GL01813

STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1005 State Office Building Portland, Oregon 97201

LIBRARY OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1069 STATE OFFICE BUILDING PORTLAND, OREGON 97201

OPEN-FILE REPORT 0-80-7

PRELIMINARY GEOLOGY AND GEOTHERMAL RESOURCE POTENTIAL OF THE SOUTHERN HARNEY BASIN, OREGON

by

D. E. Brown,

G. D. McLean, and

G. L. Black

Under the direction of J. F. Riccio

Study completed under U. S. Department of Energy Cooperative Agreement No. DE-FC07-79ET27220

1980

UNIVERSITY OF UTAH RESEARCH INSTITUTE EARTH SCIENCE LAB.

DISCLAIMER

This report has not been edited for complete conformity with Oregon Department of Geology and Mineral Industries standards. Data in this document are preliminary and are subject to change upon further verification.

10 AB

3. 4. 4.

CONTENTS

INTRODUCTION
GEOLOGY
Introduction
Volcanic stratigraphy
Structural geology
GEOPHYSICS
WATER CHEMISTRY
GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA
CONCLUSIONS AND RECOMMENDATIONS
BIBLIOGRAPHY OF THE HARNEY BASIN
APPENDIX A: Formulas used in calculations
APPENDIX B: Geothermal-gradient data

ILLUSTRATIONS

FIGURES

tte ...

, în

	1. Map showing location of study area, southern Harney Basin, Oregon. 2
TABLE	ES
	1. Radiometric (K/Ar) ages of selected rocks, southern Harney Basin \cdot 4
	2. Bulk chemical composition of selected rocks, southern Harney Basin 6
	3. Spring and well chemistry, southern'Harney Basin
	4. Geothermetric calculations of minimum reservoir temperatures
	for thermal waters, southern Harney Basin
· · ·	5. Geothermal-gradient data, southern Harney Basin
MAPS	(folded, in envelope)
1 162,500	Plate I. Geologic map of the southern Harney Basin, Oregon
· · ·	(northwest quarter)
:62,500	Plate II. Geologic map of the southern Harney Basin, Oregon
	(northeast quarter)
1:62,500	Plate III. Geologic map of the southern Harney Basin, Oregon
1. A. A.	(southwest quarter)
1:62,500	Plate IV. Geologic map of the southern Harney Basin, Oregon
	์(southeast quarter) ศ
1:250,000	Plate \overline{Y} . Lineament map of the Harney Basin, Oregon
1:250,000	Plate VI. Aeromagnetic map of the southern Harney Basin, Oregon
1:250,000	Simple Bouguer gravity anomaly map of the Harney Basin, Oregon
1:250,000	Aeromagnetic map of the Harney Basin, Oregon

- ii -

INTRODUCTION

The study area is located at the southern end of a large, quasi-circular topographic low in central eastern Oregon known as the Harney Basin (Figure 1). Limits of the study area were arbitrarily determined according to the boundaries of available U.S. Geological Survey (USGS) topographic maps as $43^{0}00'$ on the south, $43^{0}30'$ on the north, $118^{0}30'$ on the east, and $119^{0}30'$ on the west. This study, performed under U.S. Department of Energy Contract No. DE FC07-79ET27220, was undertaken to estimate the geothermal potential of the area, using various methods including compilation of existing data, reconnaissance geologic mapping, lineament analysis, well and spring geochemistry, and accrual of geothermal-gradient data.

Geographically, the study area is comprised of a roughly circular, relatively flat, closed drainage basin that covers an area of 21,000 km² (8,100 mi²). Included within the basin are volcanic mounds surrounded by mountainous highlands. Drainage within the basin is into several closed desert lakes, including Malheur, Harney, and Mud Lakes, through Silvies River from the north, Donner und Blitzen River from the south, Warm Springs Creek from the west, and Malheur Slough from the east. Total relief within the basin is less than 9 m (30 ft), total relief in the highlands more than 500 m (1,600 ft). The only population centers are the small farming communities of Crane, Princeton Post Office, and Diamond, all in the eastern portion of the study area. The remainder of the southern basin is comprised of swampy bird habitats, cattle ranches, and range land.

- 1 -

Figure 1: Map showing location of study area.

2.-

Introduction

The geologic study of the area (Plates I-IV) consisted of (1) a field check and minor revisions of a study of the western half of the area by Parker (1974), and (2) an original reconnaissance study of the eastern half of the area during the fall of 1979 and spring of 1980. Quadrangles mapped in reconnaissance include the Crane and Lawen 15-minute quadrangles and the Jackass Butte, Jackass Butte N.E., Diamond Swamp, Diamond, Adobe Flat, Barton Lake, and Coyote Buttes ⁷¹/₂-minute quadrangles. Lithologies were based on hand specimen identifications, limited K/Ar ages (Table 1), and available bulk chemistry (Table 2). Areal extents of various units and specific points were located by using Brunton compass and pacing; data were plotted on USGS quadrangle maps without the aid of aerial photos.

M. 9. 9

e gegenne genere ge

GEOLOGY

Volcanic stratigraphy

The geology of the southern Harney Basin is comprised of a framework of two flat-lying, extensive, late Miocene ash-flow sheets onlapping a regional unit of early Miocene flood basalts. The ash flows, in order of increasing age, are the Rattlesnake and Devine Canyon Ash-flow Tuffs (Walker, 1979). They are separated by discrete fluvial-lacustrine sedimentary units, flood basalts and their vents, and silicic intrusions. Trace-element studies by Parker and Armstrong (1972) indicate that the ash-flow tuffs, the silicic intrusives, and the related mafic flows of the area form a bimodal compositional assemblage. Though detailed relationships are unclear at this time, at least one and possibly two calderas are present in the study area, one located beneath Malheur and Harney Lakes being the source of the Rattlesnake ash-flow sheet (Blank, 1974; Walker, 1979). The oldest unit recognized in the field is that of the early Miocene flood basalts found along the eastern

- 3 -

Table 1. Radiometric (K/Ar) ages of selected rocks of the southern Harney Basin

Sample no.*	Location	Rock type	Age**	<u>Stratigraphic</u> unit
PA-300	119 ⁰ 04'18" 43 ⁰ 03'06"	Basalt	$W_{8.8+1.4}$ my	Tmbh
PA-311B	119 ⁰ 22'23" '43 ⁰ 09'03"	Welded tuff	^w 8.6 <u>+</u> 0.2 my	Tmtd
PA-146	119 ⁰ 21'11" 43 ⁰ 13'80"	Rhyolite	^w 8.4 <u>+</u> 1.3 my	Tmto
PA-119	119 ⁰ 13'30" 43 ⁰ 14'19"	Rhyolite	^W 8.2 <u>+</u> 0.12 my	Tmtp
PA-250	119 ⁰ 03'45" 43 ⁰ 02'27"	High Al basalt	^w 7.9 <u>+</u> 0.9 my	Tmbh
PA-316D	119 ⁰ 08'45" 43 ⁰ 17'02"	Rhyolite	^w 7. <u>8+</u> 0.5 my	Tmro
PA-243	119 ⁰ 03'45" 43 ⁰ 04'56"	Welded tuff	^S 7.1 <u>+</u> 0.10 my	Tmtr
G-165-68	118 ⁰ 34'48" 43 ⁰ 24'48"	Basalt	^p 6.91 <u>+</u> 1.09 my	Tmbd
PA-330	119 ⁰ 22'23" 43 ⁰ 09'03"	Welded tuff	^w 6.7 <u>+</u> 0.4 my	Tmtr
PA-311G	119 ⁰ 22'23" 43 ⁰ 09'03"	Welded tuff	^w 6.6 <u>+</u> 0.2 my	Tmtr
W-2-70	119 ⁰ 18'00" 43 ⁰ 28'48"	Rhyodacite	^a 6.5 <u>+</u> 0.3 my 6.1 <u>+</u> 0.2 my	Tmrp
PA-6-70	119 ⁰ 27'51" 44 ⁰ 46'54	Welded tuff	^a 6.4 <u>+</u> 0.2 my	Tmtr
PA-214	119 ⁰ 18'00" 43 ⁰ 30'18"	Rhyolite	^W 5.6 <u>+</u> 0.4 my 6.4 <u>+</u> 0.2 my	Tmrp
PA-160	119 ⁰ 28'00" 43 ⁰ 16'30"	Andesite	^W 5.8 <u>+</u> 0.8 my	Tmbi
PA-41	119 ⁰ 06'34" 43 ⁰ 20'24"	Alkali basalt	^w 2.8 <u>+</u> 0.2 my	Qtb
PA-158	119 ⁰ 12'00" 43 ⁰ 13'48"	Rhyolite	^w 2.1+0.24 my b2.7+0.4 my	Qtr

*References: PA - from Parker and Armstrong, 1972; G - from Greene and others, 1972; W - from Walker and others, 1974; SH - from samples taken for this report, unpublished analyses by University of Utah Research Institute (UURI) Stan Evans and Duncan Foley, analysts.

**w-- whole rock age; s - sanidine age; a - anorthoclase age; b - biotite age; p - plagioclase age; ps - partial separation age.

Sample no.*	Location	Rock type	Age**	<u>Stratigraphic unit</u>
PA-14	119 ⁰ 00'23" 43 ⁰ 26'24"	High Al basalt	^W 2.6+0.3 my	Qtb
G-32-67	119 ⁰ 00'30" 43 ⁰ 27'00"	Basalt	^w 2.38 <u>+</u> 0.07 my	Qtb
SH-4	118 ⁰ 56'45" 43 ⁰ 2'00"	Andesite	^p 16.7 <u>+</u> 0.6 my	Tmba
SH-12	118 ⁰ 50'22" 43 ⁰ 15'40"	Basalt	^W 2.91 <u>+</u> 0.38 my	Qtb (?)
SH-105	118 ⁰ 30'55" 43 ⁰ 14'45"	Rhyodacite	^W 11.3 <u>+</u> 0.5 my	Tmrd
SH-106	118 ⁰ 30'54" 43 ⁰ 21'53"	Basalt	^p 11.1 <u>+</u> 1.3 my	Tmba
SH-106A	118 ⁰ 30'05" 43 ⁰ 21'45"	Basalt	^{ps} 9.44 <u>+</u> 0.8 my	Tmba
SH-113	118 ⁰ 53'06" 43 ⁰ 08'13"	Basalt	^{ps} 8.07 <u>+</u> 0.69 my	Tmb hv

Table 1. Radiometric (K/Ar) ages of selected rocks of the southern Harney Basin--Continued

i.

 * References: PA - from Parker and Armstrong, 1972; G - from Greene and others, 1972; W - from Walker and others, 1974; SH - from samples taken for this report, unpublished analyses by University of Utah Research Institute (UURI) Stan Evans and Duncan Foley, analysts.

**w - whole rock age; s - sanidine age; a - anorthoclase age; b - biotite age; p - plagioclase age; ps - partial separation age.

- 5

Table 2. Bulk chemical composition of selected rocks of the southern Harney Basin. (Letters at top of each column indicate sample number and map symbol for stratigraphic unit. All values are in weight percent.)

Compo- Ji nent	*P-159 QTb	P-194 QTmv	P-14' <u>QTb</u>	P-40 QTmv	P-58 QTb	P-181 QTb
Si0,	48.5	48.6	48.7	48.7	48.9	49.1
Ti02	3.51	0.87	1.43	1.97	1.47	1.60
A1203	12.6	16.9	17.4	16.3	14.0	15.4
FeO (Total Fe)	13.4	9.0	10.2 ⁴	9.7	10.8	9.4
MgO	6.2	9.1	8.4	8.9	11.0	7.5
CaO	9.7	12.4	11.2 ¹	12.0	10.3	10.9
Na ₂ 0	3.8	2.6	2.8	2.4	2.3	3.2
K20	1.15	0.29	0.29	0.26	0.38	0.32
Total	98.26	99.47	100.42	99.97	99.15	97.10
	P-212 QTb	P-300 Tmbh	P-73-4 	P-52 QTb	P-41 QTb	P-250 Tmbh
Si0,	49.5	49.5	49.5	50.0	50.1	50.2
TiO ₂	1.45	1.72	1.93	1.36	1.70	1.38
A1203	14.8	15.4	15.5	15.6	15.0	17.1
FeO (Total Fe)	11.0	12.0	12.0	10.3	11.0	10.4
MgO	7.9	8.2	6.5	10.0	7.1	8.2
Ca0	10.9	10.5	11.0′	10.2	10.6	11.2
Na ₂ 0	3.5	3.1	3.4	2.8	3.0	2.7
к ₂ 0	0.32	0.42	0.32	0.34	0.80	0.35
Total	99.05	100.84	100.15	100.60	98.50	101.53
	P-184 QTb	P-199 QTmv	P-193 QTmv	P-44 QTmv	P-206 <u>QTmv</u>	Р-185 <u>QТЬ</u>
sio ₂	50.2	50.4	50.8	51.0	51.2	51.7
Ti0 ₂	3.27	1.52	1.14	0.83	1.17	2.82
A1 ₂ 0 ₃	13.1	14.7	14.9	15.6	14.4	13.6
FeO (Total Fe)	13.7	11.0	10.5	9.2	9.8	12.6
MgO	5.5	8.0	7.9,	8.5	8.2	5.6
CaO	9.0	11.5	12.3	12.5	11.8	8.5
Na ₂ 0	3.9	3.4	3.1	3.0	3.0	3.8
к ₂ 0	1.04	0.35	0.21	0.19	0.53	1.28
Total	99.71	100.87	100.64	100.63	100.13	99.50

*References: P - from Parker, 1974; G - from Greene, 1973.

- 6

24

Table 2. Bulk chemical composition of selected rocks of the southern Harney Basin--Continued. (Letters at top of each column indicate sample number and map symbol for stratigraphic unit. All values are in weight percent.)

Compo- nent	*P-278 Tmbh	P-160 Tmbi	P-197 <u>QTmv</u>	P-245D Tmtd
Si0,	52.6	57.6	63.7	71.3
Ti0 ₂	1.07	1.25	0.75	0.35
A1,0,	15.5	14.7	12.2	13.4
FeO (Total Fe)	10.0	8.6	6.0	4.5
MgO	6.8	4.2	4.1	0.41
CaO	10.6	7.0	10.2	1.9
Na ₂ 0	3.2	4.2	1.9	3.85
к,0	0.82	2.0	1.9	6.0
Total	100.59	99.55	100.75	101.71
Compo- nent	P-146 Tmro	P-119 Tmtp	P-215 Tmrp	
Si0 ₂	73.2	73.8	73.9	
TiO2	0.47	0.13	0.28	
A1203	13.5	11.7	13.6	
FeO (Total Fe)	2.65	3.0	1.7	
Mg0	0.6	0.15	0.5	
CaO	1.41	1.2	1.90	
Na ₂ 0	3.9	4.45	3.4	
κ ₂ ο	4.71	4.5	4.58	
- Total	100.12	97.93	99.76	
Compo- nent	P-245L Tmtr	P-214 <u>Tmrp</u>	P-290 Tmtr	• • •
Si0 ₂	75.0	76.0	76.4	
Ti0 ₂	0.20	0.08	0.13	
A1203	11.8	12.9	11.7	
FeO (Total Fe)	2.7	0.75	2.7	
MgO	0.15	0.4	0.7	
CaO	0.6	1.6	0.35	
Na ₂ 0	3.12	3.4	4.4	. :
K ₂ 0	6.3	4.88	4.28	· ·
Total	99.87	100.01	100.66	2 2 2 2 2

*References: P - from Parker, 1974; G - from Greene, 1973. £

- 7 -

portion of the mapped area. Dates in adjacent areas indicate ages of 12.1 to 20.2 m.y.; a date taken for this report from Jackass Butte in the southcentral portion of the map yielded an age of 16.7 m.y. The youngest rocks are the basalts associated with the Holocene Diamond Craters vent area for which there is a reported date of 15,000+2,000 years, as determined by hydration rind method (Norm Peterson, 1980, personal communication). These youngest rocks directly overlie a second set of young flood basalts which issued from vents mapped immediately south of Malheur Lake along what is probably a ring fracture zone of the caldera mentioned above. A third group of young lavas are the extensive flood basalts which issued from the Dog Mountain-Freeman Butte area. They have been eroded to form reverse topographic features such as Wrights Point and were dated by Parker (1974) at 2.6 to 2.8 m.y. The extensive age determinations available for this study (Table 1) indicate a strong relationship between age of basaltic eruption, age of silicic event, and, in two cases, age of ash-flow eruption. These age/modal relationships are shown in the time-rock charts on the accompanying geologic maps (Plates (1-17). There are still, however, numerous small phreatic and subaqueous vents which do not have lavas that can be dated and whose absolute age relationships, therefore, are unclear and which may, in some cases, be of very young age.

Structural geology

Faulting in the southern Harney Basin follows two general trends. The first is the Basin-Range trend (approximately north-south) which occurs in only a limited area immediately north of Crane in the extreme northwest corner of the map. The age of this normal faulting is not clear. However, it does cut the youngest unit present (6.1 m.y.).

The second trend is the Brothers fault zone trend $(N.25^{\circ}-35^{\circ}W.)$, which dominates the remainder of the map and cuts all bedrock units present,

- :8 -

including the 15,000-year-old Diamond Craters. All motion in this trend appears to be dip-slip. However, the presence of lateral-slip or obliqueslip faulting cannot be ruled out. Several authors (McLeod and others, 1975) feel the Brothers fault zone may be, in fact, the surface expression of a right-lateral wrench system at depth.

The intersection of the two fault trends is in the southeast corner of the map (Plate IV), in the Riddle Mountain-Diamond Craters area (a portion of which remains unmapped). This area is a fault-shattered zone which shows considerable coxcomb-like faulting on small spacing with short-period monoclinal folding and rotating of the discrete blocks between individual faults. Two adjacent structural domes also occur in this area, connected from dome crest to dome crest by a horst-like fault ridge and separated by one, and possibly two, small structural basins. At the leading edge of this zone is the Diamond Craters vent area, which, in itself, is cut by several faults of the Brothers trend. Structural interpretation of this complex area is difficult. It seems that the structures are controlled by a local compressional regime and that Diamond Craters is, in some way, closely related to the intense faulting and folding.

Folding in the southern Harney Basin, with the exception of that previously described, is generally in the form of broad, shallowly dipping anticlines and synclines plunging toward the center of the basin. One such fold in the Crane area plunges west toward the basin. Here, the older ash-flow units and basalts have been down-folded and infilled with 6.1-m.y.-old basalts. This age is slightly younger than the 6.5-m.y. age of the Rattlesnake Ash-flow Tuffs (Walker, 1979), and the down-folding may have been in response to caldera formation and subsequent volume loss. A lineament study (Plate V) prepared for this report shows a general oneto-one correspondence of structural trends with the mapped fault trends. It also shows a number of lineaments which cross the alluvial-filled basin but

Individual blocks within the fault zones, in general, dip back toward the center of the basin. However, during the mapping project, a number of blocks that dipped away from the basin were found. The basin itself has been formed by downwarping which began during middle to late Miocene (Walker, 1979). The process was caused by loss of material through volcanic eruption of the extensive ash-flow sheets and numerous flood basalts and, to a lesser extent, by the loss of material volume due to loss of stored heat (Blackwell, 1980, personal communication).

10

GEOPHYSICS

The only available geophysical survey for the southern Harney Basin is an aeromagnetic survey flown in 1972 by the USGS (Plate VI). Because of the dramatic contrast between the relative magnetic susceptibilities of mafic and silicic lavas, a good correlation between structure and rock type and magnetic trends is clearly apparent. On the eastern portion of the map and correlative to the mapped Basin-Range fault trend discussed earlier in this report, a strong north-south magnetic trend occurs. Anomalies, both maxima and minima, elongated in a north-south direction along this trend probably indicate the numerous juxtaposed fault blocks which were found during this study. The central portion of the aeromagnetic map is dominated by intensive maxima over Diamond Craters and Coyote Buttes and a large oval minimum over Malheur Lake. The maxima are probably due in part to localization of mafic vent material at or near the surface at Diamond Craters and Coyote Buttes. Surface mapping also indicates a number of small, isolated phreatic cones and vents and extensive silification which may indicate a mafic intrusive buried beneath the ridge at Coyote Buttes. The oval minimum seen between the two maxima is in all likelihood the site of the caldera for the Rattlesnake Ash-flow Tuff (Blank, 1974), which erupted approximately 6.5 m.y. ago (Walker, 1979). This minimum is cut by a northwesterly trending ridge of magnetic maxima which may be a zone of post-Rattlesnake faulting. The remainder of the map is dominated by the Brothers fault zone trend with isolated maxima and minima centered over mapped silicic and mafic volcanic vents.

Detailed interpretation of structures and geothermal systems cannot be made on the basis of a single aeromagnetic survey. Proposals for future geophysical studies are included in the <u>Conclusions and Recommendations</u> of this report.

-' 11 -

WATER CHEMISTRY

During the period of this study, 22 wells and springs were sampled and their waters analyzed. Together with existing published analyses (U.S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979; Leonard, 1970), a total of 28 analyses were available for evaluation (Table 3). These analyses were then used to calculate minimum reservoir temperatures (Table 4), using standard formulae for geothermometry. The methods used in these analyses, together with references, are included in this report as Appendix A. Published reports on the hydrology of the Harney Basin (Piper and others, 1939; Leonard, 1970) show a considerable number of thermal anomalies. However, many of these wells and springs either could not be located, were not flowing at the time of the study, or were inaccessible because of weather conditions or the owners' refusal to allow sampling.

Sampling temperatures during field collection ranged from 76^oC and 67^{o} C for Crane Hot Springs and Harney Lake Hot Springs, respectively, down 'to $15^{o}-20^{o}$ C for wells and springs bordering Harney Lake. The natural water of the study area can best be described as generally high in magnesium, calcium, and boron, and low in chloride and bicarbonate. On the basis of preliminary evaluation of the available data, two, and possibly three, groups of waters are recognized. The first are from the wells and springs near the town of Crane and the surrounding area and appear to have moderate total dissolved solids (184-564 mg/l), high Ca:Mg ratios for the cooler waters (4.1-13), consistently moderate silica throughout the sampling temperature range (56.2-93.2 mg/l) and consistently high amounts of calcium for the cooler waters (13-28.6 mg/l). Calculated minimum reservoir temperatures for these waters (Table 4) are also consistently in the 90^{o} - 120^{o} C range. Geologic control for these waters is difficult to define in relation to the reconnaissance study;

- 12

Table 3. Spring and well chemistry of the southern Harney Basin area. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Dunn Ranch Well #1	Dunn Ranch Well #2	Soldier Spring	Water Tank Spring	Unnamed Spring
Location	26S/30E/ 33Ddd	26S/30E/ 33Ddd	27S/29 E/ 14 Ccb	27S/30E/ 8Add	27S/29¹₂E/ 35Cbb
Date sampled	5/80	5/80	10/80	10/80	10/80
Temp. (^O C)	26	19	19.5	20.6	14.5
рН	9.7	9.0	8.03	8.7	7.85
Conductance µmhos/cm	1095	1038	610	1350	2510
Alkalinity X _h as mg/l HCO X _c as mg/l CaCO ₃	457 _c	416 _c	nt	nt	nt
Hardness as mg/1 CaCO ₃	<1	4	<15	<15	205
Total dissolved solids	747	695	452	788	1580
si0 ₂	120	29.4	30	33	39
Na	238	250	80	288	500
K `	1.5	1.2	<2.72	<2.72	18
Ca	<0.01	0.9	1	2	34
Mg	<0.01	0.3	<0.544	<0.544	19
C1	69.3	22.8	36	122	604
As	0.086	0.036	<0.600	<0.680	<0.680
В	2.76	3.85	0.8	4.3	6.8
Li	<0.1	0.2	<0.054	0.17	0.19
F	9.0	10.3	2.1	8.0	2.8
Fe (total)	<0.05	0.10	<0.027	<0.027	<0.027
A1	<0.10	0.10	<0.680	<0.680	<0.680
HCO3	nt	nt	nt	nt	nt
P0 ₄	0.030	0.015	nt	nt	nt
so ₄	25.6	47.0	20	28	92
, NO ₃	<0.02	<0.02	nt	nt	nt
NH ₃	2.34	0.96	0.4	0.3	1.3

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

\$

Location	Soldier <u>Well</u> 27S/29½E/ 15Bdd	Sage Hen <u>Creek Well</u> 24S/30E/	Crane Spring	Crane Spring	Crane Spring
Location	27S/29½E/ 15Bdd	24S/30E/	040 /000		
		24Bcb	245/33E/ 34Caa	24S/ 33E/ 34Caa	24S/33E/ 34Caa
Date sampled ""	10/80	5/80	8/31	9/68	'72
Temp. (^O C)	19.5	23	49	80	78
рН	7.99	7.9	nt	8.3	8.1
Conductance µmhos/cm	270	151	nt	814	810
Alkalinity X _h as mg/l HCO ₃ X _c as mg/l CaCO ₃	nt	67 _c	nt	nt	202 _c
Hardness as mg/1 CaCO ₃	70	18	nt	nt	nt ,
Total dissolved solids	236	125	nt	536	nt
Si0 ₂	51	41	nt	80	83
Na	52 ·	25.6	nt	170	170
K	7	1.6	nt	3.6	3.9
Ca	13	6.4	2	3.8	3.7
Mg	-4	0.5	nt	0.2	0.1
C1	26	3.6	82	78	79 ′
As	<0.680	0.030	nt	nt	0.09
В	0.6	<0.20	nt	6.2	7.9
Li	<0.054	<0.1	nt	nt	0.09
F	0.5	0.5	nt	9.3	9.0
Fe (total)	<0.027	<0:05	nt	0.02	<0.02
A1	<0.680	<0.10	nt	nt	0.022
HCO3	nt	nt	173	199	202
P0 ₄	nt	0.033	nt	nt	0.09
so ₄	15	11.8	80	81	86
NO3	· nt	<0.02	1.4	nt	nt
NH ₃	tr	0.03	nt	nt	3.2

- 14 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Crane Spring	Island Ranch Well	Unnamed Spring	Long Hollow Well	Barnyard Spring
Location	24S/33E/ 34Caa	25S/32E/ 7Bab	26S/29E/ 31Cca	26S/ 34E/ 8Bdd	27S/29E/ 6Aaa
Date sampled	5/80	8/69	5/80	5/80	5/80
Temp. (^O C)	76	41	21	25	22
рН	8.2	9.3	8.0	7.8	8.1
Conductance µmhos/cm	750	1450	275	366	285
Alkalinity X _h as mg/1 HCO ₃ X _c as mg/1 CaCO ₃	169 _c	nt	105 _c	105 _c	112 _c
Hardness as mg/1 CaCO ₃	8	nt	60	115	35
Total dissolved solids	564	957	233	282	237
SiO ₂	93.2	54	80.2	75.8	62.4
Na	160	386	38	28.8	52
K	3.5	4.4	5.5	5.6	4.3
Ca	3.6	0.5	12.2	28.6	8.0
Mg	0.1	0.2	5.5	4.5	2.7
C1	88	9	23.5	35.5	23.5
As	0.145	nt	0.023	0.016	0.035
В	8.67	nt	0.65	0.70	0.64
Li	0.1	nt	<0.1	<0.1	<0.1
F	9.0	19	0.3	0.3	0.6
Fe (total)	<0.05	nt	<0.05	0.20	<0.05
A1 ,	0.10	nt	<0.10	0.38	<0.10
HCO3	nt	674	nt	nt	nt.
PO4	0.050	nt	0.032	0.084	0.034
so ₄	78	8	11.8	28.2	11.3
NO ₃	0.05	0.1	0.72	0.02	0.67
NH ₃	0.73	nt	0.06	2.77	0.05

- 15 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

÷

	Warm Spring in Harney Lake	Unnamed Spring	Railroad Well	Harney Lake Hot Spring	Harney{Lake Hot Spring
Location	27S/29½ E/ 36Cab	27S/29½E/ 34Da	25S/34E/ 7Ddd	27S/29½E/ 36Dda	27S/29¹₂Ę/ 36Dda
Date sampled	5/80	5/80	5/80	8/31	'72
Temp. (^O C)	22	21	. 17	59	68
рН	8.7	7.9	8.2	nt	7.26
Conductance µmhos/cm	9280	297	238	nt	2970
Alkalinity X _h as mg/l HCO ₃ X _c as mg/l CaCO ₃	2000 _c	¹⁰³ c	91 _c	nt	nt
Hardness as mg/1 CaCO ₃	23	58	, 27	nt	nt
Total dissolved solids	10615	251	184	nt	nt
sio ₂	89.6	63.6	56.2	92	92
Na	2220	36.8	39.6	622	630
K	68	6.4	2.5	12	13
Ca	1.5	13.1	8.7	13	12
Mg	3.3	5.5	1.1	3	1.8
C1	2400	25.0	7.4	562	590
As	1.745	0.025	0.033	nt	0.6
В	53.4	0.61	0.55	nt	11 : '
Li	1.0	<0.1	<0.1	nt	0.45
F	8.9	0.4	0.5	nt	3.3
Fe (total)	70.0	<0.05	<0.05	0.03	0.05
Al	125	<0.10	<0.10	nt	0.005
HCO3	nt	nt	nt	601	566
PO ₄	1.190	0.032	0.027	nt	0.092
so ₄	474	12.9	18.4	140	140
NO ₃	0.03	0.75	0.03	0.5	nt
NH ₃	1.46	0.04	0.04	nt	1.8
			•		

16 -

ţ

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Harney Lake Höt Spring	00 Station Spring	Adobe Flat Well	Thompson Well	Harney Lake Spit/Spring
Location	27S/29½E/ 36Dda	26S/28E/ 36Bdd	27S/34E/ 17Cbd	26S/33E/ 13Acc	27S/29¹₂E/ 34Dbb
Date sampled	5/80	5/80	5/80	5/80	10/80
Temp. (^O C)	67	23	17	24	14.5
рН	7.7	8.0	8.1	7.8	8.5
Conductance µmhos/cm	2700	228	312	442	1090
Alkalinity X, as mg/l HCO ₃ X ^h as mg/l CaCO ₃	493 _c	⁸⁵ c	120	122	nt
Hardness as mg/1 CaCO ₃	43	44	99	82	30
Total dissolved solids	1777	186	237	341	654
SiO2	102	68	80.8	83.2	45 .
Na	53	31.2	25.4	63	208
K	12	4.1	5.7	8.1	9
Ca	12.8	10.8	26.4	19.9	4
Mg	2.1	3.9	3.1	4.9	2
C1	623	17.6	11.4	55.8	163
As	0.915	0.019	0.014	0.024	<0.680
В	12.07	0.45	0.27	1.24	2.7
Li	0.4	<0.1	<0.1	<0.1	0.11
F	3.0	0.2	0.4	0.3	1.5
Fe (total)	0.56	<0.05	<0.05	<0.05	<0.027
A1	0.62	<0.10	0.10	<0.10	<0.680
HC03	nt	nt	nt	nt	nt
PO4	0.294	0.031	0.029	0.013	nt
so ₄	119.3	6.7	19.9	45	58
NO ₃	0.02	0.50	0.51	0.92	nt
'NH ₃	1.01	0.05	0.06	0.04	1.1

- 17 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Eagles Nest Spring #1	Eagles Nest Spring #2	Bathtub Spring
Location	27S/29½E/ 25Aad	27S/29½E/ 25Ada	27S/ 29½E/ 28Cac
Date sampled	10/80	10/80	10/80
Temp (^O C)	41.7	28.1	51.1
рН	7.12	9.18	6.87
Conductance µmhos/cm	4750	1150	3900
Alkalinity X _h as mg/l HCO ₃ X _c as mg/l CaCO ₃	nt	nt	nt
Hardness as mg/1 CaCO ₃	154	<15	170
Total dissolved solids	3110	632	2096
SiO ₂	55	35	87
Na	1207	. 240	682
К	14	<2.72	32
Ca	30	1	37
Mg	15	<0.544	13
C1	466	68	848
As	1.0	<0.680	1.0
В	17.1	3.1	13.2
Li	0.69	0.07	0.87
F	2.1	7.2	1.8
Fe (total)	<0.027	<0.027	0.14
A1	<0.680	<0.680	<0.680
HCO ₃	nt	nt	nt
PO4	nt	nt	nt .
so ₄	320	23	50
NO3	nt	nt	nt
NH ₃	5.6	1.5	1.5

- 18 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin

	Dunn Ranch Well #1	Dunn Ranch Well #2	Soldier Spring	Water Tank Spring	Unnamed Spring	Soldier Well
Flow rate liters/min.	100+	10	<1	20	5	40
Measured temperature ^O C	26	19	19.5	20.6	14.5	19.5
Na:K ^O C	38	28	109	52	112	197
Na:K:Ca 1/3 β ^O C	78	60	139	100	143	179
Na:K:Ca 4/3 β °C	75	34	124	122	130	89
Na:K:Ca Mg,corrected ^O C	NC	NC	64	NC	113	59
SiO ₂ conductive ^O C	148	79	79	83	91	127
SiO ₂ adiabatic ^O C	141	82	83	86	93	124
SiO ₂ chalcedony ^O C	122	47	48	52	60	99
SiO ₂ opal ^O c	26	- 34	-33	- 30	-23	-13

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 19 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

1.15

- • • •	Sage Hen Creek Well	Crane Spring	Crane Spring	Crane Spring	Island Ranch Well	Eagle's Nest Spring #1
Flow rate liters/min.	50	100+	100+	100+	40	40
Measured temperature ^O C	23	80	78	76	41	41.7
Na:K ^o C	144	86	90	87	59	60
Na:K:Ca 1/3 β ^O C	136	120	124	121	120	100
Na:K:Ca 4/3 β ^O C	51	109	113	109	196	99
Na:K:Ca Mg corrected ^O C	124	NC	NC	ŃĊ	115	40
SiO ₂ conductive ^o C	93	125	127	133	105	106
SiO ₂ adiabatic ^O C	95	123	124	129	106	106
SiO ₂ chalcedony ^o C	62	97	99	106	76	77
SiO ₂ opal o _C	-21	6		13	-11	-10

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 20 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

	Eagle's Nest Spring #2	Bathtub Spring	Unnamed Spring	Long Hollow Well	Barnyard Spring	Warm Spring in Harney Lake
Flow rate liters/min.	5	50	<1	pumped	100+	<1
Measured temperature ^o c	28.1	51.1	21	25	22	22
Na:K ^O C	59	127	203	228	162	104
Na:K:Ca 1/3 β ο _C	109	160	178	181	158	138
Na:K:Ca 4/3 в	140	160	79	59	84	131
°C	<i>.</i>	• " •			• • •	
Na:K:Ca Mg corrected O _C	40	60	43	56	53	108
SiO ₂ conductive ^O C	86	130	125	.122	112	131 •
SiO ₂ adiabatic ^O C	89	126	123	120	112	128
SiO ₂ chalcedony ^O C	55 *	102	97	94	83	104
SiO ₂ opal O _C	-27	10	6	4	-5	

*Methodology for calculations presented in Appendix A. NC = not calculated.

21 -

ť.

'Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

	Unnamed Spring	Railroad Well	Harney Lake Hot Spring	Harney Lake Hot Spring	Harney Lake Hot Spring	00 Station Spring
Flow rate liters/min.	100	pumped	100+	100+	100+	100+
Measured temperature	21 ((*)	17	59	68	67	23
Na:K °C	218	145	82	85	244	196
Na:K:Ca 1/3 β C	190	207	100	143	188	170
Na:K:Ca 4/3 β ^O C	92	336	52	220 i	58	70
Na:K:Ca Mg corrected ^O C	38	136	82	105	113	50
SiO ₂ conductive C	113	107	133	133	138	117
SiO ₂ adiabatic C	112	107	, 129 	129	134	115
SiO ₂ chalcedony C	84	78	105	105	112	88
SiO ₂ opal C	-4	-9	13	13	18	-1
ţ			•			

 \star Methodology for calculations presented in Appendix A. NC = not calculated.

- 22 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

	Adobe Flat Well	Thompson Well	Harney Lake Spit	Spring
Flow rate liters/min.	pumped	pumped	<5	
Measured temperature ^O C	17	24	14.5	· · · ·
Na:K ^O C	242	194	122	
Na:K:Ca 1/3 β ^O C	268	176	119	
Na:K:Ca 4/3 β ^O C	311	87	37	
Na:K:Ca Mg corrected ^O C	148	68	61	
SiO ₂ conductive ^O C	126	127	97	
SiO ₂ adiabatic ^o C	123	124	98	
SiO ₂ chalcedony ^O C	98	99	67	
SiO ₂ opal ^O C	7	NC	-18	

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 23 -

however, preliminary examination seems to indicate the waters are controlled by intersection of Basin-Range faulting and the Rattlesnake collapse caldera, previously described in the section on geology. The difference in chemical character of various Harney Basin waters is probably due to a difference in chemical composition of rocks in the recharge zone and duration of subsurface circulation:

The second group of waters is from the area surrounding Harney Lake in the southwest corner of the study area. These waters are generally higher in total dissolved solids (233-10,616 mg/1), lower in Ca:Mg ratios (0.45-6.1), inconsistent in silica concentrations through the sampling temperature range (29.4-120 mg/1), lower in calcium content (0.1-37 mg/1), and slightly inconsistent in calculated minimum reservoir temperatures. Geologic control for these waters is likewise difficult to define; however, preliminary indications seem to show they are controlled by the intersection of the Rattlesnake collapse caldera and the Brothers fault zone structural trend. Differences in chemical constituents are probably due to the relative abundance of sediments and silicic rocks through which the water must circulate before it reaches the surface.

Detailed geochemical sampling of springs and wells throughout the southern Harney Basin is needed before a realistic thermal-regime model can be attempted. This is apparent in a cursory examination of estimated reservoir temperatures (Table 4), some of which are nearly 400[°]C, which indicates that a large number of springs and wells have either reacted strongly with wall rock or mixed with meteoric or shallow evaporite-rich water while ascending.

- 24

GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA*

The temperature-gradient and heat-flow results for the south Harney Basin are as shown in Table 5. Included in the table are the township/range-section and latitude and longitude location of each hole. In addition, the hole name, date of logging used, and collar elevation are included for each hole. The bottom hole temperature, maximum depth, corrected temperature gradient, and, where available, corrected heat flow are printed in blue on Plates I-IV. These values are also listed in the table, as are the depth interval and average thermal conductivity used for calculation of the gradient and heat flow. The values are given in SI units. To transform units, the following conversion factors were used: $1 \times 10^{-6} \text{ cal/cm}^2\text{sec}$ (HFU) = 41.84 mWm⁻², 1×10^{-3} cal/cm sec^oC (TCU) = 0.4184 Wm⁻¹K⁻¹, and 1^oC/km = 1 mKm⁻¹ = 18.2^oF/100 ft. Corrected gradient and corrected heat flow are values for which the topographic effects have been removed. These are not significant for most of the sites studied.

The holes are ranked in terms of the quality of the gradient or heat-flow information: high quality (A), good quality (B), marginal quality (C), data with some problems (D), and data for which no useful temperature gradient or heat flow can be estimated (X). All thermal-conductivity measurements were made on cutting samples.

Most data in the south Harney area have been obtained in holes drilled as water wells or mineral exploration holes, so the thermal-conductivity values are estimated (parenthesis) or based on one or two cutting samples from surface spoil piles. Several holes were drilled and the results published by the USGS (holes S1, S2, S3, MR-1, and MR-2 in Sass and others, 1976). Holes prefixed BFZ-75 were drilled by DOGAMI (BR-75 holes in Hull and others, 1976). The background gradient and heat flow for the area are about $60-80^{\circ}$ C/km and $60-80 \text{ mWm}^{-2}$. Several anomalous

*By D. D. Blackwell, Southern Methodist University, Dallas, Texas.

- 25 -

Table 5. Geothermal-gradient data, south Harney Basin, Oregon

Twn/Rng- Section	N Lat. Deg.Min.	W Long Deg.Min.	Hole # Date	Collar Elev.	Bottom Temp. (°C)	Depth Interval (m)	Avg. TC Wm ⁻¹ K ⁻¹	# TC	Uncorr. Gradient °C/km	Corr. Gradient °C/km	Corr. HF mWm ⁻²	Q HF
245/33E- 9D	43-30.00	118-39.00	5 3	1255		40.0 203.0	<u>،</u> 89		82.0 1.0	82.0 1.0	71	A
245/32E- 23DD	43-28.30	118-43.90	*LAWEN	1256	20.91	75.0 150.0	(.96)		60.9 7.4	60.9	59	B
245/34E- 190	43-28.00	118-35.00	S2	1262		60.0 183.0	.88		69.5 .5	69.5	63	A :
245/33E- 35AD	43-26.60	118-36.80	CRANE 7/21/75	1257	20.27	- 30.0 85.0	(.96)		80.0 7.1	80.0	75	B
255/31E- 488	43-26.20	119- 1.10	BFZ-7511 9/16/75	1262	11.49	42.5 60.0	1.30	5	30.9 2.5	30.9	42	C
255/33E- 3BD	43-25.90	118-38.50	BFZ-7501 11/22/75	1274	- 16.04	10.0 28.6	1.00	2	188.3 18.9	188.3	188	B
255/33E- 10BA	43~25.23	118-38,30	ADAMS 5/14/80	1259	50.22	.0 37.0						X
255/33E- 11BBB	43-25,20	118-37.70	ROSSBERG		15.75	.0 65.0	(. 60.0 . 70.0 -	60.0 70.0	58	
255/33E- 9CA	43-24.73	118-39.78	WSB-1 5/14/80	1250	17.82	.0 65.0			(59.0)	(59.0)	• •	D
255/33E- 10CI	43-24.48	118-38.52	WSB-3 5/14/80	1254	14.01	10.0 51.5			45.3 5.9			C
255/33E- 9CD	43-24.45	118-39.28	ARFORD 3 5/14/80	1250	27.95	.0 165.0			(84.0)	(84.0)		D .
255/33E- 9CC	43-24.45	118-40.05	ARFORD 2 5/14/80	1250	22.30	.0 61.0			(136.0)	(136.0)		D
255/33E- 11CD	43-24.40	118-37.18	WSB-4 5/ 8/60	1254	11.62	10.0 57.0			9.2 2.5	*		×
255/33E- 16AB	43-24.32	118-38.53	ARFORD 1 5/14/80	1250	18.83	5.0 107.5			> 45.0 -			D
255/31E-	43-22.00	119- 2.00	S1	1266	•	50.0	.88		81.0	81.0	71	B

Twn/Rng- Section 21D	Table 5. N Lat. Deg.Min	Geothern W Long Deg.Min.	nal-gradie Holens- Date	nt data, Collar Elev.	south Ha Bottom Temp. (°C)	rney Basin, Depth Interval (m) 190.0	Avg. TC Wm ⁻¹ K ⁻¹	-Cont # TC	inued Uncorr. Gradient °C/km 1.0	Corr. Gradient °C/km 1.0	Corr. HF mWm-2	Q HF		• • •
265/30E- 3BB	43-21.10	119- 7.00	BFZ-7510 9/16/75	1273	13.30	7.5 30.0	1.00	8	47.6	47.6	(46)	C	· · · · · · · · · · · · · · · · · · ·	
255/34£- 31CC	43-20.25	118-35.25	WINDYPT1 5/ 8/80	1257	11.28	10.0 30.0	· · · · ·		7.2 1.4			*		- -
265/33E- 2CD	43-20.22	118-36.70	WINDYPT2 5/ 8/80	1253	19.46	10.0 58.0			86.4 4.2			C		-
265/33E- 11DC	43-19.25	118-36.43	WINDYPT3 5/ 8/80	1252	15.53	5.0 45.0			85.2 3.9	· .		B		
265/33E- 13DA	43-18.52	118-34.93	N TMPSON 5/ 8/80	1257	22.31	10.0 52.0	: .		109.0 37.0	• •		C		
-265/30E- 20DC	43-17.70	1198.70	BFZ-7508 9/29/75	1250	12.26	10.0 25.0	1.09	6	69.7 1.8	69.7	75	C ~		•
265/33E- 3500	43-15,78	118-36.97	DAVIS 1 5/ 7/80	1254	10.86	10.0 34.5			12.5 1.8	-		×		• •
275/30E- 13CD	43-13.18	118-56.00	HP-10 6/ 8/73	1280	23.30	25.0 60.0	.96 .13		130.4 2.5	119.6 2.4	(117)	B	•	-
27 -	•					60.0 130.0	1.30		61.6 1.5	58.4	(75)	B		-
275/32E- 2388	43-13.12	118-44.20	VOLTAGE 5/13/80	1335	22.46	100.0 190.0	(.96)		67.8	68.9	60	. В		
275/29E- 21AC	43-13.00	119-14.80	BFZ-7509 9/29/75	1400	13.18	12.5 45.0	1.63	13	54.2	54.2	88	В		
275/33E- 20DB	43-12.68	118-37.52	BECKLEY 5/13/80	1285	11.62	10.0 60.5			1.1 3.8	. *		×		
275/30E- 19DC	43-12.60	119- 2.20	HP 0/ 0/71	1250	22.50	46.0 108.0	(.96)		131.3	131.3	126	B		
275/30E- 21DDB	43-12.53	118-59,72	HP-48 7/25/73	1289	29.89	10.0	1.30 .08	9	223.2 8.5	223.2-	(289)	C	14- 	¥. *
		an ann an ta	1		· · · · ·	35.0 110.0	.96 .04	19	1.0	102.0	1.36	U A		•
275/30e- 27aca	43-12.05	118-58.71	HP-1 7/26/73	1320	21.62	10.0 65.0	.96 .13		160.0 1.8	162.8	155	•		• • •

•		Table 5.	Geotherm	al-gradie	ent data,	south Har	ney Basin.	. Oreg	jonCont	inued Corr.	Corr.			
Twn/Rṅg- Section	N Lat. Deg.Min.	-W Long - Deg.Min.	Hole # Date	Collar* Elev.	Temp. (°C)	Interval (m)	Avg. TČ. Wm ⁻¹ K ⁻¹	.#, TC	Gradient °C/km	Gradient. °C/km	HF mWm-2	Q HF		•
••• • • • •	•					65.0 75.0	1.30		55.0 2.9	. · · ·	(71)	C.,	· · ·	
275/30E- 26DCB	43-11.52	118-57.24	HP-28 7/26/73	1340	17,38	10.0 57.2	.96 .13		117.9 1.4	, 130.3	126	B		
275/30E- 36BAC	43-11.25	118-56.50	HP-11 8/ 8/75	1258	14.63	10.0 45.0	1.09	4.	73.1 1.3	73.1.	79	В		
275/33E- 33CB	43-10.80	118-39.60	BFZ-7502 11/22/75	1282	11.29	10.0 30.0			(-1.3) 4.3	-1.3		×		
275/30E- 36CC	43-10.60	118-57.00	BFZ-7507 9/16/75	1259	16.12	10.0 67.5	.96	2	88.4 2.1	88.4	84	B ·		
285/30E- 13DA	43- 8.20	118-56.30	HP-12 7/22/75	1265	13.45	20.0 25.0	(.96)		82.0		· ·	×	:	
285/32E- 36CC	43- 5.30	118-43.10	BFZ-7503 9/16/75	1277	13.80	20.0 37.5	1.30	5	(39.4) 5.4	. 39.4	50	C	· · ·	
	~		·			37.5 50.0			(2.4) 2.1	2.4		Ċ		
295/32E- 6B	43- 5.30	118-49 . 40	MR-1	1262		56.4 64.0	.92 .07	4	89.0 1.0	89.0 1.0	82	A		
						40.0 91.0	.92 .07	4	96.0	96.0 .6	88 6	A .		
	,				. •	.0	,			92.0	84	Â		
295/31E- 2B	43- 5.20	118-50.90	MR-2	1260	•	57.9 62.5	.99 .02	4	65.0 2.0	65.0 2.0	64 2	A		
	•					89.3 92.0	.92 .03	4	83.0 3.0	83.0 3.0	76 3	A		
						60.0 100.0	.95 .02	8	74.2	74.2	71 1	A		
						.0	• • •			87.0	71	A		
295/32E- 34DC	4310	118-44.90	8FZ-7504 9/16/75	1326 ->	17.13	10.0 25.0	- - 1.63 -	4	84.0 - 5.1	~84.0	138	<u>A</u> .		•
• "' •						25.0 52.0	1.09	3	140.2 7.7	140.2	155	A		
						.0	•	·	t, et	88.0	146	A		

· .

holes are found near Coyote Buttes (Bowen and others, 1976), and hole BFZ-7504 near the southern part of the Basin has a very high heat flow (Plate IV).

- 29 -

CONCLUSIONS AND RECOMMENDATIONS

The reconnaissance study performed for' the southern Harney Basin has tenta_F tively identified two geothermal resource areas based on geology, geophysics, geochemistry, and sparse geothermal-gradient data. They are (1) the area surrounding the town of Crane (Plate II) and (2) the area immediately surrounding Harney Lake (Plates I, III, and IV). Preliminary results indicate both of these areas may have reservoir temperatures in the moderate range (100-150^OC). Site-specific analyses of these two areas should be carried out in one field program and include the following recommendations:

- Detailed (scale of 1:24,000 or less) geologic and photogeologic mapping of Crane and Harney Lake geothermal areas -- to identify and evaluate active thermal structures and areas of recent hydrothermal alteration.
- Detailed sampling and analysis of hot and cold springs and wells, including isotope and gas analyses -- to determine fluid flow directions and provenance and to determine precise reservoir conditions.
- Closely spaced complete Bouguer and residual gravity anomaly studies -- to delineate possible active thermal structures or intrusives below surface units.
- 4. Several resistivity traverses (either dipole-dipole, roving dipole, or telluric) normal to mapped structures -- to further define the thermal regime.
- 5. A micro-earthquake/contemporary seismic study of the entire Harney Basin, making use of a high-gain seismometer array -- to define the seismicity of the area in relation to geothermal systems.
- 6. A program of twenty to thirty 500-ft gradient/stratigraphy holes, followed by a program of five to ten 2,000-ft holes -- to mod?l heat flow and directly test geothermal aquifers.

- 30 -

BIBLIOGRAPHY OF THE HARNEY BASIN

Baldwin, E.M., 1976, Geology of Oregon (revised ed.): Dubuque, Iowa, Kendall/ Hunt, 147 p.

Beaulieu, J.D., 1972, Geologic formations of eastern Oregon (east of longitude 121° 30'): Oregon Department of Geology and Mineral Industries Bulletin 73, 80 p.

Beeson, M.H., 1969, Correlation of ash-flows by trace element abundance (abs.): Proceedings of the Oregon Academy of Science, v. 4, p. 23-24.

Berg, J.W., Jr., and Thiruvathukal, J.V., 1967, Regional gravity of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 29, no. 6, p. 120-126.

Blackwell, D.D., Hull, D.A., Bowen, R.G., and Steele, J.L., 1978, Heat flow of Oregon: Oregon Department of Geology and Mineral Industries Special Paper 4, 42 p.

Blank, H.R., Jr., and Gettings, M.E., 1974, Geophysical evidence of caldera structures in the Harney Basin of central eastern Oregon (abs.): EOS (American Geophysical Union Transactions), v. 55, no. 5, p. 557.

Bodvarsson, G., Couch, R.W., MacFarlane, W.T., Tank, R.W., and Whitsett, R.M., 1974, Telluric current exploration for geothermal anomalies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 36, no. 6, p. 93-107.

Bowen, R.G., 1972, Geothermal gradient studies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 34, no. 4, p. 68-71.

_____1975, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-75-3, 133 p.

Bowen, R.G., Blackwell, D.D., and Hull, D.A., 1975, Geothermal studies and exploration in Oregon (draft final report to U.S. Bureau of Mines): Oregon Department of Geology and Mineral Industries Open-File Report 0-75-7, 65.

1977, Geothermal exploration studies in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 19, 50 p.

Bowen, R.G., Blackwell, D.D., Hull, D.A., and Peterson, N.V., 1976, Progress report on heat-flow study of the Brothers fault zone, central Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 38, no. 3, p. 39-46.

Bowen, R.G., and Peterson, N.V., compilers, 1970, Thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 14 (map), scale approx. 1:1,000,000.

- Bowen, R.G., Peterson, N.V., and Riccio, J.F., compilers, 1978, Low- to intermediate-temperature thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-10, scale approx. 1:1,000,000.
- Brooks, H.C., 1963, Quicksilver in Oregon: Oregon Department of Geology and Mineral Industries Bulletin 55, p. 204.
- Buwalda, J.P., 1921, Report on oil and gas possibilities of eastern Oregon: Oregon Bureau of Mines and Geology, The mineral resources of Oregon, v. 3, no. 2, p. 28-29.
- Campbell, I., Conel, J.E., Rogers, J.J.W., and Whitfield, J.M., 1959, Possible correlation of Rattlesnake and Danforth Formations of eastern Oregon (abs.): Geological Society of America Bulletin, v. 69, no. 12, pt. 2, p. 1678.
- Corcoran, R.E., 1956, Sedimentary basins in Oregon: World Oil, v. 143, no. 5, p. 140-142.
- Davenport, R.E., 1971, Geology of the Rattlesnake and older ignimbrites in the Paulina Basin and adjacent area, central Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 132 p.
- Dole, H.M., and Corcoran, R.E., 1954, Reconnaissance geology along U.S. Highway 20 between Vale and Buchanan, Malheur and Harney Counties, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 16, no. 6, p. 37-39.
- Enlows, H.E., and Davenport, R.E., 1971, Tertiary ignimbrites in central Oregon (abs.): Proceedings of the Oregon Academy of Science, v. 7, p. 75.
- Enlows, H.E., Parker, D., and Davenport, R.E., 1973, The Rattlesnake ignimbrite tongue (abs.): Geological Society of America Abstracts with Programs, v. 5, no. 1, p. 38-39.
- Godwin, L.H., Haigler, L.B., Rioux, R.L., White, D.E., Muffler, L.J.P., and Wayland, R.G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U.S. Geological Survey Circular 647, 18 p.
- Greene, R.C., 1970, A crystal-rich ash-flow tuff in southeast Oregon (abs.): Geological Society of America Abstracts with Programs, v. 2, no. 2, p. 97-98.

1972, Preliminary geologic map of the Burns and West Myrtle Butte 15minute quadrangles, Oregon: U.S. Geological Survey Miscellaneous Field Studies Map MF-320, scale 1:62,500.

____1973, Petrology of the welded tuff of Devine Canyon, southeastern Oregon: U.S. Geological Survey Professional Paper 797, 26 p.
Greene, R.C., Walker, G.W., and Corcoran, R.E., 1972, Geologic map of the Burns quadrangle, Oregon: U.S. Geological Survey Miscellaneous Geological Investigations Map I-680, scale 1:250,000.

. 42 ;

- Groh, E.A., 1966, Geothermal energy potential in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 7, p. 125-135.
- Hull, D.A., Blackwell, D.D., and Black, G.L., 1978, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-78-4, 187 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., and Peterson, N.V., 1977, Heat-flow study of the Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-3, 43 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., Peterson, N.V., and Black, G.L., 1977, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-2, 134 p.
- Hull, D.A., Bowen, R.G., Blackwell, D.D., and Peterson, N.V., 1976, Geothermal gradient data, Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-76-2, 24 p.
- _____1977, Preliminary heat-flow map and evaluation of Oregon's geothermal energy potential: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 7, p. 109-123.
- Hull, D.A., and Newton, V.C., Jr., 1977, Geothermal activity in 1976: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 1, p. 7-15.
- Leonard, A.R., 1970, Ground water resources in Harney Valley, Harney County, Oregon: Oregon State Engineer Ground Water Report 16, 85 p.
- Lund, E.H., 1962, Welded tuff in the Danforth Formation (abs.): Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 24.
- 1966, Zoning in an ash flow of the Danforth Formation, Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 9, p. 161-170.
- MacLeod, N.S., Walker, G.W., and McKee, E.H., 1975, Geothermal significance of eastward increase in age of upper Cenozoic rhyolitic domes in southeastern Oregon: U.S. Geological Survey Open-File Report 75-348, 22 p.
- Maloney, N.J., 1962, Tertiary and Quaternary faulting in southwestern Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 21-22.
- Mariner, R.H., Presser, T.S., Rapp, J.B., and Willey, L.M., 1975, The minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U.S. Geological Survey open-file report, 27 p.

- Mariner, R.H., Rapp, J.B., Willey, L.M., and Presser, T.S., 1974, The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon: U.S. Geological Survey open-file report, 27 p.
- Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.
- McKee, E.H., MacLeod, N.S., and Walker, G.W., 1976, K/Ar ages of late Cenozoic silicic volcanic rocks, southeast Oregon: Isochron/West, no. 15, p. 37-41.
- Merriam, J.C., Stock, C., and Moody, C.L., 1925, The Pliocene Rattlesnake Formation and fauna of eastern Oregon, with notes on the geology of the Rattlesnake and Mascall deposits: Carnegie Institution of Washington Publication 347, p. 43-92.
- Muffler, L.J.P., ed., 1979, Assessment of geothermal resources of the United States--1978: U.S. Geological Survey Circular 790, 163 p.
- Newton, V.C., Jr., and Hull, D.A., 1978, Geothermal energy in 1977: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 40, no. 1, p. 8-16.
- Parker, D.J., 1974, Petrology of selected volcanic rocks of the Harney Basin, Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 119 p.
- Parker, D., and Armstrong, R.L., 1972, K-Ar dates and Sr isotope initial ratios for volcanic rocks in the Harney Basin, Oregon: Isochron/West, no. 5, p. 7-12.
- Peterson, N.V., and Groh, E.A., 1964, Diamond Craters, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 26, no. 2, p. 17-34.
- Piper, A.M., 1936, Resume of the geologic history of the Harney Basin, Oregon: Geological Society of the Oregon Country Geological News Letter, v. 2, no. 8, p. 9-12.
- Piper, A.M., Robinson, T.W., and Park, C.F., Jr., 1939, Geology and groundwater resources of the Harney Basin, Oregon: U.S. Geological Survey Water-Supply Paper 841, 189 p.
- Riccio, J.F., compiler, 1979, Preliminary geothermal resource map of Oregon, 1978: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-11, scale 1:500,000.
 - ____1980, Geothermal exploration in Oregon, 1979: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 42, no. 4, p. 59-69.

Riccio, J.F., and Newton, V.C., Jr., 1979, Geothermal exploration in Oregon in 1978: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 41, no. 3, p. 39-46. Russell, I.C., 1884, A geological reconnaissance in southern Oregon: U.S. Geological Survey 4th Annual Report, 1882-83, p. 431-464.

S. F. B. S.

- _____1903a, Notes on the geology of southwestern Idaho and southeastern Oregon: U.S. Geological Survey Bulletin 217, p. 36-69.
 - 1903b, Preliminary report on artesian basins in southwestern Idaho and southeastern Oregon: U.S. Geological Survey Water-Supply Paper 78, p. 38-43.
- ____1905, Preliminary report on the geology and water resources of central Oregon: U.S. Geological Survey Bulletin 252, p. 36-54.
- Sass, J.H., Galanis, S.D., Jr., Munroe, R.J., and Urban, T.C., 1976, Heatflow data from southeastern Oregon: U.S. Geological Survey Open-File Report 76-217, 52 p.
- Sass, J.H., Lachenbruch, A.H., Munroe, R.J., Green, G.W., and Moses, T.H., Jr., 1971, Heat flow in the western United States: Journal of Geophysical Research, v. 76, no. 26, p. 6376-6413.
- Sass, J.H., and Munroe, R.J., 1973, Temperature gradients in Harney County, Oregon: U.S. Geological Survey Open-File Report 73-247, 3 p., 7 figs.
- Stearns, N.D., Stearns, H.T., and Waring, G.A., 1937, Thermal springs in the United States: U.S. Geological Survey Water-Supply Paper 679-B, p. 59-206.
- Stone, C.J., 1931, Petroleum reconnaissance report, Harney Basin: Oregon Department of Geology and Mineral Industries, unpublished, 9 p. (geol. map, 1930, 1:125,000).
- Thayer, T.P., 1952, The tuff member of the Rattlesnake Formation of eastern Oregon--an ignimbrite (abs.): American Geophysical Union Transactions, v. 33, p. 327.
- Thiruvathukal, J.V., 1968, Regional gravity of Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 92 p.
- U.S. Geological Survey, 1968, Volcanic rocks and stratigraphy in Washington and Oregon, <u>in</u> Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-A, p. A35-A36 (R.C. Greene and G.W. Walker; D.R. Crandall; D.R. Mullineaux; R.S. Sigafoos and E.L. Hendricks, investigators).
 - _____1972, Aeromagnetic map of the Adel and parts of the Burns, Boise, and Jordan Valley 1° by 2° quadrangles, Oregon: U.S. Geological Survey Open-File Report 72-390, scale 1:250,000.
- 1973, Ground-water gradients near Malheur Lake, <u>in</u> Geological Survey research 1973: U.S. Geological Survey Professional Paper 850, p. 186 (L.L. Hubbard and A.R. Leonard, investigators).
- U.S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979, Chemical analyses of thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-79-3, 170 p.

Van Orstrand, C.E., 1938, Temperatures in the lava beds of east-central and south-central Oregon: American Journal of Science, 5th Series, v. 35, no. 205, p. 22-46.

Walker, GW., 1969a, Possible fissure vent for a Pliocene ash-flow tuff, Buzzard Creek area, Harney County, Oregon, <u>in</u> Geological Survey research 1969: U.S. Geological Survey Professional Paper 650-C, p. C8-C17.

1969b, Geology of the High Lava Plains province, <u>in</u> Weissenborn, A.E., ed., Mineral and water resources of Oregon: Oregon Department of Geology and Mineral Industries Bulletin 64, p. 77-79.

____1970, Cenozoic ash-flow tuffs of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 32, no. 6, p. 97-115.

1974, Some implications of late Cenozoic volcanism to geothermal potential in the High Lava Plains of south-central Oregon: U.S. Geological Survey Open-File Report 74-121, 14 p^{1.4}

____1977, Geologic map of Oregon east of the 121st meridian: U.S. Geological Survey Miscellaneous Investigations Series Map I-902 (prepared in cooperation with the Oregon Department of Geology and Mineral Industries), scale 1:500,000, 2 sheets.

____1979, Revisions to the Cenozoic stratigraphy of Harney Basin, southeastern Oregon: U.S. Geological Survey Bulletin 1475, 35 p.

Walker, G.W., Dalrymple, G.B., and Lanphere, M.A., 1974, Index to potassiumargon ages of Cenozoic volcanic rocks of Oregon: U.S. Geological Survey Misc. Field Studies Map MF-569.

Walker, G.W., and Repenning, C.A., 1965, Reconnaissance geologic map of the Adel quadrangle, Lake, Harney, and Malheur Counties, Oregon: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-446, scale 1:250,000.

Walker, G.W., and Swanson, D.A., 1968a, Laminar flowage in a Pliocene soda rhyolite ash-flow tuff, Lake and Harney Counties, Oregon, <u>in</u> Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-B, p. B37-B47.

1968b, Summary report on the geology and mineral resources of the Harney Lake and Malheur Lake areas of the National Wildlife Refuge, north-central Harney County, Oregon: U.S. Geological Survey Bulletin 1260-L, 17 p.

Waring, G.A., 1908, Geology and water resources of a portion of south-central Oregon: U.S. Geological Survey Water-Supply Paper 220, 86 p.

_1909, Geology and water resources of the Harney Basin region, Oregon: U.S. Geological Survey Water-Supply Paper 231, 93 p.

____1965 (revised by Blankenship, R.R., and Bentall, R.), Thermal springs of the United States and other countries of the world--a summary: U.S. Geological Survey Professional Paper 492, 383 p.

Washburne, C.W., 1911, Gas prospects in Harney Valley, Oregon: U.S. Geological Survey Bulletin 431, pt. 2, p. 56-57.

APPENDIX A

Formulas used in calculations

 $t^{O}C = \frac{1217}{\log (Na/K) + 1.483} - 273.15$ (Fournier, 1979) Na:K (revised): $t^{O}C = \frac{1647}{2.24 + F(T)} - 273.15$ (Fournier and Truesdell, 1973), Na:K:Ca: where F (T) = log (Na/K) + [β log (\sqrt{Ca}/Na)], = 1/3 if t> 100° C, and 4/3 if t < 100° C, = calculated reservoir temperature, t^oC and concentrations are expressed in molality. Magnesium correction ratio: (milliequivalents Mg) R = (milliequivalents Mg) + (milliequivalents Ca) + (milliequivalents K) X 100 If R <5 or >50, no calculation was made. For R between 5-50, $\Delta t_{Mg} = 10.66 - (4.7415) (R) + [(325.87) (log R)^{2}] - [(1.032 \times 10^{5}) (log R)^{2}/T] - [(1.968 \times 10^{7}) (log R)^{2}/T^{2}] + [(1.605 \times 10^{7}) (log R)^{3}/T^{2}],$ where R = magnesium correction ratio expressed in equivalents, $\Delta t_{M_{O}}$ = the temperature correction that is subtracted from the Na:K:Ca $1/3 \beta$ calculated temperature, T = Na:K:Ca 1/3 β calculated temperature in ^OK. Or Δt_{Mq} can be obtained by using the graph compiled by Fournier and Potter (1979).

SiO₂ temperature calculations (Fournier and Rowe, 1966):

SiO₂ (conductive),
$$t^{o}C = \frac{1309}{5.19 + \log (SiO_2)} - 273.15$$

SiO₂ (adiabatic), $t^{o}C = \frac{1522}{5.75 + \log (SiO_2)} - 273.15$
SiO₂ (chalcedony), $t^{o}C = \frac{1032}{4.69 + \log (SiO_2)} - 273.15$
SiO₂ (opal), $t^{o}C = \frac{731}{4.52 + \log (SiO_2)} - 273.15$,

where SiO₂ is expressed in mg/l.

37 -

References cited:

Fournier, R.O., 1979, A revised equation for the Na/K geothermometer, in Geothermal Resources Council Transactions 3, 1979, p. 221-224.

Fournier, R.O., and Potter, R.W., II, 1979, Magnesium correction to the Na:K:Ca chemical geothermometer: Geochimica et Cosmochimica Acta, v. 43, p. 1543-1550.

Fournier, R.O., and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells: American Journal of Science, v. 264, p. 685-697.

Fournier, R.O., and Truesdell, A.H., 1973, An empirical Na:K:Ca geothermometer for natural waters: Geochimica et Cosmochimica Acta, v. 37, p. 1255-1275.

Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.

-:38 -

APPENDIX B

 $\mathcal{M} \in \mathcal{M}$

Geothermal-gradient data

HOLE NUMBERI	33E-35AD	• •	*	•	
DATE MEASURED:	//21//5				
DEPTH DE	PTH 1	EMPERATURE	GE	OTHERMAL GRADI	IENT
METERS	EET DEG	C DEG	F DEG	C/KM DEG F/	100 F1
5.0 1	6.4 13.2	30 55•	81	•0	•0
10.0	32.8 13.6	40 56+	55 8	2.0 4	• 5
15.0 4	9.2 14.1	40 57.	45 10	0•0 5	i•5
20.0 6	5.6 14.7	50 58+	55 12	2•0 6	, • 7
25.0 8	32•0 15•3	90 59+	52 Ī J	5+0 5	5•9
50°0 S	18•4 15•8	70 60+	57 11	6•0 5) u 4
35.0 11	4.8 16.3	61 •	43 9	6•Q 3	j•3
40.0 13		62.	26 9	2•0 5	j • 0
45.0 14	7.6 17.1	30 62+	83 6	4•Q 3	1.5
50.0 16	54.0 17.4	63 63+	46 7	0•0 3	8+8
55.0 18	30•4 17•9	80 64+	36 10	0.0	5•5
60.0 19	36+8° ° 18+4	,70 65•	25 9)8•Q 5	je 4
65+0 21	3.2 19.0	10 66.	22 10	8•0 5	9•ذ
70.0 22	9.6 19.3	66 •	88 7	4.0 4	1 . 1
75.0 24	6.0 19.8	67.	64 8	4+0 4	••6
. 80.0	20.4 20.0	•80	00 4	0.0	2•2
85.0 27	8.8 20.2	70 68.	49 5	4•0 3	3.0

- 39 -

LOCAT	18N:	DOUBL 255/3	E = 8 1 F = 4	LEG,	OREGON
HULE	NUMBE	R BR	-75-	11	
DATE	MEACI	IDEN!	9116	175	

DEPTH	DEPTH	TEMPE	RATURE	GEOTHERM	AL GRADIENT
METERS	FEET	DEG C	DEGF	DEG C/KM	DEG F/100 FT
2.5	8.2	13.247	56.01	•0	• 0
5.0	16-4	10.510	50.92	-1132.0	-62.1
7.5	24.5	10+340	50.42	-132-0	-0201
10.0	22.8	100240	50.87	88*0	4.8
12.5	41.0	100480	50.86	30+0	400
15.0	49.2	100400	50.88	0 • U	• •
17.5	4242 57.4	100490		4*0	· • • • • • • • • • • • • • • • • • • •
20+0	45.6	10-540	50.00	30.0	1 • 1
20.0	73.8	10+540	50.97	2010	** *
25.0	93-0	10+540	50.99	4.0	
27.5	30.2	10+550	50 \$ 7 7	30.0	*C 1 ~ 1
30.0		10.600		20+0	4.9 4 1 a.1
32.5	106-6	10.700	51.36	20.0	4 T 4
35.0	114.8	10.750	51.25	20.0	
37.5	123.0	100750	51.45	20.0	4 * 4
60.0	131.2	10-880	51.59	28.0	
42.5	129.4	10,950	51.71	2040	1.5
4 5 .0	147.6	11.020	51.95	20.0	1.8
47.5	155-8	11-100	21.03	32.0	1.5
50.0	164-0	11.100	51.55	28*0	
52.5	172.2	11,770	25.75	32.0	1.0
55.0	100-4	11.200	52129	36•0	2.0
50+0.	10J44 408 /	110323	56.30	20.0	1•1
5/80	10000	11.41)	52.54	36•0	2.0
5U • U	170.0	110490	52+58	32+0	1•8

- 41

LOCATION: DIAMOND LEG, OREGON 255/33E-3BD HOLE NUMBER: BR-75-1 DATE MEASURED: 11/22/75

.9

DEPTH DEPTH		TEMPER	RATURE	GEOTHERMAL GRADIEN		
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT	
		•			• • •	
2.5	8.2	12.450	54 • 41	• 0	• 0	
5.0	16•4	12+150	53+87	-120+0	-5+6	
7.5	24+6	11.980	53.56	-68•0	•3•7	
10.0	32.8	12+430	54 • 37	180.0	9+9	
12.5	41.0	12.950	55+31	208+0	11+4	
15.0	49.2	13+580	56+44	252+0	13+8	
17.5	57.4	14+090	57 • 36	204.0	11•2	
20.0	65.6	14+570	58•23	192+0	10+5	
22.5	73+8	15+130	59.23	224•0	12+3	
25.0	82.0	15.600	60+08	138+0	10+3	
27.5	190.2	15+910	60.64	124+0	6 • 8	
28.6	93.8	16+040	60 • 87	118•2	6•5	

1. 1. 1. 1.

· ·

•	LOCAT	ION: BURNS (255/33E	9MS, OREGON -10BA		
DEPTH METERS	Hole (Date (Depth Feet	1AME: ADAI 1EASURED: ! TEMPE DEG C	MS 5/14/80 RATURE DEG F	Geotherma Deg C/KM	L GRADIENT DEG F/100 FT
15.0 20.0 25.0 30.0 35.0 37.0	49.2 65.6 82.0 98.4 114.8 121.4	47.860 48.620 49.260 49.790 50.170 50.220	118.15 119.52 120.67 121.62 122.31 122.40	0.0 152.0 128.0 106.0 76.0 25.0	0.0 8.3 7:0 5.8 4.2 1.4

HOLE	NUMBER: KR=1 MEASURED: 6/12/75	•	
DEPTH	DEPTH	TEMPERATURE	
METERS	FEET	DEG C DEG	F

13.950

13.970

13+970

13.975

13.980

13.960

13.990

14.0390

14 • 440

15.200

15+440.

15.610

15.750

47

57.11

57.15

57.15

57.15

57.16

57:13

57.18

57:90

57.99

59+36

59.79

60+10

60.35

16.4

32.8

49.2

65.6

82.0

98.4

11408

131.2

164.0

180.4

196.8

213.2

GE	OTHERI	MAL: GR	DIENT	
DÈG	C/KM	DEG	F/100	۶

+0

•0

• 0

• 0

2.0

4+0

6.0

80.0

10.0

48.0

34+0

28+0

152.0

•0

•0

• 0

• 1

•2

• 3

04

•5

8•3

2.6

1.9

1.5

POC V	ITAN:	CRAN	E, UP	REGUN
		255/3	33E - 1	1888
HOLE	NUMBE	R: K	R=1	•
DATE	MEASL	IRED:	6/12	2/75

5.0

10.0

15.0

50.0

25.0

30.0

35 . 0

40.0

45.0

50.0

55.0

60.0

65.0

		LOCAT	ION: BURNS (AMS, OREGON - 900		
		HOLE	VAME: WSB	-1 -1		· · · ·
۔ بہ ۔	DEPTH METERS	- DEPTH FEET	DEG C	RATURE DEG F	GEOTHERMA DEG C/KM	AL GRADIENT DEG F/100 FT
· ·	5.0 105.0 105.0 205.0 205.0 35.0 45.0 45.0 55.0 55.0 55.0 55.0 55.0 5	16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 190.4 196.8 213.2	17.180 17.270 17.310 17.320 17.380 17.430 17.430 17.530 17.580 17.580 17.600 17.670 17.700 17.820	62.92 63.09 63.16 63.28 63.27 63.37 63.55 63.64 63.68 63.81 63.81 63.88 63.81	0.0 18.0 8.0 12.0 10.0 12.0 10.0 4.0 14.0 14.0 6.0 24.0	0.0 10.4 0.7 0.7 0.7 0.7 0.7 0.7 0.8 3 7 0.0 1

	LOCAT	ION: BURNS I	AMS, OREGON	•	
	HOLE	NAME: WSB	-3 -3 5/14/80		
DEPTH 1ETERS	DEPTH FEET	TEMPE DEG C	RATURE DEG F	GEOTHERM DEG C/KM	AL GRADIENT DEG F/100 FT
10.0 15.0 25.0 35.0 35.0 40.0 45.0 55.0 51.5	32.8 49.2 65.6 92.0 98.4 114.8 131.2 147.6 164.0 168.9	12.070 12.410 12.810 13.050 13.260 13.540 13.740 13.940 13.940 14.010	53.73 54.36 55.49 55.87 56.37 56.99 56.99 55.99 57.20	0.0 68.0 48.0 42.0 56.0 40.0 24.0 16.7	074001000 0.9400000 1.000

10

5

0

150

Ξ

Ē

Ξ

Ξ

G

Ξ

0 0

q.

15

	ар 1	LOCATION:	BURNS AMS	S, OREGON		
50 (A	DEPTH METERS	HOLE NAME DATE MEAS DEPTH FEET	ARFORI URED: 5/1 TEMPERAT DEG C	D 3 14/80 TURE DEG F	Geothermal (Deg C/KM D	GRADIENT EG F/100 FT
	5.0 10.0 15.0 250.0 355.0 45.0 550.0	16.4 16.4 16.4 16.4 19.5 10.4	77777777777777777777777777777777777777	80.64 80.64 80.64 80.66 80.67 1623994 80.66 80.66 80.99 80 80 80 80 80 80 80 80 80 80 80 80 80	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	00001110000100000000000000000000000000

	HOLE	IUN: BURNS F 255/33E- NAME: WSB-	-11CD -4		
DEPTH METERS	DATE DEPTH FEET	MEASURED: TEMPEI DEG C	RATURE DEG F	Geotherma Deg C/KM	L GRADIENT DEG F∕100 FT
10.0 150.0 25.0 35.0 45.0 45.0 557 557	32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 180.4	$11.130 \\ 11.200 \\ 11.360 \\ 11.450 \\ 11.450 \\ 11.500 \\ 11.520 \\ 11.520 \\ 11.570 \\ 11.570 \\ 11.600 \\ 10.600 \\ 1$	52.03 52.16 52.145 52.61 52.68 52.68 52.70 52.74 52.77 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.88 52.85 52.95 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.85 52.95 52.85 55 52.85 55 55 55 55 55 55 55 55 55 55 55 55 5	0.0 14.0 18.0 18.0 4.0 4.0 4.0 6 0 0 0 0	0.0 0.0 1.0 0.4 1.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DEPTH METERS	LOCA HOLE DATE DEPTH FEET	Tion: Burns (255/33E NAME: ARF(MEASURED: ! TEMPE: DEG C	Geotherm Deg C/KM	Geothermal gradient Deg C/KM Deg F/100 Ft		
50000000000000000000000000000000000000	16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.6 134.2 144.8 1347.6 180.4 196.8 219.6 2462.8 2462.4 2795.6 2462.4 2795.6 211.6 2246.4 2795.6 3284.4 3284.4 3284.4	$\begin{array}{c} 14.270\\ 14.600\\ 14.940\\ 15.200\\ 15.210\\ 15.210\\ 15.200\\ 15.200\\ 15.200\\ 15.200\\ 15.200\\ 15.200\\ 15.500\\ 15.500\\ 15.500\\ 15.500\\ 15.500\\ 15.500\\ 15.800\\$	57.6897 58.27.688 59.338 59.338 59.57.7954 122597 59.57.7954 60.00 60.00 60.00 60.00 60 60 60 60 60 60 60 60 60 60 60 60 6	0.0 66.0 40.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 14.0 10.0 10	00777551080054780551001010101	

σ

.

LOCATION: DOUBLE-O LEG, OREGON 265/30E-3BB HOLE NUMBER: BR-75-10 DATE MEASURED: 9/16/75

DEPTH	DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT		
METERS	FEET	DEGC	DEG F	DEG CIKM	DEG F/100 FT	
	· ·			2		
2.5	8•2	14 • 160	57 • 49	• 0	•0	
· 5•0	16+4	11.940	53+49	-858-0	=43•7	
7.5	24.0	12+230	54.01	116.0	5 • 4	
10.0	32+8	12+480	54•46	100.0	5 + 5 · · ·	
12.5	S S 41∙0	12.610	54+70	52.0	2+9	
15+0	49•2	12+320	55+08	34•0	4.6	
17.5	57•4	12•890	55•20	28+0	1+5	
50.0	65+6	12+980	55+36	36+0	2•0	
55.2	73•8	13•090	55•56	44•0	2•4	
25.0	82.0	13•180	55+72	36•0	5+0	
27.5	90+2	13+250	55+85	28+0	1.5	
30+0	98+4	13•300	55+94	50+0	1 • 1	

.

• • • •

· · ·

	LOCAT	10N: BURNS F 255/34E-	AMS, OREGON	۹ _.		
DEFTH METERS	HOLE DATE DEPTH FEET	NAME: WINI MEASURED: S TEMPEI DEG C	DYPT1 5/8/80 RATURE DEG F	geotherma Deg c/km	L GRADIENT DEG F/100	FT
10.0 15.0 20.0 25.0 30.0	32.8 49.2 65.6 82.0 98.4	11.140 11.150 11.160 11.230 11.280	52.05 52.07 52.09 52.21 52.30	0.0 2.0 2.0 14.0 10.0	0.0 0.1 0.8 0.5	

ι 6 ω

DEPTH METERS	LOCAI HOLE DATE DEPTH FEET	TION: BURNS (265/33E NAME: WINI MEASURED: TEMPEI DEG C	9MS, OREGON - 2CD DYPT2 5/ 8/80 RATURE DEG F	GEOTHERM DEG C/KM	AL GRADIENT DEG F/100 FT	
10.0 15.0 20.0 25.0 35.0 35.0 45.0 45.0 55.0 55.0	32.8 49.66 85.60 98.48 114.82 131.66 147.60 147.00 160.4 180.4 190.2	15.510 15.890 16.250 16.610 16.940 17.500 18.530 18.530 18.530 19.320 19.460	59.92 60.60 61.25 61.90 62.49 63.50 64.51 65.35 66.16 66.78 67.03	0.0 76.0 72.0 66.0 112.0 112.0 94.0 68.0 46.7	020001110070 04440000140070	

· · ·

.

ເ ອີ ເ

	LOCAT	ION: BURNS F	MS, OREGUN	· · ·	
DEPTH	HOLE DATE DEPTH	265/332- NAME: WINI MEASURED: 9 TEMPEI	ATURE	GEOTHERM	AL GRADIENT
5.0	16.4	12.180	53.92	0.0	0.0
10.0	32.8	12.480	54.46	60.0	3.3
15.0	49.2	12.790	55.02	62.0	3.4
25.0	82.0	13.790	56.82	100.0	5.5
30.0	98.4	14.240	57.63	90.0	4.9
35.0	114.8	14.670	58.41	86.0	4.7
40.0	131.2	15.090	59.16	84.0	4.6
45.0	147.6	15.450	59.81	72.0	4.0
48.0	157.4	15.530	59.95	26.7	1.5

σ

	-	LOCA HOLE DATE	TION: BURNS A 265/33E- NAME: N T MEASURED: 5			
DEPTH METERS		DEPTH FEET	TEMPER DEG C	RATURE DEG F	GEOTHERMA DEG C/KM	L GRADIENT DEG F/100 FT
10.0 10.0 25.0 25.0 35.0 40.0 45.0 45.0 50.0 50.0		32.8 45.6 82.0 98.4 114.8 131.2 147.6 164.0 170.6	17.740 18.280 19.160 20.950 21.680 21.680 21.880 22.080 22.030 22.310	63.93 64.90 66.49 69.71 71.02 71.02 71.38 71.74 72.16	0.0 108.0 176.0 358.0 146.0 0.0 40.0 40.0 30.0 40.0	0.007 10.0000 10.00000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.00000 10.00000000

LUCAT	TION: DUUBLE-O LEC	. OREGON
	265/30E-20DC	5
HOLE	NUMBER: BR-75-8	
DATE	MEASURED: 9/29/75	5

NEDIH	DEPTH	DEPTH		GEATHERM	AL GRADIENT
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
	· · ·		1. C	· .	
5.0	16.4	13.010	55+42	. • 0	• 0
7.5	24 • 6	10.935	51+68	-830+0	- 45•5
10.0	32+8	11+215	52.19	112.0	5 • 1
12.5	41.0	11.330	52.39	46+0	2•5
15.0	49.2	11.365	52.46	14.0	•8
17.5	57.4	11.720	53.10	142.0	7•8
20.0	65.6	12.085	53.75	146+0	S • 0
22.5	73.8	12.095	53.77	4.0	• 2
25.0	32.0	12+260	54.07	56•0	3•6
			· ·	·.	

÷

- 71 -

		LOCA	FION: BURNS F 265/33E-	-35CC	· · ·	
DEPTH METERS	· · · ·	Hole Date Depth Feet	NAME: DAVI MEASURED: 5 TEMPER DEG C	IS 1 5/ 7/80 RATURE DEG F	GEOTHERMA DEG C/KM	L GRADIENT DEG F/100 F1
10.0 15.0 20.0 25.0 30.0 34.5	· .	32.8 49.2 65.6 62.0 98.4 113.2	10.570 10.630 10.670 10.720 10.850 10.850	51.03 51.13 51.21 51.30 51.53 51.55	0.0 12.0 10.0 10.0 26.2	0.0 0.7 0.4 0.5 1.4 0,1

TEMPERATURE, DEG C

150

DEPTH METERS	LOCATIO HOLE NA DATE ME DEPTH FEET	N: BURNS AM 275/32E-2 ME: VOLTA ASURED: 5/ TEMPERA DEG C	IS, OREGON I3BB IGE 13/80 ITURE DEG F	geothermal Deg C/Km	. GRADIENT DEG F⁄100 FT
$\begin{array}{c} 10.0\\ 15.0\\ 20.0\\ 25.0\\ 39.0\\ 40.0\\ 55.0\\ 40.0\\ 55.0\\ 60.0\\ 55.0\\ 60.0\\ 55.0\\ 60.0\\ 55.0\\ 60.0\\ 105.0\\ 105.0\\ 105.0\\ 105.0\\ 125.0\\ 125.0\\ 145.0\\ 155.0\\ 155.0\\ 160.0\\ 155.0\\ 155.0\\ 155.0\\ 155.0\\ 155.0\\ 155.0\\ 159.0\\ 155.0\\ 159.0\\ 191.5\\ \end{array}$	$\begin{array}{c} 32.8\\ 45.2\\ 65.0\\ 98.4\\ 114.8\\ 131.2\\ 147.0\\ 180.4\\ 199.2246.2\\ 229.6\\ 229.6\\ 229.5\\ 246.2\\ 295.6\\ 219.5\\ 2246.2\\ 295.6\\ 219.5\\ 2246.2\\ 295.6\\ 3440.8\\ 245.5\\ 295.6\\ 3910.4\\ 425.5\\ 295.6\\ 426.8\\ 295.6\\ 426.8\\ 295.6\\ 445.8\\ 295.6\\ 498.4\\ 455.5\\ 598.4\\ 826.8\\ 295.6\\ 498.2\\ 498.4\\ 455.5\\ 599.6\\ 623.1\\ 55740.6\\ 828$	$\begin{array}{c} 11.910\\ 12.260\\ 12.480\\ 12.690\\ 12.830\\ 13.380\\ 13.380\\ 13.380\\ 13.380\\ 14.230\\ 14.230\\ 14.540\\ 14.540\\ 14.540\\ 15.370\\ 15.370\\ 15.370\\ 15.370\\ 15.370\\ 15.470\\ 15.470\\ 15.480\\$	53.44 54.097 54.489 54.489 55.56897 55.66997 55.66997 55.66997 55.66997 55.66997 55.66997 55.66997 55.69999 60.617887 60.617885 60.61785 60.61785 60.61785 60.61785 60.617785 60.617785 60.617785 60.617785 60.6177777777777777777777777777777777777	00000000000000000000000000000000000000	๏๏๚๚๗๛๛๛๛๚๚๛๛๛๚๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛

- 75 -

LOCATION: DOUBLE-0 LEG, OREGON 275/29E-21AC HOLE NUMBER: BR-75-9 DATE MEASURED: 9/29/75

DEPTH	DEPTH	TEMPER	RATURE	GEOTHERMA	L GRADIENT
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
· .					
5.0	15.4	12.650	54 • 77	• 0	• ٿ
7.5	24.6	11.650	52.97	-400+0	+22+ <u>0</u>
10.0	32.8	11.140	52+05	∞204 • 0	+11+2
12.5	41.0	11.420	52+56	112.0	· 6 • 1
15+0	49.2	11+630	52.93	84•0	4 • 6
17.5	57•4	11.770	53+19	56•0	3•1
50•0	65.6	11.880	53+38	44.0	2.4
55.2	73.8	11.970	53+55	36+0	2.00
25.0	82+0	12.070	53+73	40.0	5.05
27.5	90+2	12•195	53+95	50 •0 -	2.7
30.0	98+4	12+325	54.18	0.50	2.9
32.5	106.6	12•450	54+41	50 •0	: 2.7
35 • 0	114.8	12+600	54 • 58	50 •0	3+3
37 • 5	123.0	12+730	54.91	0+56	5.3
40.0	131+2	12.860	55.15	52•0	5 • 3
42.5	139+4	- 13-010	55.42	50.0	3+3
45•0	147•6	13•180	55•72	58•Q	3.7

- 77 -

	LULHI	1UN: BURNS I	HIS, UREGUN		1
DEPTH METERS	HOLE DATE DEPTH FEET	275733E NAME: BECI MEASURED: (TEMPE) DEG C	-2008 KLEY 5/13/80 RATURE DEG F	GEOTHERMA DEG C/KM	AL GRADIENT DEG F/100 F1
10.0 15.0 205.0 350.0 450.0 450.0 555.0 550.0 550.0 550.0 550.0 500.0 55	32.8 49.2 65.0 98.4 114.8 131.2 147.6 164.0 164.0 180.4 198.4	$11.420 \\ 11.420 \\ 11.420 \\ 11.430 \\ 11.430 \\ 11.430 \\ 11.390 \\ 11.380 \\ 11.380 \\ 11.380 \\ 11.380 \\ 11.210 \\ 11.620 \\ 1$	566 566 552.557 522.557 522.557 522.559 522.55	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.1 0.0 -0.4 -0.1 0.0 -0.9 -1.5 0

TEMPERATURE, DEG C

.

LOCATION: DIAMOND LEG, OREGON 275/33E-33CB HOLE NUMBER: BR-75-2 DATE MEASURED: 11/22/75

DEPTH DEPTH		TEMPERATURE		GEUTHERMAL GRADIENT	
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
2.5	8.2	12.570	54.63	•	• 0
5.0	16.4	12•760	54.97	76.0	402
7.5	24.6	11.810	53,26	-350.0	•20.9
10(+0	35°8	11.360	52.45	∞180•0	-9.9
12.5	41.0	11.350	52.43	=4+0	••2
15.0	49.2	11.350	52•43	•0	• • 0
17.5	57.4	11.310	52.36	•16•0	••9
50•0	65 •6	11+330	52.39	8.0	04
22•5	73.8	11.290	52•32	-16.0	••9
25.0	82+0	11+280	52.30	= 4 = 0	••2
27.5	90.2	11.290	52+32	4 • 0	•2
30•0	98.4	11.280	52.30	= 4 • 0	- • 2
30•5	100•0	11+290	52+32	20.0	1 • 1

and the second of the second second

- 81 -

LOCATION: COYOTE BUTTE, OREGON 275/30E-36CC HOLE NUMBER: BR-75-7 DATE MEASURED: 9/16/75

DEPTH	DEPTH TEMPERATURE		GEOTHERMAL GRADIENT			
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT	
	· · · · · · · · · · · · · · · · · · ·	•			i i	
<u> </u>		-				
2.0	5.8	12.000	53.60	•0	• 0 · ·	•
(D + J)	10+4	10.587	20020	-638°U	· · · · · · · · · · · · · · · · · · ·	
7.5	24 • 6	10+670	51.021	156•0	8•6	
10.0	32•8	11.040	51087	148•0	8•1	
12.5	. 41.0	11.200	52.16	64•0	3.05	
15.0	49.2	11+360	52.45	6400	3.5	
175	57.04	110650	52.97	116+0	5•4	
50.0	65+6	12.060	53.71	154.0	9•0	
22.5	73•8	12.160	53.89	40.0	2.2	,
25.0	82+0	12.340	54.21	72.0	4.0	
27.00	90•2	12•530	54•55	76•0	4•2	
30 • 0	98+4	12.770	54•99	96•0	5+3	
32.•5	196+6	12.980	55+36	54+0	4.6	
35.0	114.8	13.200	55•76	38.0	4 • 8	
37.5	123.0	13.430	56 • 17	92•0	3•0	
40.0	131-2	130640	56.55	84+0	406	
42.5	139+4	13.850	56•93	84.0	4 • 6	
45.C	147.6	14.070	57+33	88+0	4 • 8	
47.5	155.8	14•260	57.67	76•0	4 • 2	
. 50+0	164.0	14 . 473	58•05	S4 • O	4.06	
52.5	172.2	14•640	58•35	68•0	3•7	
55+0	180•4	14•710	58+48	28+0	1.5	
57.6	188.6	15•160	59.29	180+0	9.09	
5 0 • 0	196.8	15.410	59.74	100.0	5.5	_
62.5	205.0	15.650	60 • 17	96•0	5 ³ • 3	-
55•0	213.2	15•890	60+60	96.0	5•3	
67.5	221.4	16.120	61.02	92•0	5•0	

ريې د منه د د رومېسو د روم م

LOCATION: COYOTE BUTTES, OREGON 285/30E-13DA HOLE NUMBER: HP=12 DATE MEASURED: 7/22/75

DEPTH	DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT	
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100
50.0	65•6	13.040	55•47	•0	
25.0	82•0	13+450	56+21	82•0	4.5

LBCATION:	DIAMOND L	EG, OREGOI
HOLE NUMBE	R: BR-75- JRED: 8/12	3 2775

DEPTH	DEPTH	PTH TEMPERATURE		GEBTHERMAL GRADIENT		
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 F	T
· · ·			·. ·		· · · ·	
20.0	65•6	12+990	55+38	• 0	• 0	
22.5	73+8	13+050	55•49	24+0	1+3	
25.0	82•0	13.120	55.62	28 • Ó	1.5	
27.5	90.2	13.200	55.76	32+0	1 • 8	
30.0	98.4	13+300	55+94	40.0	5.2	
32.5	106.6	13+430	56+17	52.0	5•3	
35.0	114.8	13+575	56+43	56+0	3•1	
37.5	123.0	13+680	56.62	44.0	2•4	
40.0	131+2	13+700	56+66	8+0	• 4	
42.5	139•4	13.700	56.66	•0	• 0	
45.0	147.6	13.700	56+66	•0	• 0	
47.5	155.8	13+710	56.68	4•0	• 2	
50.0	164•0	13+710	56+68	•0	• • • •	

- 87 -

LOCATION: DIAMOND LEG, UREGON 295/32E-34DC HOLE NUMBER: BR-75-4 DATE MEASURED: 9/16/75

DEPTH DEPTH		TEMPER	ATURE	GEOTHERMAL GRADIENT		
METERS		FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
2.5	· .	8•2	15•960	60•73	•0	• 0
5.0		16•4	13.290	55+92	-1058-0	•58•5
7.5	· .	24 • 6	12.120	53+82	=458+0	+25+7
10.0		32+8	12.100	53.78	-8+0	
12.5	1,1	41.0	12+320	54 • 18	88+0	4 • 8
15.0		49.2	12.500	54+50	72.0	4.0
17.5		57+4	12+680	54 • 82	72.0	4 • 0
20•0		65+6	12.910	55+24	92+0	5.0
22.5		73•8	13.120	55+62	84+0	4.6
25.0	•	82•0	13.360	56+05	96+0	5•3
27.5	•	90+2	13+630	56+53	108+0	5.9
30.0	•	98 • 4	13.920	57.06	116+0	604
32.5		106.6	14 • 220	57.60	120.0	5•5
35.0		114.8	14+540	58+17	128.0	7•0
37.5		123.0	14 • 860	58.75	128+0	7 • 5
40°0		131.2	15+200	59+36	136+0	7.5
42.5		139.4	15+550	59+99	140+0	7 • 7
45.0		147+6	15+930	60+67	152+0	8•3
47.5		155.8	15.0360	61+45	172+0	9.4
50•0		164+0	16.790	62.22	172.0	9.4
52.0	•	170.6	17•130	62+83	170•0	9•3
					1	

÷)

STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES 1005 State Office Building Portland, Oregon 97201

OPEN-FILE REPORT 0-80-7

PRELIMINARY GEOLOGY AND GEOTHERMAL RESOURCE POTENTIAL OF THE SOUTHERN HARNEY BASIN, OREGON

by

D. E. Brown,

G. D. McLean, and

G. L. Black

Under the direction of J. F. Riccio

Study completed under U. S. Department of Energy Cooperative Agreement No. DE-FC07-79ET27220

1980

DISCLAIMER

.

This report has not been edited for complete conformity with Oregon Department of Geology and Mineral Industries standards. Data in this document are preliminary and are subject to change upon further verification.

(:-

CONTENTS

INTRODUCTION
GEOLOGY
Introduction
Volcanic stratigraphy
Structural geology
GEOPHYSICS
WATER CHEMISTRY
GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA
CONCLUSIONS AND RECOMMENDATIONS
BIBLIOGRAPHY OF THE HARNEY BASIN
APPENDIX A: Formulas used in calculations
APPENDIX B: Geothermal-gradient data

- i

ŝ

1

ILLUSTRATIONS

FIGURES

1. Map showing location of study area, southern Harney Basin, Oregon. 2 TABLES

1. Radiometric (K/Ar) ages of selected rocks, southern Harney Basin · 4

2. Bulk chemical composition of selected rocks, southern Harney Basin 6

4. Geothermetric calculations of minimum reservoir temperatures

Plate I. Geologic map of the southern Harney Basin, Oregon (northwest quarter)

Plate II. Geologic map of the southern Harney Basin, Oregon (northeast quarter)

Plate III. Geologic map of the southern Harney Basin, Oregon (southwest quarter)

Plate IV. Geologic map of the southern Harney Basin, Oregon

(southeast quarter)

Plate V. Lineament map of the Harney Basin, Oregon Plate VI. Aeromagnetic map of the southern Harney Basin, Oregon

Simple Bouguer gravity anomaly map of the Harney Basin, Oregon

Aeromagnetic map of the Harney Basin, Oregon

- ii -

INTRODUCTION

The study area is located at the southern end of a large, quasi-circular topographic low in central eastern Oregon known as the Harney Basin (Figure 1). Limits of the study area were arbitrarily determined according to the boundaries of available U.S. Geological Survey (USGS) topographic maps as $43^{0}00'$ on the south, $43^{0}30'$ on the north, $118^{0}30'$ on the east, and $119^{0}30'$ on the west. This study, performed under U.S. Department of Energy Contract No. DE FC07-79ET27220, was undertaken to estimate the geothermal potential of the area, using various methods including compilation of existing data, reconnaissance geologic mapping, lineament analysis, well and spring geochemistry, and accrual of geothermal-gradient data.

Geographically, the study area is comprised of a roughly circular, relatively flat, closed drainage basin that covers an area of 21,000 km² (8,100 mi²). Included within the basin are volcanic mounds surrounded by mountainous highlands. Drainage within the basin is into several closed desert lakes, including Malheur, Harney, and Mud Lakes, through Silvies River from the north, Donner und Blitzen River from the south, Warm Springs Creek from the west, and Malheur Slough from the east. Total relief within the basin is less than 9 m (30 ft), total relief in the highlands more than 500 m (1,600 ft). The only population centers are the small farming communities of Crane, Princeton Post Office, and Diamond, all in the eastern portion of the study area. The remainder of the southern basin is comprised of swampy bird habitats, cattle ranches, and range land.

1 -

Figure 1: Map showing location of study area.

へ

C

And Data Sugar Sugar

Introduction

The geologic study of the area (Plates I-IV) consisted of (1) a field check and minor revisions of a study of the western half of the area by Parker (1974), and (2) an original reconnaissance study of the eastern half of the area during the fall of 1979 and spring of 1980. Quadrangles mapped in reconnaissance include the Crane and Lawen 15-minute quadrangles and the Jackass Butte, Jackass Butte N.E., Diamond Swamp, Diamond, Adobe Flat, Barton Lake, and Coyote Buttes 7¹/₂-minute quadrangles. Lithologies were based on hand specimen identifications, limited K/Ar ages (Table 1), and available bulk chemistry (Table 2). Areal extents of various units and specific points were located by using Brunton compass and pacing; data were plotted on USGS quadrangle maps without the aid of aerial photos.

Volcanic stratigraphy

The geology of the southern Harney Basin is comprised of a framework of two flat-lying, extensive, late Miocene ash-flow sheets onlapping a regional unit of early Miocene flood basalts. The ash flows, in order of increasing age, are the Rattlesnake and Devine Canyon Ash-flow Tuffs (Walker, 1979). They are separated by discrete fluvial-lacustrine sedimentary units, flood basalts and their vents, and silicic intrusions. Trace-element studies by Parker and Armstrong (1972) indicate that the ash-flow tuffs, the silicic intrusives, and the related mafic flows of the area form a bimodal compositional assemblage. Though detailed relationships are unclear at this time, at least one and possibly two calderas are present, in the study area, one located beneath Malheur and Harney Lakes being the source of the Rattlesnake ash-flow sheet (Blank, 1974; Walker, 1979). The oldest unit recognized in the field is that of the early Miocene flood basalts found along the eastern

- 3 -

Table 1. Radiometric (K/Ar) ages of selected rocks of the southern Harney Basin

Sample no.*	Location	Rock type	Age**	Stratigraphic unit
PA-300	119 ⁰ 04118" 43 ⁰ 03106"	Basalt	^w 8.8 <u>+</u> 1.4 my	Tmbh
PA-311B	119 ⁰ 22'23" 43 ⁰ 09'03"	Welded tuff	[₩] 8.6 <u>+</u> 0.2 my	Tmtd
PA-146	119 ⁰ 21'11" 43 ⁰ 13'80"	Rhyolite	^W 8.4 <u>+</u> 1.3 my	Tmto
PA-119	119 ⁰ 13'30" 43 ⁰ 14'19"	Rhyolite	^w 8.2 <u>+</u> 0.12 my	Tmtp
PA-250	119 ⁰ 03'45" 43 ⁰ 02'27"	High Al basalt ,	^w 7.9 <u>+</u> 0.9 my	Tmbh
PA-316D	119 ⁰ 08'45" 43 ⁰ 17'02"	Rhyolite	^W 7.8 <u>+</u> 0.5 my	Tmro
PA-243	119 ⁰ 03'45" 43 ⁰ 04'56"	Welded tuff	^S 7.1 <u>+</u> 0.10 my	Tmtr
G-165-68	118 ⁰ 34'48" 43 ⁰ 24'48"	Basalt	^p 6.91 <u>+</u> 1.09 my	Tmbd
PA-330	119 ⁰ 22'23" 43 ⁰ 09'03"	Welded tuff	^w 6.7 <u>+</u> 0.4 my	Tmtr
PA-311G	119 ⁰ 22'23" 43 ⁰ 09'03"	Welded tuff	^W 6.6 <u>+</u> 0.2 my	Tmtr
W-2-70	119 ⁰ 18'00" 43 ⁰ 28'48"	Rhyodacite	a6.5+0.3 my b6.1+0.2 my	Tmrp
PA-6-70	119 ⁰ 27'51" 44 ⁰ 46'54	Welded tuff	^a 6.4 <u>+</u> 0.2 my	Tmtr
PA-214	119 ⁰ 18'00" 43 ⁰ 30'18"	Rhyolite	^W 5.6+0.4 my b6.4+0.2 my	Tmrp
PA-160	119 ⁰ 28'00" 43 ⁰ 16'30"	Andesite	^w 5.8+0.8 my	Tmbi
PA-41	119 ⁰ 06'34" 43 ⁰ 20'24"	Alkali basalt	^w 2.8+0.2 my	Qtb
PA-158	119 ⁰ 12'00" 43 ⁰ 13'48"	Rhyolite	W2.1+0.24 my b2.7+0.4 my	Qtr

*References: PA - from Parker and Armstrong, 1972; G - from Greene and others, 1972; W - from Walker and others, 1974; SH - from samples taken for this report, unpublished analyses by University of Utah Research Institute (UURI) Stan Evans and Duncan Foley, analysts.

4 _

**w-= whole rock age; s - sanidine age; a - anorthoclase age; b - biotite age; p - plagioclase age; ps - partial separation age.

Table 1. Radiometric (K/Ar) ages of selected rocks of the southern Harney Basin--Continued

Sample no.*	Location	Rock type	Age**	Stratigraphic unit
PA-14	119 ⁰ 00'23" 43 ⁰ 26'24"	High Al basalt :	^w 2.6 <u>+</u> 0.3 my	Qtb
G-32-67	119 ⁰ 00'30" 43 ⁰ 27'00"	Basalt	^w 2.38 <u>+</u> 0.07 my	Qtb
SH-4	118 ⁰ 56'45" 43 ⁰ 2'00"	Andesite	^p 16.7 <u>+</u> 0.6 my	Tmba
SH-12	118 ⁰ 50'22" 43 ⁰ 15'40"	Basalt	^w 2.91 <u>+</u> 0.38 my	Qtb (?)
SH-105	118 ⁰ 30'55" 43 ⁰ 14'45"	Rhyodacite	^w 11.3 <u>+</u> 0.5 my	Tmrd
SH-106	118 ⁰ 30'54" 43 ⁰ 21'53"	Basalt	^p ll.l <u>+</u> 1.3 my	Tmba
SH-106A	118 ⁰ 30'05" 43 ⁰ 21'45"	Basalt	^{ps} 9.44 <u>+</u> 0.8 my	Tmba
SH-113	118 ⁰ 53'06" 43 ⁰ 08'13"	Basalt	^{ps} 8.07 <u>+</u> 0.69 my	Tmbhv

 * References: PA - from Parker and Armstrong, 1972; G - from Greene and others, 1972; W - from Walker and others, 1974; SH - from samples taken for this report, unpublished analyses by University of Utah Research Institute (UURI) Stan Evans and Duncan Foley, analysts.

**w - whole rock age; s - sanidine age; a - anorthoclase age; b - biotite age; p - plagioclase age; ps - partial separation age.

- 5 -

Ì

Table 2. Bulk chemical composition of selected rocks of the southern Harney Basin. (Letters at top of each column indicate sample number and map symbol for stratigraphic unit. All values are in weight percent.)

Compo- nent	*P-159 	P-194 QTmv	P-14 QTb	P-40 <u>QTmv</u>	P-58 QTb	P-181
SiO2	48.5	48.6	48.7	48.7	48.9	49.1
Ti0 ₂	3.51	0.87	1.43	1.97	1.47	1.60
A1,0,	12.6	16.9	17.4	16.3	14.0	15.4
FeO (Total Fe)	13.4	9.0	10.2	9.7	10.8	9.4
MgO	6.2	9.1	8.4	8.9	11.0	7.5
CaO	9.7	12.4	11.2	12.0	10.3	10.9
Na ₂ 0	3.8	2.6	2.8	2.4	2.3	3.2
κ ₂ ō	1.15	0.29	0.29	0.26	0.38	0.32
- Total	98.26	99.47	100.42	99.97	99.15	97.10
	P-212 QTb	P-300 Tmbh	P-73-4 Tmbh	Р-52 <u>QTb</u>	P-41 QTb	P-250 Tmbh
SiO ₂	49.5	49.5	49.5	50.0	50.1	50.2
Ti0 ₂	1.45	1.72	1.93	1.36	1.70	1.38
A1203	14.8	15.4	15.5	15.6	15.0	17.1
FeO (Total Fe)	11.0	12.0	12.0	10.3	11.0	10.4
MgO	7.9	8.2	6.5	10.0	7.1	8.2
CaO	10.9	10.5	11.0	10.2	10.6	11.2
Na ₂ 0	3.5	3.1	3.4	2.8	3.0	2.7
κ ₂ 0	0.32	0.42	0.32	0.34	0.80	0.35
Total	99.05	100.84	100.15	100.60	98,50	101.53
	P-184 QTb	P-199 QTmv	P-193 QTmv	P-44 QTmv	P-206 QTmv	P-185 QTb
SiO ₂	50.2	50.4	50.8	51.0	51.2	51.7
Ti0 ₂	3.27	1.52	1.14	0.83	1.17	2.82
A1203	13.1	14.7	14.9	15.6	14.4	13.6
FeO (Total Fe)	13.7	11.0	10.5	9.2	9.8	12.6
MgO	5.5	8.0	7.9	8.5	8.2	5.6
CaO	9.0	11.5	12.3	12.5	11.8	8.5
Na ₂ 0	3.9	3.4	3.1	3.0	3.0	3,8
к ₂ 0	1.04	0.35	0.21	0.19	0.53	1.28
Total	99.71	100.87	100.64	100.63	100.13	99.50

*References: P - from Parker, 1974; G - from Greene, 1973.

- 6 -

Table 2. Bulk chemical composition of selected rocks of the southern Harney Basin--Continued. (Letters at top of each column indicate sample number and map symbol for stratigraphic unit. All values are in weight percent.)

Compo- nent	*P-278 Tmbh	P-160 Tmbi	P-197 QTmv	P-245D Tmtd
Si0,	52.6	57.6	63.7	71.3
TiO	1.07	1.25	0.75	0.35
A1,0,	15.5	14.7	12.2	13.4
FeO (Total Fe)	10.0	8.6	6.0	4.5
Mg0	6.8	4.2	4.1	0.41
CaO	10.6	7.0	10.2	1.9
Na ₂ 0	3.2	4.2	1.9	3.85
κ ₂ ō	0.82	2.0	1.9	6.0
Total	100.59	99.55	100.75	101.71
Compo- nent	P-146 Tmro	P-119 Tmtp	P-215 Tmrp	
Si0,	73.2	73.8	73.9	
TiO2	0.47	0.13	0.28	-
A1203	13.5	11.7	13.6	
FeO (Total Fe)	2.65	3.0	1.7	
Mg0	0.6	0.15	0.5	
CaO	1.41	1.2	1.90	
Na ₂ 0	3.9	4.45	3.4	
κ ₂ 0	4.71	4.5	4.58	
Total	100.12	97.93	99.76	:
Compo- nent	P-245L Tmtr	P-214 Tmrp	P-290 Tmtr	
SiO ₂	75.0	76.0	76.4	
TiO2	0.20	0.08	0.13	
A1203	11.8	12.9	11.7	
FeO (Total Fe)	2.7	0.75	2.7	
MġO .	0.15	0.4	0.7	
CaÓ	0.6	1.6	0.35	
Na ₂ 0	3.12	3.4	4.4	
K ₂ 0	6.3	4.88	4.28	
Total	99.87	100.01	100.66	÷

*References: P - from Parker, 1974; G - from Greene, 1973.

- 7 -

é

portion of the mapped area. Dates in adjacent areas indicate ages of 12.1 to 20.2 m.y.; a date taken for this report from Jackass Butte in the southcentral portion of the map yielded an age of 16.7 m.y. The youngest rocks are the basalts associated with the Holocene Diamond Craters vent area for which there is a reported date of 15,000+2,000 years, as determined by hydration rind method (Norm Peterson, 1980, personal communication). These youngest rocks directly overlie a second set of young flood basalts which issued from vents mapped immediately south of Malheur Lake along what is probably a ring fracture zone of the caldera mentioned above. A third group of young lavas are the extensive flood basalts which issued from the Dog Mountain-Freeman Butte area. They have been eroded to form reverse topographic features such as Wrights Point and were dated by Parker (1974) at 2.6 to 2.8 m.y. The extensive age determinations available for this study (Table 1) indicate a strong relationship between age of basaltic eruption, age of silicic event, and, in two cases, age of ash-flow eruption. These age/modal relationships are shown in the time-rock charts on the accompanying geologic maps (Plates I-IV). There are still, however, numerous small phreatic and subaqueous vents which do not have lavas that can be dated and whose absolute age relationships, therefore, are unclear and which may, in some cases, be of very young age.

Structural geology

Faulting in the southern Harney Basin follows two general trends. The first is the Basin-Range trend (approximately north-south) which occurs in only a limited area immediately north of Crane in the extreme northwest corner of the map. The age of this normal faulting is not clear. However, it does cut the youngest unit present (6.1 m.y.).

The second trend is the Brothers fault zone trend (N.25 $^{\circ}$ -35 $^{\circ}$ W.), which dominates the remainder of the map and cuts all bedrock units present,

- 8 -

including the 15,000-year-old Diamond Craters. All motion in this trend appears to be dip-slip. However, the presence of lateral-slip or obliqueslip faulting cannot be ruled out. Several authors (McLeod and others, 1975) feel the Brothers fault zone may be, in fact, the surface expression of a right-lateral wrench system at depth.

Trakes &

a shape te ta ta B

The intersection of the two fault trends is in the southeast corner of the map (Plate IV), in the Riddle Mountain-Diamond Craters area (a portion of which remains unmapped). This area is a fault-shattered zone which shows considerable coxcomb-like faulting on small spacing with short-period monoclinal folding and rotating of the discrete blocks between individual faults. Two adjacent structural domes also occur in this area, connected from dome crest to dome crest by a horst-like fault ridge and separated by one, and possibly two, small structural basins. At the leading edge of this zone is the Diamond Craters vent area, which, in itself, is cut by several faults of the Brothers trend. Structural interpretation of this complex area is difficult. It seems that the structures are controlled by a local compressional regime and that Diamond Craters is, in some way, closely related to the intense faulting and folding.

Folding in the southern Harney Basin, with the exception of that previously described, is generally in the form of broad, shallowly dipping anticlines and synclines plunging toward the center of the basin. One such fold in the Crane area plunges west toward the basin. Here, the older ash-flow units and basalts have been down-folded and infilled with 6.1-m.y.-old basalts. This age is slightly younger than the 6.5-m.y. age of the Rattlesnake Ash-flow Tuffs (Walker, 1979), and the down-folding may have been in response to caldera formation and subsequent volume loss.

-,9 -

A lineament study (Plate V) prepared for this report shows a general oneto-one correspondence of structural trends with the mapped fault trends. It also shows a number of lineaments which cross the alluvial-filled basin but which could not be traced through geologic mapping.

Individual blocks within the fault zones, in general, dip back toward the center of the basin. However, during the mapping project, a number of blocks that dipped away from the basin were found. The basin itself has been formed by downwarping which began during middle to late Miocene (Walker, 1979). The process was caused by loss of material through volcanic eruption of the extensive ash-flow sheets and numerous flood basalts and, to a lesser extent, by the loss of material volume due to loss of stored heat (Blackwell, 1980, personal communication).

10

GEOPHYSICS

The only available geophysical survey for the southern Harney Basin is an aeromagnetic survey flown in 1972 by the USGS (Plate VI). Because of the dramatic contrast between the relative magnetic susceptibilities of mafic and silicic lavas, a good correlation between structure and rock type and magnetic trends is clearly apparent. On the eastern portion of the map and correlative to the mapped Basin-Range fault trend discussed earlier in this report, a strong north-south magnetic trend occurs. Anomalies, both maxima and minima, elongated in a north-south direction along this trend probably indicate the numerous juxtaposed fault blocks which were found during this study. The central portion of the aeromagnetic map is dominated by intensive maxima over Diamond Craters and Coyote Buttes and a large oval minimum over Malheur Lake. The maxima are probably due in part to localization of mafic vent material at or near the surface at Diamond Craters and Coyote Buttes. Surface mapping also indicates a number of small, isolated phreatic cones and vents and extensive silification which may indicate a mafic intrusive buried beneath the ridge at Coyote Buttes. The oval minimum seen between the two maxima is in all likelihood the site of the caldera for the Rattlesnake Ash-flow Tuff (Blank, 1974), which erupted approximately 6.5 m.y. ago (Walker, 1979). This minimum is cut by a northwesterly trending ridge of magnetic maxima which may be a zone of post-Rattlesnake faulting. The remainder of the map is dominated by the Brothers fault zone trend with isolated maxima and minima centered over mapped silicic and mafic volcanic vents.

Detailed interpretation of structures and geothermal systems cannot be made on the basis of a single aeromagnetic survey. Proposals for future geophysical studies are included in the <u>Conclusions and Recommendations</u> of this report.

- 11

WATER CHEMISTRY

During the period of this study, 22 wells and springs were sampled and their waters analyzed. Together with existing published analyses (U.S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979; Leonard, 1970), a total of 28 analyses were available for evaluation (Table 3). These analyses were then used to calculate minimum reservoir temperatures (Table 4), using standard formulae for geothermometry. The methods used in these analyses, together with references, are included in this report as Appendix A. Published reports on the hydrology of the Harney Basin (Piper and others, 1939; Leonard, 1970) show a considerable number of thermal anomalies. However, many of these wells and springs either could not be located, were not flowing at the time of the study, or were inaccessible because of weather conditions or the owners' refusal to allow sampling.

Sampling temperatures during field collection ranged from $76^{\circ}C$ and $67^{\circ}C$ for Crane Hot Springs and Harney Lake Hot Springs, respectively, down to $15^{\circ}-20^{\circ}C$ for wells and springs bordering Harney Lake. The natural water of the study area can best be described as generally high in magnesium, calcium, and boron, and low in chloride and bicarbonate. On the basis of preliminary evaluation of the available data, two, and possibly three, groups of waters are recognized. The first are from the wells and springs near the town of Crane and the surrounding area and appear to have moderate total dissolved solids (184-564 mg/l), high Ca:Mg ratios for the cooler waters (4.1-13), consistently moderate silica throughout the sampling temperature range (56.2-93.2 mg/l) and consistently high amounts of calcium for the cooler waters (13-28.6 mg/l). Calculated minimum reservoir temperatures for these waters (Table 4) are also consistently in the 90° - $120^{\circ}C$ range. Geologic control for these waters is difficult to define in relation to the reconnaissance study;

- 12 -
Table 3. Spring and well chemistry of the southern Harney Basin area. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Dunn Ranch Well #1	Dunn Ranch Well #2	Soldier Spring	Water Tank Spring	Unnamed Spring
Location	26S/30E/ 33Ddd	26S/30E/ 33Ddd	27S/29 E/ 14 Ccb	27S/30E/ 8Add	27S/29½E/ 35Cbb
Date sampled	5/80	5/80	10/80	10/80	10/80
Temp. (^O C)	. 26	19	19.5	20.6	14.5
рН	9.7	9.0	8.03	8.7	7.85
Conductance µmhos/cm	1095	1038	610	1350	2510
Alkalinity X _h as mg/l HCO X ^h as mg/l CaCO ₃ C	457 _c	416 _c	nt	nt	nt
Hardness as mg/1 CaCO ₃	<]	4	<15	<15	205
Total dissolved solids	747	695	452	788	1580
SiO ₂	120	29.4	30	33	39
Na	238	250	80	288	500
К.	1.5	1.2	<2.72	<2.72	18
Ca	<0.01	0.9	1	2	34
Mg	<0.01	0.3	<0.544	<0.544	19
C1	69.3	22.8	36	122	604
As	0.086	0.036	<0.600	<0.680	<0.680
В	2.76	3.85	0.8	4.3	6.8
Li	<0.1	0.2	<0.054	0.17	0.19
F	9.0	10.3	2.1	8.0	2.8
Fe (total)	<0.05	0.10	<0.027	<0.027	<0.027
A1	<0.10	0.10	<0.680	<0.680	<0.680
HCO3	nt	nt	nt	nt	nt
PO4	0.030	0.015	nt	nt	nt
so ₄	25.6	47.0	20	28	92
NO ₃	<0.02	<0.02	nt	nt	nt
NH ₃	2.34	0.96	0.4	0.3	1.3

'n,

- 13 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

					1
	Soldier Well	Sage Hen Creek Well	Crane Spring	Crane Spring	Crane Spring
Location	27S/29½E/ 15Bdd	24S/30E/ 24Bcb	24S/33E/ 34Caa	24S/ 33E/ 34Caa	24S/33E/ 34Caa
Date sampled	10/80	5/80	8/31	9/68	'72 _.
Temp. (^O C)	19.5	23	49	80	78
рН	7.99	7.9	nt	8.3	8.1
Conductance µmhos/cm	270	151	nt	814	810
Alkalinity X _h as mg/1 HCO ₃ X _c as mg/1 CaCO ₃	nt	67 _c	nt	nt	202 _c
Hardness as mg/1 CaCO ₃	70 18 nt		nt	nt`	
Total dissolved solids	236	125	nt	536	nt
SiO2	51	41	nt	80	83
Na	52	25.6	nt	170	170 ·
K ,	7	1.6	nt	3.6	3.9
Ca	13	6.4	2	3.8	3.7
Mg	4	0.5	nt	0.2	0.1
C1	26	3.6	82	78	79
As	<0.680	0.030	nt	nt	0.09
B	0.6	<0.20	nt	6.2	7.9
Li	<0.054	<0.1	nt	nt	0.09
F	0.5	0.5	nt	9.3	9.0
Fe (total)	<0.027	<0.05	nt	0.02	<0.02
Al	<0.680	<0.10	nt	nt	0.022
нсоз	nt	nt	173	199	202
PO4	nt	0.033	nt	nt	0.09
so ₄	15	11.8	80	. 81	86
NO ₃	nt	<0.02	1.4	nt	nt
NH ₃ .	tr	0.03	nt	nt	3.2

- 14 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Crane Spring	Island Ranch Well	Unnamed Spring	Long Hollow Well	Barnyard Spring
Location	24S/33E/ 34Caa	25S/32E/ 7Bab	26S/29E/ 31Cca	26S/ 34E/ 8Bdd	27S/29E/ 6Aaa
Date sampled	5/80	8/69	5/80	5/80	5/80
Temp. (^O C)	76	41	21	25	. 22
рН	8.2	9.3	8.0	7.8	8.1
Conductance µmhos/cm	750	1450	275	366	285
Alkalinity X _h as mg/1 HCO ₃ X _c as mg/1 CaCO ₃	169 _c	nt	105 _c	105 _c	112 _c
Hardness as mg/1 CaCO ₃	8	nt	60	115	35
Total dissolved solids	564	957	233	282	237
Si02	93.2	54	80.2	75.8	62.4
Na	160	386	38	28.8	52
K	3.5	4.4	5.5	5.6	4.3
Ca	3.6	0.5	12.2	28.6	8.0
Mg	0.1	0.2	5.5	4.5	2.7
C1	88	. 9	23.5	35.5	23.5
As	0.145	nt	0.023	0.016	0.035
В	8.67	nt	0.65	0.70	0.64
Li	0.1	nt	<0.1	<0.1	<0.1
F	9.0	19	0.3	0.3	0.6
Fe (total)	<0.05	,nt	<0.05	0.20	<0.05
A1	0.10	nt	<0.10	0.38	<0.10
HCO3	nt	674	nt	nt	nt
PO ₄	0.050	nt	0.032	0.084	0.034
so ₄	78	. 8	11.8	28.2	11.3
NO ₃	0.05	0.1	0.72	0.02	0.67
NH ₃	0.73	nt	0.06	2.77	0.05

- 15 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

9

131

	Warm Spring in Harney Lake	Unnamed Spring	Railroad Well	Harney Lake Hot Spring	Harney Lake Hot Spring
Location	27S/29½ E/ 36Cab	27S/29½E/ 34Da	25S/34E/ 7Ddd	27S/29¹₂E/ 36Dda	27S/29½E/ 36Dda
Date sampled	5/80	5/80	5/80	8/31	'72
Temp. (^O C)	22	21	17	59	68
рН	8.7	7.9	8.2	nt	7.26
Conductance µmhos/cm	9280	297	238	nt	2970
Alkalinity X _h as mg/l HCO ₃ X _c as mg/l CaCO ₃	2000 _c	103 _c	91 _c	nt	nt
Hardness as mg/1 CaCO ₃	23	58	27	nt	nt
Total dissolved solids	10615	251	184	nt	nt
SiO ₂	89.6	63.6	56.2	92	92
Na	2220	36.8	39.6	622	630
К	68	6.4	2.5	12	13
Ca	1.5	13.1	8.7	13	12
Mg	3.3	5.5	1.1	3	1.8
C1	2400	25.0	7.4	562	590
As	1.745	0.025	0.033	nt	0.6
В	53.4	0.61	0.55	nt	11 , `
Li	1.0	<0.1	<0.1	nt	0.45
F · · ·	8.9	0.4	0.5	nt	3.3
Fe (total)	70.0	<0.05	<0.05	0.03	0.05
A1	125	<0.10	<0.10	nt	0.005
нсоз	nt	nt	nt	601	566
PO4	1.190	0.032	0.027	nt	0.092
so ₄	474	12.9	18.4	140	140
NO3	0.03	0.75	0.03	0.5	nt
NH ₃	1.46	0.04	0.04	nt	1.8

- 16 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

	Harney Lake Hot Spring	00 Station Spring	Adobe Flat Well	Harney Lake Spit/Spring	
Location	27S/29½E/ 36Dda	26S/28E/ 36Bdd	27S/34E/ 17Cbd	26S/33E/ 13Acc	27S/29½E/ 34Dbb
Date sampled	5/80	5/80	5/80	5/80	10/80
Temp. (^O C)	67	23	17	24	14.5
рН	7.7	8.0	8.1	7.8	8.5
Conductance µmhos∕cm	2700	228	312	442	1090
Alkalinity X, as mg/l HCO ₃ X _C as mg/l CaCO ₃	493 _c	85 _c	120	122	nt
Hardness as mg/1 CaCO ₃	43	44	99	82	30
Total dissolved solids	1777	186	237	341	654
sio ₂	102	68	80.8	83.2	45
Na	53	31.2	25.4	63	208
K	12	4.1	5.7	8.1	9
Ca	12.8	10.8	26.4	19.9	4
Mg	2.1	3.9	3.1	4.9	2
C1	623	17.6	11.4	55.8	163
As	0.915	0.019	0.014	0.024	<0.680
В	12.07	0.45	0.27	1.24	2.7
Li	0.4	<0.1	<0.1	<0.1	0.11
F	3.0	0.2	0.4	0.3	1.5
Fe (total)	0.56	<0.05	<0.05	<0.05	<0.027
A1	0.62	<0.10	0.10	<0.10	<0.680
нсоз	nt	nt	nt	nt	nt
P0 ₄	0.294	0.031	0.029	0.013	nt
so ₄	119.3	6.7	19.9	45	58
NO ₃	0.02	0.50	0.51	· 0.92 ···	nt
NH ₃	1.01	0.05	0.06	0.04	1.1

- 17 -

Table 3. Spring and well chemistry of the southern Harney Basin area--Continued. All measurements are in mg/l, except for pH or as indicated. nt = not tested; tr = trace.

2

	Eagles Nest Spring #1	Eagles Nest Spring #2	Bathtub Spring
Location	27S/29½E/ 25Aad	27S/29½E/ 25Ada	27S/ 29½E/ 28Cac
Date sampled	10/80	10/80	10/80
Temp (^O C)	41.7	28.1	51.1
рН	7.12	9.18	6.87
Conductance µmhos/cm	4750	1150	3900
Alkalinity X _h as mg/l HCO ₃ X _c as mg/l CaCO ₃	nt .	· nt	nt
Hardness as mg/1 CaCO ₃	154	<15	170
Total dissolved solids	3110	632	2096
Si0 ₂	55	35	87
Na	1207	240	682
К	14	<2.72	32
Ca	30	1	37
Mg	15	<0.544	13
C1	466	68	848 ;
As	1.0	<0.680	1.0
В	17.1	3.1	13.2
Li	0.69	0.07	0.87
F	2.1	7.2	1.8
Fe (total)	<0.027	<0.027	0.14
A1	<0.680	<0.680	<0.680
нсоз	nt	nt	nt
PO ₄	nt	nt	nt
so ₄	320	23	50 g
NO3	nt	nt	nt
NH ₃	5.6	1.5	1.5

· 18 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin

	Dunn Ranch Well #1	Dunn Ranch Well #2	Soldier Spring	Water Tank Spring	Unnamed Spring	Soldier Well
Flow rate liters/min.	100+	10	<]	20	5	40
Measured temperature ^O C	26	19	19.5	20.6	14.5	19.5
Na:K ^O C	38	28	1.09	52	112	197
Na:K:Ca 1/3 β ^O C	78	60	139	100	143	179
Na:K:Ca 4/3 β [°] C	75	34	124	122	130	89
Na:K:Ca Mg.corrected ^O C	NC	NC	64	NC	113	59
SiO ₂ conductive ^O C	148	79	79	83	91	127
SiO ₂ adiabatic ^O C	141	82	83	86	93	124
SiO ₂ chalcedony ^o C	122	47	48	52	60	99
SiO ₂ opal ^O C	26	- 34	-33	- 30	-23	-13

*Methodology for calculations presented in Appendix A. NC = not calculated.

Table 4. 'Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

agai ch

• • •	Sage Hen Creek Well	Crane Spring	Crane Spring	Crane Spring	Island Ranch Well	Eagle's Nest Spring #1
Flow rate '	50	100+	100+	100+	40	40
Measured temperature ^O C	23	80	78	76	41	41.7
Na:K ^O C	144	86	90	87	59	60
Na:K:Ca 1/3 β ^O C	1 36	120	124	121	120	100
Na:K:Ca 4/3 β ^O C	51	109	113	109	196	99
Na:K:Ca Mg corrected ^O C	124	NC	NC	NC	115	40
SiO ₂ conductive ^O C	93	125	127	133	105	106
SiO ₂ adiabatic ^O C	95	123	124	129	106	106
SiO ₂ chalcedony ^O C	62	97	99	106	76	77
SiO ₂ opal ^O C	-21	. 6		13	-11	-10

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 20 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

	Eagle's Nest Bathtub U Spring #2 Spring S		Unnamed Spring	Long Hollow Well	Barnyard Spring	Warm Spring in Harney Lake		
Flow rate liters/min.	5	- 50	<]	pumped	100+	<]		
Measured temperature ^O C	28.1	51.1	21	25	22	22		
Na : K ^O C	59	127	203	228	162	104		
Na:K:Ca 1/3 β ^O C	109	160	178	181	158	138		
Na:K:Ca 4/3 β	140	160	79	59	84	131		
Na:K:Ca Mg <i>:</i> corrected ^O C	40	60	43	56	53	108		
SiO ₂ conductive ^o C	86	130	125	122	112	131		
SiO ₂ adiabatic ^O C	89	126	123	120	112	128		
SiO ₂ chalcedony ^O C	55	102	97	94	83	104		
SiO ₂ opal ^O C	-27	10	6	4	-5	. 11		

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 21 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

4 E 1 %

, • • • •

•	Unnamed Spring	Railroad Well	Harney Lake Hot Spring	Harney Lake Hot Spring	Harney Lake Hot Spring	00 Station Spring
Flow rate liters/min.	100	pumped	100+	100+	100+	100+
Measured temperature ^O C	ני ^{יי} ני. ירי	17	59	68	67	23
Na:K C	218	145	.82	85	244	196
, Na:K:Ca 1/3 β ο _C	190	207	100	143	188	170
Na:K:Ca 4/3 β ^O C	92	336	52	220 1	58	70
Na:K:Ca Mg corrected ^O C	38	136	82	. 105	113	50
SiO ₂ conductive C	113	107	133	133	138	117
SiO ₂ adiabatic C	112	107	129	129	134	115
SiO ₂ chalcedony °C	84	78	105	105	112	88
SiO ₂ opal oC	-4	-9	13	13	18	-1

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 22 -

Table 4. Geothermetric calculations* of minimum reservoir temperatures for selected thermal waters of the southern Harney Basin -- Continued

`	Adobe Flat Well	Thompson Well	Harney Lake Spit Spring
Flow rate liters/min.	pumped	pumped	<5
Measured témperature ^O C	17	. 24	14.5
Na:K ^O C	242	194	122
Na:K:Ca 1/3 β ^O C	268	176	119
Na:K:Ca 4/3 β ^O C	311	87	37
Na:K:Ca Mg corrected ^O C	148	68	61
SiO ₂ conductive ^O C	126	127	97
SiO ₂ adiabatic ^o C	123	124	98
SiO ₂ chalcedony ^O C	98	99	67
SiO ₂ opal ^O C	7	NC	-18

*Methodology for calculations presented in Appendix A. NC = not calculated.

- 23 -

however, preliminary examination seems to indicate the waters are controlled by intersection of Basin-Range faulting and the Rattlesnake collapse caldera, previously described in the section on geology. The difference in chemical character of various Harney Basin waters is probably due to a difference in chemical composition of rocks in the recharge zone and duration of subsurface circulation.

The second group of waters is from the area surrounding Harney Lake in the southwest corner of the study area. These waters are generally higher in total dissolved solids (233-10,616 mg/l), lower in Ca:Mg ratios (0.45-6.1), inconsistent in silica concentrations through the sampling temperature range (29.4-120 mg/l), lower in calcium content (0.1-37 mg/l), and slightly inconsistent in calculated minimum reservoir temperatures. Geologic control for these waters is likewise difficult to define; however, preliminary indications seem to show they are controlled by the intersection of the Rattlesnake collapse caldera and the Brothers fault zone structural trend. Differences in chemical constituents are probably due to the relative abundance of sediments and silicic rocks through which the water must circulate before it reaches the surface.

Detailed geochemical sampling of springs and wells throughout the southern Harney Basin is needed before a realistic thermal-regime model can be attempted. This is apparent in a cursory examination of estimated reservoir temperatures (Table 4), some of which are nearly 400[°]C, which indicates that a large number of springs and wells have either reacted strongly with wall rock or mixed with meteoric or shallow evaporite-rich water while ascending.

- 24 -

GEOTHERMAL-GRADIENT AND HEAT-FLOW DATA*

The temperature-gradient and heat-flow results for the south Harney Basin are as shown in Table 5. Included in the table are the township/range-section and latitude and longitude location of each hole. In addition, the hole name, date of logging used, and collar elevation are included for each hole. The bottom hole temperature, maximum depth, corrected temperature gradient, and, where available, corrected heat flow are printed in blue on Plates I-IV. These values are also listed in the table, as are the depth interval and average thermal conductivity used for calculation of the gradient and heat flow. The values are given in SI units. To transform units, the following conversion factors were used: $1 \times 10^{-6} \text{ cal/cm}^2\text{sec}$ (HFU) = 41.84 mWm⁻², 1×10^{-3} cal/cm sec^oC (TCU) = 0.4184 Wm⁻¹K⁻¹, and $1^{\circ}\text{C/km} = 1 \text{ mKm}^{-1} = 18.2^{\circ}\text{F}/100$ ft. Corrected gradient and corrected heat flow are values for which the topographic effects have been removed. These are not significant for most of the sites studied.

The holes are ranked in terms of the quality of the gradient or heat-flow information: high quality (A), good quality (B), marginal quality (C), data with some problems (D), and data for which no useful temperature gradient or heat flow can be estimated (X). All thermal-conductivity measurements were made on cutting samples.

Most data in the south Harney area have been obtained in holes drilled as water wells or mineral exploration holes, so the thermal-conductivity values are estimated (parenthesis) or based on one or two cutting samples from surface spoil piles. Several holes were drilled and the results published by the USGS (holes S1, S2, S3, MR-1, and MR-2 in Sass and others, 1976). Holes prefixed BFZ-75 were drilled by DOGAMI (BR-75 holes in Hull and others, 1976). The background gradient and heat flow for the area are about $60-80^{\circ}$ C/km and $60-80 \text{ mWm}^{-2}$. Several anomalous

*By D. D. Blackwell, Southern Methodist University, Dallas, Texas.

- 25 -

Table 5. Geothermal-gradient data, south Harney Basin, Oregon

Twn/Rng- Section	N Lat. Deg.Min.	W Long Deg.Min.	Hole # Date	Collar Elev.	Bottom Temp (°C)	Depth Interval (m)	Avg. TC Wm ⁻¹ K ⁻¹	# TC	Uncorr. Gradient °C/km	Corr. Gradient °C/km	Corr. HF mWm ⁻²	Q HF	erter de ter
245/33E- 9D	43-30.00	118-39.00	53	1255		40.0 203.0	. 88		82.0 1.0	82.0 1.0	71	A	· · · · ·
245/32E- 23DD	`43∹28.30	118-43.90	KLAWEN	1256	20.91	75.0 150.0	(,96)		60.9 7.4	60.9	59	B	
245/34E- 19C	4328.00	118-35.00	52	1262		60.0 183.0	.89		69.5 .5	69.5 .5	63	, A	nga sanga sanga san Nasirang
245/33e- 35ad	43-26.60	118-36.80	CRANE 7/21/75	1257	20.27	30.0 85.0	(.96)		80.0 7.1	80.0	75	B	· ·
255/31E- 4BB	43-26.20	119- 1.10	BFZ-7511 9/16/75	1262	11.49	42.5 60.0	1.30	5	30.9 2.5	30.9	42	С	
255/33E- 3BD	43-25-90	118-38.50	BFZ-7501 11/22/75	1274	16.04	10.0 28.6	1.00	2	188.3 18.9	188.3	189	B	
255/33E- 10BA	43-25.23	119-38.30	ADAMS 5/14/80	1259	50.22	97.0						. X	
255/33E- 11BBB	43-25.20	118-37.70	ROSSBERG 6/12/75		15: 75	.0 65.0	(~, 96)		60.0 . 70.0 -	60.0 	58	C	سه می اور
255/33e- 9ca	43-24.73	118-39.78	WSB-1 5/14/80	1250	17.82	.0 65.0			(59.0)	(59.0)		D	
255/33E- 10CD	43-24.48	118-38.52	WSB-3 5/14/80	1254	14.01	10.0 51.5			45.3 5.9			C	
.255/33E- 9CD	43-24.45	118-39.28	ARFORD 3 5/14/80	1250	27.95	.0 165.0	:		(84.0)	(84.0)		D	
255/33E- 9CC	43-24.45	118-40.05	ARFORD 2 5/14/80	1250	22.30	.0 61.0			(136.0)	(136.0)		D	
255/33E- 11CD	43-24.40	118-37.18	WSB-4 5/ 8/60	1254	11.62	10.0 57.0			9.2 2.5	,		`X	
255/33E- 16AB	43-24.32	118-38.53	ARFORD 1 5/14/80	1250	18.83	5.0 107.5			> 45.0			D.	م آب ریک اور اور اور
255/31E-	43-22.00	119- 2.00	S1	1266		50.0	.88		81.0	81.0	71	B	

`.	Table 5.	Géother	nal-gradie	nt data,	south Ha	rney Bašin Depth	, Oregon	-Cont	inued Uncorr.	Corr.	Corr.	•	•	
Twn/Rng- Section 21D	N Lat. Deg.Min	W Long . Deg.Min.	'Hole ≒ Date	Collar Elev.	Temp. (°C)	Interval (m <u>)</u> 190.0	Avg. TC Wm ⁻¹ K ⁻¹	# TC	Gradient °C/km 1.0	Gradient °C/km 1.0	HF mWm-2	Q HF		
265/30E- 3BB	43-21.10	119- 7.00	BFZ-7510 9/16/75	1273	13.30	7.5 30.0	1.00	8	47.6	47.6	(46)	C		
255/34E- 31CC	43-20.25	118-35.25	WINDYPT1 5/ 8/80	1257	11.28	10.0 30.0			7.2 1.4			×		
265/33E~ 2CD	43-20.22	118-36.70	WINDYPT2 5/ 8/80	1253	19.46	10.0 58.0		• -	86.4 4.2			C	····	
265/33E- 11DC	43-19.25	118-36.43	WINDYPT3 5/ 8/80	1252	15.53	5.0 45.0			85.2 3.9			8	•	• • .
265/33E- 13DA	43-18,52	118-34.93	N TMPSON 5/ 8/80	1257	22.31	10.0 52.0		. •	109.0 37.0			C	- - -	
265/30E 20DC	43-17.70	1198.70	BFZ-7508 9/29/75	1250	12.26	10.0 25.0	1.09	- 6	69.7 1.8	69.7	75	C • • •		
265/33E- 35CC	43-15.78	118-36.97	DAVIS 1 5/ 7/80	1254	10.86	10.0 34.5			12.5 1.8		. . .	×		e ster
275/30E- 13CD '	43-13.18	118-56.00	HP-10 6/ 8/73	1280	23.30	25.0 60.0	.96 .13		130.4 2.5 61.6	119.6 2.4 58.4	(117)	B	·.	
27 1	12-12 12	110-44 '00		1005	22 46	130.0	(96)	•	-1.5 67.8	68.8	66	B		
2388	42-12 00	110-14 00	5/13/80	1400	17 18	190.0	1.63	13	54.2	54.2	88	B		
21AC	43-12 69	110-27 52	9/29/75	1705	11 62	45.0	1.00		1.1			×		
20DB	47-12 60	119- 2 20	5/13/80	1250	22.50	46.0	(.96)	•	3.8 131.3	131.3	126	в		
19DC	43-12:53	118-59 72	0/.0/71	1289		108.0	1.30	9	223.2	223.2	(289)		. ***	
ŻIDDB	,		7/25/73			35.0 35.0 110.0	.08 .96 .04	19	8.5 132.8 1.0	132.8	130	C		-
275/30e- 27aca	43-12.05	118-58.71	HP-1 7/26/73	1320	21.62	10.0 65.0	.96 .13	•	160.0 1.8	162.8	155	C		
-	. • <u>.</u>	· · ·		• • •	•				•	÷			• • •	

	,															
	-		·													
			Table 5.	Geothern	mal-grad	lient data.	south Ha	rney Basin	, Ore	egonCont	inued	 •				
					•	Bottom	Depth			Uncorr.	Corr.	· Corr.	0			
	Twn/Rng-	N Lat.	W Long	Hole #	Collar	~~ Temp.	Interval	Avg.TC	#- 	Gradient	Gradient		. У HF	·· · ·	•	1.
	Section	Deg.Min.	Deg.Min.	Date	Elev.	(°C)	(m)	wm K	TC		C/ Km	11144711				
	··*			,			65.0	1.30		55.0		(71)	С			
		· .					75.0		•	2.9	-	,				•
											• .					
	275/30E-	43-11.52	118-57.24	HP-28	1340	17.38	10.0	.96		117.9	130.3	126	B			
	40202			1/20/13			51.2	.10		***						
	275/30E-	43-11.25	118-56.50	HP-11	1258	14.63	10.0	1.09	4.	73.1	73.1	79	в			1
	36BAC		110 00100	¹ 8/ ¹ 8/75		1	45.0		•	1.3		12	-			
	275/33E-	43-10.80	118-39.60	BFZ-7502	1282	11.29	10.0		•	(-1.3)	-1.3		×			
	3360			11/22/ (5			30.0			4.3						•
	275/308-	43-10 60	110-57 00	ロデフ ウテクフ	1950	16 12	10 0	95	Ŕ	88.4	88 4	94	я			
	3600	45 10.00	110 51.00	9/16/75	1635	10.12	67.Š		L	2.1	00.1	01	2			
										•		-				
	285/30E-	43- 8.20	118-56.30	HP-12	1265	13.45	20.0	(.96)		62.0			х			
	ISDH			(/22/ (5			25.0									
	285/325-	17- 5 70	110-42 10	557- 7 500		13 00	20.0	1 20	E	(20 4)		50	c			
•	3600		110 45.10	9/16/75	TCLL	13.00	37.5	1.00	J	5.4	32.4	00	C,			
	. I						37.5			(2,4)	2.4		С			
	28						50.0			2.1			-			
	295/32E-	43- 5.30	118-49.40	MR-1	1262		56.4	.92	4	89.0	89.0	82	A			
	_ CD						04.0	.01		1.0	1.0		_			
							40.0	.92 .07	4	96.0	96.0	88	H .			
						·					07.0	-	~			
							.0				92.0	84	н			
	29 <u>5</u> _31E-	43- 5.20	118-50.90	MR-2	1260		57.9	.99	4	65.0	65.0	64	A			
	28						62.5	.02		2.0	2.0	2				
							89.3	.92	4	83.ø	83. Ø	76	Ĥ			
							92.0	.63		0.6	3.0	L L				
i		•					60.0	.95	8	74.2	74.2	71	Ä			
							100.0	.02		.0	.0	1				·
							.0				87.0	71	A,			
		•													•	
	295/32E-	43 10-	118-44.90	BFZ-7504	-1326	- 47.13	10.0	. 1.63			84.0	138	A	- 31	· .	
[34DC			9/16/75		· · · · · · · · · · · · · · · · · · ·	25.0			5.1						-
	•						25.0	1.09	З	140.2	140.2	155	A			
							52.0			7.7						•
		·	a u e				•.0	•		·	88.0	146	A'	•		

holes are found near Coyote Buttes (Bowen and others, 1976), and hole BFZ-7504 near the southern part of the Basin has a very high heat flow (Plate IV).

- 29 -

CONCLUSIONS AND RECOMMENDATIONS

The reconnaissance study performed for the southern Harney Basin has tentatively identified two geothermal resource areas based on geology, geophysics, geochemistry, and sparse geothermal-gradient data. They are (1) the area surrounding the town of Crane (Plate II) and (2) the area immediately surrounding Harney Lake (Plates I, III, and IV). Preliminary results indicate both of these areas may have reservoir temperatures in the moderate range (100-150^OC). Sitespecific analyses of these two areas should be carried out in one field program and include the following recommendations:

- Detailed (scale of 1:24,000 or less) geologic and photogeologic mapping of Crane and Harney Lake geothermal areas -- to identify and evaluate active thermal structures and areas of recent hydrothermal alteration.
- Detailed sampling and analysis of hot and cold springs and wells, including isotope and gas analyses -- to determine fluid flow directions and provenance and to determine precise reservoir conditions.
- Closely spaced complete Bouguer and residual gravity anomaly studies -- to delineate possible active thermal structures or intrusives below surface units.
- 4. Several resistivity traverses (either dipole-dipole, roving dipole, or telluric) normal to mapped structures -- to further define the thermal regime.
- 5. A micro-earthquake/contemporary seismic study of the entire Harney Basin, making use of a high-gain seismometer array -- to define the seismicity of the area in relation to geothermal systems.
- 6. A program of twenty to thirty 500-ft gradient/stratigraphy holes, followed by a program of five to ten 2,000-ft holes -- to model heat flow and directly test geothermal aquifers.

- 30 -

BIBLIOGRAPHY OF THE HARNEY BASIN

Baldwin, E.M., 1976, Geology of Oregon (revised ed.): Dubuque, Iowa, Kendall/ Hunt, 147 p.

Beaulieu, J.D., 1972, Geologic formations of eastern Oregon (east of longitude 121° 30'): Oregon Department of Geology and Mineral Industries Bulletin 73, 80 p.

- Beeson, M.H., 1969, Correlation of ash-flows by trace element abundance (abs.): Proceedings of the Oregon Academy of Science, v. 4, p. 23-24.
- Berg, J.W., Jr., and Thiruvathukal, J.V., 1967, Regional gravity of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 29, no. 6, p. 120-126.

Blackwell, D.D., Hull, D.A., Bowen, R.G., and Steele, J.L., 1978, Heat flow of Oregon: Oregon Department of Geology and Mineral Industries Special Paper 4, 42 p.

Blank, H.R., Jr., and Gettings, M.E., 1974, Geophysical evidence of caldera structures in the Harney Basin of central eastern Oregon (abs.): EOS (American Geophysical Union Transactions), v. 55, no. 5, p. 557.

Bodvarsson, G., Couch, R.W., MacFarlane, W.T., Tank, R.W., and Whitsett, R.M., 1974, Telluric current exploration for geothermal anomalies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 36, no. 6, p. 93-107.

Bowen, R.G., 1972, Geothermal gradient studies in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 34, no. 4, p. 68-71.

_____1975, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-75-3, 133 p.

Bowen, R.G., Blackwell, D.D., and Hull, D.A., 1975, Geothermal studies and exploration in Oregon (draft final report to U.S. Bureau of Mines): Oregon Department of Geology and Mineral Industries Open-File Report 0-75-7, 65.

____1977, Geothermal exploration studies in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 19, 50 p.

Bowen, R.G., Blackwell, D.D., Hull, D.A., and Peterson, N.V., 1976, Progress report on heat-flow study of the Brothers fault zone, central Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 38, no. 3, p. 39-46.

Bowen, R.G., and Peterson, N.V., compilers, 1970, Thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Miscellaneous Paper 14 (map), scale approx. 1:1,000,000.

- Bowen, R.G., Peterson, N.V., and Riccio, J.F., compilers, 1978, Low- to intermediate-temperature thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-10, scale approx. 1:1,000,000.
- Brooks, H.C., 1963, Quicksilver in Oregon: Oregon Department of Geology and Mineral Industries Bulletin 55, p. 204.
- Buwalda, J.P., 1921, Report on oil and gas 'possibilities of eastern Oregon: Oregon Bureau of Mines and Geology, The mineral resources of Oregon, v. 3, no. 2, p. 28-29.
- Campbell, I., Conel, J.E., Rogers, J.J.W., and Whitfield, J.M., 1959, Possible correlation of Rattlesnake and Danforth Formations of eastern Oregon (abs.): Geological Society of America Bulletin, v. 69, no. 12, pt. 2, p. 1678.
- Corcoran, R.E., 1956, Sedimentary basins in Oregon: World Oil, v. 143, no. 5, p. 140-142.
- Davenport, R.E., 1971, Geology of the Rattlesnake and older ignimbrites in the Paulina Basin and adjacent area, central Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 132 p.
- Dole, H.M., and Corcoran, R.E., 1954, Reconnaissance geology along U.S. Highway 20 between Vale and Buchanan, Malheur and Harney Counties, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 16, no. 6, p. 37-39.
- Enlows, H.E., and Davenport, R.E., 1971, Tertiary ignimbrites in central Oregon (abs.): Proceedings of the Oregon Academy of Science, v. 7, p. 75.
- Enlows, H.E., Parker, D., and Davenport, R.E., 1973, The Rattlesnake ignimbrite tongue (abs.): Geological Society of America Abstracts with Programs, v. 5, no. 1, p. 38-39.
- Godwin, L.H., Haigler, L.B., Rioux, R.L., White, D.E., Muffler, L.J.P., and Wayland, R.G., 1971, Classification of public lands valuable for geothermal steam and associated geothermal resources: U.S. Geological Survey Circular 647, 18 p.
- Greene, R.C., 1970, A crystal-rich ash-flow tuff in southeast Oregon (abs.): Geological Society of America Abstracts with Programs, v. 2, no. 2, p. 97-98.

1972, Preliminary geologic map of the Burns and West Myrtle Butte 15minute quadrangles, Oregon: U.S. Geological Survey Miscellaneous Field Studies Map MF-320, scale 1:62,500.

____1973, Petrology of the welded tuff of Devine Canyon, southeastern Oregon: U.S. Geological Survey Professional Paper 797, 26 p.

- Greene, R.C., Walker, G.W., and Corcoran, R.E., 1972, Geologic map of the Burns quadrangle, Oregon: U.S. Geological Survey Miscellaneous Geological Investigations Map I-680, scale 1:250,000.
- Groh, E.A., 1966, Geothermal energy potential in Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 7, p. 125-135.
- Hull, D.A., Blackwell, D.D., and Black, G.L., 1978, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-78-4, 187 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., and Peterson, N.V., 1977, Heat-flow study of the Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-3, 43 p.
- Hull, D.A., Blackwell, D.D., Bowen, R.G., Peterson, N.V., and Black, G.L., 1977, Geothermal gradient data: Oregon Department of Geology and Mineral Industries Open-File Report 0-77-2, 134 p.
- Hull, D.A., Bowen, R.G., Blackwell, D.D., and Peterson, N.V., 1976, Geothermal gradient data, Brothers fault zone, Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-76-2, 24 p.
- 1977, Preliminary heat-flow map and evaluation of Oregon's geothermal energy potential: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 7, p. 109-123.
- Hull, D.A., and Newton, V.C., Jr., 1977, Geothermal activity in 1976: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 39, no. 1, p. 7-15.
- Leonard, A.R., 1970, Ground water resources in Harney Valley, Harney County, Oregon: Oregon State Engineer Ground Water Report 16, 85 p.
- Lund, E.H., 1962, Welded tuff in the Danforth Formation (abs.): Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 24.
 - _____1966, Zoning in an ash flow of the Danforth Formation, Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 28, no. 9, p. 161-170.
- MacLeod, N.S., Walker, G.W., and McKee, E.H., 1975, Geothermal significance of eastward increase in age of upper Cenozoic rhyolitic domes in southeastern Oregon: U.S. Geological Survey Open-File Report 75-348, 22 p.
- Maloney, N.J., 1962, Tertiary and Quaternary faulting in southwestern Harney County, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 24, no. 2, p. 21-22.
- Mariner, R.H., Presser, T.S., Rapp, J.B., and Willey, L.M., 1975, The minor and trace elements, gas, and isotope compositions of the principal hot springs of Nevada and Oregon: U.S. Geological Survey open-file report, 27 p.

Marinër, R.H., Rapp, J.B., Willey, L.M., and Presser, T.S., 1974, The chemical composition and estimated minimum thermal reservoir temperatures of selected hot springs in Oregon: U.S. Geological Survey open-file report, 27 p.

12. 2

- Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980; Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.
- McKee, E.H., MacLeod, N.S., and Walker, G.W., 1976, K/Ar ages of late Cenozoic Silicic Volcanic rocks, southeast Oregon: Isochron/West, no. 15, p. 37-41.
- Merriam, J.C., Stock, Ĉ., and Moody, C.L., 1925, The Pliocene Rattlesnake Formation and fauna of eastern Oregon, with notes on the geology of the Rattlesnake and Mascall deposits: Carnegie Institution of Washington Publication 347, p. 43-92.
- Muffler, L.J.P., ed., 1979, Assessment of geothermal resources of the United States-=1978: U.S. Geological Survey Circular 790, 163 p.
- Newton, V.C., Jr., and Hull, D.A., 1978, Geothermal energy in 1977: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 40, no. 1, p. 8-16.
- Parker, D.J., 1974, Petrology of selected volcanic rocks of the Harney Basin, Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 119 p.
- Parker, D., and Armstrong, R.L., 1972, K-Ar dates and Sr isotope initial ratios for volcanic rocks in the Harney Basin, Oregon: Isochron/West, no. 5, p. 7-12.
- Peterson, N.V., and Groh, E.A., 1964, Diamond Craters, Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 26, no. 2, p. 17-34.
- Piper, A.M., 1936, Resume of the geologic history of the Harney Basin, Oregon: 'Geological Society of the Oregon Country Geological News Letter, v. 2, no. 8, p. 9-12.
- Piper, A.M., Robinson, T.W., and Park, C.F., Jr., 1939, Geology and groundwater resources of the Harney Basin, Oregon: U.S. Geological Survey Water-Supply Paper 841, 189 p.
- Riccio, J.F., comparer, 1979, Preliminary geothermal resource map of Oregon, 1978: Oregon Department of Geology and Mineral Industries Geological Map Series GMS-11, Scale 1:500,000.
 - 1980, Geothermal exploration in Oregon, 1979: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 42, no. 4, p. 59-69.

Riccio, J.F., and Newton, V.C., Jr., 1979, Geothermal exploration in Oregon in 1978: Oregon Department of Geology and Mineral Industries, Oregon Geology, v. 41, no. 3, p. 39-46. Russell, I.C., 1884, A geological reconnaissance in southern Oregon: U.S. Geological Survey 4th Annual Report, 1882-83, p. 431-464.

200 C#ENE 1211 11110-11

_____1903a, Notes on the geology of southwestern Idaho and southeastern Oregon: U.S. Geological Survey Bulletin 217, p. 36-69.

1903b, Preliminary report on artesian basins in southwestern Idaho and southeastern Oregon: U.S. Geological Survey Water-Supply Paper 78, p. 38-43.

_____1905, Preliminary report on the geology and water resources of central Oregon: U.S. Geological Survey Bulletin 252, p. 36-54.

Sass, J.H., Galanis, S.D., Jr., Munroe, R.J., and Urban, T.C., 1976, Heatflow data from southeastern Oregon: U.S. Geological Survey Open-File Report 76-217, 52 p.

Sass, J.H., Lachenbruch, A.H., Munroe, R.J., Green, G.W., and Moses, T.H., Jr., 1971, Heat flow in the western United States: Journal of Geophysical Research, v. 76, no. 26, p. 6376-6413.

Sass, J.H., and Munroe, R.J., 1973, Temperature gradients in Harney County, Oregon: U.S. Geological Survey Open-File Report 73-247, 3 p., 7 figs.

Stearns, N.D., Stearns, H.T., and Waring, G.A., 1937, Thermal springs in the United States: U.S. Geological Survey Water-Supply Paper 679-B, p. 59-206.

Stone, C.J., 1931, Petroleum reconnaissance report, Harney Basin: Oregon Department of Geology and Mineral Industries, unpublished, 9 p. (geol. map, 1930, 1:125,000).

Thayer, T.P., 1952, The tuff member of the Rattlesnake Formation of eastern Oregon--an ignimbrite (abs.): American Geophysical Union Transactions, v. 33, p. 327.

Thiruvathukal, J.V., 1968, Regional gravity of Oregon: Corvallis, Oreg., Oregon State University doctoral dissertation, 92 p.

U.S. Geological Survey, 1968, Volcanic rocks and stratigraphy in Washington and Oregon, <u>in</u> Geological Survey research 1968: U.S. Geological Survey Professional Paper 600-A, p. A35-A36 (R.C. Greene and G.W. Walker; D.R. Crandall; D.R. Mullineaux; R.S. Sigafoos and E.L. Hendricks, investigators).

_ 1972, Aeromagnetic map of the Adel and parts of the Burns, Boise, and Jordan Valley 1° by 2° quadrangles, Oregon: U.S. Geological Survey Open-File Report 72-390, scale 1:250,000.

_____1973, Ground-water gradients near Malheur Lake, <u>in</u> Geological Survey research 1973: U.S. Geological Survey Professional Paper 850, p. 186 (L.L. Hubbard and A.R. Leonard, investigators).

U.S. Geological Survey and Oregon Department of Geology and Mineral Industries, 1979, Chemical analyses of thermal springs and wells in Oregon: Oregon Department of Geology and Mineral Industries Open-File Report 0-79-3, 170 p.

М

- 35 -

Van Orstrand, C.E., 1938, Temperatures in the lava beds of east-central and south-central Oregon: American Journal of Science, 5th Series, v. 35, no. 205, p. 22-46.

Walker, G.W., 1969a, Possible fissure vent for a Pliocene ash-flow tuff, Buzzard Creek area, Harney County, Oregon, in Geological Survey research 1969: U.S. Geological Survey Professional Paper 650-C, p. C8-C17.

1969b, Geology of the High Lava Plains province, in Weissenborn, A.E., ed., Mineral and water resources of Oregon: Oregon Department of Geology and Mineral Industries Bulletin 64, p. 77-79.

_____1970, Cenozoic ash-flow tuffs of Oregon: Oregon Department of Geology and Mineral Industries, Ore Bin, v. 32, no. 6, p. 97-115.

_____1974, Some implications of late Cenozoic volcanism to geothermal potential in the High Lava Plains of south-central Oregon: U.S. Geological Survey Open-File Report 74-121, 14 p.

_____1977, Geologic map of Oregon east of the 121st meridian: U.S. Geological Survey Miscellaneous Investigations Series Map I-902 (prepared in cooperation with the Oregon Department of Geology and Mineral Industries), scale 1:500,000, 2 sheets.

_____1979, Revisions to the Cenozoic stratigraphy of Harney Basin, southeastern Oregon: U.S. Geological Survey Bulletin 1475, 35 p.

Walker, G.W., Dalrymple, G.B., and Lanphere, M.A., 1974, Index to potassiumargon ages of Cenozoic volcanic rocks of Oregon: U.S. Geological Survey Misc. Field Studies Map MF-569.

Walker, G.W., and Repenning, C.A., 1965, Reconnaissance geologic map of the Adel quadrangle, Lake, Harney, and Malheur Counties, Oregon: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-446, scale 1:250,000.

Walker, G.W., and Swanson, D.A., 1968a, L'aminar flowage in a Pliocene soda rhyolite ash-flow tuff, Lake and Harney Counties, Oregon, <u>in</u> Geological Survey research 1968: U.S. Geologica'l Survey Professional Paper 600-B, p. B37-B47.

1968b, Summary report on the geology and mineral resources of the Harney Lake and Malheur Lake areas of the National Wildlife Refuge, north-central Harney County, Oregon: U.S. Geological Survey Bulletin 1260-L, 17 p.

Waring, G.A., 1908, Geology and water resources of a portion of south-central Oregon: U.S. Geological Survey Water-Supply Paper 220, 86 p.

____1909, Geology and water resources of the Harney Basin region, Oregon:-____ U.S. Geological Survey Water-Supply Paper 231, 93 p.

1965 (revised by Blankenship, R.R., and Bentall, R.), Thermal springs of the United States and other countries of the world--a summary: U.S. Geological Survey Professional Paper 492, 383 p.

Washburne, C.W., 1911, Gas prospects in Harney Valley, Oregon: U.S. Geological Survey Bulletin 431, pt. 2, p. 56-57.

APPENDIX A

Formulas used in calculations

 $t^{O}C = \frac{1217}{\log (Na/K) + 1.483} - 273.15$ (Fournier, 1979) Na:K (revised): $t^{O}C = \frac{1647}{2.24 + F(T)} - 273.15$ (Fournier and Truesdell, 1973), Na:K:Ca: where F (T) = log (Na/K) + [$\beta \log (\sqrt{Ca}/Na)$], β = 1/3 if t> 100^oC, and 4/3 if t <100^oC, $t^{O}C$ = calculated reservoir temperature, and concentrations are expressed in molality. Magnesium correction ratio: (milliequivalents Mg) R = (milliequivalents Mg) + (milliequivalents Ca) + (milliequivalents K) X 100 If R <5 or >50, no calculation was made. For R between 5-50, $\Delta t_{Mg} = 10.66 - (4.7415) (R) + [(325.87) (log R)^{2}] - [(1.032 \times 10^{5}) (log R)^{2}/T] - [(1.968 \times 10^{7}) (log R)^{2}/T^{2}] + [(1.605 \times 10^{7}) (log R)^{3}/T^{2}],$ where R = magnesium correction ratio expressed in equivalents, Δt_{Mq} = the temperature correction that is subtracted from the Na:K:Ca $1/3 \beta$ calculated temperature, T = Na:K:Ca 1/3 β calculated temperature in ^OK. Or Δt_{Ma} can be obtained by using the graph compiled by Fournier and Potter (1979). SiO₂ temperature calculations (Fournier and Rowe, 1966): $t^{0}C = \frac{1309}{5.19 + \log (Si0_{2})} - 273.15$ SiO₂ (conductive),

t $C = 5.19 + 10g (S10_2)$ Si0₂ (adiabatic), $t^{0}C = \frac{1522}{5.75 + 10g (S10_2)} - 273.15$ Si0₂ (chalcedony), $t^{0}C = \frac{1032}{4.69 + 10g (S10_2)} - 273.15$ Si0₂ (opal), $t^{0}C = \frac{731}{4.52 + 10g (S10_2)} - 273.15$,

where SiO₂ is expressed in mg/l.

- 37 -

References cited:

Fournier, R.O., 1979, A revised equation for the Na/K geothermometer, in Geothermal Resources Council Transactions 3, 1979, p. 221-224.

- Fournier, R.O., and Potter, R.W., II, 1979, Magnesium correction to the Na:K:Ça chemical geothermometer: Geochimica et Cosmochimica Acta, v. 43, p. 1543-1550.
- Fournier, R.O., and Rowe, J.J., 1966, Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells: American Journal of Science, v. 264, p. 685-697.
- Fournier, R.Q., and Truesdell, A.H., 1973, An empirical Na:K:Ca geothermometer for natural waters: Geochimica et Cosmochimica Acta, v. 37, p. 1255-1275.
- Mariner, R.H., Swanson, J.R., Orris, G.J., Presser, T.S., and Evans, W.C., 1980, Chemical and isotopic data for water from thermal springs and wells of Oregon: U.S. Geological Survey Open-File Report 80-737, 50 p.

P

APPENDIX B

Geothermal-gradient data

LOCATION	: CRANE, BREGON 245/33E-35AD				
HOLE NUM DATE MEA	BERI SURED: 7/21/75				
DEPTH	DEPTH	TEMPEI	RATURE	GEOTHERM	AL GRADIENT
METÉRS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
5•0	16+4	13+230	55•81	•0	• 0
10+0	32.8	13.640	56.55	82+0	4 • 5
15.0	49.2	14+140	57 • 45	100.0	5+5
50.0	65.6	14.750	58+55	122.0	6.7
25.0	0 • 58	15+290	59.52	138.0	5.9
1 30+0	98.4	15+870	60+57	116•0	5 • 4
35.0	114•8	16.350	61.43	96•0	5+3
40.0	131+2	16+810	62.26	92+0	5+0
45.0	147.6	17.130	62+83	64+0	3+5
50+0	164•0	17.480	53+46	70+0	3•8
55+0	180.4	17+980	64+36	100.0	5+5
60•0	196+8	18+470	65+25	98•0	5•4
65.0	213•2	19.010	66•22	108•0	5+9
70 • 0	229.6	19.380	66+88	74+0	4 • 1
75.0	246+0	19•800	67+64	84•0	406
80•0	262•4	. 20•000	68.00	₩0•0	5+5
85•0	278•8	20+270	68+49	54•0	3.0

- 39 -

COCA.	TION:	DOUBLI	EOO LEG,	OREGON
HOLE	NUMBE	23573. R: BR:	-75+11	
DATE	MEAS	RED:	9/16/75	

DEPTH DEPTH		TEMPE	RATURE	GEOTHERMAL GRADIENT		
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100	FT
2•5	8•2	13•340	56.01	•0	• • 0	
5.0	16•4	10+510	50.92	-1132+0	+62+1	
7.5	24+6	10.240	50.43	+1.38+0	•5•9	
10•0	32+8	10+460	50+83	38+0	4 • 8	
12+5	41.0	10+480	50+86	8+0	• 4	
15.0	49.2	10.490	50.88	4•0	•2	
17.5	57.4	10.490	50+88	•0	• 0	
20.0	65.6	10.540	50.97	20.0	1+1	1
22.5	73+8	10.540	50.97		•0	
25.0	82.0	10+552	50.99	4.0	•2	
27.5	90.2	10.600	51.08	20.0	1 • 1	
30 • 0	98 • 4	10+650	51.17	20.0	1+1	.*
32,5	106.6	10+700	51.26	20.0	1.1	i.
35.0	114.8	10.750	51.35	20.0	1+1	
37.5	123.0	10.810	51.46	24.0	1.3	i
40•0	131+2	10+880	51+58	28+0	1.5	•
42.5	139+4	10+950	51.71	28.0	1.5	
45•0	147.6	11:030	51 • 85	32+0	1+8	
47+5	155.8	11+100	51.98	28+0	1.5	
50.0	164+0	11+182	52.12	32.0	1.8	•
52+5	172.2	11+270	52.29	36+0	2.0	
55+0	180.4	11+320	52.38	20+0	1 • 1	
57 • 5	188+6	11.410	52+54	36.0	2.0	<u> </u>
50+0	196+8	11.490	52.68	32•0	1.8	.,

- 41 -

LOCATION: DIAMOND LEG, DREGON 255/33E-3BD HOLE NUMBER: BR-75-1 DATE MEASURED: 11/22/75

DEPTH DEPTH		TEMPER	RATURE	GEOTHERMAL GRADIENT		
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT	
2.5	8•2	12•450	54•41	• 0	• 0	
5.0	16•4	12+150	53+87	-120-0	=5,+6	
7.5	24.6	11.980	53+56	-68+0	• 3•7	
10.0	32.8	12.430	54.37	180•0	9+9	
12.5	41.0	12+950	55+31	208+0	11+4	
15.0	49.2	13.580	56 • 44	252+0	13+8	
17.5	57.4	14+090	57.36	204•0	11+2	
20.0	65.6	14+570	58+23	192+0	10+5	
22.5	73.8	15.130	59.23	224.0	12.3	
25.0	82.0	15+600	60+08	188+0	10+3	
27.5	90+2	15+910	60+64	124.0	6 • 8	
28.6	93•8	16+040	60 • 87	118+2	6•5	

ł

- 43 -

• .		LOCATI	ON: BURNS 255/33E	AMS, OREGON	:	
	ЛЕРТЦ	HOLE N DATE M	AME: ADA EASURED:	MS 5/14/80	GEOTUEDMO	
	METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
	15.0 20.0 25.0 30.0 35.0 37.0	49.2 65.6 82.0 98.4 114.8 121.4	47.860 48.620 49.260 49.790 50.170 50.220	118.15 119.52 120.67 121.62 122.31 122.40	0.0 152.0 128.0 106.0 76.0 25.0	0.0 8.3 7.8 4.2 1.4

TEMPERATURE, DEG C

			· · · · ·		· · · ·
 • .					
	•		· · · · ·	ч.	
· · · ·				•	
	LOCATION: CRAN	DREGON			

DATE MEASURED: 6/12/75

DEPTH DEPTH		TEMPE	RATURE	GEOTHERM	AL: GRADIENT	
METERS	FEET	DEGC	DEG F	DEG C/KH	DEG F/100	F
5.0	16.4	13.950	57.11	•0	•0	
10.0	32.8	13+970	57+15	4+0	•2	
15.0	49.2	13.970	57.15	•0	• Q	
20.0	65.6	13+970	57 • 15	•0	•0	
25.0	82+0	13.980	57 • 16	5+0	- • 1 -	
30.0	98+4	13.960	57+13	-4+0	••2	
35.0	114.8	13+990	57+18	6+0 =	•3	
40.0	131.2	14+390	57+90	80.0	4 • 4	
45.0	147.6	14 . 443	57+99	10.0	•5	
50.0	164.0	15+200	59+36	152+0	8+3	
55.0	180+4	15+440	59+79	48+0	2+6	
60+0	196.8	15+610	60 • 10	34+0	1 • 9	
65 • 0	213.2	15.750	60.35	28+0	1,5	

47 -

.

. .
DEPTH METERS	LOCAT HOLE DATE DEPTH FEET	ION: BURNS A 255/33E- NAME: WSB- MEASURED: 5 TEMPEI DEG C	AMS, OREGON - 9CA -1 5/14/80 RATURE DEG F	geotherma Deg C/KM	L GRADIENT DEG F/100 FT
5.0 10.0 15.0 205.0 205.0 35.0 405.0 405.0 55.0 65.0 65.0	16.4 32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 213.2	17.180 17.270 17.310 17.320 17.380 17.430 17.430 17.530 17.530 17.600 17.670 17.700 17.820	62.92 63.09 63.16 63.28 63.28 63.37 63.48 63.55 63.64 63.68 63.81 63.86 63.81 63.86	0.0 18.0 2.0 12.0 10.0 12.0 10.0 4.0 14.0 14.0 14.0 24.0	0.0 10.4 0.7 0.7 0.7 0.5 2 8 3 0.8 3 0.8 3 0.8 3 0.8 3 1.3

.

150 L

an a second

•

· · ·	LOCAT	ION: BURNS (255/33E-	AMS, OREGON			
	HOLE	NAME USB-	-3			
TU	DATE	MEASURED:	5/14/80			
ERS	FEET	DEG C	DEG F	DEG C/KM	IL GRADIENT DEG F/100	FT
0.0	32.8	12.070	53.73	0.0	0.0	
0.0	65.6	12.410	54.34 55.06	68.0 80.0	3.7 4.4	
5.0 0.0	82.0 98.4	13.050 13.260	55.49 55.87	48.0 42.0	2.6	
5.0	114.8	13.540	56.37	56. Ø	3.1	
5.0	147.6	13.860	56.95	24.0	1.3	•
0.0	164.0	13.940	57.09	16.0	0.9	

DEF MET -លលក់កុង

	LOCAT	ION: BURNS A	MS, OREGON	· ·-	
DEPTH METERS	HOLE DATE DEPTH FEET	NAME: ARFO MEASURED: 5 TEMPER DEG C	RD 3 /14/80 ATURE DEG F	GEOTHERM DEG C/KM	AL GRADIENT DEG F/100 FT
5.0 10.0 15.0 25.0 35.0 45.0 55.0 55.0 55.0 55.0 55.0 55.0 5	16.482604826048260482604826048260482 91111146896396285184073966295284457988445799122222233333333334444444455554844	27.020 27.020 27.030 27.040 27.040 27.040 27.040 27.120 27.120 27.120 27.120 27.120 27.120 27.120 27.290 27.290 27.290 27.330 27.3500 27.5100 27.5100 27.5100 27.5100 27.5100 27.5900 27.5900 27.5900 27.9300 27.9300 27.9400 27	80.64 80.64 80.64 80.65 80.776 80.994 80.994 80.994 80.994 80.994 80.994 80.994 80.994 80.994 80.994 80.994 80.994 81.114 81.1230 81.5527 245 822.2339 822.2339 822.2339	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	00011000100000000000000000000000000000

1 1 1	LOCAT HOLE DOTE	ION: BURNS A 255/33E- NAME: ARFO MEASURED: 5	MS, OREGON 900 180 2 14/80	·	
DEPTH METERS	DEPTH FEET	TEMPER DEG C	ATURE DEG F	GEOTHÈRM DEG C/KM	AL GRADIENT DEG F/100 FT
5.0 15.0 20.0 25.0 25.0 35.0 45.0 45.0 55.0 55.0 61.0	16.4 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 196.8 200.1	20.760 21.210 21.430 21.550 21.720 21.840 21.910 21.980 22.300 22.300 22.320 22.300	69.37 70.18 70.57 70.79 71.10 71.31 71.44 71.56 72.14 72.18 72.14	0.0 45.0 44.0 24.0 34.0 14.0 14.0 14.0 54.0 4.0 -20.0	0.5 2.4 1.9 9.5 9.5 0.5 0.0 0.0 0.1 1.1

ភូទ

	LOCAI	ION: BURNS F	AMS, OREGUN		
	HOLE DATE DEPTH	NAME: USB- MEASURED: S TEMPEI	-4 5/ 8/80 RATURE	GEOTHERM	AL GRADIENT
10.0 15.0 20.0 25.0 35.0 40.0 45.0 55.0	32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4	11.130 11.200 11.360 11.450 11.450 11.500 11.520 11.520 11.570 11.570 11.600 11.620	52.03 52.16 52.45 52.61 52.68 52.74 52.77 52.77 52.77 52.83 52.83 52.83	0.0 14.0 32.0 18.0 8.0 4.0 4.0 4.0	0.0 0.8 1.8 1.0 0.4 0.1 0.2 0.2 0.3 0.3

DEPTH METERS	LOCATIC HOLE NA DATE ME DEPTH FEET	N: Burns 255/33e ME: Arf CASURED: TEMPE DEG C	AMS, OREGON -16AB ORD 1 5/14/80 RATURE DEG F	geotherma Deg C/Km	L GRADIENT DEG F/100 FT
5.0 10.0 15.0 20.0 25.0 35.0 40.0 40.0 55.0 55.0 55.0 55.0 55.0 5	16.4 349.2 45.0 98.4 114.8 1317.6 144.8 1317.6 144.8 196.2 246.4 20795.6 211.0 246.8 20795.6 211.0 21.0 2	$\begin{array}{c} 14.270\\ 14.690\\ 14.940\\ 15.200\\ 15.210\\ 15.210\\ 15.210\\ 15.210\\ 15.210\\ 15.290\\ 15.590\\ 15.590\\ 15.590\\ 15.690\\ 15.690\\ 15.8970\\ 15.8970\\ 15.8970\\ 15.8970\\ 15.8970\\ 15.200\\ 15.8970\\ 15.8970\\ 15.200\\ 15.8970\\ 15.9970\\ 15.9$	588976888 59976888 599976888 599999995422595454 5999999999942259954 6000000000000000000000000000000000000	0.0 668.0 40.0 140.0 140.0 180.0 10 10 10 10 10 10 10 10 10 10 10 10 10	06779510825054789512181 033200000101054789512181

ie a 3

LOCATION: DOUBLE-O LEG. OREGON 265/30E-388 HOLE NUMBER: BR-75-10 DATE MEASURED: 9/16/75

DEPTH	DEPTH	EPTH TEMPERATURE		GEOTHERMAL GRADIENT	
METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
	· · · ·			、 ·	• •
2.5	8•2	14 • 160	57.49	•0	•0
5•0	16+4	11.940	53+49	-858+0	=43+7
7.5	24.6	12+230	54.01	116+0	5•4
10.0	32+8	12+480	54.46	100.0	5+5
12.5	41 • 0	12:+610	54+70	52+0	2•9
15.0	49.2	12•320	55+08	34•0	4 • 5
17.5	57+4	12+890	55•20	28.0	1+5
20.0	65+6	12+980	55+36	36+0	C•5
22.5	73•8	13.090	55+56	44+0	2•4
25.0	82.0	13+180	55+72	36•0	5•0
27.5	90.2	13+250	55•85	28+0	1.5
30+0	98 • 4	13+300	55+94	20•0	1 • 1

- 61 -

· · ·

• . •

	LOCATI	ON: BURNS A 255/34E-	MS, OREGON -31CC		
	HOLE N DATE M	IAME: WINI)YPT1 5/ 8/80		· · ·
DEPTH METERS	DEPTH FEET	TEMPEI DEG C	ATURE DEG F	geothermal Deg C/KM D	GRADIENT EG F/100 FT
10.0 15.0 20.0 25.0 30.0	32.8 49.2 65.6 82.0 98.4	11.140 11.150 11.160 11.230 11.280	52.05 52.07 52.09 52.21 52.30	0.0 2.0 2.0 14.0 10.0	0.0 0.1 0.1 0.5

DEPTH METERS	LOCAT HÒLE I DATE I DEPTH FEET	Ion: Burns f 265/33e- NAME: WINI 1EASURED: 5 TEMPER DEG C	AMS, OREGON - 2CD DYPT2 5/ 8/80 RATURE DEG F	geothermal Deg c/km	. GRADIENT DEG F/100 FT
10.0 15.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 2	32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0 180.4 190.2	15.510 15.890 16.250 16.610 16.940 17.500 18.060 18.530 18.980 19.320 19.460	59.92 60.60 61.25 61.90 62.49 63.50 64.51 65.35 66.78 66.78 67.03	0.0 76.0 722.0 1124.0 998.0 46.7	020001120970 0444900054920

- 65 -

4 5 7

12

;

<u>Э</u>, • • •

.

`.

<u>;</u> .	LOC	CATION: BURNS A 265/33E-	AMS, OREGON	l	
DEPTH METERS	HOL DAT DEPTH FEET	E NAME: WINI TE MEASURED: S TEMPEI DEG C	DYPT3 5/ 8/80 RATURE DEG F	`GEOTHERMAL DEG C∕KM	. GRADIENT DEG F⁄100 FT
5.0 10.0 15.0 35.0 35.0 45.0 45.0 48.0	16.4 32.8 49.2 82.0 98.4 114.8 131.2 147.6 157.4	12.180 12.480 12.790 13.790 14.240 14.670 15.090 15.450 15.530	53.92 54.46 55.02 56.82 57.63 58.41 59.16 59.81 59.95	0.0 60.0 62.0 100.0 90.0 86.0 84.0 72.0 26.7	0.34597605 9.3.4597605

· .	LOCAT	TION: BURNS A	MS, OREGON		
DEPTH	HOLE DATE DEPTH	NAME: N TR MEASURED: 5 TEMPER	1PSON 5/8/80 RATURE	GEOTHERMA	L GRADIENT
TILLERS	FEEI	DEG C	DLG F	DEG CANI	DEG FYTOO FI
10.0 15.0 20.0 35.0 35.0 45.0 45.0	32.8 49.2 65.6 82.0 98.4 114.8 131.2 147.6 164.0	17.740 18.280 19.160 20.950 21.680 21.680 21.880 22.080 22.230	63.93 64.90 66.49 69.71 71.02 71.38 71.74 72.01	0.0 108.0 176.0 358.0 146.0 0.0 40.0 40.0 30.0	0.97 5.97 19.00 2.22 1.00 2.22 1.00 2.22 1.00 1.00 2.22 1.00 1.00

LOCATION	: DUUBLE-0 LEG, 265/30E-20DE	OREGON
HOLE NUM DATE MEA	BER: BR-75-8 SURED: 9/29/15	

NEDIH	DEPTH	TEMPE	TEMPERATURE		GEOTHERMAL GRADIENT	
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/190 FT	
5 •0	16.4	13.010	55+42	• 0	• 0	
7.5	24.6	10.935	51+68	-830+0	=45+5	
10.0	32.8	11.215	52.19	112.0	5•1	
12.5	41.0	11.330	52.39	46.0	2+5	
15+0	49.2	11.365	52.46	14+0	• 8	
17.5	57.4	11.720	53.10	142+0	7•8	
20.0	65+6	12.085	53+75	146+0	.' 8∙ 0	
22.5	73.8	12.095	53.77	4.0	• 2	
25.0	32•0	12+260	54 • 97	56•0	3•6	

LOCAT	1901	DUUB	LE-0	LEG	OREGON
HOLE	NUMBE	R B	8-75 R-75	-8	

 (\cdot, \cdot)

- 71 -

	· ·				
· · · · · · · · · · · · · · · · · · ·	LOCAT HOLF	ION: BURNS (265/33E- NAME: DAUI	AMS, OREGON -35CC	· · ·	х
DEPTH METERS	DATE DEPTH FEET	MEASURED : 9 TEMPEI DEG C	ATURE DEG F	geothermai Deg C/KM	_ GRADIENT DEG F/100 FT
10.0 15.0 20.0 25.0 30.0 34.5	32.8 49.2 65.6 82.0 98.4 113.2	10.570 10.630 10.670 10.720 10.850 10.850 10.850	51.03 51.13 51.21 51.30 51.53 51.53	0.0 12.0 8.0 10.0 26.0 2.2	0.0 0.7 0.4 0.5 1.4 0.1

£

I -73

	LOCAT	ION: BURNS F	MS, OREGON		
• •	HOLE DATE	NAME: VOLI MEASURED: 5	74GE 5/13/80		
DEPTH METERS	DEPTH FEET	TEMPER DEG C	RATURE DEG F	geothermai Deg C/KM	_ GRADIENT DEG F∕100 FT
00000000000000000000000000000000000000	$\begin{array}{c} 32.8\\ 49.6\\ 82.6\\ 914.8\\ 131.2\\ 1464.0\\ 1896.2\\ 10129.6\\ 0482.2\\ 0914.8\\ 1913.2\\ 1464.0\\ 1896.2\\ 0482.2\\ 0913.2\\ 00482.2\\ $	$\begin{array}{c} 11.910\\ 12.260\\ 12.469\\ 12.469\\ 12.830\\ 12.830\\ 13.990\\ 13.380\\ 13.550\\ 13.930\\ 14.240\\ 14.830\\ 15.930\\ 14.540\\ 14.540\\ 15.930\\$	449764496897179017178725454563143250748963344976449689717901778725445555577889999999999999999999999999999	0.000000000000000000000000000000000000	៰៰៲៹៹៰៷៰៷៰៷៰៹៹៰៰៷៰៰៰៰៹៹៰៰៰៰ ៰៹៰៷៱៹៷៰៷៰៷៰៹៹៰៰៷៰៹៹៹៰៷៰៷៰៹៹៰៰៰៰៰៰៰៰៰៰

- *'*7

- 75

LOCATION: DOUBLE-O LEG, OREGON 275/29E-R1AC HOLE NUMBER: BR-75-9 DATE MEASURED: 9/29/75

ļ

DEPTH	DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT	
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
5.0	16•4	12•650	54 • 77	• 0	• 0
7•5	24.6	11.653	52+97	-430+0	-22-0
10.0	32+8	11 • 140	52.05	•204•0	+11+2
12.5	41.0	11•420	52+56	112.0	6.1
15•0	49•2	11.630	52.93	84+0	4 • 6
17.5	57 • 4	11.770	53+19	56•0	3•1
50+0	65+6	11.880	53+38	44•0	2.4
55•2	73.8	11.970	53+55	36+0	2.0
25+0	82•0	12+070	53+73	40.0	2.02
27.5	90+2	12•195	53+95	50 •0 .	2.7
30+0	98+4	12+325	54.18	52.0	2•9
32.5	106+6	12+450	54 • 41	30.0	. 2.7
35.0	114•8	12.600	54 • 58	50.0	3+3
37•5	123.0	12.730	54 • 91	0.56	2•9
40.0	131+2	12.860	55+15	52.0	2,3
42.5	139+4	13+010	55+42	50.0	3.3
45+0	147.6	13•180	55 • 72	58•0	3•7

- 77 [-

	LUCAI	IUN: BURNS F	-MS, UREGUN		
	HOLE DATE	NAME: BECI MEASURED: 5	-2006 KLEY 5/13/80	· ··	
DEPTH METERS	DEPTH FEET	TEMPEI DEG C	rature Deg f	GEOTHERMA DEG C/KM	AL GRADIENT DEG F/100 F
10.0 15.0 20.0 35.0 35.0 45.0 45.0 50.0 50.0 50.0 50.0 55.0 55	32.8 49.2 65.6 98.4 114.8 131.2 147.6 164.0 164.0 180.4 196.4	11.420 11.420 11.420 11.430 11.430 11.390 11.390 11.380 11.380 11.380 11.210 11.620	52.56 52.56 52.57 55.57 55.57 55.57 55.57 55.57 55.57 55.57 55.57 55.57 55.57 55.575	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 -0.1 0.0 -0.4 -0.1 0.0 -0.0 -1.5 0.0

LOCATION: DIAMOND LEG, OREGON 275/33E-33CB HOLE NUMBER: BR-75-2 DATE MEASURED: 11/22/75

DEPTH	DEPTH	TEMPERATURE		GEBTHERMAL GRADIENT	
METERS	FEET	DEGC	DEG F	DEG C/KM	DEG F/100 FT
2•5	8•2	12.570	54•63	• 0	• 0
5.0	16.4	12.760	54 • 97	76.0	4 . 2
7.5	24+6	11.810	53.26	-350.0	•20°9
10.0	32+8	11+360	52.45	-180.0	-9.9
12+5	41•0	11+350	52.43	=4=0	•• 2
15+0	49.2	11.350	52+43	• 0	• 0
17.5	57•4	11.310	52•36	-16+0	-•9
50•0	65 •6	11+330	52•39	8•0	• 4
5+55	73+8	11•290	52+32	-16-0	••9
25•0	82+0	11•280	52+30	•4•0	-•2
27+5	2•0 9	11•290	52+32	4•0	•2
30+0	98+4	11•280	52.30	-400	••2
30•5	100•0	11+290	52+32	50+0	1 • 1
	4.42				

- 81 -

LOCATION: COYOTE BUTTE, OREGON 275/30E-36CC HOLE NUMBER: BR-75-7 DATE MEASURED: 9/16/75

DEPTH		DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT	
METERS		FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
2.5		8.2	12•000	53.60	• 0	• 0
5.3.		16.4	10+280	50+50	-658+0	•37+8
7.5		24.6	10+670	51.21	156.0	8•6
10.0	٠	32+8	11.040	51.87	148•0	8+1
12.5		41.0	11.200	52.16	64•0	3+5
15.0		49•2	11•360	52.45	64.0	3+5
17.15		57.4	11•650	52.97	116•0	5 • 4
50.0		65•6	12.060	53.71	154+0	9+0
22.5		73•8	12+160	53.89	40+0	5.5
25.+0		82.0	12.340	54+21	72.0	4•0
27.5		90+2	12•530	54•55	76•0	4•2
30.0		98•4	12•770	54•99	96+0	5+3
32+5	· · · ·	106.6	12•980	.55 • 36		4 • 6
35.0		114•8	13.200	55•76	· 38+0	4 • 8
37.5		123.0	13•430	56 • 17	92•0	5.0
40.0		131•2	13•640	56.55	84+0	4 • 6
42.5		139•4	13.850	56+93	84+0	4 • 6
45.0		147.6	14•070	57•33	88+0	4 • 8
47.05		155.8	14•260.	57•67	76•0	4 • 2
50.0		164.0	140470	58 • 05	84 • 0	4 • 6
52.5	;	172.2	14•640	58•35	58+0	3•7
55•0		180•4	14•710	58•48	28•0	1.5
57 • 5.		188.6	15•160	59+29	180+0	9.9
50•0		196.8	15+410	59•74	100+0	5.5
52.5		205•0	15+650	60+17	96+0	5°• 3
55 • C		213+2	15•890	60•60	96+0	5.03
.67•5		221.4	16+120	61.02	95+0	5•0

· ·
$L_{\theta CATIBN}$: Control

LOCATION: COYOTE BUTTES, OREGON HOLE NUMBER: HP-12 DATE MEASURED: 7/22/75 DEPTH

 METERS
 DEPTH
 TEMPERATURE

 20.0
 25.0
 65.6

 25.0
 65.6
 13.040

 13.450
 55.47

 56.21

GEOTHERMAL GRADIENT DEG C/KM DEG F/100 82.0 .0

4•5

£

LOCA.	TI8N:	DIAMS	ND LI	EG, SCC	ØREGØN
HOLE DATE	NUMBE	RI BE	₹ =75 =3	3/75	

DEPTH	DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT	
METERS	FEET	DEG C	DEGF	DEG C/KM	DEG F/100 FT
50.0	65.6	12.990	55+38	• 0	• 0
22.5	73+8	13+050	55+49	24+0	1+3
25.0	82•0	13.120	55•62	28+0	1.5
27.5	90.2	13.200	55+76	32+0	- 1 • 8
30.0	98+4	13+300	55+94	40+0	5.5
32.5	106.6	13+430	56+17	52+0	2.9
35.0	114+8	13.570	56.43	56+0	3.1
37.5	123+0	13+680	56.62	44+0	2.4
40.0	131+2	13.700	56+66	8+0	• 4
42.5	139.4	13.700	56.66	•0	• 0
45.0	147.6	13.700	56.66	•0	• 0
47.5	155.8	13.710	56.68	4.0	•2
50.0	164•0	13+710	56+68	•0	• 0

LOCATION: DIAMOND LEG, DREGON 295/32E-34DC HOLE NUMBER: BR-75-4 DATE MEASURED: 9/16/75

METERSFEETDEGDEGDEGDEGFDEGC/KMDEGF/100FT $2 \cdot 5$ $8 \cdot 2$ $15 \cdot 960$ $60 \cdot 73$ $\cdot 0$ $\circ 0$ $\circ 0$ $\circ 0$ $5 \cdot 0$ $16 \cdot 4$ $13 \cdot 290$ $55 \cdot 92$ $-1068 \cdot 0$ $+58 \cdot 6$ $7 \cdot 5$ $24 \cdot 6$ $12 \cdot 120$ $53 \cdot 82$ $-448 \cdot 0$ $+25 \cdot 7$ $10 \cdot 0$ $32 \cdot 8$ $12 \cdot 120$ $53 \cdot 78$ $-8 \cdot 0$ -44 $12 \cdot 5$ $41 \cdot 0$ $12 \cdot 320$ $54 \cdot 18$ $88 \cdot 0$ $4 \cdot 8$ $15 \cdot 0$ $49 \cdot 2$ $12 \cdot 500$ $54 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $17 \cdot 5$ $57 \cdot 4$ $12 \cdot 680$ $54 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 93$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 93$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 260$ $57 \cdot 66$ $120 \cdot 0$ $6 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 99 \cdot 91$ $14 \cdot 0$ $7 \cdot 7$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 5930$ $60 \cdot 67$ $132 \cdot 0$ $8 \cdot 3$ $47 \cdot 6$ 15	DEPTH	DEPTH	TEMPERATURE		GEOTHERMAL GRADIENT	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	METERS	FEET	DEG C	DEG F	DEG C/KM	DEG F/100 FT
$2 \cdot 5$ $8 \cdot 2$ $15 \cdot 960$ $60 \cdot 73$ $\cdot 0$ $\cdot 0$ $5 \cdot 0$ $16 \cdot 4$ $13 \cdot 290$ $55 \cdot 92$ $-1068 \cdot 0$ $+58 \cdot 5$ $7 \cdot 5$ $24 \cdot 6$ $12 \cdot 120$ $53 \cdot 82$ $-468 \cdot 0$ $+25 \cdot 7$ $10 \cdot 0$ $32 \cdot 8$ $12 \cdot 100$ $53 \cdot 78$ $-8 \cdot 0$ -44 $12 \cdot 5$ $41 \cdot 0$ $12 \cdot 320$ $54 \cdot 18$ $88 \cdot 0$ $4 \cdot 8$ $15 \cdot 0$ $49 \cdot 2$ $12 \cdot 500$ $54 \cdot 50$ $72 \cdot 0$ $4 \cdot 0$ $17 \cdot 5$ $57 \cdot 4$ $12 \cdot 683$ $54 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 3$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 66$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 820$ $57 \cdot 60$ $120 \cdot 0$ $5 \cdot 64$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 203$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 933$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$						
$5 \cdot 0$ $16 \cdot 4$ $13 \cdot 290$ $55 \cdot 92$ $-1068 \cdot 0$ $-58 \cdot 6$ $7 \cdot 5$ $24 \cdot 6$ $12 \cdot 120$ $53 \cdot 82$ $-468 \cdot 0$ $-25 \cdot 7$ $10 \cdot 0$ $32 \cdot 8$ $12 \cdot 100$ $53 \cdot 78$ $-8 \cdot 0$ -64 $12 \cdot 5$ $41 \cdot 0$ $12 \cdot 320$ $54 \cdot 18$ $88 \cdot 0$ $4 \cdot 8$ $15 \cdot 0$ $49 \cdot 2$ $12 \cdot 500$ $54 \cdot 50$ $72 \cdot 0$ $4 \cdot 0$ $17 \cdot 5$ $57 \cdot 4$ $12 \cdot 680$ $54 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 66$ $120 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $6 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $132 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ <td< td=""><td>2.5</td><td>8.2</td><td>15+960</td><td>60.73</td><td>•0</td><td>• 0</td></td<>	2.5	8.2	15+960	60.73	•0	• 0
7.5 24.6 12.120 53.82 -468.0 $*25.7$ $10 \cdot 0$ 32.8 12.100 53.78 -8.0 $*.4$ 12.5 41.0 12.320 54.18 88.0 4.8 15.0 49.2 12.500 54.50 72.0 4.0 17.5 57.4 12.680 54.82 72.0 4.0 20.0 65.6 12.910 55.24 92.0 5.0 22.5 73.8 13.120 55.62 84.0 4.6 25.0 82.0 13.360 56.05 96.0 5.3 27.5 90.2 13.630 56.53 108.0 5.9 30.0 98.4 13.920 57.06 116.0 6.4 32.5 106.6 14.220 57.60 120.0 6.6 35.0 114.8 14.540 58.17 128.0 7.0 37.5 123.0 14.860 58.75 128.0 7.5 40.0 131.2 15.200 59.36 136.0 7.5 42.5 139.4 15.550 59.99 140.0 7.7 45.0 147.6 15.930 60.67 152.0 8.3 47.5 155.8 16.360 61.455 172.0 9.4 50.0 164.0 16.790 62.22 172.0 9.4	5.0	16•4	13.290	55.92	-1058+0	•58•5
$10 \circ 0$ $32 \cdot 8$ $12 \cdot 100$ $53 \cdot 78$ $-8 \cdot 0$ -64 $12 \cdot 5$ $41 \cdot 0$ $12 \cdot 320$ $54 \cdot 18$ $88 \cdot 0$ $4 \cdot 8$ $15 \cdot 0$ $49 \cdot 2$ $12 \cdot 500$ $54 \cdot 50$ $72 \cdot 0$ $4 \cdot 0$ $17 \cdot 5$ $57 \cdot 4$ $12 \cdot 680$ $54 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 66$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $5 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $132 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 455$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$	7.5	24•6	12.120	53.82	-458.0	•25.7
$12 \cdot 5$ $41 \cdot 0$ $12 \cdot 320$ $54 \cdot 18$ $88 \cdot 0$ $4 \cdot 8$ $15 \cdot 0$ $49 \cdot 2$ $12 \cdot 500$ $54 \cdot 50$ $72 \cdot 0$ $4 \cdot 0$ $17 \cdot 5$ $57 \cdot 4$ $12 \cdot 680$ $54 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 06$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $5 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 45$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$ $52 \cdot 0$ $170 \cdot 6$ $17 \cdot 130$ $62 \cdot 83$ $176 \cdot 0$ $9 \cdot 3$	10.0	32•8	12+100	53+78	-8+0	
$15 \cdot 0$ $49 \cdot 2$ $12 \cdot 500$ $54 \cdot 50$ $72 \cdot 0$ $4 \cdot 0$ $17 \cdot 5$ $57 \cdot 4$ $12 \cdot 680$ $34 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 06$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $6 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 45$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$	12.5	41•0	12+320	54 • 18	88.0	4 . 8
$17 \cdot 5$ $57 \cdot 4$ $12 \cdot 680$ $54 \cdot 82$ $72 \cdot 0$ $4 \cdot 0$ $20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 06$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $6 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 45$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$	15.0	49.2	12.500	54 • 50	72.0	4.3
$20 \cdot 0$ $65 \cdot 6$ $12 \cdot 910$ $55 \cdot 24$ $92 \cdot 0$ $5 \cdot 0$ $22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 06$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $6 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 45$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$	17.5	57.4	12.080	54 • 82	72.0	4.0
$22 \cdot 5$ $73 \cdot 8$ $13 \cdot 120$ $55 \cdot 62$ $84 \cdot 0$ $4 \cdot 6$ $25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 06$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $6 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 45$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$	50.0	65•6	12.910	55•24	92+0	5.0
$25 \cdot 0$ $82 \cdot 0$ $13 \cdot 360$ $56 \cdot 05$ $96 \cdot 0$ $5 \cdot 3$ $27 \cdot 5$ $90 \cdot 2$ $13 \cdot 630$ $56 \cdot 53$ $108 \cdot 0$ $5 \cdot 9$ $30 \cdot 0$ $98 \cdot 4$ $13 \cdot 920$ $57 \cdot 06$ $116 \cdot 0$ $6 \cdot 4$ $32 \cdot 5$ $106 \cdot 6$ $14 \cdot 220$ $57 \cdot 60$ $120 \cdot 0$ $6 \cdot 6$ $35 \cdot 0$ $114 \cdot 8$ $14 \cdot 540$ $58 \cdot 17$ $128 \cdot 0$ $7 \cdot 0$ $37 \cdot 5$ $123 \cdot 0$ $14 \cdot 860$ $58 \cdot 75$ $128 \cdot 0$ $7 \cdot 0$ $40 \cdot 0$ $131 \cdot 2$ $15 \cdot 200$ $59 \cdot 36$ $136 \cdot 0$ $7 \cdot 5$ $42 \cdot 5$ $139 \cdot 4$ $15 \cdot 550$ $59 \cdot 99$ $140 \cdot 0$ $7 \cdot 7$ $45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 45$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$ $52 \cdot 0$ $170 \cdot 6$ $17 \cdot 130$ $62 \cdot 83$ $170 \cdot 0$ $9 \cdot 3$	22.5	73•8	13.120	55.62	84+0	406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25.0	82•0	13•360	56.05	96+0	5.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.5	90•2	13+630	56+53	108.0	5.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.0	98•4	13.920	57.06	116+0	6 • 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32:5	106.6	14.220	57.60	120+0	5.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35.0	114.8	14.540	58 • 17	128+0	7.0
40*0 $131*2$ $15*200$ $59*36$ $136*0$ $7*5$ $42*5$ $139*4$ $15*550$ $59*99$ $140*0$ $7*7$ $45*0$ $147*6$ $15*930$ $60*67$ $152*0$ $8*3$ $47*5$ $155*8$ $16*360$ $61*45$ $172*0$ $9*4$ $50*0$ $164*0$ $16*790$ $62*22$ $172*0$ $9*4$ $52*0$ $170*6$ $17*130$ $62*83$ $170*0$ $9*3$	37.5	123.0	14.860	58•75	128+0	7.00
42.5 139.4 15.550 59.999 140.0 7.7 45.0 147.6 15.930 60.67 152.0 8.3 47.5 155.8 16.360 61.45 172.0 9.4 50.0 164.0 16.790 62.22 172.0 9.4 52.0 170.6 17.130 62.83 170.0 9.3	40×0	131•2	15.200	59.36	136+0	7.5
$45 \cdot 0$ $147 \cdot 6$ $15 \cdot 930$ $60 \cdot 67$ $152 \cdot 0$ $8 \cdot 3$ $47 \cdot 5$ $155 \cdot 8$ $16 \cdot 360$ $61 \cdot 45$ $172 \cdot 0$ $9 \cdot 4$ $50 \cdot 0$ $164 \cdot 0$ $16 \cdot 790$ $62 \cdot 22$ $172 \cdot 0$ $9 \cdot 4$ $52 \cdot 0$ $170 \cdot 6$ $17 \cdot 130$ $62 \cdot 83$ $170 \cdot 0$ $9 \cdot 3$	42.5	139•4	15+550	59+99	140+0	7.7
47.5 155.8 16.360 61.45 172.0 9.4 50.0 164.0 16.790 62.22 172.0 9.4 52.0 170.6 17.130 62.83 170.0 9.3	45.0	147.6	15+930	60 • 67	152+0	8•3
50.0 164.0 16.790 62.22 172.0 9.4 52.0 170.6 17.130 62.83 170.0 9.3	47.5	155•8	15.360	61+45	172+0	9.4
52.0 170.6 17.130 62.83 170.0 9.3	50.0	164•0	16•790	62.22	172.0	9 . 4
	52.0	170•6	17.130	62•83	170+0	9.3

