GLOISIZ

UNIVERSITY OF UTAH RESEARCH INSTITUTE EARTH SCIENCE LAB.

STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1005 State Office Building Portland, Oregon 97201

OPEN-FILE REPORT 0-80-6

PRELIMINARY GEOLOGY AND GEOTHERMAL RESOURCE POTENTIAL OF THE NORTHERN HARNEY BASIN, OREGON

by.

D. E. Brown

G. D. McLean, and

G. L. Black

Under the direction of J. F. Riccio

Study completed under U. S. Department of Energy Cooperative Agreement No. DE-FC07-79ET27220

1980

DISCLAIMER

This report has not been edited for complete conformity with Oregon Department of Geology and Mineral Industries standards. Data in this document are preliminary and are subject to change upon further verification.

CONTENTS

INTRODUCTION
GEOLOGY
GEOPHYSICS
VATER CHEMISTRY
GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA
CONCLUSIONS AND RECOMMENDATIONS
BIBLIOGRAPHY OF THE HARNEY BASIN
APPENDIX A: Formulas used in calculations ••••••••••••••••••••••••••••••••••••
APPENDIX B: Geothermal-gradient data

ILLUSTRATIONS

FIGURES

1. Map showing location of study area, northern Harney Basin, Oregon. 2 TABLES

1. Radiometric (K/Ar) ages of selected rocks, northern Harney Basin . 3

Bulk chemical composition of selected rocks, northern Harney Basin. 4
 Spring and well chemistry, northern Harney Basin area 9
 Geothermetric calculations of minimum reservoir temperatures

Plate I. Geologic map of the northern Harney Basin, Oregon

Plate II. Lineament map of the Harney Basin, Oregon

Simple Bouguer gravity anomaly map of the Harney Basin, Oregon

ii -

Aeromagnetic map of the Harney Basin, Oregon

INTRODUCTION

The study area is located at the northern end of a large, circular topographic depression in the central portion of eastern Oregon known as the Harney Basin (Figure 1). Limits of the study area were arbitrarily set at the boundaries of available U. S. Geological Survey (USGS) topographic maps at latitudes 43° 45' on the north and 43° 30' on the south and at longitudes 119° 15' on the west and 118° 30' on the east. This study, performed under U. S. Department of Energy (USDOE) Contract No. DE FC07-79ET27220, was undertaken to estimate the geothermal potential of the area by using various methods including compilation of existing data, reconnaissance geologic mapping, lineament analysis, well and spring geochemistry, and accrual of geothermal-gradient data.

Geographically, the study area is comprised of a 5,180-km² (200-mi²) relatively flat, closed drainage basin surrounded by mountainous highlands. Total relief in the basin is less than 9 m (30 ft), and the total relief in the highlands is more than 600 m (2,000 ft). The only major population center is the county seat of Burns with the adjacent community of Hines, both of which are located on the western edge of the basin. The remainder of the northern Harney Basin is comprised of swampy bird habitat, cattle ranches and range land, and scrub forests in the higher elevations. Drainage within the basin is toward the south and east through Sage Hen Creek from the west, Silvies River from the north, and Malheur Slough from the east.

Figure 1: Map showing location of study area.

GEOLOGY

27.575 3.2575 3.54245.7

The geologic map (Plate I) of this area is based on (1) a field check of the published map by Greene (1972) of the Burns 15-minute quadrangle, with minor revisions, and (2) an original reconnaissance study, conducted during the fall of 1979 and the spring of 1980, of the Buchanan, Carson Point, Stinkingwater Pass, and Mahon Creek 7½-minute quadrangles and the Harney 15-minute quadrangle. Lithologies and age assignments were based on hand-specimen identification, limited K/Ar ages (Table 1), and bulk chemistry (Table 2). Areal extent of units and other field data were plotted on USGS topographic maps; specific points were located by Brunton compass and pacing. No aerial photographs were used in mapping.

Table 1. Radiometric (K/Ar) ages of selected rocks of the northern Harney Basin

Sample no.*	Location	Rock type	Age**	<u>Stratigraphic unit</u>
ML-114-75	118 ⁰ 37'30" 43 ⁰ 38'07"	Silicic dome	^S 14.74 <u>+</u> 0.5 my	Tmrd
G-54-5-66	119 ⁰ 08'18" 43 ⁰ 30'48"	Rhyodacite	^a 7.82 <u>+</u> 0.26 my	Tmrb
ML-33-75	119 ⁰ 18'12" 43 ⁰ 34'06"	Rhyolite	ⁿ 7.55 <u>+</u> 0.10 my	Tmrb
MK- 3- 79	119 ⁰ 08'12" 43 ⁰ 34'06"	Rhyolite	⁰ 7.54 <u>+</u> 0.10 my	Ťmrb
G-257-3-66	119 ⁰ 04'12" 43 ⁰ 37'42"	Welded tuff	^a 6.82 <u>+</u> 0.33 my	Tmtr

* References: G - from Greene and others, 1972; ML - from McLeod and others, 1975; MK - from McKee and others, 1976. **s - sanidine age; a - anorthoclase age; o - obsidian age; n - no method given.

- 3 -

Table 2. Bulk chemical composition of selected rocks of the northern Harney Basin. (Letters at top of each column indicate sample number and map symbol for stratigraphic unit. All values are in weight percent.)

Compo- nent	*G-9-3 <u>Tmtd</u>	G-9-6 Tmtd	B- 0 -20-2 Tmtp	G-9-1 Tmtd	B-0-19-2
sio,	73.6	74,1	74.27	75.2	75.82
Ti0 ₂	0.26	0.28	0.18	0.21	0.22
A1203	11.2	12.2	13.73	11.6	12.59
FeO (Total Fe)	2.66	2.96	0.30	3.2	1.48
MgO	0.83	0.24	0.16	0.13	0.04
CaO	0.71	0.34	0.14	0.25	0.29
Na ₂ 0	3.8	4.0	4.02	3.7	3.91
K ₂ 0	4.5	4.6	4.37	4.4	4.18
Total	97.62	98.72	97.17	98.66	98.53

.

* References: G - from Greene, 1973; B - from Beeson, 1969.

. . . .

and and a

1.

- 4 -

The geology of the northern Harney Basin is comprised of a framework of three flat-lying, extensive, late Miocene ash-flow sheets onlapping a regional unit of early Miocene flood basalts. These ash flows, named in order of increasing age, the Rattlesnake (unit *Imtr* on the geologic map), Prater Creek (unit *Imtp*), and Devine Canyon (unit *Imtd*) Ash-flow Tuffs, are separated by discrete sedimentary units, limited basalt and andesite flows, and silicic intrusions.

Trace element studies (Park and Armstrong, 1972) indicate that the ashflow tuffs, the silicic intrusives, and the related mafic flows, for the study area as well as for adjacent areas to the south and west, constitute a genetically related bimodal compositional assemblage. Although detailed relationships are unclear at the time of this study, at least one caldera--the source for the Devine Canyon Ash-flow Tuff--is located in the study area near Burns (Walker, 1979). The oldest units recognized in the field were found in the northwest corner of the map area and are the early Miocene basalts (unit Tmba) dated in adjacent areas at 12.1 to 20.2 m.y. The youngest bedrock units are mafic vent complexes and associated flows (units QTmv and QTb) near Burns dated at 2.3 to 2.9 m.y. (Parker, 1974). Complete age relationships of all units are presented in the time-rock chart included on the geologic map (Plate I).

Faulting in the northern basin follows three general trends. The first is the trend of the Brothers fault zone $(N.25^{\circ}-35^{\circ}W.)$, which is exhibited most strongly immediately west of Burns in the area of Burns Butte cutting all geologic units present including the aforementioned 2.3- to 2.9-m.y.-old basalts. Motion on these faults appears to be dip-slip; however, several investigators (MacLeod and others, 1975) feel such motion may be the surface manifestation of a right-lateral wrench system at depth. The second trend is the Basin-Range trend (approximately north-south) found throughout the eastern portion of the

5 -

study area, cutting all lithologies present. Although some of these faults appear to be dip-slip, they may have some strike-slip or oblique-slip component, specifically along Soldier Creek in the north-central portion, where an extensively mineralized north-striking fault zone appears to contain some right-lateral component and may represent a major structural discontinuity for the basin. The third trend (N:40°-50°W.) occurs in the east-central portion of the study area and appears to represent a transitional trend between the Brothers trend and the Basin-Range trend. This transitional trend ends abruptly at the Soldier Creek shear zone.

A lineament study (Plate II) prepared for this report from U=2 and Landsat imagery shows a one-to-one correspondence of structural trends with the mapped fault trends. It also shows a number of lineaments that cross the alluviumfilled basin but which could not be traced through geologic mapping.

Folding of the units is generally in the form of broad, shallowly dipping anticlines and synclines plunging toward the center of the basin. Exceptions are several sharply folded local structures adjacent and probably subsequent to major faults (e.g.; the Soldier creek shear zone). In the past, investigators (Greene, 1972; Greene and others; 1972) have shown the northern nightands to be a homoeline dipping into the basin off a core of older rocks to the north. However, the mapping connected with this study shows a large number of discrete fault blocks that dip away from the center of the basin. Downwarping of the basin itself probably began during the middle to late Miocene (Walker, 1979) and may be continuing at present. The probable cause of the downwarping is the loss of material by volcanic eruption from the extensive ash-flow sheets and numerous flood basalts and, to a lesser extent, the loss of volume due to loss of stored heat (Blackwell, 1980, personal communication).

GEOPHYSICS

a construction and

At the present time, no geophysical surveys are available for the northern Harney Basin. Recommendations for future work in this extremly important area are included in the <u>Conclusions and Recommendations</u> section of this report.

WATER CHEMISTRY

During this study, fifteen wells, springs, and gradient holes were sampled and their waters analyzed. Together with existing published analyses (Leonard, 1970; U. S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979), a total of 21 analyses are available for evaluation (Table 3). Rublished reports of the hydrology of the Harney Basim (Piper and others, 1939; Leonard, 1970) show a considerable number of thermal anomalies; however, a large number of the listed springs and wells either could not be located or were not flowing at the time of the study.

Sampling temperatures during field collection ranged from 72⁰C for the 3-0. J. Thomas well in the north-central portion of the study area to 17° -22°C for artesian wells and springs near the town of Burns. The natural waters of the study area can best be described as generally low in chloride and high in magnesium and bicarbonate. On the basis of preliminary evaluation of the available data, two groups of waters are recognized: (1) The wells near Soldier Creek and directly south, which appear to be relatively high in silica (72-104 mg/l) and show relatively high Na:K atomic ratios (144-260) and high contents of ions such as boron, arsenic, chloride, and fluoride. The estimated minimum reservoir temperatures for these wells are in the moderate range, calculated to be approximately 100° -130°C (Table 4). (2) The springs âĥd wells near Burns, which are lower in silica (37-60 mg/l); lower in Na:K atomic ratios (11-15); lower in relative amounts of boron, arsenic, chloride, and fluoride; and lower in calculated reservoir temperatures $(75^{\circ} - 100^{\circ}C)$. They are also higher in magnesium, which is generally thought to indicate cooler Waters or waters that have traveled a longer distance from their source (Fournier, 1980, personal communication). The cooler waters near Burns may represent a dilute species of the warmer waters found to the east; however,

- 8 -

Table 3. Spring and well chemistry of the northern Harney Basin area. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Cow Creek Spring	Bar Negative Well	Hotchkiss Well	Hotchkiss Well	Hotchkiss Well
Location	22 S/32½E/ 14€a	23S/32E/ 28Acd	24S/30E/	24S/30E/	24S/30E/
Date sampled	9/31	7/68	10/80	8/31	9/68
Temp. (^O C)	22	16	33	27	27
рН	nt	7.6	8.37	nt	8.1
Conductance µmhos/cm	nt	771	220	nt	194
Alkalinity X _h as mg/l HCO ₃ X _c as mg/l CaCO ₃	nt	nt	nt	nt	nt
Hardness as mg/1 CaCO ₃	nt	30	30	nt	nt
Total dissolved solids	nt	511	166	nt	155
sio ₂	nt	52	45	51	46
Na	nt	172	30	30	31
K	nt	5.6	3	2.4	2.9
Ca	16	5.4	10	9.6	8.8
Mg	nt	3.9	2	1.7	1.4
C1	1.9	16	7	5.2	5.0
As	nt	nt	<0.680	nt	nt
В	nt	1	0.3	nt	,0.06
Li	nt	nt	<0.054	nt	nt
F	nt	0.8	0.5	nt	0.5
Fe (total)	nt	0.34	<0.027	0.01	nt
Al	nt	nt	<0.680	nt	nt
HCO3	nt	nt	nt	95	93
PO4	nt	nt	nt	nt	nt
so ₄ ,	4	0.4	12	13	12
NO ₃	nt	1.9	nt	1.2	1.1
NH ₃	nt	nt	tr	nt	nt

- 9 -

Table 3. Spring and well chemistry of the northern Harney Basin area--Continued. All measurements are in mg/1, except for pH or as indicated. nt = not tested; tr = trace.

	Hines Mill Well #1	Hines Mill Well #1	Hines Mill Well #2	Powerhouse Well	Millpond Spring
Location	23S/30E/ 35Aaa	23S/30E/ 35Aaa	23S/30E/ 26Dac	23S/30E/ 26Add	23S/30E/ 36Aaa
Date sampled	7/68	10/80	11/80	10/80	8/31
Temp. (^O C)	25	28.5	27.8	25	26
рН	7.8	7.9	8.18	8.04	nt
Conductance µmhos/cm	222	280	240	225	nt
Alkalinity X _h as mg/l HCO ₃ X ^h as mg/l CaCO ₂	nt	nt ~~	nt	nt	nt
Hardness as mg/1 CaCO ₃	nt	34.2	34	50	nt
Total dissolved solids	180	180	172	210	nt
Si0 ₂	55	45	42	37	nt
Na	33	29	26	30	nt
K	4	4	4	3	nt
Ca	11	10	9	7	14
Mg	2.0	2	2	1	nt
C1	7.0	8	9	10	8
As.	nt	<0.680	<0.680	<0.680	nt [,]
В	0.38	0.3	0.3	0.3	nt
Li	nt	<0.054	<0.054	<0.054	nt
F	0.5	0.6	0.5	0.4	nt
Fe (total)	0.02	<0.027	<0.027	<0.027	nt
A1	nt	<0.680	<0.680	0.680	nt
HCO3	105	nt	nt	nt	109
PO4	nt	nt	nt	nt	nt
so ₄	14	12	10	14	11
NO ₃	1.5	nt	nt	nt	1.1
NH ₃	nt	<0.1	tr	0.3	nt .

- 10 -

Table 3. Spring and well chemistry of the northern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Hines City Well	Goodman Spring	0.J. Thomas Well	O.J. Thomas Well	Potters Swamp Well
Location	23S/30E/ 23Cda	23S/30E/ 35Ddd	22S/32E/ 35Bbb	22S/32E/ 35Bbb	24S/30E/ 11Aba
Date sampled	7/68	9/68	9/68	5/80	5/80
Temp. (^O C)	17	22	72	72	27
рН	7.8	7.5	9.5	9.6	7.9
Conductance µmhos/cm	289	210	716	622	172
Alkalinity X as mg/1 HCO Xh as mg/1 CaCO ₃ C	nt	nt	nt	¹⁹³ c	62 _c
Hardness as mg/1 CaCO ₃	nt	nt	nt	2	22
Total dissolved solids	221	165	499	523	149
SiO2	60	46	89	104	54.0
Na	35	35	157	147	28.6
К	6.9	3.2	1.8	1.3	2.3
Ca	15	8.2	1.0	0.3	7.7
Mg	5.7	1.4	0.2	<0.1	1.1
C1	13	7	38	42	6.5
As	nt	nt	0.06	0.063	0.033
В	0.53	0.23	4.0	6.7	-0.38
Li	nt	nt	nt	0.1	<0.1
F	0.5	0.6	2.8	5.1	0.5
Fe (total)	0.05	0.02	0.03	0.20	<,0.05
A1 :	nt	nt	nt	0.41	<0.10
HCO3	128	92	49	nt	nt
PO4	nt	nt	nt	0.027	0.021
so ₄	18	16	89	75.9	123.9
NO ₃	3.8	2.1	nt	0.03	0.28
NH ₃	nt	nt	nt	0.90	0.03

- 11 -

Table 3. Spring and well chemistry of the northern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

an a		Harney Valley	Harney Valley		
	Rest Stop <u>Well</u>	Dev. Co. Oil Well	Dev. Co. Oil Well	Develop- ment Well	Well
Location	23S/30E/	24S/32E/	24S/32E/	23S/30E/	24S/30E/
	36000	8DaD	8DaD	35ADd	
Date sampled	5/80	9/68	5/80	10/80	10/80
1emp. (°C)	26	46	50	26.5	25.5
рн	8.0	9.6	9.9	8.33	8.43
Conductance µmhos/cm	177	602	540	230	210
Alkalinity	73 _c	nt	252 _c	nt	nt ,
X_h as mg/1 CaCO ₃ X_c as mg/1 CaCO ₃		· ·			
Hardness as mg/l CaCO ₂	28	3	<]	15	30
J Tatal diaselusi	350			170	140
solids	156	396	416	178	140
SiO ₂	59.8	.72	92	45	37
Na	28.9	135	119	32	30
K ·	2.6	1.6	0.8	4	3
Ca	8.9	0.8	0.1	8	. 7
Mg	1.3	0.2	0.1	2	1
C1	6.1	11	20.5	. 8.	. 8
As	0.019	nt	0.015	<0.680	<0.680
В	0.31	4.11	4.93	0.5	0.6
Li	<0.1	nt	<0.1	<0.054	<0.054
F	0.4	12	1.2	0.5	0.6
Fe (total)	<0.05	0.20	<0.05	<0.027	<0.027
,A1	<0.10	nt	0.16	<0.680	<0.680
HCO ₃	nt	94	nt	nt	nt
PO4	0.044	nt	0.010	nt	nt
so ₄	13.0	29	9.7	13	15
NO4	0.24	0.2	0.02	nt	nt
NH ₃	0.05	nt	2.77	tr	tr
	1	- 12 -			E. B.

Table 3. Spring and well chemistry of the northern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Trailer Court Well	Soldier Creek Well _#1 (50')_	Soldier Creek Well <u>#1 (600')</u>	Burns High School Well
Location	23S/31E/ 36Bdc	22S/32E/ 32Aad	22S/32E/ 32Aad	23S/30E/ 13Cbc
Date Sampled	10/80	11/80	11/80	10/80
Temp. (^O C)	26.5	15	22	16.2
рН	8.24	8.26	8.23	7.2
Conductance µmhos/cm	210	nt	nt	nt
Alkalinity X _h as mg/l HCO ₃	nt	nt	nt	nt
X _c as mg/1 CaCO ₃		•		
Hardness as mg/1 CaCO ₃	30	nt	nt	51
Total dissolved solids	150	190	206	178
SiO ₂	43	43	47	42
Na	28	22	24	12
Κ	3	3	4	3
Ca	9	16	15	8
Mg	1	2	i - 2	4
C1	6	6	5	27
As	<0.680	<0.625	<0.625	<0.625
В	0.2	<0.125	<0.125	<0.125
Li di	0.054	<0.05	<0.05	<0.05
 For the first sector of the first sector A sector sector sector sector sector 	0.5	0.4	0.6	0.3
Fe (total)	<0.027	0.15	<0.025	<0.025
A1	<0.680	<0.625	<0.625	<0.625
HCO ₃	nt	nt	nt	nt
PO ₄	nt	nt	nt	nt
so ₄	11	14	15	4
NO ₃	nt	nt	nt	nt
NH ₃	tr .	nt	nt	tr

- 13 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin

	Bar Negative Well	Hotchkiss Well	Hotchkiss Well	Hotchkiss Well	Hines Lumber Co. Well #1
Flow rate liters/min.	100+	20	2271	2271	6624
Measured temperature ^o C	16	33	27	27	25
Na:K ^o C	107	175	160	170	190
Na:K:Ca 1/3 β ο _C	136	157	146	155	167
Na:K:Ca 4/3 β ^O C	118	62	56	64	70
Na:K:Ca Mg corrected ⁰ ,C	28	83	87	86	86
SiO ₂ conductive ^O C	104	97	103	98	106
SiO ₂ adiabatic ^O C	104	98	103	99	106
SiO ₂ chalcedony o _C	74	67	73	68	77
SiO ₂ opal	-12	-18	-13	-17	-10
Č			· · ·		ana an

*Methodology for calculations presented in Appendix A. NC = not calculated.

14 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin -- Continued

	City of Hines Well	Goodman Spring (Hotchkiss)	Hines Mill Well #1	Hines Mill Well #2	Powerhouse Well
Flow rate liters/min.	2555	79	pumped	pumped	pumped
Measured temperature	17	22	28.5	27.8	25
Na:K ^O C	230	169	199	208	175
Na:K:Ca 1/3 ß ^O C	192	156	172	177	159
Na:K:Ca 4/3 ß ^O C	81	69	70	71	69
Na:K:Ca Mg corrected ^o C	57	81	90	89	106
SiO ₂ conductive ^O C	111	98	97	94	88
SiO ₂ adiabatic ^o C	110	99	98	96	91
SiO ₂ chalcedony ^O C	81	68	67	63	57
SiO ₂ opa1 ^O c	-7	-17	-18	-21	-25

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 15 -

ŧ

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin -- Continued

4	O.J. Thomás Well	0.J. Thomas Well	Potters Swamp Well	Rest Stop Well	Harney Valley Dev. Co. Oil Test Well
Flow rate liters/min.	1000+	1000+	100+	pumped	100+
Measured temperature ^O C	72	72	27	26	46
Na:K ^O C	60	50	'160	168	61
Na:K:Ca 1/3 β ^O C	104	101	147	152	105
Na:K:Ca 4/3 β ^O C	116	135	59	60	115
Na:K:Ca Mg corrected ^O C	99	NC	102	71 .7	96
SiO ₂ conductive ^O C	131	139	105	110	120
^{SiO} 2 adiabatic ^O C	127	135	106	110	118
SiO ₂ chalcedony ^O C	103	113	76	81	91
SiO ₂ opal ^o C	11	19	ר ^ו ר –. י	7	1

*Methodology for calculations presented in Appendix A. NC = not calculated

- 16 -

	Harney Valley Dev. Co. Oil Test Well	Development Well	Fischer Well	Trailer Court Well
Flow rate liters/min.	100+	pumped	pumped	pumped
Measured temperature Oc	50	26.5	25.5	26.5
°C			·	·
Na:K ^O C	40	192	175	180
Na:K:Ca 1/3 β ⁰ C	126	171	159	160
Na:K:Ca 4/3 β ^O C	143	76	69	63 4
Na:K:Ca Mg corrected ^O C	71	71	101	115
SiO ₂ conductive ^o C	133	97	88	95
SiO ₂ adiabatic ^o C	129	98	91	97
SiO ₂ chalcedony ^o C	105.	67	57	64
SiO ₂ opal ^O C	13	-18	-25	-20

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin -- Continued

*Methodology for calculations presented in Appendix A. NC = not calculated.

the limited data of this reconnaissance study are inconclusive on this point. Therefore, before detailed analyses of fluid provenance and movement can be made, a detailed sampling program including oxygen-, hydrogen-, and sulfateisotope analyses must be undertaken.

18

GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA*

The temperature-gradient and heat-flow results for the north Harney Basin are as shown in Table 5. Included in the table are the township/range-section and latitude and longitude location of each hole. In addition, the hole name, date of logging used, and collar elevation are included for each hole. The bottom hole temperature, maximum depth, corrected temperature gradient, and, where available, corrected heat flow are printed in blue on Plate I. These values are also listed in the table, as are the depth interval and average thermal conductivity used for calculation of the gradient and heat flow. The values are given in SI units. To transform units, the following conversion factors were used: 1×10^{-6} cal/cm² sec (HFU) = 41.84 mWm⁻², 1×10^{-3} cal/cm sec^OC (TCU) = 0.4184 Wm⁻¹K⁻¹, and $1^{O}C/Km = 1 mKm⁻¹ = 18.2^{O}F/100$ ft. Corrected gradient and corrected heat flow are values for which the topographic effects have been removed. These are not significant for most of the sites studied.

The holes are ranked in terms of the quality of the gradient or heat-flow information: high quality (A), good quality (B), marginal quality (C), data with some problems (D), and data for which no useful temperature gradient or heat flow can be estimated (X). All thermal-conductivity measurements were made on cutting samples.

Most data in the north Harney Basin have been obtained in holes drilled as water wells, so most thermal-conductivity values are estimated (parenthesis) or based on one or two cutting samples from surface spoil piles. Several of the holes are artesian, and gradients are estimated based on the bottom hole temperature and the assumed surface temperature. These gradients are maximum values, because some

*By D. D. Blackwell, Southern Methodist University, Dallas, Texas.

- 19 -

,÷. -

Table 5. Geothermal-gradient data, north Harney Basin, Oregon

...

	·			•	Bottom	Depth			Uncorr.	Corr.	Corr.		·
ữ₩n/Rng=	N Lat.	W Lông	Höle #	Collar	Temp.	Interval	Avg. TC	#	Gradient	Grādient	HF	Q	
Section	Deg.Min.	Deg Min.	Date	Elev.	(°C)	(m)	$Wm^{-1}K^{-1}$	TC	°C/km	°C/km	mWm ⁻²	HF	· ·
225/32E- 278A	43-38.53	118-52.35	TILLER 2 5/22/80	1277	19.00	20.0 57.0	(.96)		72.1 4.7	71.0	68	C	
225/32E- 268B	43-38.35	118-51.62	TURDY 5/21/80	1279	12.95	10.0 40.0	(.96)		69.1 3.6	68.1	66	C	
225/32E- 27AC	43-38.30	118-54.17	TILLER 3 5/22/80	1286	20.12	10.0 25.0			226.0 12.7	226.0	••••	· · · · · ·	
			•			25.0 96.0	(,96)		72.4 3.5	72.4	70	C	• •
225/32E- 27CB	43~38.08	118-52.75	TILLER 1 5/22/80	1265	16.48	5.0 100.0	(,96)		78.6 2.4	78.6	76	B	
225/33E- 27CD	43-37.62	118-38.50	TEMPLE 5/20/80	1268	15.84	.0 138.0	• •		> 48.0			×	
225/32E- 31DB	43-37.20	118-55.67	BLCKBURN 5/22/80	1269	12.79	15.0 48.0	(96)		53.5 2.2	53.5	51	C	
225/32E- 34CC	43-36.90	118-52.60	RIČE 6/11/75	1260	27.39	.0 95.0	(.96)		<140.0	<140.0	< 134	C	
225/32E- 34DD	43-36.87	118-51.88	HWY 20 5/20/80	1261	29.19	10.0 35.0			573.8 15.2	573.7		C	
	7	• •				35.0 60.0			181.7 .3	181.7	-	C	
						10.0 62.0	(-:96)		355.0 70.2	354.9	341	B	
235/32E- 6CB	43-36.32	118-49.17	*HANSON 5/22/80	1259	13.69	5.0 51.0	(.96)		74.6 1.7	74.5	72	B	· ·
245/32e- 1AD	43-31.33	118-49.32	NINEMILE 5/16/80	1257	38.45	10.0 35.0			273.5 3.8	273.5		C	· ·
I	-	· · · · ·				35.0 60.0			189.5 .2	189.5		C	
20 .						60.0 130.0			155.8 1.7	155.7		Ċ	
ı						130.0 160.0			97.8 .1	97.8		С	

Table 5. Geothermal-gradient data, north Harney Basin, Oregon--Continued

		• • •	· .					•			• .	1997 - 1997 -	
Twn/Rng- Section	N Lat. Deg.Min.	W Long Deg.Min.	Hole # Date	Collar Elev.	Bottom Temp. (°C)	Depth Interval (m)	Avg. TC Wm ⁻¹ K ⁻¹	# TC	Uncorr. Gradient °C/km	Corr. Gradient °C/km	Corr. HF mWm ⁻²	Q HF	
			· · · · · ·	= d	n Norman (name) Norman (name)	10.0 160.0	(.96)	ء :	165.8 14.1	165.8	159	, C	
245/32E- 8DA	43-30.23	118-54.27	STEVENS 5/15/80	1256	54.82	.0	(.96)			<284.0	- 1. - 1	F	
· .	en e			· · ·		110.0	*	· .	4 1	. *.			
•		•		· .	·	з ¹							
			• .	· · · · ·									
. •		•	2 2	· ·	sa to s			÷		•		an An an a	• .
					•		· · · · .				· · · ·		• •
		· · ·			د.					• •			
		·				· ·		, ·.·			· • • •		
		· · · ·	· · ·	· · · .				, ', ' /	· · ·				
\sim		· . · ·		•		•					4. A. A.		÷
<u>н</u>									a da		· · · ·		
•	• *	· · ·	· · ·							••			·· .
		•		· · ·		•.			· · ·	•			• •
•				· ·		• •				•		*.	
, i i i i i i i i i i i i i i i i i i i	• • •										i da		-
· ·				· · · · ·		· · · ·		÷.	· · ·	:			· .* • **
	· · ·		•					· · ·			*		÷ .
				n de la companya de	· · · · ·					· · · ·			· · ·
		• •				•		· ·			· · ·		· · ·
	an a					•		۰.				• .	
		•	•		· . · ·			• •			-		× . *
				· ·	· 	• •				,			
		•	•				· · ·				· .		ar an
			1				·				n en de la composition de la compositio La composition de la c		
								· ·					-
			•							in en la composition de la composition En la composition de la		• • •	• • • •
	· ·				•	· · · ·				••••••	•	· . ·	
			• •	•		• •		•		i			
			•					- 1					an shi a An shi
				· .							_		
	•									• •	· ·		
		· · · · ·			· .								÷ .

11 · 1

portion of the flow may come from deeper than the maximum depth actually logged. Also, some of the holes show large variation in geothermal gradient with depth, indicating some nonconductive effect on the data. Complete interpretation of the data set will require detailed understanding of the hydrologic and geologic conditions.

CONCLUSIONS AND RECOMMENDATIONS

The reconnaissance study performed for the northern Harney Basin has tentatively defined two low-temperature resource areas within piping distance of Burns which merit further investigation. They are (1) the area near the Soldier Creek shear zone (Plate I) and (2) the area immediately south, west, and east of the city of Burns. Site-specific analyses of these two areas should be carried out under one field program and include the following:

- Detailed (scale of 1:24,000 or less) geologic and photogeologic mapping of Burns and Harney 15-minute quadrangles -- to identify and evaluate active and/or thermal structures.
- Detailed spring and well sampling and analyses, including isotope analyses -- to determine fluid flow directions and provenance.
- 3. Closely spaced complete Bouguer and residual gravity anomaly studies and aeromagnetic studies -- to delineate possible active thermal structures below the basin fill.
- 4. Several resistivity traverses (either dipole-dipole, roving dipole, or telluric) in an east-west direction -- in order to further define the 'thermal regime.
- 5. A microearthquake/contemporary seismic study of the entire Harney Basin, making use of a high-gain seismometer array -- to define the seismicity of the area in relation to the geothermal system.
- 6. A program of twenty to thirty 500-ft gradient/stratigraphy holes, followed by a program of five to ten 2,000-ft gradient holes -- to model heat flow and directly test geothermal aquifers.

23 -

BIBLIOGRAPHY OF THE HARNEY BASIN

Baldwin, E.M., 1976, Geology of Oregon (revised ed.): Dubuque, Iowa, Kendall/ Hunt, 147 p.

Beaulieu, J.D., 1972, Geologic formations of eastern Oregon (east of longitude 121° 30'): Oregon Department of Geology and Mineral Industries Bulletin 73, 80 p.

Beeson, M.H., 1969, Correlation of ash-flows by trace element abundance (abs.): Proceedings of the Oregon Academy of Science, v. 4, p. 23-24.

Berg, J.W., Jr., and Thiruvathukal, J.V., 1967, Regional gravity of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 29, no. 6, p. 120-126.

Blackwell, D.D., Hull, D.A., Bowen, R.G., and Steele, J.L., 1978, Heat flow of Oregon: Oregon Department of Geology and Mineral Industries Special Paper 4, 42 p.

Blank, H.R., Jr., and Gettings, M.E., 1974, Geophysical evidence of caldera structures in the Harney Basin of central eastern Oregon (abs.): EOS (American Geophysical Union Transactions), v. 55, no. 5, p. 557.

Bodvarsson, G., Couch, R.W., MacFarlane, W.T., Tank, R.W., and Whitsett, R.M., 1974, Telluric current exploration for geothermal anomalies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 36, no. 6, p. 93-107.

Bowen, R.G., 1972, Geothermal gradient studies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 34, no. 4, p. 68-71.

_____1975, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-75-3, 133 p.

Bowen, R.G., Blackwell, D.D., and Hull, D.A., 1975, Geothermal studies and exploration in Oregon (draft final report to U.S. Bureau of Mines): Oregon Department of Geology and Mineral Industries Open-File Report 0-75-7, 65.

____1977, Geothermal exploration studies in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 19, 50 p.

Bowen, R.G., Blackwell, D.D., Hull, D.A., and Peterson, N.V., 1976, Progress report on heat-flow study of the Brothers fault zone, central Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 38, no. 3, p. 39-46.

Bowen, R.G., and Peterson, N.V., compilers, 1970, Thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 14 (map), scale approx. 1:1,000,000. Bowen, R.G., Peterson, N.V., and Riccio, J.F., compilers, 1978, Low- to intermediate-temperature thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-10, scale approx. 1:1,000,000.

1812

- Brooks, H.C., 1963, Quicksilver in Oregon: Oregon Department of Geology and Mineral Industries Bulletin 55, p. 204.
- Buwalda, J.P., 1921, Report on oil and gas possibilities of eastern Oregon: Oregon Bureau of Mines and Geology, The mineral resources of Oregon, v. 3, no. 2, p. 28-29.
- Campbell, I., Conel, J.E., Rogers, J.J.W., and Whitfield, J.M., 1959, Possible correlation of Rattlesnake and Danforth Formations of eastern Oregon (abs.): Geological Society of America Bulletin, v. 69, no. 12, pt. 2, p. 1678.

Corcoran, R.E., 1956, Sedimentary basins in Oregon: World Oil, v. 143, no. 5, p. 140-142.

- Davenport, R.E., 1971, Geology of the Rattlesnake and older ignimbrites in the Paulina Basin and adjacent area, central Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 132 p.
- Dole, H.M., and Corcoran, R.E., 1954, Reconnaissance geology along U.S. Highway 20 between Vale and Buchanan, Malheur and Harney Counties, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 16, no. 6, p. 37-39.
- Enlows, H.E., and Davenport, R.E., 1971, Tertiary ignimbrites in central Oregon (abs.): Proceedings of the Oregon Academy of Science, v. 7, p. 75.
- Enlows, H.E., Parker, D., and Davenport, R.E., 1973, The Rattlesnake ignimbrite tongue (abs.): Geological Society of America Abstracts with Programs, v. 5, no. 1, p. 38-39.
- Godwin, L.H., Haigler, L.B., Rioux, R.L., White, D.E., Muffler, L.J.P., and Wayland, R.G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U.S. Geological Survey Circular 647, 18 p.
- Greene, R.C., 1970, A crystal-rich ash-flow tuff in southeast Oregon (abs.): Geological Society of America Abstracts with Programs, v. 2, no. 2, p. 97-98.
 - 1972, Preliminary geologic map of the Burns and West Myrtle Butte 15minute quadrangles, Oregon: U.S. Geological Survey Miscellaneous Field Studies Map MF-320, scale 1:62,500.
 - ____1973, Petrology of the welded tuff of Devine Canyon, southeastern Oregon: U.S. Geological Survey Professional Paper 797, 26 p.

- Greene, R.C., Walker, G.W., and Corcoran, R.E., 1972, Geologic map of the Burns quadrangle, Oregon: U.S. Geological Survey Miscellaneous Geological Investigations Map I-680, scale 1:250,000.
- Groh, E.A., 1966, Geothermal energy potential in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 7, p. 125-135.
- Hull, D.A., Blackwell, D.D., and Black, G.L., 1978, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-78-4, 187 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., and Peterson, N.V., 1977, Heat-flow study of the Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-3, 43 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., Peterson, N.V., and Black, G.L., 1977, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-2, 134 p.
- Hull, D.A., Bowen, R.G., Blackwell, D.D., and Peterson, N.V., 1976, Geothermal gradient data, Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-76-2, 24 p.

_____1977, Preliminary heat-flow map and evaluation of Oregon's geothermal energy potential: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 7, p. 109-123.

- Hull, D.A., and Newton, V.C., Jr., 1977, Geothermal activity in 1976: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 1, p. 7-15.
- Leonard, A.R., 1970, Ground water resources in Harney Valley, Harney County, Oregon: Oregon State Engineer Ground Water Report 16, 85 p.
- Lund, E.H., 1962, Welded tuff in the Danforth Formation (abs.): Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 24.
- 1966, Zoning in an ash flow of the Danforth Formation, Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 9, p. 161-170.
- MacLeod, N.S., Walker, G.W., and McKee, E.H., 1975, Geothermal significance of eastward increase in age of upper Cenozoic rhyolitic domes in southeastern Oregon: U.S. Geological Survey Open-File Report 75-348, 22 p.
- Maloney, N.J., 1962, Tertiary and Quaternary faulting in southwestern Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 21-22.
- Mariner, R.H., Presser, T.S., Rapp, J.B., and Willey, L.M., 1975, The minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U.S. Geological Survey open-file report, 27 p.

- Mariner, R.H., Rapp, J.B., Willey, L.M., and Presser, T.S., 1974, The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon: U.S. Geological Survey open-file report, 27 p.
- Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.
- McKee, E.H., MacLeod, N.S., and Walker, G.W., 1976, K/Ar ages of late Cenozoic silicic volcanic rocks, southeast Oregon: Isochron/West, no. 15, p. 37-41.
- Merriam, J.C., Stock, C., and Moody, C.L., 1925, The Pliocene Rattlesnake Formation and fauna of eastern Oregon, with notes on the geology of the Rattlesnake and Mascall deposits: Carnegie Institution of Washington Publication 347, p. 43-92.
- Muffler, L.J.P., ed., 1979, Assessment of geothermal resources of the United States--1978: U.S. Geological Survey Circular 790, 163 p.
- Newton, V.C., Jr., and Hull, D.A., 1978, Geothermal energy in 1977: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 40, no. 1, p. 8-16.
- Parker, D.J., 1974, Petrology of selected volcanic rocks of the Harney Basin, Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 119 p.
- Parker, D., and Armstrong, R.L., 1972, K-Ar dates and Sr isotope initial ratios for volcanic rocks in the Harney Basin, Oregon: Isochron/West, no. 5, p. 7-12.
- Peterson, N.V., and Groh, E.A., 1964, Diamond Craters, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 26, no. 2, p. 17-34.
- Piper, A.M., 1936, Resume of the geologic history of the Harney Basin, Oregon: Geological Society of the Oregon Country Geological News Letter, v. 2, no. 8, p. 9-12.
- Piper, A.M., Robinson, T.W., and Park, C.F., Jr., 1939, Geology and groundwater resources of the Harney Basin, Oregon: U.S. Geological Survey Water-Supply Paper 841, 189 p.
- Riccio, J.F., compiler, 1979, Preliminary geothermal resource map of Oregon, 1978: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-11, scale 1:500,000.
- Riccio, J.F., and Newton, V.C., Jr., 1979, Geothermal exploration in Oregon in 1978: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 41, no. 3, p. 39-46.

- 27 -

- Russell, I.C., 1884, A geological reconnaissance in southern Oregon: U.S. Geological Survey 4th Annual Report, 1882-83, p. 431-464.
 - 1903a, Notes on the geology of southwestern Idaho and southeastern Oregon: U.S. Geological Survey Bulletin 217, p. 36-69.
 - 1903b, Preliminary report on artesian basins in southwestern Idaho and southeastern Oregon: U.S. Geological Survey Water-Supply Paper 78, p. 38-43.
 - 1905, Preliminary report on the geology and water resources of central Oregon: U.S. Geological Survey Bulletin 252, p. 36-54.
- Sass, J.H., Galanis, S.D., Jr., Munroe, R.J., and Urban, T.C., 1976, Heatflow data from southeastern Oregon: U.S. Geological Survey Open-File Report 76-217, 52 p.
- Sass, J.H., Lachenbruch, A.H., Munroe, R.J., Green, G.W., and Moses, T.H., Jr., 1971, Heat flow in the western United States: Journal of Geophysical Research, v. 76, no. 26, p. 6376-6413.
- Sass, J.H., and Munroe, R.J., 1973, Temperature gradients in Harney County, Oregon: U.S. Geological Survey Open-File Report 73-247, 3 p., 7 figs.
- Stearns, N.D., Stearns, H.T., and Waring, G.A., 1937, Thermal springs in the United States: U.S. Geological Survey Water-Supply Paper 679-B, p. 59-206.
- Stone, C.J., 1931, Petroleum reconnaissance report, Harney Basin: Oregon Department of Geology and Mineral Industries, unpublished, 9 p. (geol. map, 1930, 1:125,000).

Thayer, T.P., 1952, The tuff member of the Rattlesnake Formation of eastern Oregon--an ignimbrite (abs.): American Geophysical Union Transactions, V. 33, p. 327.

Thiruvathukal, J.V., 1968, Regional gravity of Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 92 p.

U.S. Geological Survey, 1968, Volcanic rocks and stratigraphy in Washington and Oregon, in Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-A, p. A35-A36 (R.C. Greene and G.W. Walker; D.R. Crandall; D.R. Mullineaux; R.S. Sigafoos and E.L. Hendricks, investigators).

J972, Aeromagnetic map of the Adel and parts of the Burns, Boise, and Jordan Valley 1° by 2° quadrangles, Oregon: U.S. Geological Survey Open-File Report 72-390, scale 1:250,000.

1973, Ground-water gradients near Malheur Lake, in Geological Survey research 1973: U.S. Geological Survey Professional Paper 850, p. 186 (L.L. Hubbard and A.R. Leonard, investigators).

- 28 -

4

USS. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979, Chemical analyses of thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-79-3, 170 p. Van Orstrand, C.E., 1938, Temperatures in the lava beds of east-central and south-central Oregon: American Journal of Science, 5th Series, v. 35, no. 205, p. 22-46.

요즘 가지 않는 같은

Walker, G.W., 1969a, Possible fissure vent for a Pliocene ash-flow tuff, Buzzard Creek area, Harney County, Oregon, <u>in</u> Geological Survey research 1969: U.S. Geological Survey Professional Paper 650-C, p. C8-C17.

• }

____1969b, Geology of the High Lava Plains province, <u>in</u> Weissenborn, A.E., ed., Mineral and water resources of Oregon: Oregon Department of Geology and Mineral Industries Bulletin 64, p. 77-79.

____1970, Cenozoic ash-flow tuffs of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 32, no. 6, p. 97-115.

____1974, Some implications of late Cenozoic volcanism to geothermal potential in the High Lava Plains of south-central Oregon: U.S. Geological Survey Open-File Report 74-121, 14 p.

_1977, Geologic map of Oregon east of the 121st meridian: U.S. Geological Survey Miscellaneous Investigations Series Map I-902 (prepared in cooperation with the Oregon Department of Geology and Mineral Industries), scale 1:500,000, 2 sheets.

____1979, Revisions to the Cenozoic stratigraphy of Harney Basin, southeastern Oregon: U.S. Geological Survey Bulletin 1475, 35 p.

Walker, G.W., Dalrymple, G.B., and Lanphere, M.A., 1974, Index to potassiumargon ages of Cenozoic volcanic rocks of Oregon: U.S. Geological Survey Misc. Field Studies Map MF-569.

Walker, G.W., and Repenning, C.A., 1965, Reconnaissance geologic map of the Adel quadrangle, Lake, Harney, and Malheur Counties, Oregon: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-446, scale 1:250,000.

Walker, G.W., and Swanson, D.A., 1968a, Laminar flowage in a Pliocene soda rhyolite ash-flow tuff, Lake and Harney Counties, Oregon, in Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-B, p. B37-B47.

_____1968b, Summary report on the geology and mineral resources of the Harney Lake and Malheur Lake areas of the National Wildlife Refuge, north-central Harney County, Oregon: U.S. Geological Survey Bulletin 1260-L, 17 p.

Waring, G.A., 1908, Geology and water resources of a portion of south-central Oregon: U.S. Geological Survey Water-Supply Paper 220, 86 p.

____1909, Geology and water resources of the Harney Basin region, Oregon: ____U.S. Geological Survey Water-Supply Paper 231, 93 p.

1965 (revised by Blankenship, R.R., and Bentall, R.), Thermal springs of the United States and other countries of the world--a summary: U.S. Geological Survey Professional Paper 492, 383 p.

Washburne, C.W., 1911, Gas prospects in Harney Valley, Oregon: U.S. Geological Survey Bulletin 431, pt. 2, p. 56-57.

APPENDIX A

Formulas used in calculations

Na:K (revised):

$$t^{0}C = \frac{1217}{\log (Na/K) + 1.483} - 273.15 (Fournier, 1979)$$
Na:K:Ca:

$$t^{0}C = \frac{1647}{2.24 + F(T)} - 273.15 (Fournier and Truesdell, 1973),$$
where F (T) = log (Na/K) + [ß log (\sqrt{Ca}/Na)],
 $\beta = 1/3$ if t > 100⁰C, and 4/3 if t < 100⁰C,
 $t^{0}C = calculated reservoir temperature,
and concentrations are expressed in molality.
Magnesium correction ratio:
$$\frac{(milliequivalents Mg)}{(milliequivalents Mg) + (milliequivalents Ca) + (milliequivalents K) X 100}$$
If R <5 or >50, no calculation was made. For R Letween 5-50,
 $at_{Mg} = 10.66 - (4.7415) (R) + [(325.87) (log R)^{2}] - [(1.032 \times 10^{5}) (log R)^{2}/T] - [(1.968 \times 10^{7}) (log R)^{2}/T] - [(1.968 \times 10^{7}) (log R)^{2}/T^{2}],$
where R = magnesium correction ratio expressed in equivalents,
 $at_{Mg} = the temperature correction that is subtracted from
the Na:K:Ca 1/3 ß calculated temperature,
T = Na:K:Ca 1/3 ß calculated temperature,
T = Na:K:Ca 1/3 ß calculated temperature,
T = Na:K:Ca 1/3 ß calculated temperature in 0K.
Or Δt_{Mg} can be obtained by using the graph compiled by Fournier and Potter (1979).
SiO₂ (conductive), $t^{0}C = \frac{1309}{5 \cdot 19 + \log (SiO_{2})} - 273.15$
SiO₂ (chalcedony), $t^{0}C = \frac{1522}{5 \cdot 75 + \log (SiO_{2})} - 273.15$
SiO₂ (chalcedony), $t^{0}C = \frac{731}{4 \cdot 52 + \log (SiO_{2})} - 273.15$,
SiO₂ (opa1), $t^{0}C = \frac{731}{4 \cdot 52 + \log (SiO_{2})} - 273.15$,$$

where SiO₂ is expressed in mg/l.

- 31 -

References cited:

Fournier, R.O., 1979, A revised equation for the Na/K geothermometer, in Geothermal Resources Council Transactions 3, 1979, p. 221-224.

Fournier, R.O., and Potter, R.W., II, 1979, Magnesium correction to the Na:K:Ca chemical geothermometer: Geochimica et Cosmochimica Acta, v. 43, p. 1543-1550.

Fournier, R.O., and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells: American Journal of Science, v. 264, p. 685-697.

Fournier, R.O., and Truesdell, A.H., 1973, An empirical Na:K:Ca geothermometer for natural waters: Geochimica et Cosmochimica Acta, v. 37, p. 1255-1275.

- 32 - J

Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.

DEPTH METERS	- DEP FE	LOCATION: HOLE NAME DATE MEASU TH ET	BURNS AMS 225/32E-27 : TILLER JRED: 5/2 - TEMPERAT DEG C	, OREGON BA 2 2/80 URE DEG F	geotherma Deg czkm	L GRADIENT DEG F/100	FT
10.0 20.0 30.0 35.0 40.0 45.0 55.0 57.0	32 65 82 98 114 131 147 164 180 187	.8 15 .6 16 .9 16 .4 17 .8 17 .6 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 18 .0 19	5.040 5.110 5.710 7.100 7.480 7.800 3.170 3.460 3.650 3.650	59.07 61.00 62.08 62.78 63.46 64.04 64.71 65.23 65.57 66.20	0.0 107.0 120.0 78.0 76.0 64.0 74.0 58.0 38.0 175.0	09632512 6443512 432512 9	

ယ်

Geothermal-gradient data

APPENDIX B

	LOCAT	ION: BURNS F	MS, OREGON	•	· · · ·
	HOLE	NAME: TURI)Y	· .	
DEPTH METERS	DEPTH FEET	TEMPEI DEG C	RATURE DEG F	Geotherm Deg C/KM	AL GRADIENT DEG F/100 FT
10.0 15.0 20.0 35.0 35.0 40.0	32.8 49.2 65.6 82.0 98.4 114.8 131.2 137.8	10.920 11.160 11.470 11.780 12.190 12.600 12.900 12.950	51.66 52.09 52.65 53.20 53.94 54.68 55.22 55.31	0.0 48.0 62.0 62.0 82.0 82.0 60.0 75.0	0.0 2.4 3.4 4.5 4.5 3.3 4.5 3.3

မ္မာ

DEPTH METERS	LOCA' HOLE DATE DEPTH FEET	IION: BURNS F 225/32E- NAME: TILL MEASURED: 5 TEMPER DEG C	MS, OREGON 27AC ER 3 5/22/80 ATURE DEG F	GEOTHERMA DEG C/KM	AL GRADIENT DEG F/100 FT
10.0 15.0 20.0 25.0 30.0 45.0 45.0 45.0 45.0 55.0 65.0 65.0 80.0 85.0 95.0 95.0 95.0 95.0	32.8 495.6 982.4 114.2 191.6 180.8 180.8 1913.6 180.8 2013.6 200.6 2013.	$\begin{array}{c} 11.500\\ 12.380\\ 13.240\\ 14.980\\ 15.240\\ 15.530\\ 15.890\\ 16.200\\ 16.700\\ 16.700\\ 16.700\\ 17.950\\ 17.950\\ 17.950\\ 17.950\\ 18.330\\ 18.650\\ 18.970\\ 19.280\\ 19.500\\ 19.500\\ 20.120\end{array}$	52.70 54.83 55.94 55.99.45 59.60 61.069 63.19 64.95 64.97 64.97 66.71 66.71 66.71 66.71 66.71 66.76 76.76 76	0.0 17248.0 3452.8 10 10 10 10 10 10 10 10 10 10 10 10 10	07.4.192004585551554482 0.99122345855515554482 192345555515554482 192355554482

	LOCA	TION: BURNS	AMS, OREGO	N		•••
DEPTH METERS	HOLE DATE DEPTH FEET	NAME: TIL MEASURED: TEMPE DEG C	-27CB LER 1 5/22/80 RATURE DEG F	GEOTHERM DEG C/KM	AL GRADIENT DEG F/100 F	Т.,
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 55.0	16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4	9.030 9.400 9.770 10.120 10.440 10.790 11.150 11.510 11.830 12.290 12.710	48.25 48.92 49.59 50.22 50.79 51.42 52.07 52.29 52.29 54.12 54.88	0.0 74.0 74.0 70.0 64.0 72.0 72.0 64.0 92.0 84.0	0.0 4.1 4.1 3.8 3.5 3.8 4.0 4.0 5.0 4.0 5.0 4.6	
60.0 65.0 70.0	196.8 213.2 229.6	13.140 13.570 14.120	55.65 56.43 57.42	86.0 86.0 110.0	4.7 4.7 6.0	, . ,
75.0 80.0 85.0 90.0	-246.0 262.4 278.8 295.2	14.560 14.850 15.190 15.590	58.21 58.73 59.34 60.06	88.0 58.0 68.0 80.0	4.8 3.2 3.7 4.4	
95.0 100.0 104.5	311.6 328.0 342.8	16.030 16.340 16.480	60.85 61.41 61.66	88.0 62.0 31.1	4.8 3.4 1.7	

-

: .*

. 39 -

ور مندد.

DEPTH METERS	 LOCA HOLE DATE DATE DEPTH FEET	TION: BUPNS A 225/33E- NAME: TEMP MEASURED: 9 ————————————————————————————————————	1MS, DREGON -27CD 2LE 5/20/80 RATURE DEG F	Geothermal Gradient Deg C7km Deg F/100
00000000000000000000000000000000000000	32.8 49.6 82.0 114.8 131.2 147.6 1896.3 144.8 1919.6 1896.3 149.4 1963.6 1996.3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	9.650 9.680 9.690 9.690 9.710 9.750 9.770 9.770 9.770 9.770 9.770 9.850 9.770 9.850 9.8850 9.8850 9.8850 9.8850 9.8850 9.8850 9.910 9.910 115.840	49.3 ? 49.4 1 49.4 2 49.4 4 49.4 5 49.5 5 599.6 7 511 49.5 5 555 49.5 7 511 49.5 5 555 49.7 7 700 800 845 49.8 7 49.8 7 49.8 7 49.8 7 49.8 7 49.8 7 49.8 7 49.8 7 49.8 7 55.5 5 56.7 7 77.7 800 845 55.5 5 56.7 5 77.7 800 845 55.5 5 56.7 5 57.7 7 700 57.5 57.7 7 700 57.5 5 57.5 57.5 57.5 57.7 7 700 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.7 7 700 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.55555555555555	0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0

	LOCAI	ION: BURNS A	AMS, OREGON		
	HOLE	NAME : BLCI MEASURED : S	(BURN 5/22/80	· · · ·	
DEPTH METERS	DEPTH FEET	DEG C	DEG F	geotherma Deg C/KM	L GRADIENT DEG F×100 FT
10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0	32.8 49.2 65.6 82.0 98.4 114.8 131.2 1 <u>4</u> 7.6	11.010 11.050 11.300 11.520 11.730 12.080 12.390 12.620	51.82 51.89 52.34 52.74 53.11 53.74 54.30 54.72	0.0 8.0 50.0 44.0 42.0 70.0 62.0 46.0	0.9 0.4 2.7 2.4 3.8 3.4 3.5

	LUCA	LION: BURNS (225/325	AMS, UREGUN -34DD	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	
DEPTH METERS	HOLE DATE DEPTH FEET	NAME: HWY MEASURED: TEMPE DEG-C	20 5/20/80 RATURE DEG_F	Geothermai Deg C/Km	_ GRADIENT DEG F/100 FT
10.0 15.0 25.0 25.0 35.0 40.0 45.0 55.0 55.0 60.0	32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 203.4	10.820 12.580 16.000 29.220 22.160 24.510 25.590 26.670 27.610 28.410 28.990 29.190	51.48 54.64 60.80 66.60 71.89 76.12 78.06 80.01 81.70 83.14 84.18 84.54	0.0 352.0 684.0 644.0 588.0 470.0 216.0 216.0 188.0 160.0 116.0 100.0	0.0 19.3 37.5 35.3 25.8 11.9 11.9 10.3 8.8 5

TEMPERATURE, DEG C

· • • • •	LOCAT	ION: BURNS (AMS, OREGOI	374 6	
DEPTH METERS	HOLE DATE DEPTH FEET	NAME: HANS MEASURED: S TEMPEI DEG C	SON 5/22/80 RATURE DEG F	GEOTHERM DEG C/KM	AL GRADIENT DEG F7100 FT
5.0 105.0 25.0 25.0 35.0 45.0 45.0 45.0 51.0	16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 167.3	10.320 10.630 10.950 11.320 11.720 12.090 12.490 12.910 13.580 13.580	50.58 51.13 51.71 52.38 53.10 53.76 54.48 55.24 55.87 56.44 56.44	0.0 62.0 64.0 74.0 80.0 74.0 80.0 84.0 70.0 64.0	0.0 3.4 3.5 4.1 4.4 4.1 4.4 3.5 5.5 0

47 £ -

i.

54 . - - -

	LOCAT	LION: BURNS A	1S, OREGON	· · · ·	
DEPTH METERS	HOLE DATE DEPTH FEET	NAME: NINEI MEASURED: 5 TEMPER DEG C	11LE 11LE 216/80 2TURE DEG F	geotherma Deg c/km	L GRADIENT DEG F/100 FT
10.00 15.00 15.00 15.00 15.00 10.00 15.00 10.00 10.00 10.00 10.00 11.00 10.00 11.00 10.00 11	32.8 49.6 82.0 98.4 114.2 147.6 180.4 1913.147.6 180.4 1913.2 147.6 180.4 1913.2 147.6 180.4 1913.2 147.6 180.4 1913.2 2462.8 2014.8 2129.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 82.6 0.4 114.2 164.0 199.3 20.6 0.4 82.6 0.4 114.2 164.0 199.3 20.6 0.4 82.6 0.4 199.3 20.6 0.4 82.6 0.4 199.3 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 0.4 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 199.5 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6	13.080 14.510 15.590 17.200 18.530 19.920 21.940 23.730 24.710 25.5190 27.990 29.320 27.100 27.990 31.880 31.860 31.860 34.850 34.860 34.	55.54 58.12 60.96 62.96 62.96 62.96 62.96 62.97 73.42 77 74.18 77 74.18 77 79.88 82 85 85 87 93 94 57 99 99 99 99 99 99 99 99 10 10	0.0 286.0 216.0 322.0 266.0 210.0 194.0 194.0 198.0 170.0 158.0 138.0 138.0 138.0 136.0 136.0 144.0 142.0 162.0 136.0 136.0 136.0 136.0 164.0 136.0 164.0 164.0 162	0.797635633876178539988051796901 11745109.0870.97878978951796901

	LOCATIO	N: BURNS A	15, OREGON		
DEPTH METERS	HOLE NA DATE ME DEPTH FEET	245/32E- ME: STEVI ASURED: 5 TEMPER DEG C	BDA ENS /15/80 ATURE DEG F	geothermal Deg C/km	- GRADIENT DEG F7100 FT
5.0 10.0 15.0 25.0 345.0 45.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 555.0 1005.0 11150.0 1275.0 1275.0 1455.0 1455.0 1455.0 1455.0 1455.0 1455.0 1655.0 1775.0 1775.0 1775.0 1775.0 1760.0 1750	$\begin{array}{c} 16.4\\ 32.8\\ 49.6\\ 89.4\\ 99.6\\ 99.4\\ 131.6\\ 147.6\\ 1460.4\\ 196.3\\ 2129.6\\ 0.4\\ 191.9\\ 2462.8\\ 24$	51.680 51.580 51.580 52.190 52.190 52	$123.94 \\124.84 \\125.38 \\125.92 \\126.19 \\126.59 \\126.14 \\126.45 \\126.55 \\126.51 \\126.61 \\126.69 \\126.79 \\126.89 \\127.20 \\127.33 \\127.42 \\127.54 \\127.57 \\128.08 \\128.34 \\128.71 \\129.69 \\129.61 \\129.61 \\129.61 \\129.64 \\130.64 \\130.68 \\130.64 \\130.68 \\130.64 \\130.68 \\130.64 \\130.68 \\130.64 \\130.68 \\130.68 \\130.64 \\130.68 \\130.68 \\130.64 \\130.68 \\130.$	0.0 100.0 34.0 24.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	0539430973554877858848353393119898091 0531111000000000000000011122111100000101

STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1005 State Office Building Portland, Oregon 97201

AREA OR Harney 80-6

OPEN-FILE REPORT 0-80-6

PRELIMINARY GEOLOGY AND GEOTHERMAL RESOURCE POTENTIAL OF THE NORTHERN HARNEY BASIN, OREGON

University of Utan Research institute Earth science lab.

bу

D. E. Brown

G. D. McLean, and

G. L. Black

Under the direction of J. F. Riccio

Study completed under U. S. Department of Energy Cooperative Agreement No. DE-FC07-79ET27220

1980

DISCLAIMER

This report has not been edited for complete conformity with Oregon Department of Geology and Mineral Industries standards. Data in this document are preliminary and are subject to change upon further verification.

CONTENTS

NTRODUCTION · · · · · · · · · · · · · · · · · · ·	Ĺ
EOLOGY	3.
EOPHYSICS	7
ATER CHEMISTRY	3
EOTHERMAL-GRADIENT AND HEAT-FLOW DATA	}
ONCLUSIONS AND RECOMMENDATIONS	3
IBLIOGRAPHY OF THE HARNEY BASIN	1
PPENDIX A: Formulas used in calculations	1
PPENDIX B: Geothermal-gradient data	3

ILLUSTRATIONS

FIGURES

1. Map showing location of study area, northern Harney Basin, Oregon. 2 TABLES

1. Radiometric (K/Ar) ages of selected rocks, northern Harney Basin . 3

Bulk chemical composition of selected rocks, northern Harney Basin. 4
Spring and well chemistry, northern Harney Basin area 9
Geothermetric calculations of minimum reservoir temperatures

Plate I. Geologic map of the northern Harney Basin, Oregon Plate II. Lineament map of the Harney Basin, Oregon

Simple Bouguer gravity anomaly map of the Harney Basin, Oregon Aeromagnetic map of the Harney Basin, Oregon

ii -

INTRODUCTION

The study area is located at the northern end of a large, circular topographic depression in the central portion of eastern Oregon known as the Harney Basin (Figure 1). Limits of the study area were arbitrarily set at the boundaries of available U. S. Geological Survey (USGS) topographic maps at latitudes 43° 45' on the north and 43° 30' on the south and at longitudes 119° 15' on the west and 118° 30' on the east. This study, performed under U. S. Department of Energy (USDOE) Contract No. DE FC07-79ET27220, was undertaken to estimate the geothermal potential of the area by using various methods including compilation of existing data, reconnaissance geologic mapping, lineament analysis, well and spring geochemistry, and accrual of geothermal-gradient data.

Geographically, the study area is comprised of a 5,180-km² (200-mi²) relatively flat, closed drainage basin surrounded by mountainous highlands. Total relief in the basin is less than 9 m (30 ft), and the total relief in the highlands is more than 600 m (2,000 ft). The only major population center is the county seat of Burns with the adjacent community of Hines, both of which are located on the western edge of the basin. The remainder of the northern Harney Basin is comprised of swampy bird habitat, cattle ranches and range land, and scrub forests in the higher elevations. Drainage within the basin is toward the south and east through Sage Hen Creek from the west, Silvies River from the north, and Malheur Slough from the east.

Figure 1: Map showing location of study area.

îN i ⁻

GEOLOGY

The geologic map (Plate I) of this area is based on (1) a field check of the published map by Greene (1972) of the Burns 15-minute quadrangle, with minor revisions, and (2) an original reconnaissance study, conducted during the fall of 1979 and the spring of 1980, of the Buchanan, Carson Point, Stinkingwater Pass, and Mahon Creek 7½-minute quadrangles and the Harney 15-minute quadrangle. Lithologies and age assignments were based on hand-specimen identification, limited K/Ar ages (Table 1), and bulk chemistry (Table 2). Areal extent of units and other field data were plotted on USGS topographic maps; specific points were located by Brunton compass and pacing. No aerial photographs were used in mapping.

Table 1. Radiometric (K/Ar) ages of selected rocks of the northern Harney Basin

1				
Sample no.*	Location	<u>Rock type</u>	Age**	<u>Stratigraphic unit</u>
ML-114-75	118 ⁰ 37'30" 43 ⁰ 38'07"	Silicic dome	^s 14.74 <u>+</u> 0.5 my	Tmrd
G-54-5-66	119 ⁰ 08'18" 43 ⁰ 30'48"	Rhyodacite	^a 7.82 <u>+</u> 0.26 my	Tmrb
ML-33-75	119 ⁰ 18'12" 43 ⁰ 34'06"	Rhyolite	ⁿ 7.55 <u>+</u> 0.10 my	Tmrb
MK-3-79	119 ⁰ 08'12" 43 ⁰ 34'06"	Rhyolite	⁰ 7.54 <u>+</u> 0.10 my	Tmrb
G-257-3-66	119 ⁰ 04 ' 12" 43 ⁰ 37 ' 42"	Welded tuff	^a 6.82 <u>+</u> 0.33 my	Tmtr

 * References: G - from Greene and others, 1972; ML - from McLeod and others, 1975; MK - from McKee and others, 1976.
**s - sanidine age; a - anorthoclase age; o - obsidian age; n - no method given.

- 3 -

Table 2. Bulk chemical composition of selected rocks of the northern Harney Basin. (Letters at top of each column indicate sample number and map symbol for stratigraphic unit. All values are in weight percent.)

Compo- nent	*G-9-3 <u>Tmtd</u>	G-9-6 <u>Tmtd</u>	B-0-20-2 Tmtp	G-9-1 <u>Tmtd</u>	B-0-19-2
SiO ₂	73.6	74,1	74.27	75.2	75.82
Ti0 ₂	0.26	0.28	0.18	0.21	0.22
A1203	11.2	12.2	13.73	11.6	12.59
FeO (Total Fe)	2.66	2.96	0.30	3.2	1.48
MgO	0.83	0.24	0.16	0.13	0.04
CaO	0.71	0.34	0.14	0.25	0.29
Na ₂ 0	3.8	4.0	4.02	3.7	3.91
К ₂ 0	4.5	4.6	4.37	4.4	4.18
Total	97.62	98.72	97.17	98.66	98.53

* References: G - from Greene, 1973; B - from Beeson, 1969.

The geology of the northern Harney Basin is comprised of a framework of three flat-lying, extensive, late Miocene ash-flow sheets onlapping a regional unit of early Miocene flood basalts. These ash flows, named in order of increasing age, the Rattlesnake (unit *Imtr* on the geologic map), Prater Creek (unit *Imtp*), and Devine Canyon (unit *Imtd*) Ash-flow Tuffs, are separated by discrete sedimentary units, limited basalt and andesite flows, and silicic intrusions.

Trace element studies (Park and Armstrong, 1972) indicate that the ashflow tuffs, the silicic intrusives, and the related mafic flows, for the study area as well as for adjacent areas to the south and west, constitute a genetically related bimodal compositional assemblage. Although detailed relationships are unclear at the time of this study, at least one caldera--the source for the Devine Canyon Ash-flow Tuff--is located in the study area near Burns (Walker, 1979). The oldest units recognized in the field were found in the northwest corner of the map area and are the early Miocene basalts (unit Tmba) dated in adjacent areas at 12.1 to 20.2 m.y. The youngest bedrock units are mafic vent complexes and associated flows (units QTmv and QTb) near Burns dated at 2.3 to 2.9 m.y. (Parker, 1974). Complete age relationships of all units are presented in the time-rock chart included on the geologic map (Plate I).

Faulting in the northern basin follows three general trends. The first is the trend of the Brothers fault zone $(N.25^{\circ}-35^{\circ}W.)$, which is exhibited most strongly immediately west of Burns in the area of Burns Butte cutting all geologic units present including the aforementioned 2.3- to 2.9-m.y.-old basalts. Motion on these faults appears to be dip-slip; however, several investigators (MacLeod and others, 1975) feel such motion may be the surface manifestation of a right-lateral wrench system at depth. The second trend is the Basin-Range trend (approximately north-south), found throughout the eastern portion of the

5 -

study area, cutting all lithologies present. Although some of these faults ³ appear to be dip-slip, they may have some strike-slip or oblique-slip component, specifically along Soldier Creek in the north-central portion, where an extensively mineralized north-striking fault zone appears to contain some right-lateral component and may represent a major structural discontinuity for the basin. The third trend $(N.40^{\circ}-50^{\circ}W)$ occurs in the east-central portion of the study area and appears to represent a transitional trend between the Brothers trend and the Basin-Range trend. This transitional trend ends abruptly at the Soldier Creek shear zone.

A lineament study (Plate II) prepared for this report from U-2 and Landsat imagery shows a one-to-one correspondence of structural trends with the mapped fault trends. It also shows a number of lineaments that cross the alluviumfilled basin but which could not be traced through geologic mapping.

Folding of the units is generally in the form of broad, shallowly dipping anticlines and synclines plunging toward the center of the basin. Exceptions are several sharply folded local structures adjacent and probably subsequent to major faults (e.g., the Soldier Creek shear zone). In the past, investigators (Greene, 1972; Greene and others, 1972) have shown the northern highlands to be a homocline dipping into the basin off a core of older rocks to the north. However, the mapping connected with this study shows a large number of discrete fault blocks that dip away from the center of the basin. Downwarping of the basin itself probably began during the middle to late Miocene (Walker, 1979) and may be continuing at present. The probable cause of the downwarping is the loss of material by volcanic eruption from the extensive ash-flow sheets and numerous flood basalts and, to a lesser extent, the loss of volume due to loss of stored heat (Blackwell, 1980, personal communication).

- 6 -

GEOPHYSICS

At the present time, no geophysical surveys are available for the northern Harney Basin. Recommendations for future work in this extremly important area are included in the <u>Conclusions and Recommendations</u> section of this report.

WATER CHEMISTRY

During this study, fifteen wells, springs, and gradient holes were sampled and their waters analyzed. Together with existing published analyses (Leonard, 1970; U. S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979), a total of 21 analyses are available for evaluation (Table 3). Published reports of the hydrology of the Harney Basin (Piper and others, 1939; Leonard, 1970) show a considerable number of thermal anomalies; however, a large number of the listed springs and wells either could not be located or were not flowing at the time of the study.

Sampling temperatures during field collection ranged from 72° C for the . 0, J. Thomas well in the north-central portion of the study area to 17° -22°C for artesian wells and springs near the town of Burns. The natural waters of the study area can best be described as generally low in chloride and high in magnesium and bicarbonate. On the basis of preliminary evaluation of the available data, two groups of waters are recognized: (1) The wells near Soldier Creek and directly south, which appear to be relatively high in silica (72-104 mg/l) and show relatively high Na:K atomic ratios (144-260) and high contents of ions such as boron, arsenic, chloride, and fluoride. The estimated minimum reservoir temperatures for these wells are in the moderate range, calculated to be approximately 100° -130°C (Table 4). (2) The springs and wells near Burns, which are lower in silica (37-60 mg/l); lower in Na:K atomic ratios (11-15); lower in relative amounts of boron, arsenic, chloride, and fluoride; and lower in calculated reservoir temperatures $(75^{\circ} - 100^{\circ}C)$. They are also higher in magnesium, which is generally thought to indicate cooler waters or waters that have traveled a longer distance from their source (Fournier, 1980, personal communication). The cooler waters near Burns may represent a dilute species of the warmer waters found to the east; however,

- 8 -

	Cow Creek Spring	Bar Negative Well	Hotchkiss Well	Hotchkiss Well	Hotchkiss Well
Location	22 S/32½E/ 14Ca	23S/32E/ 28Acd	24S/30E/ 1Aca	24S/30E/ 1Aca	24S/30E/ 1Aca
Date sampled	9/31	7/68	10/80	8/31	9/68
Temp. (^O C)	22	16	33	27	. 27
рН	nt	7.6	8.37	nt	8.1
Conductance µmhos/cm	nt	771	220	nt	194
Alkalinity X _h as mg/1 HCO ₃ X _c as mg/1 CaCO ₃	nt	nt	nt	nt :	nt
Hardness as mg/1 CaCO ₃	nt	30	30	nt	nt
Total dissolved solids	nt	511	166	nt	155
SiO ₂	nt	52	45	51	46
Na	nt	172	30	30	31
K ,	nt ·	5.6	3	2.4	2.9
Ca	16	5.4	10	9.6	8.8
Mg	nt	3.9	2	1.7	1.4
C1	1.9	16	7	5.2	5.0
As	nt	nt	<0.680	nt	nt
В	nt	1	0.3	nt	,0.06
Li	nt	nt	<0.054	nt	nt
F	nt	0.8	0.5	nt	0.5
Fe (total)	nt	0.34	<0.027	0.01	nt
Al	nt	nt	<0.680	nt ,	nt
HC03	nt	nt	nt	95	93
P0 ₄	nt	nt	nt	nt	nt
so ₄	4	0.4	12	13	12
NO ₃	nt	1.9	nt	1.2	1.1
NH ₃	nt	nt	tr	nt	nt

- 9 -

	Hines Mill Well #1	Hines Mill Well #1	Hines Mill Well #2	Powerhouse Well	Millpond Spring
		·			
Location	23S/30E/ 35Aaa	23S/30E/ 35Aaa	23S/30E/ 26Dac	23S/30E/ 26Add	23S/30E/ 36Aaa
Date sampled	7/68	10/80	11/80	10/80	8/31
Temp. (^O C)	25	28.5	27.8	25	26
рН	7.8	7.9	8.18	8.04	nt
Conductance µmhos/cm	222	280	240	225	nt
Alkalinity X_ as mg/l HCO X_ as mg/l CaCO ₃ X_	nt	nt	nt	nt	nt
Hardness as mg/1 CaCO ₃	nt	34.2	34	50	nt
Total dissolved solids	180	180	172	210	nt
sio ₂	55	45	42	37	nt
Na	33	29	26	30	nt
K	4	4	4	3	nt
Ca	11	10	9	7	14
Mg	2.0	2	2	1	nt
C1	7.0	8	9	10	8
As	nt	<0.680	<0.680	<0.680	nt
В	0.38	0.3	0.3	0.3	nt
Li	nt	<0.054	<0.054	<0.054	nt
F	0.5	0.6	0.5	0.4	nt
Fe (total)	0.02	<0.027	<0.027	<0.027	nt
Al	nt	<0.680	<0.680	0.680	nt
HCO3	105	nt	nt	nt	109
PO ₄	nt	nt	nt	nt	nt
so ₄	14	12	10	14	11
NO.3	1.5	nt	nt	nt	1.1
NH ₃	nt	<0.1	tr	0.3	nt

- 10 -

	Hines City Well	Goodman Spring	0.J. Thomas Well	O.J. Thomas Well	Potters Swamp Well
Location	23S/30E/ 23Cda	23S/30E/ 35Ddd	22S/32E/ 35Bbb	22S/32E/ 35Bbb	24S/30E/ 11Aba
Date sampled	7/68	9/68	9/68	5/80	5/80
Temp. (^O C)	17	22	72	72	27
рН	7.8	7.5	9.5	9.6	7.9
Conductance µmhos/cm	289	210	716	622	172
Alkalinity	nt	nt	nt	193 _c	62 _c
X_h as mg/1 $CaCO_3$ X_c as mg/1 $CaCO_3$		• •			
Hardness	nt	nt	nt	2	22
as my/r cacu ₃					18 - ¹
Total dissolved solids	221	165	499	523	149
sio ₂	60	46	89	104	54.0
Na	35	35	157	147	28.6
К	6.9	3.2	1.8	1.3	2.3
Ca	15	8.2	1.0	0.3	7.7
Mg	5.7	1.4	0.2	<0.1	1.1
C1	13	7	38	42	6.5
As	nt	nt	0.06	0.063	,0.033
В	0.53	0.23	4.0	6.7	-0.38
Li	nt	nt	nt	0.1	<0.1
F	0.5	0.6	2.8	5.1	0.5
Fe (total)	0.05	0.02	0.03	0.20	<0.05
A1 :	nt	nt	nt	0.41	<0.10
HCO3	128	92	49	nt	nt
P0 ₄	nt	nt	nt,	0.027	0.021
so ₄	18	' 16	89	75.9	13.9
NØ3	3.8	2.1	nt	0.03	0.28
NH ₃	nt	nt	nt	0.90	0.03

- 11 -

	Rest Stop Well	Harney Valley Dev. Co. Oil Well	Harney Valley Dev. Co. Oil Well	Develop- ment Well	Fischer Well
Location	23S/30E/ 36Cbb	24S/32E/ 8Dab	24S/32E/ 8Dab	23S/30E/ 35Abd	24S/30E/ 2Dab
Date sampled	5/80	9/68	5/80	10/80	10/80
Temp. (^O C)	26	46	50	26.5	25.5
рН	8.0	9.6	9.9	8.33	8.43
Conductance µmhos/cm	177	602	540	230	210
Alkalinity X as mg/1 HCO Nh	⁷³ c	nt	252 _c	nt	nt
c as mg/1 cacu ₃		· *	· · ·		
Hardness as mg/1 CaCO ₃	28	3	. <1	15	30
Total dissolved solids	156	396	416	178	1/40
sio ₂	59.8	.72	92	45	.37
Na	28.9	135	119	32	30
К	2.6	1.6	0.8	. 4	3
Ca	8.9	0.8	0.1	8	7
Mg	1.3	0.2	0.1	2	1 · · ·
C1	6.1	31	20.5	. 8	8
As	0.019	nt	0.015	< 0680	<0.680
В	0.31	4.11	4.93	0.5	0.6
Li	<0.1	nt	<0.1	<0.054	<0.054
١F	0.4	12	1.2	0.5	0.6
Fe (total)	<0.05	0.20	<0.05	<0.027	<0.027
AT	<0.10	nt	0.16	<0.680	<0.680
HCO ₃	nt	94	nt	nt	nt
PO4	0.044	nt	0.010	nt	nt
S0 ₄	13.0	. 29	9.7	13	15
NO4	0.24	0.2	0.02	nt	init
NH3	0.05	nt	2.77	tr	tr

- 12

. .

	Trailer Court <u>Well</u>	Soldier Creek Well #1 (50')	Soldier Creek Well <u>#1 (600')</u>	Burns High School Well
Location	23S/31E/	225/32E/	22S/32E/	23S/30E/
	36Bdc	32Aad	32Aad	13Cbc
Date Sampled	10/80	11/80	11/80	10/80
Temp. (°C)	26.5	15	22	16.2
рН	8.24	8.26	8.23	7.2
Conductance µmhos/cm	210	nt	nt	nt
Alkalinity X _h as mg/l HCO ₃	nt	nt	nt	nt .
X _c as mg/1 CaCO ₃				
Hardness as mg/1 CaCO ₃	30	nt	nt	51
Total dissolved solids	150	190	206	178
SiO ₂ ,	43	43	47	42
Na	28	22	24	12
K	3	3	4	3
Ca	9	16	15	8
Mg		'2	1	4
C1 .	6	6	5	27
As	<0.680	<0.625	<0.625	<0.625
В	0.2	<0.125	<0.125	<0.125
u Li ga da anti-	0.054	<0.05	<0.05	<0.05
For all the second second	0.5	0.4	0.6	0.3
Fe (total)	<0.027	0.15	<0.025	<0.025
A1	<0.680	<0.625	<0.625	<0.625
HCO ₃	nt	nt	nt	nt
PO ₄	nt	nt	nt	nt
S0 ₄	11	14	15	4
NO ₃	nt	nt	nt	nt
NHa	tr	nt	n+	+ n

13 -
Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin

٠.

en anter en	Bar Negative Well	Hotchkiss Well	Hotchkiss Well	Hotchkiss Well	Hines Lumber Co. Well #1
Flow rate	100+	20	2271	2271	6624
Measured temperature °C	16	33	27	27	25
Na:K ^o C	107	175	160	170	190
Na:K:Ca 1/3 β ^o C	136	157	146	155	167
Na:K:Ca 4/3 β ^o C	118	62	56	64	70
Na:K:Ca Mg corrected ^o C	28	83	87	86	86
SiO ₂ conductive ^O C	104	97	103	98	106
SiO ₂ adiabatic ^o C	104	98	103	99.	106
SiO ₂ chalcedony ^O C	74	67	73	68	77
SiO ₂ opal ^O C	-12	-18	1 -13	-17	-10

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 14 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin -- Continued

	City of Hines Well	Goodman Spring (Hotchkiss)	Hines Mill Well #1	Hines Mill Well #2	Powerhouse Well
Flow rate liters/min.	2555	79	pumped	pumped	pumped
Measured temperature ^O C	17	22	28.5	27.8	25
Na:K ^o C	230	169	199	208	175
Na:K:Ca 1/3 β ^o C	192	156	172	177	159
Na:K:Ca 4/3 β ^O C	81	69	70	71	69
Na:K:Ca Mg corrected ^O C	57	81	90	89	106
SiO ₂ conductive ^o C	111	98	97	94	88
SiO ₂ adiabatic ^o C	110	99	98	96	91
SiO ₂ chalcedony o _C	81	68	67	63	57
SiO ₂ opal ^o c	-7	-17	-18	-21	-25

*Methodology for calculations presented in Appendix A. NC = not calculated.

	0.J. Thomas Well	0.J. Thomas Well	Potters Şwamp Well	Rest Stop Well	Harney Valley Dev. Co. Oil Test Well
Flow rate liters/min.	1000+	1000+	100+	pumped	100+
Measured temperature ^o C	72	72	27	26	46
Na:K ^o C	60	50	160	168	61
Na:K:Ca 1/3 β ο _C	104	101	-147	152	, 105
Na:K:Ca 4/3 β ο _C	116	135	59	60	115
Na:K:Ca Mg corrected ^O C	99	NC	102	71	96
SiO ₂ conductive ^o C	131	139	105	110	120
SiO ₂ adiabatic ^O C	127	1.35	106	110	118
SiO ₂ chalcedony ^O C	103	113	;76	81	91
SiO ₂ opal ^o C	N.	19	, -11	-7	1

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin -- Continued

*Methodology for calculations presented in Appendix A. NC = not calculated.

	Harney Valley Dev. Co. Oil Test Well	Development Well	Fischer Well	Trailer Court Well
Flow rate liters/min.	100+	pumped	pumped	pumped
Measured temperature ^O C	50	26.5	25.5	26.5
Na:K ^O C	40	192	175	180
Na:K:Ca 1/3 β ^O C	126	171	159	160
Na:K:Ca 4/3 β ^O C	143	76	69	63
Na:K:Ca Mg corrected ^O C	71	71	101	115
SiO ₂ conductive ^O C	133	97	88	95
SiO ₂ adiabatic ^O C	129	98	91	97
SiO ₂ chalcedony ^O C	105	67	57	64
SiO ₂ opal ^O C	13	-18	-25	-20

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the northern Harney Basin -- Continued

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 17 -

the limited data of this reconnaissance study are inconclusive on this point. Therefore, before detailed analyses of fluid provenance and movement can be made, a detailed sampling program including oxygen-, hydrogen-, and sulfateisotope analyses must be undertaken.

GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA*

The temperature-gradient and heat-flow results for the north Harney Basin are as shown in Table 5. Included in the table are the township/range-section and latitude and longitude location of each hole. In addition, the hole name, date of logging used, and collar elevation are included for each hole. The bottom hole temperature, maximum depth, corrected temperature gradient, and, where available, corrected heat flow are printed in blue on Plate I. These values are also listed in the table, as are the depth interval and average thermal conductivity used for calculation of the gradient and heat flow. The values are given in SI units. To transform units, the following conversion factors were used: 1×10^{-6} $cal/cm^2 sec (HFU) = 41.84 mWm^{-2}$, $1 \times 10^{-3} cal/cm sec^{0}C (TCU) = 0.4184 Wm^{-1}K^{-1}$, and $1^{0}C/Km = 1 mKm^{-1} = 18.2^{0}F/100$ ft. Corrected gradient and corrected heat flow are values for which the topographic effects have been removed. These are not significant for most of the sites studied.

The holes are ranked in terms of the quality of the gradient or heat-flow information: high quality (A), good quality (B), marginal quality (C), data with some problems (D), and data for which no useful temperature gradient or heat flow can be estimated (X). All thermal-conductivity measurements were made on cutting samples.

Most data in the north Harney Basin have been obtained in holes drilled as water wells, so most thermal-conductivity values are estimated (parenthesis) or based on one or two cutting samples from surface spoil piles. Several of the holes are artesian, and gradients are estimated based on the bottom hole temperature and the assumed surface temperature. These gradients are maximum values, because some

*By D. D. Blackwell, Southern Methodist University, Dallas, Texas.

- 19 -

Table 5. Geothermal-gradient data, north Harney Basin, Oregon

المعنية. ما تشهيد أو ما يور با والد با الأ

		· ·			Bottom	Depth			Uncorr.	Corr.	Corr.		
Twn/Rng-	N Lat.	W Long	Hole #	Collar	Temp.	Interval	Avg. TC	#	Gradient	Gradient	HF	Q	
Section	Deg.Min.	Deg.Min.	Date	Elev.	(°C)	(m)	Wm ⁻¹ K ⁻¹	TC	°C/km	°C/km	mWm -2	HF	
225/32E- 27BA	43-38.53	118-52.35	TILLER 2 5/22/80	1277	19.00	20.0 57.0	(.96)		72.1 4.7	71.0	68	<u> </u>	ا ها الله مي الله الله الي الله الي الله الله الله
225/32E- 26BB	4 3-38. 35	118-51.62	TURDY 5/21/80	1279	12.95	10.0 40.0	(.96)	•	68.1 3.6	68.1	66	С	
225/32E- 27AC	43-38.30	118-54.17	TILLER 3 5/22/80	1286	20.12	10.0 25.0	· ·		226.0 12.7	226.0	м. 	•	
	··· · · ·		:		• •	25.0 96.0	(,96)		72.4 3.5	72.4	70	C	
225/32E- 27CB	43-38.08	118-62.75	TILLER 1 5/22/80	1265	16,48	5.0 100.0	(.96)	·	78.6 2.4	78.6	76	B	
225/33E- 27CD	43-37.62	118-38.50	Temple 5/20/80	1268	15.84	138.0			> 48.0			×	
225/32E- 31DB	43-37.20	118-55.67	BLCKBURN 5/22/80	1269	12.79	15.0 48.0	(.96)		53.5 2.2	53.5	51	С.	
225/32E- 34CC	43-36.90	118-52.60	RICE 6/11/75	1260	27.39	.0 95.0	(.96)		<140.0	<140.0	< 134	C	
225/32E- 34DD	43-36.87	118-51.88	HWY 20 5/20/80	1261	29.19	10.0 35.0			573.8 15.2	573.7	-	С	· .
						35.0 60.0			181.7	181.7		Ċ	
						10.0 62.0	(.96)		355.0 70,2	354.9	341	B	· ·
235/32E- 6CB	43-36.32	118-49.17	*HANSON 5/22/80	1259	13.69	5.0 51.0	(.96)		74.6 1.7	74.5	72	В	
245/32E- 1AD	43-31.33	118-49.32	NINEMILE 5/16/80	1257	38.45	10.0 35.0			273.5 3.8	273.5	· •	С	
					• •	35.0 60.0			189.5	189.5	· .	С	~ 5.
. 20						60.0 130.0			155.8 1.7	155.7		С	
ſ						130.0			.97.8	97.8		C	

Table 5. Geothermal-gradient data, north Harney Basin, Oregon--Continued

. ·

· . ·	**								·			· ·	• .	
Twn/Rng- Section	N Lat. Deg.Min.	W Long Deg.Min.	Hole # Date	Collar Elev.	Bottom Temp. (°C)	Depth Interval (m)	Avo Wm	g. TC # - ¹ K ⁻¹ TC	Uncorr. Gradient °C/km	Corr. Gradient °C/km	Corr. HF mWm -2	Q HF		
						10.0 160.0		.96)	165.8	165.8	159	C		
245/32E- 8DA	43-30.23	118-54.27	STEVENS	1256	E4 00	· · · ·		· · · ·						
			5/15/80	1200	34.82	.0 176.0	(.96)		<284.0	·····	C		
	 				•			•						
· · · · ·	· · ·				•	· .		· · · · · · · · · ·					- · ·	
		• •			•. •					· · · ·		• • •	•	
			· · ·		· · ·	· · · · · · · · · · · · · · · · · · ·	•							· . ·
	•				:				•		•			
E State		· · · ·					·					• *		
21	· · ·		, .	· ·		· .		• •	· · ·		•	•		•
1					•					*.				
	•					· ·			· · ·					· · ·
				·		· ·		•	•			÷.	· . •	• •
				•	•				· .			•		
		• • • •	· ·					the Contract	, .	• •				
		• • •		· · · ·							• .			
		• •		:		•		· ·	: 1				· ·	
• • •		•	•								· ·	•		
						- - -							• • •	
		•										• •		
	•• •										• •			
			• •	•					 				·	· · ·
•	·. ··		· .					· ·	· · ·					
				· · · · · · · · · · · · · · · · · · ·				•		• •			.' '	•
	· · · ·				×.				· ·		•			
					• .'						• •			•

portion of the flow may come from deeper than the maximum depth actually logged. Also, some of the holes show large variation in geothermal gradient with depth, indicating some nonconductive effect on the data. Complete interpretation of the data set will require detailed understanding of the hydrologic and geologic conditions.

CONCLUSIONS AND RECOMMENDATIONS

The reconnaissance study performed for the northern Harney Basin has tentatively defined two low-temperature resource areas within piping distance of Burns which merit further investigation. They are (1) the area near the Soldier Creek shear zone (Plate I) and (2) the area immediately south, west, and east of the city of Burns. Site-specific analyses of these two areas should be carried out under one field program and include the following:

- Detailed (scale of 1:24,000 or less) geologic and photogeologic mapping of Burns and Harney 15-minute quadrangles -- to identify and evaluate active and/or thermal structures.
- 2. Detailed spring and well sampling and analyses, including isotope analyses -- to determine fluid flow directions and provenance.
- Closely spaced complete Bouguer and residual gravity anomaly studies and aeromagnetic studies -- to delineate possible active thermal structures below the basin fill.
- Several resistivity traverses (either dipole-dipole, roving dipole, or telluric) in an east-west direction -- in order to further define the thermal regime.
- 5. A microearthquake/contemporary seismic study of the entire Harney Basin, making use of a high-gain seismometer array -- to define the seismicity of the area in relation to the geothermal system.
- 6. A program of twenty to thirty 500-ft gradient/stratigraphy holes, followed by a program of five to ten 2,000-ft gradient holes -- to model heat flow and directly test geothermal aquifers.

- 23 -

BIBLIOGRAPHY OF THE HARNEY BASIN

Baldwin, E.M., 1976, Geology of Oregon (revised ed.): Dubuque, Iowa, Kendall/ Hunt, 147 p.

Beaulieu, J.D., 1972, Geologic formations of eastern Oregon (east of longitude 121° 30'): Oregon Department of Geology and Mineral Industries Bulletin 73, 80 p.

Beeson, M.H., 1969, Correlation of ash-flows by trace element abundance (abs.): Proceedings of the Oregon Academy of Science, v. 4, p. 23-24.

Berg, J.W., Jr., and Thiruvathukal, J.V., 1967, Regional gravity of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 29, no. 6, p. 120-126.

Blackwell, D.D., Hull, D.A., Bowen, R.G., and Steele, J.L., 1978, Heat flow of Oregon: Oregon Department of Geology and Mineral Industries Special Paper 4, 42 p.

Blank, H.R., Jr., and Gettings, M.E., 1974, Geophysical evidence of caldera structures in the Harney Basin of central eastern Oregon (abs.): EOS (American Geophysical Union Transactions), v. 55, no. 5, p. 557.

Bodvarsson, G., Couch, R.W., MacFarlane, W.T., Tank, R.W., and Whitsett, R.M., 1974, Telluric current exploration for geothermal anomalies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 36, no. 6, p. 93-107.

Bowen, R.G., 1972, Geothermal gradient studies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 34, no. 4, p. 68-71.

_____1975, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-75-3, 133 p.

Bowen, R.G., Blackwell, D.D., and Hull, D.A., 1975, Geothermal studies and exploration in Oregon (draft final report to U.S. Bureau of Mines): Oregon Department of Geology and Mineral Industries Open-File Report 0-75-7, 65.

____1977, Geothermal exploration studies in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 19, 50 p.

Bowen, R.G., Blackwell, D.D., Hull, D.A., and Peterson, N.V., 1976, Progress report on heat-flow study of the Brothers fault zone, central Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 38, no. 3, p. 39-46.

Bowen, R.G., and Peterson, N.V., compilers, 1970, Thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 14 (map), scale approx. 1:1,000,000. Bowen, R.G., Peterson, N.V., and Riccio, J.F., compilers, 1978, Low- to intermediate-temperature thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-10, scale approx. 1:1,000,000.

哈特性制度能。 计数种环 网络拉安

- Brooks, H.C., 1963, Quicksilver in Oregon: Oregon Department of Geology and Mineral Industries Bulletin 55, p. 204.
- Buwalda, J.P., 1921, Report on oil and gas possibilities of eastern Oregon: Oregon Bureau of Mines and Geology, The mineral resources of Oregon, v. 3, no. 2, p. 28-29.
- Campbell, I., Conel, J.E., Rogers, J.J.W., and Whitfield, J.M., 1959, Possible correlation of Rattlesnake and Danforth Formations of eastern Oregon (abs.): Geological Society of America Bulletin, v. 69, no. 12, pt. 2, p. 1678.

Corcoran, R.E., 1956, Sedimentary basins in Oregon: World Oil, v. 143, no. 5, p. 140-142.

Davenport, R.E., 1971, Geology of the Rattlesnake and older ignimbrites in the Paulina Basin and adjacent area, central Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 132 p.

Dole, H.M., and Corcoran, R.E., 1954, Reconnaissance geology along U.S. Highway 20 between Vale and Buchanan, Malheur and Harney Counties, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 16, no. 6, p. 37-39.

- Enlows, H.E., and Davenport, R.E., 1971, Tertiary ignimbrites in central Oregon (abs.): Proceedings of the Oregon Academy of Science, v. 7, p. 75.
- Enlows, H.E., Parker, D., and Davenport, R.E., 1973, The Rattlesnake ignimbrite tongue (abs.): Geological Society of America Abstracts with Programs, v. 5, no. 1, p. 38-39.
- Godwin, L.H., Haigler, L.B., Rioux, R.L., White, D.E., Muffler, L.J.P., and Wayland, R.G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U.S. Geological Survey Circular 647, 18 p.
- Greene, R.C., 1970, A crystal-rich ash-flow tuff in southeast Oregon (abs.): Geological Society of America Abstracts with Programs, v. 2, no. 2, p. 97-98.
 - ____1972, Preliminary geologic map of the Burns and West Myrtle Butte 15minute quadrangles, Oregon: U.S. Geological Survey Miscellaneous Field Studies Map MF-320, scale 1:62,500.
 - ____1973, Petrology of the welded tuff of Devine Canyon, southeastern Oregon: U.S. Geological Survey Professional Paper 797, 26 p.

- 25 -

- Greene, R.C., Walker, G.W., and Corcoran, R.E., 1972, Geologic map of the Burns quadrangle, Oregon: U.S. Geological Survey Miscellaneous Geological Investigations Map I-680, scale 1:250,000.
- Groh, E.A., 1966, Geothermal energy potential in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 7, p. 125-135.
- Hull, D.A., Blackwell, D.D., and Black, G.L., 1978, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-78-4, 187 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., and Peterson, N.V., 1977, Heat-flow study of the Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-3, 43 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., Peterson, N.V., and Black, G.L., 1977, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-2, 134 p.
- Hull, D.A., Bowen, R.G., Blackwell, D.D., and Peterson, N.V., 1976, Geothermal gradient data, Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-76-2, 24 p.
 - 1977, Preliminary heat-flow map and evaluation of Oregon's geothermal energy potential: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 7, p. 109-123.
- Hull, D.A., and Newton, V.C., Jr., 1977, Geothermal activity in 1976: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 1, p. 7-15.
- Leonard, A.R., 1970, Ground water resources in Harney Valley, Harney County, Oregon: Oregon State Engineer Ground Water Report 16, 85 p.
- Lund, E.H., 1962, Welded tuff in the Danforth Formation (abs.): Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 24.
- 1966, Zoning in an ash flow of the Danforth Formation, Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 9, p. 161-170.
- MacLeod, N.S., Walker, G.W., and McKee, E.H., 1975, Geothermal significance of eastward increase in age of upper Cenozoic rhyolitic domes in southeastern Oregon: U.S. Geological Survey Open-File Report 75-348, 22 p.
- Maloney, N.J., 1962, Tertiary and Quaternary faulting in southwestern Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 21-22.
- Mariner, R.H., Presser, T.S., Rapp, J.B., and Willey, L.M., 1975, The minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U.S. Geological Survey open-file report, 27 p.

- Mariner, R.H., Rapp, J.B., Willey, L.M., and Presser, T.S., 1974, The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon: U.S. Geological Survey open-file report, 27 p.
- Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.
- McKee, E.H., MacLeod, N.S., and Walker, G.W., 1976, K/Ar ages of late Cenozoic silicic volcanic rocks, southeast Oregon: Isochron/West, no. 15, p. 37-41.
- Merriam, J.C., Stock, C., and Moody, C.L., 1925, The Pliocene Rattlesnake Formation and fauna of eastern Oregon, with notes on the geology of the Rattlesnake and Mascall deposits: Carnegie Institution of Washington Publication 347, p. 43-92.
- Muffler, L.J.P., ed., 1979, Assessment of geothermal resources of the United States--1978: U.S. Geological Survey Circular 790, 163 p.
- Newton, V.C., Jr., and Hull, D.A., 1978, Geothermal energy in 1977: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 40, no. 1, p. 8-16.
- Parker, D.J., 1974, Petrology of selected volcanic rocks of the Harney Basin, Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 119 p.

Parker, D., and Armstrong, R.L., 1972, K-Ar dates and Sr isotope initial ratios for volcanic rocks in the Harney Basin, Oregon: Isochron/West, no. 5, p. 7-12.

Peterson, N.V., and Groh, E.A., 1964, Diamond Craters, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 26, no. 2, p. 17-34.

Piper, A.M., 1936, Resume of the geologic history of the Harney Basin, Oregon: Geological Society of the Oregon Country Geological News Letter, v. 2, no. 8, p. 9-12.

Piper, A.M., Robinson, T.W., and Park, C.F., Jr., 1939, Geology and groundwater resources of the Harney Basin, Oregon: U.S. Geological Survey Water-Supply Paper 841, 189 p.

Riccio, J.F., compiler, 1979, Preliminary geothermal resource map of Oregon, 1978: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-11, scale 1:500,000.

_____1980, Geothermal exploration in Oregon, 1979: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 42, no. 4, p. 59-69.

Riccio, J.F., and Newton, V.C., Jr., 1979, Geothermal exploration in Oregon in 1978: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 41, no. 3, p. 39-46. Russell, I.C., 1884, A geological reconnaissance in southern Oregon: U.S. Geological Survey 4th Annual Report, 1882-83, p. 431-464.

____1903a, Notes on the geology of southwestern Idaho and southeastern Oregon: U.S. Geological Survey Bulletin 217, p. 36-69.

1903b, Preliminary report on artesian basins in southwestern Idaho and southeastern Oregon: U.S. Geological, Survey Water-Supply Paper 78, p. 38-43.

____1905, Preliminary report on the geology and water resources of central Oregon: U.S. Geological Survey Bulletin 252, p. 36-54.

- Sass, J.H., Galanis, S.D., Jr., Munroe, R.J., and Urban, T.C., 1976, Heatflow data from southeastern Oregon: U.S. Geological Survey Open-File Report 76-217, 52 p.
- Sass, J.H., Lachenbruch, A.H., Munroe, R.J., Green, G.W., and Moses, T.H., Jr., 1971, Heat flow in the western United States: Journal of Geophysical Research, v. 76, no. 26, p. 6376-6413.
- Sass, J.H., and Munroe, R.J., 1973, Temperature gradients in Harney County, Oregon: U.S. Geological Survey Open-File Report 73-247, 3 p., 7 figs.
- Stearns, N.D., Stearns, H.T., and Waring, G.A., 1937, Thermal springs in the United States: U.S. Geological Survey Water-Supply Paper 679-B, p. 59-206.
- Stone, C.J., 1931, Petroleum reconnaissance report, Harney Basin: Oregon Department of Geology and Mineral Industries, unpublished, 9 p. (geol. map, 1930, 1:125,000).

Thayer, T.P., 1952, The tuff member of the Rattlesnake Formation of eastern Oregon--an ignimbrite (abs.): American Geophysical Union Transactions, v. 33, p. 327.

Thiruvathukal, J.V., 1968, Regional gravity of Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 92 p.

U.S. Geological Survey, 1968, Volcanic rocks and stratigraphy in Washington and Oregon, in Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-A, p. A35-A36 (R.C. Greene and G.W. Walker; D.R. Crandall; D.R. Mullineaux; R.S. Sigafoos and E.L. Hendricks, investigators).

__1972, Aeromagnetic map of the Adel and parts of the Burns, Boise, and Jordan Valley 1° by 2° quadrangles, Oregon: U.S. Jeological Survey Open-File Report 72-390, scale 1:250,000.

1973, Ground-water gradients near Malheur Lake, in Geological Survey research 1973: U.S. Geological Survey Professional Paper 850, p. 186 (L.L. Hubbard and A.R. Leonard, investigators).

U.S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979, Chemical analyses of thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-79-3, 170 p. Van Orstrand, C.E., 1938, Temperatures in the lava beds of east-central and south-central Oregon: American Journal of Science, 5th Series, v. 35, no. 205, p. 22-46.

e en placement an qu

Walker, G.W., 1969a, Possible fissure vent for a Pliocene ash-flow tuff, Buzzard Creek area, Harney County, Oregon, <u>in</u> Geological Survey research 1969: U.S. Geological Survey Professional Paper 650-C, p. C8-C17.

9

_____1969b, Geology of the High Lava Plains province, in Weissenborn, A.E., ed., Mineral and water resources of Oregon: Oregon Department of Geology and Mineral Industries Bulletin 64, p. 77-79.

____1970, Cenozoic ash-flow tuffs of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 32, no. 6, p. 97-115.

1974, Some implications of late Cenozoic volcanism to geothermal potential in the High Lava Plains of south-central Oregon: U.S. Geological Survey Open-File Report 74-121, 14 p.

1977, Geologic map of Oregon east of the 121st meridian: U.S. Geological Survey Miscellaneous Investigations Series Map I-902 (prepared in cooperation with the Oregon Department of Geology and Mineral Industries), scale 1:500,000, 2 sheets.

____1979, Revisions to the Cenozoic stratigraphy of Harney Basin, south-____eastern Oregon: U.S. Geological Survey Bulletin 1475, 35 p.

Walker, G.W., Dalrymple, G.B., and Lanphere, M.A., 1974, Index to potassiumargon ages of Cenozoic volcanic rocks of Oregon: U.S. Geological Survey Misc. Field Studies Map MF-569.

Walker, G.W., and Repenning, C.A., 1965, Reconnaissance geologic map of the Adel quadrangle, Lake, Harney, and Malheur Counties, Oregon: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-446, scale 1:250,000.

Walker, G.W., and Swanson, D.A., 1968a, Laminar flowage in a Pliocene soda rhyolite ash-flow tuff, Lake and Harney Counties, Oregon, in Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-B, p. B37-B47.

____1968b, Summary report on the geology and mineral resources of the Harney Lake and Malheur Lake areas of the National Wildlife Refuge, north-central Harney County, Oregon: U.S. Geological Survey Bulletin 1260-L, 17 p.

Waring, G.A., 1908, Geology and water resources of a portion of south-central Oregon: U.S. Geological Survey Water-Supply Paper 220, 86 p.

____1909, Geology and water resources of the Harney Basin region, Oregon: U.S. Geological Survey Water-Supply Paper 231, 93 p.

1965 (revised by Blankenship, R.R., and Bentall, R.), Thermal springs of the United States and other countries of the world--a summary: U.S. Geological Survey Professional Paper 492, 383 p.

Washburne, C.W., 1911, Gas prospects in Harney Valley, Oregon: U.S. Geological Survey Bulletin 431, pt. 2, p. 56-57.

APPENDIX A

Formulas used in calculations

Na:K (revised):
t
$${}^{0}C = \frac{1217}{\log (Na/K) + 1.483} - 273.15$$
 (Fournier, 1979)
Na:K:Ca:
t ${}^{0}C = \frac{1647}{2.24 + F(T)} - 273.15$ (Fournier and Truesdell, 1973),
where F (T) = log (Na/K) + [ß log (\sqrt{Ca}/Na)],
 $\beta = 1/3$ if $t > 100^{0}C$, and $4/3$ if $t < 100^{0}C$,
 $t^{0}C = calculated reservoir temperature,
and concentrations are expressed in molality.
Magnesium correction ratio:
 $R = \frac{(milliequivalents Mg)}{(milliequivalents Mg) + (milliequivalents Ca) + (milliequivalents K)} X 100$
If R <5 or >50, no calculation was made. For R Letween 5-50,
 $\Delta t_{Mg} = 10.66 - (4.7415) (R) + [(325.87) (log R)^{2}] - [(1.032 \times 10^{5}) (log R)^{2}/T] - [(1.968 \times 10^{7}) (log R)^{2}/T^{2}] + [(1.605 \times 10^{7}) (log R)^{3}/T^{2}]$,
where R = magnesium correction ratio expressed in equivalents,
 $\Delta t_{Mg} =$ the temperature correction that is subtracted from
the Na:K:Ca 1/3 ß calculated temperature,
T = Na:K:Ca 1/3 ß calculated temperature in ${}^{0}K$.
Or Δt_{Mg} can be obtained by using the graph compiled by Fournier and Potter (1979).$

SiO₂ temperature calculations (Fournier and Rowe, 1966):

SiO₂ (conductive), $t^{o}C = \frac{1309}{5.19 + \log (SiO_2)} - 273.15$ SiO₂ (adiabatic), $t^{o}C = \frac{1522}{5.75 + \log (SiO_2)} - 273.15$ SiO₂ (chalcedony), $t^{o}C = \frac{1032}{4.69 + \log (SiO_2)} - 273.15$ SiO₂ (opal), $t^{o}C = \frac{731}{4.52 + \log (SiO_2)} - 273.15$,

where SiO_2 is expressed in mg/l.

- 31 -

References cited:

Fournier, R.O., 1979, A revised equation for the Na/K geothermometer, in Geothermal Resources Council Transactions 3, 1979, p. 221-224.

Fournier, R.O., and Potter, R.W., II, 1979, Magnesium correction to the Na:K:Ca chemical geothermometer: Geochimica et Cosmochimica Acta, v. 43, p. 1543-1550.

Fournier, R.O., and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells: American Journal of Science, v. 264, p. 685-697.

Fournier, R.O., and Truesdell, A.H., 1973, An empirical Na:K:Ca geothermometer for natural waters: Geochimica et Cosmochimica Acta, v. 37, p. 1255-1275.

Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.

= 32

•	LOCA	TION: BURNS F	MS, OREGON		
	HOLE	CNAME: TILL	ER 2		· · · · · · · · · · · · · · · · · · ·
All and the second s	DATE	MEASURED 5	• *	,	
DEPTH	DEPTH	TEMPER	GEOTHERM	AL GRADIENT	
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
10.0	32.8	15.040	59.07	0.0	0.0
20.0	65.6	16.110	61.00	107.0	5.9
25.0	82.0	16.710	62.08	120.0	6.6
30.0	98.4	17.100	62.78	78.0	4.3
35.0	114.8	17.480	63.46	76.0	4.2
40.0	131.2	17.800	64.04	64.0	3.5
45.0	147.6	18.170	64.71	74.0	4.1
50.0	164.0	18.460	,65.23	58.0	3.2
55.0	180.4	18.650	65.57	38.0	2.1
· .57.0	187 Ø	19.000	66 20	175.0	9.6

ယ ယ .

APPENDIX B

Geothermal-gradient data

	LOCAT	ION: BURNS F	NAS, OREGON		2 .	
. 4	HOLE	NAME: TURI)Y 			
DEPTH METERS	DEPTH FEET	TEMPER DEG C	ATURE DEG F	Geotherma Deg C/KM	L GRADIENT DEG F/100	FT
10.0 15.0 20.0 25.0 30.0 35.0 40.0 42.0	32.8 49.2 65.6 82.0 98.4 114.8 131.2 137.8	10.920 11.160 11.470 11.780 12.190 12.600 12.900 12.950	51.66 52.09 52.65 53.20 53.94 54.68 55.22 55.31	0.0 48.0 62.0 82.0 82.0 82.0 82.0 82.0 82.0 50.0	0.0 2.3 4.5 3.4 4.5 3.7 4.5 3.7 4.5 3.7 4.5 3.7 4.5 5 1.4	

မ္မာ

	LOCA HOLE DATE	IION: BURNS (225/32E NAME: TILI MEASURED: !	AMS, OREGON -27AC _ER 3 5/22/80		
DEPTH METERS	DEPTH FEET	TEMPE DEG C	RATURE DEG F	Geotherma Deg. C/KM	L GRADIENT DEG F/100 FT
10.0 15.0 20.0 25.0 35.0 40.0 45.0 45.0 45.0 55.0 45.0 55.0 65.0 75.0 80.0 85.0 90.0 95.0 95.0	32.8 49.6 82.0 98.4 114.8 131.2 147.0 180.8 213.6 246.0 246.0 246.0 246.0 246.0 246.0 246.0 246.0 246.0 246.0 213.6 246.0 213.6 214.9	$\begin{array}{c} 11.500\\ 12.380\\ 13.240\\ 14.980\\ 15.240\\ 15.530\\ 15.890\\ 16.200\\ 16.200\\ 16.200\\ 17.950\\ 17.950\\ 17.950\\ 17.950\\ 18.330\\ 18.650\\ 18.970\\ 19.280\\ 19.500\\ 19.500\\ 20.120\end{array}$	52.70 545.83 58.96 59.43 59.60 61.16 62.69 64.99 64.57 66.70 66.70 67.10 66.70	0.0 176.0 172.0 348.0 52.0 58.0 72.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 44.0 64.0 64.0 44.0 52.0 460.0	0.0 9.4 19.19 2.9.2 4.0 4.5 5.5 5.5 5.5 4.15 5.5 4.4 5.5 5.5 4.15 5.5 4.4 5.5 5.5 5.4 4.5 5.5 5.4 4.5 5.5 5

÷

· · · ·

+ r.30.4

- 1

ω

	LOCAT	ION: BURNS (AMS, OREGON -27CB		
DEPTH METERS	HOLE DATE DEPTH FEET	NAME TILI MEASURED : TEMPEI DEG C	LER 1 5/22/80 RATURE DEG F	geothermal Deg C/km I	GRADIENT DEG F/100 FT
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 40.0 45.0 55.0 65.0 70.0 55.0 65.0 70.0 885.0 95.0 104.5	16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 213.2 229.6 246.0 262.4 278.8 295.2 318.0 342.8	9.030 9.400 9.770 10.120 10.440 10.790 11.510 11.510 12.290 12.710 13.140 13.140 13.570 14.120 14.560 14.560 15.590 16.030 16.030 16.480	48.25 48.92 49.59 50.29 51.42 52.72 53.12 55.125	0.0 74.0 74.0 70.0 64.0 70.0 72.0 72.0 64.0 92.0 84.0 86.0 110.0 86.0 110.0 88.0 58.0 68.0 88.0 58.0 68.0 80.0 88.0 31.1	0.0 4.1 4.1 3.5 3.6 4.0 5.0 4.7 5.0 4.7 7.0 8.2 7.4 8.4 3.7 4.8 3.7 4.8 3.7 4.8 3.7 4.8 3.7 4.8 3.7 4.8 3.7 4.8 3.7 4.8 3.7 4.8 5.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

1

· · ·						•
		LULATIU	N: BURNS AMS, UREGUN 225/33E-27CD			
		HOLE NA	ME: TEMPLE			Name for the second
	DEPTH	DEPTH	-ISURED: 5720780 TEMPERATURE	GENTHERMAL	GRADIENT	
	METERS	FEET	DEG_CDEG_F	DEG C/KM D	EG F/100 FT	and a second
	10.0	32.8	9.650 49.37	0.0	0.0	
	20.0	65.6	9.680 49.42	2.0	0.1	
	25.0	82.0	9.690 49.44	2.0	0.1	
	35.0	114.8	9.710 49.48	4.0	0.2	
	40.0	131.2	9.750 49.55	8.0	0.4	
	50.0	164.0	9.750 49.55	4.0	ŏ.2	
	55.0 50 0	180.4	9.770 49.59 9.770 49.59	4.0	0.2	
	65.0	213.2	9.810 49.66	8.0	0.4	
	70.0	229.6	9.850 49.73	8.0	0.4 Ø.1	
	80.0	262.4	9.840 49.71	-4.0	∵ -0.2	
	85.0 90.0	278.8	9.840 49.71	0.0 	0.0 -0.1	
	95.0	311.6	9.850 49.73	4.0	0.2	
	109.0	328.0	9.870 49.77	4.0 0.0	0.0	
jus and the second seco	110.0	360.8	9.890 49.80	4.0	0.2	
•	115.0	- 376 C	9.890 49.80	-2.0	-0.1	
	125.0	410.0	9.910 49.84	6.0	0.3	
	130.0	442.8	15.310 59.56	456.0	25.0	
	138.0	452,6	15,840 60.51	176.7	9.7	
				e de la construcción de la constru La construcción de la construcción d		

•		LOCAT	'ION: BURNS (AMS, OREGON			
		HOLE	NAME: BLCI	KBURN			
	הדסידט		MEASURED: 5	5/22/80	CCCCLERMO		
	METERS	DEFIN	- DEG C	DEG -F	DEG-CZKM	DEG F/100 FT	
	10.0	32.8	11.010	51.82	0.0	0.0	
	15.0 20.0	49.2 65.6	11.050 11.300	51.89 52.34	8.0 50.0	0.4	
	25.0	82.0	11.520	52.74	44.0	2.4	
	35.0	98.4 114.8	12.080	53.74	70.0	3.8	
•	40.0	131.2	12.390	54.30 54.72	62.0	3.4	
	48.0	157.4	12.790	55.02	56.7	3.1	

	. LO	CATION: BURNS 225/32E	AMS, OREGON 34DD	4			
DEPTH METERS	HO DA DEPTH FEET	HOLE NAME: HAY 20 DATE MEASURED: 5/20/80 DEPTH TEMPERATURE FEET DEG C DEG F			Geothermal Gradient Deg C/KM deg F/100 Ft		
10.0 15.0 20.0 35.0 35.0 45.0 45.0 555.0 62.0 62.0	32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 203.4	10.820 12.580 16.000 19.220 22.160 24.510 25.590 26.670 27.610 28.410 28.990 29.190	51.48 54.64 60.80 66.60 71.89 76.12 78.06 80.01 81.70 83.14 84.18 84.54	0.0 352.0 684.0 588.0 470.0 216.0 216.0 188.0 160.0 116.0 100.0	0.0 19.3 37.5 35.3 25.8 11.9 11.9 11.9 10.3 8.8 6.4 5.5		

en di televen de trade

21

	LUCAT	UN: BURNS F	AMS, OREGU	IN		
		235* 325 -	- 6CB	321/2 E		
	HOLE N	YAME: HANS	SON ·	~ ~		
	DATE N	1easured: 5	5/22/80 👘			
DEPTH	DEPTH	TEMPEI	RATURE	GEOTHERMAL	GRADIENT	
METERS	TATA	- DEG-C -	DEGE	DEG CZKM	DEG_E/100 FT	
			2201	220-0.14.14		
5.0	16.4	10 320	50 59	00	aia	
10 0	32 9	10 630	51 13	É EŽ Ř	3 4	
15 0	49 2	10.050	E1 71	E4 0	3.5	
20.0		11 220	51.11	74.0	4 1	
20.0	63.6	11.320	52.30		7.1	
23.0	02.0	11.720	53.10	80.0	7.7	
30.0	98.4	12.090	53.(5	74.0	4.1	
35.0	114.8	12.490	54.48	80.0	4.4	
40.0	131.2	12.910	55.24	84.0	4.6	
45.0	147.6	13.260	55.87	70.0	3.8	
50.0	164.0	13.580	56.44	64.0	3.5	
51.0	167.3	1.3, 690	56.64	110.0	6.0	

	LOCA	TION: BURNS	AMS, ORÉGON		
DEPTH <u>METERS</u>	HOLE DATE DEPTH FEET	245/32E NAME: NIN MEASURED: TEMPE DEG C	- IHD EMILE 5/16/80 RATURE DEG_F	Geotherma Deg. C/KM	L GRADIENT DEG F/100 FT
105.00000000000000000000000000000000000	32.8 49.2 65.6 98.4 114.8 131.2 147.6 164.0 180.4 196.8 229.6 2462.8 29.6 2462.8 29.1 6 3246.8 3246.8 3246.8 3246.4 3246.8 3246.8 3246.8 3246.8 3246.8 3246.8 3246.8 3246.8 3246.4 326.4 429.2 6 410.0 426.8 329.6 426.8 429.6 420.4 429.6 420.4 429.6 420.4 429.6 420.4 429.6 420.4 429.6 420.4 429.6 420.4 429.6 420.4 420.4 420.4 420.6 420.4 420.4 420.4 420.4 420.6 420.4 420.6 420.4 420.6 420.4 420.6 420.4 420.6 40.6 40.6 40.6 40.6 40.6 40.6 40.6 4	$\begin{array}{c} 13.080\\ 14.510\\ 15.590\\ 17.200\\ 18.920\\ 20.9970\\ 20.9970\\ 21.980\\ 223.730\\ 24.5100\\ 225.190\\ 245.590\\ 277.100\\ 265.110\\ 265.190\\ 277.990\\ 31.850\\ 31.850\\ 31.850\\ 31.850\\ 334.180\\ 355.10\\ 355.$	55.54 560.96 562.38 657.79.14 625.66 57.777.79.18 823.80 587.31 55.575 59.14 50.05 57.75 50.09 50.05 50.05 50.09 50.05 50.09 50.05 50.09 50.00 5	0.0 286.0 216.0 322.0 266.0 278.0 194.0 188.0 170.0 158.0 138.0 158.0 138.0 176.0 136.0 176.0 144.0 140.0 144.0 140.0	0797635633876178539988051796901 0511745110090876178539988051796901

ċc

-		LOCATI	ION: BURNS	AMS, OREGON		
	DEPTH METERS	HOLE N DATE N DEPTH FEET	NAME: STE 1EASURED: TEMPE DEG C	UENS 5/15/80 RATURE DEG F	GEOTHERMA DEG C/KM	AL GRADÍENT DEG F <u>/100</u> F
	5.0 10.0 15.0 20.0 305.0 45.0 45.0 55.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 105.0 120.0 120.0 155.0 1	$\begin{array}{c} 16.4\\ 32.2\\ 49.26\\ 82.0\\ 98.4\\ 131.26\\ 137.0\\ 147.0\\ 147.0\\ 147.0\\ 1896.326\\ 04.8\\ 20129.0\\ 201$	51.080 51.580 51.580 52.050 52.390 52.390 52.560 52.5700 53.960 53.190 53.520 54.100 54.630 54.820 54.820 54.820	$123.94 \\124.84 \\125.38 \\125.92 \\126.14 \\126.30 \\126.55 \\126.55 \\126.55 \\126.55 \\126.61 \\126.69 \\126.99 \\127.20 \\127.33 \\127.42 \\127.57 \\127.57 \\127.57 \\127.57 \\128.34 \\129.61 \\129.79 \\129.94 \\129.61 \\129.79 \\129.94 \\130.64 \\130.68 \\130.$	0.0 100.0 34.0 24.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	057744700?775548???85884875779779749898091 057741410000000000000000000011111000000101

÷.

TEMPERATURE, DEG C

