L01810

#### UNIVERSITY OF UTAH RESEARCH INSTITUTE EARTH SCIENCE LAB.

#### STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES State Office Building Portland, Oregon 97201

#### OPEN-FILE REPORT 0-80-2

#### PRELIMINARY GEOLOGY AND GEOTHERMAL RESOURCE POTENTIAL OF THE BELKNAP-FOLEY AREA, OREGON

#### by

D. E. Brown,

G. D. McLean,

G. R. Priest,

N. M. Woller, and

G. L. Black

Under the direction of J. F. Riccio

Study completed under U. S. Department of Energy Cooperative Agreement No. DE-FC07-79ET27220

1980

DISCLAIMER This report has not been edited for complete conformity with Oregon Department of Geology and Mineral Industries standards. Data in this document are preliminary and are subject to change

upon further verification.

and the first state of the state

## CONTENTS

关系"。

| INTRODUCTION                                  |
|-----------------------------------------------|
| GEOLOGY                                       |
| Introduction                                  |
| Volcanic stratigraphy                         |
| Structural geology                            |
| Relations of structures to geothermal systems |
| GEOPHYSICS                                    |
| WATERCHEMISTRY                                |
| GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA        |
| CONCLUSIONS AND RECOMMENDATIONS               |
| BIBLIOGRAPHY OF THE BELKNAP-FOLEY AREA        |
| APPENDIX A: Formulas used in calculations     |
| APPENDIX B: Geothermal-gradient data          |

i

#### ILLUSTRATIONS

! [

J

#### FIGURES

|       | 1. | Map showing location of study area, Belknap-Foley area, Oregon 2  |
|-------|----|-------------------------------------------------------------------|
|       | 2. | Photo-lineament map of Belknap-Foley area                         |
|       | 3. | Total field aeromagnetic anomaly map of Belknap-Foley area 11     |
| •     | 4. | Complete Bouguer anomaly map of Belknap-Foley area                |
|       | 5. | Residual gravity anomaly map of Belknap-Foley area                |
| TABLI | ES |                                                                   |
|       | 1. | Radiometric (K/Ar) ages of selected rocks, Belknap-Foley area 4   |
|       | 2. | Bulk chemical composition of selected rocks, Belknap-Foley area 5 |
|       | 3. | Spring and well chemistry, Belknap Foley area                     |
|       | 4. | Geothermetric calculations of minimum reservoir temperatures      |
|       |    | for thermal waters, Belknap-Foley area                            |
|       | 5. | Geothermal-gradient data, Belknap-Foley area                      |
| MAPS  | (f | olded, in envelope)                                               |
|       |    |                                                                   |

plate I. Reconnaissance geology of the Belknap-Foley area, Oregon

- ii -

#### INTRODUCTION

The Belknap-Foley area is located in the central Western Cascade Range of Oregon, approximately 80 km (50 mi) east of Eugene (Figure 1). Limits of the study area were arbitrarily assigned by U.S. Geological Survey (USGS) topographic map limits and natural breaks in the geology and topography (Plate I). This study, performed under U.S. Department of Energy (USDOE) Contract No. DE FC07-79ET27220, was undertaken to estimate the geothermal potential of the area by using various methods including compilation of existing data, reconnaissance geologic mapping, lineament analysis, well and spring geochemistry, and accrual of geothermal-gradient data.

Geographically, the study area is located in the rugged mountains surrounding the valley of the McKenzie River, which bisects the area in an eastwest direction. Total relief is approximately 1,000 m (3,300 ft) in the mountainous areas and approximately 30 m (100 ft) in the river valley.

#### GEOLOGY

#### Introduction

The Belknap-Foley area is located at the eastern boundary of the Western Cascades geologic province in the Western Cascades-High Cascades transition zone. Quaternary and late Tertiary lavas and minor tuffs of the High Cascades province are in steep depositional contact with older Western Cascades rocks along this boundary, which appears to be the western margin of a major northsouth-trending High Cascades graben (Allen, 1966; Taylor, 1978, 1980). Because a number of thermal springs and preexisting gradient holes with high values are located along the margin of this graben, much of the mapping effort of this study was directed at carefully defining the nature of the High Cascades-Western Cascades geologic boundary.

- 1 -



Figure 1: Map showing location of study area.

 $\sim$ . 1

The geology and all K/Ar radiometric ages (Table 1) are presented on the accompanying reconnaissance geologic map (Plate I), which was produced during the summer and fall of 1979 and 1980. Areal extent of geologic units was based on mapping and hand-specimen identification of rocks. Data were plotted on USGS topographic maps without the aid of aerial photographs.

enter product en transferrez ere base

#### Volcanic stratigraphy

From middle Tértiary to Quaternary time, volcanism in the area changed from silicic pyroclastic activity to eruption of increasingly mafic magmas (Table 2). This change in composition was reflected in higher percentages of lavas relative to tuffs. The oldest mappable unit (unit Tov on the geologic map) is composed of epiclastic volcanic sedimentary rocks, lithic-fragmentrich laharic dacite tuffs, and minor mafic lava flows. These rocks are probably Oligocene to early Miocene in age (Peck and others, 1964). In the Blue River mining district, the Oligocene rocks are locally intruded by Miocene quartzbearing dioritic stocks (unit *Imd*). The Miocene sequence (unit *Imv*) is dominated by highly phyric lavas, autobreccias, and mudflows with two-pyroxene andesite clasts, although lesser volumes of ash-flow, air-fall, and epiclastic tuffs as well as some basaltic flows occur locally. Several Miocene volcanic plugs and plug domes (unit *Imvi*) occur in the western part of the area, and basaltic to andesitic feeder dikes (unit *Imud*) occur in the Blue River valley. The oldest dated rock assigned to the Miocene volcanic sequence in the map area is 19.91+1.94 m.y. old (McBirney and others, 1974). The youngest dated Imv sample is 6.2+0.2 m.y. old (Laursen and Hammond, 1978). The Miocene rocks are overlain by diktytaxitic to compact basaltic to basaltic-andesitic lavas and one small ash flow which cap most of the high ridges in the western part of the area. These Pliocene volcanic rocks (unit Tpv) have a maximum K/Ar age of 8.39+0.36 m.v. (unpublished University of Utah Research Institute (UURI) -K/Ar data, Evans and Foley, analysts) and a minimum age of 3.88+0.06 m.y.

• 3 -

Table l.

ក្នុងដុំដុំដ

Radiometric (K/Ar) ages for selected rocks of the Belknap-Foley area

| Sample<br>no.*   | Location                                          | Rock type                          | Age**                                                           | Stratigraphic<br>unit |
|------------------|---------------------------------------------------|------------------------------------|-----------------------------------------------------------------|-----------------------|
| MS-254           | 122 <sup>0</sup> 07'30"<br>44 <sup>0</sup> 14'10" | Basalt                             | <sup>w</sup> 19.91 <u>+</u> 1.94 m.y.                           | Tmv                   |
| MS-253           | 122 <sup>0</sup> 12'40"<br>44 <sup>0</sup> 12'45" | Andesite                           | <sup>w</sup> 8.46 <u>+</u> 0.11 m.y.                            | .Tmv                  |
| MS-130           | 122 <sup>0</sup> 06'07"<br>44 <sup>0</sup> 13'10" | Basalt                             | <sup>w</sup> 6.2 <u>+</u> 0.2 m.y.                              | Tmv                   |
| MS-17            | 122 <sup>0</sup> 02'00"<br>44 <sup>0</sup> 12'13" | Andesite                           | <sup>W</sup> 6.2 <u>+</u> 0.2 m.y.                              | Tmv                   |
| A-20             | 122 <sup>0</sup> 02'38"<br>44 <sup>0</sup> 16'39" | Basaltic andesite<br>Ash-flow tuff | <sup>w</sup> 5.3+0.2 m.y.                                       | Три                   |
| MŞ-205           | 122 <sup>0</sup> 02'55"<br>44 <sup>0</sup> 09'30" | Basaltic andesite                  | <sup>W</sup> 5.06 <u>+</u> 0.06 m.y.                            | QTv                   |
| MS-208           | 122 <sup>0</sup> 06'30"<br>44 <sup>0</sup> 13'00" | Basaltic andesite                  | <sup>W</sup> 3.88+0.06 m.y.                                     | Три                   |
| MS-132<br>MS-110 | 122 <sup>0</sup> 00'50"<br>44 <sup>0</sup> 11'46" | Olivine basalt                     | <sup>W</sup> 2.6+6.2 m.y.<br><sup>W</sup> 2.1 <u>+</u> 0.1 m.y. | QTv                   |
| A-77             | 122 <sup>0</sup> 00'48"<br>44 <sup>0</sup> 17'00" | Basaltic andesite                  | <sup>w</sup> 0.68 <u>+</u> 0.04 m.y.                            | QTv                   |
| U-Cougar         | 122 <sup>0</sup> 14'10"<br>44 <sup>0</sup> 07'46" | Basaltic andesite                  | <sup>p</sup> 16.3 <u>+</u> 1.8 m.y.                             | Tmvi                  |
| U-RI-112         | 122 <sup>0</sup> 16'59"<br>44 <sup>0</sup> 06'30" | Andesite                           | <sup>p</sup> 11.5 <u>+</u> 0.5 m.y.                             | Tmv                   |
| U-RI-85          | 122 <sup>0</sup> 16'10"<br>44 <sup>0</sup> 07'41" | Dacitic ash-flow<br>tuff           | <sup>p</sup> 13.9 <u>+</u> 0.8 m.y.                             | Tmv                   |
| U-Foley          | 122 <sup>0</sup> 10'29"<br>44 <sup>0</sup> 10'49" | Basalt                             | <sup>w</sup> 2.05 <u>+</u> 0.52 m.y.                            | QTv                   |
| U-Tnw-Top        | 122 <sup>0</sup> 11'49"<br>44 <sup>0</sup> 12'11" | Andesite                           | <sup>w</sup> 8.93 <u>+</u> 0.34 m.y.                            | Tmν                   |
| U-Tpb            | 122 <sup>0</sup> 11'31"<br>44 <sup>0</sup> 12'32" | Basaltic andesite                  | <sup>W</sup> 8.39 <u>+</u> 0.36 m.y.                            | Трv                   |
| U-BF-5           | 122 <sup>0</sup> 12'30"<br>44 <sup>0</sup> 08'45" | Dacite                             | <sup>w</sup> 9.31 <u>+</u> 0.44 m.y.                            | Tmdc                  |

\* References: MS - McBirney and others, 1974; A - Armstrong and others, 1975; U - Unpublished K/Ar data, University of Utah Research Institute, Stanley Evans and Duncan Foley, analysts.

\*\* w = whole rock date; p = plagioclase date.

Table 2. Bulk chemical composition of selected rocks of Belknap-Foley area. (Letters at top of each column indicate sample number and map symbol for stratigraphic unit. All values are in weight percent.)

11111

المحاج والمحاج والمحاج والمحاج

÷,

94 Martin Carlos and

• ; :

| Comp<br>nent             | o- *T-6<br><u>Qbh</u> | J-2<br>Qtv    | J-4<br><u>Qtv</u> | J-3<br>Qtv | S-13<br>?           | S-16<br>Tmv                            | P-7<br><u>Tmv</u> ? |
|--------------------------|-----------------------|---------------|-------------------|------------|---------------------|----------------------------------------|---------------------|
| SiO,                     | 47.0                  | 47.8          | 48.38             | 49.80      | 53.00               | 53.0                                   | 54.25               |
| Ti0,                     | ··· _                 | 1.63          | 2.19              | 1.68       | 1.10                | 1.20                                   | 1.28                |
| A120                     | 3 -                   | 15.42         | 15.47             | 15.42      | 18.30               | 18.80                                  | 16.46               |
| Fe <sub>2</sub> 0        |                       | 1.70          | 1.83              | 2.20       |                     | 0.00                                   | 3.08                |
| Fe0                      | -                     | 9.54          | 10.36             | 9.08       | _7.80               | 8.20                                   | 5.92                |
| Mno                      | -<br>-                | 0.21          | 0.20              | 0.21       | _                   | -                                      | 0.13                |
| Mg0                      | - <b>-</b>            | 4.43          | 5.80              | 4.17       | 5.20                | 5.90                                   | 4.46                |
| Ca0                      | -                     | 10.20         | 8.21              | 9.88       | 8.80                | 9.30                                   | 8.79                |
| Na <sub>2</sub> 0        | -                     | 3.50          | 3.60              | 3.90       | 3.80                | 3.10                                   | 3.46                |
| K20                      | -                     | 1.30          | 0.64              | 1.25       | 0.40                | 0.25                                   | 0.80                |
| P_05                     | -                     | 0.02          | 0.43              | 0.15       | -                   | -                                      | 0.23                |
| H <sub>2</sub> 0         |                       | 1.36          | 1.39              | 0.86       |                     |                                        | 1.58                |
| 2                        | Total 47.0            | 97.11         | 98.50             | 98.60      | 98.40               | 99.75                                  | 100.44              |
|                          | S-15<br>              | S-14<br>_Tmv? | S-9<br><u>Tmv</u> | S-12<br>   | S-9<br>. <u>Tmv</u> | S-10<br>?                              | S-17<br>            |
| Si0,                     | 54.30                 | 54.70         | 55.80             | 57.20      | 58.00               | 60.90                                  | 61.20               |
| Ti02                     | 1.10                  | 1.10          | 1.10              | 0.95       | 1.00                | 1.10                                   | 1.55                |
| A120                     | 3 18.80               | 17.80         | 18.50             | 18.20      | 16.40               | 17.40                                  | 15.20               |
| F <sub>2</sub> 03<br>Fe0 | -7.80                 | 8.0           | 7.5               | 7.00       | 9.6                 | 6.80                                   | 8.1                 |
| Mn0                      | . –                   |               | -                 | -          | -                   |                                        | · -                 |
| Mg0                      | 5.20                  | 5.90          | 4.40              | 4.20       | 5.90                | 2.00                                   | 2.50                |
| CaO                      | 8.80                  | 8.50          | 6.60              | 8.20       | 4.90                | 4.80                                   | 4.50                |
| Na <sub>2</sub> 0        | 3.00                  | 3.90          | 4.20              | 3.50       | 2.80                | 4.30                                   | 4.30                |
| К <sub>2</sub> 0.        | 0.15                  | 0.25          | 1.70              | 0.40       | 0.35                | 1.20                                   | 2.00                |
| P2 <sup>0</sup> 5        | . <b>–</b> .          | -             | -'                | -          | · · ·               | -                                      |                     |
| H <sub>2</sub> 0         |                       |               | ` <b></b>         |            |                     | •••••••••••••••••••••••••••••••••••••• | <u> </u>            |
|                          | Total 99.15           | 100.15        | 99.80             | 99.65      | 98.95               | 98.50                                  | 99.17               |

\*References: P-from Peck, 1964; J-from Jan, 1967; T-from Taylor, 1967; S-from Storch, 1978. - 5 - (Sutter, 1978). The above units occur principally in the Western Cascades province, in the western part of the map (Plate I).

The eastern part of the study area is completely dominated by compact to diktytaxitic basaltic lavas of Quaternary age (units *QTv* and *Qbh* on Plate I). These rocks appear to partially fill in the High Cascade graben described by Allen (1966) and Taylor (1978, 1980). Foley Ridge is a tongue of these Quaternary lavas which filled an east-west-trending canyon cut across the western scarp of the graben about 2.0 m.y. ago (unpublished K/Ar age of 2.05+0.52 m.y. by UURI, Evans and Duncan, analysts).

For this study, the Quaternary lavas were split into two units based on lithology and stratigraphic relationships. Lavas assigned to unit QTv(Pliocene to Pleistocene basalts of the High Cascades) occupy topographic depressions which are clearly related to the present geomorphic setting. Nearly identical rocks located at high elevations of the Western Cascades were assigned to unit  $T_{Pv}$  because they occupied topography strongly reversed from the present landscape. K/Ar data, where available, tend to support this division. The Qbh unit (Pleistocene to Holocene basalts of the High Cascades) was identified by extreme freshness of the rock, presence of uneroded tumuli and flow structures on flow tops, obvious control by very youthful drainages, and position above various Quaternary units.

K/Ar dates of samples from units QTv and Qbh are sparse and of relatively low precision and accuracy, but enough are available to provide some age control. Poor precision and accuracy is caused by the relatively low content of K<sub>2</sub>O and youthful age of these lavas, which cause very low percentages of radiogenic argon relative to atmospheric argon. The oldest K/Ar date in the area- $2.6\pm0.2$  m.y. -- is for unit QTv (Laurson and Hammond, 1978); the youngest age is  $2.05\pm0.52$  m.y. (UURI date previously cited). A single K/Ar date of

- 6 -

 $0.68\pm0.05$  m.y. was obtained from lavas mapped as unit *Qbh* (Laursen and Hammond, 1978).

经济时间 医疗学生 医二丁酸医疗疗经济的 计语言字

#### Structural geology

Faults are concentrated in two major north-south-trending zones along Cougar Reservoir and along Horse Creek-McKenzie River. Both zones have en echelon north- to northwest-trending normal faults with significant dip-slip offsets down to the east. The lineament map (Figure 2) shows additional northeasterly trends along the northern margin of the area.

The Horse Creek-McKenzie River fault zone appears to define the western margin of a major north-south-trending graben which has been partially filled by a shield-like platform of late Pliocene and Quaternary High Cascades basaltic lavas and lesser andesitic ejecta (Allen, 1966; Taylor, 1978, 1980). The youngest dated unit with significant offset on the High Cascades graben margin is a 3.88-m.y.-old basaltic andesite (unit  $T_{PV}$ ) on Frissel Point (Sutter, 1978), along the north fork of the McKenzie River. The capping lavas (unit  $T_{PV}$ ) west of the north fork of the McKenzie River (Plate I) have been dropped down about 900 m (3,000 ft) to the east along a series of north- to northwest-trending en echelon step faults, but the total structural relief on the graben could be much more than this (Taylor, 1980, personal communication). Only minor offsets appear to affect the Quaternary lavas (Plate I).

The Cougar Reservoir fault zone trend is parallel to the High Cascades graben margin and appears to have a similar sense of movement, with Miocene and Oligocene volcanic rocks appearing to be displaced down toward the east across the zone. Miocene volcanic rocks (unit *Imv*) are the youngest units with proven offset in this zone.

7 -



.

Relation of structures to geothermal systems

1.

2.

The distribution of hot springs in the area is related to the two major north-south-trending fault zones discussed previously. Terwilliger Hot Springs and Cougar Hot Springs are located along the Cougar Reservoir lineament, while Belknap, Foley, and Bigelow Hot Springs are located along the western margin of the High Cascade graben. Hot-spring orifices do not, in general, issue from fault zones but from joints in lavas near the faults.

Three hypotheses might explain the apparent relation of faults to hot springs:

Faults actively control location of hot springs by serving as conduits for circulation of thermal waters.

Faults serve as passive controls on the location of hot springs by creating major topographic lows which may fortuitously tap sporadic thermal aquifers.

3. Some combination of hypotheses one and two controls the distribution of hot springs.

It is difficult to imagine that fault zones as large as those described here could have no influence on circulation of thermal waters. This is particularly true of the western margin of the High Cascade graben, where the faults are quite young and rocks of different lithology are juxtaposed across the faults. It is also true, however, that hot springs are more likely to issue from topographic lows created by fault-shatter zones, so that hypothesis three above is probably the most logical explanation for control of the hot springs.

- 9 -

#### GEOPHYSICS

Two geophysical studies were available for evaluation for this report. The first was a regional aeromagnetic study (Figure 3) performed by the Oregon State University Geophysics Group. This study, which is discussed in detail by Couch (1978) and Connard (1980), seems, in general, to show a close correspondence between magnetic maxima and topographic highs in the Belknap-Foley area. This is due to the fact that the Pliocene and Pleistocene units found capping the ridges tend to have a higher proportion of magnetically susceptible lavas than the older, underlying Miocene and Oligocene rocks.

Site-specific interpretations of the aeromagnetic data for the study area are not obvious. However, regional interpretation by Couch (1978) and Connard (1980) indicates a possible fault with east side down that is located in the approximate location of the Western Cascade-High Cascade transition zone fault mapped for this report (see section on geology) and that strikes in approximately the same trend. They also interpret the depth to the Curie point isotherm (temperature below which a material ceases to be paramagnetic;  $\sim 600^{\circ}$ C) to be greater on the west side of the fault than on the east side of the fault. This prediction matches well with Blackwell and others (1978), whose thermal model of the Cascades estimates a similar depth to the  $600^{\circ}$ C isotherm.

The second geophysical study in this report is a regional gravity survey also performed by the Oregon State University Geophysics Group (Couch, 1978; Pitts, 1979). Their survey consists of a complete Bouguer gravity anomaly map (Figure 4) and a residual anomaly map (Figure 5), both of which are discussed in detail by Couch (1978) and Pitts (1979). The main feature of both these maps is the steep gravity gradient coincident with the High Cascades-Western Cascades transition zone and the location of local thermal

- 10 -





SALEM, OREGON

1960 REVISED 1977 \_\_\_\_\_CONTOUR INTERVAL 200 FEET

#### FIGURE 3. TOTAL FIELD AEROMAGNETIC ANOMALY MAP OF

#### BELKNAP-FOLEY AREA

(From Connard, 1980) Contour interval 50 gammas

I.G.R.F. 1975 Data reference elevation 9,000 ft Cutoff wavelength 15 km

- 11 -

4;



1 î

- 12 -

;





- 13 -

springs. Pitts (1979) interprets this anomaly to represent either a large graben-bounding fault zone with east side down, an area of shallow silicic intrusives, or a possible combination of both. Detailed geologic mapping and possibly deep drilling are needed to further refine geologic modeling based on the foregoing geophysical studies.

۰.

. -

e Se ji

• \_

- `

· ·

14 -

1

۰.۰

. .

1

5. . . *1* 

.

.

73.

15

1.100

ير المراجع ال

1.1 1 1

1. 1. 1.

 $\{V_{i,k}\}_{k=1}^{n}$ 

۰.

-14 L.

Else Maria

•

÷ ,4

. . .

4.

2.2

• •

. .

۳. (

. •

[j]

#### WATER CHEMISTRY

During this study, analyses were compiled of four of the five major thermal springs together with analyses of drill-hole waters in the Belknap-Foley area (Table 3). These data indicate that the thermal waters are generally an alkaline, sodium-chloride-rich carbonate water diagnostic of a hotwater-dominated system at depth with elevated reservoir temperatures (Table 4) calculated by methods presented in Appendix A. Preliminary evaluation of the available data indicates the springs may be placed in two groups. The first are the Bigelow, Belknap, and Foley springs, which show similar amounts of silica (60-110 mg/1), Na:K atomic ratios (54.1-78.5), and calculated minimum reservoir temperatures. Other similarities are seen by comparison of relative amounts of ions such as boron, fluoride, and chloride. The second group are those to the west including the Terwilliger spring cluster, Rider Creek and Walker Creek drill-hole waters. (Table 3), and possibly the Cougar Reservoir spring, for which no analyses are available. These springs exhibit lower silica (14-50 mg/l), higher Na:K atomic ratios (80-107), lower amounts of chloride and lithium and higher amounts of sulfate ion, and lower calculated reservoir temperatures (Table 4).

Preliminary data are inconclusive at this point; however, the water group near Cougar Reservoir may represent either a dilute species of the springs to the east or a totally different species. Extensive sampling of thermal spring gases and local cold springs and analyses of all waters for isotopes is needed before a definitive study of the thermal regime can be made.

- 15 -

Table 3. Spring and well chemistry of the Belknap-Foley area. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

in and The second se

| · · · · · · · · · · · · · · · · · · ·                                                             | Belknap<br>Springs | Belknap<br>Springs | Belknap<br>Springs | Belknap<br>Springs<br>(main) | Belknap<br>Springs<br>(east) |
|---------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|------------------------------|------------------------------|
| Location                                                                                          | 16S/6E/11A         | 16S/6E/11A         | 16S/6E/11A         | 16S/6E/11A                   | 165/6E/11A                   |
| Date sampled                                                                                      | '03                | '72                | 3/76               | 3/76                         | 3/76                         |
| Temp. ( <sup>O</sup> C)                                                                           | 86.7               | 71                 | nt                 | 89.0                         | 66.0                         |
| рӉ                                                                                                | nt                 | 7.62               | nt                 | 7.6                          | · 7.5 <sup>±</sup>           |
| Conductance<br>µmhos/cm                                                                           | nt                 | 4300               | nt                 | 3900                         | 3720                         |
| Alkalinity<br>X <sub>h</sub> as mg/l HCO <sub>3</sub><br>X <sub>c</sub> as mg/l CaCO <sub>3</sub> | nt                 | nt                 | nt                 | 14 <sub>c</sub>              | 16 <sub>c</sub>              |
| Hardness<br>as mg/l CaCO <sub>3</sub>                                                             | nt                 | nt                 | nt                 | 541                          | 544                          |
| Total dissolved solids                                                                            | 2506               | nt                 | 2550               | 2491                         | 2377                         |
| sio <sub>2</sub>                                                                                  | 81                 | 96                 | 110                | 79.9                         | 70.6                         |
| Na                                                                                                | 364                | <b>69</b> 0        | 630                | 525                          | 490                          |
| К                                                                                                 | 69.0               | 15.0               | 17.0               | 16.8                         | 15.2                         |
| Ca                                                                                                | 455                | 210                | 210                | 208                          | 198                          |
| Mg                                                                                                | 13                 | 0.2                | 0.29               | 0.3                          | 0.4.                         |
| C1                                                                                                | 1343               | 1300               | 1550               | 1195                         | 1036                         |
| As                                                                                                | nt                 | 0.35               | nt                 | 0.24                         | 0.24                         |
| В                                                                                                 | nt                 | 6.4                | 3.6                | 7.6                          | 7.1                          |
| Li                                                                                                | nt                 | 0.95               | 1.3                | 1.04                         | 0.95                         |
| F 84                                                                                              | nt                 | 1.2                | 0.88               | 1.11                         | 0.98                         |
| Fe (total)                                                                                        | nt                 | 0.02               | tr                 | 0.1                          | 0.1                          |
| A1                                                                                                | nt                 | nt                 | 0.1                | tr                           | tr                           |
| HCO <sub>3</sub>                                                                                  | nt                 | 17                 | nt                 | 17                           | 19                           |
| PO <sub>4</sub>                                                                                   | nt                 | 0.21               | nt                 | 0.27                         | 0.41                         |
| SO <sub>A</sub>                                                                                   | 168                | 170                | 150                | 105                          | 85                           |
| NO3                                                                                               | nt                 | nt                 | ' nt               | tr                           | 0.08                         |
| NH <sub>3</sub>                                                                                   | nt                 | nt                 | nt                 | 0.19                         | 0.15                         |

- 16 -

Table 3. Spring and well chemistry of the Belknap-Foley area--Continued All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

2.1.196

|                                                                                                   | Foley<br>Springs | Bigelow<br>Spring | Terwilliger<br>Springs<br>(upper) | Terwilliger<br>Springs<br><u>(lower)</u> | Terwilliger<br>Springs<br><u>(upper)</u> |
|---------------------------------------------------------------------------------------------------|------------------|-------------------|-----------------------------------|------------------------------------------|------------------------------------------|
| Location                                                                                          | 16S/6E/11A       | 15S/6E/26Ba       | 17S/5E/20Bb                       | 17S/5E/20Bb                              | 17S/5E/20Bb                              |
| Date sampled                                                                                      | 3/76             | 3/76              | '73                               | 3/76                                     | 3/76                                     |
| Temp. ( <sup>O</sup> C)                                                                           | 80.6             | 61.0              | 44.0                              | 38.0                                     | 42.0                                     |
| рН                                                                                                | 8.0              | 7.8               | 7.7                               | 8.4                                      | 8.2                                      |
| Conductance<br>µmhos/cm                                                                           | 4800             | 3800              | 2980                              | 2830                                     | 2660                                     |
| Alkalinity<br>X <sub>h</sub> as mg/l HCO <sub>3</sub><br>X <sub>c</sub> as mg/l CaCO <sub>3</sub> | 13 <sub>c</sub>  | 18 <sub>c</sub>   | nt                                | 15 <sub>c</sub>                          | 15 <sub>c</sub>                          |
| Hardness<br>as mg/1 CACO <sub>3</sub>                                                             | 1284             | 459               | nt                                | 557                                      | 484                                      |
| Total dissolved<br>solids                                                                         | 3333             | 2566              | nt                                | 1892                                     | 1763                                     |
| sio <sub>2</sub>                                                                                  | 60               | 69                | 50                                | 46                                       | 47                                       |
| Na                                                                                                | 475              | 540               | 392                               | 335                                      | 320                                      |
| К                                                                                                 | 11               | 17                | 6.3                               | 7.3                                      | 6.8                                      |
| Cà                                                                                                | 494              | 188               | 225                               | 210                                      | 196                                      |
| Mg                                                                                                | 0.8              | 1                 | 0.1                               | 0.2                                      | 0.2                                      |
| C1                                                                                                | 1304             | 1148              | 788                               | 769                                      | 693                                      |
| As                                                                                                | 0.21             | 0.11              | nt                                | 0.1                                      | 0.1                                      |
| В                                                                                                 | 10.0             | 6.5               | 5.1                               | 6.4                                      | 6.2                                      |
| Li                                                                                                | 0.96             | 1.1               | 0.52                              | 0.7                                      | 0.64                                     |
| F                                                                                                 | 0.81             | 1.4               | 0.8                               | 0.86                                     | 0.87                                     |
| Fe (total)                                                                                        | tr               | 0.1               | tr                                | 0.1                                      | 0.1                                      |
| A1                                                                                                | tr               | tr                | nt                                | tr                                       | tr                                       |
| HCO3.                                                                                             | nt               | nt                | 19                                | nt                                       | nt                                       |
| PO4                                                                                               | 0.06             | 0.32              | nt                                | 0.08                                     | 0.08                                     |
| so <sub>4</sub>                                                                                   | 550              | 102               | 260                               | 192                                      | 185                                      |
| NO <sub>3</sub>                                                                                   | tr               | 0.02              | nt                                | 0.01                                     | tr                                       |
| NH <sub>3</sub>                                                                                   | 0.15             | 0.39              | nt                                | 0.04                                     | 0.12                                     |
| ·                                                                                                 |                  |                   |                                   |                                          | · ·                                      |

- 17 -

<sup>· .</sup> 

Table 3.Spring and well chemistry of the Belknap-Foley area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

|                                          | Contraction of the second                    |                           | 2     | i e             | i r              |
|------------------------------------------|----------------------------------------------|---------------------------|-------|-----------------|------------------|
| •                                        | Well or spring                               | Rider Creek<br>Drill Hole |       | Walker<br>Drill | Creek<br>Hole    |
|                                          | location                                     | 175/5E/20 Baa             | • . • | 175/5F          | /8Acd            |
|                                          | Date Sampled                                 | 7/80                      |       | 7/80            | / 0/104          |
| en e | Temp <sup>0</sup> C                          | 18.5                      |       | 15              | `                |
|                                          | Pemp: 0                                      | 7,77                      |       | 7.37            |                  |
| •                                        | Conductance,<br>umhos/cm                     | 3400 ga                   | · • • | 810             | L                |
| 18 - 84<br>19 - 8<br>19 - 9              | Alkalinity<br>Xh as mg/l<br>HCO <sub>3</sub> | i i <b>nt</b>             | e' .  | nt              | ÷                |
|                                          | Xc as mg/l<br>CaCO <sub>3</sub>              | nt                        |       | nt              |                  |
| :                                        | Hardness as<br>mg/1 CaCO <sub>3</sub>        | 427.5                     |       | 68.4            | a <sup>t</sup> h |
| •                                        | Total dissolved solids mg/l                  | 1962                      |       | nt              |                  |
|                                          | Si0,                                         | 14(?)                     | • •   | 18(?)           | •*.              |
|                                          | Na                                           | 449                       |       | 149             |                  |
|                                          | K                                            | < 2.50                    |       | < 2.50          | · .              |
| ;<br>, ;                                 | Ca                                           | 271                       |       | 26              | • 1              |
| ena e fisi                               | Mg                                           | 0.500                     |       | 1               |                  |
|                                          | ĊĨ                                           | 925                       | ,     | 135             |                  |
| ж <sub>а</sub>                           | As                                           | < 0.625                   |       | < 0.625         |                  |
| fattur i ev                              | В                                            | 7.5                       |       | 4.2             |                  |
|                                          | Li                                           | 0.49                      |       | < 0.050         |                  |
|                                          | F                                            | 0.9                       | •     | 0.2             |                  |
|                                          | FE (total)                                   | 0.12                      |       | 0.29            |                  |
|                                          | A1                                           | < 0.625                   |       | < 0.625         |                  |
| ut .                                     | HCO3                                         | nt                        | ۰.ť   | nt              | '                |
| i                                        | PO                                           | nt                        |       | nt              |                  |
|                                          | SO <sub>4</sub>                              | 269                       |       | nt              |                  |
|                                          | NO <sub>2</sub>                              | nt '                      |       | nt              |                  |
| 1997 B                                   | , NH <sub>A</sub> ite seint, rit             | < 0.1                     |       | 0.6             |                  |
|                                          | . <b>т</b>                                   |                           |       |                 |                  |

 $\Phi_{\rm eff} \in A_{\rm eff}$ 

: `

.

٠*.*`.

·· ,

. .

17

and the property of the

n

- 18 -

Table 4. Geothermetric calculations\* of minimum reservoir temperatures for selected thermal waters of the Belknap-Foley area

|                                                  | Belknap<br>Springs | Belknap<br>Springs | Belknap<br>Springs | Belknap<br>Springs<br>(Main) | Belknap<br>Springs<br>(East) | Terwilliger<br>Springs<br>(Lower) | Terwillige<br>Springs<br>(Upper) | er     |
|--------------------------------------------------|--------------------|--------------------|--------------------|------------------------------|------------------------------|-----------------------------------|----------------------------------|--------|
| Flow rate<br>liters/min.                         | 284                | 300                | ~250               | ~250                         | ~250                         | 114                               | 200                              | ·<br>· |
| Measured<br>temperature<br><sup>O</sup> C.       | 86.7               | 71                 | NT                 | 89                           | 66                           | 38                                | 44                               |        |
| Na:K<br>O <sub>C</sub>                           | 226                | 87                 | 97                 | 107                          | 104                          | 87                                | 74                               |        |
| Na:K:Ca<br>1/3 β<br><sup>Φ</sup> C               | 202                | 113                | 121                | 125                          | 125                          | 104                               | 95                               |        |
| Na:K:Ca<br>4/3 β<br><sup>O</sup> C               | 110                | 82                 | 85                 | 83                           | 83                           | 52                                | 48                               |        |
| Na:K:Ca<br>Mg corrected<br><sup>O</sup> C        | 183                | NC                 | NC                 | NC                           | NC                           | NC                                | NC                               |        |
| SiO <sub>2</sub><br>conductive                   | 126                | 135                | 143                | 124                          | 119                          | 99                                | 102                              |        |
| SiO <sub>2</sub><br>adiabatic<br><sup>O</sup> C  | 123                | 131                | 137                | 122                          | 117                          | 100                               | 103                              | •      |
| SiO <sub>2</sub><br>chalcedony<br><sup>O</sup> C | 98                 | 108                | 116                | 97                           | 90                           | 68                                | 72                               |        |
| SiO <sub>2</sub><br>opal<br><sup>O</sup> C       | 7                  | 15                 | 23                 | 179                          | 164                          | -17                               | -14                              |        |
|                                                  |                    |                    |                    |                              |                              | •                                 | •                                |        |

\*Methodology for calculations presented in Appendix A. NC = not calculated.

- 19 -

Table 4. Geothermetric calculations\* of minimum reservoir temperatures for selected thermal waters of the Belknap-Foley area -- Continued

والعامة فردعو

| •<br>•                                           | Terwilliger<br>Springs<br>(Upper) | Bigelow<br>Spring | Foley<br>Spring | Ryder Creek<br>Drill Hole | Walker Creek<br>Drill Hole | <b>r</b> |
|--------------------------------------------------|-----------------------------------|-------------------|-----------------|---------------------------|----------------------------|----------|
| Flow rate<br>liters/min.                         | 200                               | 7.6               | 227             | pumped                    | pumped                     |          |
| Measured<br>temperature<br><sup>O</sup> C        | 42                                | 61                | 80.6            | 18.5                      | 15                         |          |
| Na:K<br><sup>o</sup> C                           | 86                                | . 104             | 91              | 34                        | 76                         |          |
| Na:K:Ca<br>1/3 β<br><sup>O</sup> C               | 103                               | 125               | 106             | 61                        | 97                         |          |
| Na:K:Ca<br>4/3 β<br><sup>O</sup> C               | 51                                | 85                | 52              | 23                        | 54                         |          |
| Na:K:Ca<br>Mg corrected<br><sup>O</sup> C        | NC                                | 120               | NC              | NC                        | NC                         |          |
| SiO <sub>2</sub><br>conductive<br><sup>O</sup> C | 99                                | 117               | 111             | NC                        | NC                         |          |
| SiO <sub>2</sub><br>adiabatic<br><sup>O</sup> C  | 100                               | 116               | 110             | NC                        | NC                         |          |
| SiO <sub>2</sub><br>chalcedony                   | 69                                | 89                | 82              | NC                        | NC                         |          |
| SiO <sub>2</sub><br>opal<br><sup>O</sup> C       | -16                               | · -]              | -6              | NC                        | NC                         |          |

\*Methodology for calculations presented in Appendix A. NC = not calculated.

- 20 -

#### GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA\*

The temperature-gradient and heat-flow results for the Belknap-Foley area are as shown in Table 5. Included in the table are the township/range-section and latitude and longitude location of each hole. In addition, the hole name, date of logging used, and collar elevation are included for each hole. The bottom hole temperature, maximum depth, corrected temperature gradient, and, where available, corrected heat flow are printed in blue on Plate I. These values are also listed in the table, as are the depth interval and average thermal conductivity used for calculation of the gradient and heat flow. The values are given in SI units. To transform units, the following conversion factors were used:  $1 \times 10^{-6} \text{ cal/cm}^2 \text{ sec}$  $(HFU) = 41.84 \text{ mWm}^{-2}$ ,  $1 \times 10^{-3} \text{ cal/cm sec}^{\circ}\text{C}$  (TCU) = 0.4184 Wm<sup>-1</sup>K<sup>-1</sup>, and  $1^{\circ}\text{C/km}$  =  $1 \text{ mKm}^{-1} = 18.2^{\circ}\text{F}/100$  ft. Corrected gradient and corrected heat flow are values for which the topographic effects have been removed. These are significant for many of the sites studied.

The holes are ranked in terms of the quality of the gradient or heat-flow information: high quality (A), good quality (B), marginal quality (C), data with some problems (D), and data for which no useful temperature gradient or heat flow can be estimated (X). All thermal-conductivity measurements were made on cutting samples. Most of the holes shown on the table were drilled specifically for heat-flow studies, and the data quality is relatively high. In general, holes drilled in the Western Cascade rocks give linear gradients below near-surface effects that may vary in depth from 20 to 100 m. Holes 50-150 m deep in High Cascade rocks, such as 15S/6E-11Dc, are often isothermal because of lateral flow of water in the porous young volcanic rocks.

\*By D. D. Blackwell, Southern Methodist University, Dallas, Texas.

- 21 -

### Table 5. Geothermal-gradient data, Belknap-Foley area, Oregon

|                    | • .           |           |                     |              | Bottom | Depth          |                 |         | Uncorr.      | Corr.                                 | Corr.         |            |                        |                         |
|--------------------|---------------|-----------|---------------------|--------------|--------|----------------|-----------------|---------|--------------|---------------------------------------|---------------|------------|------------------------|-------------------------|
| Two/Rng-           | N Lat.        | W Long    | Hole #              | Collar       | Temp.  | Interval       | Avg. TC         | #       | Gradient     | Gradient                              | HF            | Q          |                        | ينين حداد معند <i>و</i> |
| Section            | Deg.Min.      | Deg.Min.  | Date                | Elev.        | (°C)   | (m)            | $Wm^{-1}K^{-1}$ | TC      | °C/km        | °C/km -                               | mWm <b>-2</b> | HF         |                        |                         |
| 145/ 6E-<br>32DC   | 44-18.20 1    | 122- 7.26 | WOLF MDW<br>8/ 1/80 | 999          | 18.12  | 45.0<br>154.0  | 1.46            | 9       | 90.2<br>1.8  | 75.6                                  | 110           | B          |                        | 800.000 (100)           |
| 155/ 6E-<br>11DC   | 44-16.10 1    | 122- 3.25 | CR-TBR<br>7/26/77   | 716          | 75.20  | .0<br>52.0     | •<br>• • •      | - ' · ' |              | میں .<br>بینی .<br>بینی .             |               | ×          | ۰ روی ۲<br>۲<br>۲<br>۲ |                         |
|                    |               | •         |                     |              |        |                |                 |         |              |                                       |               |            |                        |                         |
| 165/ 6E-<br>2CA    | 44-12.13 1    | 22- 2.97  | CR-FP<br>8/ 5/76    | 70           | 14.56  | 100.0<br>150.0 | 1.74<br>.03     | 11      | 84.1<br>1.4  | 88 <b>.3</b>                          | 154           | C          | •                      |                         |
| 165/ 4E-<br>14DBB  | 44-10.05 1    | .22-17.50 | BH-3Z<br>11/26/75   | 457          | 10.76  | 12.5<br>45.0   | 1.80            | •       | 37.8<br>.4   | 35.0                                  | 63            | <b>D</b> : | - '''                  | ·                       |
| 165/ 5e-<br>30aab  | 44- 9.31 1    | 122-14.62 | ST DAM 2<br>8/ 8/79 | 389          | 11.74  | 25.0<br>61.0   | 1.32            | 1       | 56.3<br>1.2  | 53.0                                  | 70            | C          | ·•<br>                 |                         |
|                    | -             |           |                     | <i>1</i>     |        |                | •               |         |              |                                       |               | *          | •                      |                         |
| 165/ 5E-<br>30ABB  | 44- 9.29 1    | 122-14.88 | ST DAM 3<br>8/ 8/79 | - <b>368</b> | 14.16  | 15.0<br>85.0   | 1.33            | • 4     | 54.0         | 51.0                                  | 68            | D          | -                      |                         |
| 165/ 5E-<br>30ABC  | 44- 9.13 1    | 22-14.98  | ST DAM 1<br>8/ 8/79 | 368          | 12.91  | 45.0<br>79.7   | • .             | •       | 50.8<br>3.6  | 48.0                                  | · · ·         | C          |                        |                         |
| 169/ 6E-<br>27BB   | 44 9.06 1     | 22- 4.69  | CR-HC<br>9/29/76    | 573          | 21.56  | 30.0<br>150.0  | - 1.57<br>.05   | n 12 m  | - 96:2<br>.9 | 70.9                                  | - 111         | B          | . ·                    |                         |
| 175/ 5e-<br>Bacd   | 44- 6.39 1    | .22-13.99 | WLKR CRK<br>7/24/80 | 585          | 15.78  | 105.0<br>155.0 | ( 1.59)         | -       | 54.1<br>.7   | 52.0                                  | 83            | B          |                        |                         |
| 175/ 5E-<br>2017AA | 14- 4.90 1    | .22-13.84 | RIDR CRK<br>7/31/80 | 536          | 24.77  | 60.0<br>154.0  | 1.64<br>.04     | 4       | 128.5<br>3.6 | 97.5                                  | 159           | В          | · · ·                  |                         |
| 175/ 6E-<br>25AD   | 44- 3.94 1    | .22- 1.37 | MOSQ CRK<br>8/ 1/80 | 1005         | 11.06  | 115.0<br>152.0 | 1.55            | ÷ 3     | 62.8<br>1.4  | 73.8                                  | 114           | <b>C</b>   | ·                      |                         |
| 185/ 5E-           | 44- 1.12 1    | .22- 9.81 | REBL CRK            | 780          | 14.40  | 55.0<br>155.0  | 1.55            | 3       |              | · · · · · · · · · · · · · · · · · · · |               | ×          | ::<br>                 |                         |
|                    | · -<br>-<br>- |           |                     |              |        |                | •               | -       | _            | 2                                     | <b>b</b>      |            |                        |                         |
| N                  |               | `_        |                     | -<br>-<br>-  |        |                |                 | ·<br>·  |              |                                       |               |            |                        |                         |
|                    | •             | · .       |                     |              |        | -              | -               | •       |              |                                       |               |            |                        | ۰.                      |

Only one anomalous value is present, and in general the data fall into two groups: those east of the High Cascade-Western Cascade thermal boundary and those west of the boundary. West of the boundary, heat-flow values generally are below  $55 \text{ mWm}^{-2}$ , while east of the boundary they are generally above 100 mWm<sup>-2</sup> (Blackwell and others, 1978). Typical gradients are  $25-35^{\circ}$ C/km and  $60-70^{\circ}$ C/km, respectively. The hole with the highest heat-flow value, at Rider Creek, was drilled within half a mile of Terwilliger Hot Springs, indicating that a slightly larger area is associated with the hot springs than is in evidence from the surface manifestations. Obviously, the value itself is biased by its proximity to the hot springs and cannot be considered a regional value.

#### CONCLUSIONS AND RECOMMENDATIONS

During the course of this investigation, two major north-south lineaments were found to have close correlation with the distribution of thermal springs and areas of increased heat-flow. Geological mapping revealed that both lineaments are the result of major north-south-trending fault zones and that these fault zones must, to a certain extent, control the flow of geothermal waters.

The available analyses indicate that the thermal waters may be separated into two compositional groups based on total ionic content, ionic ratios, and calculated reservoir temperatures. These two groups show a one-to-one correlation with the aforementioned fault zones: the hotter springs (i.e., Bigelow, Belknap, and Foley) being associated with the McKenzie-Horse Creek fault zone which forms the western margin of the High Cascade graben; and the cooler springs (Cougar and Terwilliger) being associated with the Cougar Reservoir fault zone which lies west of the High Cascade graben margin. This correlation is also seen in heat-flow measurements, with the higher values associated with the McKenzie-Horse Creek fault zone and the lower numbers associated with the Cougar Reservoir fault zone.

This preliminary data analysis indicates that the McKenzie-Horse Creek fault zone may control a higher temperature geothermal resource than the Cougar Reservoir fault zone. Both zones, however, contain geothermal resources which warrant further study. To accomplish a detailed assessment of the geothermal resources, the following steps are recommended:

- Detailed mapping (scale of 1:24,000 or greater) of the McKenzie-Horse Creek fault zone making use of existing 1:15,000 U. S. Forest Service color aerial imagery -- to identify and evaluate active thermal structures along this zone.
- 2. Detailed spring and well sampling and analyses of both hot and cool waters, including isotopic and gas analyses -- to help evaluate reservoir conditions.

•

- 3. Closely spaced complete Bouguer and residual gravity anomaly studies along the fault zones -- to further refine the gravity anomalies found during previous regional studies and to tie anomalies to mapped structures.
- 4. Resistivity traverses (either dipole-dipole, roving dipole, or telluric) eastwest and north-south along the fault zones -- to further define geothermal aquifers and to locate areas of thermal upwelling and recharge.
- 5. A program of five to ten 500-ft gradient/stratigraphy holes placed at strategic locations -- to refine the evaluation of the Belknap-Foley heat-flow model.
- 6. Five to six 2,000-ft gradient/stratigraphy holes -- to evaluate thermal anomalies and to directly test geothermal aquifers indicated by resistivity traverses and the shallow heat-flow study.
- 7. Feasibility study -- to determine the best method for drilling the very young, loosely consolidated volcanic rocks within the High Cascade graben.

25

#### BIBLIOGRAPHY OF THE BELKNAP-FOLEY AREA

Allen, J.E., 1966, The Cascade Range volcano-tectonic depression of Oregon, in Transactions, Lunar Geological Field Conference, Bend, Oregon, August 1965: Oregon Department of Geology and Mineral Industries, p. 21-23.

Armstrong, R.L., Taylor, E.M., Hales, P.O., and Parker, D.J., 1975, K-Ar dates for volcanic rocks, central Cascade Range of Oregon: Isochron/West, no. 13, p. 5-10.

Baldwin, E.M., 1976, Geology of Oregon (revised ed.): Dubuque, Iowa, Kendall/ Hunt, 147 p.

Barnes, C.G., and Ritchey, J.L., 1978, Tectonic implications of structural patterns in the Cascades of southern Oregon (abs.): Proceedings of the Oregon Academy of Science, v. 14, p. 141-142.

Beaulieu, J.D., 1971, Geologic formations of western Oregon (west of longitude 121° 30'): Oregon Department of Geology and Mineral Industries Bulletin 70, 72 p.

Benson, G.T., 1965, The age of Clear Lake, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 27, no. 2, p. 37-40.

Blackwell, D.D., 1969, Heat flow determinations in the northwestern United States: Journal of Geophysical Research, v. 74, no. 4, p. 992-1007.

Blackwell, D.D., Hull, D.A., Bowen, R.G., and Steele, J.L., 1978, Heat flow of Oregon: Oregon Department of Geology and Mineral Industries Special Paper 4, 42 p.

Blackwell, D.D., Steele, J.L., and Riccio, J.F., 1979, Heat flow of the Oregon Cascade Range (abs.): EOS (American Geophysical Union Transactions), v. 60, no. 46, p. 960.

Bodvarsson, G., Couch, R.W., MacFarlane, W.T., Tank, R.W., and Whitsett, R.M., 1974, Telluric current exploration for geothermal anomalies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 36, no. 6, p. 93-107.

Bogue, R.G., and Hodge, E.T., 1940, Cascade andesites of Oregon: American Mineralogist, v. 25, no. 10, p. 627-665.

Bowen, R.G., 1972, Geothermal gradient studies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 34, no. 4, p. 68-71.

\_\_\_\_1975, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-75-3, 133 p.

11

- Bowen, R.G., and Blackwell, D.D., 1973, Progress report on geothermal measurements in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 35, no. 1, p. 6-7.
- Bowen, R.G., Blackwell, D.D., and Hull, D.A., 1975, Geothermal studies and exploration in Oregon (draft final report to U.S. Bureau of Mines): Oregon Department of Geology and Mineral Industries Open-File Report 0-75-7, 65 p.

\_\_\_\_\_1977, Geothermal exploration studies in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 19, 50 p.

- Bowen, R.G., and Peterson, N.V., compilers, 1970, Thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 14 (map), scale approx. 1:1,000,000.
- Bowen, R.G., Peterson, N.V., and Riccio, J.F., compilers, 1978, Low- to intermediate-temperature thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-10, scale 1:1,000,000.
- Brooks, H.L., and Ramp, L., 1968, Gold and silver in Oregon: Oregon Department of Geology and Mineral Industries Bulletin 61, 337 p.
- Brown, R.E., 1941, The geology and petrography of the Mount Washington area, Oregon: New Haven, Conn., Yale University master's thesis, 48 p.
- Buddington, A.F., and Callaghan, E., 1936, Dioritic intrusive rocks and contact metamorphism in the Cascade Range in Oregon: American Journal of Science, 5th ser., v. 31, no. 186, p. 421-449.
- Callaghan, E., 1933, Some features of the volcanic sequence in the Cascade Range in Oregon: American Geophysical Union Transactions, 14th Annual meeting, p. 243-249.
- 1934, Some aspects of the geology of the Cascade Range in Oregon (abs.): Washington Academy of Science Journal, v. 24, no. 4, p. 190-191.
- Callaghan, E., and Buddington, A.F., 1938, Metalliferous mineral deposits of the Cascade Range in Oregon: U.S. Geological Survey Bulletin 893, 141 p.
- Campbell, I., 1925, A geologic reconnaissance of the McKenzie River section of the Oregon Cascades with petrographic descriptions of some of the more important rock types: Eugene, Oreg., University of Oregon master's thesis, 56 p.
- Connard, G.G., 1980, Analysis of aeromagnetic measurements from the central Oregon Cascades: Corvallis, Oreg., Oregon State University master's thesis, 101 p.

Ъ.

Connard, G.G., Couch, R.W., and Gemperle, M., 1979, Regional tectonic and thermal model of the central Cascades, Oregon, from magnetic data (abs.): EOS (American Geophysical Union Transactions), v. 60, no. 46, p. 959. Connard, G.G., Gemperle, M., and Couch, R.W., 1978, A new aeromagnetic anomaly map of the central Cascades region of Oregon (abs.): EOS (American Geophysical Union Transactions), 25th Pacific N.W. Region meeting, Tacoma, Wash. (unpublished).

. .

- Couch, R.W., 1978, Geophysical investigations of the Cascade Range in central Oregon: U.S. Geological Survey Extramural Geothermal Research Program, Technical Report 4 (unpublished), 133 p.
- Couch, R.W., and Baker, B., 1977, Geophysical investigations of the Cascade Range in central Oregon: U.S. Geological Survey Extramural Geothermal Research Program, Technical Report 2, (unpublished), 55 p.
- Couch, R.W., Gemperle, M., and Connard, G.G., 1978, Total field aeromagnetic anomaly map, Cascade Mountain Range, central Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-9, scale 1:125,000.
- Dickinson, W.R., 1979, Cenozoic plate tectonic setting of the Cordilleran region in the United States, <u>in</u> Armentrout, J.M., Cole, M.R., and Terbest, H., Jr., eds., Cenozoic paleogeography of the western United States: Pacific Coast Paleogeography Symposium 3, Anaheim, Calif., March 15-16, 1979, p. 1-13.
- Dole, H.M., ed., 1968, Andesite Conference guidebook: Oregon Department of Geology and Mineral Industries Bulletin 62, 107 p.
- Godwin, L.H., Haigler, L.B., Rioux, R.L., White, D.E., Muffler, L.J.P., and Wayland, R.G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U.S. Geological Survey Circular 647, 18 p.
- Greene, R.C., 1968, Petrography and petrology of volcanic rocks in the Mount Jefferson area, High Cascade Range, Oregon: U.S. Geological Survey Bulletin 1251-G, 48 p.
- Groh, E.A., 1966, Geothermal energy potential in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 7, p. 125-135.
- Hammond, P.E., 1974, Brief outline to volcanic stratigraphy and guide to geology of southern Cascade Range, Washington, and northern Cascade Range, Oregon: Oregon Department of Geology and Mineral Industries unpublished report, 51 p.

\_\_\_\_\_1976, Geothermal model for the Cascade Range: Oregon Department of Geology and Mineral Industries unpublished report, 20 p.

1979, A tectonic model for evolution of the Cascade Range, <u>in</u> Armentrout, J.M., Cole, M.R., and Terbest, H., Jr., eds., Cenozoic paleogeography of the western United States: Pacific Coast Paleogeography Symposium 3, Anaheim, Calif., March 15-16, 1979, p. 219-237.

- Hodge, E.T., 1925, Mount Multnomah, ancient ancestor of the Three Sisters: Eugene, Oreg., University of Oregon Publication, v. 3, no. 2, 160 p.
- 1928, Framework of Cascade Mountains in Oregon: Pan-American Geologist, v. 49, no. 5, p. 341-356.

\_\_\_\_\_1931, Geologic map of north central Oregon: Eugene, Oreg., University of Oregon Publication, Geology Series, v. 1, no. 5, scale 1:250,000.

- Hull, D.A., Blackwell, D.D., and Black, G.L., 1978, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-78-4, 187 p.
- Hull, D.A., Bowen, R.G., Blackwell, D.D., and Peterson, N.V., 1977, Preliminary heat-flow map and evaluation of Oregon's geothermal energy potential: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 7, p. 109-123.
- Jan, M.Q., 1967, Geology of the McKenzie River valley between the South Santiam Highway and the McKenzie Pass Highway, Oregon: Eugene, Oreg., University of Oregon master's thesis, 70 p.
- Kittleman, L.R., 1973, Mineralogy, correlation, and grain-size distributions of Mazama tephra and other postglacial pyroclastic layers, Pacific Northwest: Geological Society of America Bulletin, v. 84, no. 9, p. 2957-2980.
- Laursen, J. M., and Hammond, P. E., 1978, Summary of radiometric ages of Oregon rocks--supplement 1: July 1972 through December 1976: Isochron/ West, no. 23, p. 3-28.
- Lawrence, R.D., 1976, Strike-slip faulting terminates the Basin and Range province in Oregon: Geological Society of America Bulletin, v. 87, no. 6, p. 846-850.
- Mackin, J.H., and Cary, A.S., 1965, Origin of Cascade landscapes: Washington Division of Mines and Geology Information Circular 41, 35 p.
- Mariner, R.H., Presser, T.S., Rapp, J.B., and Willey, L.M., 1975, The minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U.S. Geological Survey open-file report, 27 p.
- Mariner, R.H., Rapp, J.B., Willey, L.M., and Presser, T.S., 1974, The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon: U.S. Geological Survey open-file report, 27 p.
- Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.
- McBirney, A.R., 1968, Petrochemiştry of the Cascade andesite volcanoes, in Dole, H.M., ed., Andesite Conference guidebook: Oregon Department of Geology and Mineral Industries Bulletin 62, p. 101-107.

\_\_1975, Consequences of recent stratigraphic studies in the Oregon Cascade Range (abs.): Proceedings of the Oregon Academy of Science, v. 11, p. 83. McBirney, A.R., 1976, Some geologic constraints on models for magma generation in orogenic environments: Canadian Mineralogist, v. 14, no. 3, p. 245-254.

McBirney, A.R., Sutter, J.F., Naslund, H.R., Sutton, K.G., and White, C.M., 1974, Episodic volcanism in the central Oregon Cascade Range: Geology, v. 2, no. 12, p. 585-589.

McBirney, A.R., and White, C.M., 1977, Some quantitative aspects of orogenic volcanism in the Oregon Cascades (abs.): Geological Society of America Abstracts with Programs, v. 9, no. 7, p. 1087.

1978, Recent progress in studies of the Oregon Cascades (abs.): Proceedings of the Oregon Academy of Science, v. 14, p. 157-158.

Muffler, L.J.P., ed., 1979, Assessment of geothermal resources of the United States--1978: U.S. Geological Survey Circular 790, 163 p.

Peck, D.L., Griggs, A.B., Schlicker, H.G., Wells, F.G., and Dole, H.M., 1964, Geology of the central and northern parts of the Western Cascade Range in Oregon: U.S. Geological Survey Professional Paper 449, 56 p.

Peterson, N.V., and Groh, E.A., eds, 1965, Lunar Geological Field Conference guidebook: Oregon Department of Geology and Mineral Industries Bulletin 57, 51 p.

Peterson, N.V., and Youngquist, W., 1975, Central Western and High Cascades geological reconnaissance and heat flow hole location recommendations: Oregon Department of Geology and Mineral Industries Open-File Report 0-75-2, 41 p.

Pitts, G.S., 1979, Interpretation of gravity measurements made in the Cascade Mountains and the adjoining Basin and Range province in central Oregon: Corvallis, Oreg., Oregon State University master's thesis, 186 p.

Pitts, G.S., Connard, G.G., Gemperle, M., and Couch, R.W., 1978, Gravity and aeromagnetic measurements in the central Cascades of Oregon (abs.): EOS (American Geophysical Union Transactions), v. 59, no. 12, p. 1188-1189.

Pitts, G.S., and Couch, R.W., 1978, Complete Bouguer gravity anomaly map, Cascade Mountain Range, central Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-8, scale 1:125,000.

Riccio, J.F., compiler, 1979, Preliminary geothermal resource map of Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-11, scale 1:500,000.

\_\_\_\_\_1980, Geothermal exploration in Oregon, 1979: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 42, no. 4, p. 59-69.

Riccio, J.F., and Newton, V.C., Jr., 1979, Geothermal exploration in Oregon in 1978: Oregon Department of Geology and Mineral Incustries, Oregon Geology, v. 41, no. 3, p. 39-46. Sass, J.H., Lachenbruch, A.H., Munroe, R.J., Green, G.W., and Moses, T.H., Jr., 1971, Heat flow in the western United States: Journal of Geophysical Research, v. 76, no. 26, p. 6376-6413.

7,7 × 47,

- Stearns, H.T., 1928, Geology and water resources of the upper McKenzie valley, Oregon: U.S. Geological Survey Water-Supply Paper 597, p. 171-188.
- Storch, S.G.P., 1978, Geology of the Blue River Mining District, Linn and Lane Counties, Oregon: Corvallis, Oreg., Oregon State University master's thesis, 70 p.
- Sutter, J.F., 1978, K/Ar ages of Cenozoic volcanic rocks from the Oregon Cascades west of 121° 30': Isochron/West, no. 21, p. 15-31.
- Swanson, F.J., and James, M.E., 1975a, Geology and geomorphology of the H.J. Andrews Experimental Forest, Western Cascades, Oregon: U.S. Department of Agriculture Forest Service Research Paper PNW-188, 14 p.

\_\_\_\_\_1975b, Geomorphic history of the lower Blue River-Lookout Creek area, Western Cascades, Oregon: Northwest Science, v. 49, no. 1, p. 1-11.

- Taylor, E.M., 1965, Recent volcanism between Three Fingered Jack and North Sister, Oregon Cascade Range: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 27, no. 7, p. 121-147.
- \_\_\_\_\_1967, Recent volcanism between Three Fingered Jack and North Sister, Oregon Cascade Range: Pullman, Wash., Washington State University doctoral dissertation, 84 p.
- 1968, Roadside geology, Santiam and McKenzie Pass Highways, Oregon, <u>in</u> Dole, H.M., ed., Andesite Conference guidebook: Oregon Department of Geology and Mineral Industries Bulletin 62, p. 1-33.

\_\_\_\_\_1978, Field geology of S.W. Broken Top quadrangle, Oregon: Oregon Department of Geology and Mineral Industries Special Paper 2, 50 p.

- 1980, Volcanic and volcaniclastic rocks on the east flank of the central Cascade Range to the Deschutes River, Oregon, in Oles, K.F., Johnson, J.G., Niem, A.R., and Niem, W.A., eds., Geologic field trips in western Oregon and southwestern Washington: Oregon Department of Geology and Mineral Industries Bulletin 101, p. 1-7.
- Taylor, H.P., 1971, Oxygen isotope evidence for large-scale interaction between meteoric groundwaters and Tertiary granodiorite intrusions, Western Cascade Range, Oregon: Journal of Geophysical Research, v. 76, p. 7855-7874.
- Thayer, T.P., 1937, Petrology of later Tertiary and Quaternary rocks of the north-central Cascade Mountains in Oregon, with notes on similar rocks in western Nevada: Geological Society of America Bulletin, v. 48, no. 11, p. 1611-1651.

5 634

- Thiruvathukal, J.V., 1968, Regional gravity of Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 92 p.
- Tuck, R., 1927, The geology and ore deposits of the Blue River Mining District: Eugene, Oreg., University of Oregon master's thesis, 60 p.
- U.S. Forest Service, 1979, Belknap-Foley geothermal area: Eugene, Oreg., U.S.D.A., Willamette National Forest, draft environmental statement for geothermal leasing 06-18-79-11, 224 p., supplement, 80 p.
- U.S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979, Chemical analyses of thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-79-3, 170 p.
- Walker, G.W., Greene, R.C., and Pattee, E.C., 1966, Mineral resources of the Mount Jefferson primitive area, Oregon: U.S. Geological Survey Bulletin 1230-D, 32 p.
- Wells, F.G., and Peck, D.L., 1961, Geologic map of Oregon west of the 121st meridian: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-325, scale 1:500,000.
- Wheeler, H.E., and Mallory, V.S., 1970, Oregon Cascades in relation to Cenozoic stratigraphy, <u>in</u> Columbia River Basalt Symposium, 2nd, Cheney, Wash., 1969, Proceedings: Cheney, Wash., Eastern Washington State College Press, p. 97-124.
- Wilkinson, W.D., and Schlicker, H.G., 1959, Field trip 3, Corvallis to Prineville via Bend and Newberry Crater, in Field guidebook: geologic trips along Oregon highways: Oregon Department of Geology and Mineral Industries Bulletin 50, p. 43-72.

Williams, H., 1944, Volcanoes of the Three Sisters region, Oregon Cascades: University of California, Department of Geological Sciences Bulletin, v. 27, no. 3, p. 37-83.

\_\_\_\_\_1953, The ancient volcanoes of Oregon (2d ed.): Eugene, Oreg., Oregon State System of Higher Education, Condon Lectures, 68 p.

\_\_\_\_\_1957, A geologic map of the Bend quadrangle, Oregon, and a reconnaissance geologic map of the central portion of the High Cascade Mountains: Oregon Department of Geology and Mineral Industries in cooperation with the U.S. Geological Survey, scales 1:125,000 and 1:250,000.

- 32 -

#### APPENDIX A

Formulas used in calculations

| Na:K (revised):                                                                                                                                                                  | $t^{O}C = \frac{1217}{\log (Na/K) + 1}$                                                                                                                                                                                                                 | .483 - 273.15 (Fournier                                                                                                                                                                                                                                                       | ·, 1979)                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Na:K:Ca:                                                                                                                                                                         | $t^{O}C = \frac{1647}{2.24 + F(T)}$                                                                                                                                                                                                                     | - 273.15 (Fournier an                                                                                                                                                                                                                                                         | nd Truesdell, 1973),                           |
| where F (T) =<br>β =<br>t <sup>O</sup> C =<br>and conce                                                                                                                          | log (Na/K) + [ β log (<br>1/3 if t> 100 <sup>0</sup> C, and 4,<br>calculated reservoir to<br>entrations are express                                                                                                                                     | √Ca/Na) ],<br>/3 if t <100 <sup>0</sup> C,<br>emperature,<br>ed in molality.                                                                                                                                                                                                  |                                                |
| Magnesium correction                                                                                                                                                             | ratio:                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                               |                                                |
| R = (milliequivale) If R <5 or >50, no ca<br>$\Delta t_{Mg} = 10.66-(4.7415)$ $[(1.968 \times 10^7))$ where R = magnesium co<br>$\Delta t_{Mg} = the tem$ the Na:<br>T = Na:K:Ca | (milliequival<br>nts Mg) + (milliequiva<br>lculation was made. Fo<br>(R) + [(325.87) (log K<br>(log R) <sup>2</sup> /T <sup>2</sup> ] + [(1.60)<br>orrection ratio express<br>perature correction the<br>K:Ca 1/3 β calculated<br>1/3 β calculated temp | ents Mg)<br>lents Ca) + (milliequiv<br>or R between 5-50,<br>R) <sup>2</sup> ] - [(1.032 X 10 <sup>5</sup> ) (<br>5 X 10 <sup>7</sup> ) (log R) <sup>3</sup> /T <sup>2</sup> ],<br>sed in equivalents,<br>at is subtracted from<br>temperature,<br>erature in <sup>O</sup> K. | valents K) X 100<br>(log R) <sup>2</sup> /T] - |

Or  $\Delta t_{Mg}$  can be obtained by using the graph compiled by Fournier and Potter (1979).

SiO<sub>2</sub> temperature calculations (Fournier and Rowe, 1966):

| SiO <sub>2</sub> (conductive), | $t^{0}C = \frac{1309}{5.19 + \log (Si0_{2})} - 273.15$  |
|--------------------------------|---------------------------------------------------------|
| SiO <sub>2</sub> (adiabatic),  | $t^{o}C = \frac{1522}{5.75' + \log (SiO_{2})} - 273.15$ |
| SiO <sub>2</sub> (chalcedony), | $t^{0}C = \frac{1032}{4.69 + \log (SiO_{2})} - 273.15$  |
| SiO <sub>2</sub> (opal),       | $t^{0}C = \frac{731}{4.52 + \log (SiO_{2})} - 273.15,$  |

where  $\text{SiO}_2$  is expressed in mg/l.

#### References cited:

Fournier, R.O., 1979, A revised equation for the Na/K geothermometer, in Geothermal Resources Council Transactions 3, 1979, p. 221-224.

- Fournier, R.O., and Potter, R.W., II, 1979, Magnesium correction to the Na:K:Ca chemical geothermometer: Geochimica et Cosmochimica Acta, v. 43, p. 1543-1550.
- Fournier, R.O., and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells: American Journal of Science, v. 264, p. 685-697.
- Fournier, R.O., and Truesdell, A.H., 1973, An empirical Na:K:Ca geothermometer for natural waters: Geochimica et Cosmochimica Acta, v. 37, p. 1255-1275.
- Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.

|                        | •••••                                  | LOCAT                                                                                                                                                                                                                     | ION SALEM A                                          | 15, OREGON                                                                                                                                                                                                                       |                                        |                                       |      |                          |
|------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------|--------------------------|
| • .*<br>• <del>-</del> | DEPTH<br>METERS                        | HOLE<br>Date<br>Depth<br>Feet                                                                                                                                                                                             | NAME: WOLF<br>MEASURED: 9.<br>TEMPER<br>DEG C        | MDW<br>25/80<br>ATURE<br>DEG F                                                                                                                                                                                                   | Geotherm<br>Deg C/KM                   | AL GRADIENT<br>DEG F/100 FT           | ير . | •                        |
|                        | 00000000000000000000000000000000000000 | 8495060779840516008794061770849506007798405160<br>995295677851851600879406177084950607798405160<br>11111121774071189063966396029449520952885<br>90511841774087910099639663962952885<br>1112112112111111111111111111111111 | 6.6.6.6.7.7.7.7.7.7.8.8.8.8.9.9.9.9.9.9.9.0000000000 | 44444444444555555555800854155255999145561967268<br>103339963964553183808854155259991455619672868<br>13689999001111111120335814<br>14744444444445555118380885415525999145561967868<br>1476819990011111111111111111111111111111111 | 00000000000000000000000000000000000000 | ៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰៰ |      | Geothermal-gradient data |

ŧ

35 - and the state of the state of the

•

.\*

APPENDIX B

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOCATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N: Salem Ai<br>145/ 6e-3                                                                                                                                                             | 15, DREGON<br>32DC                                                                    | PA                                     | ge 2                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|
| DEPTH<br>METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hole NF<br>Date Me<br>Depth<br>Feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ME: WOLF<br>ASURED: 9<br>TEMPER<br>DEG C                                                                                                                                             | MDW<br>125/80<br>ATURE<br>DEG F                                                       | geotherma<br>Deg C/KM                  | L GRADIENT<br>DEG F/100 FT              |
| 92.0<br>94.0<br>96.0<br>100.0<br>1004.0<br>1004.0<br>1005.0<br>1004.0<br>1102.0<br>1102.0<br>1112.0<br>1110.0<br>1112.0<br>1110.0<br>1112.0<br>1110.0<br>1112.0<br>1110.0<br>1112.0<br>1110.0<br>1112.0<br>1110.0<br>1112.0<br>1110.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1122.0<br>1222.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1235.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>1255.0<br>12 | 301.8<br>308.9<br>3014.9<br>3214.0<br>3214.1<br>3224.1<br>3234.1<br>344.1<br>347.2<br>3344.1<br>347.4<br>35667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>3667.3<br>367.3<br>367.4<br>367.4<br>367.4<br>367.4<br>367.4<br>367.4<br>367.4<br>367.4<br>367.4<br>37.4<br>37.4<br>37.4<br>37.4<br>37.4<br>37.4<br>37.4<br>3 | $\begin{array}{c} 12.6860\\ 13.650\\ 13.450\\ 13.680\\ 13.680\\ 13.75650\\ 13.75650\\ 13.75650\\ 14.3550\\ 14.3550\\ 14.5550\\ 15.680\\ 0070\\ 000\\ 0070\\ 000\\ 000\\ 000\\ 000\\$ | 5455555666677778885899986666668689843998534398743874387438743874387438743874387438743 | 99999999999999999999999999999999999999 | ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛ |

9.000001111111000000000000044444455555

- 36





# LOCATION: SALEM AMS, OREGON 165/ 6E/ 2CA HOLE NUMBER: CR-FP DATE MEASURED: 9/29/76

- 236 /\* 784 \000 AF

|                                                       | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | R.                            |                                       |       |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------|-------|
| DEPTH                                                 | DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEMPER                                                                                                          | ATURE                         | GEOTHERMAL GRADIENT                   |       |
| METERS                                                | STATEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DECC                                                                                                            | NEG E                         | DEC CINM DEG EVIDO ET                 |       |
| - man and a second of the second states of the States | and and the first of the first of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                               |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | - 1                           |                                       |       |
| ,                                                     | denser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | 1,                            |                                       |       |
| 5.0                                                   | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.600                                                                                                           | 45.68                         | • <b>n</b> • Ö                        |       |
| 10.0                                                  | 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                 | 15.00                         | - 44.0 0.3.6                          |       |
| 10.0                                                  | 32.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.510                                                                                                           | 49407                         | -00+0 -3+0                            |       |
| 15•0                                                  | <b>#3</b> •5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7+470                                                                                                           | 45+45                         | 40+0 2+2                              | •     |
| 20.0                                                  | 65.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 70440                                                                                                           | 45.39                         | -6.0                                  |       |
| 25.0                                                  | 82.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.550                                                                                                           | 45.59                         | 22+0 1+2                              |       |
| 200                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7-000                                                                                                           | 10-00                         |                                       |       |
| ل • U د.                                              | - <b>30</b> •4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.620                                                                                                           | 43+84                         | 58+0 7+2                              |       |
| 35.0                                                  | 11408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.900                                                                                                           | 46.55                         | 42.0 2.3                              |       |
| 40.0                                                  | 131.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.990                                                                                                           | 46+38                         | 18.0 1.0                              |       |
| 45.0                                                  | 147.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 . 1 50                                                                                                        | 46.067                        | 32.0 1.8                              |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 1000                          |                                       |       |
| 2011 V                                                | 16490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8,260                                                                                                           | 40.6/                         | <u>2200</u> <u>10E</u>                |       |
| 55•0                                                  | 180•4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8•440                                                                                                           | 47•19                         | 36+0 2+0                              |       |
| 60.0                                                  | 196.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.690                                                                                                           | 47.64                         | 50.0 2.07                             |       |
| 65.0                                                  | 3.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.821                                                                                                           | 17.88                         | 26.0 1.4                              |       |
|                                                       | 51505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                        | <u> </u>                      |                                       |       |
| . /0.0                                                | 552.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.080                                                                                                           | 48-34                         | 25.0 5.3                              |       |
| 75.0                                                  | 246•0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9•280                                                                                                           | 48+70                         | 40°0 5°S                              |       |
| 80.0                                                  | 262.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.540                                                                                                           | 49.17                         | 52.0 2.9                              |       |
| 25.0                                                  | 378-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.740                                                                                                           | 10.50                         | 40.0                                  |       |
| 30.0                                                  | 2/340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3•740                                                                                                           | 42.02                         |                                       |       |
| 90•0                                                  | 292•2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.510                                                                                                          | 50•38                         | 94.0 5.0                              |       |
| 95.0                                                  | 311.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.500                                                                                                          | 50.90                         | 58.0 3.2                              |       |
| 1000                                                  | 328.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.810                                                                                                          | 51.46                         | 62.0 3.4                              |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | <b>S1</b> . <b>D</b> <i>h</i> | 54.0. 3.0                             |       |
| 10000                                                 | 3#***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.000                                                                                                          | D.7 + 2 4:                    |                                       |       |
| 110.0                                                 | 360 • 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11•450                                                                                                          | 52.61                         | 7400 401.                             |       |
| 115.0                                                 | 377.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11+810                                                                                                          | 53.26                         | 72+0 4+0                              |       |
| 120.0                                                 | 393.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.130                                                                                                          | 53.83                         | 64.0 3.5                              |       |
| 12040                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10-(00                                                                                                          | 50.00                         | 100-0 5.5                             |       |
| ED•V                                                  | 410.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.030                                                                                                          | 240/3                         |                                       | ····- |
| 130+0                                                 | 426+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13+040                                                                                                          | 55+47                         | _82+Q ++- <del>-</del>                |       |
| 135.0                                                 | 442•8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.600                                                                                                          | 56+48                         | 112+0 6+1                             |       |
| 140.0                                                 | 459.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 140110                                                                                                          | 57.40                         | 102+0 5+6                             |       |
| 445.0                                                 | 176.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.500                                                                                                          | 58.10                         | 79.0 4.3                              |       |
| 14300                                                 | 4/3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14+500                                                                                                          | 20 ° 1 0                      |                                       |       |
| 150.0                                                 | 492•0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14+810                                                                                                          | <b>38 • 66</b>                | 62.0 3.0 4                            |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                               | \$ · /                        | ۲.<br>                                |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               |                                       |       |
| •••                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                               | 4                                     |       |
| ,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               | · · · · · · · · · · · · · · · · · · · |       |
| والمحمورة المرهم ولام ولولا والورادية ومحموله ومراهد  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | j.,                           |                                       |       |
|                                                       | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                               |                                       |       |
| •                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | " · ',                        |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               |                                       |       |
|                                                       | · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                               | 5 -                                   |       |
| · .                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | e <sup>i</sup> -              |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | ê :.                          |                                       |       |
| . <u>'</u>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               | * *                                   | `     |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | y st                          |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               | •                                     |       |
| -                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | 4 .                           | •                                     |       |
| ۵<br>۲                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 | . (· ·                        |                                       |       |
|                                                       | € <b>€</b> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                               |                                       |       |
| · · · ·                                               | and a second of the second of | the second se | p -                           | 6 <b>1</b>                            |       |
| · · ·                                                 | ·· · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | ₿u 1 su                       | 4                                     |       |
| ·                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 | 8                             |                                       |       |
| . •                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ·                                                                                                             |                               |                                       |       |
|                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 | G<br>4.                       | Carl H Standard                       | <br>* |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 38 -                                                                                                          | •                             |                                       | -     |
| -                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a sa                                                                        | μ,                            |                                       |       |
|                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                 |                               |                                       |       |

i

į٩ .

ŝ. ţ



# LOCATION: SALEM AMS; OPEGON 1657 4E-14DBB HOLE NUMBER; DH-32 DATE MEASUPER; 11726/75

| DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DEPTH                                                                                                      | TEMPE                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FEET                                                                                                       | DEG C                                                                                                       |
| 5.5<br>7.0<br>10.5<br>10.5<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>107.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0<br>157.0 | 16.4<br>24.6<br>32.0<br>41.0<br>57.4<br>65.6<br>73.6<br>73.6<br>73.6<br>73.6<br>73.6<br>73.6<br>73.6<br>73 | 9.460<br>9.120<br>9.210<br>9.310<br>9.550<br>9.550<br>9.550<br>9.550<br>9.020<br>10.100<br>10.100<br>10.100 |
| 37.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123.0                                                                                                      | 10.320                                                                                                      |
| 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m31.2                                                                                                      | 10.490                                                                                                      |

| H   | TEMPER  | ATURE     | GEOTHERIAL | GRADIENT     |
|-----|---------|-----------|------------|--------------|
| Т.  | DEG C   | DEG F     | DEG CZEM D | DEG F<100 FT |
| -1  | 9.460   | 49.63     | 0.00       | 0.0          |
| 6   | 9,120   | 48.42     | -136.0     | -7.5         |
| 8   | 9,310   | -19,75    | 76.0       | 4.2          |
| 0   | 9.470   | 49.05     | 64.0       | 25           |
| 2   | ച്ചുക്ക | 49.39     | 36 Å       | 3.0          |
| 4   | 9,540   | 44 70     | 32.0       | 1.8          |
| É.  | 0.770   | 10 50     | 32.6       | Î.Ă          |
| 8 – | 9,820   | 49.68     | 40.0       | ê.ê          |
| ō   | 9.920   | 49.86     | 40.0       | ē.ē          |
| ż – | 10.010  | - 50 Ó2 - | 36.0       | 2.0          |
| 4   | 10,100  | 50.13     | 36.0       | 3.0          |
| 6   | 10,190  | 50.32     | 32.0       | 1.8          |
| 9   | 10.880  | 50,50     | 46.6       | ê. 2         |
| Ó   | 10.300  | 50.70     | 44.0       | 2.4          |
| à - | 10.450  | 96.88     | 40.0       | 2.2          |
| -1  | 10.610  | 51.10     | 49.0       | 3.6          |
| 6   | 10,700  | 51.55     | 19-1 C)    | ē.õ          |
| 3   | 10,750  | 51.10     | हैंचें. एं | 1.3          |

ร้นนี้รับชี่ต้องหนือของการเรา รับนี้ยังมีชี่ต้องหนือของการ มอนจนจนจนจระสาวการการ 139. 147. 195.

I 40



| DEPTH<br>METERS                                                                                     | Locat<br>Hole<br>Date<br>Depth<br>FEE1                                                                      | 'Ion: Salem A<br>165/5E-<br>Name: St I<br>Measured: E<br>Temper<br>Deg C                                                 | MS, Oregon<br>30aab<br>Am 2<br>2 8/79<br>ATURE<br>DEG F                                                                           | Geotherma<br>Deg C/KM                                                                     | AL GRADIENT<br>DEG F/100 FT                                                   | · · | · · · |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----|-------|
| 5.0<br>10.0<br>15.0<br>20.0<br>25.0<br>30.0<br>35.0<br>40.0<br>45.0<br>55.0<br>55.0<br>60.0<br>61.0 | 16.4<br>32.8<br>49.2<br>65.6<br>82.0<br>98.4<br>114.8<br>131.2<br>147.6<br>164.0<br>180.4<br>196.8<br>200.1 | 9.050<br>9.230<br>9.360<br>9.510<br>9.720<br>9.970<br>10.240<br>10.520<br>10.800<br>11.070<br>11.340<br>11.700<br>11.740 | 48.29<br>48.65<br>49.150<br>49.95<br>49.95<br>50.95<br>50.95<br>51.95<br>51.49<br>51.49<br>51.49<br>51.13<br>53<br>53<br>53<br>53 | 0.0<br>36.0<br>36.0<br>320.0<br>54.0<br>54.0<br>54.0<br>54.0<br>54.0<br>54.0<br>54.0<br>5 | 0.04<br>1.037<br>0.11<br>0.02<br>1.10<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 |     | · .   |
|                                                                                                     |                                                                                                             |                                                                                                                          | 2.                                                                                                                                |                                                                                           |                                                                               |     |       |

.:

- 42

· · · · ·

# TEMPERATURE, DEG C



.

1921 4

515 1

| DEPTH<br>METERS                        | LOCAT<br>HOLE<br>DATE<br>DEPTH<br>FEET                                                                                                            | 'Ion: Salem A<br>165/ 5e-<br>Name: St I<br>Measured: E<br>Temper<br>Deg C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ams, oregon<br>-30abb<br>)am 3<br>3/ 8/79<br>Rature<br>Deg F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | geotherm<br>Deg C/Km                                                                                                                                        | AL GRADIENT<br>DEG F/100 FT                 |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|
| 5.000000000000000000000000000000000000 | 16.4<br>32.8<br>49.2<br>65.6<br>98.4<br>114.8<br>131.2<br>147.6<br>160.4<br>1896.8<br>213.2<br>229.6<br>246.0<br>262.8<br>262.8<br>262.8<br>262.8 | $10.990 \\ 10.260 \\ 10.330 \\ 10.330 \\ 10.330 \\ 10.410 \\ 10.550 \\ 10.730 \\ 10.910 \\ 11.180 \\ 11.520 \\ 11.780 \\ 12.070 \\ 12.480 \\ 13.000 \\ 13.980 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 14.160 \\ 1$ | 51.78<br>50.479<br>50.559<br>50.59<br>50.59<br>50.74<br>50.91<br>50.91<br>50.91<br>51.642<br>50.93<br>51.642<br>50.93<br>51.642<br>50.93<br>51.642<br>50.53<br>50.746<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.55<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.54<br>50.55<br>50.54<br>50.55<br>50.54<br>50.55<br>50.54<br>50.55<br>50.54<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50.55<br>50<br>50.55<br>50<br>50.55<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | 9.9<br>-144.0<br>18.9<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | ៰៰៰៰៹៹៰៰៰៰៹៰៷៰៸៹៹៹៰<br>៰៰៰៰៰៰៰៹៰៷៰៸៰៷៰៸៹៹៹៰ |  |

• •

.

- 44

**\***.

.

TEMPERATURE, DEG C



| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | DEPTH<br>METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOCA<br>HOLE<br>DATE<br>DEPTH<br>FEET                                                                                                  | Tion: Salem A<br>165/ SE-<br>NAME: ST I<br>MEASURED: E<br>TEMPER<br>DEG C                                                                     | MS, Oregon<br>30ABC<br>2AM 1<br>37 8/79<br>2ATURE<br>DEG F                                                                                            | geotherma<br>Deg C/Km                                                                                                       | _ GRADIENT<br>DEG F/100 FT            |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                       | 5.00<br>115.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150.00<br>150. | 16.4<br>32.8<br>49.2<br>65.6<br>82.0<br>98.4<br>114.8<br>131.2<br>147.6<br>164.0<br>180.4<br>196.8<br>213.2<br>229.6<br>246.0<br>261.6 | 10.440 $10.420$ $10.560$ $10.600$ $10.660$ $10.760$ $10.890$ $11.060$ $11.270$ $11.530$ $11.820$ $12.170$ $12.410$ $12.630$ $12.710$ $12.910$ | 50.79<br>50.76<br>51.01<br>51.08<br>51.19<br>51.37<br>51.91<br>51.91<br>51.91<br>52.75<br>53.91<br>52.75<br>53.91<br>54.73<br>54.73<br>54.88<br>55.24 | 0.0<br>-4.0<br>28.0<br>12.0<br>20.0<br>20.0<br>20.0<br>20.0<br>24.0<br>42.0<br>58.0<br>70.0<br>48.0<br>44.0<br>16.0<br>42.1 | 0254714979286497<br>00154714979286497 |

.....

• . •

Т 46 ī

. :

. .

. . .

:

. . . . . .

. :

TEMPERATURE, DEG C



| DATE   | NUMBER: CR+HC<br>MEASURED: 9/29/                                                             | 76                                    |                                       |                                                 | · ·····                              |
|--------|----------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|-------------------------------------------------|--------------------------------------|
| DEPTH  | DEPTH                                                                                        | TEMPE                                 | RATURE                                | GEDTHERM                                        | L GRADIENT                           |
| METERS | FEEI                                                                                         | DEG C                                 | DEG F                                 | DEG C/KM                                        | DEG F/100 F                          |
|        | •                                                                                            |                                       |                                       |                                                 |                                      |
| 5.0    | 16.4                                                                                         | <u> </u>                              | 46.62                                 | •0                                              | <u> </u>                             |
| 10.0   | 32•8                                                                                         | 8•360                                 | 47.05                                 | 48.0                                            | 2+6                                  |
| 12:0   | 49.2                                                                                         | 8 • 930                               | 48•07                                 | 114•0                                           | 6•3                                  |
| 25.0   | 82.0                                                                                         | 9:851                                 | 40:01                                 | 102.0                                           | 400                                  |
| . 30.0 | 98.4                                                                                         | 10•360                                | -50•65                                | 102.0                                           | 5.5                                  |
| 35.0   | 114.8                                                                                        | 10:810                                | 51.46                                 | 90.0                                            | 4.9                                  |
| 40.00  | <u>131+2</u>                                                                                 | 11.270                                | 52.29                                 | 92.0                                            | 5.0                                  |
| 45.0   | 147.6                                                                                        | 11+810                                | 53•26                                 | 138•0                                           | 5+9                                  |
| 50.0   | 164.0                                                                                        | 12.310                                | 54.15                                 | 100.0                                           | 5+5                                  |
| · 55+0 | 180+4                                                                                        | 12.910                                | 55•24                                 | 120+0                                           | 5.5                                  |
| 65 - C | 120+0                                                                                        | 130350                                | ,⊃6•03<br>=7,⊃2                       |                                                 | 4 e 5<br>7 0                         |
| 70.00  | 229.6                                                                                        | 14.550                                | 58.19                                 | 1080                                            | <u>, • c</u>                         |
| 75.0   | 246.0                                                                                        | 14,980                                | 58+96                                 | 86.0                                            | 4.7                                  |
| 60+0   | 262.4                                                                                        | 15.610                                | 50.10                                 | 126•0                                           | 5.9                                  |
| : 85+0 | 278.8                                                                                        | 15.830                                | 60.49                                 | 4400                                            | 2 • 4                                |
| 90.0   | 295•2                                                                                        | 16•33ጋ                                | 61•39                                 | 100=0                                           | 5•5                                  |
| 95.0   | 311.6                                                                                        | 16.540                                | 61.95                                 | 62•0                                            | 3•4                                  |
| 100.0  | 328.0                                                                                        | 17.070                                | 62+73                                 | 86•0                                            | 4.7                                  |
| 100-0  | 34404                                                                                        | 1/•/00                                | 53.85                                 | 126.0                                           | 6 • <del>7</del>                     |
| 115.0  | 377.2                                                                                        | 18.720                                | 45.70                                 | 12000                                           |                                      |
| 120.0  | 393.6                                                                                        | 19.160                                | 56.49                                 | 38.0                                            | 4.8                                  |
| 125.0  | 410.0                                                                                        | 19•630                                | 67•33                                 | 94.0                                            | 2.05                                 |
| 130,0  | 426.4                                                                                        | 20.050                                | 68.09                                 | 84•0                                            | 4.5                                  |
| 135.0  | 442.8                                                                                        | 20.420                                | 68 <b>•76</b>                         | 74.0                                            | 401                                  |
| 140.0  | 459.2                                                                                        | 20•830                                | 69.49                                 | 82•0                                            | 4+5                                  |
| 145+0  | 475•6                                                                                        | 21•240                                | 70.23                                 | 82•0                                            | 4.00                                 |
| 10000  | + <i>3</i> ⊆ • U                                                                             | £1.261                                | V J + D T                             | 6440                                            | 500                                  |
|        |                                                                                              | · · · · · · · · · · · · · · · · · · · |                                       | a na she an |                                      |
| ·<br>· |                                                                                              |                                       |                                       |                                                 | •• 1                                 |
|        |                                                                                              | ·                                     |                                       |                                                 | _ 1                                  |
| •      |                                                                                              |                                       |                                       |                                                 | •                                    |
|        |                                                                                              |                                       |                                       |                                                 |                                      |
|        |                                                                                              |                                       |                                       |                                                 | الدين در منظر و در مسرفانهم و<br>الد |
| •      |                                                                                              |                                       |                                       |                                                 |                                      |
|        |                                                                                              |                                       |                                       |                                                 | ,                                    |
|        |                                                                                              |                                       |                                       |                                                 | ¥.                                   |
|        |                                                                                              |                                       | •                                     |                                                 |                                      |
|        | ili ingeneralmen eta angalan on angalan angalan angalan angalan on tinak sagan angalan tinak | ,<br>                                 | · · · · · · · · · · · · · · · · · · · |                                                 |                                      |
|        |                                                                                              |                                       |                                       |                                                 | ·<br>•                               |
| -      |                                                                                              |                                       |                                       | •                                               |                                      |
|        |                                                                                              | · · · · · · · · · · · · · · · · · · · |                                       |                                                 |                                      |
|        |                                                                                              | :                                     | د                                     |                                                 | ·                                    |
| -<br>- |                                                                                              |                                       |                                       |                                                 | ,                                    |
|        |                                                                                              |                                       |                                       |                                                 |                                      |
| •      | :                                                                                            |                                       | ۰                                     |                                                 |                                      |
|        |                                                                                              |                                       |                                       |                                                 | المسترية والمستري                    |
|        |                                                                                              | 40                                    |                                       |                                                 |                                      |



| DEPTH<br>METERS                                                                                                                                                                                                                                                                         | Locatic<br>Hole Na<br>Date Me<br>Depth<br>Feet                                                                        | IN: SALEM A<br>175/5E-<br>IME: WLKR<br>ASURED: S<br>TEMPER<br>DEG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MS, DREGON<br>BACD<br>CRK<br>224/80<br>ATURE<br>DEG F                                         | geotherma<br>Deg c/km                  | L GRADIENT<br>DEG F/100 FT              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|--|
| $ \begin{array}{c} 11.0\\ 13.0\\ 15.0\\ 17.0\\ 19.0\\ 21.0\\ 23.0\\ 25.0\\ 27.0\\ 29.0\\ 31.0\\ 33.0\\ 35.0\\ 37.0\\ 39.0\\ 41.0\\ 43.0\\ 45.0\\ 47.0\\ 49.0\\ 51.0\\ 557.0\\ 559.0\\ 61.0\\ 63.0\\ 65.0\\ 67.0\\ 69.0\\ 71.0\\ 79.0\\ 81.0\\ 85.0\\ 87.0\\ 89.0\\ 91.0\\ \end{array} $ | 36.1<br>449.8<br>56.8<br>56.9<br>56.8<br>56.9<br>56.8<br>56.9<br>56.9<br>56.9<br>56.9<br>56.9<br>56.9<br>56.9<br>56.9 | 12.410 $12.160$ $12.050$ $11.940$ $11.820$ $11.730$ $11.510$ $11.420$ $11.310$ $11.340$ $11.320$ $11.310$ $11.320$ $11.380$ $11.380$ $11.380$ $11.420$ $11.420$ $11.580$ $11.420$ $11.420$ $11.420$ $11.580$ $11.510$ $11.580$ $11.510$ $11.660$ $11.980$ $12.030$ $12.180$ $12.980$ $12.180$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $12.980$ $1$ | 43899811532236854186987888886512248811854668839981<br>533333333888888888848888888888888888888 | 0.000000000000000000000000000000000000 | ໑ຓຉ຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺ |  |

् स् अप स् र स् र स् र

50 -

| DEPTH<br>METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOCAT<br>HOLE<br>DATE<br>DEPTH<br>FEET                                                                                                                                                                                                                                                                                                                                                                                              | TION: SALEM<br>17S/ SE<br>NAME: WLK<br>MEASURED: T<br>TEMPE<br>DEG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AMS, OREGON<br>- 8ACD<br>R CRK<br>9/24/80<br>RATURE<br>DEG F                 | PF<br>GEOTHERMF<br>DEG C/KM                                                | AGE 2<br>AL GRADIENT<br>DEG F/100 FT                                |             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|--|
| 93.0<br>95.0<br>97.0<br>10135.0<br>1079.0<br>10135.0<br>1079.0<br>101135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>11135.0<br>111135.0<br>111111111111111111111111111111111111 | 905.0<br>331184.7 3 8 4 0 5 1 6 2 8 3 9 4 0 6 1 7 2 8 4 9 5 0 6 2 7 3 8<br>33333334517 4 0 5 1 6 2 8 3 9 4 0 6 1 7 2 8 4 9 5 0 6 2 7 3 8<br>335353577389063966396295285006528851<br>335529528851<br>335529528851<br>35529528851<br>35529528851<br>35529528851<br>35529528851<br>35529528552851<br>355295285528552855<br>355295285528552855<br>355295285528552855<br>3552952855528552855<br>3552952855555555555555555555555555555555 | $\begin{array}{c} 12.540\\ 12.640\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.6700\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.600\\ 12.6$ | 57514815333679978257319399400255<br>5751481555555555555555555555555555555555 | ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ଡ଼ | ໙ໞຆຉຆຉຆໞ <b>ຎຉຑຉຑຉຑຬຑຆຒຑຆຆຆຑຆຑຌຨຑ</b><br>ຆຆຆຠຆຠຆຎຆຉຑຠຬຬຑຬຬຬຑຬຬຬຑຬຬຬ | · · · · · · |  |

· - -

TEMPERATURE, DEG C



|             | DEPTH<br>METERS                                                                                                                                                                            | LOCATI<br>HOLE N<br>DATE M<br>DEPTH<br>FEET                                                                                                                | ON: SALEM (<br>175/ SE<br>AME: RIDI<br>EASURED: 9<br>TEMPEI<br>DEG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9MS, OREGON<br>-20BAA<br>R CRK<br>9/23/80<br>RATURE<br>DEG F                           | geothermal<br>Deg c/km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ GRADIENT<br>DEG F/100 FT                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|             | 14.0<br>16.0<br>18.0<br>20.0<br>24.0<br>20.0<br>24.0<br>20.0<br>24.0<br>20.0<br>24.0<br>20.0<br>20                                                                                         | 45.95<br>555.06<br>778.59<br>905.51<br>105.1<br>105.1<br>118.62<br>1118.62<br>1118.1<br>121.81<br>131.81<br>137.41                                         | 11.850 $11.650$ $11.540$ $11.380$ $11.380$ $11.360$ $11.370$ $11.400$ $11.450$ $11.570$ $11.630$ $11.630$ $11.630$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37<br>397<br>397<br>397<br>397<br>397<br>397<br>397<br>397<br>397<br>3                 | 0.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1950.00<br>-1000.00<br>-1000.00<br>-1000.00<br>-1000.00<br>-1000.00<br>-1000.00<br>-1000.0 | 059176538449661<br>0111210001111111                                                         |
| <br>··· · · | 44.0<br>46.0<br>50.0<br>52.0<br>54.0<br>56.0                                                                                                                                               | 144.3<br>150.9<br>157.4<br>164.0<br>170.6<br>177.1<br>183.7                                                                                                | 11.810<br>11.970<br>12.070<br>12.160<br>12.280<br>12.380<br>12.380<br>12.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.25<br>53.73<br>53.89<br>54.10<br>54.28<br>54.54                                     | 40.0<br>80.0<br>505.0<br>40.0<br>50.0<br>50.0<br>70.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | น47537 B                                                                                    |
|             | 50<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60                                                                                                           | 190.2<br>196.4<br>203.4<br>209.9<br>216.5<br>223.0<br>229.6                                                                                                | 12.660<br>12.830<br>12.970<br>13.290<br>13.890<br>14.120<br>14.330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.79<br>55.09<br>55.392<br>57.00<br>57.42<br>57.79                                    | 70.0<br>85.0<br>70.0<br>150.0<br>300.0<br>115.0<br>105.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.8<br>4.7<br>9.8<br>9.5<br>16.3<br>5.8                                                     |
| <br>        | 724.0<br>74.0<br>780.0<br>8824.0<br>8824.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>882.0<br>892.0<br>892.0<br>892.0<br>892.0 | 2362.7<br>2449.3<br>2552.4<br>2552.4<br>269.5<br>269.5<br>269.5<br>269.5<br>2888.6<br>2695.6<br>2888.6<br>2955.6<br>2908<br>295.6<br>2908<br>2908.9<br>308 | $14.530 \\ 14.720 \\ 14.940 \\ 15.160 \\ 15.430 \\ 15.620 \\ 15.920 \\ 16.120 \\ 16.370 \\ 16.860 \\ 16.860 \\ 17.110 \\ 16.000 \\ 16.000 \\ 16.000 \\ 17.110 \\ 16.000 \\ 16.000 \\ 17.110 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 10.000 \\ 1$ | 58.59<br>59.27<br>59.27<br>60.62<br>61.47<br>61.95<br>61.95<br>61.47<br>61.95<br>62.80 | 100.0<br>95.0<br>110.0<br>135.0<br>95.0<br>150.0<br>125.0<br>125.0<br>125.0<br>125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺<br>຺ |

. ..

53 -

|                                                                                                                                                                                                                                                                          | LOCA                                                                                                                                  | TION: SALEM AMS                                                                                                                                                                                                                                                                                                             | , OREGON                                                                                                                                                                                                                                                        | PAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ie 2                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| DEPTH<br>METERS                                                                                                                                                                                                                                                          | HOLE<br>DATE<br>DEPTH<br>FEET                                                                                                         | NAME RIDR C<br>MEASURED 9/2<br>TEMPERATI<br>DEG C                                                                                                                                                                                                                                                                           | RK<br>3/80<br>URE<br>DEG F                                                                                                                                                                                                                                      | geothermal<br>Deg C/KM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . GRADIENT<br>DEG F/100 FT                       |
| 96.0<br>98.0<br>100.0<br>102.0<br>104.0<br>106.0<br>108.0<br>112.0<br>112.0<br>112.0<br>114.0<br>120.0<br>124.0<br>124.0<br>128.0<br>130.0<br>132.0<br>134.0<br>138.0<br>138.0<br>138.0<br>140.0<br>148.0<br>148.0<br>148.0<br>148.0<br>148.0<br>148.0<br>148.0<br>148.0 | 94.061728495062738405162839406<br>3333347407395062738405162839406<br>333347407395062738405162839406<br>333347407395062738405162839406 | $\begin{array}{c} 17.350\\ 17.660\\ 17.950\\ 18.200\\ 18.500\\ 18.740\\ 19.040\\ 19.040\\ 19.290\\ 19.550\\ 19.550\\ 20.560\\ 20.350\\ 20.560\\ 20.560\\ 20.560\\ 20.560\\ 20.560\\ 21.360\\ 21.360\\ 21.360\\ 21.950\\ 22.230\\ 22.480\\ 22.710\\ 22.940\\ 23.420\\ 23.640\\ 23.850\\ 24.030\\ 24.170\\ 24.480\end{array}$ | 63.239<br>64.739<br>64.739<br>64.739<br>66.5779<br>66.56<br>66.779<br>68.699<br>69.01<br>71.053<br>76.68<br>66.771<br>68.699<br>69.711<br>722<br>73.74<br>74.553<br>77<br>74.4553<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77<br>77 | $\begin{array}{c} 125.0\\ 125.0\\ 1455.0\\ 12545.0\\ 12545.0\\ 1250.0\\ 1250.0\\ 1250.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\ 1255.0\\$ | <b>៰</b> ຏ໑໑ຉຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨຨ |

54 -





| DEPTH                                    | LOCATION<br>HOLE NAM<br>DATE MEA<br>DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · Salem Am<br>175/6E-2<br>E· Mosq<br>SURED: 9/<br>TEMPERA | s, oregon<br>Sad<br>CRK<br>24/80<br>Ture | GEOTHERMA                                  | L GRADIENT                                                                                  | . 1 |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------|-----|
| METERS                                   | FEET<br>49.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DEG C                                                     | DEG F<br>44,49                           | DEG C/KM                                   | DEG F/100 :<br>0.0                                                                          | FT  |
| 179.000000000000000000000000000000000000 | 55.394<br>8895.72884<br>901.2884<br>901.2885.17<br>1084.1217.4.0<br>1084.1217.4.0<br>1084.1217.4.0<br>1084.1217.4.0<br>1084.0<br>1084.0<br>1084.0<br>1084.0<br>1084.0<br>1084.0<br>1084.0<br>1084.0<br>1084.0<br>1087.30.0<br>108.0<br>1084.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>100.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>108.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0<br>100.0 | 66666667777777777777777777777777777777                    | 4444444444444444455555577984555555555555 | _<br>໑຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺຺ | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |     |

-----

*6*-

56

- -

· • • • • •

| 1990 - A. C | LOCAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ION SALEM A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MS, OREGON                             |                                        |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|
| DEPTH<br>METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HOLE 1<br>DATE 1<br>DEPTH<br>FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NAME: REBL<br>1EASURED: 16<br>TEMPER<br>DEG C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CRK<br>2/30/80<br>ATURE<br>DEG F       | geotherma<br>Deg C/Km                  | L GRADIENT<br>DEG F×100 FT         |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.8<br>49.60<br>55.60<br>914.82<br>131.60<br>131.60<br>1464.4<br>196.3<br>9.60<br>1464.4<br>199.3<br>9.60<br>118.4<br>199.3<br>9.60<br>118.4<br>199.3<br>10.60<br>118.4<br>199.3<br>10.60<br>118.4<br>199.3<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>119.5<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60<br>10.60 | 9.350<br>9.260<br>9.180<br>9.080<br>9.080<br>9.080<br>9.080<br>9.080<br>9.080<br>9.080<br>9.080<br>9.1200<br>9.2440<br>9.290<br>9.2440<br>9.290<br>9.2440<br>9.290<br>9.2440<br>9.290<br>9.200<br>10.300<br>10.300<br>10.300<br>11.200<br>11.200<br>14.0300<br>14.0300<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.1500<br>14.150 | 44444444444444444444444444444444444444 | 0.000000000000000000000000000000000000 | 0001110788866000000784078000479704 |

145.0

