium (Li)	Rubidium (Rb)	Cesium (Cs)	Strontium (Sr)	Bromide (Br)	Iodide (I)	Nitrate (NO3)	Aluminum (Al ⁽)	Iron (fe)	Manganese (Hn)	Mercury (Hg)
HARNE 24	Y COUNTY Hot Borax	LAKE		16.6	0.65	0.23	0.1	0.42	2.	Ô.2	•		<Ô.Ô?	0.03	0.0004
27	UNNAMED HO	T SPRING		1.6	<0.5						0.05	<0.01	0.03		
27	NEAR TRO	DUT CREEK DT SPRING		0.89	0.68	0.10	0.1	0.30				0.002#	0.09	<0.02	0.0003
39	GOODMAN SP	DUT CREEK Pring		0.23							2.1		0.02		
43	UNNAMED HO	ISS))T SPRING		12.	<1.5						1.2				
43	NEAR HOT	T BORAX LAKE DT SPRING		14.	<1.5						1.3				
43	NEAR HOT	T BORAX LAKE DT SPRING	:	15.	ND		4 · •	ND	1.8	0.2	ND	ND	ND	0.10	
43	NEAR HO	T BORAX LAKE DT Spring		15.	0.51	0.18	0.1	0.60				0.020	<0.02	0.04	0.0008
43	NEAR HOT	F BORAX LAKE DT SPRING		15.	0.50	0.23	0.2								
43	NEAR HO	T BORAX LAKE DT SPRING		14.	0.50	0.17	0.1					n85 0.0	<0.02	0.05	
43	NEAR HO	T BORAX LAKE DT SPRING		15.	0.5	0.18	0.2								ч. ¹
43	NEAR HO	T BORAX LAKE DT SPRING		14.	0.55	0.18	0.1							•	
43	NEAR HO	T BORAX LAKE DT SPRING		14.	0.45	0.17	0.1						<0.02	ा रहे कही 	
43	NEAR HO	T BORAX LAKE DT SPRING		15.	0.45	0.18	0.1								
44	NEAR HO	T BORAX LAKE W <u>e</u> ll									1.2		Ő.01		
44	HOTCHKISS	WELL		0.06							1.1				
45	HINES LUM	BER CO.		0.38							1.5		0.0?		
46	CITY OF H	INES WELL		0.53							3.8		0.05		
јас к 01	SON COUNTY Jackson H	OT SPRING		2.9							Ô.2∙		Ó.07		
KLAM	ATH COUNTY Alfred Ja	COBSEN		0.05									0.12	0.050	
	BILL HILL			0.02		·							0.04	0.030	
	CLAUDE SH	UCK		0.02									0.05	Ő.Ô1Ò	

13

 ${\cal D} \to$

at retrie when the time can

(**1**);

. در .

N.

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen/ Peterson/ and Riccio 1978; Concentrations in mg/l;(ND) not detected]

Major Elements

Map Cod	Name	Location	Date Yr/Mo	Sp Cond (umho)	Temp (C)	рН	Silica (SiO2)	Sodium (Na)	Potas- sium (K)	∜ Cal- ciun (Ca)	Haig- nes,(Ua (Ag)	A'tha- L'Init Ly (HC 03)	Sul 7 a t e	Ch (or - i de ^c (C (-)	fluor- ide- (f)
KLAMA	TH COUNTY				• • •							- i e - e			
•	CLYDE DEHILINGER	42-06.75 121-39.65 405/0106 -05 56	74706	240	24.0	7.9	12.	40.	6.5	8.1	3.1	150	2.43	4.9	
	FALCON HEIGHTS School	42-07.80 121-45.10 395/009E -34 SM	74/05	350	37.0	7.8	80.	57.	7.1	1.7	¥. 5	170	24.	8.9	Ô ⊊2 ≙
	GEORGE CARTER	42-00.55 121-36.90 415/010E -14 NH	74/06	660	22.	8.2	41.	99.	7.9	29.	2.3	100	95.	9'8 -	
	GEORGE STACY CO.	42-08.40 121-39.80 195/0105 -13 NE	74/06	170	25.0	8.3	34.	20.	4.0	15.	2.0	94	11.	2.0	
	JACK O*CONNER	42-02.00 121-42.95	74/05	640	38.0	8.3	65.	130.	3.0	7.5	0.6	114	140.	50.	
	LEN DOBRY	42-08.90 121-38.65 395/0105 -28 SF	74/05	195	21.0	7.6	65.	32.	4.5	5.7	9° . i	100	14.2	ś. 4	
	LESTER BROOKSHIRE	42-08.70 121-39.70 395/0105 -29	74/05	175	25.0	8.1	35.	21.	3.4	13.	2°. Ó	97	10'.	2.8	0-21
	MELVIN MCCOLLUM	42-11.50 121-41.05 395/0105 -07 NF	74/05	300	25.0	7.5	52.	2Ò.	4.0	Ż4.	1535	îżo	53.	3.1	0.2
	MONTE DEHILINGER	42-07.60 121-40.40 395/0105 -32 54	74/06	260	26.0	7.6	54.	22.	6.7	17.	115	160	7.1	3.6	
	O'CONNER LIVESTOCK	42-01.00 121-41.00 415/0106 -07 56	74/06	1300	30.0	7.8	80.	210.	7.0	5 8 -	65%	2:40	2 t'D ' .	160.	
	OREGON WATER	42-12.10 121-41.40	70/08		26.	8.6	63.	36.		8.5	5.8		5.5	3.0	0.32
	POPE'S MEAT CO.	42-01.95 121-37.50	74/06	190	22.0	8.5	25.	30.	3.2	-8.6	1.4	104	5.00	4.4	
	RAY BIXLER	42-11.55 121-37.95	74/05	190	22.0	7.8	49.	16.	3.3	12.	8.4	110	7.9	1.9	0.2
	ROBERT LANGLEY	42-10.75 121-37.90	74/05	200	23.	7.4	50.	22.	5.5	ro:	6.3	112	14.	2.6	
	TOWN OF MERRILL	42-01.50 121-36.00	55/02	316	21.0	8.3	38.	44.	3.8	11.	4.3	114	214.	27.	0.1
	U.S. AIR FORCE(1)	42-08.05 121-45.25 395/0096 -34 NU	72/10	240	31.0	7.0	53.	47.	9.0	3:8	1.2	128	8 %	6.Ó	0 3
	U.S. AIR FORCE(2)	42-08.10 121-45.35 395/0095 -34 NH	72/10	255	30.		51.	48.	8.5	5.8	2.3	145	9	6.3	0.2
	WEYERHAUSER JELL	42-10.70 121-48.10 395/009E -18 SH	72/08	200	22.	8.3	16.	32.	3.'3	10.	1.9	124	4,	4.	0.11
01	EAGLE POINT SPRING	42-25.85 121-57.75 345/0075 -23 55	72/08	305	35.	8.3	38.	62.	5.7	ð' <i>i</i> () [*]	<0. 1	136	<2∙.	16.	0.75
02	J. E. FRIESEN	42-13.75 121-46.15 385/0095 -28 SH	55/02	1230	73.0	8.7	B7.	221.	4.4	25.		4.8	7 ŠP.	Š٥.	1 . 6
02	LOIS MERRUYS	42-13.65 121-01.45 385/009E -33 NH	54/12	1100	71.0	8.5	83.	207.	3.8	22.		51	303.	50.	1.4
02	MEDO-BELL DAIRY	42-13.8 121-46.4 385/0095 -28 SH	55/01	1160	81.0	8.8	81.	213.	6.2	25.		68	405.	54.	14-2
02	MILLS SCHOOL	42-13.45 121-45.90 385/0095 -13 15		1200	89.0	8.3	78.	370.	3.0	27:	<i>ć</i> 0.2	46	482.	54.	1.52
02	MOYINA WATER CO.	42-12.60 121-42.45 395/0095 -01 NW	66/08	22.2	50.	7.4	64.	38.	5.0	7.9	27.3		5 . 16	1.8	0 🛟 2 2

14

۰.

1

 \odot

0

0

 $\overline{}$

 \mathbf{C}

Ċ

-

. .

Ø

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen, Peterson, and Riccio, 1978; Concentrations in mg/l; (ND) not detected; (m) monomeric aluminum]

14

1

 \cap

 \bigcap

Minor and Trace Elements

Map Cod	N ame e	Boron (B)	Lithium (Li)	Rubidium (Rb)	Cesium (Cs)	Strontium (Sr)	Bromide (Br)	lodide (1)	Nitrate (NO3)	Aluminum (Al)	Iron (Fe)	Manganese (Mn)	Mercury (Hg)
KLAMA	TH COUNTY	0.04									n ói	kin	
			•								0.00	1417	
	FALCON HEIGHTS SCHOOL	0.1									0.19	0.010	,
	GEORGE CARTER	0.15			•			-			\$0 . 0	0.020	
	GEORGE STACY CO.	0.01									0.04	0.010	
	JACK O'CONNER												
	LEN DOBRY												
	LESTER BROOKSHIRE	0.006	`		17						0.02	ò.02	
	MELVIN MCCOLLUM	0,02					•				1.4	0.07	
	MONTE DEHILINGER	0.02			•						0.02	ND	
	O'CONNER LIVESTOCK	0.69									0.04	0.15	
	CO. OREGON WATER										0.33	<0.005-	
	CORP.(4) Pope's meat co.	0.02		• *	-						0.02	ND 🌫	
•	RAY BIXLER	0.02	•								0.15	1.4 5	
	ROBERT LANGLEY	•											
	TOWN OF MERRILL	0.01				•			HD		0.12		
	U.S. AIR FORCE(1)			:							Ó.04	<0.01	
	U.S. AIR FORCE(2)	•									Ď.Ó3	<0.01	
	WEYERHAUSER WELL	0.09											
01	EAGLE POINT SPRING	0.140)										
02	J. E. FRIESEN	0.91	•						HD		1415		
02	LOIS MERRUYS	Ð.74							0.2		1iD		
02	MEDO-BELL DAIRY	Ű.96							40		Û.Ō4		
02	MILLS SCHOOL	0.96									0.03	. ö . 03	
ú Z	MOYINA WATER CO.	<u>.</u> · · ·									0.42	<0.05	

-01 10

• •

 \cap

@ •

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS CMap code refers to Boweny Petersony and Riccio 1978; Concentrations in mg/L; (ND) not detected]

Major Elements

Map Cod	Name e	Location	Date Yr/Mo	Sp Cond (umho)	Temp (C)	рH	Silica (SiO2)	Sodium (Na)	Potas- sium (()	- Cal- ciนี่ต (Ca)	Mag- nesijus (Mg)	Alko- Liniiy (HCO3)	Sulfate (SO4)	Chilor - 1 de (C ()	Fluor ide (F)
KLAMA	TH COUNTY	н. Н							-			÷.,	a # 21	- ar	·
02	0.1.T. NO. 5	42-13.85 121-46.40	67/00	1000	89.0	8.6	73.	331.	3.5	25.1	1.04	55	384.	48.	1.12
02	0.1.T. NO. 6	42-14.90 121-46.85 385/009E -20 NE	72/08		88.0	8.2	31.	195.	3.9	24.2	<0.1	44	4 00 .	58.	1.45
02	D.1.T. NO. 6	42-14.90 121-46.85 385/0095 -20 NE	75/03		79.		90.								
20	OREGON WATER	42-13.30 121-47.45	30/03	200	21.		46.	29.		10.	4 :	117		8.	
02	DREGON WATER	42-13.30 121-47.45	71/09		21.0	8.3	24.	26.		11.2	6.6		1.2	Š.3	0.01
02	OREGON WATER	42-13.30 121-47.45	71/09	205	20.0	8.4	25.	26.		11.2	5.8		0.4	5.3	0 ° 0 S
03	CORP.(3) Howard Holliday	385/009E -32 NW 42-10.55 121-49.70	74/05	220	25.0	7.9	27.	27.	2.9	1 2".	3.1	122	5.4	5.1	0.1
04	MAZAMA SCHOOL	395/008E -13 SW 42-11.85 121-43.90		895	61.0	8.3	92.	246.	6.0	5.4	1.0	Ĩ 20'	256.	35.	1.0
06	ABE BOEHM	42-04.05 121-45.40	74/05	2700	25.0	7.1	100.	480.	18.	160.	47.	1462	300.	170.	0.2
06	ABE BOEHM	42-04.05 121-45.40 405/009E -28 NE	75/08		25.								308.	205.	
06	DAN O'CONNER	42-04.85 121-43.85 405/009E -23 NH	74/05	260	24.0	7.6	42.	32.	8.1	12.	6.6	130	14.	9.1	
06	JACK LISKEY	42-02.95 121-44.40 405/0095 -34 NE	74/05	1030	93.0	8.9	90.	200.	4.0	15.	<0.1	-5 2	360.	59.	1 . 5
06	JACK LISKEY	42-02.25 121-43.60	74/05	2400	22.0	7.6	100.	580.	12.	35.	16.	1550	132	140.	
06	JACK LISKEY	42-02.25 121-43.60	75/08		25.								5.	132	
06	O. H. OSBORN	42-03.30 121-44.70	74/05	920	90.0	9.5	90.	190.	4.1	15.		55	275.	56:	1.5
07	OLENE GAP HOT	42-10.45 121-36.90	67/00	1000	73.9	7.3	79.	294.	4.5	34,9	.≬.₀ 09	40	346.	Šð.	1 .1 2
07	OLENE GAP HOT	42-10.45 121-36.90	72/00	1140	74.0	7.68	98.	190.	7.2	40.	0.2	55	<i>ኛ</i> ΰΰ.	59.	1.2
07	OLENE GAP HOT	42-10.45 121-36.90	75/07		87.								385.	59.	
U 8	HOENICKE HOT SPRING	42-10.40 121-37.05	72/10	1 300	65.0	8.2	45.	217.	5.0	35.	0.1	55	4 30 .	65.	1.5
16	MELVIN FEIGI	42-08.20 121-30.10	70/10	273	31.0	8.8	110.	66.	1.0	٢. 2		153	5.8/	53	Ö:4
22	RAY SMITH WELL	42-27.25 121-25.40	70/10	148	25.	8.4	50.	30.	1, 9	3.8	0,1	64	5.2	2.5	S * S
23	KLAMATH ICE CO.	42+13.40 121-01.40	36/04		51.7	9.0	70.						583.	55.	
24	J. K. O'NEIL	42-08.30 121-38.10 395/0106 -34 MU	72/03	222		7.6	45.2	22.	5,4	6.4	5.7	101	9.5-	25	٥.٤
24	J. K. O'NEIL	42-08.30 121-38.10 395/010E -34 NW	74/05	190	23.0	7.4	50.	26.	5.1	6.1	5.5	Ĩ Î 2	íŝ,	2.8	

Ъ

0

1

 $\widehat{}$

 \sim

0

-7

J-1

ر.

e

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND JELL WATERS [Map code refers to Bowen, Peterson, and Riccip, 1978; Concentrations in mg/l; (ND) not detected; (m) monomeric aluminum]

 $\mathbb{F}_{\mathbb{F}}$

.

 \sim

· ~

8

2

()

 $(\hat{\})$

Minor and Trace Elements

Map Code	Name	Horan (B)	Lithium (Li)	Rubidium Ces (Rb) ((iium Strontium (s) (Sr)	Bromide Iodid (Br) (1)	e Nitrate (NO3)	Alutinum (Al)	lran (fe)	Manganese (Nn)	Mercury (Hg)
KLAMATH 02 0.	COUNTY I.T. NO. 5	• •					<0.01	0.03	0.05	<0.02	
02 0.	I.T. NO. 6	1.0						· .		•	
02 0.	I.T. NO. 6		0.12	•							
D2 OR	EGON WATER Corp. (1)				·				<0.05	• .	
02 OR	EGON WATER Corp.(2)				,				0.05	<0.01	
02 OR	EGON WATER Corp. (3)			•					0.05	<0.01	
U3 H0	WARD HOLLIDAY	0.04	0.02		. 1				0.03	ND	
04 MA	ZAMA SCHOOL								0.07	ż	
06 AB	E BOEHM -	1.4	0.16						0.1	2.4	
06 AB	E BOEHM		-								
06 DA	N O'CONNER										
AL 80	CK-LISKEY	0.65	0.08	• •		•				.*	
AL 00	CK LISKEY								0.07	- - 	
AL 80	CK LISKEY										
06 0.	H. OSBORN -	0.77							0.26	нD	
07 OL	ENE GAP HOT	н					0.91	0.03	0.05	0.06	
07 OL	SPRINGS ENE GAP, HOT SPRINGS	1.0	0,15	0.02 <	0.1 0.58	0.08 0.01			<0.02	<0.02	
07 OL	ENE GAP HOT	•							×		
08 R 0	ENICKE HOT SPRING	1.9			•						
16 ME	LVIN FEIGI	ND .					2.9		0.02		
22 RA	Y SMITH WELL						0.3		0.05		
23 KL	AMATH ICE CO.								hD		·
24 J.	K. O'NEIL						0.03	<0.01	0.02	ġ.ġs	
24 4.	K. O'NEIL			;							

17

.

1

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen/ Peterson/ and Riccio 1978; Concentrations in mg/l; (NU) not detected]

Major Elements

Map Cod	Name	Location	Date Yr/Mo	Sp Cond (umho)	Temp (C)	ρH	Silica (SiO2)	Sodium (Na)	Potaš- sium (K)	Cal- cium (că)	Hag- nesium (Hg)	Alka- "Lin"ity (HC03)	Sul (i t i t e (504)	Chior- ide (tt)	Fluo'r- ide (F)
L AK E 05	COUNTY ANA RIVER SPRING	42-59.8 120-45.3	48/12		18.9	8.4	37.	39.	3.2	5.2	3.1	108	6.7	13.	0.2
14	SUMMER LAKE HOT	30\$/017E -06 42-43.53 120-38.75	48/10	1760	46.7	8.5	96.	399.	6.8	1.6	0.6	374	7 111.	285.	2 22
	SPRING (WOODWARD)	335/017E -12 NE										-			
14	SUMMER LAKE HOT	42-43.53 120-38.75	72/00	1790	43.0	8.43	94.	390,	4.6	2.1	0.1	426	120.	280.	2.2
23	HUNTERS HOT SPRINGS	42-13.32 120-22.09	56/10	1110	98.0	8.3	146.	209.	9.5	12.		74	265.	116.	
.23	(LAKEVIEW) HUNTERS HOT SPRINGS	395/020E -04 NW 42-13.32 120-22.09	57/10	1140	86.0	8.4	140.	208.	10.	8 . Ó	2:4	74	258.	120.	4.5
	(LAKEVIEW)	395/020E -04 NW								0.0	*		• • • •		
53	HUNTERS HOT SPRINGS	42-13.32 120-22.09 395/020F -04 NH	72/00	1120	96.0	7.77	140.	210.	8.5	13.	<0.1	81	260.	120.	4.4
24	LEITHEAD HOT	42-09.71 120-20.60	48/06	813	69.4	7.7	66.	152.	2.2	15.	0.4	84	752.	99.	3.1
	SPRINGS (JOYLAND PL	U 395/020E -27 NE							• · •		. .	• • A `			
25	SPRINGS (GUS ALLEN	42-09.35 120-20.67 395/020E -27 SE	48/05	1 320	85.0	7.3	140.	265.	5.8	8.5	1.4	208	223.	146.	6.9
25	BARRY RANCH HOT	42-09.35 120-20.67	72/00	1370	88.0	7.76	130.	280.	9:0	8.8	0.1	236	240	170.	5.4
	SPRINGS (GUS ALLEN) 39\$/020E -27 SE										·	an An the		
28	SPRINGS	42-29.97 119-41.48 355/026F -32 NH	48708	876	40.0	8.3	165.	191.	13.	10.	2.5	376	57 :	64.	3.60
32	FISHER HOT SPRINGS	42-17.84 119-46.55	72/00	513	68.0	7.93	77.	92.	7.9	8.4	ľ.ď	107	59.	56.	3.5
33	CRUMP SPRING	385/025E -10 NW 42-13.60 119-52.78	48/09	935	40.0	8.7	125.	175.	8.7	Ĭ8.	2.	1 50	115.	150.	1.9
		385/024E -34 SW							- • ·				2		
33	CRUMP SPRING	42-13.60 119-52.78	72/00	1490	78.0	7.26	180.	280.	11.	16.	0.2	, 155	200.	240.	4.9
33	CRUMP WELL (1)	42-13.59 119-52.87	59/07	1580	99.0	8.7	167.	298.	12.	10.	Ő.5	143	209.	263.	5.2
	COUMD (151) (3)	385/024E -34 SW	40400					20.4	• • •					6	
دد	LKUMP WELL (2)	385/024E -34 SW	00/09	T46U ·	88.0	8.1		281.	10.				`	248.	
LANE	COUNTY														
01	BELKNAP HOT SPRINGS	44-11.65 122-02.90	03/00		86.7		80.9	364.	69.	455.	13.		168.	1343.	
01	BELKNAP HOT SPRINGS	44-11.65 122-02.90	72/00	4 300	71.0	7.62	96.	690.	15.	210.	0.2	19	173.	1300.	1.2
02	FOLEY SPRINGS	16\$/006E -11 NE	74/03	4 80.0	80 4		A0 /		• • •	10.15	Å .	• •	1 t A 3	1100	0 81
	I I	16\$/006E -28 NW	10103	4000	50.0	0.	00.4	4724	11.2	4944 2	U.0	10		1304.	0.01
03	COUGAR RESERVOIR	44-04.95 122-14.00	73/00	2890	44.0	7.76	50.	392.	6.3	225.	0 . 1	2 12	2.92.	788.	0.,8
03	COUGAR RESERVOIR	44-04.95 122-14.00	76/03	2660	42.0	8.2	47.	320.	6.8	196.	Ó Ž	is	1.85.	693.	0:87
	HOT SPRINGS (RIDER)	175/005E -20 NW						• • •		. i te		-	h. st.	1.0	
04	SPRINGS	43-48.45 122-18.55 205/0048 -26 NH	/6/03	2340	41.0	7.2	62.7	315.	10.8	130.	14		109:	602i	4.1
05	MCCREDIE SPRINGS	43-42.35 122-17.20	74/00	6730	73.	7.29	79.	1000.	22.	460.	ir : 9	21	240:	2200.	2.7
05	MCCREDIE SPRINGS	215/004E -36 NW 43-42.35 122-17.20 215/004E -36 NW	76/03	6770	71.0	7.4	65.4	910.	2 ⁸ .	500.	ŋ , 4	20		2232.	2:68

 \mathbf{O}

C

 $\overline{}$

.18

~

5.0

7

1

ා

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen, Peterson, and Riccio, 1978; Concentrations in mg/l; (ND) not detected; (m) monomeric aluminum]

· 3

1

2

\$ 2

Minor and Trace Elements

Maj Co	o Name Je	Boron (8)	Lithium (Li)	Rubidium (Rb.)	Cesium (Cs)	Strontium (Sr)	Bromide (Br)	Iodide (1)	Nitrate (NO3)	Atuminum (Al)	lron (fe)	Manganese (Mn)	Hercury (Hg)
LAKE 05	COUNTY ANA RIVER SPRING	0.5							0.1.		0.15		
14	SUMMER LAKE HOT Spring (Woodward)	1.0					· ·		0.1	·	0.03		
14	SUMMER LAKE HOT Spring (woodward)	6.9	0.15	<0.02	<0.1	0.07	1.				<0.05	<0.02	
23	HUNTERS HOT SPRINGS (LAKEVIEW)	7.2	0.2			0.5			7.2				
23	HUNTERS HOT SPRINGS (LAKEVIEW)	7.1							0.3	ND	0 . 01	11D	
23	HUNTERS HOT SPRINGS (LAKEVIEW)	6.9	0.15	0.04	<0.1	0.32	0.4	0.08		0.034	<0.02	<0.05	0.0004
24	LEITHEAD HOT SPRINGS (JOYLAND PLU	7.0	•		. •				0.2		0.05		
25	BARRY RANCH HOT SPRINGS (GUS ALLEN)	9.9		1. 1. 2. 					0.3		0.02		
25	BARRY RANCH HOT Springs (gus allen)	11.2	0.15	0.04	<0.1	0.17	۱.	0.1		0.014	<0.02	<0.05	0.0317
28	ANTELOPE HOT Springs	1.5							0.2	* .	0.05		
32	FISHER HOT SPRINGS	2.2	0.04	0.02	<0.1	0.05	0.4	0.03		0,011m	<0.05	<0.02	<0.0001
33	CRUMP SPRING	7.3		:					1.5		0.04	• •	
. 33	CRUMP SPRING	13.6	0.4	0.07	0.1	0.12	0.4	0.1		0.017.	<0.02	0.03	0.0004
.33	CRUMP WELL (1)	18.	0.39			0.31	0.9	0.1	1.0	0.65	0.15	N	
33	CRUMP WELL (2)	13.	0.33										
LANE 01	COUNTY Belknap hot springs			·								t	
01	BELKNAP HOT SPRINGS	6.4	0.95	0.05	¢0,1	1.4	33.	0.2	•		0.02	Ó, Ô Z	<0.0001
02	FOLEY SPRINGS	10.2	0.96							<0.01	<Ó.05		
03	COUGAR RESERVOIR Hot Sphings (Rider)	5.1	0.52	0.03	<0.1	2.0					<Ò.Ö2	<0.02	0.0005
· 03	COUGAR RESERVOIR HOT SPRINGS (RIDER)	6.2	0.64							<0.05	Ö.1	<0.05	
04	WALL CREEK WARM	6.6	0.57							< Õ, Ő 5		<0.05	
05	MCCREDIE SPRINGS	18.	1.4	0.11	0.1					0.010m	0.02	0.10	
05	MCCREDIE SPRINGS	17.8	1.98								0.1	0.05	

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND JELL WAFERS [Map code refers to Bowen/ Peterson/ and Riccio 1978; Concentrations in mg/l; (ND) not detected]

.

Major Elements

Map Cod	e	Name		Location	Date Yr/Mo	Sp Cond (umho)	Temp (C)	рн	Silica (SiO2)	Sodium (Na)	Potas sium (<)	- Câl- cium (Ca ⁵)	Mag- nesium (Mg)	АЦК а- Linicy (НСОЗ)	Sulfatë `(504)	Chilor- Ide (Cl)	Flüör- ide (f)
LANE	COUNTY			43-41 35 122-22 50	59/03	10500		7 4	47	1450	28	17 7 22	·	77	107	14 20 F	3 é
00	KIISUN -	3F KING3		22S/004E -06	10101	10,000					20.	1202	2.1	21	1772	3420.	C • D
06	KITSON	SPRINGS		43-41.35 122-22.50	78/05	10100	43.	7.31	45.	1500.	.59*	710-	1.0	24	-210:	\$4.90.	2.4
80	BIGELOW	HOT SPI	RINGS	44-14.35 122-03.50 155/006E -26 NW	76/03	3800	61.0	7.8	68.9	540.	16.6	188.	1%		102.	1148.	1.37
MALHE	UR COUN	TY												2.	e-16		
03	NEAL HO	T SPRING	3 S	44-01.45 117-27.60	72/00	1010	87.0	7.32	180.	190.	16.	8.8	0.2	2001	128.	120-	9.4
04	BEULAH	HOT SPR	INGS	43-56.65 118-08.15	72/00	1090	60.0	7.56	170.	200.	6.0	24.	0.2	163 '	293.	55.	4.7
05	VALE HO	T SPRIN	55	195/037E -02 SE 43-58.96 117-13.98	74/00	1530	73.0	7.47	130.	310.	16.	19,	J. 8	143	105.	360.	6.1
				185/045E -20 SE	34408		• •								474 Š	140	
0.5	VALE HU	I SPRIN	7 2	185/045E -20 SE	/4/08		¥U.					•	· .		112.	3 20 .	
06	UNNAMED	HOT SPI	RINGS	43-53.48 117-30.00	73/00	740	70.0	8.71	115.	160.	3.2	3.2	<0.05	129	tio.	74.	6.5
08	MITCHEL	L BUTTE	HOT	43-45.78 117-09.34	72/00	559	62.0	8.69	94.	110.	1.6	4.6	<0.1	78	130.	28.	10.4
1.0	SPRIN		at NC	215/045E -12 NE	35/07		15.0			67		12		110	ť	10	i o
	AT TH	REE FORI	(\$	355/045E -03	33707		33.0		~~.			16.	1.0	())	J (•		•••
18	UNNAMED	HOT SP	RING	42-32.0 117-10.9	73/00	338	34.0	8.11	40.	61.	1.2	10.5	Ó.7	110	34.	18.	4.2
19	UNNAMED	HOT SP	RING	42-04.7 117-45.6	57/05	604	53.5	9.2	90.	135.	1.8	1.2		263	46.	15.	7.0
10	NEAR	MCDERMI	TT	405/042E -25	77100	508	\$2.0	B 70	77	110	1.0	'n .	< 0 1	548	 	16	A . A
.,	NEAR	MCDER41	TT	405/042E -25	12100	370	22.0	9.17	12.	150.		0.0		203	24.		0.0
23	LUCE HD	T SPRIN	GS	43-28.15 118-12.08	72/00	1330	63.0	7.43	110.	240.	9.7	34.	0.5	162	29J.	140.	- 4 . 8
24	JONESBO	RO WARM	,	43-47.5 117-57.5			44.5	9.6	70.	72.	0.7	1:0	<0.1	148	33.	11.	0.8
25	. SPRIN	G 	PRING	205/039E -29 SE			25.0	9.4	55.	-24	8.2	6.8.	21	204	14	120	io
.,	#1			215/038E -09 SW				•••		• • •	~						
26	JUNTURA	WARM SI	PRING	43-45.5 118-05.5 215/0386 -17 NH			35.0	9.7	79.	78.	0.8	1.0	<0.1	133	43.	140.	1.3
27	ARTESIA	N WOLL		43-41.8 117-05.7	77/03	670	46.0	9.5	43.7	124.	0.8	· 1.8	0.1	94	164.	12.2	2.7
28	ALKALI	FLAT		215/046E -33 SE 44-06.60 117-13.60	75/05	2400	24.0	8.3	32.0	482.	6.7	16.4	0.5	140	1-35% 2	5 9 8	2.2
	GRADI	ENT WEL	L	175/045E -08 NE								· ***	-	. 94	al Alternation		
29	NORTH H	ARPER U	LM	43-55,76 117-12,72 195/045F -09 SF	76/06	714	36.0	8.0	39.7	134'.	2.2	3.0	015	1.9.2	1212	4.3	1.51
30	UNNAMED NEAR	WARM S	PRING REEK	44-01.95 117-26.95 185/043E -04 SE	77/06	115	37.0	7.8	99.	1.	Ô.4	50.0	14.7	4 Š	Ÿ:0	õ. s	D.7
		in en sinte espa ♥		анан сайтаан ал						.1						Real .	
01	BREITEN SPRIN	визн но GS	T	44-46.86 121-58.54 095/007E -20 NE	72/00	4030	92.0	7.31	83.	720.	31.	100.	1.3	144	145,	1300.	3.4

 \bigcirc

0

 \sim

0

0

.

 $\overline{}$

7

*د*م،

(3)

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen, Peterson, and Riccio, 1978; Concentrations in mg/l; (ND) not detected; (m) monomeric aluminum]

 $\{\cdot\}$

.....

.

 C^{1}

Minor and Trace Elements

Nap Code	Name	6	loron (8)	Lithium (Li)	Rubidium (Rb)	Cesium (Cs)	Strontium (Sr)	Bromide (Br)	lodide (1)	Nitrate (NO3)	Aluminut (AL)	lron (fe)	Hanganese (Mn)	Mercury (Hg)	
LANE COUN	ITY			· · ·			•		0.0		A 11	<u> </u>	Lib		
UG KITS	SON SPRINGS	· •	ζ,	1.8				0.0	· U•¥	C • 1	0.27	0,01	NU		
06 KITS	SON SPRINGS	•	22.	2.0 .	0.10	0.1	• • •	•			0.002=	<Ô.Ô4	0.15	<0.0001	
OB BIGE	LOW HOT SPRINGS		6.5	1.1		•	· · · · ·				<0.05	0.1	<0.005		
,	`. `				· ,			•	• •				. ,	•	
MALHEUR C 03 NEAL	OUNTY HOT SPRINGS		4.1	0.3	0.09	0.1	0.16	0.5	0.06		0.008.	<0.02	0.06	0.0001	
04 BEUL	AH HOT SPRINGS		4.7	0.24	<0.02	<0.1	0.17	0.1	0.33		0.006	<0.02	0.03	0.0001	
05 VALE	E HOT SPRINGS		9.4	0.28	0.09	<0.1	*.	÷	r	·	0.017m	<0.02	0.04	-	
DS VALE	E HOT SPRINGS				_* ?								· · · ·		
06 UNN	AMED HOT SPRINGS		4.7	0.11	0.02	<0.1	<0.05					<0.02	<0.02	0.0007	
08 MIT(55	CHELL BUTTE HOT	•	0.49	0.03	<0.02	<0.1	<0.05	0.2	0.01		0.015	<0.02	<0.02	0.0001	A. 1. 1.
18 UNN	AMED HOT SPRING				·.					2.9		0.02	*		-
18 UNN	AMED HOT SPRING		0.11	0.04	<0.02	<0.1	0.06					<0.02	<0.02×	-	
19 UNN	AMED HOT SPRING	•	0.70	ND						нÐ					
19 UNN/ 19 UNN/	LAR MCDERMITT AMED HOT SPRING EAR MCDERMITT	· · · · ·	1.1	0.06	<0.02	<0.1	<0.05	.0.4	0.J08		0.013m	<0.02	<0.02	0.0001	
23 LUCI	E HOT SPRINGS		6.6	0.27	0.04	<0.1	0.42	0.5	0.03			<0.05	0.04	0.0001	
24 JONI	ESBORO WARM		<0.1	<0.1		· •	er e pe								•
25 JUN	TURA WARM SPRING	· · · ·	<1.0	<0,1					·				. · ·		
26 JUN	TURA WARM SPRING		<1.0	<0.1											
27 ARTI	ESIAN WELL	ł	0.31	0.04	· · ·	×				0.0ź	0.1	<0', 1	<0.05		
28 ALK	ALI FLAT BARTENT MELL		14.	0.4	· · ·			-		0.03	0.01	0.1	005		
29 NOR	TH HARPER BLM		0.26	0.21						0.14	<0.05	<0.05	<0.05		
W 30 UNN N	ELL AMED WARM SPRING EAR BULLY CREEK		0.15	0.04				· .		ů. ůč	ð,28	õ.4	Ó.05		
MARION C	OUNTY												-		
U1 BRE	TENBUSH HOT	а 1	4.1	1.8	0.18	0.1	0,73	5.	Ö.1			ñ.02	Ö.22	0.0002	

21

Ϋ́́,)

1:1

13

· .

P

.

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND JELL WATERS EMap code refers to Bowen, Peterson, and Riccio 1978; Concentrations in mg/l; (ND) not detected]

Majo	r Ele	meni	ts .
------	-------	------	------

Nap Code	Name	Location	Date Yr/Mo	Sp Cond (umho)	Temp (C)	рH	Silica (SiO2)	Sodium (Na)	Potas- siun (K)	C a l - c i un (°C a)	Rag- nestúa (Mg)	Atto- Linfty (HCO3)	Sul (* te (\$04)	Chtor- (de (et)	Éluóra Ide (F) /
MARION (Ot Bri	COUNTY Eitenbush hot Springs - Well	44-46.86 121-58.54 095/007E -20 NE	78/02	·	110.0	8.5	182.	ò90.	34.	90.	1.3	63	\$6°,	; ;170.	40
MULTNOM	NH COUNTY RBETT WARM SPRING	45-32.5 122-17.5 01N/004E -27 SE		570	18.0	8.2	. 44.2.	85.	8.9	2.1.7	0.8	1 24	5.9	77.4	24
02 YM	CA CAMP COLLINS	45-30.2 122-18.3 015/034E -10 NW	56/09	517	23.3	8.6	60.	10.	9.6	5.2	0;2	124	ř. 2	92.	3.2
UMATILL/ 01 BI	A COUNTY NGHAM SPRINGS	45-44.47 118-13.96	54/04	765	34.4	8.6	68.	133.	7:6	144	3.5	82	or.€2	192.	4:0
03 LEI	IMAN SPRINGS	03N/037E -18 NE 45-09.06 118-39.55 05S/033E -12 NE	72/00	252	61.0	9.18	44.	53.	0.7	0:9	D.1	1 27	23.6	5.4	2 .1
UNION CO	DUNTY										· · ·		ير الح		
01 00	/E WARN SPRING	45-17.67 117-48.38 03S/040E -22 NW	57/06	150	29.4	9.8	29.	30.	0.5	1.6	÷ .	70	5 - 8	5.0	0;•3 ° j
01 WEI	. L	45-19.89 118-05.43 D35/038E -D5 SW	55/01		27.	7.9	84.	27.	5.	5.	0 #3		32.3	3.2	0.**5
D1 WEI	LL.	45-19.89 118-05.43 035/038E -05 SW	55/01	•	25.	7.9	72.	30.	5.	£4 . 8	125	6'3	4.8	2.1	0' * S
D1 WEI	LL ·	45-20.07 118-05.83 035/038E -06 NE	5,7/05	146	27.		71.	19.	5.	10.	0:2	84	4.5	۱.	0, 5
02 HO.	T LAKE	45-14.63 117-57.51 045/039E -05 SE	72/00	6,8 B	80.0	9.21	48.	130.	2.7	6.9	<0.1	99	56	140.	1.7
05 WA	GNER WELL	45-27.43 117-59.84 01\$/038E -24 SE	50/08	148	29.	8.0		28.	4.0	3.6	0.8	12	8.3	3.1	2.0
07 ME	DICAL HOT SPRINGS	45-01.08 117-37.48 065/041E -25 NE	·		60.0		97.	191.	3.4	62.	1.2	22	652.	773	
07 ME	DICAL HOT SPRINGS	45-01.08 117-37.48 065/041E -25 NE	73/00	.1173	60.0	8.23	.80.	190.	7.0	7.2 .	0.2	2B	400.	77.	1.2.
WALLOWA 01 co:	COUNTY ^I Ok creek warm	45-53.49 116-52.41	74/11	610	36.0	7.95	46.1	61.	22 5	3%.	u 1.1	484	103.8	203-	0,0.9
	SPRING	05N/048E -30 NW	•		•	· . ·						•			
WASCO CI U1 ka	DUNTY HNEETAH HOT Springs	44-51.72 121-12.05	73/00	1370	52.0	8.32	104.	325.	3,4%	3.2	<0.05	5 1-1	514.	155.	21.
02 MI	LTON MARTIN WELL	45-31.70 121-12.95 01N/013E -32 NF	58/07	279	22.2	8.5	84. '	41.	7.2	15.	229	1667	2.4	6.0	D.9
03 J.	SANDOZ WELL	45-33.8 121-16.6 01N/012E -38	58/07	378	27.8	7.9	95.	62.	11.	16.	4.6		1.5	7.5	1.6

6

1

22

~

3

*

Table 1: CHEMICAL COMPOSITION OF THERMAL SPRING AND WELL WATERS [Map code refers to Bowen, Peterson, and Riccio, 1978; Concentrations in mg/l; (ND) not detected; (m) monomeric aluminum]

 \sim

· • •

. . . .

<u>،</u> ۲

0

1.1.1.1.1.1.1.1.1

0

ſ...

 \sim

Minor and Trace Elements

Nap Name Code	Boron (B)	Lithium (Li)	Rubidium (Rb)	Cesium (Cs)	Strontium (Sr)	n Bromide (Br)	lodide (1)	Nitrate (NO3)	Atuminum (AL)	(fe)	Manganese (Mn)	Mercury (Hg)
· · · · · · · · · · · · · · · · · · ·			· · · ·	90 - 14 (M - 1	. · · ·		· ·	•		•		
MARION COUNTY 01 BREITENBUSH HOT Springs - Well	5.43	1.9	•		n en	ng state ng sa sa sa	-					
MULTNOMAH COUNTY D1 CORBETT WARM SPRING	1.2	0.03		• • • •		· · · · · · · · · · · · · · · · · · ·		0.01	0.16	0.20	0.10	
02 YMCA CAMP COLLINS	0.38				-	· · ·		0.5		0.05		
UMATILLA COUNTY D1 bingham springs	10.					•		0.2		0.20	<i>.</i> .	
D3 LEHMAN SPRINGS	0.12	0.03	<0.02	<0.1	<0.05	0.006	0.001			<0.02	<0.02	0.0003
NICH COUNTY 01 COVE JARM SPRING	0.08				۰. ۲.			NĎ			,	۰.
01 WELL												
01 WELL					<u>_</u> .					•		Ť.
O1 WELL												موتقيد
D2 HOT LAKE	2.9	0.03	<0.02	<0.1	<0.05	0.4	0.08			<0.02	<0.02	0.0032
OS WAGNER WELL	0.1					· · · · ·		0.2				
07 MEDICAL HOT SPRINGS	-1					;						
07 MEDICAL HOT SPRINGS	2.2	0.05	0.02	<0.1	0.80	0.2	-			<0.0?	<0.02	0.0004
WALLOWA COUNTY ^{, I} D1 Cook Creek Warm Spring		<0.01	• • •			•		0.13	Ű,16	Ő.15	<0.05	
WASCO COUNTY 01 KAHNEETAH HOT SPRINGS 02 Milton Martin Ueli	2.6	0.52	0.02	<0.1	<0.05			54	1.0	<0.0ž	<õ.02	0.0003
03 1 CANDOT UCII										ö.05	NU	

Table 2: REFERENCES FOR ANALYSES [Map code refers to Bowen, Peterson, and Riccio, 1978; Map reference refers to U. S. Geoogical Survey topographic maps]

Nap Name Code	Sample Date	Map Reference	Analysis Reference
BAKER COUNTY			• . •
OT RADIUM HOT SPRINGS	55/05	HAINES 1:24000	SCOTT AND BARKER 1762
O1 RADIUM HOT SPRINGS	72/00	HAINES 1:24000, BAKER 1:250000	MARINER AND OTHERS 1974
		· · · · · · · · · · · · · · · · · · ·	TARINER AND OTHERS, 1975
OZ SAM-O SPRING	77/02	BAKER 1:24000, BAKER 1:250000	DREGON DEPARTMENT OF GEOLOGY AND
·			MINERAL INDUSTRIES, UNPUBLISHED DATA
05 KROPP HOT SPRING		NORTH POWDER 1:24000, GRANGEVILLE 1:250000	OREGON DEPARTHENT OF GEODOSY AND
	33404		MINERAL INDUSTRIES, UNPUBLISHED DATA
UO FISHER HUT SPRING	12100	RUCK LREEK 11240007 CANTON CITY 11250000	DALGON DEPANTMENT OF SEGEOGT AND
			WINEWYF INKABAUIEBA AUchofisuch Avas
CLACKARAS COUNTY			
DI ACID-SULFATE SPRING D	N 76/06	NT. HOOD SOUTH 1:24000	U.S. GEOLOGICAL SURVEY, UNPUBLISHED
MT. HOOD			pA TA
01 MT. HOOD FUMAROLES	35/00	MT. HOOD SOUTH 1:24000	PHILLIPS, 1936
D1 MT, HOOD FUMAROLES	35/00	MT. HOOD SOUTH 1:24000	PHILLIPS, 1936
01 MT. HOOD FUMAROLES	35/00	MT. HOOD SOUTH 1:24000	PHILLIPS 1936
01 MT. HOOD FUMAROLES	51/00	MT. HOOD SOUTH 1:24000	AYERS AND CRESWELL, 1931
01 MT. HOOD FUMAROLES	51/00	MT. HOOD SOUTH 1:24000	AYERS AND CRESWELL, 1951
D1 MT. HOOD FUMAROLES	51/00	MT. HOOD SOUTH 1:24000	AYERS AND GRESWELL, 1954
UT MT. HOOD FUMAROLES	51700	MT. HOOD SOUTH 1:24000	AYERS AND CRESWELL, 1951
UT MT. HOOD FUMAROLES	51/00	MT. HOOD SOUTH 1:24000	AYERS AND CRESWELL, 1951
07 SUIN JADN'SDDINGS	74/12	MT. HUUD SUUTH 1.24000. THE DALLER 1.250000	ATERS AND CRESHELD 1931 (A SAME
OF 2814 BYAN SLAINDS	10712	HI. HOOD SOUTH TERADODA THE DALLES TESODDO	DREIGUN DEFRATMENT UP ENVIRONMENTAL
03 AUSTIN HOT SPRINGS	72/00	FISH CREEK MIN. 1:62500, VANCOUVER 1:250000	MARINER AND OTHERS, 1974
(CAREY)			VARINER AND OTHERS, 1975
			NEHRING AND OTHERS, 1979
O4 BAGBY HOT SPRINGS	70/03	BATTLE AX 1:62500, SALEM 1:250000	OREGON DEPARTMENT OF GEOLOSY AND
· · · · · · · · · · · · · · · · · · ·			MINERAL INDUSTRIES, UNPUBLISHED DATA
04 BAGBY HOT SPRINGS	77/09	BATTLE AX 1:62500	U.S. GEÖLÖGICAL SURVEYA ÚNPUBLISHED
· · · · · · · · · · · · · · · · · · ·			DATA
05 GEOTHERMAL GRADIENT	76/08	HIGH ROCK 1:62500, THE DALLES 1:250000	OREGON DEPARTMENT OF GEOLOGY AND
TEST NEAR AUSTIN HO	T		MINERAL INDUSTRIES; UNPUBLISHED DATA
DESCHUTES COUNTY			
01 FAST LAKE HOT SPRINGS	73/00	NEWBERRY CRATER 1:125000, CRESCENT 1:250000	WARTNED ANN ATUERS. 1975
01 EAST LAKE HOT SPRINGS	75/08	NEWBERRY CRATER 1:125000, CRESCENT 1:250000	J.S. GEOLOGICAL SURVEY, UNPUALISHED
			DATA
OT EAST LAKE HOT SPRINGS	77/07	NEWBERRY CRATER 1:125030, CRESCENT 1:250000	UTS. GEOLOGICAL SURVEY, UNPUBLISHED
۱.			"UATA,
02 PAULINA HOT SPRINGS		NEWBERRY CRATER 1:125000, CRESCENT 1:250000	U.S. GEOCOGICAL SURVEY, UNPUBLISHED
			DATA.
02 PAULINA HOT SPRINGS	77/07	NEWBERRY CRATER 1:125000/ CRESCENT 1:250000	U.S. GEOLOGICAL SURVEYS UNPUBLISHED
			BATA
UZ WARM WELL AT LITTLE	75708	NEWBERRY CRATER 1:125000	J.S. GEOLOGICAL SURVEY, UNPUBLISHED
CRATER CAREGROUND			D A T A
DOUGLAS COUNTY			, its .
01 UMPQUA HOT SPRINGS	77/09	TOKETEL FALLS 1:62500	MARINER AND DIHERS, 1978
U1 UMPQUA HOT SPRINGS	78/06	TOKETEE FALLS 1:62500	DREGON DEPARTMENT OF GEOLOSY AND
		· · · · · · · · · · · · · · · · · · ·	MINERAL INDUSTRIES, UNPUBLISHED DATA
			· · · · · · · · · · · · · · · · · · ·

 \sim

.

 \cap

 \sim

*ن*ين

 \frown

24

 \bigcirc

2

3

Table 2: REFERENCES FOR ANALYSES [Map code refers to Bowen; Peterson; and Riccip; 1978; Map reference refers to U. S. Geoogical Survey topographic maps]

 (\cdot)

`

Ø

1997 1997 1997

1.040

·

е. С

(2)

 $\frac{1}{2}$

** *

•

Map Code	Name	Sample Date	Map Reference	Analysis Reference
GRANT COUL				
D1 RITT	ER HOT SPRINGS	73/00	RITTER 1:62500, CANYON CITY 1:250000	TARINER AND OTHERS, 1974
04 BLUE	MOUNTAIN HOT	72/00	PRAIRIE CITY 1:62500, CANYON CITY 1:250000	MARINER AND OTHERS, 1974
DS JOAQ	UIN MILLER RESORT	78/07	CANYON MTN. 1:24000, JOHN DAY 1:62500	OREGON DEPARTMENT OF GEOLOGY AND Minfral industries, undualished data
07 WEBE	RG HOT SPRING	72/00	CANYON CITY 1:250000	MARINER AND OTHERS, 1974 MARINER AND OTHERS, 1975
HARNEY CO	UNTY			
01 UNNA	MED SPRING	31/09	BUCHANAN 1:24000	PIPER AND OTHERS, 1939
t .0 SO	. THOMAS	68/09	HARNEY 1:62500	LEONARD, 1973
04 MILL	POND SPRING	31/08	BURNS 1:24000	PIPER AND OTHERS, 1939
05 HARN 01	EY VALLEY DEV CO. L TEST WELL	68/09	HARNEY 1:62500	LEONARD, 1970
08 ISLA	ND RANCH WELL	69/08	LAWEN 1:62500	LEONARD, 1970
09 CRAN	E HOT SPRINGS	31/08	CRANE 1:62500, BURNS 1:250000	PIPER AND OTHERS, 1939
09 CRAN	E HOT SPRINGS	68/07	CRANE 1:62500	LEONARD, 1970
09 CRAN	E HOT SPRINGS	72/00	CRANE 1:62500, BURNS 1:250000	MARINER AND OTHERS, 1974
	·			MARINER AND OTHERS, 1975
10 WARM Vei	SPRING NEAR NATOR.	77/06	BURNS 1:250000	GONTHIER AND OTHERS, 1977
15 UNNA HA	MED HOT SPRING NEAR RNEY LAKE	31/08	BURNS 1:250000	PIPER AND OTHERS, 1939
15 UNNA	MED HOT SPRING NEAR	72/00	CRANE 1:62500, BURNS 1:250000	MARINER AND OTHERS, 1974
22 MICK	EY SPRINGS	70/07	ADEL 1:250000	OREGON DEPARTMENT OF GEOLOGY AND
22 MICK	EY SPRINGS	72/00	ADEL 1:250000	MINERAL INDUSTRIES, UNPUBLISHED DATA Mariner and Others, 1974
			•••••	MARINER AND OTHERS, 1975
				NEHRING AND OTHERS, 1979
22 MICK	EY SPRINGS	76/09	ADEL 1:250000	U.S. GEOLOGICAL SURVEY, UN°UBLISHED DATA
22 MICK	EY SPRINGS	76/09	ADEL 1:250000	U.S. GEOLOGICAL SURVEY, UNPUBLISHED DATA
22 MICK	EY SPRINGS	76/09	ADEL 1:250000	J.S. GEOLOGICAL SURVEY, UNGUBLISHED Data
23 ALVO	RD HOT SPHINGS.	55/11	ADEL 1:250000	OREGON DEPARTMENT OF GEÓLÓST AND
23 ALVO	RD HOT SPRINGS	72/00	ADEL 1:250000	44RINER AND OTHERS, 1974 MARINER AND OTHERS, 1975 NEWINE AND OTHERS, 1975
23 ALVO	RD HOT SPRINGS	76/09	ADEL 1:250000	U.S. GEOLOGICAL SURVEY, UNPJELISHED
23 ALVO	RD HOT SPRINGS	76/09	ADEL 1:250000	U.S. GEOLOGICAL SURVEY, UNDUBLISHED
24 HOT	BORAX LAKE	53/07	BORAX LAKE 1:24000	U.S. GEDLOGICAL SURVEY, UNPUBLISHED
24 HOT	UORAX LAKE	61/06	BORAX LAKE 1:24000	U.S. GEOLOGICAL SURVEY, UNPUBLISHED DATA

Table 2: REFERENCES FOR ANALYSES [Map code refers to Bowen, Peterson, and Riccio, 1978; Map reference refers to U. S. Geoogical Survey topographic maps]

Map Name Code	Sample Date	Map Reference	Anolysis Řeterénce
HARNEY COUNTY	4		
24 HOT BORAX LAKE	72/00	BORAX LAKE 1:24000	MARINER AND OTHERS 1974
			HARINER AND OTHER'S, 1973
· · · · · · · · · · · · · · · · · · ·			NEARING AND OTHERS, 1979
27 UNNAMED HOT SPRING NEAR	70/08	ADEL 1:250000	OREGON DEPARTMENT OF GEOLOGY AND
TROUT CREEK			MINERAL INDUSTRIES, UNPUBLISHED DATA
27 UNNAMED HOT SPRING NEAR	12100	ADEL 1:250000	NARINER AND OTHERS, 1976
IROUI CREEK			TANINEN AND CINERSA 1977
19 COOMAN SPRING	68/09	BUBNS 1+24000	TEANTEN TOND OTHERST LALA
(HOTCHKISS)	00707	DORNS 1.24000	LEGNARUS ITIG
43 UNNAMED HOT SPRING NEAR	53/09	BORAX LAKE 1:24000	USS. GEDLAGICAL SHUDDER HADDEN ISHED
HOT BORAX LAKE			BATA
43 UNNAMED HOT SPRING NEAR	53/09	BORAX LAKE 1:24000	J.S. GEOLOGICAL SURVEY UNPUBLISHED
HOT BORAX LAKE			DATA
43 UNNAMED HOT SPRING NEAR	57/05	BORAX LAKE 1:24000	U.S. GEOLOGICAL SURVEY, UNPUBLISHED
HOT BORAX LAKE			DATA
43 UNNAMED HOT SPRING NEAR	73/06	BORAX LAKE 1:24000, ADEL 1:250000	NARINER AND OTHERS, 1974
HOT BORAX LAKE	•		MARINER AND OTHERS 1975
· · · · · · · · · · · · · · · · · · ·			NEHRING AND OTHERS, 1979
43 UNNAMED HOT SPRING NEAR	76/09	BORAX LAKE 1:24000	U.S. GEOLOGICAL SURVEY? UNPUBLISHED
HUI BUKAX LAKE	74.000	00048 1446 4-3/000	
43 UNNAMED RUI SPRING NEAK	10/09	BUNAA LAKE 1:24000	D.S. GEOLOGICAL SURVETA UN"UBLISHED
LE HOT BURNA LAKE	76/09	BORAX LAKE 1+24000	ม.ร. 660 ก็ดีรากมารายหรัฐ แต่ยังเลย 15 พ.ศ.
HOT BORAY LAKE	10707	50NNX EAKE 1124000	DĂTĂ
43. UNNAMED HOT. SPRING NEAR	76/07	BORAX LAKE 1:24000	U.S. GEOLOGICAL SURVEY, UNPUBLISHED
HOT BORAX LAKE			DATĂ
43 UNNAMED HOT SPRING NEAR	76/07	BORAX LAKE 1:24000	J.S. GEOLOGICAL SURVEY UNPUBLISHED
HOT BORAX LAKE			DATA
43 UNNAMED HOT SPRING NEAR	76/09	BORAX LAKE 1:24000	Ũ.S. ĜEOLOGICĂĽ SURVEY, UNºUBLISHED
HOT BORAX LAKE			DATA
44 HOTCHKISS WELL	31/08	BURNS 1:24000	PIPER AND OTHERS, 1939
44 HOTCHKISS WELL	68/09	BURNS 1:24000	LEONARD; 1970
45 HINES LUMBER LU. WELL	68/07	BURNS 1:24000/ BURNS 1:02000	LEUNARD 1970
40 CITE OF HINES WELL	68707	BUKNS 1:240007 BUKNS 1:02300	LEUNARD/ 1970
JACKSON COUNTY			
D1 JACKSON HOT SPRING	52/04	ASHLAND 1:62500	ROBISON, 1972
)
ALEGEN LAPOUREN	71105	NED 0 111 1.47500	
ANNIE SPRING	/4/05	FRATER LANE NATIONAL DADY AND VICINITY 1.62500	3 ROMELY 1,7,10
BILL HILL	74/06	MERRILL 1:62500	SANNELN 1928
CLAUDE SHUCK	74/05	MERRILL 1:62500	SAMMER'S 1978
CLYDE DEHILINGER	74/06	MERRILL 1:62500	SANNEL, 1976
FALCON HEIGHTS SCHOOL	74/05	KLAMATH FALLS 1:62500	SAMMELS 1976
GEORGE CARTER	74/06	MERRILL 1:62500	SAMMEL, 1976
GEORGE STACY CO.	74/06	MERRILL 1:62500	SAMACC 1976
JACK O'CONNER	74/05	MERAILL: 1: 62500	SANNEL 1970
LEN DOBRY	74/05	MERRILL 1:62500	SAMMEL 1976

26

~

7.3

 \sim

 \sim

 $\tilde{}$

6

 \sim

· •

1

.

?

 $\hat{\Omega}^{(1)}$

Table 2: REFERENCES FOR ANALYSES [Map code refers to Bowen, Peterson, and Riccio, 1978; Map reference refers to U. S. Geoogical Survey topographic maps]

 $\langle \cdot \rangle$

٤)

ŧ

 $t \rightarrow$

Map Code	Name	Sample 'Date	Map Reference	Añalysis Reference	
KLAMATH CO	UMTY				
LESTE	R BROOKSHIRE	76/05	NERRILL 1:62500	SANNEL, 1976	
MELVI	N MCCOLLUM	74/05	MERRILL 1:62500	SAMMELA 1976	
MONTE	DEHILINGER	74/06	MERRILL 1:62500	SANNEL, 1976	
O'CON	NER LIVESTOCK CO.	74/06	MERRILL 1:62500	SAMMEL . 1976	
OREGO	N WATER CORP. (4)	70/08	MERRILL 1:62500	SAMMEL 1076	
POPE	S MEAT CO.	74/06	MERRILL 1:62500	SAMMEL 1976	
RAYB	IXLER	74/05	MERRILL 1:62500	SAMMEL 1976	
ROBER	TLANGLEY	74/05	MERRILL 1:62500	SAMMEL 1976	
S. AN	D C. KILGORE		GERBER RESERVOIR 1:62500	SAMMEL 1976	
TOWN	OF MERRILL	55/02	MERRILL 1:62500	NEWCOMB AND HART, 1958	
U. S.	AIR FORCE(1)	72/10	KLAMATH FALLS 1:62500	SANNELA 1976	
N. S.	AIR FORCE(2)	72/10	KLAMATH FALLS 1:62500	SANNEL 1976	
WEYER.	HAUSER WELL NO. 4	72/08	KLAMATH FALLS 1:62500	SAMMEL 1976	
01 EAGLE	POINT SPRING	72/08	MODOC POINT 1:62500	SAMMEL 1976	
02 J. F.	FRIESEN	55/02	KLAMATH FALLS 1:62500	NEWCOMB AND HARTA 1958	
02 1015	MERRUYS	56/12	KLAMATH FALLS 1:62500	NEWCONB AND HARTA 1958	
02 MED0-	BELL DAIRY	55/01	KLAMATH FALLS 1:62500	NEWCOMB AND HART, 1958	
02 MEDO-	BELL DAIRY	75/07	KLAMATH FALLS 1:62500	SAMMEL, 1976	-
				NEHRING AND OTHERS, 1979	
02 MILLS	S CHOOL		KLAMATH FALLS 1:62500	SAMMEL 1976	-
	•••••			NEHRING AND OTHERS, 1979	
02 MOYIN	A WATER CO.	66708	MERRILL 1:62500	SAMMELA 1976	
02 0.1.1	- NO- 5	67/00	KLAMATH FALLS 1+62500	PETERSON AND GROHA 1967	
02 0.1.1	- NO. 6	72/08	KLAMATH FALLS 1+62500	SAMMEL 1976	
02 0.1.1	- NO- 6	75/03	KLAMATH FALLS 1+62500	SAMMEL 1976	
				NEHRING AND OTHERS, 1979	. 'e
02 08560	N HATER CORP (1)	30/03	KLAMATH FALLS 1+62500	CAMMEL 1074	and The second
02 OREGO	N WATER CORP. (2)	71/09	KLAMATH FALLS 1.62500	CAMMEL . 1976	· 24
02 08660	N WATER CORP. (2)	71/09	KLAMATH FALLS 1.62500	CAMMEL 1976	
D3 HOWAR	D HOLLIDAY	74/05	KIANATH FALLS 1,0000	SANNEL . 1974	
04 MAZAM		14707	MEDDILL 1+62500	CANNEL . 1074	
04 ARE H	OF HM	74/05	RIANATH FALLS 3+62500	CANNEL . 1074	
06 ABE B	0EHM	75/08	KLAMATH FALLS 1+62500	NEHDING AND OTHERS, 1970	
06 DAN 0	I CONNER	74/05	MERRILL 1.62500	SANNEL 1974	
06 1464		74/05	MEARTLE 1+62500	CANMEL . 1074	
			MERRICE FOLSO	NENDING AND ATHERS, 1970	
06 JACK	LISKEY	76/05	MERRILL 1:62500	SANNEL 1976	
06 JACK	LISKEY	75/08	MERRILL 1+62500	NEHRING AND OTHERS, 1979	
06 G. H.	OSBORN	74/05	MERRILL 1:62500	SANNEL 1976	
				NEHRING AND OTHERS, 1979	
07 OLENE	GAP HOT SPRINGS	67/00	MERRILL 1:62500	PETERSON AND GROH. 1967	
U7 OLENE	GAP HOT SPRINGS	72/00	MERRILL 1:62500, KLAMATH FALLS 1:250000	MARINER AND OTHERS, 1974	
				HARINER AND OTHERS, 1975	
07 OLENE	GAP HOT SPRINGS	75/07	MERRILL 1:62500	SAMMEL 1976	
	······································			NEHRING AND OTHERS, 1979	
08 ROENI	CKE HOT SPRING	72/10	MERRILL 1:62500	SAMMEL, 1976	
16 MELVI	N FEIGI	70/10	MERRILL 1:62500	LEONARD AND HARRIS, 1974	
22 RAY 5	MITH WELL	70/10	BEATTY 1:6250D	LEONARD AND HARRIS, 1974	
23 KI AMA	TH ICE CO.	36/04	KLAMATH FALLS 1:62500	NEWCOMB AND HART, 1958	
24 .1. +	0*NE11	72/03	MERRILL 1:62500	OREGUN DEPARTMENT OF GEOLOGY AN	D

27

. . . .

.•

MINERAL INDUSTRIES, UNPUBLISHED DATA

``

豪

 \hat{A}_{ij}

17

2 وتغيية a. ٠.

> . *A .

うえ

.

Table 2: REFERENCES FOR ANALYSES [Map cove refers to Bowen, Peterson, and Riccio, 1978; Map reference refers to U. S. Geoogical Survey topographic mapi]

Map Cod	Nane	Sample Date	Map Reference	Analysis Referencé
KLANA	TH COUNTY			
24	J. K. O'ŅEIL	74/05	MERRILL 1:62500	SAMMEL, 1976
LAKE	COUNTY			
05	ANA RIVER SPRING	48/12	KLAMATH FALLS 1:250000	TRAUGER, 1950
14	SUMMER LAKE HOT SPRING (WOODWARD)	48/10	SLIDE MTN. 1:24000	TRAUGER, 1950
14	SUMMER LAKE HOT SPRING	72/00	SLIDE MTN. 1:24000, KLAMATH FALLS 1:250000	MARINER AND OTHERS, 1974
	(WOODWARD)			MARINER AND OTHERS', 1975
				NEHRING AND OTHERS, 1979
53	HUNTERS HOT SPRINGS (LAKEVIEW)	56/10	LAKEVIEN NE 1:24000, KLAMATH FALLS 1:250000	ÚLS. GEOLOGICAL ŠURVEÝ, ÚNPUDLISHED
23	HUNTERS HOT SPRINGS	57/10	LAKEVIEW NE 1:24000, KLAMATH FALLS 1:250000	J.S. GEOLOGICAL SURVEY; ÜNPUBLISHED
	(LAKEVIEW)			DATA
23	HUNTERS HOT SPRINGS	72700	LAKEVIEW NE 1:24000, KLAMATH FALLS 1:250000	MARINER AND OTHERS, 1976
	(LAKEVIEW)			MARINER AND OTHERS 1975
.	1			NEHAING AND OTHERS' 1979
24	LEITHEAD HOT SPRINGS	48700	LAKEVIEW NE T:24000	TRAUGER 2 "1950"
~ ~	CJOYLAND PLUNGE, LED			2 the state
. 25	BARKY RANCH HOT SPRINGS	48/05	LAKEVIEW NE 1:24000	TRAUGER, 1950
	(GUS ALLEN)			
25	BARKT RANCH HOT SPRINGS	/2/00	LAKEVIEW NE 1:24000	MARINER AND OTHERS, 1974
20	(GJS ALLEN)			MARINER AND OTHERSY 4975
28	ANTELOPE HOT SPRINGS	48/08	WAKNER PEAK 1:24000	TRAUGER, 1950
25	FIZHER HOL ZAKINOZ	12100	LRUMP LAKE 1:24000, ADEL 1:250000	MARINER AND OTHERS, 1974
	C		AND A-2/000	VARINER AND OTHERS, 1975
22	CRUMP SPRING	48/09	ADEL 1:24000	TRAUGER, 1950
22.	CRUMP SPRING.	12100	AVEL 1:24000	MARINER AND OTHERS, 1974
				MARINER AND OTHERS'S 1975
	COMM9 1511 (1)	\$0/07	ANEL 1-3/000	NERRING AND DIRERS , 1979
		37707	AVEL 1:24000	J.S. GEDEDGICAE SURVETS UNPUBLISHED
11	C PILM P USI (/2)	60109	ADEL 1.24000	LE CERTICAL CHOUSES INSTITUTE
	CRUMP WEEL (E)	00707	AVEL IICAUUU	DATA
LANE	COUNTY			
01	BELKNAP HOT SPRINGS	03/00	MCKENZIE BRIDGE 1:62500	U.S. GEOLOGICAL SURVEYS UNPUBLISHED
		1 .		DATA
01	BELKNAP HOT SPRINGS	72/00	MCKENZIE BRIDGE 1:62500, SALEM 1:250000	MARINER AND OTHERS' 1974
				NARINER AND OTHERS / 1975
				NEHRING AND OTHERS, 1973
02	FOLEY SPRINGS	76/03	MCKENZIE BRIDGE 1:62500, SALEM 1:250000	OREGON DEPARTMENT OF GEOLOTY AND
				MINLAAL INDUSTRIES. UNPUBLISHED DATA
U 3	COUGAR RESERVOIR HOT	73/00	MCKENZIE BRIDGE 1:62500, SALEM 1:250000	MARINER AND OTHERS, 1974
	SPRINGS (RIDER)			MARTNER AND OTHERS. 1975
03	COUGAR RESERVOIR HOT	76/03	MCKENZIE BRIDGE 1:62503, SALEM 1:250000	OREGON DEPARTMENT OF SECTOR SAND
	SPRINGS (RIDER)			MINERAL, INDUSTREEST, UNPUBLISHED DATA
04	WALL CREEK WARM SPRINGS	76/03	SARDINE BUTTE 1:62500, ROSEBERG 1:250000	OHEGON DEPARTMENT OF GEOLOGY AND
				MENERAL INDUSTRIES, UNDUBLISHED DATA
05	MCCREDIE SPRINGS	74/00	OAKRIDGE 1:62500, ROSEBERG 1:250000	MARINEN AND OTHERS 1975
Ü 5	MCCREDIE SPRINGS	76/03	OAKRIDGE 1:62500, ROSEBERG 1:250000	OREGON DEPARTMENT OF GEOLOSY AND
				M'ÍNERAL INDUSTRIES, UN ^s ühlishéd data

 \bigcirc

C

 $\overline{}$

~

3

Table 2: REFERENCES FOR ANALYSES [Map code refers to Bowen, Peterson, and Riccio, 1978; Map reference refers to U. S. Geoogical Survey topographic maps]

 $\overline{}$

P

4. A.

(.)

()

Map Cod) Name Je	Sample Date	Map Reference	Analysis Reference
LANE	COUNTY			
06	KITSON SPRINGS	58/03	0AKR10GE 1:62500	MADISON, 1966
06	KITSON SPRINGS	78/05	OAKRIDGE 1:62500	J.S. GEOLOGICAL SURVEY, UNPUBLISHED
08	BIGELON HOT SPRINGS	76/03	MCKENZIE BRIDGE 1:62503, SALEM 1:250000	OREGON DEPARTMENT ÔF GEÒLÔGY ÁND Minerál Industries, unduelished data
-			· · · · · · · · · · · · · · · · · · ·	
01	NEAL MAT SOUTHES	72/00	LANTESON 1.42500	NABINED ANN Áturae. 1971
6.0	ACAL NOT SPRINGS	12100	JANIESON TEDESSON DAKEN TEESSOOD	NADINER AND GTHERSE 1975
	,			NENDING AND OTHERS 1079
04	REILAN HOT SPRINGS	72/00	REULAH 1+62500, BURNS 1+250000	SARINER AND OTHERS, 1974
•••				MARINER AND OTHERS, 1975
05	VALE HOT SPRINGS	74/00	VALE EAST 1:24000, BOISE 1:250000	MARINER AND OTHERS, 1975
• .				NEHRING AND OTHERS, 1979
05	VALE HOT SPRINGS	74/08	VALE EAST 1:24000	NEHRING AND OTHERS, 1979
06	UNNAMED HOT SPRINGS	73/00	HARPER 1:62500, BOISE 1:250000	MARINER AND OTHERS, 1974
	NEAR LITTLE VALLEY			MARINER AND OTHERS, 1975
			• h . • *	NEHRING AND OTHERS, 1979
08	MITCHELL BUTTE HOT	72/00	MITCHELL BUTTE 1:24000, BOISE 1:250000	MARINER AND OTHERS, 1974
	SPRINGS			MARINER AND OTHERS, 1975
18	UNNAMED HOT SPRING AT THREE FORKS	35/07	JORDAN VALLEY 1:250000	U.S. GEOLOGICAL SURVEY, UNPUBLISHED DATA
18	UNNAMED HOT SPRING AT	73/00	JORDAN VALLEY 1:250000	MARINER AND OTHERS, 1974
	THREE FORKS			MARINER AND, OTHERS, 1975
19	UNNAMED HOT SPRING NEAR MCDERMITT	57/05	JORDAN VALLEY 1:250000	U.S. GEOLOGICAL SURVEY, UNPUBLISHED DATA
19	UNNAMED HOT SPRING NEAR	72/00	JORDAN VALLEY 1:250000	MARINER AND OTHERS, 1974
	MCDERMITT			MARINER AND OTHERS, 1975
23	LUCE HOT SPRINGS	72/00	MCEWEN BUTTE 1:24000	MARINER AND OTHERS, 1974
				MARINER AND OTHERS, 1975
24	JONESBORO WARM SPRING		WESTFALL BUTTE 1:62500, BOISE 1:250000	OREGON DEPARTMENT OF GEOLOGY AND
				MINERAL INDUSTRIES, UNPUBLISHED DATA
25	JUNTURA WARM SPRING #1	4	BEULAH 1:62500, BURNS 1:250000	DREGON DEPARTMENT OF GEOLOGY AND
			·	MINERAL INDUSTRIES, UNPUBLISHED DATA
26	JUNTURA WARM SPRING #2		BEULAH 1:62500, BURNS 1:250000	DREGON DEPARTMENT OF GEOLOGY AND
				MINERAL INDUSTRIES, UNPUBLISHED DATA
27	ARTESIAN' WELL	77/03	ADRIAN 1:24000, BOISE 1:250000	OREGON DEPARTMENT OF GEOLOGY AND
				HINERAL INDUSTRIES, UNPUBLISHED DATA
28	ALKALI FLAT GRADIENT	15/05	MOORES HOLLOW 1:62>00, BOISE 1:250000	DREGON DEPARTMENT OF GEOLOGY AND
	WELL			MINERAL INDUSTRIES, UNPUBLISHED DATA
29	NORTH HARPER BLM WELL	/6/06	JAMIESON 1:62500, BAKER 1:2500J0	JREGON DEPARTMENT OF GEOLOGY AND
				MINERAL INDUSTRIES, UNPUBLISHED DATA
30	NEAR BULLY CREEK	///06	JAMIESON 1:02500, BOISE 1:250000	MINERAL INDUSTRIES, UNDUBLISHED DATA
MARI	ON COUNTY		,	
01	BREITENBUSH HOT SPRINGS	72/00	BREITENBUSH HOT SPRINGS 1:62500	MARINER AND OTHERS, 1974
				MARINER AND OTHERS, 1975
~				NEHRING AND OTHERS, 1979
01	URELTENBUSH HOT SPRINGS	78/02	BREITENBUSH HOT SPRINGS 1:62500	OREGON DEPARTMENT OF GEOLOGY AND
÷.	- WELL			MINERAL INDUSTRIES, UNPUBLISHED DATA
				NEHDING AND OTHERS, 1979

lable 2: REFERENCES FOR ANALYSES [Map code refers to Bowen, Peterson, and Riccio, 1978; Map reference refers to U. S. Geoogical Survey topographic maps]

Map Code	Name	Sample Date	Nap Reference	Añalysts Reference
MULTNOMAH CO 01 Corbett	UNTY WARM SPRING	1. j.	WASHOUGAL 1:24000, VANCOUVER 1:250000	OREGON DEPARTMENT OF GEOLOGY AND
02 YMCA CA	MP COLLINS	56/09	WASHOUGAL 1:24000, VANCOUVER 1:250000	NEWCOND, 1972
UMATILLA COU	NTY			
03 LEHMAN	SPRINGS SPRINGS	72/00	BINGHAM SPRINGS 1:24000, PENDLETON 1:250000 Lehman Springs 1:24000, Pendleton 1:250000	HOGENSON, 1964 Mariner and Öthers, 1974 Mariner and Others, 1975
UNION COUNTY	om footur	67404		·
01 VELL	KM SPRING	55/01	LA GRANDE SE 1:24000	HAMPTUN AND UKUWN, 1964 Hampton and Heown, 1964
01 WELL		55/01	LA GRANDE SE 1:24000	HAMPTON AND BROWN, 1964
01 WELL		57/05	LA GRANDE SE 1:24000	HAMPTON AND BROWN, 1964.
02 HOT LAK	E	72/00	CRAIG MTN. 1:24000, GRANGEVILLE 1:250000	MARINER AND OTHERS, 1974 Mariner and Others, 1975
05 HAGNER	usi't	50708	INGLED 1+24000	NEHRING AND DIHERS 19779
07 MEDICAL	HOT SPRINGS	20,00	FLAGSTAFF BUTTE 1:24000, GRANGEVILLE 1:250000	L'INDGAEN, 1931A
07 MEDICAL	HOT SPRINGS	73/00	FLAGSTAFF BUTTE 1:24000, GRANGEVILLE 1:250000	MARINER AND OTHERS, 1974 MARINER AND OTHERS' 1975
WALLOWA COUN D1 COOK CR	TY EEK WARM SPRING	74/11	WAPSHILLA CREEK 1:24000, GRANGEVILLE 1:250000	OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES, UNPUBLISHED DATA
WASCO COUNTY				· · · · · · · · · · · · · · · · · · ·
01 KAHNEET	AH HOT SPRINGS	73/00	EAGLE BUTTE 1:24000, BEND 1:250000	NARINER AND OTHERS, 1976 NARINER AND OTHERS, 1975
02 MILTON 03 J. SAND	MARTIN WELL Oz WELL	58/07 58/07	THE DALLES 1:62500, THE DALLES 1:250000 WHITE SALMON 1:62500, THE DALLES 1:250000	NEWCOMĚ, 1972 OREGON DEPARTMENT OF GEOLOSY AND MINERAL ÍNDUSTRIES, UN ^S UBLISHED DATA
	:			
		•		
	•	1		
	•			
	-124 -		· · · · · · · · · · · · · · · · · · ·	

 \bigcirc

 \sim

 \mathbf{C}

5

 $\overline{}$

 \cap

 \bigcirc

geothermometry. The only other waters which "stand out" as chemically different are from the base of Mt. Hood and Newberry Caldera. These waters have unusually large concentrations of magnesium for thermal fluids, probably due to water-rock reaction at low tempertures. The rest of the samples are from southeastern and southcentral Oregon where volcanic flows are interbedded with tuffaceous sediments. The waters from these springs contain more nearly equal proportions of sulfate, chloride, and bicarbonate.

.

25

3

"这"真好的""。

بالمتحد والمراجع والمراجع

Table 3 contains gas and isotopic data for the relatively small number of springs for which data exist. The data from Nt. Hood and East Lake are misleading. The Mt. Hood analyses are from fumaroles which discharged principally water vapor. Air contamination appears to be a problem in all of these samples. However, it is probable that carbon dioxide is the principal gas rising from depth. The water vapor is probably from the vaporization of liquid water in fractures and pore spaces. The East Lake-Paulina Lake gas samples are also contaminated by air and altered by gas-water reaction. The thermal "springs" at East and Paulina lakes issue in or at the shoreline of the respective lakes. The proportions of the various gases in these samples appear to be controlled by the discharge rates. Vents with the largest gas discharges have the highest proportions of carbon dioxide. The slower the discharge rate, the cooler the water in contact with the gas, and the more CO_2 will dissolve. The methane and carbon dioxide do not appear to have a common origin since the carbon dioxide appears to be of deep origin (δ Cl3 = -6 permil) while the methane appears to be of biologic origin (δ Cl3 about -50 permil). It is probable that the methane originates from the anaerobic decay of plant material trapped in the lava and ash flows. Finally, some air contamination may be unavoidable in these samples since nitrogen and oxygen may be exsolving from the cold lake water as the hot CO_{2} charged gas from depth contacts it.

In terms of the deuterium and oxygen(18) isotopic compositions (table 3) of the thermal waters, four samples appear to have undergone considerable evaporation: East Lake, Hot Borax Lake, and samples from the Abe Boehm and Jack Liskey wells near Klamath Falls. These samples are all greatly enriched (>10 permil) relative to nearby fresh and thermal waters, and have appreciable oxygen shifts relative to meteoric water.

The O¹⁸ compositions of dissolved sulfate range from +15 to -10 permil. Marine sulfates are typically about +15 permil, while high-temperature hydrothermal systems are usually about -10 permil.

Table 3: GAS AND ISOTOPIC COMPOSITION OF THERMAL SPRING AND WELL DISCHARGES [Map code refers to Buwen, Peterson, and Riccio, 1978; Isotopic compositions in the standard notation and are relative to SHOW; Gas concentrations in volume percent; (+) Ar + 02)

.

Map Coc	name de	Date	Temp (C)	Aryon (% Ar)	Methan'e (% CH4)	Carbon Dioxide (% CO2)	Nitrogen (X N2)	0 # ygen= (X 02)	Del D+ 01 "(H20 (0/00)	หลัง ว่า 15) ซีที่ หวีอิ (o/อีร์)	Del 0(18)01 S04 (0700)
BAKEF	COUNTY										
01	RADIUN HOT SPRINGS	72/00	58.						-138:3	-17.85	
CLAC	CAMAS COUNTY					· · ·					
01	MT. HOOD FUMAROLES	35/00	89.4		0.0011	1.13	0.116	0.011			
01	MT. HOOD FUMAROLES	35/00	71.1			0.68	78.5	19.5			
01	MT. HOOD FUMAROLES	35/00	89.4			1.27	0.057	0.001			
01	MT. HOOD FUMAROLES	51/00			0.0005	1.49	0.035	0.004			
01	MT. HOOD FUMAROLES	51/00	89.4		0.0010	2.23	0.041	0.004		· · · ·	
01	MT. HOOD FUMAROLES	51/00			0.0014	2.12	0.044	0.003			
01	MT. HOOD FUMAROLES	51/00	91.1		0.0011	1.81	~ ~	0.006			
01	MT. HOOD FUMAROLES	51/00	86.1		0 0004	17.4	9.8	2.48			
01	MI. HUDD FUMARULES	31/00	89.4		0.0006	1.43	0.032	0.033	-	54 c m 1 *	
02	THE MAKE THE CONTRACT STREET	70/12	20.0							-1,4,01	1.52
03	AUSLIN HUI SPRINGS (LARET)	12100	86.0						-9443	-12.22	-2.41
DESCI	IUTES COUNTY									int 🔪 a	
01	EAST LAKE HOT SPRINGS	73/00	62.0		9.	56.	30.	6•	-76.2	='9 •4 Z	
01	EAST LAKE HOT SPRINGS	75/08	49.		2.9	91.	5.1	0.9			
01	EAST LAKE HOT SPRINGS	/////			1.95	7		2.72*			
02	PAULINA HOT SPRINGS	77/07		0.09	0.55	93.45	4.74	Ó- 03			
							-				
DOUGI	LAS COUNTY				~ ~ ~ ~	·	• • •				
01	UMPQUA HOT SPRINGS	77709	46.5	<0.02	<0.005	99.3B	0.49	0.04			
GRAN	T COUNTY									45	
01	RITTER HOT SPRINGS	73/00	41.0						-119.	-14:83	
04	BLUE MOUNTAIN HOT SPRINGS	.72/00	58.0						-126.6	-16.13	
07	WEBERG HOT SPRING	72/00	46.0		2.	95.	1.	1 •	-122.1	-15.14	
HARNI	EY COUNTY										
09	CRANE HOT SPRINGS	72/00	78.0						-@33.\$	~16.17	
15	UNNAMED HOT SPRING NEAR HARNEY LAKE	72/00	68.0		1.	9.	91.	3.	-128.5		
55	MICKEY SPRINGS	72/00	73.0		1.	23.	60.	184	-124.3	-13.62	-7,91
23	ALVORD HOT SPRINGS	72/00	76.0						-153:6	-13.25	-6.05
24	HOT HORAX LAKE	72/00	36.0						- 115 - 8	-11.1.57	-7.95
27	UNNAMED HOT SPRING NEAR TROUT CREEK	72/00	52.0						-127.6	-10.17	-9.22
43	UNNAMED HOT SPRING NEAR HOT BORAX LAKE	73/06	96.0		·· .				-125.4	•14.36	-8158
KLAM	ATH COUNTY									ستال * توا	
	ANNIE SPRING		25.0						, *.	-1.4 . 4 0.	
	FALCON HEIGHTS SCHOOL	.74/05	37.0						-120.5	-1.5 : 6 9	
	MELVIN MCCOLLUM	74/05	25.0						-11-1-2	-14.71.	
	S. AND C. KILGORE		20.0							-16:33	
	WEYERHAUSER WELL NO. 4	72/08	22.						+109 . 1	-14:60	
01	EAGLE POINT SPRING	72/08	35.					•	#109 * 7	419.22	- 1 - 1 - 1
02	MILLS STUDDI	15/07	81.**						*)]V[4] *)]V[4]		= 3, 4, 3. • 4 0 /
02	MILLS SCHOOL	75 / 0 7	87.U						-1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		- 4 . 7 4
02	U.1.1. NU. 0	()/()	(7.						~1101/	-14444	- 7 4 2
										8	
											•

5

0

 \sim

5

 \cap

32

.

.

6

.--

Table 3:	GAS A	ND ISOTU	PIC COMPO	SITION OF	THERMAL	SPRING A	ID WELL	DISCHARGES
	[Map	code re	fers to B	oven/ Pet	erson, an	d Riccio,	1978;	
Isotop	ic comp	ositions	in the s	tandard n	otation a	nd are ro	elátive	tó SMOW;
	Gas	concent	rations i	n volume	percent;	(+) Ar -	F Q51	

1.1

1.2

N .

1. i

(A

1 Y

	Map Code	Name	Date	Temp (C)	Argon (X Ar)	Methane (% CH4)	Carbon Dioxide (% CO2)	Nitrogen (X N2)	0xygen (X 02)	Del D of H20 (0/00)	Del 0(13) of H20 (0/00)	Del 0(18) af 504 (0/00)
	KLAMATH COU	NTY									3 4 4	
	O6 ABE BO	EHN	74/05	25.0						-73.2	-7.36	
	D6 ABE BO	EHM	75/08	25.							<i>~</i> 6,78	15.42
	D6 JACK L	ISKEY	74/05	93.0						-116.6	-14,75	= 6 + 1 >
	DO JACK L	ISKEY	74705	22.0						-87.2	-8,53	8 4 0
	US JACK L		75/08	<>.						-119 6	*8,57 *1665	-1.85
		USBURN CADINES	74/03	70.0						-113 3	-14,93	- 1 • 0 3
	07 OLENE	CAD HAT CODINGC	75/07	87						-115.3	-13.23	-4.82
	16 MELVIN	FEIGI	70/10	31.0							-16.50	
	LAKE COUNTY											
	14 SUMMER	LAKE HOT SPRING (WOODWARD)	72/00	43.0						-115.0	-13.32	-4.00
	23 HUNTER	S HOT SPRINGS (LAKEVIEW)	72/00	96.0	,					-119.0	-14.32	-3.69
	25 BARRY	RANCH HOT SPRINGS (GUS ALLEN)	72/00	88.0		42.	2.	54.	2 +	-119_4	-13.72	
	32 FISHER	HOT SPRINGS	72/00	68.0						-117.0		•
	33 CRUMP	SPRING	72/00	78.0	* *	٥.	14.	75.	5 •	-115.5	-13.28	-4.71
ω	LANE COUNTY											
	01 BELKNA	P HOT SPRINGS	72/00	71.0	.*					-95.8	-11.74	0,35
	D3 COUGAR	RESERVOIR HOT SPRINGS (RIDER)	73/00	44.0	· · ·					-92.5	-11.97	
	OS MCCRED	IE SPRINGS	74/00	73.		<1.	<1.	98.	1 •	-94.0		· .
	MALHEUR COU	NTY										s
	03 NEAL H	IOT SPRINGS	72/00	87.0		6.			1-2-•		-16.52	-8.37
	04 BEULAH	HOT SPRINGS	72/00	60.0						-131.7	-13.22	
	US VALE H	IOT SPRINGS	74/00	73.0					•	-135.0	-15.18	-0.00
	US VALE H	IOT SPRINGS	74708	90.				•			-15.33	-3.91
	UG UNNAME	D HUI SPRINGS NEAR LITTLE VALLET	73/00	10.0						-137.1	-10.32	-0.03
		TT BOILE HOL PARINGS	72700	31 0						-127.1	-16,55	
		TO TOT SPRING AT FRAGE FURKS.	72/00	52 0						-136 6	-10.07	
	23 LUCE H	IOT SPRINGS	72/00	63.0						-134.0	-15.15	
	MARION COUN	(TY										
	U1 BREITE	NBUSH HOT SPRINGS	72/00	92.0						-97.5	-11.66	-2.67
	D1 BREITE	NBUSH HOT SPRINGS - WELL	78/02	110.0)						-12.59	-3.28
	UMATILLA CO	DUNTY										
	03 LEHMAN	ISPRINGS	72/00	61.0		<0.1	<0.1	94.	4 +	-121.3	-16.52	,
	UNION COUNT	Y										
	UZ HOT LA	NK E	72/00	80.0		9.	<1.	90.	2 •	-127.7	-16.56	4.63
	07 MEDICA	NL HOT SPRINGS	73/00	60.0						-130.2	-16.99	
	WASCO COUNT	T Y										
	O1 KAHNEE	TAH HOT SPRINGS,	73/00	52.0						-118.9	-14.75	

•

Q7.

ية. بالم

GEOTHERMOMETRY

The chemical composition of the thermal waters can be used, under certain conditions, to provide estimates of the last temperature of equilibrium of the water and the country rock. The variables which are most often used include silica concentration, and gelative proportions among sodium, potassium, calcium, and magnesium. Sufficient isotopic data on sulfate and water are available on some of the samples to calculate temperatures of equilibrium from the sulfate-water isotope geothermometer. The silica, Na-K-Ca, and sulfate-water geothermometers, which are used to estimate most of the temperatures, are valid only for hot-water systems and only when certain assumptions are met. These assumptions, discussed in detail by Fournier and others (1974), are listed below:

С

€

C

C

C

C

C

 A_{i}^{T}

1. Temperature-dependent reactions at depth control the concentration of the constituents used in the geothermometer.

2. The reservoir contains an adequate supply of the reactants.

- 3. Water-rock equilibrium is established in the reservoir.
- 4. The constituents used in the geothermometer do not reequilibrate with the confining rock as the water flows to the surface.

5. Mixing of thermal and nonthermal groundwater does not occur.

The concentration of silica in a thermal water depends prinipally on the temperature-dependent solubility of quartz, chalcedony, alphacristobalite, or amorphous silica (Fournier, 1973; Fournier and Rowe, 1966). The dissolved silica is generally present as H₄SiO₄, which is the silica species in equilibrium with the respective silica mineral:

silicic acid		silica mineral		water		
H ₄ SiO ₄	=	Si0 ₂	+.	2H20	·	(1)

This is the reaction on which all of the silica geothermometers are based. We may make the following practical generalizations:

1. The solubility of quartz limits silica concentrations in all high-temperature reservoirs (>180°C) and quartz may be the
limiting mineral in granitic aquifers down to temperatures at least as low as 90°C (R. O. Fournier, oral communication).

1. 1.19

2. Chalcedony limits silica concentrations in lower-temperature reservoirs and may be the limiting mineral in basaltic rock up to 180°C (Arnorsson, 1975).

2 M Jack St

9

(:

Ċ

Ć

The silica geothermometers give apparently good results in thermal systems which are associated with springs of neutral to slightly acid pH. However, several thermal systems listed in the tables discharge dilute alkaline waters with anamolously large silica concentrations. These dilute thermal waters contain little or no dissolved carbon dioxide and typically occur in granitic terrains. Since the silica geothermometers are based on equilibrium with H_4SiO_4 , the concentration of this dissolved species must be calculated to obtain an accurate estimate of the temperature in the thermal reservoir. At any temperature and pH, the total dissolved silica concentration is distributed among H_4SiO_4 , H_3SiO_4 , and $H_2SiO_4^2$:

$$H_4 SiO_4 = H_3 SiO_4 + H^+$$
 (2)

 $H_3 SiO_{41}^- = H_2 SiO_4^{-2} + H^+$ (3)

Equation (3) is important only at very alkaline pH's (>10) and is not important for the thermal waters encountered in Oregon. Equation (2), however, is important in waters with pH's above 8. For example, at a temperature of 80°C and pH of 9, approximately 44 percent of the dissolved silica is in the dissociated form (H_3SiO_{μ}) ; while, at a pH of 7, less than 1 percent of the dissolved silica is in the dissociated form. For example, if total dissolved silica is 100 mg/L, and chalcedony is the limiting silica mineral then temperature estimates should be reduced from $111^{\circ}C$ (pH 7) to $78^{\circ}C$ (pH 9). To correct for the dissociation of silica, we have used a correction which requires that the pH of the thermal spring is approximately the same as that in the thermal reservoir. This assumption requires that the equilibrium constants for the weak acids remain approximately constant despite temperature changes. The concentration of silicic acid (H_4SiO_4) is calculated at the spring temperature and pH. This concentration, recast as SiO₂, is used in the appropriate geothermometer. This correction works best in systems which have aquifer-temperatures near the measured spring temperature. Corrected values for the waters

with high pH's are shown in parentheses in table 4. Changes in the dissociation constants of the weak acids as functions of temeerature will result in temperature estimates which are slightly too how for systems in which the true aquifer temperature is appreciably above the spring temperature. Ĵ.

C

٢

C

C

C

C

C

14

Wixing of thermal (high silica) and nonthermal (low silica) waters can sharply reduce the temperatures estimated from the silica geothermometers. However, it is possible to calculate the demperature of the thermal aquifer if sufficient chemical and isotopic data are available for both the thermal and cold waters, if chemical equilibrium has not taken place at or below the mixing temperature, and it there has been no conductive heat loss (Fournier and Truesdell, 1974). The problem with any unexplored system is in proving that the water issuing at the surface is mixed. The simplest proof would be a linear 🐔 trend between measured spring temperatures and chloride concentration. Normal groundwater usually has low chloride concentrations, while thermal waters from high-temperature systems contain at least several hundred milligrams per liter chloride. A linear trend between the isotopic compositions of the water (deuterium and oxygen(18)) and dissolved chloride is also definitive proof of mixing. Thermal and shallow groundwaters do not usually originate from the same precipitation area and so they have different deuterium concentrations. Since deuterium concentrations do not usually change as a result of waterrock reactions, source waters are isotopically "tagged" and change composition only by mixing or evaporation (boiling). The oxygen isotopic compositions of thermal and fresh waters usually differ by several parts per mil. As water-rock reaction proceeds, the water becomes progressively enriched in the heavier oxygen atoms. Very few areas have a sufficient number of springs of differing chemical and isotopic composition to prove mixing by the rigorous criteria discussed above. Mixing models were not used in preparing table 4, since mixing & has not been demonstrated at most sites.

The Na-K-Ca geothermometer (Fournier and Truesdell, 1973) is based on an empirical relationship between the proportions of sodium to potassium, square root of calcium to sodium, and measured reservoir temperatures. Temperatures estimated from the Na-K-Ca geothermometer can be sharply increased by loss of calcium after the thermal fluid leaves the reservoir. Sensitivity of the geothermometer to loss of calcium can be tested in a specific water by doubling the measured calcium concentration and recalculating the estimated reservoir temperature. A change of only a few degrees indicates that the loss of calcium does not appreciably alter the estimated reservoir temperature. High magnesium concentrations or large magnesium

Table 4: GEOTHERMOMETER CALCULATIONS(C) [Map code refers to Bowen, Peterson, and Riccip, 1978;

()

...

Numbers in parentheses are calculated from silicic acid (H4SiO6) concentration calculated at the spring temperature; waters with magnesium-correction ratios > 50 are indicated by the term "cold"]

1

1.1

4 J

	Map Code	Name	Measured	Na-K	Na-K-Ca 1/3	Na-K-Ca. 4/3	Na-K-Ca Mg-corrected	SiO2 conductive	SiOZ adiabatic	SÍO2 chalcedony	5102 opial	Sulfate- water
	BAKER COU	NTY	•					·				
	D1 RADI	UM HOT SPRINGS	57.2	106	130	97		125(85)	122	97(33)	6	
	O1 RADI	UM HOT SPRINGS	58.0	81	108	77		124(69)	121	96(37)	5	
	02 SAM-	O SPRING	27.0	152	165	120	52	116	115	88 .	= 1	
	05 KROP	P HOT SPRING	43.0	74	110	100		109	109	7 Ŷ	# ĝ	
	06 FISH	ER HOT SPRING	37.0					90(44)	93	60(11)	= 24	
	CLACKAMAS	COUNTY							_			
	01 ACID MT	-SJLFATE SPRING ON . HOOD		114	90	-16		59	67	29	- 4 8	
	D2 SWIM	WARM SPRINGS	26.D	165	159	83	cold	123	118	91	2	109
	03 AUST	IN HOT SPRINGS	86.0	91	118	87	90	126	123	98	7	181
	()	AREY)										
	04 BAGB	Y HOT SPRINGS	57.2	70	93	49		126(65)	123	98(33)	7	
	04 BAGB	Y HOT SPRINGS	58.0	68	91	49		121(78)	119	93(47)	- 3	e de la companya de
	OS GEOT TE	HERMAL GRADIENT ST NEAR AUSTIN HOT	35.6	140	137	<u>7</u> 61		87	90	56	-27	24 2
		6 A 11 N T Y										
37		LOUNIT	67 D	199	155			87	00	54	- 27	
	01 6461	LAKE HOT SPRINGS	49 0	100		••		180	14.8	158	56	<u>.</u>
		INA HOT SPRINGS	47.0	100	178	OR	cold	182	170	161	58	
	02 4484	WELL AT LITTLE	15 5	189	169	75	cold	166	156	142	43	
	CR	ATER CAMPGROUND				а.	, ,					
	DOUGLAS C	OUNTY										
	01 UMPQ	UA HOT SPRINGS	46.5	96	135	141	100	131	128	104	12	
	UT UMPA	UA HOT SPRINGS	46.0	101	136	132	.108	135	131	138	15	•
	GRANT COU	NTY										
	01 RITT	ER HOT SPRINGS	41.0	60	92	71		118(68)	117	90(31)		
	U4 BLUE SP	MOUNTAIN HOT	58.0	91	126	118	· · · · · · · · · · · · · · · · · · ·	99	100	69	-16	
	D5 JOAG	UIN MILLER RESORT	40.0	89	121	104	61.					
	07 WEBE	RG HOT SPRING	46.0	140	169	162	92	126	124	99	7	
	HARNEY CO											
	02 0. 1	. THOMAS	72.0	60	104	116	102	131(71)	127	101(10)	11	•
	05 HARN	EY VALLEY DEV CO.	46.0	61	105	115	96	152	118	91	1	
	08 1514	ND RANCH WELL	41.0	60	120	196	115	105(76)	106	76(65)	~11	
	D9 CRAN	E HOT SPRINGS	80.0	86	120	109		125	122	97	6	
	09 CRAN	E HOT SPRINGS	78.0	90	124	113		127	124	99	å	
	10 WARM	SPRING NEAR	41.0	55	88	67		225(192	205	213(173)	101	
	VE	NATOR		_			·					
	15 UNNA HA	MED HOT SPRING NEAR RNEY LAKE	59.0	82	126	144	82	133 -	129	105	13	
	15 UNNA Ha	MED HOT SPRING NEAR RNEY LAKE	68.0	85	130	150	105	133	129	105	13	
	55 WICK	ET SPRINGS	85.0	120	179	272	111	165	158	145	45	
				· ·	50.9	110	204	180	168	159	56	273

the same and indian in a section

Table 4: GEOTHERMOMETER CALCULATIONS(C) [Map code refers to Bowen, Peterson, and Riccio, 1978;

Numbers in parentheses are calculated from silicic acid (H4SiO4) concentration calculated at the spring tesperature; waters with magnesium-correction ratios > 50 are indicated by the term "cold"]

Map Code	"Name E	Measured	Na-K	Na-K-Ca 1/3	Na-K-Ca 4/3	Na-K-Ca Mg-corrected	SiO2 conductive	S102 adiabatic	S402. chalcedony	Si02 opal	Sülfate- water
	COUNTY		•								
22 HAKNE	I COUNTY NICKEY SPRINGS	86.0	118	198	312		185 .	172	1.4.4		
22 1	NICKET SPRINGS	84 0	136	196	100	105	103	172	1 4 4	0.3 4/1	
22 1	MICKEY SPRINGS	00.0	138	205	349	.,,,	180	148	150	5.	
. 23	ALVORD HOT SPRINGS	82.2	145	193	252	182	155	147	130	1 11	~# t
23	ALVORD HOT SPRINGS	76.0	153	198	254	164	148	141	1 2 2	26	231
23	ALVORD HOT SPRINGS	78.5	146	194	253	160	152	165	1 257	10	2
23	ALVORD HOT SPRINGS	78.5	144	192	252	157	151	145	126	30	
24 1	HOT BORAX LAKE	29.4	127	161	163		174	164	1 9 2	. 51	
24	HOT BORAX LAKE	31.1	133	168	174	157	175	166	1.96	54	
24	HOT BORAX LAKE	. 36.0	143	176	181		176	165	155	53	336
27 1	UNNAMED HOT SPRING NEAR TROUT CREEK		181	191	152	174	124	122	96	δ	
27 (UNNAMED HOT SPRING NEAR TROUT CREEK	52.0	118	143	118	141	140	135	\$ 1.4	19	235
39 1	GOODMAN SPRING (HOTCHKISS)	22.0	169	156	. 98		98	99	68	- 17	
43 (UNNAMED HOT SPRING NEAR HOT BORAX LAKE	73.9	144	175	173		147	141	122	2 Q	
. 43 (UNNAMED HOT SPRING NEAR HOT BORAX LAKE	79.4	147	179	182		175	160	1 4 8	47	
43	UNNAMED HOT SPRING NEAR HOT BORAX LAKE	87.0	149	183	193		165	1.5`6	142	42	5
43	UNNAMED HOT SPRING NEAR Hot Borax Lake	96.0	144	176	178		165	156	142	4 2	231
43	UNNAMED HOT SPRING NEAR HOT BORAX LAKE	91.0	145	176	178		176	165	154	·5 3	
43	UNNAMED HOT SPRING NEAR HOT-BORAX LAKE	97.0	136	169	172		169	159	146	46	
43	UNNAMED HOT SPRING NEAR HOT BORAX LAKE	90.5	141	172	171		163	154	139	40	
43	UNNAMED HOT SPRING NEAR HOT BORAX LAKE	86.0	139	172	174		164	155	141	41	
43	UNNAMED HOT SPRING NEAR Hot Borax Lake	97.0	138	171	174		166	157	143	"44	
43	UNNAMED HOT SPRING NEAR HOT BORAX LAKE	84.0	138	172	177		167	157	144	44	
44	HUTCHKISS WELL	27.0	160	146	56		103	103	73	1,3	
44	HOTCHKISS WELL	27.0	1/1	155	64		9.8	99	68	.≕ 1,7	
43	AINES LUMBER LU. WELL	23.U	190	107	70		106	100	14	ະ ຳ ບິ	
40	CIT OF HINES WELL	17.0	230	142	01	40	111	110	8-1	= {	
JACKS 01	ON COUNTY Jackson hot spring	35.0	64	95	72	42	114 6895	113	86(58)	- 3	
KLAMA	TH COUNTY									¥.	
	ALFRED JACOUSEN	30.0	250	221	131	78	114	113	86	- 5	
	BILL HILL	20.0	2.8.4	217	83	cold	74	7.8	4.2	+ 3 /∰° %5	
	CLAUDE SHUCK	24.0	252	203	84	46	105	រពម្	79	4° 4 1	
	CLYDE DEHILINGER	24.0	213	189	95	53	1 2,05	118	4 T 1584	1	
	FALCON HEIGHTS SCHOOL	37.0	192	181	104	5 5	125	122	47	0	

 \bigcirc

 $\mathbf{\hat{}}$

 \sim

38

· - ---

. .

Table 4: GEOTHERMOMETER CALCULATIONS(C) ENab code refers to Bowen, Peterson, and Riccio, 1978;

Numbers in parentheses are calculated from silicic acid (H4SiO4) concentration calculated at the spring temperature; Waters with magnesium-correction ratios > 50 are indicated by the term "cold"]

() .

()

· -

(,)

Map	Name	Measured	N.a – K	Na-K-Ca	Na-K-Ca	Na-K-Ca	\$102	\$102	SIOZ	\$102	Sulfate-
Cod	e			1/3	4/3	Mg-corrected	conductive	adiabatic	chalcedony	opat	water
	TH COUNTY										
	GEORGE CARTER	22.0	160	156	83	126	93	95	62	- 2 2	
	GEORGE STACY CO.	25.0	231	183	61		85	88	54	-29	
	JACK D'CONNER	38.0	90	116	83		114	113	86	-3	
	LEN DOBRY	21.0	201	180	88	95	114	113	86	-3	
	LESTER BROOKSHIRE	25.0	213	173	57		86	89	55	-28	
	MELVIN MCCOLLUM	25.0	231	178	50		104	104	74	-12	
	MONTE DEHILINGER	26.0	273	207	73	22	105	106	76	-11	
	O'CONNER LIVESTOCK CO.	30.0	108	123	72	102	125	122	97	6	
	OREGON WATER CORP. (4)	26.0					113	112 -	84	- 4	
	POPE'S MEAT CO.	22.0	180	161	67		72(69)	17	40(38)	- 39	
	RAY BIXLER	22.0	234	182	55		101	102	71	-15	
	ROBERT LANGLEY	23.0	252	200	78.	25	1 02	103	72	- 14	
	TOWN OF MERRILL	21.0	165	155	71	41	89	92	59	- 25	
	U.S. AIR FORCE(1)	31.0	227	209	129	100	105	105	75	-12	
	H.S. AIR FORFE(2)	30.0	220	201	117	65	103	103	73	~13	
	WEVERHAUSER WELL NO. 4	22.0	178	159	65	•••	55	62	23	- 53	
31	FAGLE POINT SPRING	35.0	169	190	170		89	92	59	-25	•
02	I F. ERIESEN	23.0	83	109	75		130(111)) 126	102(82)	10	
02	LOIS MERRINS	71 0	80	106	73		127(115	124	99(86)		
02	MEDO-BELL DATRY	81 0	83	100	75.		125(102	123	98(72)	7	·
02	MEDO-BELL DAIRY	81 0	0,5	107							1.85
02		89 0	47	5 R	67		126	121	9.6	5	
02	MOYINA WATER CO	50.0	194	127	8.6	64	116	113	85	-6	
02	O T T NO S	89 0	57	01	72		120(104) 118	92(76)	,	
0.2		88 0	R T	108	71		A1	R L	10	- 12	
ň2		79 0		100			1 3 1	128	104	12	185
02	OPECON HATER CORP. (1)	21 0		•			O R	00	4.8	-17	,
02	OREGON WATER CORP.(1)	21.0					70	75	10	- 40	
02	OREGON WATER CORP.(2)	20.0					72	77	60	- 10	
01	HOMARN HOLLINAY	25.0	181	157	5.6		75	70	44	. 14	
04	MAZANA SCHOOL	. 23.0	01	120	126		111	120	165	11	
04	ARE BAEMM	25 0	114	112	87	57	117	111	110	12	
00		25.0		136				.,,,		•••	5.8
00		24 0	254	202	01	34	96	04	63	= 21	20
00	HACK I ISYEY	93 D	83	111	82		131/104	1 128	104(76)	12	138
0.6	IACK ITSKEY	22 0	85	121	115	1.8	117	111	110	17	.,,,
06		25 0	0.7			20					
06	O H OSBORN	90.0	87	113	83		131(65)	128	104(11)	12	135
07	OF THE CAR HOT SPRINGS	73.9	72	101	72		126	122	96	6	
07	OF ENE GAD HOT SPRINGS	74 0	115	130	80	122	1.16	132	109	1.6	
07	OLENE GAD HOT SPRINGS	87 0		150	00						196
0.6	ROENICKE HOT SPRINGS	65.0	90	112	72	85	100	101	70	- 16	
14	MELVIN FEIGI	31 0	71	101	80		121/112	1 117	116(105)	22	
20	DAV CMITH HELDI	25 0	145	163	68		102	101	12	-14	
22	NAT 37110 WELL VIAMATH 185 80	51 7					118(99)	117	90(69)		
22			2/ 9	201	<u>8</u> 7	20	07	00	67	- 18	
24		33.0	247	203	07 9.9	cold	102	103	72	-14	
24	J. K. U'NEIL	0.22	c 2 U	174	00	LULU	106			• •	

39

Table 4: GEOTHERMOMETER CALCULATIONS(C) [Map code refers to Bowen, Peterson, and Riccio, 1978] Numbers in parentheses are calculated from silicic acid (H4SiO4) concentration calculated at the suring temperature; Waters with magnesium-correction ratios > 50 are indicated by the term "cold"]

Map Code	Nane	Measured	Na-K	Na-K-Ca 1/3	Na-K-Ca 4/3	Na-K-Ca Mg-corrected	Si 02 conductive	SiO2 adiabatic	SilO2 challcedony	S 1:02 00 a 1	Sul fate- water
LAKE CI	DUNTY										
05 A1	NA RIVER SPRING	18.9	162	157	80	27	85	91	57	- 26	
14 SI	UMMER LAKE HOT SPRING (WOODWARD)	46.7	76	130	182	113	135(123)	131	1087951	15	
14 5	UMMER LAKE HOT SPRING	43.0	61	112	149		13461279	130	197(99)	14	189
5,3 HI	UNTERS HOT SPRINGS	98.0	125	148	120		159	151	135	37	•
23 H	UNTERS HOT SPRINGS	86.0	128	154	. 134	74	197	169	1-5 5	` \$ [*] 5	158
23 HI	UNTERS HOT SPRINGS	96.0	119	143	114	* .	157	149	153	315	
24 L	EITHEAD HOT SPRINGS	69.4	69	96	61		1 1 5	116	86	- 2	
25 18	ARRY RANCH HOT SPRINGS	85.0	107	140	130	102	157	149	133	35	
25 B	ARRY RANCH HOT SPRINGS (GUS ALLEN)	88.0	106	139	131		152	i 4 5	1'27	31	
28 A	NTELOPE HOT SPRINGS	40.0	149	168	138	87	168	159	146	45	
32 F	ISHER HOT SPRINGS	68.0	165	169	112	123	123	121	95		
33 6	RUMP SPRING	40.0	130	147	104	112	150	143	125	20	
33 0	RUMP SPRING	78.0	117	144	122		173	162	1.51	50	202
33.0	RUMP WELL (1)	99.0	118	150	141	144	149	159	166	6	
33 C	RUMP WELL (2)	88.0	112								
LANE C	OUNTY										
01 8	ELKNAP HOT SPRINGS	86.7	226	202	110	183	126	123	98	7	
01 8	ELKNAP HOT SPRINGS	71.0	87	113	82	34	135	131	108	15	148
02 F	OLEY SPRINGS	80.6	91	106	52	•	111	ิ ทิ ๋า ๋ี่ ชื่	82	- 6	
03 C	OUGAR RESERVOIR HOT SPRINGS (RIDER)	44.0	74	95	48		102	103	12	- 1 4	
03 C	OUGAR RESERVOIR HOT Springs (rider)	42.0	86	103	51		99	100	69	÷ 1`6	
04 w	ALL CREEK WARM SPRINGS	41.0	110	125	73		113	112	84	- 5	
ÚS M	CCREDIE SPRINGS	73.0	88	114	81	74	124	122	96	6	
05 M	CCREDIE SPRINGS	71.0	104	125	8'6	84	115	114	86	- 3	
06 K	ITSON SPRINGS	44.4	82	110	83		9,9	100	6'9	- 1,6	
06 K	ITSON SPRINGS	43.0	77	107	81	71	91	98	67	- 1.8	
08 B	IGELOW HOT SPRINGS	61.0	104	125	85	120	117	116	<u>8</u> 9	- Ì	
MALHEU	R COUNTYI							<u>.</u>			
03 Ń	EAL HOT SPRINGS	87.0	163	181	151		17-3	162	131	50	210
04 6	EULAH HOT SPRINGS	60.0	103	124	85		169	13.9	1.4.6	4:6	
05 V	ALE HOT SPRINGS	73.0	132	157	135	150	1 5 2	145	12.7	31	201
05 V	ALE HOT SPRINGS	90.0		-				-			161
06 U	NNAMED HOT SPRINGS	70.0	83	118	109		145(128)	139	119(98)	24	215
08 M	ITCHELL BUTTE HOT	62.0	70	99	72		134(118)	130	107 (90)	14	
18 U	NNAMED HOT SPRING AT	35.0		, rit.		с. А.	90	97	66	- 1 9	

 \mathbf{n}

40

 \cap

 \cap

Table 4: GEDTHERMOMETER CALCULATIONS(C) [Map code refers to Bowen, Peterson, and Riccio, 1978; \$

Numbers in parentheses are calculated from silicic acid (H4SiO4) concentration calculated at the spring temperature; waters with magnesium-correction ratios > 50 are indicated by the term "cold"]

5- J

Map Code	Name	Measured	Na-K	Na-K-Ca 1/3	Na-K-Ca 4/3	Na-K-Ca Mg-corrected	SiO2 conductive	SiOZ adiabatic	SiO2 chalcedony	Si0Z opal	Sulfate- water
-	OUNTY	• .									
18 UNNA	MED HOT SPRING AT	34.0	83	98	42		92	94	61	- 23	
19 UNNA	MED HOT SPRING NEAR	53.5	66	107	.109		131(101)	128	104(71)	12	
19 UNNA	MED HOT SPRING NEAR	52.0	45	90	104		120(106)	118	91(76)	• †	
23 LUCE	HOT SPRINGS	63.0	119	137	96		143	137	116	22	
24 JONE	SBORO WARM SPRING	44.5	53	89	73		115(70)	117	90(39)		
25 JUNT	URA WARM SPRING #1	25.0	285	205	59		106(84)	106	77(53)	-10	
26 JUNT	URA WARM SPRING #2	35.0	56	92	78	•	124(76)	122	96(44)	6	
- 27 ARTE	STAN WELL	46.0	39	78	71		96(57)	97	65(24)	-19	
28 ALKA WE	LI FLAT GRADIENT	24.0	68	108	109		82	85	5 1	- 31	
29 NORT	H HARPER BLM WELL	36.0	75	109	94	95	91	93	61	-23	
30 UNNA NE	MED WARM SPRING Ar Bully Creek	37.0	266	148	-24		137	132	110	16	:
01 8961	TENRIISH HOT SPRINGS	92 0	122	149	128		127	124	99	8	179
01 8961	TENRUSH HOT SPRINGS	110 0	130	155	134		174(157)	163	152(133)	· 50	176
-	WELL		130	())				100			
HULTNOMAH	COUNTY										
01 CORB	ETT WARM SPRING	18.0	178	170	92	158	95	98	66	-19	
02 YMCA	CAMP COLLINS	23.3	430	283	103	260	111(104)	110	61(75)	- 7	
UMATILLA	COUNTY										
O1 BING	HAM SPRINGS	34.4	138	151	102	70	117.(110)	115	88(81)	- 1	
	IAN SPRINGS	61.0	66	97	72		96	97	66	-19	
UNION COU	INTY .										
01 COVE	WARM SPRING	29.4	75	95	46		78(40)	82	47(7)	- 34	
01 WELL	•	27.0	224	194	92	168	128	125	100	8	
UT WELL		25.0	215	190	94	81	120	118	91	!	
UT WELL		27.0	258	200	73	195	119	117	90		
UZ HUI		80.0	. 85	114		•	100(62)	101	10(30)	-16	60
U2 WAGN	IER WELL	29.0	203	281		74		4 4 4			
07 MEDI	CAL HOT SPRINGS	6U.U	11/	125	40		133	· 131	03	12	
OV HEDI	CAL NOI SENINGS	80.0	114	125	00		127	122	Y I	0	
HALLOHA C	OUNTY										
01 COOK	CREEK WARM SPRING	36.0	119	118	40		99	44	68	-17	
WASCO COU	JNTY										
01 KAHN	EETAH HOT SPRINGS	52.0	56	102	120		139	135	113	19	
02 MILT	ION MARTIN WELL	22.2	220	188	84	89	128(124)	125	100(96)	8	
03 J. S	ANDOZ WELL	27.8	221	196	103	69	134	130	107	14	

41

.

to calcium ratios have long been considered a qualitative indicator of low reservoir temperature (Ellis, 1970; White, 1970). The recently developed Na-K-Ca-Ng geothermometer (Fournier and Potter, 1979) quantifies this observation and results in generally better agreement between the silica and cation geothermometers, particularly in the lower (<150°C) temperature range. The magnesium-connected Na-K-Ca geothermometer was not calculated for samples with Na-K-Ca temperatures of less than 70°C.

To apply the magnesium correction, the ratio (R), defined by Fournier and Potter (1978) to be:

D -	millequivalents Mg x 100		(4)
v	millequivalents Mg + milliequivalents Ca + milliequiv	alents K	

C

Ć

0

was determined for all samples with magnesium, calcium, and potassium concentrations larger than the detection limits. If R was greater than 50, the sample was designated "cold" and no quantitative temperature was calculated. A magnesium-corrected temperature was calculated for all remaining samples, but was printed only if the corrected temperature was less than the uncorrected Na-K-1/3Ca temperature. The Na-K temperatures are based on the revised equation of Fournier (1979).

The sulfate-water isotope geothermometer (McKenzie and Truesdell. 1977) is based on the temperature-dependent fractionation of the isotopes of oxygen $(0^{16}/0^{18})$ between water and dissolved sulfate. McKenzie and Truesdell (1977) describe three end-member models for calculating reservoir temperatures with the sulfate-water isotope geothermometer: (1) conductive heat loss, (2) one-step steam loss, and (3) continuous steam loss. Samples from isolated springs with low flows and/or no steam loss, and condensed total-flow samples from wells, are assumed to have cooled conductively without any change in isotopic composition. One-step steam loss occurs in geysers and steam wells having two-phase flow from which only the water is collected. Continuous steam loss may occur in springs issuing in areas having fumaroles and steaming ground. If dilution occurs but is not detected, temperatures less than the actual reservoir temperature will be estimated. Generally, the continuous-steam-loss model is best for boiling springs and the conductive-heat-loss model for all other samples. Erroneous temperature estimates will be produced if nonthermal equilibrated sulfate is added by processes such as solution of gypsum, oxidation of sulfide to sulfate, or mixing with sulfate bearing brines. and the second second

Besides these quantitative indicators of subsurface temperature, the presence of travertine or siliceous sinter is generally a good qualitative indicator of temperature. Travertine indicates low temperatures, while siliceous sinter indicates temperatures of 180°C or more (White, 1970). Only Hot Lake and Mickey Springs in southern Harney County, and Neal Hot Springs in northern Malheur County, have large sinter deposits.

The following procedure is recommended to determine which estimated subsurface temperature (table 4) is best:

- Examine the Mg-corrected Na-K-Ca and the Na-K-4/3Ca temperatures and select the lower temperature as the better estimate. If neither is less than 100°C, then select the Na-K-1/3Ca temperature as the best cationbased estimate of the last temperature of water-rock equilibrium.
- 2. If the spring is boiling, select the quartz adiabatic temperature as the best silica-based temperature indicator. Otherwise, selection of the best silica-based temperature depends on having some knowledge of the principal rock type in the area of the individual hot spring. In alkaline waters discharging from granite, quartz solubility seems to limit silica concentrations at temperatures as low as 75°C. In waters of neutral pH, quartz solubility limits silica concentrations at temperatures of more than 180°C in basalts, and 90°C in granite.
- 3. Consider the temperatures estimated from the sulfatewater geothermometer to be speculative. Although tantalizing, these temperatures must be substantiated by additional information.

After careful application of the geothermometers, some samples may remain which give inconsistent or otherwise doubtful results. For example, dissolution of glass from vitric or lapilli tuffs releases large quantities of silica which renders the silica geothermometer useless. The high silica concentration at Beulah Hot Springs in Malheur County and at the warm springs near Venator in Harney County may be meaningless since both springs issue from vitric tuffs. The low temperatures estimated from the Na-K-Ca geothermometers indicate that the springs are not an important geothermal resource. The chemical composition of the thermal waters issuing along the shores of East take and Paulina Lake are also difficult to interpret. These springs have negligible flow rates, high silica concentrations (up to 200 mg/L), and issue from lapilli tuffs. Solution of glass from the lapilli tuffs could account for the large silica and relatively large magnesium concentrations. Since the temperatures of the springs increases as gas discharge increases, the "springs" are probably drowned gas vents. The concentrations of silica, sodium, potassium, and calcium in these thermal waters may be functions of the length of time that the heated lake water has been in contact with the tuff and may have no relationship to the temperature at depth. The relatively large magnesium concentration also favors a low-temperature system.

Ċ.

G

Ĉ

£

€.

C

E

77

The sulfate-water isotope geothermometer produces considerably higher estimated temperatures of water-rock equilibrium than the chemical geothermometers in most systems. The high temperatures estimated from the sulfate-water isotope geothermometer may indicate that the systems have a deep reservoir in which isotopic equilibrium is being established, and a shallower, cooler reservoir in which chemical equilibrium is being established. This is possible because the rate of sulfate-water isotopic equilibrium is relatively slow. Times to achieve equilibrium depend on both temperature and pH (Lloyd, 1968). To achieve 99-percent equilibration at neutral pH's, 330 years would be required at 100°C, 52 years at 150°C, and 12 years at 200°C. However, it is possible that the sulfate is added to the system slowly as the fluids circulate, thus requiring longer times to achieve 99-percent equilibration. An alternate explanation for the high temperatures estimated in the Cascades is that the sulfate represents fossil sulfate associated with the mineralization which is common in the Western Cascades. However, until additional data • • • are available, it will not be possible to determine if the high apparent temperatures of sulfate-water isotopic equilibrium are real or the result of solution of "fossil" sulfate, mixing of thermal and nonthermal waters, reduction of sulfate, membrane filtration, different rates of isotopic exchange between sulfate, water, and rock, or other nonthermal effects.

SUMMARY

n 41 3

制度 化氨基乙基乙酰胺 白喉的

line line

Most of the thermal springs in the central and northern parts of the Cascades in Oregon contain appreciable connate marine water similar to cold connate marine waters discharged from mineral springs and deep wells in the Willamette Valley and the Coast Range. Thermal springs in the southern part of the Cascades discharge similar waters to which a significant amount of CO2 has been added. Numerous cold CO2-charged springs also issue in this area. Dilute, alkaline thermal waters issue from springs associated with granitic rocks, principally in northeastern Oregon. These waters are sufficiently alkaline to require that the silica geothermometer be corrected for the dissociation of silicic acid. Near-surface waterrock reactions have rendered the chemical composition of thermal water at Newberry Caldera useless for geothermal calculations. Based on the geothermometers, the following areas have the greatest geothermal potential: Alvord Area (including Mickey Springs, Alvord Hot Springs, and Hot Borax Lake), Vale Hot Springs, Neal Hot Springs, Crump Spring, Lakeview, and Breitenbush Hot Springs. Areas for which the geothermometers do not agree include Klamath Falls and part of the Cascades.

ACKNOWLEDGEMENT

Joseph F. Riccio of the Oregon Department of Geology and Mineral Industries provided many of the raw data.

REFERENCES

- Arnorsson, Stefan, 1975, Application of the silica geothermometer in low temperature hydrothermal areas in Iceland: American Journal of Science, v. 275, p. 763-784.
- Ayers, F. D., and Creswell, A. E., 1951, The Mount Hood fumaroles: Mazama, v. 3, no. 13, p. 33-40.
- Bowen, R. G., Peterson, N. V., and Riccio, J. F., compilers, 1978, Low to intermediate-temperature thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries, Geological Map Series, GMS-10.
- Brook, C. A., Mariner, R. H., Mabey, D. R., Swanson, J. R., Guffanti, Marianne; and Muffler, L. J. P., 1979, Hydrothermal convection systems with reservoir temperatures ≥90°C, in Muffler, L. J. P., ed., Assessment of geothermal resources of the United States -1978: U.S. Geological Survey Circular 790, p. 18-85._

Brown, Eugene, Skougstad, M. M., and Fishman, M. J., 1970, Nethods for collection and analysis of water samples for dissolved iminerals and gases: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter Al, 160 p.

Corcoran, R. E., and Halker, G. W., 1969, Geology of the Dwyhee Upland Province, in Mineral and Water Resources of Oregon: Washington, U.S. Government Printing Office, p. 80-83.

Ellis, A. J., 1970, Quantitative interpretation of chemical characteristics of hydrothermal systems, in United Nations symposium on development and utilization of geothermal resources, Pisa 1970, v. 2, pt. 1: Geothermics, Special Issue 2, p. 516-528.

Fenneman, N. M., 1946, Physical divisions of the United States: U.S. Geological Survey, scale 1:7,000,000.

Ľ

С.

 \bigcirc

Æ

€.

C.

6.

€

Fournier, R. O., 1973, Silica in thermal waters: Laboratory and field investigations, in Proceedings of international symposium on hydrogeochemistry and biogeochemistry, Japan, 1970, Volume 1, Hydrochemistry: Washington, D.C., J. W. Clark, ed., p. 122-139.

Fournier, R. O., and Rowe, J. J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-stream wells: American Journal of Science, v. 264, p. 685-697.

Fournier, R. O., 1979, A revised equation for the Na/K geothermometer, in Expanding the Geothermal Frontier, Transactions of the Geothermal Resources Council Annual Meeting, 24-27 September, 1979, Reno, Nevada, Volume 3, p. 221-224.

Fournier, R. O., and Potter, R. W., 1978, A magnesium correction for the Na-K-Ca geothermometer: U.S. Geological Survey Open-File Report 78-486, 24 p.

Fournier, R. O., and Truesdell, A. H., 1973, An empirical Na-K-Ca geothermometer for natural waters: Geochemica et Cosmochimica Acta, v. 37, p. 1255-1275.

Fournier, R. O., and Truesdell, A. H., 1974, Geochemical indicators of subsurface temperature - Part 2, Estimation of temperature and fraction of hot water mixed with cold water: U.S. Geological Survey Journal of Research, v. 2, no. 3, p. 263-270. Fournier, R. O., White, D. E., and Truesdell, A. H., 1974, Geochemical indicators of subsurface temperature - Part 1, Basic assumptions: U.S. Geological Survey Journal of Research, v. 2, no. 3, p. 259-262.

11 m. 1

ł

÷.

Gonthier, J. B., Collins, C. A., and Anderson, D. B., 1977, Groundwater data for the Drewsey Resource Area, Harney and Malheur Counties, Oregon: U.S. Geological Survey Open-File Report 77-741, 28 p.

- Griggs, A. B., 1959, Geology of the Cascade Range, in Mineral and Water Resources of Oregon: Washington, U.S. Government Printing Office, p. 53-59.
- Groh, E. A., 1966, Geothermal energy potential in Oregon: The Ore Bin, v. 28, no. 7, p. 125-135.
- Hampton, E. R., and Brown, S. G., 1964, Geology and ground water resources of the upper Grand Ronde River Basin, Union County, Oregon: U.S. Geological Survey Water-Supply Paper 1597, 99 p.
- Hogenson, G. M., 1964, Geology and ground water of the Umatilla River Basin, Oregon: U.S. Geological Survey Water-Supply Paper 1620, 162 p.
- Leonard, A. R., 1970, Ground water resources in Harney Valley, Oregon: Oregon State Ground-water Report no. 16, 85 p.
- Leonard, A. R., and Harris, A. B., 1974, Ground water in selected areas, Klamath Basin, Oregon: Oregon Water Resources Department Ground-water Report 21, 104 p.
- Lindgren, Waldemar, 1901, The gold belt of the Blue Mountains of Oregon: U.S. Geological Survey 22nd Ann. Report, pt. 2, p. 551-776.
- Lloyd, R. M., 1968, Oxygen isotope behavior in the sulfate-water system: Journal of Geophysical Research, v. 73, p. 6099-6110.
- McKenzie, W. F., and Truesdell, A. H., 1977, Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and waters from hot springs and shallow drillholes: Geothermics, v. 5, p. 51-61.

Madison, R. J., 1966, Water-quality data in the Willamette Basin, Oregon, 1910-1964: U.S. Geological Survey Basic-Data Release, 40 p. Mariner, R. H., Brook, C. A., Swanson, J. R., and Mabey, D. R., 1978, Selected data for hydrothermal convection systems in the United States with estimated temperatures 290%C: Backup data for M.S. Geological Survey Circular 790, U.S. Geological Survey Open-File Report 78-858, 493 p. Ci.

C

(

C

C>

C

- Mariner, R. H., Presser, T. S., Rapp, J. B., and Willey, L. M., 1975, The minor and trace elements, gas, and isotope compositions of the principal thermal springs of Nevada and Oregon: U.S. Geological Survey Open-File Report, 27 p.
- Mariner, R. H., Rapp, J. B., Willey, L. H., and Presser, T. S., 1974,
 The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon: U.S. Geological Survey Open-File Report, 32 p.
- Nehring, N. L., Mariner, R. H., White, L. D., Huebner, M. A., Roberts, E. D., Harmon, Karen, Bowen, P. A., and Tanner, Lane, 1979, Sulfate geothermometry of thermal waters in the western United States: U.S. Geological Survey Open-File Report, 79-1135, 11 p.
- Newcomb, R. C., 1972, Quality of the ground water in basalt of the Columbia River Group, Washington, Oregon, and Idaho: U.S. Geological Survey Water-Supply Paper 1999-N, p. N1-N71.
- Newcomb, R. C., and Hart, D. H., 1958, Preliminary report on the ground water resources of the Klamath River Basin, Oregon: U.S. Geological Survey Open-File Report 466, 248 p.
- Peterson, N.V., and Groh, E. A., 1967, Geothermal potential of Klamath Falls area, Oregon, a preliminary study: The Ore Bin v. 29, no. 11, p. 209-231.
- Phillips, K. N., 1936, A chemical study of the fumaroles of Mount Hood: Mazama, v. 18, no. 12, p. 44-46.
- Piper, A. M., 1942, Ground water resources of the Willamette Valley, Oregon: U.S. Geological Survey Water-Supply Paper 890, 194 p.
- Piper, A. M., Robinson, T. W., and Park, C. F., Jr., 1939, Geology and ground water resources of the Harney Basin, Oregon: U.S. Geological Survey Water-Supply Paper 841, 190 p.

Presser, T. S., and Barnes, Ivan, 1974, Special techniques for determining chemical properties of geothermal-water: U.S. Geological Survey Water-Resources Investigations 22-74, 11 p.

- Robinson, J. H., 1972, Availability and guality of ground water in the Ashland Quadrangle, Jackson County, Oregon: U.S. Geological Survey Hydrologic Investigations Atlas HA-421.
- Sammel, E. A., 1976, Hydrologic reconnaissance of the geothermal area near Klamath Falls, Oregon, with a section on preliminary interpretation of geophysical data by D. L. Peterson: U.S. Geological Survey Water-Resources Investigation Open-File Report 76-127, 129 p.
- Scott, R. C., and Baker, F. B., 1962, Data on uranium and radium in the ground water of the United States, 1954 to 1957: U.S. Geological Survey Professional Paper 426, 115 p.
- Teshin, V. N., Swanson, J. R., and Orris, G. J., 1979, GEOTHERM -Geothermal resources file, in Expanding the Geothermal Frontier, Transaction of the Geothermal Resources Council Annual Meeting, 24-27 September 1979, Reno, Nevada, v. 3, p. 721-724.
- Thayer, T. P., and Wagner, N. S., 1969, Geology of the Blue Mountain Region, in Mineral and Water Resources of Oregon: Washington, U.S. Government Printing Office, p. 68-74.

Trauger, F. D., 1950, Factual ground-water data in Lake County, Oregon: Portland, Oregon, U.S. Geological Survey Open-File Report, 287 p.

Wagner, N. S., 1959, Natural sources of carbon dioxide in Oregon: The Ore Bin, v. 21, no. 11, p. 103-113.

5.

- Walker, G. W., 1969, Geology of the High Lava Plains Province, <u>in</u> Mineral and Water Resources of Oregon: Washington, U.S. Government Printing Office, p. 77-79.
- Walker, G. W., and Peterson, N. V., 1969, Geology of the Basin and Range Province, in Mineral and Water Resources of Oregon: Washington, U.S. Government Printing Office, P. 83-88.
- Waring, G. A., 1965, Thermal springs of the United States and other countries of the world--a summary: U.S. Geological Survey Professional Paper 492, 833 p.

White, D. E., 4960, Summary of chemical characteristics of some waters of deep origin, in Synopsis, of Geologic Results: U.S. Geological Survey Professional Paper 400-A, p. 8452-8454. C

Ĉ

C

C

6

E

¢.

E4

£

White, D. E., 1970, Geochemistry applied to the discovery, evaluation, and exploitation of geothermal energy resources, in United Nations symposium on development and utilization of geothermal resources, Pisa, 1970, v. 1, pt. 2, Geothermics, Special Issue 2, p. 58-80.

UNITED STATIES DEPARTMENT OF TINTERIOR GEOLOGICAL SURVEY

Bruce

Thermal System

230-240°C

Vapor Res over 6 km

THE LASSEN BEOTHERMAL SYSTEM :

L. J. Patrick Mulfler, Nancy L. Mehring, Alfred H. Truesdell, Dathy J. Janik, Michael A. Clynne, and J. Michael Thompson U.S. Geological Survey

> Open-Fille Report 82-926

This report will be published in the proceedings of the Pacific Geothermal Conference Auckland, New Zealand, November 1982.

ALL POST A CONTENA STATE

De Dereser Aufgeren Nange 12. Neitsanler Allasse alle Friedersin 1983 - J. Manila, Skancol V. Cistile (Sing) - Lichter (Sing) en 21982

THEN STOLD WERE SUSTED & CONCEPTION ADDRESS OF ME

Aleises in lange registered to the source of the second of

Introduction to the period of the product of the period of

Marconne unt Roberne polearity rearry control de des recommendations polearity rearry recommendation de control control control control de de la control de control control control control control de de la control de control de la control control control de la control de control de la control control de la control de la control de control de la control

 Image: Construction of the second state of the second s

LARGUTE L. - Constalized apologic map of this lateral region endepted arow wassies, whinted and a prove the second states with the second second

Description underscalled Prize Diams on the Crist <u>Hermite</u> of the Prize Cost divide a configuration (1) a sub-cost from orbition in this crist way (c a <u>more configuration (c)</u>) (Junch and Appendix (c))

the contrast of the product of present the second s

THE PERSON CONTRACTOR OF CONTR

Size Comparison (Size (Size Size (Size Comparison))) (Size (Size Comparison))) (Size Comparison)) (Size Comparison) (Size Compari

Thurse of Handrey Group of the strong transmit of the strong that he can be the strong the strong st

A THE ALL AND A CONTRACTOR TO AND A CONTRACT AND A CONTRACT AND A CONTRACTOR AND A CONTRACT AND

C ANALY ACT REPORTAND

Ameripitan, cost-sviller: uptatist, and midpoint setto ere spundant in Unitiv Hose pringel Valley futer to the cost and 2002000 in Loost show Huppits House Costs of dumant of the interval of the springer Valley in costs of the Cost of the local of the springer Valley in costs of the Cost of the local of the springer Valley of the cost of the UNIX of the state of the state of the cost of the UNIX of the set of the set of the set of the set of the UNIX of the set of the set of the set of the set of the UNIX of the set of the set of the set of the the set of the UNIX of the set o

Deprive distant (0.02) eD editori errer el incente ferritatori dell'origination epitatori anti ampete dividiati Jordani nel Cert - Jorgan el anciene construite el lossofici erritatori anti 1000 er construite dell'originatione el 1000 er prode la Unice (Cratical er anti- 2005), et preconstruite dell'originatione el 1000 er proconstruite el construite el 1000 er proconstruite el construite el 1000 er protectori el construite el 1000 er protectori el construite el 1000 er protectori el construite el construite el 1000 er tratatori el construite en construite el construite.

Static Statistic Statistics and an AMDA State Statistics and AMDA Statistics and AMDA

CLUTCH DIFFUSE OVER SUPPLY VORVEOUS IN 44 BIT MLL FLADC VERTOR OF CLUTCHARD FOR THE CLUC CLUCCHARD COCCOUNT THE FOR THE CLUC CLUCCHARD COCCOUNT THE FOR THE CLUC CLUCCHARD FOR THE CLUCCHARD FOR THE VERTOR CLUCCHARD FOR THE

The Glabianang value downs in Writter Wowdor i deal GLC discharge in residual Covers in the Viel in an of the Fred Provide Dus with a Covers

M.S. COLLECTOR MELLER OUT OF SUCH MARKENESS, M.S. COLLECTOR (2021) SECURATION AND INVALUENCES, M.S. COLLECTOR (2021) COLLECTOR (2021) M.S. COLLECTOR (

Instance (Collock) Constance (U. ATTENTION) (A. AND COLLECTION (COLLOCK) COLLECTION (COLLOCK))
 And And Collection (Collection) (Collect

CALIFICATION SAFECTARIE (N. CHARTER)

Frenzes ST-Disgram showing Trilling one Desveroe h.D.(1911, one D.J. dontent of 1810, vamples from The fore creeks in DVMP, Numbers give temperature is G. Ste frequent of capitant on of symbolic, here an of the fore of the symbolic states of the out of the symbolic symbolic of the symbolic symbolic of the symbolic of the symbolic of the symbolic symbolic of the symbolic of the symbolic of the symbolic of the symbolic symbolic of the symbol

Semperferies Alking with the correspondence is not complify S of MM / pairies on the Utile Fields o Disposed to the on Free Alking on the Utile Fields o church show a structure of the second of the S course with a subope ST addities with on the st

Size deploy along bits of Ginner (3) a from we de sector of the sector of the sector (3) a from we de the sector of the sector sector of the sector of the sector of the sector of the sector sector of the sector of the sector of the sector of the sector sector of the sector of the sector of the sector of the sector sector of the sector of the sector of the sector of the sector sector of the sector of the sector of the sector of the sector sector of the sector of the sector of the sector of the sector sector of the secto

Postate de la conde antiparte de la condecta de la constante de la constante de la constante de la constante de Constante de la constante de la

L'Italian and a state of the second state of t

School records of brock in the Cay of Article Property of Article Carbon Control Cay of Article Property of Article Carbon Control Carbon Control Carbon Ca

PRIOR OF PLANESS AND REFERENCE CONTINUES OF PRIOR OF PLANESS AND ADDRESS OF PLANESS OF P

No finite-1 count finite for the second of the finite formation of the second of

is a contrast of the second distribution distribution of the second distri

ALCER From the environment of the not spring) and recome longer way districtly line of non-equilibrities used a comparation of the interview reprines of 0500 contraction of the interview reprines of the interview of the interview

Constraints of the second seco

ALL DE LA CONTRACTOR DE CONTRACTOR DE CONTRACTOR DE LA CO

process includes conduction with differences in determined an object to provide contribution of the information of determined by definition of the processes given an object of the information of the processes given an object of the information of the information of the form the information of the control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the form the information of the information control of the information the information of the information of the information of the information information of the information

CALCULARCE BOLLING SPITURE LAT. THE BULL CAVE SCOLLER LEGE BOLLING AND MOTENN LEGESSAME CAVE CONTRACT FROM LEGENDER FOR SETURE CAVE LLIN OUT APPENDENCE FIEL FOR VEL 1000 - 1000 - 100 - 100 1000 - 100 - 100 1000 - 100 - 100 1000 - 1000 1000 - 1000

Provident Comparison of the provident of the provident of the providence of the

				Ц. Ц.	- TAT TYTY					記録が
SALAR STREET		472	-B	25清		EU)			10 1	の言語
今日またの	打				ţĘ.	neni M	6	αų		
いたの		ale i	EX			E		111		1.0

A PARTY CONTRACTOR OF ALL PUTTING CONTRACTOR DEC TOPOLOGY AND CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR OF A CONTRACTOR CONTRACTO

CONDITION OF A CONTRACT OF A C

TOTAL STREET, S

Jid

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Mineral resource potential map

of the Three Sisters Wilderness,

Deschutes, Lane, and Linn Counties, Oregon

By

Norman S. MacLeod¹, Edward M. Taylor², David R. Sherrod¹, George W. Walker¹, J. Douglas Causey³, and Spencee L. Willett³

Open-File Report 83-659

¹U.S. Geological Survey

²Oregon State University and U.S. Geological Survey

³U.S. Bureau of Mines

STUDIES RELATED TO WILDERNESS

Under the provisions of the Wilderness Act (Public Law 88-577, September 3, 1964) and related acts, the U.S. Geological Survey and the U.S. Bureau of Mines have been conducting mineral surveys of wilderness and primitive areas. Areas officially designated as "wilderness," "wild," or "canoe" when the act was passed were incorporated into the National Wilderness Preservation System, and some of them are presently being studied. The act provided that areas under consideration for studied wilderness designation should be for suitability for incorporation into the Wilderness System. The mineral surveys constitute one aspect of the suitability studies. The act directs that the results of such surveys are to be made available to the public and be submitted to the President and the Congress. This report discusses the results of a mineral survey of the Three Sisters Wilderness (NF083), Deschutes and Willamette National Forests, Deschutes, Lane, and Linn Counties, Oregon. The Three Sisters Wilderness was established by Public Law 88-577, September 3, 1964, and the Endangered American Wilderness Act (PL95-237), March 1, 1979.

SUMMARY STATEMENT

The Three Sisters Wilderness contains pumice deposits and may have geothermal resources; it has no known metallic-mineral or hydrocarbon deposits. Investigations indicate 900,000 tons of block pumice suitable for decorative stone and other commercial uses occur at Rock Mesa in the wilderness. A broad area centered around South Sister volcano is among the most geologically favorable localities for geothermal resources in the Oregon Cascade Range, based on the large volume of silicic volcanic

rocks that occur in this area and the very young age of some of these rocks. However, no drill hole information is available with which to evaluate the existence or magnitude of the geothermal resource. The rare mineral osumilite, which occurs at a mining claim in the wilderness, is of interest to some mineral collectors.

INTRODUCTION

The Three Sisters Wilderness straddles the crest of the Cascade Range in Deschutes, Lane, and Linn Counties of central Oregon (fig. 1). It includes 245,302 acres in the Willamette and Deschutes National Forests. Established as a primitive area of 196,708 acres in 1937, it was classified as wilderness in 1957 and included in the National Wilderness Preservation System in 1964 (Public Law 88-577). Subsequently, the Endangered American Wilderness Act (Public Law 95-237) added another 48,594 acres, most of which was part of the French Pete Proposed Addition.

The U.S. Bureau of Mines spent 80 days in 1980 examining prospects and obtaining pan-concentrates of sediments from streams draining the Three Sisters Wilderness. The only previous detailed studies of the mineral resources dealt solely with the pumice deposits at the Hermana Group claims (fig. 2) and are described in U.S. Forest Service internal reports by Suchy (1963) and Ball (1972) and contracted reports by Richards (1972), Stoeser and Swanson (1972), Grant (1976), Magill (1976), and Kolberg (1976).

The U.S. Geological Survey mapped the geology of the wilderness in the summer and fall of 1978 and 1979 (Taylor and others, 1983) and

conducted geophysical surveys in 1980 and 1981. There are no prior detailed geologic maps of the entire wilderness, although all of it has been studied in reconnaissance and some of it in detail. Prior studies of the wilderness and adjacent areas include: Williams (1944, 1957); Peck and others (1964); Taylor (1965, 1967, 1968, 1978, 1981); Anttonen (1972); Peterson and others (1976); Brown and others (1980); and Flaherty (1981). Gravity and aeromagnetic maps by Pitts and Couch (1978) and Couch and others (1978) include the wilderness area.

LOCATION AND GEOGRAPHY

The Three Sisters Wilderness is the southernmost of three nearly contiguous wilderness areas that occupy most of a 65-mile-long north-south stretch of the High Cascade physiographic province in central Oregon (fig. 1). A narrow corridor occupied by Oregon State Highway 242 separates the Three Sisters Wilderness from the Mount Washington Wilderness; the Mount Jefferson Wilderness is only a short distance farther north.

The Three Sisters Wilderness is approximately 45 mi east of Eugene and 30 mi west of Bend, Oregon (fig. 1). Access from Eugene is by Oregon State Highway 126 and Forest Service roads branching from it; access from Bend is by U.S. 20 and Oregon State Highways 46, 126, and 242 and by Forest Service roads branching from these highways. A 50-mile-long segment of the Pacific Crest National Scenic Trail extends north-south through the wilderness.

The wilderness is mostly in the High Cascade physiographic province of the Cascade Range (fig. 2). This section of the High Cascades

consists of a volcanic highland that slopes gently east and west from the Cascade crest, typically at an elevation of about 6,000 ft; the western slopes are dissected by deep canyons. The Three Sisters (South Sister, 10,358 ft; Middle Sister, 10,047 ft; North Sister, 10,085 ft) and Broken Top (9,175 ft) are four large contiguous stratovolcanoes on this highland. No other part of the High Cascades contains such a cluster of stratovolcanoes, and the range is especially wide in this area. The western part of the wilderness (French Pete Addition) is in the Western Cascade physiographic province and is a mountainous terrain cut by deep canyons. Total relief in the wilderness is about 8,300 ft.

Higher areas of the wilderness around the four stratovolcanoes are above timberline, but the western areas are brushy and thickly forested, and the remainder is mostly open forest. Numerous lakes occur in the wilderness, especially in the southern half.

GEOLOGY

The Three Sisters Wilderness is underlain entirely by volcanic rocks of late Cenozoic age and sediments derived from them (Taylor and others, 1983). Gently dipping flows and pyroclastic rocks that crop out in the western part of the wilderness in the Western Cascade province are the oldest rocks. They have yielded K/Ar ages mostly between 10 and 16 m.y. (Flaherty, 1981; Priest and Vogt, 1982, Appendix A; R. A. Duncan, 1982, written communication); a few ages as young as 8 m.y. are probably a consequence of rock alteration. They are overlain by a discontinuous sequence of epiclastic sediments capped by flat-lying basalt and andesite

5.

flows. These flows, which form the tops of most ridges in the French Pete Addition, have yielded K/Ar ages of 6 to 10 m.y. (Flaherty, 1981; Priest and Vogt, 1982).

The High Cascade part of the Three Sisters Wilderness is formed of upper Pliocene, Pleistocene, and Holocene volcanic rocks, glacial deposits, and alluvium. The oldest rocks in this part of the wilderness are basalt and basaltic andesite flows exposed in deep canyons, such as along Separation Creek, that dissect the western side of the High Cascades (fig. 2). K/Ar ages of these flows range widely. Most of them are probably 1 to 3 m.y. old, but ages of as much as 8 m.y. have been obtained on some of them (Priest and Vogt, 1982, Appendix A). If the older determined ages are not due to contamination or initial inclusion of radiogenic argon, then some of these flows may correlate with the ridge-capping flows in the Western Cascade part of the wilderness. Pleistocene basalt and basaltic andesite flows younger than 2 m.y. are the dominant rock type in the wilderness. Basaltic andesite (53 to 58 percent SiO_2) is generally more abundant than basalt (less than 53 percent SiO₂) except in the lower parts of the pile. The flows are glaciated and commonly covered by a discontinuous veneer of glacial outwash and till. Vents, including cinder cones, small to large stratovolcanoes, and lava shields are abundant, especially near the axis of the range. The vents are variably glaciated. Some retain most of their original form, others are so deeply glaciated that little remains to indicate their location except for remnants of the core plugs and dikes that once laced them.

Intermediate and silicic volcanic rocks of Pleistocene age are interlayered with and overlie the more widespread flows of basaltic

andesite and basalt in a broad region extending from Obsidian Cliffs (west of North Sister) southward to Kokostick Butte (south of South Sister) and eastward to the area surrounding Broken Top (fig. 2). They consist of andesite, dacite, and rhyodacite flows, domes, and pyroclastic rocks.

North Sister, Middle Sister, South Sister, and Broken Top stratovolcanoes are formed of interlayered thin flows and pyroclastic deposits and of dikes and plugs. They formed during the Pleistocene, probably during the last several hundred thousand years. Andesite flows and pyroclastic rocks, however, were erupted from the summit of South Sister during the Holocene. Active glaciers and large areas of permanent snowfield are present on the stratovolcanoes.

Holocene mafic and intermediate flows and related cinder cones and fissure vents are widespread in a broad area generally west of North Sister and south of South Sister and Broken Top. Some of these flows were erupted less than 2,600 years ago (Taylor, 1981).

Holocene silicic flows, domes, and pyroclastic rocks occur around the southern and eastern sides of South Sister. Rock Mesa is a thick stubby rhyodacite flow south of South Sister (fig. 2), and small domes and pyroclastic vent deposits occur less than one mile northeast. A belt of rhyodacite flows, domes, and pyroclastic deposits extends northward from State Highway 46 near Devils Hill up and across the east flank of South Sister. Pumiceous pyroclastic deposits related to the rhyodacite flows and domes are thick near the vents, but also occur as air-fall deposits that discontinuously veneer most of the southern and eastern parts of the wilderness. Carbon derived from peat deposits interlayered between these air-fall deposits have yielded 14 C ages of 2,000 to 2,900 years (Taylor, 1978; D. R. Mullineaux, 1979, written communication).

Considering the youthfulness of volcanic activity, the highlands around the four major stratovolcanoes likely will continue to have eruptions in the future. Three of the stratovolcanoes have not erupted during the Holocene and may have no future activity. South Sister has been active during the Holocene and is capable of future eruptions. The area around the Three Sisters and Broken Top is geologically similar to that of Mount Mazama before the climactic eruptions that produced Crater Lake (see Bacon, 1983).

Most rocks in the Three Sisters Wilderness are not tectonically The older volcanic rocks of the French Pete Addition are deformed. but locally faulted, the displacement is not large. large Α north-south-trending east-dipping normal fault has been mapped adjacent to the wilderness in the vicinity of Horse Creek (fig. 2) near the boundary between the Western Cascade and High Cascade provinces (Flaherty, 1981). The Pliocene and Pleistocene basalt and basaltic andesite flows of the High Cascades province in the wilderness may bank against a fault line scarp, with the actual fault trace buried by flows younger than the fault. Faults were not observed in the High Cascades part of the wilderness. Alignments of vents may define the location of buried inactive faults, but are more likely a response to the regional stress field (Nakamura, 1977).

Younger rocks in the wilderness are mostly fresh; older rocks show variable alteration (clay minerals and zeolites) similar to that found in many other areas of the Western Cascade province. Hematite and limonite, and very rare pyrite, chalcopyrite, and malachite were noted along fractures in the volcanic rocks in vent deposits at scattered localities in the High Cascades. Similar alteration occurs at many other vents in

the High Cascades and is interpreted to result from volcanic exhalative processes.

MINERAL RESOURCES

No resources of base or precious metals were identified in the Three Sisters Wilderness. The area contains no base- or precious-metal mines; the nearest mines, in the Blue River and Fall Creek districts 10 miles west of the wilderness, contain vein deposits of gold with some silver, copper, and lead (Brooks and Ramp, 1968). Thirteen base- or precious-metal claims have been staked within the wilderness; 12 of these are placer claims. The Pat Creek claim (fig. 3), located in 1969 by Marcus Jones and Joe Reynolds, is in a poorly exposed shear zone and contains trace gold and 0.4 oz silver/ton. The claim is apparently abandoned. The placer claims are located along streams in the wilderness.

As part of this mineral investigation, stream-sediment samples were collected from streams near the border of the wilderness and analyzed for their content of trace elements. Locations of the samples are shown on Figure 2 and the analyses are listed in Table 1; sample locations are unevenly distributed because of the paucity of streams in some areas. At each location two samples of fine sediment were collected, one of bulk sediment, the other a pan concentrate of the heavy-mineral fraction of the sediment. In the laboratory each sample was dried, sieved to minus-80 mesh, and split. The heavy minerals in the pan-concentrate samples were further concentrated by settling in bromoform (specific gravity, 2.8) and separated into magnetic and non-magnetic fractions.

Samples of stream sediments and non-magnetic heavy mineral concentrates were then pulverized before analysis by standard semiquantitative emission spectrography and by fluorimeter (U), Hg detector (Hg), and atomic absorption (Zn, Au). The analyzed sediments from steams draining the wilderness show concentrations of metallic elements similar to those commonly found in volcanic rocks. No anomalous concentrations of any elements were found. Gold was observed in trace amounts in pan concentrates from many streams, but it constitutes only a few parts per billion of the alluvium. Similar traces of gold were found in many streams in other parts of the High Cascades province which suggests the gold is derived from dispersed sources in the volcanic rocks rather than being related to surficial or buried mineral deposits.

Pumice deposits at the Hermana Group claims on Rock Mesa (fig. 3) are the only industrial mineral resource identified in the wilderness. The pumice occurs as an irregular blocky capping of the glassy rhyodacite flow that forms Rock Mesa. This deposit has never been mined, but has been studied in detail. The deposit contains 900,000 tons of commercial grade pumice, 50 percent of which is estimated to be recoverable (Richards, 1972; Grant, 1976). Pumice samples totaling 0.75 tons from the Hermana Group claims were examined during patent investigation. The pumice would be used primarily for decorative stone.

Magill (1976) recommended that mining be done at the Hermana Group claims with crane and bucket. He assumed a yearly production rate of 12,000 tons, equal to that at U.S. Pumice Company's Mono Craters, California deposit. Because of snowfall on Rock Mesa, mining would be done only during the summer. According to the company, the deposit would

not be worked until after the deposit at Mono Craters is exhausted. The sale of 12,000 tons of pumice would be worth \$1,155,960 at 1981 prices; operating costs would be \$823,962 per year according to Magill (1976).

Other pumice deposits located between Devils Lake and Green Lakes (fig. 2) were examined, but the amount of block pumice at rhyodacite domes and flows there is small.

Specimens of the rare mineral osumilite from the Betsy Girl claim at Obsidian Cliffs (fig. 3) have been sold to Ward's Natural Science Establishment, Inc., Rochester, N.Y. The claim, located by M. M. Groben in 1977 and currently held by assessment work, is on a thick rhyodacite flow that contains black euhedral crystals of osumilite $[K(MgFe,Mn)_2$ $(Al,Fe)_3(Si,Al)_{12}O_{31}]$ in vesicles. The crystals, mostly less than 0.1 inches in diameter, are of interest to some mineral collectors, but are not a major economic commodity.

Large amounts of cinders and stone occur in the wilderness, but numerous other deposits are closer to markets.

Hydrocarbon deposits (oil, gas and coal) do not occur within the Three Sisters Wilderness. Cenozoic volcanic rocks many thousands of feet thick underlie the wilderness and have no hydrocarbon potential.

The High Cascades physiographic province is an area of interest for geothermal exploration, but the magnitude of the geothermal resource is not known. Possible geothermal resources are suggested by the abundance of Quaternary volcanic rocks, relatively high heat flow, and hot springs.

The Belknap-Foley Known Geothermal Resource Area (KGRA) is just northwest of the Three Sisters Wilderness. Belknap Hot Springs and Foley Hot Springs (fig. 2) are about 5 mi from the wilderness and yield 25 to 75 gallons of water per minute with a temperature of 147° to 180°F

(Waring, 1965); other hot springs are a few miles farther west. Hot springs near the western edge of the High Cascade province are interpreted to be the result of lateral flow of warm or hot water from heat sources beneath the High Cascades (Blackwell and others, 1978; Black and others, 1982).

Several heat-flow holes have been drilled near the western border of the Three Sisters Wilderness. These have yielded temperature gradients of 147 to 332 ^oF/mi (Brown and others, 1980; Priest and Vogt, 1982, appendix D). No heat-flow holes have been drilled in the wilderness itself.

The geology of the Three Sisters Wilderness suggests that parts of it have a higher geothermal resource potential than most other areas in the Cascade Range. Geothermal resources in the range are likely to be of two general types. The first is a possible regionally extensive deep resource related to influx of mafic magma into the upper crust during the development of the young mafic volcanic pile that forms the range. This resource may be too deep for development using current technology. Also, even if hot rocks are present at exploitable depths, permeability and porosity may be too low to yield adequate hydrothermal fluids for conventional methods of electric power generation. This type of deep resource may occur along the axial part of the High Cascades province in the Three Sisters Wilderness, but may also be present in many other areas of the range outside the wilderness.

The second, and probably more important, geothermal resource type is related to large silicic magma bodies or still hot, but solidified, silicic intrusions. Silicic intrusive bodies commonly are larger in the shallow crust than are mafic bodies, and commonly are associated with
developed geothermal resources in other areas in the world. Smith and Shaw (1975) consider areas of young silicic volcanic rocks to be the most favorable for geothermal resources. The Three Sisters Wilderness contains relatively abundant silicic volcanic rocks. Dacite and rhyodacite domes and flows are more common in a broad area centered around South Sister volcano than in any other part of the Oregon Cascade Range, with the possible exception of the Crater Lake area. Furthermore, the Holocene rhyodacite flows and domes on the south to east sides of South Sister volcano are the youngest rhyodacites known in the Oregon Cascades.

On the basis of the distribution of silicic volcanic rocks, a broad area around South Sister (fig. 3) is one of the most favorable targets for geothermal resources in the Cascade Range of Oregon. Without drill-hole data, the area of geothermal interest can only be rudely defined, and it is here delineated on the basis of distribution of silicic vents around North Sister, Middle Sister, South Sister, and Broken Top stratovolcanoes. The most geologically favorable site for geothermal resources in this area is on the south and east sides of South Sister where Holocene rhyodacite vents are located.

The Three Sisters area is one of three in Oregon estimated by Smith and Shaw (1979, Table 3) to have large amounts of available thermal energy and is among the most geologically favorable sites for geothermal resources in Oregon according to Priest and Vogt (1982). However, no holes have been drilled to determine temperature gradients in this area, nor is there other surface evidence, such as hot springs or extensive areas of hydrothermal alteration, that might indicate a potential resource.

If high temperatures are present in this area at exploitable depths, development could be hampered by two factors. First, the porosity and permeability of the rocks at depth may be so low that fluids may be insufficient for direct hydrothermal power production. If so, techniques for transport of heat at depth to surface generating facilities would have to be different than in existing geothermal fields where electric power is generated by direct or indirect use of geothermal fluids. Second, this area has had numerous Holocene eruptions and future eruptions can be expected. Eruption of silicic magma is commonly explosive and capable of destroying nearby structures, such as power generation plants.

In summary, geothermal resources may occur in the Three Sisters Wilderness, but available information confirms neither their existence nor magnitude. Nevertheless, a broad area centered around South Sister volcano is among the most geologically favorable targets for geothermal resources in Oregon.

ASSESSMENT OF MINERAL RESOURCE POTENTIAL

The principal known mineral resource in the Three Sisters Wilderness is pumice. The pumice deposits occur at Rock Mesa on the south side of South Sister. Availability of other sources of similar pumice and environmental concerns have inhibited their development.

On the basis of the abundance of young silicic volcanic rocks, a broad area around South Sister volcano is among the most geologically favorable areas for geothermal resources in Oregon. However, no drill data exists with which to evaluate this resource, if present.

The rare mineral osumilite, which occurs at Obsidian Cliffs, is of interest only to mineral collectors, is not a major commodity, and has low mining potential. There are no known precious- or base-metal deposits or hydrocarbon deposits in the Three Sisters Wilderness.

REFERENCES CITED

Anttonen, G. J., 1972, Trace elements in High Cascade volcanic rocks, Three Sisters area, Oregon: Stanford, California, Stanford University, Ph.D. dissertation, 101 p.

- Bacon, C. R., 1983, Eruption history of Mount Mazama and Crater Lake caldera, Cascade Range, U.S.A.: Journal Volcanology and Geothermal Research, v. 18, no. 1/4, p. 57 - 115.
- Ball, E. B., Jr., 1972, Report of mineral examination Hermana 1 thru 9: unpublished report on file at U.S. Forest Service Region 6 Office, Portland, Oregon, 3 p.
- Black, G. L., Blackwell, D. D., and Steele, J. L., 1982, Heat flow of the Oregon Cascades, <u>in</u> G. R. Priest, and B. F. Vogt, eds., Geology and geothermal resources of the Cascades, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-82-7, p. 152-171.

Blackwell, D. D., Hull, D. A., and Bowen, R. G., 1978, Heat flow in Oregon: Oregon Department of Geology and Mineral Industries Special Paper 4, 42 p.

Brooks, H. C., and Ramp, Len, 1968, Gold and silver in Oregon: Oregon
Department of Geology and Mineral Industries Bulletin 61, 338 p.
Brown, D. E., McLean, G. D., Priest, G. R., Woller, N. M., and Black,
G. L., 1980, Preliminary geology and geothermal resource potential of
the Belknap - Foley area, Oregon: Oregon Department of Geology and
Mineral Industries Open-File Report 0-80-2, 58 p.

- Couch, R. W., Gemperle, M., and Connard, G. G., 1978, Total field aeromagnetic anomaly map, Cascade Mountain Range, central Oregon: Oregon Department of Geology and Mineral Industries Geologic Map Series GMS-9, scale, 1:125,000
- Flaherty, G. M., 1981, The Western Cascade-High Cascade Transition in the McKenzie Bridge area, central Oregon Cascade Range: Eugene, Oregon, University of Oregon , M.S. thesis, 178 p.
- Grant, A. R., 1976, Report of geologic evaluation, Rock Mesa pumice deposit, Lane and Deschutes Counties, Oregon: unpublished report on file at U.S. Forest Service Region 6 office, Portland, Oregon, 57 p.
- Kolberg, Elmer, 1976, Appraisal of pumice claims, Rock Mesa, Three Sisters Wilderness Area, Deschutes and Willamette National Forests: unpublished report on file at U.S. Forest Service Region 6 office, Portland, Oregon, 35 p.
- Magill, E. A., 1976, Mining and product appraisal, Rock Mesa pumice deposit, Lane and Deschutes Counties, Oregon: unpublished report on file at U.S. Forest Service Region 6 office, Portland, Oregon, v. I, 71 p., v. II, 72 p.
- Nakamura, K., 1977, Volcanoes as possible indicators of tectonic stress orientation: Journal of Volcanology and Geothermal Research, v. 2, p. 1-16.
- Peck, D. L., Griggs, A. B., Schlicker, H. G., Wells, F. G., and Dole, H. M., 1964, Geology of the central and northern parts of the Western Cascade Range in Oregon: U.S. Geological Survey Professional Paper 449, 56 p.
- Peterson, N. V., Groh, E. A., Taylor, E. M., and Stensland, D. E., 1976, Geology and mineral resources of Deschutes County, Oregon: Oregon Department of Geology and Mineral Industries Bulletin 89, 66 p.

- Pitts, G. S., and Couch, R. W., 1978, Complete Bouguer gravity anomaly map, Cascade Mountain Range, central Oregon: Oregon Department Geology and Mineral Industries Geologic Map Series GMS-8, scale 1:125,000.
- Priest, G. R., and Vogt, B. F., editors, 1982, Geology and geothermal resources of the Cascades, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-82-7, 205 p.
- Richards, L. C., 1972, Mineral investigation of Hermana Group of mining locations, U.S. Pumice Company, Rock Mesa, Deschutes and Lane Counties, Oregon: unpublished report on file at U.S. Forest Service Region 6 office, Portland, Oregon, 32 p.
- Smith, R. L., and Shaw, H. R., 1975, Igneous-related geothermal systems, <u>in</u> D. E. White and D. L. Williams, editors, Assessment of geothermal resources of the United States--1975: U.S. Geological Survey Circular 726, p. 58-83.

______, 1979, Igneous-related geothermal systems, <u>in</u> L. J. P. Muffler, editor, Assessment of geothermal resources of the United States--1978: U.S. Geological Survey Circular 790, p. 12 -17.

- Stoeser, D. B., and Swanson, F. J., 1972, Geology of Rock Mesa, Three Sisters Wilderness Area, Oregon: unpublished report on file at Department of Geology, University of Oregon (Eugene), 18 p.
- Suchy, M. M., 1963, Report of mineral examination (Hermana Group): unpublished report on file at U.S. Forest Service Region 6 office, Portland, Oregon, 7 p.
- Taylor, E. M., 1965, Recent volcanism between Three Fingered Jack and North Sister, Oregon Cascade Range, Part I - History of volcanic activity: The Orebin, v. 27, no. 7, p. 121-147.

, 1967, Recent volcanism between Three Fingered Jack and North Sister, Oregon Cascade Range: Pullman, Washington, Washington State University, Ph.D. Dissertation, 84 p.

, 1968, Roadside geology, Santiam and McKenzie Pass Highways, Oregon: Oregon Department of Geology and Mineral Industries Bulletin 62, p. 3-33.

, 1978, Field geology of SW Broken Top quadrangle, Oregon: Oregon Department of Geology and Mineral Industries Special Paper 2, 50 p.

, 1981, Central High Cascade roadside geology - Bend, Sisters, McKenzie Pass, and Santiam Pass, Oregon, <u>in</u> D. A. Johnston and J. M. Donnelly-Nolan, editors, Guides to some volcanic terranes in Washington, Idaho, Oregon, and Northern California: U.S. Geological Survey Circular 838 p. 55-91.

- Taylor, E. M., MacLeod, N. S., Sherrod, D. R., and Walker, G. W., in press, Geologic map of the Three Sisters Wilderness, Deschutes, Lane, and Linn Counties, Oregon: U. S. Geological Survey Miscellaneous Field Studies Map, scale 1:62,500 (in press).
- Waring, G. A., 1965, Thermal springs of the United States and other countries of the world a summary; revised by R. R. Blankenship and Ray Bentall: U.S. Geological Survey Professional Paper 492, 383 p.
 Williams, Howel, 1944, Volcanoes of the Three Sisters region: University California Publications Department Geological Sciences, v. 27, no. 3,

p. 37-83.

, 1957, A geologic map of the Bend quadrangle, Oregon, and a reconnaissance geologic map of the central portion of the High Cascade Mountains: Oregon Department of Geology and Mineral Industries map, scales 1:125,000 and 1:250,000.

Figure 1. Map showing the location of the Three Sisters Wilderness,

Deschutes, Lane, and Linn Counties, Oregon.

Figure 2. Map showing locations of geographic features in the Three Sisters Wilderness, Oregon, and locations (X) of analyzed stream-sediment samples for which analyses are listed in Table 1.

Ťable	1.	Ana	lytic	al d	ata	fo	or s	tream	-se	dimen	t sar	nples	from	Thr	ee Si	ster	s Wi	lderr	ness,	Oreg	on.	San	ple l	ocations
are	sho	wnic	on Fig	ure	2.	Ar	nalys	ses ai	re l	by C.	For	1, B.	Arbo	gast	, and	J.	Viet	s, U.	S. Ge	olog	ical	Sur	vey,	Denver,
Colc	rad	0.	(Fe,	Mg.,	Ca,	ar	nd T	i in j	per	cent;	a11	other	ele	ment	s in	part	s pe	r mil	lion;	N,	not	dete	cted	L,
dete	cte	d, t	out be	low	lim	it	of	deter	nina	stion	*	ident	ifie	s no	on∼mag	neti	c he	avy-π	ninera	1 co	ncen	trat	<u>e)</u>	
Field	:	Мар																						
No.		No.	<u>Fe</u>	Mg	Ca		<u>Ti</u>	Mn	<u>B</u>	Ba	<u>Co</u>	Cr	Cu	La	<u>Ni</u>	<u>Pb</u>	Sc	<u>Sr</u>	<u>v</u>	<u>Y</u>	Zr	<u>Zn</u>	<u>U</u>	Hg
MTS8-	1	1	5	1.	52	(0.3	1000	15	300	20	500	100	20	30	L	20	500	300	20	50	45	-	
MTS8-	2*	1	7	10	2		.3	2000	L	150	200	700	15	L	1000	20	20	N	100	L	20	65	0.24	0.04
MTS8-	3	2	7	2	3		.3	1000	10	700	30	500	100	20	100	10	20	500	300	20	50	35	-	-
MTS8-	4*	2	7	10	1	• 5	• 2	2000	L	100	150	700	15	L	700	L	15	N	50	L	L	60	.23	.02
MTS8-	5	3	.5	2	5		.3	1000	10	700	20	500	100	20	70	L	20	500	200	15	50	20	-	-
MTS8-	6*	3	7	10	0	• 2	.05	1500	L	100	100	500	10	L	700	L	L	N	20	L	L	80	.28	N
MTS8-	7	4	7	2	7		• 5	1000	10	1000	30	150	150	20	30	L	30	700	300	30	70	15	-	
MTS8-	8*	4	7	10	3		• 2	3000	Ļ	200	100	500	- 70	L	300	20	30	N	100	L	100	75	-	-
MTS8-	9	5	7	2	2		• 5	1000	10	1000	20	100	30	20	20	L	20	300	300	20	50	15	-	-
MTS8-1	0*	5	10	7	5]	1	3000	Ļ	150	50	500	30	L	70	20	50	N	200	L	20	15	•42	N
MTS8-1	1	6	10	2	2		•7	1500	L	700	70	150	100	L	30	L	30	300	1000	20	30	30	-	-
MTS8-1	2*	6	7	7	5		• 7	3000	L	150	50	200	20	L	100	L	50	N	200	L	L	10,	.27	N
MTS8-1	3	7	5	2	5		• 5	1000	20	1000	20	500	70	20	70	L	20	500	200	20	50	20	-	-
MTS8-1	4*	7	Ś	7	3		• 2	3000	L	300	70	1000	15	L	300	L	30	N	100	L	L	30	.33	.04
MTS8-2	2	8	7	3	3		• 5	1000	10	1000	50	500	100	L	150	10	20	500	300	20	50	30	-	-
MTS8-2	3*	8	10	10	1	• 5	• 2	3000	L	150	150	1000	15	L	700	20	20	N	50	L	20	55	.33	•02
MTS8-2	4	9	5 ,	2	5		• 5	1000	15	700	20	200	100	20	70	Ļ	20	500	200	30	50	30	-	-
MTS8-2	5*	9	7	10	2		. 2	5000	L	700	70	700	50	Ĺ	300	20	20	N	100	L	L	40	.24	.26
MTS8-2	6	10	5	1.	51		.3	1000	10	1000	15	150	10	20	20	L	10	300	200	15	50	20	-	-
MTS8-2	7*	10	7	7	3		• 5	5000	L	200	50	500	15	L	150	50	50	N	150	L	50	15	• 34	.02
MTS8-2	8	11	7	2	3		• 5	1500	20	1000	20	200	50	20	50	15	20	500	300	20	70	30	-	-
MTS8-2	9*	11	7	10	5		• 5	3000	Ļ	150	50	700	20	L	500	20	30	N	150	L	20	30	.35	L
MTS8-3	0	12	5	2	5		.3	1500	L	700	30	700	100	20	100	10	15	500	200	20	30	25	-	-
MTS8-3	2	13	5	2	7		• 5	1000	15	1000	30	300	100	20	70	10	20	700	200	20	50	20	-	-
MTS8-3	3*	13	- 7	7	2		• 3	3000	Ļ	300	50	1000	50	L	200	20	30	N	150	L	Ļ	30	.25	.35

· · · · · · · · · · ·

Table 1. Continued

Field	Map																					
No.	No.	Fe	Mg	Ca	<u>Ti</u>	<u>Mn</u>	B	Ba	<u>Co</u>	<u>Cr</u>	Cu	La	<u>Ni</u>	<u>Pb</u>	<u>Sc</u>	<u>Sr</u>	<u>v</u>	<u>Y</u>	Zr	<u>Zn</u>	<u>U</u>	<u>Hg</u>
3S-013A	28	15	5	1.5	•7	2000	10	100	30	500	70	N	150	L	30	100	300	15	30	70	-	-
3S-013B*	28	5	7	1.5	• 2	1000	L	50	50	700	15	N	700	N	30	L	100	15	30	40	• 3	N
3S-014A	29	5	3	1.5	.3	1500	10	100	30	700	70	N	100	15	30	150	150	15	30	75	-	-
3S-014B*	29	3	5	7	• 3	1000	L	50	20	1500	30	N	150	50	70	70	150	15	15	15	.1	N
3S-015A	30	7	3	1.5	• 7	2000	L	100	30	500	70	N	150	L	20	200	200	15	30	90	-	-
3S-015B*	30	5	7	1.5	• 2	1000	L	50	50	700	. 15	N	700	N	15	L	50	10	10	70	• 2	L
3S-016A	31	5	5	2	• 5	1500	10	200	30	500	70	N	150	L	30	300	150	15	30	85	-	-
3S-016B*	31	7	7	2	.3	1500	L	70	30	1000	20	N	700	L	20	100	100	10	15	55	• 2	L
3S-017A	32	7	5	1	• 3	1500	L	50	30	300	20	N	100	L	20	L	70	15	30	85	-	-
3S-017B*	32	7	.7	2	• 5	1500	L	70	50	1000	30	N	700	20	30	150	100	15	20	60	• 5	.02
3S-018A	33	7	5	3	• 5	1500	10	150	30	500	70	N	100	L	20	300	200	15	30	60	-	-
3S-018B*	33	5	7	5	• 3	1500	L	50	30	1000	20	N	150	N	50	150	100	15	30	35.	• 2	L
3S-019A	34	7	5	1.5	•7	1500	10	150	30	500	70	N	150	L	20	200	200	20	50	75	-	-
3S-019B*	34	7	7	. 3	• 3	1500	L	50	50	1000	30	N	500	N	30	L	150	15	30	80	-	.04
3S-020A	35	10	5	1.5	.7	2000	10	70	30	300	70	N	100	L	30	100	300	15	30	70	-	-
3S-020B*	35	5	. 3.	1.5	• 5	700	L	300	30	500	70	N	200	'N	30	L	70	10	50	60	.4	.10
3S-021A	36	7	5	1.5	.3	1000	10	100	30	500	70	N	200	L	15	300	100	15	30	65	_ `	· _
3S-021B*	36	7	5	1	• 3	700	L	50	50	700	30	N	700	N	20	L	70	10	20	65	• 3	L
Lower lim of detect	it ion:	.05	.02	.05 .	002	10	10	20	5	10	5	20	5	10	5	100 	10	10	10	10	•1	•02

Analyzed for but below limit of detection (indicated as ppm in parentheses): antimony (100), arsenic (200), beryllium (1), bismuth (10), cadmium (20), gold (0.1), molybdenum (5), silver (0.5), thorium (100), tin (10), and tungsten (1).

Table 1. Continued

Field	Мар																					
No.	No.	Fe	Mg	Ca	<u>Ťi</u>	Mn	<u>B</u>	<u>Ba</u>	<u>Co</u>	Cr	Cu	La	<u>Ni</u>	<u>РЬ</u>	<u>Sc</u>	<u>Sr</u>	<u>v</u>	<u>Y</u>	<u>Zr</u>	Zn	<u>U</u>	Hg
MTS8-34	14	5	1.	52	.3	1000	L	1000	20	200	70	20	50	10	20	500	200	30	50	40	-	-
MTS8-35*	-14	5	10	1	• 2	2000	L	300	50	700	20	L	300	20	15	N	50	L	20	60	.35	•45
MTS8-40*	15	7	2	5	•7	1000	L	700	30	500	70	L	70	10	20	700	300	15	30	25		-
MTS8-41	15	5	2	3	• 5	1000	20	700	20	700	50	20	50	10	15	500	200	15	30	35	-	-
3S-001A	16	7	5	1.5	• 7	2000	L	100	30	200	50	N	100	L	15	200	100	15	30	45	-	
3S-001B*	16	7	7	1.5	.3	1500	L	70	30	700	50	50	300	10	15	150	70	15	30	100	1.4	•02
35-002A	17	7	7	1.5	• 5	1500	L	150	30	150	50	N	150	L	15	300	100	15	30	55	-	-
3S-002B*	17	7	7	1	• 2	1500	L	50	50	500	20	N	700	50	15	100	50	10	20	90	•4	.02
3S-003A	18	7	5	1.5	• 7	1500	L	70	30	200	30	N	70	L	20	150	150	15	30	70	-	-
3S-003B*	18	5	5	3	• 3	1500	L	50	30	700	50	N	200	N	30	200	100	15	30	50	• 6	L
3S-004A	19	10	5	1.5	• 7	2000	10	70	30	300	50	N	70	L	30	L	300	15	30	50	-	-
3S-004B*	19	7	5	3	.3	1500	L	70	30	500	20	N	150	N	50	100	100	15	30	25	• 3	N
3S-005A	20	10	5	1.5	• 5	2000	10	70	30	150	30	N	70	L	30	L	200	15	30	35	-	-
3S-005B*	20	7	5	3	• 5	2000	L	100	30	700	20	N	150	N	30	100	100	15	30	50	-	L
3S-006A	21	10	5	2	•7	3000	10	100	30	300	70	N	70	L	30	100	300	15	30	45	-	-
3S-006B*	21	5	5	3	• 3	2000	L	70	30	500	30	N	150	N	30	150	100	15	30	35	~	N
35-007A	22	10	· 5	1.5	.7	2000	10	100	30	500	70	N	100	L	30	100	300	15	30	90	-	-
3S-007B*	22	7	7	3	• 3	1500	L	70	30	700	30	N	300	N	30	100	150	15	50	60	• 2	•02
35-008A	23	10	3	1.5	• 7	2000	10	50	30	300	70	N	70	Ĺ	30	N	300	15	30	35	-	-
3S-008B*	23	5	5	2	• 5	2000	L	50	30	150	30	N	70	N	30	L	100	15	30	15	.1	N
3S-009A	24	15	5	1.5	• 7	2000	10	70	30	500	70	N	70	L	30	N	500	15	30	60	-	
3S-009B*	24	7	5	2	• 3	2000	L	50	30	200	30	Ν	100	15	30	L	150	15	30	15	• 2	•04
3S-010A	25	10	5	1.5	• 7	2000	10	70	30	300	70	N	70	L	50	N	300	15	30	50		-
3S-010B*	25	5	5	3	• 5	1500	L	70	30	150	30	N	150	N	30	L	70	15	30	25	.1	N
3S-011A	26	10	5	1.5	• 5	1500	10	100	30	500	70	N	150	L	30	150	150	15	30	95	-	-
3S-011B*	26	7	7	2	• 3	1500	L	70	50	700	30	N	500	N	30	L	150	15	20	75	.4	.02
3S-012A	27	10	5	1.5	• 5	1500	10	70	30	300	50	N	100	L	20	L	300	15	30	85	-	
3S-012B*	27	5	5	2	• 2	1500	Ļ	70	30	700	30	N	500	N	30	L	70	15	20	45	• 2	N

GEOLOGICAL SURVEY

Geology and mineral resource potential map

of the Diamond Peak Wilderness,

Lane and Klamath Counties, Oregon

By

David R. Sherrod,¹ Phillip R. Moyle,² Clayton M. Rumsey,² and

Norman S. MacLeod¹

Open-File Report 83-661

1U.S. Geological Survey

²U.S. Bureau of Mines

Lakevicu MTn Intrusive

STUDIES RELATED TO WILDERNESS AREAS

Under the provisions of the Wilderness Act (Public Law 88-577, Sept. 3, 1964) and related acts, the U.S. Geological Survey and the U.S. Bureau of Mines have been conducting mineral surveys of wilderness and primitive areas. Areas officially designated as "wilderness," "wild," or "canoe" when the act was passed were incorporated into the National Wilderness Preservation System and some of them are presently being studied. The act provided that areas under consideration for wilderness designation should be studied for suitability for incorporation into the Wilderness System. The mineral surveys constitute one aspect of the suitability studies. The act directs that the results of such surveys are to be made available to the public and be submitted to the President and the Congress. This report discusses the results of a mineral survey of the Diamond Peak Wilderness (NF017), Deschutes and Willamette National Forests, Lane and Klamath Counties, Oregon. The Diamond Peak Wilderness was established by Public Law 88-577, September 3, 1964.

SUMMARY

Diamond Peak Wilderness contains no identified metallic mineral resources or mineral fuels. No historic or active mining activity is known within the wilderness. Two cinder cones in or partly in the wilderness, Red Top Mountain and Crater Butte, contain substantial cinder resources, but future demand for the deposits is not anticipated because numerous other sources are nearby. The area has a low potential for geothermal resources.

INTRODUCTION

Diamond Peak Wilderness covers 36,637 acres (57 mi²) in the Deschutes and Willamette National Forests, Lane and Klamath Counties, Oregon (fig. 1). The U.S. Geological Survey and U.S. Bureau of Mines conducted a mineral survey of the wilderness in the summers of 1980 -1982. Geological, geochemical, and geophysical studies by the Geological Survey, and detailed examinations of known or suspected mineralized areas by the Bureau of Mines were used to evaluate the mineral resource potential of the area.

Diamond Peak Wilderness is located along the crest of the Cascade Range 56 mi southwest of Bend and 20 mi southeast of Oakridge, Oregon. The area is most easily reached from Oregon State Highway 58, and is bounded on the north and east by the Southern Pacific Railroad right-of-way, on the south by the unpaved Emigrant Pass road, and on the west by a network of Forest Service gravel roads. Logging operations are ongoing along the western boundary.

The dominant geographic feature in the wilderness is Diamond Peak, 8,748 ft in elevation. Although total relief in the wilderness exceeds 4,000 ft, the terrain is characterized by gentle to moderate slopes. Streams flowing west from the crest of the Cascade Range are moderately incised whereas east-flowing streams form broad drainages between volcanic landforms. All of the wilderness except the higher parts of Diamond Peak is forested with hemlock and fir.

The Diamond Peak area is included in a regional reconnaissance map of the High Cascades (Williams, 1957), but no detailed geologic maps of the area exist. Aeromagnetic and gravity maps of the central Cascade Range

(Couch and others, 1978; Pitts and Couch, 1978) include the Diamond Peak area.

GEOLOGY

Diamond Peak Wilderness and the crest of the Cascade Range are part of the High Cascade physiographic province of Oregon. The province is an elongate belt of upper Cenozoic lava flows and vents. The major Cascade peaks are Pleistocene stratovolcanoes built upon this belt. Some of these volcanoes are homogeneous accumulations of mafic flows and pyroclastic rocks; others include rocks ranging in composition from basalt to rhyodacite.

Diamond Peak is a Pleistocene stratovolcano formed dominantly of basaltic andesite flows and pyroclastic rocks (fig. 2). The volcano has a youthful form, although glacially modified, and its lavas have normal remanent magnetization. As there is no indication of post-glacial (less than 10,000 years) activity, the volcano is probably extinct. Adjacent stratovolcanoes at Mount Yoran and Lakeview Mountain are similar in composition to Diamond Peak but are older and more deeply dissected. Flows from Mount Yoran have a K/Ar age of 0.33 ± 0.07 m.y. (J. G. Smith, oral commun., 1982). These stratovolcanoes are built of poorly bedded pyroclastic rocks with minor interbedded flows, and are laced by dikes and sills that radiate from one or more high level plugs or volcanic necks. The flanks are composed of numerous lava flows.

Redtop Mountain and Crater Butte are cinder cones formed of accumulations of red to black lapilli, scoria, and bombs. The early ejecta are variably altered to palagonite -- yellowish orange clays derived from basaltic glass.

The lavas throughout the wilderness are fresh olivine basaltic andesite and basalt. Individual flows range from 6 to 30 ft thick and are separated by flow breccias. Most rocks are slightly porphyritic, containing a few percent olivine and plagioclase, with more or less clinopyroxene. Plagioclase is more abundant higher in the lava sequence of Diamond Peak and small prisms of hypersthene occur in the latest lava flows from that volcano. No silicic rocks occur in the wilderness.

Repeated glaciations have dissected the volcanoes, scoured the upland surfaces, and deposited lateral and ground moraines over much of the middle and lower elevations. The glacial drift occurs as unsorted, unstratified deposits of angular to sub-rounded pebbles and angular blocks in a poorly indurated matrix of sand and rock flour. The clasts possess negligible weathering rinds, consistent with a late Pleistocene age (Cabot Creek glaciation of Scott, 1977); older tills occur beyond the limits of the wilderness. Holocene glacial episodes have been responsible for pro-talus ramparts in some of the cirques on Diamond Peak.

An air fall pumice deposit up to 32 in. thick mantles the wilderness. The deposit consists of ash and lapilli up to one-half inch in size, with small proportions of plagioclase, pyroxene, and hornblende crystals. This pumice is part of the extensive Mazama ash deposit erupted about 6,845 ¹⁴C years ago from the caldera at Crater Lake National Park (Williams, 1942; Bacon, 1983). No volcanic rocks in the wilderness are younger than the Mazama ash.

Although the lavas are unaltered, trace amounts of specular hematite, and less commonly malachite, occur locally in fractures within the flows. The mineralization is scattered and rare, discontinuous

5

- - -

within any single fracture, and is not associated with any other kind of rock alteration or veining. In all cases, the mineralization along the fractures occurs within one half mile of a vent and is caused by volcanic exhalative processes. The vents are unaltered except for trace amounts of clays, probably the result of fumarolic activity. Intrusive rocks are unaltered.

MINERAL RESOURCES

The Diamond Peak Wilderness contains no known mining claims or active mines, nor any identified resources of metallic minerals. The only indications of base- or precious-metal interest near the wilderness are old placers, mostly along Crescent Creek east of the wilderness; there is no known production from these placers. The nearest significant mining (lead, zinc, copper, gold, silver) occurred in the Bohemia mining district, in the Western Cascades 20 to 25 mi due west of Diamond Peak (Brooks and Ramp, 1968); metallic mineral resources are not known to occur in the High Cascade physiographic province in Oregon.

As part of this mineral investigation, stream-sediment samples were analyzed for 31 elements, including base and precious metals. Sample locations are shown on Figure 1 and analytical data are listed in Table 1. Two samples of sand- and silt-size sediment were collected from stream bottoms at most sites, one of bulk sediment, the other a pan-concentrate of the heavy-mineral fraction of the sediment. Each sample was dried, sieved to minus-80 mesh, and split. The heavy minerals in the pan-concentrate sample were further concentrated by settling in bromoform (specific gravity, 2.8) and separated into magnetic and nonmagnetic fractions. Stream sediment and nonmagnetic heavy-mineral

concentrate samples were then pulverized before analysis by standard semiquantitative emission spectrography; some concentrate samples did not yield enough material for analysis. All of the analyzed samples contain only trace abundances of metallic elements, similar to those commonly found in unaltered volcanic rocks.

Small quantities of angular flour gold, in amounts ranging from 0.00001 to 0.0002 oz per cubic yard, were recovered from 15 of 17 placer gravel samples collected by the U. S. Bureau of Mines from streams draining the wilderness (Moyle and Rumsey, 1982). This gold content, from 3 to 60 parts per billion, is about 1000 times lower than economic values that existed in 1983. Similar traces of gold were found in many streams in other parts of the High Cascades province which suggests the gold is derived from dispersed sources in the volcanic rocks rather than being related to surficial or buried mineral deposits. Assay results of a sample of slightly altered basaltic andesite from the eastern flank of Diamond Peak indicates a trace gold and 0.005 percent copper.

Immediately west of the wilderness, alteration has affected Miocene silicic lava flows and a shallow intrusion. Pyrite is present in minor amounts, but X-ray diffraction studies of the clays in the alteration zone failed to show any sericite or other signs of potassium metasomatism. No gold, silver, or copper was detected in a sample analyzed from the alteration zone. The alteration likely developed around an old hot spring or solfatars. North of the wilderness at the Willamette Pass quarry (fig. 1), a small malachite-bearing fracture zone in basaltic andesite flows contains 0.4 oz per ton silver.

There has been no rock or cinder production from the Diamond Peak Wilderness. An estimated 670,000 cubic yards of crushed stone, pit-run materials, and rip-rap have been produced from seven quarries outside the western and northern boundaries of the wilderness (Table 2). More than 87,000 cubic yards of available existing reserves remain at the active quarries (Cindy Pack, U.S.F.S., written commun., 1980). An additional 510,000 cubic yards is available at the Willamette Quarry (Table 2, no. 1) but may not be produced owing to environmental constraints. New crushed stone sources are presently being developed west of Diamond Peak Wilderness at this time (Robert White, U.S.F.S., oral commun., 1980).

Two pyroclastic cones along the boundaries of the wilderness contain cinders suitable for road construction and other common uses. Redtop Mountain, which is mostly within the wilderness, has a maximum volume of 83 million cubic yards, and Crater Butte, which is mostly outside the wilderness, contains a maximum of 37 million cubic yards, assuming base levels of 6,400 ft and 6,500 ft, respectively (Moyle and Rumsey, 1982). The volume that would be of industrial interest, however, is probably considerably less. Furthermore, cinder and rock material are very abundant in the Cascade Range outside the wilderness.

Hydrocarbon deposits (oil, natural gas, coal) are not known to occur in the region and are highly unlikely in the Diamond Peak Wilderness, which is underlain by a very thick sequence of volcanic rocks.

The Diamond Peak Wilderness is located in the High Cascade physiographic province, a region formed of young volcanic rocks and which

may locally contain geothermal energy resources capable of producing electric power or lower temperature resources for uses such as in agriculture and direct heating. Hot springs occur marginal to the province, mostly along valley bottoms near the contact between the Western Cascades and High Cascades. They are interpreted to represent lateral flow of hot water from sources beneath the High Cascades (Blackwell and others, 1978).

No thermal springs occur in the Diamond Peak Wilderness. The nearest hot springs occur along Salt Creek (McCredie Springs; 163°F), Salmon Creek (Wall Creek Springs; 106°F), and Hills Creek (Kitson Hot Springs; 111°F), 10 to 18 mi northwest of the wilderness boundary, and a warm spring occurs near Summit Lake, south of the boundary (Waring, 1965; Riccio, 1978; Bowen and Peterson, 1970; Bowen and others, 1978; Brown and others, 1980). The geochemistry of the waters from these springs does not indicate high temperature sources (Mariner and others, 1975, 1980; Brown and others, 1980), but cold meteoric water probably has diluted the thermal water during lateral subsurface flow.

Temperature gradients in drill holes at scattered localities near the boundary between the Western Cascades and High Cascades suggest that heat flow increases significantly under the High Cascades (Blackwell and others, 1978). Shallow heat flow holes drilled in older rocks of the Western Cascades a few miles west and northwest of the Diamond Peak Wilderness had bottom hole temperatures of 50° to 70° F at depths of less than 500 ft and temperature gradients of 104° to 226° F/mi (Brown and others, 1980; Woller, 1982). No deep holes have been drilled in the Diamond Peak Wilderness.

ç

On the basis of the local geology, there is no reason to suspect that geothermal resources are more likely in the wilderness than in other nearby parts of the High Cascades. If they are present, they probably occur at substantial depth. At these depths the volcanic rocks may have very low porosity and permeability and, even if temperatures are high, fluids may not be present in sufficient quantity for geothermal energy production. Exploitation of low-temperature geothermal resources that may occur beneath the wilderness is probably not viable due to the distance to the nearest points of use. In summary, available evidence fails to substantiate the presence of geothermal resources, and if they do occur they are probably at considerable depth.

MINERAL RESOURCE POTENTIAL

The Diamond Peak Wilderness contains no identified metallic mineral resources and there is no evidence of a potential for their occurrence. Cinder cones partly in the wilderness contain an estimated total of 120 million cubic yards of volcanic cinder suitable for construction material, but voluminous alternative sources are present nearby outside of the wilderness.

Anomalous heat flow values associated with the High Cascade physiographic province, and warm springs near the wilderness, indicate an undefined, but low, potential for geothermal energy.

REFERENCES CITED

Bacon, C. R., 1983, Eruption history of Mount Mazama and Crater Lake caldera, Cascade Range, U.S.A.: Journal Volcanology and Geothermal Research (in press).

- Blackwell, D. D., Hull, D. A., Bowen R. G. and Steele, J. L., 1978, Heat flow in Oregon: Oregon Department Geology and Mineral Industries Special Paper 4, 42 p.
- Bowen, R. G., and Peterson, N. V., 1970, Thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 14, scale 1:1,000,000.
- Bowen, R. G., Peterson, N. V., and Riccio, J. F., 1978, Low- to intermediate temperature thermal springs and wells in Oregon: Oregon Department Geology and Mineral Industries Geological Map Series GMS-10, scale 1:1,000,000.
- Brooks, H. C., and Ramp, Len, 1968, Gold and silver in Oregon: Oregon Department Geology and Mineral Industries Bulletin 61, 338 p.
- Brown, D. E., McLean, G. D., Woller, N. M., and Black, G. L., 1980, Preliminary geology and geothermal resource potential of the Willamette Pass area, Oregon: Oregon Department Geology and Mineral Industries Open-File Report 0-80-3, 65 p.
- Couch, R. W., Gemperle, M., and Connard, G. G., 1978, Total field aeromagnetic anomaly map, Cascade Mountain Range, central Oregon: Oregon Department Geology and Mineral Industries Map Series GMS-9, scale 1:125,000.
- Mariner, R. H., Presser, T. S., Rapp, J. B., and Willey, L. M., 1975, The minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U. S. Geological Survey Open-File Report, 27 p.
- Mariner, R. H., Swanson, J. R., Orris, G. J., Presser, T. S., and Evans,
 W. C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U. S. Geological Survey Open-File Report 80-737, 50 p.

- Moyle, P. R., and Rumsey, C. M., 1982, Summary report mineral resources of the Diamond Peak Wilderness and proposed addition, Lane and Klamath Counties, Oregon: U.S. Bureau of Mines Open-File Report MLA23-82, 10 p.
- Pitts, G. S., and Couch, R. W., 1978, Complete Bouguer gravity anomaly map, Cascade Mountain Range, central Oregon: Oregon Department Geology and Mineral Industries Map Series GMS-8, scale 1:125,000.
- Riccio, J. F., 1978, Preliminary geothermal resource map of Oregon: Oregon Department Geology and Mineral Industries Map Series GMS-11, scale 1:500,000.
- Scott, W. E., 1977, Quaternary glaciation and volcanism, Metolius River area, Oregon: Geological Society America Bulletin, v. 88, p. 113-124.
- Waring, G. A., 1965, Thermal springs of the United States and other countries of the world--a summary: U.S. Geological Survey Professional Paper 492, 383 p.
- Williams, Howel, 1942, The geology of Crater Lake National Park, Oregon: Carnegie Institute Washington Publication 540, 162 p.

______, 1957, A geologic map of the Bend quadrangle, Oregon, and a reconnaissance geologic map of the central portion of the High Cascade Mountains: Oregon Department Geology and Mineral Industries Map, scales 1:125,000 and 1:250,000.

Woller, N. M., 1982, Geology of the Swift Creek area, <u>in</u> Geology and geothermal resources of the Cascades, Oregon, G. R. Priest and B. F. Vogt, editors: Oregon Department Geology and Mineral Industries Open-File Report 0-82-7, p. 135-151.

Figure 2.--Geologic map of the Diamond Peak Wilderness, Oregon. Geology by David R. Sherrod, 1981, 1982.

EXPLANATION

(Geologic map unit symbols may not necessarily

conform to U.S. Geological Survey standards)

CORRELATION OF MAP UNITS

DESCRIPTION OF MAP UNITS

Qs

SURFICIAL DEPOSITS (HOLOCENE) -- Coarse to fine, poorly sorted, angular, unconsolidated rubble that forms talus cones, rock glaciers, and neoglacial moraines around Diamond Peak. Mostly younger than the Mazama ash

MAZAMA ASH (HOLOCENE) <u>Not shown on map</u>--Pumiceous ash and lapilli up to 1/2 in. in diameter, of slightly porphyritic pale gray dacite. Deposit occurs as a blanket 30 in. thick in south part of area and 12 in. in north; thickens abruptly eastward from Cascade crest. Completely buries older units in trough between Lakeview Mountain and Diamond Peak. Derived from climactic eruption of Mount Mazama

(Crater Lake), 45 mi south of Diamond Peak (Williams,

1942). Age about 6,845<u>+</u>50 14C years (Bacon, 1983) GLACIAL DRIFT (PLEISTOCENE)--Unsorted, unstratified deposits of sub-angular to sub-round cobbles and boulders in a matrix of poorly indurated rock flour; clasts have negligible weathering rinds. Occurs as ground moraines and lateral moraines. Probably formed during the Cabot Creek glaciation of Scott (1977)

Qba

Qg

BASALTIC ANDESITE, BASALT, AND ANDESITE (PLEISTOCENE)--Medium gray to dark gray, vesicular to massive, slightly porphyritic lavas and grayish red flow breccias. Phenocrysts of olivine, 1-2 percent; plagioclase, 1-5 percent; clinopyroxene, 0-1 percent; hypersthene, 0-1 percent; and magnetite, 0-1 percent. Age younger than approximately 700,000 years, on basis of normal magnetic polarity and association with vents that are only moderately eroded. Correlative flows 3 miles west of the wilderness have yielded a K/Ar age of 0.17<u>+</u>0.48 m.y.

(Woller, 1982)

CINDER DEPOSITS (PLEISTOCENE)--Red to black basaltic cinders and scoria that form cinder cones. Includes some basaltic agglutinate, palagonitic lapilli tuff and tuff breccia, and minor intrusions and flows. Age less than approximately 700,000 years, on basis of youthful morphology and association with flows of normal magnetic polarity MAFIC VENT COMPLEX OF DIAMOND PEAK (PLEISTOCENE)--Mafic pyroclastic rocks, dikes, sills, small plugs, and lava

flows. Composition varies from olivine basalt to two-pyroxene olivine basaltic andesite. Age less than

Qc

Qmv

approximately 700,000 years, on basis of youthful morphology and association with flows of normal magnetic polarity

QTba

BASALTIC ANDESITE, BASALT, AND ANDESITE (PLEISTOCENE AND PLIOCENE)--Petrographically similar to unit Qba but generally more eroded; derived from deeply eroded vents or buried vents. Consists of rocks with normal and reversed magnetic polarity. K-Ar ages of 0.98+0.34 m.y. for flow west of Mount Yoran and 0.77+0.21 and 0.92+0.46 m.y. for flows southwest of Diamond Peak are reported by Woller (1982). Upper part may be as young as unit Qba; lower part may be older than 2 m.y.

- QTc 'CINDER DEPOSITS (PLEISTOCENE AND PLIOCENE)--Similar to unit Qc but more deeply eroded. Includes vents associated with lavas included in unit QTba
- QTmv MAFIC VENTS (PLEISTOCENE AND PLIOCENE)--Similar to unit Qmv but more deeply eroded. Includes vents that erupted lavas with both normal and reverse magnetic polarity. Age same as unit QTba
- QTIDA MAFIC INTRUSIONS (PLEISTOCENE AND PLIOCENE) -- Dikes and plugs of very fine grained basalt or basaltic andesite. Intrudes unit QTmv. Consists of rocks with normal and reverse magnetic polarity

тмрь

OLDER BASALT AND BASALTIC ANDESITE (PLIOCENE AND UPPER MIOCENE)--Light-gray to dark-gray olivine basalt and minor basaltic andesite flows and breccias that form dissected

ridges lacking the constructional landforms of the younger volcanic rocks. Similar in field appearance to units Qba and QTba but commonly slightly more weathered in appearance, contains more abundant olivine phenocrysts, and is dusted with abundant magnetite microphenocrysts. Woller (1982) reports K/Ar ages for correlative flows west of the area of 5.53 + 0.34 m.y. and 4.32 + 0.40 m.y.

TMa

OLDER ANDESITE (MIOCENE) -- Andesite flows and breccias; underlies unit TMPb in western part of area

OLDER ANDESITE OR BASALTIC ANDESITE VENT DEPOSITS

TMav

(MIOCENE)--Poorly-bedded to well-bedded tuff, lapilli tuff, and tuff breccia. Underlies unit TMa

CONTACT - Approximately located

VENT DEPOSITS

Table 2. Quarries and cinder deposits near Diamond Peak Wilderness, Oregon.

Ma (f	p No. Name ig. 1)	Product	Historic Production (est.)(cubic yards)	Remaining Resource (est.)(cubic yards)
1	Willamette Pass	Crushed stone and glacial overburden	Pre-1975 - 500,000 1978 - 25,250 Post-1978 - 40,000	24,750 (plus 510,000 encumbered resources)
2	Notch Lake	Crushed stone	Pre-1974 - 10,000	5,000
3	Hemlock Butte	Stone: pit run	Pre-1974 - 10,000	3,000
4	Lone Ridge	High quality crushed stone (BC-3, BC-8)	1975 - 49,000 1977 - 8,000 197	Unknown but substantial 9 - 6,300
5	Pioneer Gulch #2	Stone: pit run and 3 ft rip rap	Pre-1973 - 11,000 1973 4,000	15,000
6	Spatter Cone	mixed lava and cinder pit run	Pre-1974 1,200	4,000
7	Beaver Creek	Stone: pit run	Pre-1974 5,000	10,000
8	Unknown (inactive)	⊭ Common borrow: pumice, glacial	3,000-5,000 till	Unknown
	Red Top Mountain	Cinders	None	83,000,000
	Crater Butte	Cinders	None	37,000,000

1 - 8 are near the wilderness; deposits at Red Top Mountain and Crater Butte are partly in the wilderness.

Table 1. Analytical data for stream-sediment samples from the Diamond Peak Wilderness, Oregon. Analyses														yses				
are by G. W. Day, U. S. G. S., Denver, Colorado. (Fe, Mg, Ca, and Ti in percent; all other elements																		
in parts	per mi	illio	on; N,	not	detect	ed;	L, dete	ected	, but	belo	w lim	it of	deter	rmina	tion;	* ide	ntif	ies
non-magn	etic he	eavy-	minera	l fra	ction	of pa	n-conce	entra	te sa	mple)		-						
						•		•										
Field No.	Fe	Mg	Ca	Ti	Mn	В	Ba	Co	Cr	Cu	La	Ni	РЬ	Sc	Sr	v	Y	Zr
						-										-		
		per	cent		ppm													
		-			¥.													
DP1B	5	7	5	• 5	2000	70	500	30	70	100	N	70	50	20	700	200	20	100
DP2B	10	10	10	• 7	2000	50	500	50	100	100	N	100	30	20	700	200	30	150
DP3A*	.2	5		5.5	200	L	500	N	N	10	· • N	20	30	N	2000	50	N	200
DP3B	7	3	5	•7	2000	100	700	30	100	100	.30	70	70	20	700	200	30	200
DP4A*	1	1	5	• 5	500	L	1000	N	70	20	N	20	700	N	5000	200	N	3000
DP4B	7	10	、 5	• 5	1500	70	500	50	150	100	N	100	70 [°]	20	500	200	30	150
DP5B	10	10	10	1	3000	70	700	30	150	100	N	70	70	30	700	300	30	200
DP6B	10	10	20	1	3000	70	700	50	200	100	N	150	50	30	700	300	30	150
DP7B	10	10	10	1	2000	70	500	70	300	100	N	200	30	30	700	300	30	100
Lower limit														1				
of detection		.02	.05	.002	10	10	20	5	10	5	20	5	10	5	100	10	10	10
Analyzed for	but be	elow	limit	of de	tectio	n (in	dicate	d bv	ppm i	n Dar	enthe	ses):	anti	monv	(100).	arse	nic	(200).
bervllium (1). bist	nuth	(10).	cadmi	.um (20)), go	ld (.1), mo	lybde	num (5), s	ilver	(.5)	, tin	(10),	thor	ium	(100).

and tungsten (1).

ł

20

ser e

UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Geology and mineral resource potential map

of the Mount Washington Wilderness,

Deschutes, Lane, and Linn Counties, Oregon

Вy

Edward M. Taylor,¹

J. Douglas Causey,²

and

Norman S. MacLeod³

Open-File Report 83-662

¹Oregon State University

2U.S. Bureau of Mines

3U.S. Geological Survey

STUDIES RELATED TO WILDERNESS

Under the provisions of the Wilderness Act (Public Law 88-577, September 3, 1964) and related acts, the U.S. Geological Survey and the U.S. Bureau of Mines have been conducting mineral surveys of wilderness Areas officially designated as "wilderness," and primitive areas. "wild," or "canoe" when the act was passed were incorporated into the National Wilderness Preservation System and some of them are presently being studied. The act provided that areas under consideration for wilderness designation should studied for suitability be for incorporation into the Wilderness System. The mineral surveys constitute one aspect of the suitability studies. The act directs that the results of such surveys are to be made available to the public and be submitted to the President and the Congress. This report discusses the results of a mineral survey of the Mount Washington Wilderness (NF086), Deschutes and Willamette National Forests, Deschutes, Lane, and Linn Counties, Oregon. The Mount Washington Wilderness was established by Public Law 88-577, September 3, 1964.

SUMMARY '

The Mount Washington Wilderness is devoid of mines, claims, and mineral prospects. The results of this survey further indicate that the area does not contain any metallic-mineral deposits or mineral fuels. Over 200 million yd³ of cinder resources occur in the wilderness, but no future demand for the deposits is anticipated owing to numerous other nearby sources. The area may have geothermal resources, but available data are insufficient to define either their existence or magnitude.

INTRODUCTION

The Mount Washington Wilderness (fig. 1) encompasses 46,655 acres (73 mi²) along the crest of the Cascade Range, between McKenzie and Santiam Passes, in the Deschutes and Willamette National Forests, 32 mi northwest of Bend, Oregon.

The mineral resource potential survey of the Mount Washington Wilderness included geologic mapping, a geochemical survey of stream-sediment samples, and gravity and aeromagnetic surveys by the U.S. Geological Survey. The U.S. Bureau of Mines was responsible for analysis and evaluation of identified mineral resources in the wilderness.

Large scale geologic maps of the Mount Washington Wilderness have not been published previously, although the geology of parts of the wilderness is presented by Taylor (1968, 1981) and most of the area in theses by Brown (1941) and Taylor (1967). Reconnaissance geologic maps of the central part of the Cascade Range by Williams (1957) and of Deschutes County by Peterson and others (1976) include the area. Regional gravity anomaly and aeromagnetic maps, which cover the Mount Washington Wilderness, have been published by Pitts and Couch (1978), Couch and others (1981), and U.S. Geological Survey (1982). Results of geothermal gradient drilling immediately west of the wilderness are discussed by Youngquist (1980).

LOCATION AND GEOGRAPHY

The Mount Washington Wilderness is the smallest of three nearly contiguous wilderness areas that occupy most of a 65-mile-long north-south segment of the High Cascade Range in central Oregon (fig. 1). The wilderness is separated from the Three Sisters Wilderness, to

the south, by the narrow corridor along the McKenzie Highway (Oregon State Highway 242), and from the Mount Jefferson Wilderness, to the north, by a wide corridor occupied by the Santiam Highway (U.S. 20). Access to the Mount Washington Wilderness is provided by these highways and by gravel roads that lead from them. The crest of the Cascade Range has a thick snowpack in winter and the McKenzie Highway is not passable from late fall to late spring; the Santiam Highway is an all-weather road. The Pacific Crest National Scenic Trail extends north-south through the wilderness.

The nearest town is Sisters, 12 mi east of the wilderness. Hoodoo Butte, 3 mi north of the wilderness, is the site of a small ski resort. Dee Wright Observatory, at McKenzie Pass, is a popular tourist stop for spectacular views of stark young lava flows, Mount Washington, and the Three Sisters stratovolcanoes.

Mount Washington, rising to an elevation of 7794 ft, is one of the smaller of the stratovolcanoes that form the prominent peaks of the Cascade Range in Oregon. Other volcanoes in the wilderness are all small, ranging from cinder cones a few tens of feet high to broad lava cones, such as Belknap Crater, which rises about 1600 ft above the surrounding terrain. The lava platform on which the volcanoes rest, mostly at an elevation of 4000 to 5000 ft, slopes gently westward to the McKenzie River and merges eastward with the Deschutes Plateau.

GEOLOGY

The Mount Washington Wilderness is in the High Cascade physiographic province of the Cascade Range, Oregon. This province is a narrow north-south-trending belt of Pliocene and Quaternary lava flows and related cinder cones and fissure vents that is studded by large
stratovolcanoes spaced at irregular intervals. Most of the volcanic rocks in this belt were erupted during the last four million years. Faults bound the High Cascades both east and west of the Mount Washington Wilderness (Williams, 1957; Brown and others, 1980; Taylor, 1981). The graben resulting from these faults has been filled by flows and related vent deposits that comprise the Mount Washington Wilderness. The oldest part of the sequence is composed dominantly of basalt, and younger, overlying rocks are basalt and basaltic-andesite (fig. 2). Although andesite and more silicic volcanic rocks occur both south and north, they do not crop out in the wilderness.

All rocks within the wilderness are Quaternary in age. With the exception of the oldest flows at the westernmost margin of the wilderness, all flows show normal magnetic polarity and thus are likely less than 0.7 m.y. old. The flows and vents are readily divisible into Pleistocene and Holocene sequences.

The Pleistocene flows are glaciated and commonly covered by several feet of ground moraine or outwash deposits. These older flows were derived from cinder cones, fissure vents, and small composite volcanoes which have been modified by glacial scouring; in the cores of some cones the feeder dikes and plugs are exposed.

Mount Washington is a glacially-gutted Pleistocene stratovolcano composed of basaltic andesite flows and pyroclastic rocks (cinders, scoria, palagonite tuff, and breccia). A plug forms the summit and the upper flanks are cut by a north-south-trending swarm of basaltic andesite dikes. Mount Washington has no Holocene flows or pyroclastic rocks and probably is no longer active. The volcano is similar in erosional form to

Mount Thielsen farther south in the Cascade Range, which has yielded a K/Ar age of 0.3 m.y. (J. G. Smith, oral coummunication, 1983).

Glacial deposits within the wilderness consist mostly of ground moraines and glacial outwash. Terminal, recessional, and lateral moraines are locally present, but are better developed east and west of the wilderness. Most glacial deposits in the wilderness formed during the last major glacial advance (Cabot Creek glaciation of Scott, 1977) in the late Pleistocene. Older glacial deposits beyond the wilderness probably formed during the earlier Jack Creek glaciation of Scott (1977). Holocene neoglacial deposits occur locally on Mount Washington.

Holocene flows cover approximately half of the Mount Washington Wilderness and extend beyond it several miles to the northwest and south. Few other areas in the Cascade Range have such areally extensive young flows. Earlier flows from individual vents are commonly basalt, and later flows basaltic andesite. Charcoal from beneath many of the flows has yielded ¹⁴C ages of about 1,500 to 3,000 ¹⁴C years (Taylor, 1965, 1981). The rugged surfaces of flows are mostly free of vegetation, but even the youngest flows where covered by cinders from nearby vents have trees growing on them. The flows were erupted from a series of alined cinder cones and composite vents that probably were fed by enechelon fissures. The cinder cones are typically 150 to 300 ft high and consists of gray to red cinders, scoria, and agglutinate (welded spatter). The largest of the volcanic edifices is Belknap Crater, a lava shield with summit cinder cone.

MINERAL RESOURCES

No evidence of metallic-mineral deposits was found in the Mount Washington Wilderness. The young volcanic rocks of the High Cascade

province in Oregon, of which the wilderness is a part, have no known deposits of metallic minerals. The wilderness has no recorded mineral production, mining districts, or claims. The nearest mines (for gold, silver, copper, and lead) occur in older rocks of the Western Cascades about 20 miles west of the wilderness in the Blue River District (Brooks and Ramp, 1968).

As part of this mineral investigation, stream-sediment samples were collected from small intermittent streams near the border of the wilderness and analyzed for their content of base metals and other elements. Sample locations are shown on Figure 2 and analytical data given in Table 1. Two samples of sand- and silt-size sediment were most sites, one of bulk sediment, collected at the other a pan-concentrate of the heavy-mineral fraction of the sediment. Pan-concentrate samples could not be obtained from some streams owing to the paucity of fine sediment. In the laboratory each sample was dried, sieved to minus-80 mesh, and split. The heavy minerals in the pan-concentrate sample were further concentrated by settling in bromoform (specific gravity, 2.8) and separated into magnetic and nonmagnetic Stream sediment and nonmagnetic heavy-mineral concentrate fractions. samples were then pulverized before analysis by standard semiquantitative emission spectrography for 31 elements. The analyzed sediments from streams draining the wilderness show concentrations of metallic elements similar to those commonly found in basaltic volcanic rocks. No anomalous concentrations of any elements were found.

The only mineral resource identified by this study is volcanic cinders. Estimates of the minimum volume of cinders at cinder cones

within the wilderness are: Belknap Crater - 75 million yd^3 ; Twin Craters - 15 million yd^3 ; Scott Mountain - 20 million yd^3 ; Sand Mountain Craters - 50 million yd^3 . An additional 50 million yd^3 may be obtained from other small cinder cones. Cinders are presently being quarried from deposits that occur near the wilderness. Little Nash Crater, about 4 mi north of the area, supplies about $80,000 \text{ yd}^3$ of cinders per year for local use in road construction. An estimated 30 million yd^3 remain at this site. Some past production has been reported from a source near Little Cache Mountain, 1.5 mi northeast of the wilderness. Because large quantities of cinders are more accessible elsewhere, utilization of cinder deposits from within the wilderness is unlikely. "Lava rock" for building stone is of low quality even though the study area is extensively covered with basalt and basaltic andesite Building stone is abundantly available in other nearby areas flows. which are closer to markets.

Hydrocarbon deposits, such as oil, gas and coal, do not occur within the wilderness. Upper Eocene to Pliocene volcanic rocks, similar to those exposed in the adjacent Western Cascades, underlie the Pleistocene and Holocene flows and vents of the Mount Washington Wilderness. The volcanic rocks have a thickness of many thousands of feet and have no hydrocarbon potential.

The High Cascade province of the Cascade Range in Oregon is of interest for geothermal exploration, but the magnitude of the geothermal resource is not known. Hot springs are rare in the High Cascades, but occur locally along or just beyond its margins, particularly on the west side. The hot springs emerge mostly along valley floors and commonly

occur along or near faults. Belknap Hot Springs, about 4 miles southwest of the wilderness, yields about 75 gallons of water per minute with a temperature of 180⁰F (Bowen and Peterson, 1970). These hot springs are interpreted to be the result of lateral flow of hot water from heat sources beneath the High Cascades (Blackwell and others, 1978). No hot springs, fumaroles, or recently active thermal areas exist within the wilderness. The lava flows and interbedded breccias and other pyroclastic rocks are so permeable and porous that shallow lateral flow of cold ground water probably masks any deep geothermal anomalies that may exist.

Scattered relatively shallow heat flow holes drilled mostly along the margins of the High Cascades suggest that this part of the Cascade Range has higher than normal heat flow (Blackwell and others, 1978; Riccio, 1979). The nearest geothermal drill hole is about 2 mi northwest of the wilderness and yielded a temperature of only 77°F at a depth of 1837 feet (Youngquist, 1980). Owing to the paucity of deep holes drilled within the High Cascades, it is not possible to realistically extrapolate possible geothermal potential on the basis of results of deep drilling in similar environments. The areally extensive Holocene basalt and basaltic andesite flows of the Mount Washington area may lead to falsely optimistic estimates of geothermal resources. These flows are derived mostly from alined vents that likely are the surface manifestations of buried feeder dikes. In areas of intensive glaciation in the Cascade Range where surface rocks are deeply eroded, most exposed basaltic feeder dikes are only 3 to 10 ft wide. The dikes for the Holocene flows in the

- 9

Mount Washington Wilderness likely did not contribute major amounts of heat to the shallow crust and this heat likely has been lost by conduction and ground water flow since they formed. In contrast to the Mount Washington area, some parts of the High Cascade province contain relatively abundant silicic rocks. These areas likely have a higher geothermal potential because silicic intrusive bodies commonly are larger in the shallow crust than are mafic bodies (Smith and Shaw, 1975). Other areas in the world where geothermal resources are associated with basaltic volcanism, such as Iceland and Hawaii, have much greater rates of lava production than in the Mount Washington Wilderness.

ASSESSMENT OF MINERAL RESOURCE POTENTIAL

More than 200 million yd^3 of cinder resources occur in the wilderness. No future demand for these cinders is anticipated because other large unmined deposits are more accessible. There is no evidence of a potential for metallic mineral resources, building stone, or mineral fuels.

Geothermal resources may occur in the wilderness, but available information is insufficient to confirm their existence or magnitude. The High Cascade province is a favorable geologic environment for geothermal resources, but few deep holes have been drilled from which meaningful extrapolations of potential can be made. The most favorable areas within the High Cascades are likely those in which there are abundant young silicic rocks, none of which occur in the Mount Washington Wilderness.

REFERENCES

Bacon, C. R., 1983, Eruption history of Mount Mazama and Crater Lake caldera, Cascade Range, U.S.A.: Journal of Volcanology and Geothermal Research, v. 18, no. 1/4, p. 57 - 115.

- Blackwell, D. D., Hull, D. A., and Bowen R. G., 1978, Heat flow in Oregon: Oregon Department of Geology and Mineral Industries Special Paper 4, 42 p.
- Bowen, R. G., and Peterson, N. V., 1970, Thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 14, scale 1:1,000,000.

Brooks, H. C., and Ramp, Len, 1968, Gold and silver in Oregon: Oregon Department of Geology and Mineral Industries Bulletin 61, 338 p.

Brown, D. E., McLean, G. D., Priest, G. R., Woller, N. M., and Black,

G. L., 1980, Preliminary geology and geothermal resource potential of the Belknap - Foley area, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-80-2, 58 p.

Brown, R. E., 1941, The geology and petrography of the Mount Washington area, Oregon: New Haven, Ct., Yale University, M. S. thesis, 48 p.

Couch, R. W., Pitts, G. S., Braman, D. E., and Gemperle, M., 1981,

Free-air gravity anomaly map and complete Bouguer gravity anomaly map, Cascade Mountain Range, northern Oregon: Oregon Department of Geology and Mineral Industries Map Series GMS 15, scale 1:250,000

Peterson, N. V., Groh, E. A., Taylor, E. M., and Stensland, D. E., 1976, Geology and mineral resources of Deschutes County, Oregon: Oregon Department of Geology and Mineral Industries Bulletin 89, 66 p.

Pitts, G. S., and Couch, R. W., 1978, Complete Bouguer gravity anomaly map, Cascade Mountain Range, central Oregon: Oregon Department of Geology and Mineral Industries Map Series GMS-8, scale 1:125,000.

Riccio, R. F., 1979, Preliminary geothermal resource map of Oregon: Oregon Department of Geology and Mineral Industries Map Series GMS-11, scale 1:500:000.

- Scott, W. W., 1977, Quaternary glaciation and volcanism, Metolius River area, Oregon: Geological Society of America Bulletin, v. 88, p. 113-124.
- Smith, R. L., and Shaw, H. R., 1975, Igneous-related geothermal systems, <u>in</u> White, D. E., and Williams, D. L., editors, Assessment of geothermal resources of the United States--1975: U.S. Geological Survey Circular 726, p. 58-83.
- Taylor, E. M., 1965, Recent volcanism between Three Fingered Jack and North Sister, Oregon Cascade Range, Part I - History of volcanic activity: The Orebin, v. 27, no. 7, p. 121-147.

, 1967, Recent volcanism between Three Fingered Jack and North Sister, Oregon Cascade Range: Pullman, Washington, Washington State University, Ph. D. dissertation, 84 p.

______, 1968, Roadside geology, Santiam and McKenzie Pass Highways, Oregon: Oregon Department of Geology and Mineral Industries Bulletin 62, p. 3-33.

, 1981, Central High Cascade roadside geology - Bend, Sisters, McKenzie Pass, and Santiam Pass, Oregon, <u>in</u> D. A. Johnston and J. M. Donnelly-Nolan, editors, Guides to some volcanic terranes in Washington, Idaho, Oregon, and Northern California: U.S. Geological Survey Circular 838, p. 55-91.

U. S. Geological Survey, 1982, Aeromagnetic map of Mt. Washington, Oregon: Open-File Report 82-0546, scale 1:62,500.

Williams, Howel, 1957, A geologic map of the Bend quadrangle, Oregon, and

a reconnaissance geologic map of the central portion of the High Cascade Mountains: Oregon Department of Geology and Mineral Industries, scales 1:125,000 and 1:250,000.

Youngquist, Walter, 1980, Geothermal gradient drilling, north-central Cascades of Oregon, 1979: Oregon Department of Geology and Mineral Industries Open-File Report 0-80-12, 47 p.

Figure 1.--Location of the Mount Washington Wilderness (NF086) in the Cascade Range, Deschutes, Lane, and Linn Counties, Oregon.

CORRELATION OF MAP UNITS

QUATERNARY

DESCRIPTION OF MAP UNITS

(Geologic map unit symbols may not necessarily conform to U.S. Geological Survey standards)

QHba

YOUNGER BASALTIC ANDESITE FLOWS (HOLOCENE) -- Fresh, unglaciated basaltic andesite flows derived from vents at Belknap Crater, Little Belknap, south of Belknap Crater, Twin Craters, unnamed vents southwest of Mount Washington, and Sand Mountain cinder cone chain. Younger than the Mazama ash, except those from unnamed vents southwest of Mount Washington. Age of 1,500 to 3,000 ¹⁴C years on basis on dates of carbonized vegetation from beneath flows (Taylor, 1968, 1981)

QHb

YOUNGER BASALT FLOWS (HOLOCENE) -- Fresh, unglaciated basalt flows derived from vents at Belknap Crater, unnamed cinder cones northwest of Belknap Crater, and Sand Mountain cinder cone chain. Younger than the Mazama ash. Flows from Sand Mountain chain of vents are 3,000 - 3,800 ¹⁴C years old (Taylor, 1981)

QHc

QHg

YOUNGER CINDER DEPOSITS (HOLOCENE) -- Rudely bedded bombs, blocks, lapilli, and ash of basalt or basaltic andesite composition which form cinder cones and fissure vent deposits YOUNGER GLACIAL DEPOSITS (HOLOCENE) -- Terminal and lateral moraines on Mount Washington. Consists of deposits from both neoglacial and active glaciation

MAZAMA ASH (HOLOCENE)--Unit not shown on map. Pumiceous air-fall ash deposit derived from climactic eruption of Mount Mazama (Crater Lake) about 90 mi south of map area. Thin discontinuous deposit; forms useful time marker with which

to distinguish relative ages of young deposits. 14 C age is about 6,845 years (Bacon, 1983)

Qal UNCONSOLIDATED ALLUVIUM (HOLOCENE AND PLEISTOCENE)--Glacial outwash, fluvial sand and gravel, and talus deposits Qg OLDER GLACIAL DEPOSITS (PLEISTOCENE)--Terminal, lateral,

> recessional, and ground moraines composed of angular to subrounded cobbles and boulders in a poorly sorted sand- to clay-size matrix. Probably formed during the Cabot Creek glaciation of Scott (1977)

OLDER BASALTIC ANDESITE FLOWS (PLEISTOCENE)--Nearly aphyric to moderately porphyritic basaltic andesite. Glaciated. Includes flows on the flanks of Mount Washington

OLDER BASALT FLOWS (PLEISTOCENE)--Nearly aphyric to moderately porphyritic basalt; commonly diktytaxitic. Glaciated.

OLDER CINDER DEPOSITS (PLEISTOCENE)--Bombs, blocks, lapilli, and ash of basalt or basaltic andesite composition in well preserved to deeply eroded cinder cones. Locally invaded by dikes (unit Qi) of similar composition. Deposits near summit of Mount Washington include palagonite tuff INTRUSIVE ROCKS (PLEISTOCENE)--Basalt and basaltic andesite dikes, small plugs, and irregular shaped bodies associated with eroded vents at Mount Washington and southwest corner of map area.

18

Оbа

QЬ

Qc

Qi

CONTACT-- Approximately located

VENT DEPOSITS

9

FLOW DIRECTION OF HOLOCENE LAVA FLOWS

x 4 STREAM SEDIMENT SAMPLE SITE (Analyses listed in Table 1)

۱Ï

Table 1.	Analyses	ofs	tream-	sedin	nent sa	mples	from	the M	lount	Washir	ngton	Wilde	rness	, Ore	gon.	Analy	vses w	ere	
perfor	med by G.	W	Day, U	.S. G	eologi	.cal Su	rvey	, Denv	er, C	olorad	lo. S	ample	loca	tions	are	shown	on Fi	gure	2.
(Fe, M	ig, Ca, an	d Ti	in pe	rcent	; all	other	elem	ents i	n par	ts per	r mill	ion;	N, n	ot de	tecte	d; L,	detec	ted,	but
below	limit of	dete	rminat	ion;	* ider	tifies	ana	lyses	of no	n-ma gr	netic	heavy	-mine	ral s	ample)			
Field No.	Map No. (fig. 2)	<u>Fe</u>	Mg	<u>Ca</u>	Ti	Mn	B	Ba	<u>Co</u>	Cr	Cu	La	Ni	Pb	<u>Sc</u>	Sr	<u>v</u>	<u>¥</u>	Zr
MW1A*	1.	· 7	5	5	1	1500	L	1500	100	500	L	N	700	200	L	1000	200	L	7000
MW1B	1	10	10	20	1	5000	70	700	50	500	150	30	150	30	30	2000	200	50	200
MW2A*	2	5	5	10	0.2	1500	20	300	100	200	15	N	200	20	10	1500	70	L	1500
MW2B	2	10	10	20	1	3000	70	700	50	200	100	30	100	30	30	2000	200	30	200
MW3A*	3	5	2	3	.7	1000	L	700	10	200	L	N	150	N	- 20	1000	150	1.	1000
MW 3B	3	. 10	5	15	1	3000	50	500	30	200	100	30	100	50	15	1000	200	30	200
MW4B	4	10	2	10	1	2000	70	500	30	200	100	30	100	20	15	700	500	30	200
MW5B	5	10	10	10	1	3000	50	500	50	200	100	30	100	20	20	700	200	30	200
MW6B	6	15	10	10	1	2000	70	500	50	300	150	30	100	50	20	700	300	30	200
MW7A*	7	5	5	5	.3	1500	L	1500	50	200	100	N	300	70	L	1500	70	N	700
MW7B	7	10	10	10	1	2000	30	500	50	300	150	20	150	15	15	500	200	30	200
MW8A*	8	1	0.5		2	300	L.	500	י א	УОС И	10	2.0 N	150	10	15	1500	200	Л	200
MW8B	8	10	10	10	1	3000	50	700	70	300	150	20	200	30	15	700	200	30	200
Lower limi detection:	t of	.05	.02	.05	.002	10	10	20	5	10	5	20	5	10	5	100	10	10	10

Analyzed for but below limit of detection (ppm indicated in parentheses): antimony (100), arsenic (200), beryllium (2), bismuth (20), cadmium (50), gold (10), molybdenum (10), niobium (50), silver (1), thorium (200), tin (10), tungsten (100), and zinc (200)

ŧ