GL02344

AREA NV Church Dixie 45-14

WELL HISTORY

DIXIE FEDERAL 45-14

THERMAL POWER COMPANY

Dixie Valley Geothermal Prospect Churchill County, Nevada 18 July 1979

Well Summary: Dixie Federal 45-14

Location: Approximate 45 Kettleman location on Section 14 T23N R35E MDB&M

within Federal Geothermal Lease N-11853.

Permits: U. S. Geological Survey Permit No. 0069, approved 11–3–78

Nevada Division of Water Resources Permit No. 35792, approved 2-16-79

Drilling Dates: Spudded on 4-25-79 Casing: 20" to 120', 13 3/8" to 1330'

Suspended on 7-10-79 9 5/8" 1123 to 5398' at 9022' Total Depth. 7" 5178' to 6290'

8½" open hole to T.D.

Brief of Operations

Peter Bawden Drilling Inc. (Rig 23) drilled hole and cemented 20" casing from 120-foot depth to surface. Alluvium-volcanics contact drilled at 1100 feet. Cemented 20" casing from 1330 feet to surface. Drilled ahead with 12 1/4" bits. Volcanics - metasediment contact drilled at 2525 feet. Hole continued in metasediments (predominately siltstone) to 4618 feet where rapidly increasing hole deviation, to maximum of 20°, and consistent eastward drift were found unacceptable. Plugged back 12 1/4" hole to 3604 feet, directionally drilled with Dynadrill turning to west. Both original hole and redrilled hole crossed a silica sealed fault zone at approximately 3800-3900 feet (no fluids encountered in either penetration).

Continued Dynadrilling to 4244 feet, got hole to 3° angle and N85°W direction at 4353 feet but hole deviation dropped and wellbore turned eastward again. Subordinated directional control to gain faster depth penetration; continued 12 1/4" hole in metasediments with mud drilling fluid to 5400 feet. Obtained Schlumberger DIL, CNL-FDL, GR Caliper and Temperature Log at 5405 feet. Placed and cemented 9 5/8" liner from 5398 to 1123 feet. Converted to water drilling fluid and drilled 8 1/2" hole to 8534 feet. Attempted same Schlumberger log suite plus DM, FIL and directional survey; obtained only FDL GR and Caliper (8543 to 5398 feet). Attempted to flow well by air lifting through open ended drill pipe at 5398 feet; obtained only surges, no continuous flow.

Ran Kuster recording thermometer to 8500-foot depth and obtained 385°F. maximum reading at bottom. This survey indicated water entry at 5830 feet which would mask a proper evaluation of zone below 8000 feet. Drilled 8 1/2" hole to 8912 feet with water. Ran multiple Schlumberger logs; obtained only CNL and IES (8916 to 5398 feet). Drilled to 9022 feet total depth while waiting on casing. Left 3 cones from bit on bottom. Placed and cemented 7" liner from 6290 to 5178 feet and thereby isolated the zone below 8000 feet. Attempted to flow well by air lifting through 3 1/2" drill string at 5000, 6300 and 7500 feet; obtained only surges. Filled well with water, cleaned out to 9022 feet and released rig. Well is suspended and accessible to 9022 feet for further evaluations and tests.

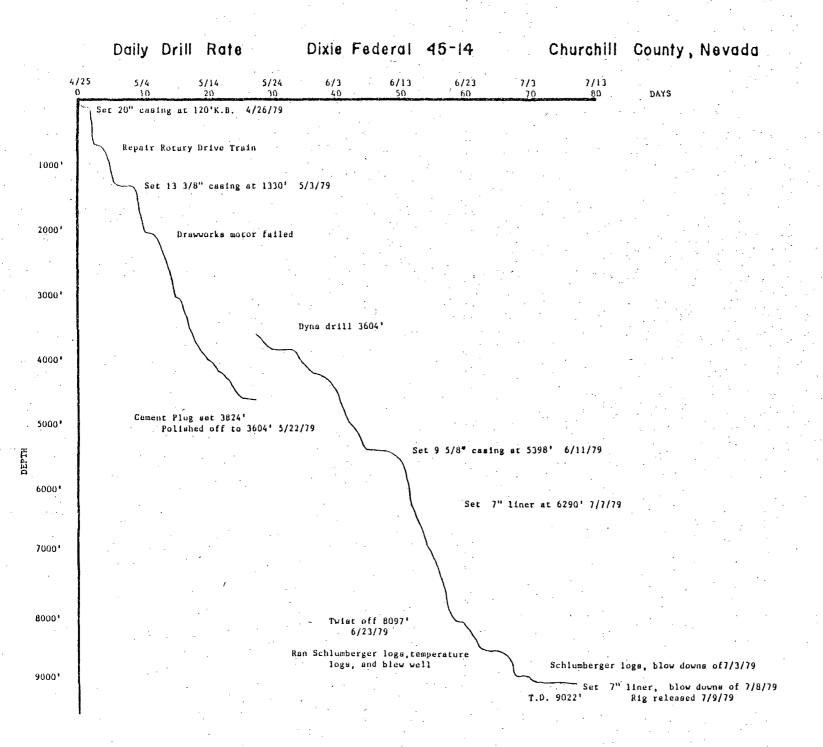
THERMAL POWER COMPANY

Dixie Valley Geothermal Prospect Churchill County, Nevada 18 July 1979

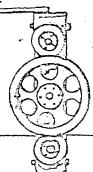
Attempted Flow Tests: Dixie Federal 45-14

Attempts were made to cause well Dixie Federal 45-14 to flow by reducing the wellbore pressure opposing possible producing formation. Such pressure reduction was accomplished by using a Magcobar air compressor to lift the water column out of the wellbore. Three series of efforts using this method were performed.

The first attempt to "blow down" the well was on June 28, 1979. Open-ended drill pipe (OEDP) was run to 5398' and air was injected down the drill pipe. The well was free to "unload" its water column and (if possible) produce through a seven-inch line installed beneath the rotating head. After considerable air injection (almost one hour), drilling fluid followed by dark red water exited the well. The fluids were quite hot and mixed with the injected air, causing the water to surge at wellhead pressures to 200 psig. Such surges were short-lived (10-60 seconds) and caused compressor pressures to drop to 600-700 psig. After 20 minutes of slow build-up to compressor pressures of almost 1000 psi, the well would unload as before, with a blast of water followed by a blast of air. The compressor pressure would meanwhile fall rapidly and the cycle begin again. These blow-down attempts ended after 12 1/2 hours of such cycling.


Subsequent to drilling the well ahead to 8912', another attempt to blow down the well was made for four hours on July 2, 1979. OEDP was run to 5400' and the compressor started at noon. Compressor back pressures of 1000 psig and some help from the rig's drilling pumps were required to unload the well. After one hour of air injection, the well unloaded and continued to cycle as before between high injection pressures coupled with no flow to low injection pressures coupled with momentary surges of fluid. Maximum pressures and temperatures recorded were 62 psig and 232°F. The cycles again occurred roughly every 20 minutes.

The tests above, coupled with the knowledge gained from the IES, CNL, and temperature logs taken between them, led to the conclusion that a water entry existed at 5820 - 5870' and possibly 6208'. These entries were producing water almost as quickly as it could be emptied from the wellbore by the compressor, as evidenced by the 20-minute cycles of high-to-low-to-high compressor pressure. It was concluded that to test the possibly productive zones below 8000' would require their isolation from these shallower water entries. Consequently, a seven-inch liner was run successfuly to 6290'.

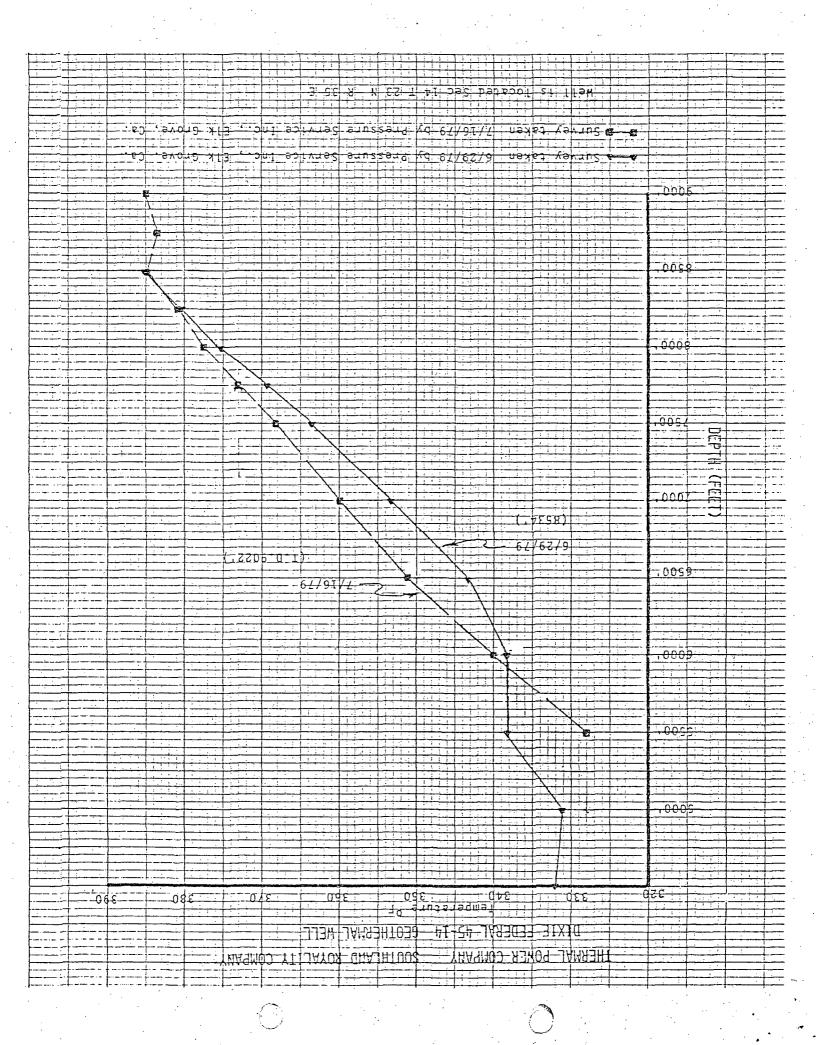

Subsequent to the running and testing of the seven-inch liner, the third and last series of attempts were made to cause the well to flow. Drill pipe with a 6" bit (jets removed to permit full air passage) was run to 5048', 6281', and 7500', where at each point the air compressor, sometimes in conjunction with the rig's drilling pumps, was used to unload the well of water. The plot of air compressor pressure versus time with notes concerning the surges observed and other remarks is attached. In summary, twenty-one (21) hours of blowing the well at the various intervals was attempted. Different cycles of compressor pressure and surging flow were noted than previously. The compressor pressure dropped to 150-250 psig during the unloading stages, rather than to 600-700 psig levels during the briefer unloading periods before the seven-inch liner was run. After the well was first unloaded at each depth, it took 3-4 hours of pumping before compressor pressures were again sufficient to unload what water was coming up past the bit.

The conclusions from these last attempts to flow Dixie Federal 45-14 were:

- 1. The massive water entry at 5820-5870' was shut off.
- 2. The compressor, with some help from the mud pumps, was able to virtually clear the wellbore of water above the point of air injection.
- 3. Despite evacuating water from the wellbore to as deep as 7500', the Dixie Federal 45-14 had insufficient permeability to commence flowing on its own as of 7-8-79. The possible benefits of temperature equilibration or other time adjustments within the prospective interval below 8000' may include eventual capacity to flow. This potential will be evaluated with future flow attempts.
- 4. There is some small liquid entry somewhere between 6290 and 9022 feet which caused the air compressor to go through very long (3-4 hour) cycles of unloading and slowly re-filling the wellbore.

PRESSURE SURVEYS

PRESSURE SERVICE


P.O. BOX 624

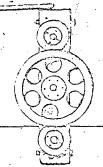
ELK GROVE, CALIFORNIA, 95624

A Line of Service

0 0 5 500 204 c 1000 412 5 1500 617 2 2000 824 c	WHER Thermal Power Co.	FIELD Dixie Valley	WELL NAME 45-14	
PURPOS DETAIL © CAS ANCHOR PURPOSE Temperature and pressure survey to locate fluid entry and movement. Well productin memarks 20 GPN while running survey. Survey indicates entry 5830' flowing down hole more marked to surface. Shock instrument #39570 325° F to 550° F Pressure element #42317 3000 psi calibrated 400° 3-6-78. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	sing 9-5/8" 1123-5398	ELEV. 3410'		
Note	ER DESCRIPTION			
PUMP SHOE				
PURPOSE Temperature and pressure survey to locate fluid entry and movement. Well producin senants 20 GPN while running survey. Survey indicates entry 5830' flowing down hole more process. The product of surface. Shock instruction of surface instrument #39570 325° F to 550° F ressure element #42517 3000 psi calibrated \$400° 3-6-78. Solve of the product of surface instrument #39570 325° F to 550° F ressure element #42517 3000 psi calibrated \$400° 3-6-78. Solve of the product of surface instrument #39570 325° F to 550° F ressure element #42517 3000 psi calibrated \$400° 3-6-78. Solve of the product of surface instrument #39570 325° F to 550° F ressure element #42517 3000 psi calibrated \$400° 3-6-78. Solve of the product of surface instrument #39570 325° F to 550° F ressure element #42517 3000 psi calibrated \$400° 3-6-78. Solve of the product of surface instrument #39570 325° F to 550° F ressure rigority while going in helpon \$530°. Solve of the product of surface instrument #39570 and surface instrument #39570 and surface. Shock instrument respectively with a surface. Shock instrument respectively. The surface of surface. Shock instrument respectively with a surface. Shock instrument respectively. The surface of surface of surface. Shock instrument respectively.	SING DETAIL	@	ZONE Meta Sediment	
PURPOSE Temperature and pressure survey to locate fluid entry and movement. Well producin REMARKS 20 GRY while running survey. Survey indicates entry 5830' flowing down hole more process. The pressure element #39570 325° F to 550° F Pressure element #42517 3000 psi calibrated \$400° 3-6-78. 2				
Hearsts 20 GPM while running survey. Survey indicates entry 5850' flowing down hole more mixed	WP SHOE			na
Temperature instrument #9970 325° F to 550° F Pressure element #2217 3000 psi. calibrated © 400° 3-6-78. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	RPOSE TEMPERACUTE and pressure sur	Survey indicates entry	5830! flowing down hale mo	re E
Temperature instrument #39570 325° F to 550° F Pressure element #42517 3000 psi calibrated & 400° 3-6-78. &			to surface. Shook inst	rumer
Pressure element #42317 3000 psi calibrated 400° 3-6-78. Second		F to 550°F	***************************************	
S	ressure element #42317 3000 psi c	Alibrated @ 400° 3-6-78.		1101
### OF PACE BY OF PACE	0 0 0 0 0 0 0 0 0 0		202011	
### OF PRICE BY OF PRICE BY OF PRINTING ASS NOT ARE BY OF PRINTING ASS NOT	20 60 60 60 60 60 60 60 60 60 60 60 60 60	24c 26c 30c	STABILIZATION PERIOD	
NET OIL PAIRS NOT/D COR CETT/BBL CHROUNTED OAS MOT/D OIL DAY GRAVITY 'ARI SEAN SIZE CASING PRESSURE TURING				
GR CFT/Ball GIRCULATEG GAS MCF'D OIL DRY GRAVITY 'AP' SEAN SIZE CASING PRESSURE TUBING PRESSUR			4 [.]	
CIRCULATEO GAS MCF TO OIL DRY GRAVITY 'API BEAM SIZE CASING PRESSURE TUBING PRESSURE TUBING PRESSURE TUBING PRESSURE TUBING PRESSURE TUBING PRESSURE TOOQ 412 \$ 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			FORMATION GAS MCF/D	
OIL DRY GRAVITY ARE SEAN SIZE CASING PRESSURE TURING PRESSURE TURING PRESSURE TURING PRESSURE TURING PRESSURE TURING PRESSURE TURING PRESSURE TOURING PRESSURE TOURIN			GOR CFT/BBL	
DEPTH PRESS TEMP OF A DEPT			• • • • • • • • • • • • • • • • • • • •	· · ·
CASING PRESSURE TUBING PRESSUR			OIL DRY GRAVITY API	
TURING PRESSURS TOWN PRESS TOMP GRA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
DEPTH PRESS TOMP GRA 0 0 0 500 204 2 1000 412 5 1500 617 4 5 2000 824 4 6 2500 1028 6 3000 1225 6 3500 1426 6 4000 1618 4500 1656 332.0° F. 5000 2008 331.1 5500 2361 338.1 6000 2402 338.1 6000 2402 338.1 6000 2402 338.1 6500 2592 343.3 7000 353.2 7550 3 369.3 8000 3 375.3				
0 0 500 204 6 1000 412 5 1500 617 5 2 2000 824 5 6 2 2500 1028 7 3000 1225 6 2 2500 1426 7 3500 1426 7			TUBING PRESSURE	
0 0 500 204				-
500 204			E DEPTH PRESS TEMP G	RAD.
1000 412 5 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			III	
1500 617				
2000 824				.4
2500 1028 3000 1225 6 3 3500 1426 9 4000 1618 4500 1656 332.0°F. 5000 2008 331.1 5500 2361 338.1 6500 2592 343.3 7000 353.2 7000 353.2 7750 9 363.5 7750 9 369.3 8000 9 375.3			1500 51/ 0	
3000 1225 6 2 3500 1426 2 4000 1618 4500 1656 332.0° F. 5000 2008 331.1 5500 2361 338.1 6000 2402 338.1 6000 2402 338.1 6500 2592 543.3 7000 353.2 7500 3 369.3 8000 2 375.3			= 2500 1028 = = =	. 4
3500 1426				3
4000 1618 4500 1656 332.0°F. 5000 2008 331.1 5500 2361 538.1 6000 2402 338.1 6000 2592 543.3 7000 553.2 7500 7 363.5 7750 7 369.3 8000 7 375.3 8250 5 G 380.4			3500 1426 @	, 4
5000 2008 331.1 5500 2361 338.1 6000 2402 338.1 6500 2592 343.3 7000 353.2 7500 369.3 8000 375.3			4000 1618	3
5500 2361 338.1 6000 2402 338.1 6500 2592 343.3 7000 353.2 7500 0 363.5 7750 3 369.3 8000 2 375.3 8250 0 0 380.4				0
6000 2402 338.1 6500 2592 343.3 7000 353.2 7500 3 363.5 7750 3 369.3 8000 3 375.3 8250 5 6 3		++++++++++++++++++++++++++++++++++++++		7
6500 2592 343.3 7000 353.2 7500 3 363.5 7750 369.3 8000 3 375.3 8250 3 380.4				. 7
7000 353。2 7500 〒 363.5 7750 〒 369.3 8000 井 375.3 8250 〒 380.4				<u> </u>
7500 § 363.5 7750 § 369.3 8000 \$ 375.3 8250 © 380.4				. 3
7750 3 369.3 8000 3 375.3 8250 5 d 380.4				 -
8000 \$ 375.3 8250 5 d 380.4				
8250 6 380.4				•
indun (side deliki direbis hirebis dalaki direbis dibahiri buta dibili bata).			4.1.	

TEMPERATURE SURVEY DATA

Southland Royalty Company


INTER OFFICE CORRESPONDENCE

Jere Denton DATE: July 18, 1979

File TO:

SUBJECT: TPC Dixie Valley 45-14
Temperature Survey performed on July 15, 1979

Depth	New Bomb	Old Bomb
5,000'	328 ^o	318.9 ⁰
5,500' 6,000	340°	323.4 ⁰ 329.7 ⁰
6,500	351.2 ⁰	304.6°
7,000	359.9°	348.1°
7,500	368.1°	356.4 ⁰
7,750	373°	360.7
8,000 8,250	377.5° 380.9°	365.8° 369.6°
8,500	384.6	373.7
8,750	383.5°	371.6 ⁰
9,000	385.9°	373.7 ⁰
9.022	385.5 ^O	

0003 8250 8500

8750 9000 9025

PRESSURE SERVICE

JUL 2 3 19/9

RECEIVED

TPC


P.O. BOX 624 ELK GROVE, CALIFORNIA, 95624

A Line of Service

SUB-SURFACE SURVEY

FIELD ELEV.	Dixie Valley 3410'	Dirie Federa well NAME 45-14 DATE: 7-16-79 ZERO POINT Ground + 22! Dapth
ELEV.		DATE: 7-16-79 ZERO POINT Ground + 22!
	34101	ZERO POINT Ground + 22!
@		
@		Dapth
@		
· · · · · · · · · · · · · · · · · · ·		zona <u>Meta Sediment</u>
	·	The second State
perature and make s	tops as requesta	INTAXE ed, try to identify fluid
e reversals. Possi	ble fluid moveme	ent up hole from 8750'
No. 30570 CLOCK	7 hn 75	THON CAMOU
		10VIA 2C1 6A
	<u> </u>	
	E OFF BOTTOM 12:10	
		instrument.
	nperature and make are reversals. Possi No. 39570 CLOCK DISENGAGE STYLUS O3S. CSG. PRESS COR. CSG. PRESS ON BOTTOM 12:00 TIM	GAS ANCHOR IDERATURE and Make stops as requeste The reversals. Possible fluid moveme No. 39570 CLOCK 3 hr 15 DISENGAGE STYLUS 12:45 O3S. CSG. PRESS 150 psi COR. CSG. PRESS ON BOTTOM 12:00 TIME OFF BOTTOM 12:10 LIS above 5500' not within range of

R. K. McAnally

PRESSURE SERVICE

P.O. BOX 624

ELK GROVE, CALIFORNIA, 9.5624

A Line of Service

SUD-SURFACE SURVEY

			•				Di	rde Feder	<u>al</u>
OWNER Thormal Po	HAT CO.		FIELD [Hrie V	Valley_		WELL NAME	15-11	
CASING 19-5/8" 1123			ELEY:				DATE: 7-16		
LINER DESCRIPTION						ZERO	POINT Group	d + 221	
						Depth			
TUBING DETAIL	,		@			ZONE	Meta Sec	liment .	
				·		,			
PUMP SHOE			GAS AN	ICHOR			INTAKE		
PURPOSE Take Bottom	hole temps	erature and	make sto	23 29	request	ed, try	to identi	fy fluid	
REMARKS ENJOY and t	smperature	reversels.	Possibl	e flui	d entry	end mov	cment un	hole from	8750
ELEMENT 2000 - 534	OF SERIAL NO	KT 5356	clock 5h	r	15.	TURN .			
ENGAGE STYLUS 2:30FM		DISENGAG	E STYLUS 4:	45F4					
OBS. TBG. PRESS.		OBS. CSG.	PRESS 15	0 psi			·		
COR. TBG. PRESS.		CO3. C5G.	PRESS .						
PICKUP (TO	TIME OH	ROTTOM 4:00E	TIME O	FF EOTTO	M 4:104	Р			

(This instrument last calibrated June 1966 although instrument has not been used only 3 times in this period the instrument is not accurate and reads about 11° low, the temperatures below are given as read and does not include any corrections)

DEPTH	TEMPERATURE
4000	263,0
4500	394.7
5000	518.9
5500	323.4
€çço	529.7
6500	540.6
7000	548.1
7500	556.4
7750	360 . 7::
6369	355 . 8
8250	369 . 6
8500 8750	575.7 571.6
9000.	575.7
7000. ₁	プイフ ッ ルー・

THERMAL POWER COMPANY - SOUTHLAND ROYALTY COMPANY

Dixie Federal 45-14 Temperature Survey of 7/16/79

Taken by: Pressure Service, Inc., Elk Grove, CA

Total depth: 9022'

Depth		Temperature (³ F)
5500'		328.9	
6000'		340.0	
6500		351.2	
7000'		359.9	
7500'		368.1	
77 <i>5</i> 0'		373.0	•
8000'		377.5	
8250'		380.9	
8500'		384.6	
87 <i>5</i> 0'		383.5	
9000'		384.9	
9022' (1	r.D.)	385.5	

^{*}Instrument utilized G.R.C. (325°-550°F)

PRESSURE SERVICE

P.O. BOX 624

ELK GROVE, CALIFORNIA, 95624.

A Line of Service

SUB-SURFACE SURVEY

						xie Federal
OWNER Thermal Pow		FIELD Di	xie Valle	у		45-14
CASING 9-5/8" 1123-53	398	ELEY.			DATE: 8-8-7	
LINER DESCRIPTION		·		ZERO		d + 22'
	· · · · · · · · · · · · · · · · · · ·			Depth	9025 '	,
TUBING DETAIL 2" Valve C	on top of tree.	@ 2" Thr	readed lir	ie pipe zone		
box up.						<u> </u>
7 - 4 - 34 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				·•		
BOHZ SMU		GAS AN	CHOR		INTAKE	
PURPOSE Temperature s	survey to check	bottom hole	temperati	re and for	reversals.	
REMARKS Found no rev						
ELEMENT 325-550° F	SERIAL No. 39570	CLOCK 3	hr.	15 TURN SCT		
ENGAGE STYLUS 9:20AM			2:05PM			
OBS TBG PRESS.	· - · · · · · · · · · · · · · · · · · ·	CSG. PRESS		<u> </u>		· · · · · · · · · · · · · · · · · · ·
COR. TBG. PRESS.		CSG. PRESS		1		
PICKUP @ 90181		20 Min. TIME OF	E POTTON			
7010°	TIME ON BUTTOM 2	LO MITTI. HAVE OF	7 BOLLOM	`		
DEPTH TEMPERATU	מסו			•		
5000 325.0) ILE					
5200 328.6				• •		•
5400 328.6						
5600 332.0						
5800 336.7			·			
	**		•			
6000 341.1 6200 345.6				•		
6400 350.0 6600 353.9						
6800 357.9						
7000 361.1				•		
7200 364.0		*				
7400 366.7		•	, ·	•		
7600 370.0	· .					
7800 373.2						. · · · · · · · · · · · · · · · · · · ·
8000 376.3				•	•	
8200 379.3			•	F	CASIN	Seed Red.
8400 381.6				173 .	ECEIV	LU
8600 384.1		•			AUG 14 19	79
					VO 9 TH 75	3.5
		·			THE	
					TPC	
9018 386.9				•		**

CHEMICAL ANALYSIS OF PRODUCED

GEOTHERMAL FLUIDS

THERMAL POWER COMPANY - SOUTHLAND ROYALTY COMPANY

SR-2 WATER WELL Chemical Analysis

Location:

Sec. 14 T23N R35E

Performed by:

Water Resources Center

Desert Research Institute

University of Nevada

A) Chemical Analysis

	4/23/79 DV 15	5/15/79 DV 30
Ph	7.63 (lab)	6.89 (field)
Ca	156 Mgl	138
Mg	30	25
Na	400	400
K	30	18.6
Cl	535	575
So,	454	426
HCO,	200	211
SiO ₂ ³	98	105
F	u .39	4 _4
Geothermometry		

ANALYSIS OF WATER WELL WATER USED TO MAKE UP DRILLING MUD

ON WELL.

B) Geothermometry

	1/3 Fudge <u>Factor</u>	4/3 Fudge Factor ,
Ca-Na-K Temperature	162°C	92 ⁰ C
Silica (Ouartz)	133°C	139.9°C
Silica (Mixing Model)	205 ^o -216 ^o C	

THERMAL POWER COMPANY - SOUTHLAND ROYALTY COMPANY

Dixie Federal 45-14 Chemical Analysis

Location: Sec. 14 T23N R35E

Performed by: Water Resources Center

Desert Research Institute

University of Nevada

Date Collected: July 7, 1979

The following chemical analysis is incomplete and will be completed by the university as soon as possible.

ph	9.44	K+	65 mg/liter
HCO ₃	6.1 mg/liter	Ca	22.5 "
CO ₃	117 " "	Mg	0.01 "
Chloride	700 " "	Si	300 "
SO ₄	352 " "	Ba	0.13 "
FI Na	9.5 " "	Li	0.97 "

Environmental Analysis Laboratories

2030 Wright Avenue Richmond, California 94804 (415) 235-2633 CORPORATION (TWX) 910-382-8132

RECEIVED

AUG 21 1979

TPC

ANALYSIS REPORT

Customer: Thermal Power Company

601 California Street

San Francisco, California 94108

Date: August 20, 1979

Samples Received: July 13, 1979

LFE Reference No.: 05300-000-1013

Purchase Order No.:___

Analysis	Units	DF-45-14 6/29 615-9-1	T 23N R35E 6/11 615-9-2	
Calcium	mg/l	88	150	
Magnesium	mg/l	1.1	24.	
Potassium	mg/l	39	18	
Sodium	mg/l	460	400	
Chloride	mg/1	600	520	•
Conductance, Spec.	umhos/cm	3000	3000	•
Fluoride	mg/l	6.4	4.4	
Nitrogen, Nitrate	mg N/1	< 0.10	< 0.10	
рН		7.5	7.2	
Phosphate - Total	mg P/l	0.15	< 0.05	
Residue - Dissolved	mg/l	1600	1200	
Silica - Reactive	mgSi/l	48	46	
Sulfate	mg/l	250	410	
Alkalinity	mgCaCO ₃	150	170	
Turbidity	NTU	410	9	

Martha Waters, Supervisor **Environmental Laboratory**

Environmental Analysis Laboratories

2030 Wright Avenue Richmond, California 94804 (415) 235-2633

CORPORATION (TWX) 910-382-8132

2nd REPORT

ANALYSIS REPORT

1st Report dated 8-20-79

Customer:

Mr. Lou Deleon Thermal Power Company

601 California Street

San Francisco, CA 94108

Date: September 5 1979

Samples Received: July 13, 1979

LFE Reference No.:05300-000-1013

Purchase Order No.:__

Analysis Units 615-8-1		
	 	 .
Gross Alpha pCi/1 < 5		
Gross Beta pCi/1 39 ±3		

Total alpha based on

RECEIVED

SEP 7 1979

TPC

George E. Dunst Chemist

Analysis are performed according to EPA or State of California recommended methods when applicable. LFE Environmental is a State of California Approved Laboratory for complete chemical, bacteriological,

LABORATORY REPORT
DATE: COLLECTION 9-13-79

į	FINAL DATA	
, , , , , , , , , , , , , , , , , , ,	DF 45-14	
Point Type,		
Co., Twp.,	Rng. Co. Twp. Rng.	
Sec., Qtrs.	, Seq. No. 5 Present	·
Point Descr		
Sample Design	gnation Code DV 90 (45-14)	
рН	7.13	
TDS()		
	mhos/cm025°C 2150 mg/1 epm	
нсо ₃	130.5 2.139	
co ₃ =		
C1 -	493 13.888	
so ₄ =	215 4.476	
F	7.6 0.400	 .
NO ₃		
H ₂ PO4 -		
HP04 -		• .
HP04 =		
Р		
Total Anions	s 20.382	
Na ⁺	410	
K +	40 1.023	<u> </u>
Ca ++	24.1 1.230	
Mg ++	0.015 0.001 Li 1.01 0.144 Sr 1.06 0.024	 .

WATER ANALYSIS LABORATORY -- WER RESOURCES CENTER DESERT RESEARCH INSTITUTE

^1BORATORY REPORT _ATE: COLLECTION 9-13-79

		FINAL DATA		
	· · ·	mg/l epm		
Total Cations		20.257		,
Anions / Cations		1.030		
S10 ₂		325		

WATER ANALYSIS LABORATORY

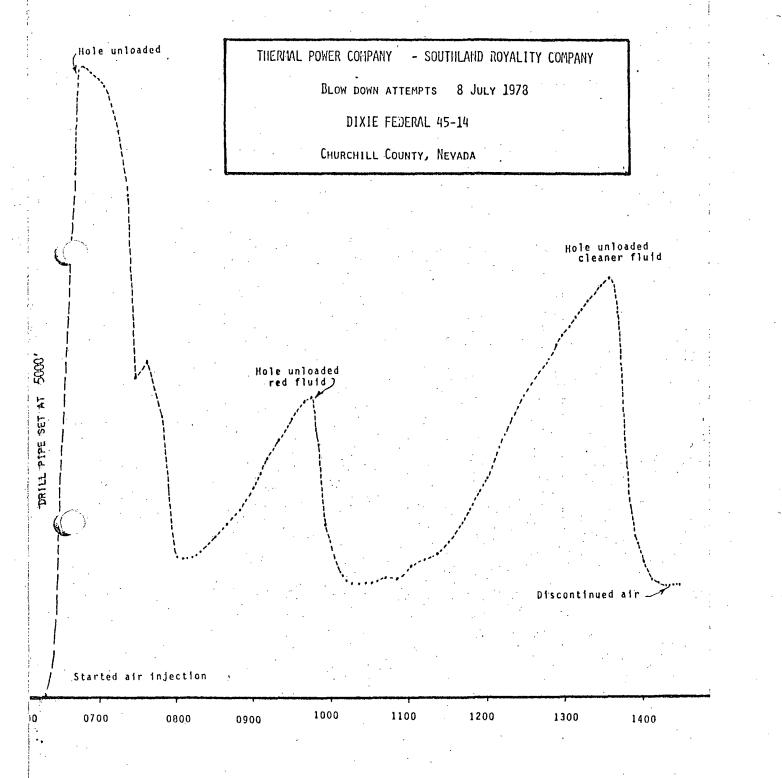
DATA REPORT FORM

ROJECT:	Dixie Valley	DATE SAMP	LE SUBMITTED: 9	-13-79		DATE	FINAL DATA	۱: <u>9-25</u>	5-79		<u>.</u>
ab 0.	Sample Number	Date	Description	Analysis						•	_
				Cs mg/l	A1 mg/1	Fe mg/l	Mn mg/l	Li l mg/1 mg	lg As j/1 mg/1	Sr mg/1	B F mg/1
			DF 45-14							. ;	
<i>1</i> 90		9-13-79	Southland Well #1	0.325	0.1	1.61	0.05	1.01	0.59	1.06	8.5 7.6
											-
•											-
							4 1 3				· .

DIRECTIONAL SURVEY PLOTS MULTI & SINGLE SHOT SURVEYS

THERMAL FOWER COMPANY

DECL: 17 E F:148-6 ANGLE AVERAGE
WELL: DIXIE FEDERAL 45X14


DIXIE VALLEY FIELD, NEVADA MULTI-SHOT 0-3594 & 6325-9022
ELEVATION: 3437', K, B.
WELL ASSUMED VERTICAL TO 1330
STATIONS 2626' THRU 3594', DROP MULTI-SHOT SURVEY, 17 MAY 79
STATIONS 3630' THRU 6171', SINGLE SHOT SURVEY
STATIONS 6325' THRU 9000', OPEN HOLE MULTI-SHOT, 16 JUL 79
STATION AT 9022' WAS PROJECTED.

VERTICAL SECTION CALCULATED IN FLANE OF BOTTOM HOLE CLOSURE

RECORD OF SURVEY

ANGLE AVERAGING METHOD

GRAFTS OF WELL TESTING BLOW-DOWN ATTEMPTS

AGNEW SWEET WIRELINE

SUBSURFACE SURVEY

AGNEW AND SWEET

24 HOUR PHONE 805-327-2267 4205 ATLAS COURT BAKERSFIELD, CALIFORNIA

CASING	9-5/8" @	45001 -	4700'	ELE	v			DATE:	Septemb	er 2	7,137
LINER DESCRIPTION:									iat + 2		
PERFORATIONS:			· · · · · · · · · · · · · · · · · · ·					MPP			
UBING DETAIL:	ópen hole	beyond	1 4700'					DEPTH 9032	1 2	ONE	
24,											
	√,			PUN	AP SHOE						
WELL STATUS	Static			SHI	JT IN			ON PRODUCTIO			
SURVEYED TUB.	ANN.	open c	asing(X)	ENG	SAGE STY	ius 11	:53 am	DISENGAGE ST		39 h	
PICK UP @	9055.	<u> </u>	·	TIM	E ON BO	ттом 🤰	:04 pm	TIME OFF BOT		:0à b	
ELEMENT RANGE	99-517	· 		SE	RIAL NO.	1028	<u> </u>			URN :	
PURPOSE	STATIC TE	MPERATI	RE GRADI	ENT SI	RVEY		·	MAX. OF 3			521
REMARKS	 			· · · · · · · · · · · · · · · · · · ·				STABILIZATION		.,	12,75
	TEM	TERA CUI	RE			,	200	PRESSURES		TART	FINI
						Fire		DATE		27	
)	F1 H 590 H		300	1	10:1		60	CASING PSI OF			ļ
								CASING PSI CO			·
	Talifa di di				THE STATE OF THE S			TUBING PSI OF		Q (255) 	ļ
	: [] [] [] [] [] [] [] [] [] [] [] [] []							PRESS. STATUS			
	leski klaki						1::::1::::1	INSTRUMENT H	سلحيا	atic	
		Total Carlo									
				: 			-	DEFTH	TE	MP.	
						1.31		0		-	
95 Junitaliu					1111111			1000		7.1	
	#######################################	Pallanh		1 7				2000		7.5	·
										420	
				ricki				4000		2.8	
							7/1-1-1	4500		0.5	- 1888 - 1
								5000		14.0	
								5500		4.3	
				<u> </u>				5000	35		7 - A - 17 - 17 - 17 - 17 - 17 - 17 - 17
						:		6500		<u>, a > </u>	
				And Milleri				7000		6.2	
			H-1	大計品				8000		77.2	
	HARITHIAN										
						Hall Hall		9000		30.8 31.0	
		HALLEH			Q			,		30:•0 30:•0	
					$\vdash \mathcal{F}$			30/22	<u></u>		
										: 7	
						9		100 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.000	Part of the	
						10-			14.5		5 147 13
							11-12-12-1				
antinalina	審問的問題	1.据值30		प्रसिप्ता	1. 11. 17				1.		
						<u> </u>)(***	S. J. Spin
				EH H			在記憶			edit eti	
					HOURT		Ò lei			- 1 · 1	,
		Kinn (a)	00000				- 5-11				
		hali Padi	HA KHALLA			1	\mathcal{T}_{1}	1			
		甘油流			Herita i	排析用		1			1 - 7-
										11	
	THE BUILDING				Halifi		+			5	
		141111111		Mini Hill				1			
		111111111							·		
	HTHERE HARRY	ATTEMPT OF THE	HILLIAN BLUE	1. H.H.H.H.H.H.	17.444.14	14111111111	34411.1111	1			
		结合物的过去	of the Hill of the Health	[i*	Tall Hir		MILLER	i			<u> </u>

AGNEW AND SWEET 24 HOUR PHONE 805-327-2267 SWEET 4205 ATLAS COURT SUBSURFACE SURVEY BAKERSFIELD, CALIFORNIA 93308 SERVICE WELL NAME DIXIE FEDERAL 45-14 DIXIE VALLEY SOUTHLAND ROYALTIES CO. FIELD 9-5/8" @ 4500" - 4700" September 27, 1979 CASING ZERO POINT Mat +201 LINER DESCRIPTION PERFORATIONS: MPP 90221 Open hole beyond 4700' TUBING DETAIL DEPTH ZONE PUMP SHOE Static ON PRODUCTION WELL STATUS SHUT IN ANN. 11:53 am DISENGAGE STYLUS 2:39ain <u>open casing(X)</u> ENGAGE STYLUS тив. SURVEYED 2:09 90221 7:04 PICK, UP. @ TIME ON BOTTOM TIME OFF BOTTOM 3 hr. 15 6050# CLOCK ELEMENT RANGE SERIAL NO TURN 90221 MAX. OF 382.2 PURPOSE STATIC PRESSURE GRADIENT SURVEY REMARKS STABILIZATION: PERIOD START PRESSURES: FINISH PRESSURE 9/27 DATE 150 OLCASING PSI OBS 150 CASING PSI COR TUBING PSI ORS TUBING PSI COR PRESS, STATUS Static INSTRUMENT HUNG. @. DEPTH PRESS. GRAD. 160 0 577 1000 -417 2000 994 .417 1391 . 397 3000 000 .394 1785 4000 4500 1975 . 380 2174 . 398 5000 5500 2376 .404 6000 2569 :385 2759 3500 :378 0:00 39.3 .7000 2954 7500 :3<u>6</u>8 3138 \mathbf{E} 372 8000 3324 8500 3520 392 E 9000 3697 354 9022 3705 363 000 100

....

SUNDBERG & CRAWFORD

THERMAL POWER COMPANY

DIXIE FEDERA	L 45-14	Daily Drilling History Dixie Valley, Churchill County, Nevada
DATE DE	EPTH	
		Installed 70.62 cm (30") conductor pipe at 5.79m (19') prior to drill rig moving in.
4/25/79 37		Moved in and rigged up Peter Bawden Rig #23. Spudded well at 1600 hours. Picked up kelley, 44.45 cm (17½") bit and bottom hole assembly, drilled to 37.80m (124') w/bit #1 and 2 reamers. Picked up 67.31cm (26½") hole opener. R.I.H. and opened 44.45cm (17½") hole to 67.31cm (26½") from 12.19m (40') to 37.80m (124').
4/26/79 44	4.51m(146')	P.O.H. Ran 3 joints of 50.80 cm (20") 139.87 kg/m (94#/ft) H-40 buttress casing, total length 37.80m(124'). Landed shoe at 36.58m (120'KB). Halliburton cement service pumped 320 sacks Class "B" cement as slurry with 2% CaCl ₂ . Good returns to surface. CIP @ 0830 W.O.C. 12% hours. Cut off 50.80cm (20") casing and welded on 50.80 cm (20") bradenhead. Nippled up 50.80 cm (20") Hydril. Tested Hydril with 49.2Kg/cm ² (700 psig) for 15 minutes. Held O.K. Drilled cement from 36.58m (120') to 37.80m (124'). Drilled 6.7m (22') of 44.45 cm (17½") hole to 44.51m (146') with mud in hole.
4/27/79 21	17.93m (715')	Drilled 173.43m (569') of 44.45 cm (17½") hole to 217.93m (715') with water in hole.
4/28/79 22	25.86m (741')	Drilled 7.92m (26') of 44.45 cm (17½") hole to 225.86m (741') with water in hole. P.O.H. Repaired rotary drive train for 20 hours.
4/29/79 29	98.70m (980')	Continued to repair drive train for 13 hours. R.I.H. with Bit #2 and B.H.A. Drilled 42.37m (139') of 44.45 cm (17½") hole to 298.70m (980') with water in hole.
4/30/79 40	02.95m (1322')	Drilled 62.79m (206') of 44.45 cm (17½") hole to 361.49m (1186') with mud in hole. P.O.H. R.I.H. with Bit $\#3$ and B.H.A. and drilled 41.45m (136') of 44.45 cm (17½") hole to 402.95m (1322') with water in hole.
5/1/79 40	05.38m (1330')	Drilled 2.43m (8') of 44.45 cm (17½") hole to 405.38m (1330') with mud in hole. P.O.H. Rigged up and ran Schlumberger logging service. (Dual Induction Log) Rigged up to run casing. Ran 34 joints 33.97 cm (13 3/8"), 90.89 Kg/m (54.5 lb/ft) H-40 buttress casing. Total length 406m (1332'). Casing set 405.38m (1330') K.B. Rigged up Halliburton and circulated through casing prior to cementing. Pumped in 2.12m ³ (75 ft ³) of water followed by 940 sacks of Class "G" cement mixed with 1:1 perlite, 40% SiO ₂ , 3% gel and 5% CFR ₂ of slurry density of 1858.3Kg/m ³ (116 lb/ft ³) followed with 150 sacks of Class "G" cement with 40% SiO ₂ and 5% CFR ₂ . Had returns throughout but no cement to surface. C.I.P. 1430 hrs. W.O.C. 9½ hours while running 2.54 cm (1") tubing to locate top of cement.

5/2/79	405.38m (1330')	Ran 2.54 cm (1") tubing in 33.97 cm (13 3/8") casing to 50.80 cm (20") annulus to 163.4m (536'). Pumped 400 sacks class "G" cement mixed with 1:1 perlite plus 40%, SiO ₂ and 5% CFR ₂ . Slurry density 1569.9Kg/m ³ (98 lb/ft ³). Followed with 150 sacks class "G" neat cement. Slurry density 1890.4Kg/cm ³ (118 lb/ft ³). 4 bbls clean cement to surface. C.I.P. 2200 hours. Pulled out 2.54 cm (1") tubing17 joints.
5/3/79	405.38m (1330')	W.O.C. Nippled up B.O.P. Tested blind rams with 70.3Kg/m ² (1000 psi) for 30 min. Held OK. Tested Hydrill with 49.21 Kg/cm ² (700 psi) for 30 min. Held O.K. Picked up 33.97cm (12½") bit and B.H.A. and found plug at 381.91m (1253'). Drilled plug and baffle seat from 381.91m (1253') to 385.88m (1266')
5/4/79	542.24m(1779')	Drilled out cement from 385.88m (1266') to shoe of 33.97cm (13 3/8") casing at 405.38m (1330'). Drilled with bit #4 for 48.46m (159') from 405.38m (1330') to 453.85m (1489') with water in hole. P.O.H. Changed bits & B.H.A. R.I.H. and drilled 118.87m (290') from 453.85m (1489') to 542.24m (1779') with water in hole.
5/5/79	632.77m (2076')	Drilled 90.53m (297') of 31.12 cm (12½") hole to 632.77m (2076') with water.
5/6/79	632.77m(2076')	Changed out electric motor on draw works.
5/7/79	676.05m (2218!)	Completed installation of replacement electric motor on drawworks. Drilled 13.72m (45') of 31.12 (12¼") hole from 632.77m (2076') to 646.48m (2121') with mud in hole. P.O.H. R.I.H. with bit #6 and drilled 28.35m (93') of 31.13 cm (12¼") hole from 646.48m (2121') to 676.05m (2218') with mud.
5/8/79	769.62m(2525')	Drilled 93.58m (307') of 31.12 cm (12%") hole to 769.62m (2525') with mud.
5/9/79	890.63m (2922')	Drilled 121.01m(397') of 31.12 cm (12½") hole to 890.63m (2922') with mud.
5/10/79	936.96m (3074')	Drilled 34.14m (112') of 33.12cm (12%") hole to 924.76m (3034') P.O.H. Changed out B.H.A. and bit. R.I.H. with bit #7 and drilled 12.2m (40') of 33.12 cm (12%") hole to 936.96m (3074') with mud.
5/11/79	1017.11m(3337')	P.O.H. changed out B.H.A. and add new bit. R.I.H. with new bit and drilled 80.16m (263') of 33.12 cm (12%") hole to 1017.11m (3337') with mud.
5/12/79	1161.90m(3812')	Drilled 51.21m (168') of 33.12 cm (12%") hole to 1154.58m (3788') with mud in hole. P.O.H. changed bits R.I.H. and drilled 7.32m (24') of 33.12 cm (12%") hole to 1161.90m (3812') with mud.
	· ·	

5/14/79	1212.19m (3977')	Drilled 50.30m (165') of 33.12 cm (12¼") hole to 1212.19m (3977') with mud.
5/15/79	1236.6m (4057')	Drilled 24.38m (80') of 33.12 cm (12¼") hole to 1236.60m (4057') with mud. Reamed from 1067.7m (3503') to 1236.58m (4057')
5/16/79	1279 . 25m (4197')	Drilled 42.68m (140') of 33.12 cm (12¼") hole to 1279.25m (4197') with mud.
5/17/79	1298.76m (4261')	P.O.H. R.I.H. with Bit #12, reamed from 1251.82m (4107') to 1279.25m (4197'). Drilled m (64') of 33.12 cm (124") hole to 1298.76m (4261') with mud.
5/18/79	1339.30m (4394')	Drilled 40.54m (133') of 33.12 cm (12¼") hole to 1339.30m (4394') with mud.
5/19/79	1381.96m (4534')	Drilled 42.68m (140') of 33.12 cm (12%") hole to 1381.96m (4534') with mud.
5/20/79	1407.57m (4618')	P.O.H. Changed bits R.I.H. with bit #13. Reamed from 1374.95m (4511') to 1381.96m (4534'). Drilled 25.6m (84') of 33.12cm (12%") hole to 1407.57m (4618') with mud.
5/21/79	1407.57m (4618")	P.O.H. layed down Monel D.C. R.I.H. with O.E.D.P. to 373.99m (1227!). Ran McInally Temperature survey to 1392.3m (4568'). R.I.H. to 1165.56m (3824'). Circulated mud to cool hole. Halliburton mixed and pumped thru 12,7cm (5") O.E.D.P @ 1165.56m (3824'), 8.5m (300 ft) Class "G" cement, premixed with 45% silica flour, 0.75% CFR, and displaced with 9.77m (345 ft) mud, cement in place at 1435 hours. P.O.H. and W.O.C. for 6 hours.
5/22/79	1099.72m (3608')	R.I.H. with bit #14 and B.H.A. Tagged cement at 1093.62m (3588') and polished plug 4.88m (16') to 1094.5m (3604'). Circulated and W.O.C. for 9 hours. P.O.H. made up B.H.A. and bit #15. R.I.H. Drilled 1.23m (4') of 33.12cm (12%") hole with Dynadrill to 1407.6m (4618') with mud in hole.
5/23/79	1130.81m (3710')	Dynadrilled 31.09m (102') of 33.12 cm (12¼") hole to 1130.81m (3710') with mud in hole. P.O.H.
5/24/79	1164.64m (3821')	P.O.H. Changed to bit #16 R.I.H. Dynadrilled 33.83m (111') of 33.12 cm (12%") hole to 1164.64m (3821') with mud in hole. P.O.H.
5/25/79	1187.20m (3895')	P.O.H. Changed to bit #17 R.I.H. Dynadrilled 22.56m (74') of 33.12 cm (12%") hole to 1187.20m (3895') with mud in hole.
5/26/79	1187.20m (3895')	P.O.H. Looked for D.P. washout. Layed down 6 19.05cm (7½") D.C. Left 1.21m (4") of Dynadrill drive shaft and bit on bottom.
	•	

Ran temperature survey. R.I.H. with overshot socket to top of fish.

		-4-
5/27/79	1187.81m (3897')	P.O.H. Recovered 16.81cm (6 5/8") diameter bearing race with Midway socket. Two additional runs made. Recovered shaft and bit at 2330 hr.
5/20/70	1197 91 (29071)	
5/28/79	1187.81m (3897')	R.I.H. with Monel D.C. and Dynadrill. Reamed from 1160.68m (3808') to 1180m (3871'), Dynadrilled 0.61m (2') of 33.12cm (12%") hole to 1187.81m (3897') with mud in hole. P.O.H. R.I.H. with magnet. P.O.H.
		Recovered metal. R.I.H. with dynadrill bit #19.
5/29/79	1241.15m (4072')	Dynadrilled 53.34m (175') of 33.12cm (12½") hole to 1241.15m (4072') with mud in hole. P.O.H. Changed to bit #20. R.I.H.
5/30/79	1267.36m (4158')	Dynadrilled 26.22m (86') of 33.12cm (12%") hole to 1267.36m (4158') with mud.
5/31/79	1293.57m (4244)	Dynadrilled 25.91m (85') of 33.12cm (12½") hole to 1293.57m (4244') with mud in hole. P.O.H. Changed to bit #21.
6/1/79	1293.57m (4244')	R.I.H. Reamed from 1120.14m (3675') to 1273.76m (4179')
6/2/79	1315.22m (4315')	Continued reaming to 1293.57m (4244'). Dynadrilled 21.64m (71') of 33.12cm (12%") hole to 1315.2m (4315') with mud.
6/3/79	1350.26m (4430')	Dynadrilled 35.05m (115') of 31.12cm (12½") hole to 1350.26m (4430') with mud in hole. P.O.H. Breakdown B.H.A. Change to bit #23.
6/4/79	1436.52m (4713')	R.I.H. reamed from 1173.78m (3851') to 1189.94m (3904'). Dynadrilled 86.26m (283') of 31.12cm (12¼'') hole to 1436.52m (4713') with mud.
6/5/79	1519.43m (4985')	Dynadrilled 82.91m (272') of 31.12cm (12¼") hole to 1519.43m (4895') with mud.
6/6/79	1546.86m (5075')	Dynadrilled 19.51m (64') of 31.12cm (12%") hole to 1538.94m (5049') with mud in hole. P.O.H. R.I.H. with bit 22RR. Dynadrilled 7.92m (26') of 31.12cm (12%") hole to 1546.86m (5075') with mud.
6/7/79	1595.32m (5234')	Dynadrilled 48.46m (159') of 31.12cm (12¼") hole to 1595.32m (5234') with mud.
6/8/79	1647.44m (5405')	Dynadrilled 52.12m (171') of 31.12cm (124") hole to 1647.44m (5405') with mud in hole. P.O.H. Preparing to run Schlumberger.
6/9/79	1647.44m (5405')	Ran Schlumberger logs. R.I.H. Circulated and conditioned mud to run casing.

6/10/79 1647.44m (5405')

Ran 33 joints of 24.45 cm (9 5/8"), 59.60 Kg/m (40 lb/ft), N-80 buttress casing followed by 70 joints, 59.60 Kg/m (40 lb/ft), K-55 buttress casing. Shoe at 1645.31m (5398') KB; float collar 1619.10m (5312') KB; D.V. collar 769.62m (2525') KB; top of liner 342.29m (1123') KB. Ran 14 centralizers and 2 cement baskets approximately every 10 joints with 3 on bottom joint and 3 on top joint. C.B.'s on joint #21 and 78. Circulated in çasing for one hour before running cement. Ran 2.83m (100 ft') flush of silica flour and gel ahead of 611 sacks of Class "G" cement mixed 1:1 with Perlite and 40% silica flour, 3% gel, 0.5% CFR₂. Cement slurry weight 14.1 ppg. Displaced with 49.84m (1760 ft) of 9.1 ppg mud. Lost returns before job completed. CIP. @ 1400 hours. Waited 2 hours and pressured to 3000 psi. Ports failed to open. Waited for RTTS packer.

6/11/79

1647.44m (5405')

P.O.H. Laid down 31.11cm(124") D.A. and picked up 16cm (6%") drill collars and 9cm (8") D.C. Tagged DV collar at 769.01m (2523'). Opened D.V. ports with 27,216Kg (60,000 lb) weight. Set packer at 765.05m 2510' and broke circulation and circulated for ½ hour. P.O.H. R.I.H. with E.Z.S.V. plug, set same at 767.18m (2517'), Circulated to cool hole for one hour. Pumped 2.83m (100 ft) water ahead of 2.83m (100 ft) silica flour -gel flush. Mixed 361 sacks class "G" cement mixed 1:1 perlite 40% silica flour 3% gel 0.5% CFR₂; 60% excess over hole volume or 21.66m³ (765 ft³) total volume. Cement slurry weight 13.7 ppg. Displaced with 6.85m³ (242 ft³) 9.1 ppg mud. CIP 1145. Good returns throughout job. Got 1.69m³ (60 ft³) excess cement to surface.

6/12/79

1647.44m (5405')

W.O.C. 11 hours. Closed blind rams, tested liner lap and rams 35.15Kg/cm²(500 psi), 15 minutes. Held o.k. R.I.H. with bit #24 to 7,69.62m (2525'). Tested blind rams with 35.15Kg/cm²(500 psi). Held o.k. Drilled E.Z.S.V. plug and DV collar. R.I.H. to 1463.04m (4800'). Pressured to 35.15Kg/cm²(500 psi) with pipe rams closed. Held o.k. Drilled cement from float collar and guideshoe C.O. to 1647.44m (5405').

6/13/79

1730.65m (5678')

Drilled 4.87m (16') of 21.59cm (8½") hole to 1652.32m (5421') with water. P.O.H. Changed to bit #25 and B.H.A. Drilled 78.33m (257') of 21.59cm (8½") hole to 1730.65m (5678') with water.

6/14/79

1856.85m (6092')

Drilled 126.19m (414') of 21.59cm (8½") hole to 1856.84m (6092') with water.

6/15/79

1912.62m (6275') Drilled 24.08m (79') of 21.59cm (8½") hole to 1880.92m (6171') with water. P.O.H. Change to bit #26. Drilled 31.69m (104') of 21.59cm (8½") hole to 1912.62m (6275') with water.

6/16/79	2005.58m (6580')	Drilled 92.97m (305') of 21.59cm (8½") hole to 2005.58m (6580') with water.
6/17/79	2088.79m(6853')	Drilled 82.30m (270') of 21.59cm (8½") hole to 2088.79m (6853') with water.
6/18/79	2138.17m (7015')	Drilled 25.29m (83') of 21.59cm (8½") hole to 2113.79m (6935') with water. P.O.H. Changed to bit #27 and N.B. reamer. R.I.H. reamed from 2025.7m (6646') to 2113.79m (6935'). Drilled 24.08m (79') of 21.59cm (8½") hole to 2138.17m (7015') with water.
6/19/79	2220.47m (7285')	Drilled 82.30m (270') of 21.59cm (8½") hole to 2220.47m (7285') with water.
6/20/79		Drilled 12.19m (40') of 21.59cm (8½") hole to 2232.66m (7325') with water. P.O.H. changed bits (#28) and B.H.A. R.I.H. Drilled 79.86m (262') of 21.59cm (8½") hole to 2312.52m (7587').
6/21/79	2435.35m (7990')	Drilled 122.83m (403') of 21.59cm (8½") hole to 2435.35m (7990') with water.
6/22/79	2467.97m (8097')	Drilled 11.28m (37') of 21.59cm (8½") hole to 2446.63m 8027') with water. P.O.H. Repaired broken rotary chain. R.I.H. with new bit (#29). Drilled 21.34m (70') of 21.59cm (8½") hole to 2467.97m (8097').
6/23/79	2467.97m (8097')	Twisted off at 2467.97m (8097'). P.O.H. Left entire drilling assembly in hole. Top of fish at 2326.54m (7633'). Dressed overshot and grapple. Picked up same, bumper sub and jars. Ran in hole to 2325.63m (7630'). Latched on fish; worked it free. P.O. slowly, recovered all of drilling assembly. Magna glowed all D.C.'s; laid down 2 w/cracked pins or boxes.
6/24/79	2512.47m (8243')	Drilled 44.51m (146') of 21.59cm (8½") hole to 2512.47m (8243') with water.
6/25/79	2559.41m (8397')	Drilled 28.65m (94') of 21.59cm (8½") hole to 2541.12m (8337') with water. P.O.H. R.I.H. with new bit #30. Drilled 15.24m (50') of 21.59cm (8½") hole to 2559.41m (8397') with water.
6/26/79	2601.16m (8534')	Drilled 44.81m (147') of 21.59cm (8½") hole to 2601.16m (8534') with water. P.O.H. Stood back B.H.A. Rigged up loggers. Running logs.
6/27/79	2601.16m (8534')	Running Schlumberger logs.
6/28/79	2601.16m (8534')	Completed Schlumberger logging. R.I.H. with O.E.D.P. to 1748/96m (5398'). Installed rotating head and 17.78cm (7") flow line to sump. Blowing well with air compressor. Repeated surges of hot water with pressure as high as 14.13Kg/cm(201 psig)
6/29/79	2601.16m (8534')	Continue to blow well. P.O.H. with O.E.D.P. Ran McInally Temperature Survey. Layed down 30 joints of bent drill pipe and slipped drilling line. R.I.H. with bit #31.

7/7/79	2749,91m (9022')	W.O.C. Laid down 12.7cm (5") drill pipe, picked up 11.43cm (4½") D.C. and 125 joints of 8.89cm (3½") drill pipe. R.I.H. to 1863.3m (6113'); tested 17.78cm (7") liner lap with 35.15 (500 psi) pressure at wellhead. Held o.k. for 15 minutes. Drilled cement below 1876.96m (6158'). Guide shoe at 1917.2m (6290') and E.Z.S.V. plug at 1932.43m (6340'). Pushed E.Z.S.V. to bottom at 2749.91m (9022').
7/8/79	2749.91m (9022')	P.O.H. to 1538.63m (5048'). Installed rotating rubber. Blew well with air compressors at 1538.63m (5048') for 7½ hours. Trying to get well to unload. R.I.H. to 1914.45m (6281'). Blew well for 2½ hours. R.I.H. to 2286m (7500'). Unloaded hole with air compressor at 2286.00m (7500').
7/9/79	2749.91m (9022')	P.O. from 2286m (7500') to 1914.45m (6281'). Waited for well to heat up for 7½ hours. Blew well for 6½ hours. Filled hole with water through D.P. and bit at 1914.48m (6281'). R.I.H. to 2749.91m (9022') tagged bottom P.O.H. Layed down D.P. and D.C.
7/10/79	2749.91m (9022')	Removed B.O.P.; installed wellhead plate with 5.08cm (2") gate outlet on 33.96cm (13 3/8") bradenhead. Cleaned out pits. Released rig at 0800.

Dixie Federal 45-14

Drilling Fluid Daily Temperatures*

Date	Depth			
	Feet	Meters	°F	°С
4-25-79	124'	37.80	· .	_
4-26-79	146'	44.51	84	29.4
4-27-79	715'	217.93	111	43.9
4-28-79	741'	225.86	. -	e e e e e e e e e e e e e e e e e e e
4-29-79	980'	298.70	113	45.0
4-30-79	1322'	402.95	126	52.2
5-1-79	1330	405.39	126	52.2
5-2-79	1330'	405.39	Runi	ning 13 3/8" casing
5-3-79	1330'	405.39		
5-4-79	1779'	542.24	118	47.8
5-5-79	2076'	632.76	118	47.8
5-6-79	2076'	632.76	115	46.1
5-7 - 79	2218'	676.05	127	52.8
<i>5</i> -8-79	2525'	769.62	136	57.8
5-9-79	2922'	890.63	146	63.3
5-10-79	3074'	936.96	138	58.9
5-11-79	33371	1017.12	159	70.6
5-12-79	3620'	1103.38	160	71.1
5-13-79	3812'	1161.90	161	71.7
5-14-79	3977'	1212.19	165	73.9
5-15-79	4057'	1236.57	-	· ·
5-16-79	4197'	1279.25	166	74.4
5-17-79	4261'	1298.75	166	7.4.4
5-18-79	4394'	1339.29	167	75.0
5-19-79	45341	1381.96	166	74.4
5-20-79	4618'	1407.57	164	73.3
5-21-79	4618'	1407.57		Sidetrack) 63.3
5-22-79	3608'	1099.72	146	63.3
5-23-79	3710'	1130.81	148	64.4
5-24-79	3821'	1164.64	143	61.7
5-25-79	3895'	1187.20	156	68.9
5-26-79	3895'	1187.20	Fishing	
5-27-79	3895'	1187.20	Fishing	-
5-28-79	3897'	1187.81	135	57.2
5-29-79	4072'	1241.15	152	66.7
5-30-79	4158'	1267.36	152	66.7
5-31-79	4244'	1293.57	154	67.8
6-1-79	4244'	1293.57	164	73.3
6-2-79	4315'	1315.21	162	72.2
6-3-79	44301	1350.26	159	70.6
6-4-79 6-5-79	4713'	1436.52	164	73.3 75.6
ローノー/ フ	4985'	1519.43	168	75.6

^{*}Wellhead exit temperatures

6-6-79	5075'	1546.86	156	68.9
6-7-79	5234'	1595.33	170	76.7
6-8-79	5405'	1647.44	175	79.4
6-9-79	5405'	1647.44	Run logs	•
6-10-79	5405'	1647.44		inning 9-5/8" liner
6-11-79	5405	1647.44		unning 9-5/8" liner
6-12-79	540 <i>5</i> 1	1647.44		11 11 11
6-13-79	5678'	1730.65	150	65.6
6-14-79	6092'	1856.85	142	61.1
6-15-79	627 <i>5</i> '	1912.62	139	59.4
6-16-79	6580'	2005.59	130	54.4
6-17-79	6853'	2088.79	157	69.4
6-18-79	701 <i>5</i> '	2138.17	160	71.1
6-19-79	7285'	2220.47	162	72.2
6-20-79	7587'	2312.52	152	66.7
6-21-79	7990'	2435.35	167	75.0
6-22-79	8097'	2467.97	159	70.6
6-23-79	8097'	2467.97	Fishing	· -
6-24-79	8243'	2512.47	151	66.1
6-25-79	8387'	2556.36	151	66.1
6-26-79	8534'	2601.17		68.3
6-27-79	8534'	2601.17	Running logs	
6-28-79	8534!	2601.17		7 testing well -
6-29-79	8534'	2601.17	Testing well	16.4
6-30-79	8610'	2624.33	157	69.4
7-1-79	8912'	2716.38	155	68.3
7-2-79	8912'	2716.38	Testing well	-
7-3-79	8912'	2716.38	Running logs	·• ·
7-4-79	9022'	2749.91	160	71.1
7-5-79	9022'	2749.91	Setting plug	·• •••
7-6-79	9022'	2749.91	Running 7" liner	₹\$ 3
7-7-79	9022'	2749.91	Running 7" liner	_
7-8-79	9022'	2749.91	Testing well	_
7-9-79	9022'	2749.91	Testing well	-
7-10-79	9022' T.D.	Testing w	ell/Released Rig	-

THERMAL POWER COMPANY/SOUTHLAND ROYALTY COMPANY

DIXIE FEDERAL 45-14

Bit Record

Bit #	Size	Make/Type	In	Out	Total Drilled
DICH	5120	make/Type	111	Odt	Total Diffica
1	44.45cm (17½")	Security S3J	37.80m (124')	225.86m (741')	187.76m (616')
2	44.45cm (17½")	H.T.C. DSC	225.86m (741')	361.49m (1186')	132.59m (435')
3 .	44.45cm (17½")	Security S83	361.49m (1186')	405.38m (1330')	43.89m (144')
4	31.12cm (12¼")	Smith SJ	405.38m (1330')	453.85m (1489')	48.46m (159 ¹)
5 .	31.12cm (12¼")	Security S86	453.85m (1489')	646.48m (2121')	192.63m (632')
6	31.12cm (12¼")	Smith F-3	646.48m (2121')	924.76m (3034')	278.28m (913')
7	31.12cm (12¼")	H.T.C. X-44	924.76m (3034 ¹)	936.96m (3074')	12.19m (40')
8	31.12cm (12¼")	Smith F-3	936 . 96m (3074')	1154.58m (3788')	217.63m (714')
9	31.12cm (12¼")	H.T.C. S-88	11 <i>5</i> 4 . <i>5</i> 8m (3788')	1236.58m (4057')	81.69m (268')
10	31.12cm (12¼")	H.T.C. J-44	1236.58m (4057')	1279 . 25m (4197')	42.67m (140°).
11	31.12cm (12¼")	Smith F-4	1279 . 25m (4197')	1339.30m (4394')	60.05m (197')
12	31.12cm (12¼")	H.T.C. X-33	1339.30m (4394')	1387 . 96m (4534')	42.67m (140')
13	31.12cm (12¼'')	Smith F-5	1381.96m (4534')	1407 . 57m (4618')	25.60m (84′)
Redri	11	•	•		•
14	31.12cm (12¼")	Smith SC-8	1093 . 62m (3588')	1098.5m (3604')	4.88m (16')
15	31.12cm (12¼")	H.T.C. X-33	1098.50m (3604')	1130.81m (3710')	32.31m (106')
16	31.12cm (12¼")	Smith F-5	1130.81m (3710')	1165.10m (3821')	33.83m (111')
17	31.12cm (12¼")	H.T.C. X-33	1165.10m (3821')	1187 . 2m (389 <i>5</i> ')	22.56m (74')
18	31.12cm (12¼")	Reed F.P. 52	1187 . 20m (389 <i>5</i> 1)	1187.81m (3897')	0.61m (2')
19	31.12cm (12¼")	Smith F-5	1187.81m (3897')	1241.15m (4072')	53 . 34m (175')
20	31.12cm (12¼")	Smith F-5	1241.15m (4072 ¹)	1293.57m (4244')	52.43m (172')
21	31.12cm (12¼")			n (36 729 3.57m (4244')	173.43m (569')
22	31.12cm (12¼")	H.T.C. X-44	1293 . 57m (4244')	1350.34m (4430')	56.69m (186′)
23	31.12cm (12¼")	Smith F-4	1350.39m (4430')	1539.94m (5049')	188.67m (619')
22R	31.12cm (12¼")	H.T.C. X-44	1539.94m (5049!)	1647.4m (5405')	113.08m (371')
24	21.59cm (8½)	Security S4T	1647.4m (5405')	1652.3m (5421')	4.88m (16')
25	21.59cm (8½)	H.T.C. X-44	1652 . 3m (5421')	1880.1m (6171')	228.60m (7 <i>5</i> 0')
26	21.59cm (8½)	H.T.C. J-44	1880.1m (6171')	2113 . 79m (6935')	232.87m (764')
27	21.59cm (8½)	Security S86F	2113 . 79m (6935')	2232 . 0m (7325¹)	118 . 57m (389')
28	21.59cm (8½)	Smith S-4	2232m (732 <i>5</i> 1)	2520.7m (8027')	213 . 97m (702')
.29	21.59cm (8½)	Smith F-5	2520.7m (8027')	2540m (8337')	94.50m (310')
30 .	21.59cm (8½)	Reed FP 63	2540m (8337')	2601.2m (8534')	60.05m (197')
31	21.59cm (8½)	Reed FP 62	2601.16m (8534')	2523m (8912')	87.78m (288')
32	21.59cm (8½)	Smith F-5	2523m (8912')	2749.9m (9022')	33.53m (110')

WELL DATA SHEET

Field: Well: Date:

Dixie Valley, Churchill Nevada Dixie Federal 45-14 September 1, 1979

	- 1 ,	,				٠				Cer	nenting					
Casing	Hole		Cas pecifica	ations			ing Dept	Total	Total Wt.	Slurry	% %	Sks. of Cement	Mud wt.		n Calculated Factor	
String	Size (in)	Size (in)	Wt. (#/ft)	Gr.	Jt.	From	То	Length	(lbs)	Volume (ft)	Excess	w/o add.	Csg. Pt. (lbm/gal)	Tension	Collapse	Burst (psi basis)
Conductor	26	20	94	H-40	Butt	0	124	124	11,656	370	60	320	9.1	127.00	8.87	2.43
•			•	•								• • • •	٠.			(629)
Surface	17%	. 13 3,	/8 54.5	K-55	Butt.	0	1332	1332	72,594	2309	100	1090	9.1	11.75	1.80	4.34 (629)
Production line	er								•			3			•	•
roddenon mi	12% 12%	9 5/8 9 5/8		K-55 N-80	Butt Butt	1123 4012	4012 5398	2889 1386	115,560 55,440	·	 	 - - ,	9.1 9.1	3.28 13.29	1.36 1.21	2.08 2.25
Total Liner	12%	9 5/8	3		Butt	1123	5398	4275	171,000	2060	.60	972	9.1	3.28	1.21	2.08 (2551)
7" Liner	8,%	7"	23	N-80	LT&C	5173	6290	1117	25,691	332	100	205	9.1	17.20	1.29	2.13 (2972)

JMR:pw 10/10/79